
STOCHASTIC AIRPORT GATE ASSIGNMENT PROBLEM

by

MERVE ŞEKER

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

August 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/20312428?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

STOCHASTIC AIRPORT GATE ASSIGNMENT PROBLEM

APPROVED BY

Assist. Prof. Nilay Noyan ...
(Thesis Supervisor)

Prof. Gündüz Ulusoy ...

Assist. Prof. Kerem Bülbül ...

Assist. Prof. Güvenç Şahin ...

Assoc. Prof. Orhan Feyzioğlu ...

DATE OF APPROVAL: ..

c©Merve Şeker 2010

All Rights Reserved

to my family

Acknowledgments

I would like to express my deepest gratitude to my thesis advisor Assist. Prof.

Nilay Noyan for her invaluable supervision and guidance throughout my thesis project.

I would also want to thank my thesis committee members, Prof. Gündüz Ulusoy,

Assist. Prof. Kerem Bülbül, Assist. Prof. Güvenç Şahin, and Assoc. Prof. Orhan

Feyzioğlu.

I am grateful to all my friends for their caring and support. Very special thanks

to my dear friends Elif Özdemir, Gizem Kılıçaslan, Nimet Aksoy, Özlem Çoban, and

Semih Yalçındağ.

Lastly, I offer my special regards and blessings to my family for their concern, love

and support they provided throughout my life.

STOCHASTIC AIRPORT GATE ASSIGNMENT PROBLEM

Merve Şeker

Industrial Engineering, Master of Science Thesis, 2010

Thesis Supervisor: Assist. Prof. Nilay Noyan

Keywords: airline transportation, gate assignment, random disruptions, stochastic

arrival times, robustness, stochastic programming, tabu search

Abstract

The uncertainties inherent in the airport flight arrival and departure traffic may
lead to the unavailability of gates when needed to accommodate scheduled flights. Me-
chanical failures, severe weather conditions, heavy traffic volume at the airport are
some typical causes of the uncertainties in the input data. Incorporating such random
disruptions is crucial in constructing effective flight-gate assignment plans. We consider
the flight-gate assignment problem in the presence of uncertainty in arrival and depar-
ture times of the flights and represent the randomness associated with these uncertain
parameters by a finite set of scenarios. Using the scenario-based approach, we develop
new stochastic programming models incorporating alternate robustness measures to
obtain assignments that would perform well under potential random disruptions. In
particular, we focus on the number of conflicting flights, the buffer and idle times as
robustness measures. Minimizing the expected variance of idle times or the expected
semi-deviation of idle times from a buffer time value are some examples of the ob-
jectives that we incorporate in our models to appropriately distribute the idle times
among gates, and by this way, to decrease the number of potential flight conflicts. The
proposed stochastic optimization models are formulated as computationally expensive
large-scale mixed-integer programming problems, which are hard to solve. In order
to find good feasible solutions in reasonably short CPU times, we employ tabu search
algorithms. We conduct an extensive computational study to analyze the proposed al-
ternate formulations and show the computational effectiveness of the proposed solution
methods.

RASSAL HAVAALANI KAPI ATAMA PROBLEMİ

Merve Şeker

Endüstri Mühendisliği, Yüksek Lisans Tezi, 2010

Tez Danışman: Yrd. Doç. Dr. Nilay Noyan

Anahtar Kelimeler: hava taşımacılığı, kapı atama, rassal aksaklıklar, rassal varış

süreleri, dayanıklılık, rassal programlama, tabu arama

Özet

Uçuşların kalkış ve varış trafiğine özgü belirsizlikler uçuşların planlanan kapılara
atanması gerektiğinde kapıların atamaya müsait olmamasına yol açabilmektedir. Teknik
arızalar, uygunsuz hava koşulları, havaalanındaki trafik yoğunluğu girdi verisindeki be-
lirsizliklerin tipik sebeplerinden bazılarıdır. Bu rassal aksaklıklar verimli uçuş-kapı
atama planları oluşturulmasında büyük öneme sahiptir. Havaalanı kapı atama prob-
lemi uçuşların kalkış ve varış zamanlarındaki belirsizlikler gözönüne alınarak ince-
lenmiştir ve bu belirsiz parametrelere dair rassallık bir senaryo kümesi ile ifade edilmiştir.
Olası rassal aksaklıklara karşı dayanıklı bir atama elde etmek amacıyla senaryo tabanlı
bir yaklaşım kullanılarak alternatif dayanıklılık ölçütlerini içeren yeni rassal program-
lama modelleri geliştirilmiştir. Özellikle odaklanılan dayanıklılık ölçütleri çakışan uçuş
sayısı, tampon ve boş zamanlardır. Boş zamanların kapılar arası düzgün dağılımını
sağlayıp olası çakışmaların önüne geçebilmek amacıyla atıl zamanların varyansının ya
da atıl zamanların belirli bir tampon değerden toplam sapmalarının beklenen değerinin
enküçüklenmesi önerilen modellerde hedeflenen amaçlara örnek olarak verilebilir. Öneri-
len rassal programlama modelleri çözümü zor olan büyük ölçekli karışık tamsayılı
programlama olarak yazılmıştır. Daha kısa hesaplama süresi içerisinde olurlu ve iyi
sonuçlar elde edebilmek amacıyla tabu arama sezgisel yöntemleri geliştirilmiştir. Öneri-
len alternatif formülasyonları analiz etmek ve önerilen çözüm yöntemlerinin hesaplama
etkinliğini göstermek amacıyla kapsamlı bir sayısal çalışma yapılmıştır.

Table of Contents

Abstract vi

Özet vii

1 INTRODUCTION AND MOTIVATION 1
1.1 Contributions . 4
1.2 Outline . 4

2 LITERATURE REVIEW 6
2.1 Mathematical Programming Techniques 6

2.1.1 Modeling Uncertainty and Robustness 7
2.2 Rule-based Expert Systems . 9

3 STOCHASTIC PROGRAMMING MODELS 11
3.1 Conflict based Stochastic Models . 14

3.1.1 Risk-neutral model: Model minimizing the expected number of
conflicts . 16

3.1.2 Risk-averse model: Model minimizing the mean-risk function of
the number of conflicts . 18

3.2 Idle Time based Stochastic Models . 19
3.2.1 Model minimizing the expected variance of the idle times and

the number of conflicts . 21
3.2.2 Model minimizing the expectation of total semi-deviation and

the number of conflicts . 27
3.2.3 Model minimizing the expected number of semi-deviations and

number of conflicts . 31

4 TABU SEARCH HEURISTIC 34
4.1 Tabu Search Heuristic . 34

4.1.1 Initial Solution . 35
4.1.2 Neighborhood Strategy . 35
4.1.3 Solution Evaluation . 37
4.1.4 Tabu List and Aspiration Condition 37
4.1.5 Termination Criteria . 38

5 COMPUTATIONAL STUDY 39
5.1 Generation of problem instances . 39
5.2 Tabu Search Heuristics . 43
5.3 Analyzing Alternate Models . 46
5.4 Relative Results based on Alternate Formulations 48

6 CONCLUSION AND FUTURE RESEARCH 52

viii

Bibliography 54

ix

List of Figures

3.1 An illustrative example of a flight conflict 13
3.2 Representation of gates as flights . 17
3.3 An illustrative example of an idle time 19
3.4 An illustrative example of the buffer time 20
3.5 An idle time calculation . 23
3.6 Different types of flight conflicts . 24
3.7 A representative example for model MEVINC 26
3.8 Calculation of the idle time values . 29
3.9 Calculation of the idle time values . 30

4.1 An illustrative example of swap move 36
4.2 An illustrative example of insert move 36

5.1 Change of the lower bound value . 45

x

List of Tables

5.1 Dimensions of the problem instance families for models MENC and MM-
RNC . 41

5.2 Dimensions of the problem instance families for models METDNC, MENDNC,
and MEVINC . 42

5.3 CPU times and UBROG for models MENC and MMRNC 43
5.4 CPU times and UBROG for models METDNC and MENDNC 45
5.5 Effectiveness of the heuristics for models MENC and MMRNC 46
5.6 Effectiveness of the heuristics for models METDNC and MENDNC . . 46
5.7 Comparative results for MENC with respect to an existing model . . . 47
5.8 Comparative results for MEVINC with respect to an existing model . . 48
5.9 Comparative results of models MENC and MMRNC based on the CPU

and risk value . 49
5.10 Comparative results based on the EVI 50
5.11 Comparative results based on the ETD 50
5.12 Comparative results based on the END 50
5.13 Comparative results based on the ENC 51

xi

CHAPTER 1

INTRODUCTION AND MOTIVATION

Airport Gate Assignment Problem (AGAP) mainly focuses on assigning a given set of

arriving flights to a given set of gates available at the airport under some constraints.

Finding a reasonable flight-gate assignment plan is one of the major tasks in airline

operations management and the increase in the volume of the air transport traffic has

stimulated the importance and the complexity of the problem.

Here we elaborate on the common constraints and the objective functions considered

in the gate assignment problems. The constraints are mainly classified as “strict” and

“soft” constraints in the literature. Strict constraints are inherent to the problem and

can be described as follows:

• each flight must be assigned to only one gate,

• no two conflicting flights are assigned to the same gate concurrently (referred to

as “conflict constraints”). We say that a flight conflict occurs when two flights

with overlapping ground times (gate occupation times) are allocated to the same

gate.

Besides the strict constraints, additional restrictions related to airport facilities also

need to be considered such as the assignment of specific airlines to the predetermined

gates, the space restrictions related to the size of available gates and aircrafts, etc..

The problem tries to find an optimal assignment with respect to a specific objective

function while satisfying the strict constraints and some soft constraints. Typical

objectives specific to the problem can be classified under two main groups:

• Passenger-oriented objectives:

– minimization of the total passenger walking distance,

– minimization of the total connection times of the passenger (between gates

and from apron to the terminal building), etc.

1

• Airport-oriented objectives:

– minimization of the number of un-gated flights (flights assigned to the

apron),

– minimization of the aircraft towing procedures,

– minimization of the baggage transport distances, etc.

Gate assignment problem in general is formulated for a given set of arrival and

departure times of the flights. It is common to refer to the given set of arrival and

departure times as the “planned schedule”. However, in real life applications the arrival

and departure times are not certain and it is crucial to take the uncertainties in these

input parameters into the consideration. The assignment obtained based on a given

deterministic (estimated) arrival and departure times may perform poorly when the

realizations of the data deviate from the estimated input data. Mechanical failures,

severe weather conditions, heavy traffic volume at the airport are some typical causes

of the disruptions (early or late arrivals and departures) in input data. A delayed/early

arrival or departure may cause “flight conflicts”. Therefore, it is important to model

the stochastic nature of the input data.

We represent the uncertain input data by random variables and we model the ran-

domness by a finite set of scenarios. Note that a scenario represents a joint realization

of the arrival and departure times of all the flights. Using the scenario-based ap-

proach we propose alternate stochastic programming models. The underlying idea of

our proposed models is to allow infeasibilities in the stochastic version of the “conflict

constraints”, since obtaining a feasible assignment for all the scenarios would be quite

conservative and unrealistic. However, since in real life environment the decision mak-

ers prefer to have a feasible assignment for the planned schedule, we ensure that the

“conflict constraints” are satisfied for that given schedule.

We focus on alternate objective functions that involve some robustness measures

such as the number of flight conflicts, buffer times and idle times. Our first stochastic

optimization model tries to minimize the expected number of flight conflicts like the

model proposed by Lim and Wang [21]. Lim and Wang use an unsupervised estimation

function to estimate the probabilities of the flight conflicts based on a single planned

schedule with deterministic arrival and departure times. Alternatively, we model the

randomness in data using a scenario approach. This approach allows us to model the

random deviations from the estimated input data directly. Additionally, in order to

2

take the effect of the variability in the number of conflicts into consideration, we extend

the first model by considering a risk measure and using a mean-risk approach. Since

the smaller values of the random number of conflicts are preferred, we consider the

absolute semi-deviation as the risk measure and formulate a second model minimizing

a combination of the associated expectation and the risk measure. We refer to those

two models as “conflict based stochastic models”, since the number of flight conflicts

is incorporated as a robustness measure. In all of the proposed models this robustness

measure based on the number of flight conflicts is considered as the primary one.

The vast majority of the gate assignment literature considers minimizing the pas-

senger walking distance to improve the airport service satisfaction. Due to the nature

of this objective, some gates receive high utilization. The basic problem, initially men-

tioned in [23], is that, even minor deviations in input data will disrupt those heavily

utilized gates and so make the obtained assignment more prone to the disruptions. Bo-

lat [5] suggests that distributing “idle times” uniformly among gates provides a robust

assignment, where an “idle time” is a non-utilized time period between two successively

assigned flights. The motivation is that distributing idle times uniformly helps us to

decrease the probability that the delayed departure will be still earlier than the arrival

of the next flight. Following this line of thought, Bolat [5] introduces two objectives:

the minimization of the variance of idle times of all flights and the minimization of

the range of idle times. For further discussion we refer the reader to [4–6]. The mod-

eling approach in [5] is based on the fact that the flights can be sorted in ascending

order of their arrival times. This approach is not valid while formulating a stochastic

optimization model, since we cannot obtain such an ordering for the random arrival

and departure times. In our setup, the idle times are random and each scenario may

lead to a different ordering of arrival and departure times. Hence, it is not trivial to

incorporate the idle times into a stochastic optimization model. Developing stochastic

optimization models involving random idle times is one of our main contributions. We

refer to such models as “idle time based models” and in the first one we minimize the

expectation of the variance of idle times.

In order to avoid the problem of highly utilized gates and obtain robust assign-

ments plans, Mangoubi and Mathaisel [23] propose a fixed “buffer time” between two

continuous flights. Such a buffer time between two continuous flights allocated to the

same gate may absorb the stochastic flight delays or earliness. In particular, buffer

time is considered as a lower bound on each idle time value. However, in the stochastic

3

setup this approach requires to introduce lower bounds on the random idle times and

it is not trivial. Our novel approach to model the random idle times allows us to also

take the buffer time into consideration and leads to other novel stochastic optimization

models. In particular, we propose two models involving the idle and buffer times as

robustness measures. As a secondary objective, the first model minimizes the expected

total semi-deviation of the idle times from the buffer time value, whereas the second

one minimizes the expected number of the idle times that are below the buffer time.

We note that we do not directly model the traditional objectives used in the liter-

ature. However, they can be incorporated into our models as additional criteria. For

example, an upper bound on the total passenger walking distance can be introduced to

the models. Moreover, our models are aligned with some of those common objectives.

For example, minimizing the number of conflicts also serves the objective of minimizing

the number of un-gated flights.

1.1 Contributions

The main purpose of this study is to develop stochastic programming models to ob-

tain assignments that would perform well under potential random disruptions. The

contributions of this study can be summarized as follows:

• We develop new stochastic programming models for the airport gate assignment

problem.

• We incorporate a risk measure on the random number of flight conflicts into a

stochastic gate assignment model.

• Idle time and buffer time concepts are incorporated into stochastic gate assign-

ment models as alternate robustness measures.

• We implement tabu search algorithms to solve the proposed models.

• We conduct an extensive computational study to analyze the proposed models

involving alternate robustness measures.

1.2 Outline

Literature review is presented in Chapter 2. Chapter 3 presents the proposed stochas-

tic programming models with alternate robustness measures. We first introduce the

4

conflict based stochastic programming models and then develop the formulations that

incorporate the idle time and the buffer time concepts. We develop tabu search al-

gorithms for the stochastic programming models proposed in Chapter 4. We present

numerical results in Chapter 5 to demonstrate the computational efficiency of the im-

plemented tabu search heuristics and the effectiveness of the proposed models, and to

comparatively analyze the alternate models. Finally, in Chapter 6 we conclude and

discuss future research directions.

5

CHAPTER 2

LITERATURE REVIEW

In this chapter, we present the existing modeling approaches and solution techniques

that are used to formulate and solve the airport gate assignment problem. This problem

has been widely studied and we refer the reader to Dorndorf et al. [11] for an extensive

review. Research directions in the field of flight-gate assignment can be grouped un-

der two main headings: mathematical programming techniques and rule based expert

systems.

2.1 Mathematical Programming Techniques

Babic et al. [1] and Bihr [2] consider the gate assignment problem with the objective of

minimizing the total passenger walking distance inside the terminal. They formulate

the problem as a linear 0-1 integer program and use a branch-and-bound algorithm

to solve the problem. Accordingly, Mangoubi and Mathaisel [23] present a linear re-

laxation of an integer program formulation and a greedy heuristic to solve the gate

assignment problem. Their objective is also to minimize the total passenger walking

distance within the terminal as in [1] and [2] but with an addition of transfer pas-

sengers. However, even if they take into account the transfer passengers, they do not

provide a precise calculation of either the number of the transfer passengers or their

walking distances.

Due to the complex nature of the problem, optimal algorithms (e.g. a branch-and-

bound algorithm) have difficulty in solving the large-scale gate assignment problems.

Thus, exact algorithms fail to provide an optimal solution within a reasonable com-

putational time for large problem instances. Therefore, recent studies mainly focus on

developing heuristic algorithms, which do not guarantee optimal solutions but provide

near-optimal solutions in reasonable computational times.

Xu and Bailey [28] model the gate assignment problem as a quadratic assignment

problem and reformulate it as a mixed 0-1 integer linear program. They consider

6

the objective of minimizing the total passenger connection time and propose a tabu

search heuristic that incorporates different types of neighborhood moves to solve the

problem. Similarly, Ding et al. [9] formulate the gate assignment problem as a quadratic

assignment problem. As a different approach, they consider the over-constrained gate

assignment problem, where some flights need to be assigned to the apron due to the

limited number of gates at the airport, and they aim to minimize both the number of

un-gated flights and the total passenger walking distance. For that model Ding et al.

propose a two-stage solution method that consists of a greedy algorithm to minimize the

number of un-gated flights and a tabu search heuristic to minimize the total passenger

walking distance. In another study, Ding et al. [10] also use different types of heuristics

like the simulated annealing and a hybrid of the simulated annealing and tabu search

to solve the same assignment problem proposed in [9]. In the latter study, the authors

provide a detailed computational analysis comparing the alternate heuristic methods.

Drexl and Nikulin [13] and Pintea et al. [26] also consider the over-constrained gate

assignment problem proposed by Ding et al [9]. However, they use a pareto simulated

annealing heuristic and a hybrid ant-local search system, respectively.

As an alternate modeling approach Haghani and Chen [18] introduce a time-indexed

(multiple-time slot) formulation by dividing the whole study period into the fixed

time intervals. They propose a heuristic solution procedure to solve their model that

minimizes the total passenger walking distance.

2.1.1 Modeling Uncertainty and Robustness

Flight timetable with arrival and departure times is the main input data for the air-

port gate assignment problem. In real-life applications, this input data is subject to

uncertainty and may change over time due to the weather conditions, air traffic control

delays, gate breakdowns, etc.. In particular, these uncertainties inherent in the system

have a major impact on the performance of the gate assignment plans. Therefore, sev-

eral authors focus on improving the performance of gate assignments by considering

possible uncertainties in the problem parameters. Indeed, they try to obtain “robust

models” providing “robust assignment plans” that are less sensitive to the disruptions

in the system. In the literature, there are several studies which incorporate some ro-

bustness concepts to deal with the uncertainty. Here we briefly discuss the robustness

approaches in the related literature.

The main objective of the proposed robust models is improving the performance of

7

static assignments by considering the unexpected changes in the flight schedules. Such

models incorporate some robustness concepts to deal with the random disruptions. Lim

and Wang [21] introduce a model minimizing the expected number of flight conflicts.

They estimate the probability of conflict for each flight pair by using an un-supervised

estimation function based on the deterministic (estimated) arrival and departure times.

Thereby, they formulate the proposed model as a linear 0-1 integer program and they

solve it by using a hybrid heuristic combining a tabu search and a local search algorithm.

The airport gate assignment problem under uncertainty is also considered in Man-

goubi and Mathaisel [23]. The authors state that highly utilized gates may cause equip-

ment and passenger congestion in the airport. Besides, those highly utilized gates are

quite sensitive to the possible random disruptions such as early or late flight arrivals

and departures. As a robust approach, Mangoubi and Mathaisel [23] propose to use

a fixed buffer time amount between two continuous flights to absorb those stochastic

changes in the schedules. Similarly, Hassounah and Steuart [20] argue that buffer time

between flights is useful in improving the schedule punctuality. Yan and Chang [29],

and Yan and Huo [30] also use a fixed buffer time value to obtain a robust schedule

that would perform well under potential random flight delays.

Bolat [4] proposes an alternate approach to obtain a robust gate assignment. He

claims that such an assignment can be obtained by distributing the idle times uniformly

among gates. The motivation behind his claim is that distributing idle times more

uniformly among gates increases the probability that the delayed departure will be

still earlier than the arrival of the next flight. He mainly considers the objectives of

minimizing the variance of the idle times (see [4–6]) or minimizing the range of the

idle times (see [4, 5]). He proposes different heuristic algorithms to solve the proposed

robust gate assignment models.

Lim et al. [22] consider minor variabilities in the arrival and departure times of

flights to attain a robust assignment. The authors specify a time window in which

a ground time of flight can slide, whereas in the previous models a flight is assigned

to a gate at its exact arrival time. When flights are assigned to a gate after their

time window starts, the delay penalties (proportional to the delay time) are applied in

addition to the existing objective of minimizing the total passenger walking distance.

As a solution approach they implement a tabu search and a memetic algorithm. A

similar approach that incorporates the cost of assigning flights after a specified time

(e.g. arrival time) is also used by Yan et al. [32]. They propose a framework with

8

two main stages, the planning and the real-time stages, and iteratively update the

planning stage according to the results obtained in the real-time stage which utilizes

a reassignment rule considering the potential real-time disruptions. In the planning

stage of this iterative approach, the authors consider a scenario-based stochastic gate

assignment model, which is formulated as a multiple commodity network flow prob-

lem, and by solving this formulation they obtain an assignment plan. Then for that

assignment in the real-time stage the waiting times of the passengers are calculated for

each scenario representing the real-time disruptions. These calculated waiting times

are incorporated into the objective function of the model used in the planning stage as

penalty adjustments and this iterative process ends after a certain number of iterations

without any improvement in the best solution found so far.

Another approach recently studied in robust gate assignment problem is recovery

strategies. Dorndorf et al. [12] present the gate assignment problem as a resource-

constrained project scheduling problem and specify several robustness-related concepts

based on resource-switching. In their first model, the objective function involves a

robustness measure related with the available number of switchings. While in the

second model, the fuzzy membership functions are used to penalize the schedule which

is prone to disruptions. The authors do not propose any solution algorithm to solve

the presented models.

2.2 Rule-based Expert Systems

Another main research direction in the airport gate assignment literature is simula-

tion and rule-based expert systems. Yan et al. [31] propose a simulation framework

to analyze the interrelationship between the planned (static) and real-time gate as-

signments under stochastic flight delays. The evaluations are done according to the

different buffer time amounts and the real-time gate assignment rules. They consider

the percentage of flights required to be reassigned and the deviation of the real-time

objective function value from the planned one as the measures to reflect the affects of

stochastic flight delays.

An expert system provides an assignment by using some special rules based on

the knowledge of airport authorities and simulation studies. For expert systems it is

important to define the rules and incorporate these rules into the decision process by

considering an ordering based on their importance levels. Hamzwawi and Cheng [19]

propose a rule-based expert system for simulating gate assignment operations. He

9

evaluates the effects of different assignment rules according to the improvement in

the gate utilization. Recently, Cheng [7, 8] proposes a rule-based expert system that

integrates mathematical programming techniques into the proposed expert system.

10

CHAPTER 3

STOCHASTIC PROGRAMMING MODELS

In this chapter, we discuss how to incorporate stochastic input data into the optimiza-

tion models, elaborate on the robustness measures we consider and propose alternate

stochastic programming formulations. Developing such alternate formulations allows

us to model a wider range of preferences.

In traditional airport gate assignment problems the arrival and departure times of

flights are assumed to be deterministic. It is common to refer to the given set of arrival

and departure times as the “planned schedule”. The deterministic models provide

assignments based on a single planned schedule. In order to present the traditional

gate assignment formulation, we first introduce the following parameters:

N : set of all flights arriving at and/or departing from the airport during the planning

horizon;

M : set of gates available at the airport;

n: total number of flights, i.e., n = |N |, where |N | denotes the cardinality of N;

m: total number of gates available, i.e., m = |M |;

ai: arrival time of flight i, i ∈ N ;

di: departure time of flight i, i ∈ N ;

gi: gate occupation time (ground time or apron time) of flight i (gi = di− ai), i ∈ N ;

Li: conflict set associated with flight i, i ∈ N .

Basically, the conflict set of flight i is the set of all flights which land before flight i

and still on the ground at the time flight i arrives and it is defined as follows:

Li = {v ∈ N | av ≤ ai and dv > ai}.

11

Additionally, xik is a binary variable which equals to 1 if flight i is assigned to gate k,

and 0 otherwise. Then the traditional gate assignment formulation reads:

min
x

f(x) (3.1)

subject to x ∈ {0, 1}n∗m (3.2)

strict constraints
∑

k∈M

xik = 1, i ∈ N, (3.3)

∑
v∈Li

xvk + xik ≤ 1, i ∈ N, k ∈ M, (3.4)

soft constraints Ax = b, (3.5)

where f(x) is the objective function. Note that, different types of objective functions

are discussed in Chapter 1. Equations (3.3) guarantee the assignment of each flight

to exactly one gate. Constraints (3.4) ensure that no two aircrafts are assigned to

the same gate concurrently. We refer to those constraints as “conflict constraints” in

the rest of the study. These constraints are defined as inequalities, since some gates

may not be utilized in some time intervals. Furthermore, additional soft constraints

can also be introduced to the model, which are here represented by (3.5). A detailed

description can be found in [23].

As seen from the model the gate assignment problem in general is formulated for a

given set of arrival and departure times of the flights. Thus, the stochastic nature of

arrival and departure traffic is not considered and therefore, the optimal assignment

found by solving such a deterministic model may perform poorly under certain realiza-

tions of the stochastic input data. In order to obtain more robust assignments, which

would perform better in the presence of variability of the input data, we consider the

uncertainty in arrival and departure times of the flights already at the modeling stage.

Decision problems in the presence of uncertainty are at the center of interest of op-

erations research. Stochastic programming is one of the fundamental approaches that

can be used to model such problems. It develops models to formulate optimization

problems in which uncertain quantities are represented by random variables. We refer

the interested reader to the books by Birge and Louveaux [3] and Prékopa [27], which

are essential reference books in stochastic programming. In particular, we represent the

uncertain arrival and departure times by random variables and characterize those ran-

dom variables by using a finite set of scenarios. We assume that we are given a discrete

set of scenarios representing the potential random disruptions, and their associated

12

probabilities. Let S denote the finite set of scenarios and ps denote the probability

associated with scenario s, s ∈ S. We can say that a scenario is a set of realizations

of joint arrival and departure times of all flights. In our computational study, we gen-

erate the realizations of arrival and departures times from the planned schedules by

adding or subtracting random deviation amounts. This is just one reasonable way of

generating the scenarios, alternative approaches can also be utilized.

Considering the real life applications, the decision makers prefer to obtain a feasible

assignment for the planned schedule. We take this preference into consideration, by

enforcing the “conflict constraints” (3.4) for the planned schedule. It is important to

note that trying to find an assignment which satisfies the “conflict constraints” for all

the scenarios representing the random deviations from the planned schedule would be

too conservative and unrealistic. In this spirit, we relax the “conflict constraints” and

allow the occurrence of flight conflicts for the given set of scenarios representing the

random disruptions. As previously described a flight conflict occurs when two flights

with overlapping ground times are allocated to the same gate (see Figure 3.1).

Gate k

F light i
F light j

ai aj di dj

-¾
Overlap

Figure 3.1: An illustrative example of a flight conflict

Basically, the underlying idea of the models we consider is to allow infeasibili-

ties in the stochastic version of the “conflict constraints”, while specifying restricting

constraints on the amount of their violations. Due to the stochastic input data, the

number of flight conflicts is a random variable. Comparing random variables is one of

the main interests of decision making under uncertainty. The main objective of our

proposed stochastic programming models is to minimize the expected number of flight

conflicts. Except from minimizing the expectation, we also consider a risk measure on

the random number of flight conflicts and introduce a gate assignment model based on

the mean-risk approach. Such a mean-risk approach can also be utilized for the other

proposed models which are risk-neutral, i.e., for the models considering the expected

13

values.

We can obtain an assignment that is less prone to potential random disruptions by

uniformly distributing the idle times, the non-utilized times between two successively

assigned flights. This observation is our motivation to propose alternate models incor-

porating the idle times. In the first idle time based model, we minimize the expected

value of the variance of the idle times associated with an assignment plan. In the

second idle time based model, we also consider the buffer time concept. Buffer time

can be considered as a lower bound (threshold) value on an idle time. In this setup,

we penalize the deviations of idle times from such threshold values. Note that different

threshold values can be specified for idle times associated with different flights. For

simplicity we assume that all the threshold values are the same, and therefore, we men-

tion a single buffer time for the rest of the study. However, the proposed models are

also valid for different threshold values. In the first model incorporating the buffer time

as a robustness measure, we minimize the expected value of the total semi-deviations

of idle times from the specified buffer time, whereas in the second model the objective

is to minimize the number of idle periods deviating from the buffer time.

In the following sections we present our stochastic programming models under two

main headings: the conflict based stochastic models and the idle time based stochastic

models. We describe the models incorporating flight conflicts as the robustness measure

in Section 3.1. In addition, Section 3.2 presents the models incorporating idle times as

the robustness measure.

3.1 Conflict based Stochastic Models

In this section, we present two stochastic gate assignment models. The first model

has a fairly similar objective with the model proposed by Lim and Wang [21], which

aims to minimized the expected number of flight conflicts. By incorporating only

the expectation measure, we cannot take the effect of the variability in the number

of conflicts into consideration. Hence, we develop a second model involving a risk

measure on the number of conflicts using the mean-risk approach. The mean-risk

approach considers the objective of minimizing a combination of the expected value

of a random variable and a risk measure on that random variable. Let us denote the

random number of flight conflicts by C. Then the mean-risk objective function is given

by

E[C] + λρ(C),

14

where ρ(.) is a specified risk measure and λ is a nonnegative trade-off coefficient repre-

senting the exchange rate of mean for risk. The value of the risk parameter is specified

by decision makers according to their risk preferences.

The classical Markowitz [24] model uses the variance as the risk measure. One of

the problems associated with the mean-variance formulation is that it treats under-

performance equally as over-performance. However, we prefer the smaller values of the

random number of conflicts and we should not penalize the values below the expected

value. In order to remedy this drawback, models with asymmetric risk measures such as

downside risk measures have been proposed (see e.g., Ogryczak and Ruszczyński [25]).

Among the popular downside risk measures we focus on the absolute semi-deviation as

the risk measure, which is defined as follows:

ρ(C) = E[[C − E[C]]+],

where [z]+ = max(0, z), z ∈ R.

Here we introduce additional parameters:

Input Data

Na: modified set of flights that includes two dummy flights representing the opening

and closure times of gates;

Bk: opening time of gate k at the beginning of the planning period, k ∈ M ;

Ek: closure time of gate k at the end of the planning period, k ∈ M ;

ai,s: realization of arrival time of flight i under scenario s, i ∈ N, s ∈ S;

di,s: realization of departure time of flight i under scenario s, i ∈ N, s ∈ S;

Li,s = {j ∈ Na, s ∈ S | aj,s ≤ ai,s and dj,s > ai,s}, i ∈ N, s ∈ S.

It is important to note that Li,s is the conflict set associated with flight i under

scenario s and these random conflicting sets lead to stochastic conflicting constraints.

All of the proposed mathematical programming formulations involve the following

primary decision variables:

xi,k =





1 if flight i is assigned to gate k, i ∈ Na, k ∈ M

0 otherwise.

ci,j,s =





1 if flight i and flight j are conflicting under scenario s, i, j ∈ Na, s ∈ S

0 otherwise.

15

3.1.1 Risk-neutral model: Model minimizing the expected number of con-

flicts

Here we propose the model considering the expectation as the preference criterion

while comparing the random variables to find the best assignment; hence, it is a risk-

neutral approach. In particular, we try to find an assignment with the minimum

expected number of conflicts while satisfying the conflict constraints for the planned

schedule. We refer to this model as “MENC” and formulate as a mixed-integer linear

programming problem:

min
∑
i∈Na

∑
j∈Na

∑
s∈S

ci,j,sps (3.6)

subject to
∑

k∈M

xi,k = 1, i = 1, . . . , n, (3.7)

xi,k = 1, i = 0, (n + 1), k ∈ M, (3.8)
∑

j∈Li,s

xj,k + xi,k ≤ 1, i ∈ Na, k ∈ M, s = 0, (3.9)

ci,j,s ≥ xi,k + xj,k − 1, i ∈ Na, j ∈ Li,s, k ∈ M, s ∈ S, (3.10)

xi,k ∈ {0, 1}, i ∈ Na, k ∈ M, (3.11)

ci,j,s ≥ 0, i, j ∈ Na, s ∈ S. (3.12)

Constraints (3.7) guarantee the assignment of each flight to exactly one gate. Con-

straints (3.8) are used to allocate flight 0 and flight (n + 1) to all gates, where flight 0

and flight (n + 1) represent the opening and closure times of gates, respectively. Con-

straints (3.9) ensure that no two aircrafts are assigned to the same gate concurrently

in the planned schedule. Notice that the subscript s equal to 0 represents the planned

schedule. Thus, Li,0 defines the conflict set associated with flight i under the planned

schedule. Constraints (3.10) are used to determine the conflicting flights under each

scenario. Due to the nature of the objective function, the variable ci,j,s takes the value

1 if and only if two flights (flight i and flight j) with overlapping ground times are

allocated to the same gate under scenario s. The rest of the constraints are for the

non-negativity and binary restrictions.

In the deterministic case it is assumed that all flight arrivals and departures occur

in a predefined planning period, where a planning period is the time interval between

the opening and the closure times of gates. However, in a stochastic setup we cannot

guarantee that a delayed arrival or departure still occur in the planning period due to

16

the random disruptions in flight arrival and departure times. Hence, a flight conflict

may occur because of an arrival before the opening time of a gate or a departure

after the closure time of a gate. Therefore, we introduce two dummy flights (flight 0

and flight (n + 1)) representing the opening and closure times of gates and define the

modified flight set Na. Here, we consider only two dummy flights, since we assume

that the gates are homogenous; the opening and closure times of all gates are same,

Bk = B and Ek = E for all k ∈ M and all the gates are utilized in the same time

interval (i.e. [B − E]).

In order to model the flights conflicting with the opening and closure times of gates,

we need to define the arrival and departure times of these two dummy flights as follows:

a0,s < min
i∈N

ai,s, d0,s = B,

a(n+1),s = E, d(n+1),s > max
i∈N

di,s.

overlap

ji

?

B = d0,s
a0,s < min

v∈N
av,s

?
ai,s di,s ?

E = a(n+1),s

aj,s dj,s

?
d(n+1),s > max

v∈N
dv,s

Figure 3.2: Representation of gates as flights

Figure 3.2 shows how a flight may conflict with the opening or closure time of a

gate. This figure illustrates how to capture those conflicts by specifying the arrival

and departure times of the dummy flights as described above. Note that if we consider

heterogeneous gates, we need to define 2m dummy flights since all gates may have

different opening and closure times.

In this formulation, if there exists two flights having the same arrival times, the

flight conflicts are counted twice since they both occur in each others’ conflict sets.

In order to avoid this, we assume, without loss of generality, that the arrival times of

flights are different from each other.

17

3.1.2 Risk-averse model: Model minimizing the mean-risk function of the

number of conflicts

Since the risk-neutral model only considers the expectation as the preference criterion

while comparing the random variables (e.g. number of flight conflicts), it does not

deal with the variability of random variables. Hence, the obtained solution may show

distinctive fluctuations and it may not be reliable under certain realizations of random

input data. To overcome this problem, we need to consider the concept of risk. There-

fore, we propose an alternative formulation based on the mean-risk approach and we

specify the absolute semi-deviation as the risk measure. In this proposed risk-averse

model, which we refer to as “MMRNC”, we introduce decision variables θs, s ∈ S

and use the following constraints in (3.13) to calculate the realizations of the random

variable [C − E[C]]+. Recall that C represents the random number of flight conflicts.

θs ≥ [
∑
i∈Na

∑
j∈Na

ci,j,s −
∑
i∈Na

∑
j∈Na

∑
s∈S

ci,j,sps]+, s ∈ S. (3.13)

Then the proposed stochastic programming model minimizing the combination of

the expectation and the absolute semi-deviation risk measure for the random number

of flight conflicts becomes

min
∑
s∈S

∑
i∈Na

∑
j∈Na

ci,j,sps + λ
∑
s∈S

θsps (3.14)

subject to (3.7)− (3.12), (3.15)

θs ≥
∑
i∈Na

∑
j∈Na

ci,j,s −
∑
i∈Na

∑
j∈Na

∑
s∈S

ci,j,sps, s ∈ S, (3.16)

θs ≥ 0, s ∈ S. (3.17)

Due to the nature of the objective function and the nonnegativity constraints on vari-

ables θs, s ∈ S, at the optimal solution constraints in (3.16) associated with sce-

narios for which the number of flight conflicts is larger than or equal to the ex-

pected number of flight conflicts are tight. In other words, if at the optimal solution
∑

i∈Na

∑
j∈Na

ci,j,s >
∑

i∈Na

∑
j∈Na

∑
s∈S

ci,j,sps, then the constraint associated with scenario s is

tight. Otherwise, θs takes the value 0. Thus, using the above formulation we properly

calculate the realizations of the random variable [C − E[C]]+.

18

3.2 Idle Time based Stochastic Models

In this section, we propose models that incorporate the concept of the idle time. Recall

that the idle time or idle period is defined as the non-utilized time period between two

successively assigned flights (see Figure 3.3).

Flight i

ai ajdi dj

Flight j

-¾
Idle T ime

Gate k

Figure 3.3: An illustrative example of an idle time

The objective of the first idle time based model, which is the minimization of the

variance of the idle times, has been introduced by Bolat [5]. The main motivation of this

objective is to obtain an assignment that can absorb minor disruptions in the arrival

and departure times of flights. Bolat [5] argues that distributing idle times uniformly

is expected to increase the probability that the delayed departure of a flight will be still

earlier than the arrival of the next flight. He mainly justifies his claim based on the

assumptions that the deviations of flight arrivals and departures are independent and

equally like to occur. In this line of research, we propose a stochastic programming

model minimizing the expected variance of the idle times. Note that we calculate the

variance among the idle times associated with all the flights. It is important to note

that due to the stochastic setup, the idle times are random and as a function of random

variable the variance of the idle times is random. Here we calculate the expected value

of this random variance associated with all the idle times.

In the other idle time based models, we also incorporate the buffer time as a ro-

bustness measure. In literature, the buffer time (b) is used as a lower bound value on

each single idle time. Arrival and departure times of flights are modified according to

the buffer time value; hence, for any feasible solution it is guaranteed to have idle times

at least equal to the predetermined buffer time value (see Figure 3.4).

We can refer to the idle time illustrated in Figure 3.4 by the “idle time immediately

after the departure of flight i” or “idle time immediately before the arrival of flight j”.

Unfortunately, it is not trivial to incorporate the above buffer time concept into the

stochastic models. Basically, the main idea is considering the buffer time as a lower

19

Flight i

ai ajdi dj

Flight j

? ? ? ?

ai − b/2 di + b/2 aj − b/2 dj + b/2

-¾
Idle T ime ≥ b

Gate k

Figure 3.4: An illustrative example of the buffer time

bound on all the idle times, which can be represented by one of the following sets of

constraints:

(idle time immediately after the departure of flight i) ≥ b ∀i ∈ N. (3.18)

(idle time immediately before the arrival of flight j) ≥ b ∀j ∈ N. (3.19)

However, as discussed above, the idle times are random variables in the stochastic

setup and so constraints (3.18) and (3.19) are stochastic. As we have done for the

conflicting constraints, we allow the infeasibilities for the stochastic constraints, i.e.,

we allow the idle times to be below the buffer time. In order to control the violation

(semi-deviation) amounts we minimize the expectation of total violation amounts or

the expected number of violated constraints.

Our primary objective in the idle time based models is minimizing the expected

number of flight conflicts. As a secondary objective we try to find the assignment that

is best in terms of the robustness measures discussed above. The general form of the

objective function for idle time based stochastic programming problems is:

min
x

{h(x) + ΛE[C]},

where E[C] denotes the expected number of conflicts and h[x] is the secondary objective

function for a decision vector x. Note that Λ is a sufficiently large number.

20

3.2.1 Model minimizing the expected variance of the idle times and the

number of conflicts

We present a novel stochastic optimization model minimizing the expected variance

of the idle times, which we refer as “MEVINC”. Additional to the number of flight

conflicts the uniformity of the idle times is considered as a robustness measure, since

uniformly distributed idle times is expected to decrease the probability of flight conflicts

under possible random disruptions.

Let us present the related notations:

Input Data:

N b: modified set of flights that includes (m + 1) dummy flights representing the

opening and closure times of gates;

L
′
i,s = {j ∈ N b, s ∈ S | aj,s ≥ di,s}: set of all flights which land after the departure of

flight i under scenario s, s ∈ S (referred as the non-conflict set associated with

flight i);

Decision variables:

Aj,s: arrival time of the flight which immediately succeeds flight j under scenario s,

j ∈ N b \ {0}, s ∈ S;

Ij,s: idle time occurs immediately after the departure of flight j under scenario s,

j ∈ N b \ {0}, s ∈ S;

µs: mean of idle times under scenario s, s ∈ S;

Vs: variance of idle times under scenario s, s ∈ S.

Notice that if we have n flights and m gates, we can define exactly (n + m) idle

periods. n idle periods occur after the departure of flights, while m idle periods occur

just after the opening time of the gates. We calculate the mean and variance of idle

times under each scenario as follows:

µs =

∑
j∈Nb Ij,s

(n + m)

Vs =

∑
j∈Nb(Ij,s − µs)

2

(n + m− 1)

Before presenting the stochastic model, we want to describe the underlying determin-

istic model minimizing the variance of idle times. Recall that such a model has been

21

initially introduced by Bolat [5]. The modeling approach in [5] is based on the fact

that the flights can be sorted in ascending order of their arrival times. This approach

is not valid while formulating a stochastic optimization model, since we cannot ob-

tain such an ordering for the random arrival and departure times. In our setup, each

scenario may lead to a different ordering of arrival and departure times. Hence, it is

not trivial to incorporate the idle times into a stochastic optimization model. Here we

propose an alternative deterministic model, which is equivalent to the one proposed by

Bolat [5]. This model will allow us to develop the stochastic version. Let us present our

deterministic formulation by dropping the scenario indices for the previously defined

parameters and variables.

min V (3.20)

subject to
∑

k∈M

xi,k = 1, i = 1, . . . , n, (3.21)

x0,k = 1, k ∈ M, (3.22)

xn+k,k = 1, k ∈ M, (3.23)
∑
j∈Li

xj,k + xi,k ≤ 1, i ∈ N b, k ∈ M, (3.24)

Aj ≤ (2− xj,k + xi,k)Z + ai, j ∈ N b \ {0}, i ∈ L
′
j, k ∈ M, (3.25)

∑

j∈Nb\{0}
Aj =

∑
j∈N

aj + a0m, (3.26)

Ij = Aj − dj, j ∈ N b \ {0}, (3.27)

xi,k ∈ {0, 1}, i ∈ N b, k ∈ M, (3.28)

Ij, Aj ≥ 0, j ∈ N b \ {0}. (3.29)

Here Z is a sufficiently large number; for example, it can be set to the maximum

departure time among all flights.

We formulate the problem as a mixed integer programming problem with a nonlin-

ear objective function. The objective minimizes the variance of idle times. Constraints

(3.22) are used to assign dummy flight 0 to all gates since it represents the common

closure times. Additionally, the remaining m flights representing the gate openings are

assigned to the corresponding gates by (3.23) to calculate the idle times at the very be-

ginning of the gate openings. Recall that in the deterministic setup, constraints (3.24)

are used to avoid flight conflicts. Constraints (3.25) provide the arrival times of the

succeeding flights as upper bounds on Aj values. Remark that we are not minimizing

22

or maximizing individual idle time values. Therefore, in order to calculate the idle time

values exactly, we need to assign the appropriate upper bound values to Aj variables.

Since the last assigned m flights denote the gate closure times and for the remaining

flights Aj value should keep the arrival of time of the succeeding flight, we add equal-

ity (3.26) to guarantee that constraints (3.25) are tight for the upper bound values.

Equations (3.27) are used to calculate the idle time values as illustrated in Figure 3.5.

The rest of the constraints are for the non-negativity and binary restrictions.

Gate k

Aj = ai

Flight j

aiaj didj

Flight i

?

-¾
Ij = Aj − dj

Figure 3.5: An idle time calculation

Recall that in the stochastic setup we allow flight conflicts. In this case we face

a problem, since the idle periods are not defined for conflicting flights. In order to

overcome this challenge and calculate the idle times properly, we need to identify

different types of conflicts and for this purpose we first need to define the following

conflict sets:

Lp
i,s = {j ∈ N b, s ∈ S | aj,s ≥ ai,s, aj,s < di,s and dj,s ≥ di,s}: set of all flights

which land when flight i is on the ground and depart after the departure of flight

i under scenario s, s ∈ S (referred as the partial-conflict set associated with flight

i under scenario s);

Lf
i,s = {j ∈ Li,s, s ∈ S | dj,s > di,s}: set of all flights which land before flight i and

still on the ground at the time flight i departs under scenario s, s ∈ S (referred

as the full-conflict set associated with flight i under scenario s);

Figure 3.6 shows the non-conflict case and two conflict cases corresponding to the

described conflict sets. Recall that we define the idle period as the non-utilized time

period after the departure of a flight. According to this definition, in the partial and

full conflict cases the idle time values related to flight j cannot be defined. In our

formulation, the idle time values of those conflicting flights such as flight j in Figure

23

3.6 are considered as 0. Such an approach is reasonable, since there is no non-utilized

time period between conflicting flights.

(a) Partial − conflict : j ∈ Lp
i,s (b) Full − conflict : j ∈ Lf

i,s

(c) Non− conflict : j ∈ L
′
i,s

i

j

ai,s di,s dj,saj,s

j

i

ai,s di,s dj,saj,s

i

j

ai,s di,s dj,saj,s

Figure 3.6: Different types of flight conflicts

Considering partial and full conflicts separately requires us to define the conflict

variables accordingly as follows:

cp
j,k,s: number of partially conflicting flights with flight j at gate k under scenario s,

j ∈ N b \ {0}, k ∈ M, s ∈ S;

cf
j,k,s: number of fully conflicting flights with flight j at gate k under scenario s,

j ∈ N b \ {0}, k ∈ M, s ∈ S;

Recall that idle time based models, the primary objective is the minimization of the

expected number of flight conflicts and the secondary objective differs according to the

additional robustness measures. In this idle time based model, as a secondary objective

we try to find the assignment that is best in terms of the uniformity of the idle times.

By extending the deterministic formulation (3.20)-(3.29) we obtain the formulation of

the proposed stochastic model in the following form:

min
∑
s∈S

Vsps + Λ
∑

i∈Nb

∑

k∈M

∑
s∈S

(cp
i,k,s + cf

i,k,s)ps, (3.30)

subject to
∑

k∈M

xi,k = 1, i ∈ N, (3.31)

x0,k = 1, k ∈ M, (3.32)

24

xn+k,k = 1, k ∈ M, (3.33)
∑

j∈Li,s

xj,k + xi,k ≤ 1, i ∈ N b, k ∈ M, s = 0, (3.34)

Aj,s ≤ (2− xi,k − xj,k)Z + ai,s, i ∈ L′j,s, j ∈ N b \ {0}, k ∈ M, s ∈ S,

(3.35)

Aj,s ≤ (2− xi,k − xj,k)Z + ai,s, i ∈ Lp
j,s, j ∈ N b \ {0}, k ∈ M, s ∈ S,

(3.36)

Ai,s ≤ (2− xi,k − xj,k)Z + ai,s, i ∈ N b \ {0}, j ∈ Lf
i,s, k ∈ M, s ∈ S,

(3.37)
∑

j∈Nb\{0}
Aj,s =

∑
j∈N

aj,s + a0,sm, s ∈ S, (3.38)

Ij,s = Aj,s − dj,s + sp
j,s + sf

j,s, j ∈ N b \ {0}, s ∈ S, (3.39)

Ij,s ≤ (2− xi,k − xj,k)Z, i ∈ Lp
j,s, j ∈ N b \ {0}, k ∈ M, s ∈ S, (3.40)

Ii,s ≤ (2− xi,k − xj,k)Z, i ∈ N b \ {0}, j ∈ Lf
i,s, k ∈ M, s ∈ S, (3.41)

cp
j,k,s ≥

∑
i∈Lpj,s

xi,k + (xj,k − 1)(n + m), j ∈ N b, k ∈ M, s ∈ S, (3.42)

cf
i,k,s ≥

∑

j∈Lf i,s

xj,k + (xi,k − 1)(n + m), i ∈ N b, k ∈ M, s ∈ S, (3.43)

sp
j,s ≤ (

∑

k∈M

cp
j,k,s)Z, j ∈ N b, s ∈ S, (3.44)

sf
i,s ≤ (

∑

k∈M

cf
i,k,s)Z, i ∈ N b, s ∈ S, (3.45)

xi,k ∈ {0, 1}, i ∈ N b, k ∈ M, (3.46)

All remaining variables ≥ 0. (3.47)

Here we only elaborate on the new types of constraints introduced to calculate the

exact idle time values under each scenario. Let us explain those sets of constraints in

detail using an illustrative example.

In order to calculate the exact idle time values we need to obtain the correct values

of Aj,s variables. In deterministic case it is quite easy to attain the correct values by

only using the constraints (3.25), since we do not allow flight conflicts. However, in the

stochastic setup flight conflicts may occur and those conflicts prevent us to consider

each arrival time exactly once in the idle time calculations. Therefore, we define two

types of flight conflicts and add the related constraints (3.36-3.37) that bound the Aj,s

variables from above. If for all the flights Aj,s variables take the upper bound values, we

25

F6 F0

0 1 2 4 5 6 8 10 11 12 13 143 7 9

F1 F2
F3 F4

F5

G1

-¾

I6 = 1

-¾

I1 = 2 I3 = 2

-¾

I4 = 2

-¾I2 = 0 I5 = 0

Figure 3.7: A representative example for model MEVINC

guarantee to calculate the exact idle time values. We use the following equation similar

to equation (3.26) of the deterministic formulation to guarantee that the constraints

(3.35-3.37) are tight for the upper bound values:

Aj,s =
∑
j∈N

aj,s + a0,sm.

Let us consider the example shown in Figure 3.7:

• There are 5 flights and 1 gate that is available between the time interval [0, 14].

The couples of the arrival and departure times are as follows: (1,2); (4,7); (5,8);

(10,13); (11,12). Note that we drop the scenario indices for simplicity.

• Flight 1 (F1): F1 does not conflict with any other flight at gate 1 (G1). In other

words, F1 is not allocated to a gate where some other flights from its conflict set

are also allocated. =⇒ cp
1,1 = 0; cf

1,1 = 0, (Constraints (3.42 and 3.43)). Then

the corresponding slack variables (sp
1 and sf

1) are forced to be 0 (Constraints (3.44

and 3.45)). Note that the slack variables (sp
j,s and sf

j,s) are used to make the idle

time values of the conflicting (partial or full) flights equal to 0. Constraints (3.38)

guarantee that constraints (3.35) are tight for the upper bound values. Thus, we

can calculate idle time of F1 exactly:

A1 = a2 = 4 by (3.35) and (3.38),

I1 = A1 − d1 + sp
1 + sf

1 = 4− 2 + 0 + 0 = 2 by (3.39).

• Flight 2 (F2): F2 is partially conflicting with Flight 3 (F3), i.e., F3 ∈ Lp
2.

26

Therefore, the conflict variable associated with F2 takes the value 1 due to the

nature of the objective, i.e., cp
2,1 = 1. Then, the slack variable related to F2 is

allowed to take any nonnegative value smaller than a relatively large number, Z

(Constraint (3.44)). Finally, we calculate the idle time of F2 exactly:

I2 = 0 by (3.40),

A2 = a3 = 5 by (3.36) and (3.38),

I2 = A2 − d2 + sp
2 + sf

2 = 5− 7 + 2 + 0 by (3.39).

Notice that sp
2 takes the value 2 to equalize I2 to 0, since we cannot determine

the idle time of this flight and constraint (3.40) forces the idle time of F2 to be

0.

• Flight (F3), Flight (F4) and Flight (F6): Similar to F1 we can calculate the

corresponding idle times exactly.

• Flight 5 (F5): F5 is fully conflicting with F4 (F4 ∈ Lf
5). Therefore, the conflict

variable related to F5 takes the value 1 due to the nature of the objective, i.e.,

cf
5,1 = 1. Then the slack variable related to F5 is allowed to take any nonnegative

value smaller than Z (Constraint (3.45)). Similar to the calculations for F2 we

have:

I5 = 0 by (3.41),

A5 = a5 = 11 by (3.37) and (3.38),

I5 = A5 − d5 + sp
5 + sf

5 = 11− 12 + 0 + 1 by (3.39).

We keep a5 as the variable A5 to make the equation (3.38) works. Moreover,

notice that sf
5 takes the value 1 to equalize I5 to 0.

3.2.2 Model minimizing the expectation of total semi-deviation and the

number of conflicts

A buffer time between two continuous flights allocated to the same gate may absorb the

stochastic flight delays. As discussed at the beginning of this chapter, it is not trivial

to incorporate the buffer time, as a lower bound on each idle time, into the stochastic

optimization models. Our novel approach to model the random idle times, discussed

27

in the previous section, allows us to also take the buffer time into consideration and

leads to other novel stochastic optimization models.

Recall that the idle times are random variables in the stochastic setup, and there-

fore, constraints (3.18) and (3.19), which involve the idle and buffer times, are stochas-

tic. Basically, under some realizations of input data these constraints can be violated.

In our models, we allow such violations; the idle times may be smaller than the pre-

determined buffer time b and we refer to such deviations as “semi-deviations”. It is

clear that we should not penalize the idle time values above the buffer time. In or-

der to control the random semi-deviation amounts, we minimize the expectation of

the total semi-deviation. We refer to this proposed model as “METDNC”. Additional

parameters required for the model METDNC can be described as follows:

N c: modified set of flights that includes (m + 1) dummy flights representing the

opening and closure times of gates;

Qj,s = {i ∈ N c, s ∈ S | di,s ≤ aj,s}: set of all flights which depart before the arrival

of flight j under scenario j ∈ N, s ∈ S;

Recall that we also introduce a set, denoted by N b, similar to N c for the model

MEVINC. Here we elaborate on the differences between these two sets. N c includes

(m+1) dummy flights where the last m dummy flights represent the gate openings and

flight 0 represents the gate closures, whereas in the set N b the last m dummy flights

represent the gate closures and flight 0 represents the gate openings. This difference

originates from the proposed alternative procedures to calculate the idle times. Notice

also that if the gates are assumed to be heterogeneous then we shall define a single set

of flights by representing each gate opening and closure as a dummy flight. In other

words, when we consider the heterogeneous gates, we shall use the same flight set in all

of the proposed formulations. However, when the gates are assumed to be homogenous

considering the same set of flights is not necessary and requires us to introduce unnec-

essary variables and constraints. Therefore, we distinguish the sets of flights such as

N b and N c for the computational efficiency.

The formulated mathematical programming models involve the following decision

variables:

Dj,s: departure time of the flight which immediately precedes flight j under scenario

s, j ∈ N c \ {0}, s ∈ S;

28

Ij,s: idle time occurs immediately before the arrival of flight j under scenario s,

j ∈ N c \ {0}, s ∈ S.

Let us also define the auxiliary decision variables Rj,s, j ∈ N c \ {0}, s ∈ S, as the

semi-deviation amounts associated with each flight and each scenario.

Rj,s = [b− Ij,s]+ = max(0, b− Ij,s), j ∈ N c \ {0}, s ∈ S.

Figure (3.8) illustrates how the idle time values are calculated for the models in-

volving buffer time. Observe that this way of calculating the idle times is an alternative

to the one illustrated in Figure (3.5).

Gate k

F light i

ajai djdi

Flight j

?
Dj = di

-¾
Ij = aj −Dj

Figure 3.8: Calculation of the idle time values

Then the proposed model is formulated as a mixed integer program as follows:

min
∑

j∈Nc\{0}

∑
s∈S

Rj,sps + Λ
∑
i∈Nc

∑
j∈Nc

∑
s∈S

ci,j,sps (3.48)

subject to
∑

k∈M

xi,k = 1, i = 1, . . . , n, (3.49)

x0,k = 1, k ∈ M, (3.50)

xn+k,k = 1, k ∈ M, (3.51)
∑

j∈Li,s

xj,k + xi,k ≤ 1, i ∈ N c, k ∈ M, s = 0, (3.52)

ci,j,s ≥ xi,k + xj,k − 1, i ∈ N c, j ∈ Li,s, k ∈ M, s ∈ S, (3.53)

Rj,s ≥ b− Ij,s, j ∈ N c \ {0}, s ∈ S, (3.54)

Dj,s ≥ (xi,k + xj,k − 2)Z + di,s, j ∈ N c \ {0}, i ∈ Qj,s, k ∈ M, s ∈ S,

(3.55)

Ij,s ≤ aj,s −Dj,s + b
∑
i∈Nc

cj,i,s, j ∈ N c \ {0}, s ∈ S, (3.56)

29

xi,k ∈ {0, 1}, i ∈ N c, k ∈ M, (3.57)

All remaining variables ≥ 0. (3.58)

As for the model MEVINC, we only discuss the new types of constraints involved in

the formulation above. Constraints (3.54) are used to calculate the semi-deviation

amounts and these calculations are exact due to the structure of the objective function

and the nonnegativity restrictions. Constraints (3.55) state that for each flight j and

each scenario s the smallest value that the variable Dj,s takes is the departure time of

the flight that precedes flight j. Constraints (3.56) provide upper bounds on the idle

time values according to the values of Dj,s and ci,j,s variables. Next, we elaborate on

the idle time calculations using constraints (3.55) and (3.56):

• We calculate the idle time values in the non-conflict and conflict cases as shown

in Figure (3.9). If flight j is not conflicting with any other flight, then we can

precisely define the associated idle time value. However, in the conflict case we

cannot specifically define the idle time period. In order to exclude the effect

of semi-deviations associated with conflicting flights, we set the values of such

semi-deviations to 0. This implies the assumption that the the idle time value

related to a conflicting flight is greater than or equal to the buffer time. Such an

approach does not favor the conflicting flights while minimizing the total semi-

deviation in our models, since the primary objective is to minimize the expected

number of flight conflicts.

i

j

ai aj di dj

Conflict Case : cj,i = 1

Ij ≥ b

i
j

ai di
aj dj

-¾
Ij = aj −Dj

?
di = Dj

Non− conflict Case : cj,i = 0

Figure 3.9: Calculation of the idle time values

• In the non-conflict case, the variables cj,i,s corresponding to flight j are equal

30

to 0. There are two possible cases regarding the idle time value; the idle time

is smaller than the buffer time or the idle time is greater than or equal to the

buffer time. In order to calculate the objective function value exactly at the

candidate solution, we need to calculate the idle times exactly for the first case

(Ij,s = aj,s −Dj,s). In the second case, the idle time is greater than or equal to

the buffer time and without calculating the exact idle time we obtain the semi-

deviation amount as 0 due to the structure of the objective function. Thus, in

the second case Ij,s is guaranteed to be at least equal to the buffer time value

and we do not need to add a penalty associated with this case to the objective

function. For the first case we show that the variable Ij,s takes the upper bound

value in (3.56), which guarantees the exact calculation of the idle time. When the

idle time is smaller than the buffer time value, the associated semi-deviation is

strictly positive. Since the larger values of idle times are preferred to minimize the

associated semi-deviation amount and so the total semi-deviation, Dj,s variables

take the smallest possible value defined in (3.55) and the idle time Ij,s takes the

largest possible value according to constraints (3.56).

• In case of flight conflicts, the idle time of the conflicting flight with the latest

arrival time can not be defined (e.g. flight j, see Figure 3.9). As we discussed

above, for such flights we try to obtain an idle time value greater than or equal

to b so that the associated semi-deviation takes the value of 0. Constraint (3.56)

guarantees this assumption by incorporating the additional part to the right hand

side: b
∑

i∈Nc cj,i,s. Note that b
∑

i∈Nc cj,i,s is greater than or equal to b and the

difference (aj,s −Dj,s) is always nonnegative.

3.2.3 Model minimizing the expected number of semi-deviations and num-

ber of conflicts

In the model METDNC presented in the previous section, as a secondary robustness

measure we focus on the violation (semi-deviation) amounts for the specified buffer

time. Alternatively, in this section we develop a stochastic optimization model which

considers the number of semi-deviations instead of semi-deviation amounts. Hence, we

refer to this model as “MENDNC”.

Let us introduce the following auxiliary decision variables for j ∈ N c, s ∈ S:

Hj,s =





1 if idle time of flight j is less than buffer time, i ∈ N c, k ∈ M

0 otherwise.

31

The mixed-integer linear programming formulation of the proposed model is given

by

min
∑

j∈Nc\{0}

∑
s∈S

Hj,sps + Λ
∑
i∈Nc

∑
j∈Nc

∑
s∈S

ci,j,sps (3.59)

subject to (3.49)− (3.58), (3.60)

Hj,sb ≥ b− Ij,s, j ∈ N c \ {0}, s ∈ S, (3.61)

Hj,s ∈ {0, 1}, j ∈ N c \ {0}, s ∈ S. (3.62)

Constraints (3.61) and (3.62) enforce that the variable Hj,s takes the value 1 if the

idle time is less than the predetermined buffer time value. Otherwise, they guarantee

that Hj,s takes the value 0 due to the structure of objective function.

Note that specifying the appropriate buffer times for the models incorporating them

as lower bounds (METDNC-MENDNC) is significant. Decision makers should deter-

mine the appropriate buffer time values based on the available input data (i.e. total

available gate time, total ground time, etc.) and their robustness preferences. Here,

we suggest some potential alternate methods to determine the buffer time value (b):

• Calculate the total idle time value for the planned schedule, which is basically

equal to the difference between the total available gate time and the total ground

time. In the best case, this total value can be equally distributed among flights

(i.e. = (
∑

j∈Nc

Ij)/(n + m)). A proportion of this equally distributed idle time can

be defined as the buffer time value.

• Solve the deterministic model minimizing the variance of idle times for the

planned schedule and use one of the following methods to define the buffer time

value.

– Specify the largest idle time value (max
j∈Nc

Ij) and take a proportion of that

value.

– Take a proportion of the median of idle times.

– Some proportion of the trimmed mean of idle times can be used. Trimmed

mean is computed similar to the arithmetic mean after discarding some per-

cent of the smallest and largest values. Note that, in contrast to arithmetic

mean, the trimmed mean is a robust measure of the central tendency.

32

In our computational study we employ the first suggested method and take the half of

the equally distributed idle time value as the buffer time.

Here we briefly elaborate on some potential alternative approaches. For example,

we can introduce the buffer time into the model as a decision variable. In such an

approach we can also enforce a lower bound on the buffer time (e.g. the buffer time

value is supposed to be greater than or equal to a proportion of expected idle times).

As an alternative modeling approach, we can assign a probability also for the planned

schedule and include the planned schedule in the set S which represents the possible

scenarios. In such an approach, we do not need to guarantee that no flight conflicts

occur for the planned schedule and can drop the conflict constraints associated with

the planned schedule. We prefer our approach for the practical reasons as explained

at the beginning of this chapter.

We would also like to emphasize that just for simplicity we assume that the same

buffer time value is specified for all the flights. We can easily relax this assumption in

the proposed models and specify different buffer time values depending on the decision

makers’ preferences for the individual flights. Let us consider the buffer time which is

introduced as a lower bound on the idle time that occurs just before the arrival of flight

j, as illustrated in Figure 3.8. We denote that buffer time corresponding to flight j by

bj. Basically, in the simplified versions of our models, we assume that the flights are

equally important and therefore, bj = b for all flight j. In the modeling approach with

flight dependent buffer time values, we basically replace constraints (3.54) and (3.61)

by the following ones, respectively:

Rj,s ≥ bj − Ij,s, j ∈ N c \ {0}, s ∈ S,

Hj,sbj ≥ bj − Ij,s, j ∈ N c \ {0}, s ∈ S.

Notice that these new versions of the constraints do not change the size of the problem

formulations when the buffer times are given input parameters. However, introducing

the buffer times as decision variables would increase the number of buffer time variables

and depending on the additionally introduced constraints on the buffer time values,

the total number of constraints may increase.

All the proposed stochastic gate assignment models are formulated as mixed-integer

programming problems, which are hard to solve. In the next chapter, we propose tabu

search heuristics in order to obtain reasonably “good” feasible solutions efficiently.

33

CHAPTER 4

TABU SEARCH HEURISTIC

The formulations proposed for the stochastic gate assignment models in Chapter 3 are

hard to solve by using a standard mixed integer programming (MIP) solver such as

CPLEX. In order to illustrate the computational challenges of solving the proposed

formulations directly by using CPLEX, we present numerical results in Chapter 5. In

practice, even if we cannot solve the problems to optimality, it is important to construct

feasible solutions which would perform reasonably well. In this chapter, we propose

tabu search (TS) heuristic algorithms which find reasonably “good” feasible solutions

and describe the implementation details. We also provide the TS related parameter

values used in our computational study.

4.1 Tabu Search Heuristic

Tabu search is a meta-heuristic method conceived by Glover [15,16] and has since been

widely used to solve combinatorial optimization problems in the field of scheduling,

routing, facility design, and so on. We refer the interested reader to the book by

Glover and Laguna [17] and the references therein.

The main motivation of TS heuristic is to enable the search process to escape the

trap of the local optimality. In order to achieve this, it allows climbing moves when no

neighboring solution improves the previous best solution. Besides, unlike other search

techniques, TS avoids to examine previously explored regions recurrently by keeping a

tabu list. Tabu list includes the solutions that are considered in the short run. This

list forbids some moves to avoid returning to the previous solution unless they satisfy

some aspiration criterion.

The general flow of a TS heuristic can be described as follows: start with an initial

solution. At each iteration, evaluate neighbor solutions and select the best solution

in the neighborhood of the current solution until a termination criterion is met. Note

that if this best solution is obtained as a result of a tabu move, check whether or

34

not the aspiration condition is satisfied. Aspiration condition describes a favorable

circumstance under which even a tabu move is allowed to be made. After selecting the

new solution, set the selected solution as the current solution and update the tabu list.

If the selected solution improves the best solution so far also update the best solution.

4.1.1 Initial Solution

Recall that a feasible solution of any of our stochastic programming models has to

satisfy the following constraints:

• each flight must be assigned to only one gate,

• dummy flights representing the gates should be assigned to the respective gates,

• no two conflicting flights are assigned to the same gate concurrently according to

the planned schedule (e.g. planned arrival and departure times of flights)

In our TS implementation, we start the search procedure with a feasible solution.

In particular, we find a feasible assignment x which satisfies the following constraints

by using CPLEX:
∑

k∈M

xi,k = 1, i = 1, . . . , n,

xi,k = 1, i = 0, (n + 1), k ∈ M,

∑
j∈Li,s

xj,k + xi,k ≤ 1, i ∈ Na, k ∈ M, s = 0.

Since the size of the feasibility formulation is quite small, we can easily find an initial

feasible solution for all the proposed formulations in few seconds. Notice that in the

feasibility formulation we consider the set Na which is used in the conflict based models.

The feasible solution obtained by considering Na is augmented properly for the sets N b

and N c to obtain feasible solutions for the idle time based models. To be precise, we

extend the decision vector x by making the assignment of additional m dummy flights

to the respective gates. Such an augmentation is possible due to the assumption that

the gates are homogeneous.

4.1.2 Neighborhood Strategy

We use two types of neighborhood moves that are widely used in the literature. These

moves can be explained as follows:

35

• Swap(i,j): Interchanges the gates that flight i and j are assigned (see Figure 4.1).

• Insert(i,k): Removes flight i from its current gate and assigns it to gate k (see

Figure 4.2).

G3

-

G1

Swap(6, 9)
F9

F2 F2

F1 F5F1 F5

F9
F6

F6

G1

G3

Figure 4.1: An illustrative example of swap move

G3

-

G1

Insert(9, 1)
F9

F2 F2

F1 F5F1 F5

F9

F6 F6

G1

G3

Figure 4.2: An illustrative example of insert move

We define three move functions for applying these two neighborhood moves; swap

function, mutation function and insert function. The swap function is used to evaluate

all neighbor solutions obtained by the swap moves and select the best neighbor solution,

whereas the mutation function randomly leads to a swap move in the neighborhood

of the current solution. Similar to the swap function, insert function evaluates all

neighbor solutions and select the best one.

In our TS implementation, at each iteration we call the swap function and at

every 3 iterations we call both swap and insert functions. Additionally, in order to

force the algorithm to search the unexplored areas we use the mutation function. At

every 50 iterations, we check whether the number of consecutive iterations without

any improvement in the best solution exceeds 50 iterations. If it exceeds 50 iterations,

36

we call the mutation function and apply only a single randomly selected swap move

regardless of the resulting objective function value.

It is quite computationally expensive to calculate the objective function value of

the generated solution for idle time based models at each iteration. Therefore, we

specify a model specific neighborhood structure for the swap function. Without loss of

generality, it is assumed that the flights are sorted in ascending order of their arrival

times according to the planned schedule (i.e. i < j implies ai,0 < aj,0). We consider

a swap move between flights i and j if the difference between the indices i and j does

not exceed 5 (i.e. |i − j| ≤ 5). Exchanging the flights with arrival times that are

closer to each other is expected not to effect the number of flight conflicts significantly

and therefore, the restricted set of swap moves is expected to search among most of

the promising solutions. In Chapter 5 the numerical results illustrate that considering

the proposed restricted set of swap moves leads to a significant improvement in the

computational times and provides us similar and even better solutions, as compared

with the ones that are obtained by considering all the possible swap moves.

4.1.3 Solution Evaluation

To force the search into unexplored areas, a move is allowed even if it results in an

infeasible solution in terms of the “conflict constraints”. If the conflict constraints are

violated for the planned schedule, we modify the objective function of the problem by

adding the penalty function, βK(x). Here K(x) is the total number of flight conflicts

calculated according to the planned arrival and departure times for a decision vector x

and β is the penalty coefficient with an initial value of 1. If the assignment is feasible

for the planned schedule then K(x) is equal to zero. Every 5 iterations the penalty

coefficient β is divided by 2 if all 5 previous solutions were feasible or multiplied by 2

if all were infeasible. This mechanism has perviously been used by Gendreau et al. [14]

for the vehicle routing problem to diversify the search procedure.

4.1.4 Tabu List and Aspiration Condition

As a short term memory mechanism TS utilizes the tabu list. The tabu list includes

some forbidden (tabu) moves that we cannot consider in the short run unless they

satisfy some aspiration condition. We update the tabu list as the search progresses. It

is quite important to define the tabu list size properly. As the list size increases we

may not identify the local optimal solutions, in contrary to this smaller tabu list size

37

may cause cycling back to the previously discovered local optimal solutions. The vast

majority of the literature suggests defining the tabu list size as an increasing function

of the problem size. In our implementation, we define the tabu list size based on the

number of flights. For the smallest problem instances that include 25 flights, we set

the tabu list size as 5. The rate of increment for the number of flights is 25 for the

remaining problem instances. We increase the list size by 3 for every additional 25

flights.

If the selected move is in the tabu list, then in order to except this move we should

check whether the aspiration condition is satisfied. If this tabu move leads to a solution

that has an objective function value strictly better than the best solution so far, then

the aspiration condition is satisfied and this tabu move is excepted.

4.1.5 Termination Criteria

We terminate the search algorithm if one of the following termination criteria is met:

• maximum number of iterations (iterlim),

• maximum number of consecutive iterations without any improvement in the best

solution so far (consiterlim),

• maximum computation time (timelim).

In our implementation, the maximum computation time (timelim) is defined as

7200 seconds. Similar to the tabu list size we define the maximum number of iterations

(iterlim) and the maximum number of consecutive iterations without any improvement

(consiterlim) based on the problem size as follows:

iterlim = 600 + 6n and consiterlim = 200 + 2n,

where n denotes the number of flights.

We conduct a computational study to test the efficiency and effectiveness of the

proposed tabu search algorithms and present the corresponding numerical results in

the next chapter.

38

CHAPTER 5

COMPUTATIONAL STUDY

We conduct an extensive computational study to test the computational efficiency of

the implemented tabu search heuristics, demonstrate the effectiveness of the proposed

models, and to comparatively analyze the alternate models. In this chapter, we first

explain the problem instance generation procedure in detail. Then in Section 5.2, we

elaborate on the fact that solving the proposed formulations directly by using CPLEX

is hard and present numerical results to illustrate the effectiveness of the proposed

tabu search heuristics. Section 5.3 presents results to demonstrate how the proposed

scenario-based stochastic programming formulations perform against the existing mod-

els proposed by Lim and Wang [21] and Bolat [5]. In Section 5.4 we provide numerical

results to comparatively analyze the proposed models in terms of the alternate robust-

ness measures.

5.1 Generation of problem instances

In order to test the computational performance of our solution methods, we considered

several problem instances of different sizes. We generated two groups of data sets in

order to show the performance of the proposed models appropriately. We say that the

density level of the input data is high when the gates are generally fully-packed for the

corresponding problem instance. The two groups of data sets are different mainly in

terms of the density levels.

Data Set I

The first data set has 60 problem instances. In order to see the effectiveness of

the proposed conflict-based stochastic models we prefer dense (fully-packed) inputs.

Therefore, we limit the number of available gates to 8. We consider the same number

of gates for all the problem instances, but we change the number of flights which also

leads to the variations in the planning horizon. We summarize the details related to

39

this set of test instances as follows:

• Generation of the planned schedule.

– Similar to Ding et al. [9] we assume that the interarrival and the ground

times of flights are uniformly distributed. We randomly generate the arrival

time and the ground time of flight i, i ∈ N, in the intervals [10i, 10i + 15]

and [40, 60], respectively. Thus, a flight lands in every 10-25 minutes and

remains at the airport between 40 and 60 minutes.

– Recall that the gates are assumed to be homogeneous. Hence, the opening

and closure times of the gates are same and by considering the gates as

flights the associated opening and closure times are generated similar to the

flight arrivals. In order to guarantee a feasible assignment for the planned

schedule, we add the maximum ground time to the randomly generated

closure time of a gate.

• Generation of the scenarios.

Recall that scenarios represent the joint realizations of the arrival and departure

times of the flights. We construct each scenario by generating random deviation

amounts from the planned arrival times. In particular, we obtain the scenarios

by deviating from the planned schedule in the following manner:

– Flight delays (including early arrivals) are randomly generated from a tri-

angular distribution with a negative skewness. According to the airport

authorities the flight tardiness is more common than the flight earliness.

Therefore, we prefer a negative-skewed distribution to obtain relatively less

frequent smaller deviation values. The deviation amounts are assumed to

range from -10 to 90 minutes, with the mode being 50 minutes.

– Scenario probabilities are set to be equal.

As we mentioned in Chapter 3, having more than one flight with a common arrival

time causes miscalculations of the number of conflicts. Therefore, we perturb the

recurring flight arrival times by a small constant such as 10−3.

Data Set II

In order to observe the effectiveness of the idle time based stochastic models, we

shall not consider dense problem instances like the ones in Data Set I. Therefore, we

40

increase the number of available gates to 12 to avoid fully-packed gates and generate

additional 50 problem instances of different sizes using a similar approach described

for the first data set.

We would like to point out that generating the scenarios is not our main concern

here. Existing methods can be applied to generate alternate scenarios, or if available,

the real historical data (e.g. historical delay patterns) may be employed.

All the proposed problems were modeled with the OPL mathematical programming

language running on CPLEX 12.1 solver. The tabu search heuristics were coded in C

programming language. The numerical experiments were performed on a 32-bit, 2

quad-core CPU HP Compaq desktop with 2.33GHz processor and 3.46GB of memory.

All reported CPU times are in seconds. In our computational study, we terminate

CPLEX when the prescribed CPU time limit (t = 7200 seconds) or the prescribed

tree size limit (ts = 200 megabytes) is reached. We present computational results for

the randomly generated problem instance families, each of which includes 5 problem

instances with a specified set of parameters denoted by (n x m x |S|). We report the

average results for each instance family. Note that instance families 1-12 belong to

Data Set I and the remaining ones (13-22) belong to Data Set II.

Table 5.1 and Table 5.2 present the dimensional properties of the generated test

problem instances. The size of the problem instances depend on both the model for-

mulations and the structure of the generated input data. For example, the number of

conflict related constraints increases as the density level of the input data gets higher.

MENC MMRNC
Instance Size Binary Total Constraints Total Constraints
Family (n x m x |S|) Variables Variables Variables

1 25 x 8 x 50 216 36,666 40,051 36,716 40,151
2 25 x 8 x 100 216 73,116 79,196 73,216 79,296
3 50 x 8 x 50 416 135,616 84,552 135,666 84,652
4 50 x 8 x 100 416 270,816 168,752 270,916 168,952
5 75 x 8 x 50 616 297,066 129,790 297,116 129,890
6 75 x 8 x 100 616 593,516 262,197 593,616 262,397
7 100 x 8 x 50 816 521,016 175,796 521,066 175,846
8 100 x 8 x 100 816 1,041,216 351,219 1,041,316 351,319
9 125 x 8 x 50 1,016 807,466 221,314 807,516 221,364
10 125 x 8 x 100 1,016 1,613,916 438,053 1,614,016 438,153
11 150 x 8 x 50 1,216 1,156,416 267,880 1,156,466 267,930
12 150 x 8 x 100 1,216 2,311,616 528,977 2,311,716 529,077

Table 5.1: Dimensions of the problem instance families for models MENC and MMRNC

41

M
E

T
D

N
C

M
E

N
D

N
C

M
E

V
IN

C
In

st
an

ce
Si

ze
B

in
ar

y
T
ot

al
C

on
st

ra
in

ts
B

in
ar

y
T
ot

al
C

on
st

ra
in

ts
B

in
ar

y
T
ot

al
C

on
st

ra
in

ts
Fa

m
ily

(n
x

m
x
|S
|)

V
ar

ia
bl

es
V

ar
ia

bl
es

V
ar

ia
bl

es
V

ar
ia

bl
es

V
ar

ia
bl

es
V

ar
ia

bl
es

13
25

x
12

x
50

45
6

76
,3

56
38

4,
55

5
2,

30
6

76
,3

56
38

4,
55

5
45

6
53

,5
56

49
4,

59
8

14
25

x
12

x
10

0
45

6
15

2,
25

6
76

8,
60

5
4,

15
6

15
2,

25
6

76
8,

60
5

45
6

10
6,

65
6

98
4,

14
3

15
50

x
12

x
50

75
6

20
5,

40
6

1,
13

6,
13

0
3,

85
6

20
5,

40
6

1,
13

6,
13

0
75

6
88

,8
56

1,
34

4,
19

0
16

50
x

12
x

10
0

75
6

41
0,

05
6

2,
27

1,
43

0
6,

95
6

41
0,

05
6

2,
27

1,
43

0
75

6
17

6,
95

6
2,

69
1,

41
2

17
75

x
12

x
50

1,
05

6
39

6,
95

6
2,

26
2,

70
5

5,
40

6
39

6,
95

6
2,

26
2,

70
5

1,
05

6
12

4,
15

6
2,

57
1,

04
1

18
75

x
12

x
10

0
1,

05
6

79
2,

85
6

4,
52

4,
25

5
9,

75
6

79
2,

85
6

4,
52

4,
25

5
1,

05
6

24
7,

25
6

5,
13

3,
28

4
19

10
0

x
12

x
50

1,
35

6
65

1,
00

6
3,

76
4,

28
0

6,
95

6
65

1,
00

6
3,

76
4,

28
0

1,
35

6
15

9,
45

6
4,

16
5,

41
1

20
10

0
x

12
x

10
0

1,
35

6
1,

30
0,

65
6

7,
52

7,
08

0
12

,5
56

1,
30

0,
65

6
7,

52
7,

08
0

1,
35

6
31

7,
55

6
8,

33
1,

73
3

21
12

5
x

12
x

50
1,

65
6

96
7,

55
6

5,
64

0,
85

5
8,

50
6

96
7,

55
6

5,
64

0,
85

5
1,

65
6

19
4,

75
6

6,
14

0,
58

6
22

12
5

x
12

x
10

0
1,

65
6

1,
93

3,
45

6
11

,2
79

,9
05

15
,3

56
1,

93
3,

45
6

11
,2

79
,9

05
1,

65
6

38
7,

85
6

12
,2

79
,8

29

T
ab

le
5.

2:
D

im
en

si
on

s
of

th
e

p
ro

b
le

m
in

st
an

ce
fa

m
il
ie

s
fo

r
m

o
d
el

s
M

E
T

D
N

C
,
M

E
N

D
N

C
,
an

d
M

E
V

IN
C

42

5.2 Tabu Search Heuristics

The proposed problems are formulated as large mixed integer models (see Table 5.1

and 5.2), and it is hard to obtain good quality solutions within reasonable times by

using a standard mixed integer programming solver such as CPLEX. We first present

numerical results to demonstrate the computational challenge of solving the proposed

formulations directly by CPLEX. As discussed in Chapter 4, we employ tabu search

algorithms in order to find good feasible solutions in short CPU times. In this section,

we present results to illustrate the comparative performance of the tabu search heuristic

algorithms with respect to the “direct approach”. In our study the “direct approach”

refers to the approach of solving a proposed formulation directly by using CPLEX.

The proposed formulations for the vast majority of the generated problem instances

cannot be solved to optimality within the prescribed time or tree size limits. Therefore,

we obtain an upper bound on the relative optimality gap using the best known lower

bound on the objective function value found by the branch-and-bound algorithm of

CPLEX. Let Obft and Obfts denote the best lower bound on the objective function

value that is provided by the CPLEX solver, when the prescribed time limit (t) or

tree size limit (ts) is reached, respectively. Obf∗t and Obf∗ts denote the best available

objective function value within the given limits, which define an upper bound on the

objective value. Then, we define an upper bound on the relative optimality gap as

follows:

UBROGt(ts) =
Obf∗t(ts)−Obft(ts)

Obft(ts)

.

Instance Direct MENC Direct MMRNC
Family CPU UBROG CPU UBROG

1 88 0.00% 5558 10.34%
2 338 0.00% 7207 36.12%
3 2493 92.50% 7208 155.34%
4 2928 101.44% N/A N/A
5 4268 242.47% 7217(4) 285.56%
6 5207(1) 210.37% N/A N/A
7 7211 374.33% N/A N/A
8 7204(4) 286.04% N/A N/A
9 7214 536.93% N/A N/A
10 N/A N/A N/A N/A
11 7213(3) 704.92% N/A N/A
12 N/A N/A N/A N/A

Table 5.3: CPU times and UBROG for models MENC and MMRNC
N/A: No solution is available since CPLEX terminated due to solver error (ran out of memory).

(k): No solution is available for k problem instances out of 5.

According to Table 5.3, CPLEX could not even solve the moderate size problem

43

instances to optimality for the proposed model MENC. CPLEX provides a solution

of the model MMRNC only for the small problem instances and cannot even extract

the model for larger problem instances due to constraints (3.16). Note also that the

calculated upper bounds on the optimality gaps are quite large for moderate and large

problem instance families. However, we need to remark that the lower bounds provided

by CPLEX are quite loose. Here we try to provide some informal arguments to justify

our claim. Let us consider a problem instance from the instance family 3. CPLEX

provides the following results for the model MENC: the best available objective function

value found within the given limits is 9.12 (obtained within the predefined tree size

limit), while the best lower bound on the objective function value is 4.10. For this

lower bound value, UBROGts is equal to 126%, which we claim to be a very loose

bound on the true relative optimality gap. For several instances we can argue that the

actual relative optimality gap associated with the best integer solution found within the

specified limits is significantly small than UBROGt(ts). In particular, for that specific

test instance we informally show that the actual relative optimality gap is at most

ten percent by solving the same model with an additional constraint bounding the

objective function value. We solve the same problem with the following additional

constraint bounding the objective function value of the model MENC:

∑
i∈Na

∑
j∈Na

∑
s∈S

ci,j,sps ≤ 9.12

(1 + 10%)
.

After even approximately 60 million iterations and 24 hours of execution time, CPLEX

could not provide a feasible solution for the model MENC with the above additional

constraint. This would support the argument that the best available objective function

value found so far is probably at most ten percent away from the optimal solution.

Figure 5.1 displays the change of lower bound value (objective function value of the

best known solution) for the test problem instance from instance family 3. From this

figure it can be seen that after a certain number of iterations the number of updates on

the lower bound value slows down dramatically and CPLEX provides very loose lower

bound values for the proposed hard formulations.

For the idle time based models, the dimensions of the problem instances are larger

(see Table 5.2). We did not report any CPU times and UBROG for the model MEVINC,

since CPLEX terminated due to memory limit without constructing the branch-and-

bound tree for all of the problem instance families. Moreover, we also state that

44

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
7

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Iteration Number

Lo
w

er
 B

ou
nd

 V
al

ue

Figure 5.1: Change of the lower bound value

CPLEX requires very long CPU times even for the small problem instances of the

models METDNC and MENDNC. In Table 5.4 we present results just for the smallest

problem instance family, since it is the only family for which CPLEX provides solutions

for the models METDNC and MENDNC.

Instance Direct METDNC Direct MENDNC
Family CPU UBROG CPU UBROG

1 7203 1.56% 4434 1.55%

Table 5.4: CPU times and UBROG for models METDNC and MENDNC

After illustrating the computational challenge of solving the proposed formulations

directly by CPLEX, we next compare the heuristic approach with the direct approach

in terms of the solution quality (relative optimality gap) and the computation time.

As discussed above, the best available lower bounds provided by CPLEX are in general

quite loose. Therefore, for the solution obtained by the heuristic approach we prefer

not to calculate an upper bound on the relative optimality gap using such a loose lower

bound. Instead, for the solution obtained by the heuristic approach we calculate the

relative improvement in the “objective function value (ofv)” with respect to the best

solution found by the direct approach.

It is obvious from Tables 5.5 and 5.6 that the proposed heuristic approach produces

better solutions than the branch-and-bound algorithm of CPLEX in quite less compu-

tation times. In these tables, we only report the relative reduction amounts in CPU,

please see Tables 5.9 and 5.13 for the exact CPU times. Observe that for the model

MENC, the heuristic algorithm also finds the optimal solutions for small problem in-

stance families. In Table 5.5, we cannot provide relative results for some instances since

CPLEX ran out of memory without constructing the branch-and-bound tree. Due to

45

Heuristic MENC Heuristic MMRNC
Instance Relative Improvement in Relative Improvement in
Family Ofv (%) CPU (%) Ofv (%) CPU (%)

1 0.00%(∗) 97.81% 0.07% 99.97%
2 0.00%(∗) 98.82% 0.17% 99.96%
3 2.70% 99.17% 3.24% 99.74%
4 0.07% 99.10% 8.55% 98.88%
5 3.53% 97.99% N/A N/A
6 2.84% 97.16% N/A N/A
7 2.62% 96.87% N/A N/A
8 1.93% 96.34% N/A N/A
9 5.23% 92.65% N/A N/A
10 N/A N/A N/A N/A
11 2.37% 83.75% N/A N/A
12 N/A N/A N/A N/A

Table 5.5: Effectiveness of the heuristics for models MENC and MMRNC
(∗): Heuristic also yields optimal solutions.

N/A: No improvement percentage is reported since we do not have any result obtained by CPLEX
(CPLEX ran out of memory).

Heuristic METDNC Heuristic MENDNC
Instance Relative Improvement in Relative Improvement in
Family Ofv (%) CPU (%) Ofv (%) CPU (%)

1 0.00% 99.61% 0.00% 96.60%

Table 5.6: Effectiveness of the heuristics for models METDNC and MENDNC

such CPLEX errors, we could not provide any relative improvement results for the

model MEVINC and we present results just for the smallest instance family for the

models METDNC and MENDNC.

5.3 Analyzing Alternate Models

In this section, we compare the proposed stochastic programming model (MENC) with

the existing related model introduced by Lim and Wang [21] in terms of the number of

conflicts associated with the solutions they provided. To make a fair comparison, we

use the problem instances for which we can obtain the optimal solutions by solving the

direct formulation of the model by Lim and Wang [21]. As we mentioned in Chapter 1,

they use an unsupervised estimation function to estimate the probabilities of the flight

conflicts based on a single planned schedule with deterministic arrival and departure

times. Here in order to implement their formulation, we define alternate approaches

to estimate the conflict probability associated with each flight pair for a given set of

scenarios.

• Use the sample mean of the realized arrival and departure times to define a single

planned schedule and estimate the conflict probabilities based on the unsuper-

46

vised estimation function presented by Lim and Wang [21].

• Estimate the conflict probabilities using the unsupervised estimation function

for each scenario. Then calculate the weighted sum of the conflict probabilities,

where the weights are taken as the associated scenario probabilities.

• For each flight pair we identify the scenarios for which the specific two flights are

conflicting according to the realized arrival and departure times. Then the sum-

mation of the probabilities of those identified scenarios is used as the estimated

conflict probability corresponding to that flight pair.

Note that in our computational study we employ the first suggested approach to es-

timate the conflict probabilities. According to Table 5.7, the model MENC utilizing

the set of scenarios significantly reduces the expected number of flight conflicts for the

considered problem instances.

Instance % Improvement in E[C]
Family by MENC

1 4.44%
2 3.56%

Table 5.7: Comparative results for MENC with respect to an existing model

We also want to compare our stochastic programming model MEVINC with the

deterministic model proposed by Bolat [5]. Bolat [5] assumes that the arrival and

departure times of the flights are deterministic. As a common approach we can es-

timate these parameters using the set of scenarios representing the given realizations

of the random arrival and departure times; the sample mean of the realized arrival

and departure times are used as point estimators. To make a fair comparison we also

incorporate an additional constraint to satisfy the feasibility of the planned schedule as

in our model MEVINC. Thus, we solve the deterministic model of Bolat [5] to obtain

an assignment which is feasible for both the planned schedule and the schedule with

the estimated arrival and departure times. In order to guarantee the existence of such

a feasible solution, we modify several problem instance families from Data Set II by

extending the gate closure times. We select four problem instance families 13-16 and

refer to the modified versions of them by 13
′
-16

′
. For these problem instance families

involving 5 instances, we provide representative results in Table 5.8. It is well-known

that the deterministic model does not take the variability of the random arrival and

departure times into account. Therefore, as expected it provides solutions that result

47

in significantly larger numbers of flight conflicts under certain realizations of the input

data compared to the solutions obtained by the model MEVINC. In other words, as

seen in Table 5.8 the proposed deterministic model cannot deal with the random flight

conflicts and fails to satisfy the primary objective of minimizing the expected num-

ber of flight conflicts. Therefore, there is no point to compare them in terms of the

corresponding idle times.

Instance % Improvement in E[C]
Family by MEVINC

13
′

53.90%
14

′
36.08%

15
′

67.87%
16

′
40.48%

Table 5.8: Comparative results for MEVINC with respect to an existing model

5.4 Relative Results based on Alternate Formulations

We present some results indicating how alternate models perform according to different

robustness measures. In Table 5.9 we report the CPU times of the tabu search heuristics

proposed to solve the conflict-based models and provide comparative results on the

absolute semi-deviation risk measure (ρ[C]) associated with the solutions obtained by

such models. In order to demonstrate the effect of incorporating risk measure on the

number of flight conflicts, we present the percentage improvement amounts in Table 5.9.

As seen in the table, the model MMRNC provides more reliable solutions by considering

the fluctuations on the number of conflicts. Note that the value of the risk coefficient

(λ) can be defined by decision makers according to their risk preferences. Here we

consider the values of λ as 0.5 and 1. As seen in Table 5.9 the higher λ parameters

would represent more risk-averse preferences and provide more robust assignments.

In our study we propose three main robustness measures based on the idle and

buffer times: the expected variance of the idle times (EVI), the expectation of the

total deviation (ETD), and the expected number of deviations (END). The relative

improvement amounts based on the EVI, ETD and END, are presented in Tables 5.10,

5.11 and 5.12, respectively. As seen from the presented results, the idle time based

models approximately result in similar improvement amounts. This observation can

be interpreted that we also achieve to distribute the idle times uniformly by using the

alternate objectives of minimizing the expectation of the total deviation or minimizing

48

MENC MMRNC (λ=0.5) MMRNC (λ=1)
Instance % Improvement % Improvement
Family CPU CPU in ρ[C] CPU in ρ[C]

1 1.20 1.80 4.05% 1.40 16.84%
2 2.40 3.20 4.14% 2.60 10.05%
3 18.00 20.60 8.39% 18.80 13.04%
4 25.20 53.00 9.70%(1) 26.00 13.06%
5 86.80 122.00 19.18% 69.00 32.20%
6 144.40 215.50 7.33%(1) 168.00 13.24%
7 225.80 374.20 15.67% 267.80 31.75%
8 398.20 579.80 13.98% 420.80 19.41%
9 530.00 672.60 20.79%(1) 420.40 35.53%
10 924.20 1417.40 16.64% 954.80 25.37%
11 950.80 1289.40 23.53% 830.00 35.98%
12 1724.00 1947.00 13.69%(2) 1857.80 23.76%

Table 5.9: Comparative results of models MENC and MMRNC based on the CPU and
risk value

(k): No improvement is obtained for k problem instances out of 5.

the expected number of deviations. Moreover, as expected, Tables 5.10-5.12 demon-

strate that idle time based models result in significant improvements in the idle time

related measures with respect to the base model MENC considering only the expected

number of flight conflicts. Note also that increasing the number of flights leads to an

increase in the number of alternative feasible solutions and in such cases we obtain

solutions which perform even better in terms of the specified robustness measures.

According to Table 5.13 the heuristic algorithms for the idle time based models

provide solutions which perform similar or even better in terms of the expected number

of flight conflicts than the solutions obtained by the heuristic algorithm for the conflict

based model MENC. Basically, the idle time based models aim to find the assignments

which lead to the optimal expected number of conflicts and are the best in terms of

the proposed secondary criteria: EVI, ETD and END. According to Tables 5.10-5.12,

the improvement amounts based on these secondary performance measures are quite

reasonable, since the number of alternative solutions with the same number of conflicts

are limited. Recall that the proposed tabu search heuristics do not guarantee the

optimal solutions. Therefore, all these observations are based on the best solutions

provided by the heuristics and not on the optimal solutions.

The computational results show that we are able to solve the proposed problems

even for large problem instances in reasonable computational times and we obtain

assignments that perform well in terms of the defined robustness measures. Moreover,

the results demonstrate that the proposed alternate robustness measures are consistent

with the existing robustness measures such as the uniformity of idle times.

49

Instance % Improvement in EVI by
Family MEVINC METDNC MENDNC

13 4.89% 4.53% 4.58%
14 1.31% 1.14% 1.13%
15 7.43% 7.69%(1) 6.75%
16 2.89% 2.51% 2.68%
17 9.90% 6.94% 8.13%
18 6.55% 6.34% 5.97%
19 7.86% 9.09% 8.28%
20 5.18% 3.37% 4.59%
21 8.71% 8.87% 7.10%
22 5.26% 5.95% 5.02%

Table 5.10: Comparative results based on the EVI
(k): No improvement is obtained for k problem instances out of 5.

Instance % Improvement in ETD by
Family MEVINC METDNC MENDNC

13 5.09% 6.66% 5.52%
14 3.50% 4.01% 3.79%
15 7.28% 7.17% 6.48%
16 5.24% 5.81% 5.25%
17 13.95% 12.15% 12.11%
18 5.57% 8.04% 5.74%
19 9.37% 13.26% 10.10%
20 5.98% 5.40% 5.80%
21 10.52% 12.74% 9.83%
22 5.85% 6.32% 5.21%

Table 5.11: Comparative results based on the ETD

Instance % Improvement in END by
Family MEVINC METDNC MENDNC

13 5.85%(1) 4.45% 6.03%
14 3.09% 3.57% 3.94%
15 6.79% 5.91% 8.49%
16 3.54% 4.16% 4.46%
17 10.11% 7.80% 10.31%
18 5.32% 6.21% 5.85%
19 6.77% 9.94% 9.69%
20 5.01% 3.68% 5.12%
21 7.27% 8.55% 8.59%
22 5.05% 4.97% 5.20%

Table 5.12: Comparative results based on the END
(k): No improvement is obtained for k problem instances out of 5.

50

MENC MEVINC METDNC MENDNC
Instance % Improvement % Improvement % Improvement
Family CPU CPU in ENC CPU in ENC CPU in ENC

13 1 11 0.00% 28 0.00% 23 0.00%
14 2 24 0.00% 60 0.00% 54 0.00%
15 13 108 0.36% 245 0.24%(1) 235 0.36%
16 30 239 0.67% 387 0.66%(1) 350 0.66%(1)

17 61 430 2.80% 1100 1.86% 1001 2.65%
18 126 960 3.06% 2369 3.14% 2442 3.19%
19 154 1185 3.91% 3111 4.21% 3033 3.91%
20 348 2509 3.26% 5812 3.53% 5043 3.16%
21 537 2242 5.90% 6715 5.60% 6950 6.09%
22 755 4213 3.48% 7211 4.14% 7205 3.34%(1)

Table 5.13: Comparative results based on the ENC
(k): No improvement is obtained for k problem instances out of 5.

51

CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

The uncertainties inherent in the flight arrival and departure times may lead the un-

availability of gates when needed to accommodate scheduled flights. Therefore, real-

time delays are quite crucial in constructing effective flight-gate assignment plans. The

traditional deterministic gate assignment models neglect such random disruptions and

so may perform poorly under certain realizations of the random arrival and departure

times.

In this study, we develop new stochastic programming models to obtain robust gate

assignments that are less sensitive to disruptions in the system. The main contribu-

tion of our study is developing alternate stochastic programming models that support

a wider range of decision making preferences. We propose a risk-averse stochastic

gate assignment model, where the trade-off between the expected number of flight

conflicts and a risk measure on the random number of flight conflicts is considered.

We also develop stochastic optimization models involving alternate robustness mea-

sures based on the idle and buffer time concepts. All proposed models are formulated

as computationally expensive large-scale mixed-integer programs. It is hard to solve

the developed formulations using a standard solver such as CPLEX. Therefore, our

second main contribution is developing tabu search algorithms to obtain reasonably

“good” feasible solutions. We conduct an extensive computational study to analyze

the proposed models and illustrate the computational effectiveness of the tabu-search

heuristics. The computational study shows that our models provide reasonably robust

assignments and the proposed tabu search algorithms allow us to find good quality so-

lutions in reasonable short CPU times, where CPLEX in general fails even to construct

the branch-and-bound tree.

As a future work, the proposed tabu search heuristics can further be improved by

using more refined neighborhood structures and including the long-term memory func-

tions. The future research can also focus on incorporated the widely-used objectives

52

into our stochastic programming models. In our future research, we would also like to

incorporate risk measures into the proposed risk-neutral models in order to model the

effect of the variability of random input data.

53

Bibliography

[1] Babic O., Teodorovic C., Tosic V., Aircraft stand assignment to minimize walk-

ing, Journal of Transportation Engineering, 110, 55-66, 1984.

[2] Bihr R., A conceptual solution to the aircraft gate assignment problem using 0-1

linear programming, Computers and Industrial Engineering, 10, 280-284, 1990.

[3] Birge J., Louveaux F., Introduction to stochastic programming, Springer, New

York, 1997.

[4] Bolat A., Assigning arriving aircraft flights at an airport to available gates, Jour-

nal of the Operational Research Society, 50, 23-34, 1999.

[5] Bolat A., Models and a genetic algorithm for static aircraft-gate assignment

problem, Journal of the Operational Research Society, 52, 1107-1120, 2000.

[6] Bolat A., Procedures for providing robust gate assignments for arriving aircraft,

European Journal of Operations Research, 120, 63-80, 2000.

[7] Cheng Y., A knowledge-based airport gate assignment system integrated with

mathematical programming, Computers and Industrial Engineering, 32, 837-852,

1997.

[8] Cheng Y., A rule-based reactive model for the simulation of aircraft on airport

gates, Knowledge-Based Systems, 10, 225-236, 1998.

[9] Ding H., Lim A., Rodrigues B., Zhu Y., New heuristics for over-constrained flight

to gate assignments, Journal of the Operational Research Society, 55, 760-768,

2004.

[10] Ding H., Lim A., Rodrigues B., Zhu Y., The over-constrained airport gate as-

signment problem, Computers and Operations Research, 32, 1867-1880, 2005.

54

[11] Dorndorf U., Drexl A., Nikulin Y., Pesh E., Flight gate scheduling: State-of-the-

art and recent developments, The International Journal of Management Science,

35, 326-334, 2007.

[12] Dorndorf U., Jaehn F., Lin C., Ma H., Pesch E., Disruption management in flight

gate scheduling, Statistica Neerlandica, 61, 92-114, 2007.

[13] Drexl A., Nikulin Y., Multicriteria airport gate assignment and pareto simulated

annealing, IIE Transactions, 40, 385-397, 2008.

[14] Gendreau M., Hertz A., Laporte G., A tabu search heuristic for the vehicle

routing, Management Science, 40(10), 1276-1290, 1994.

[15] Glover F., Tabu Search part I, ORSA Journal on Computing 1, 3, 190-206, 1989.

[16] Glover F., Tabu Search part II, ORSA Journal on Computing 2, 1, 4-32, 1990.

[17] Glover F., Laguna M., Tabu Search, Kluwer Academic Publishers, Dordrecht,

1997.

[18] Haghani A., Chen M., Optimizing gate assignments at airport terminals, Trans-

portation Research, 32A, 437-454, 1998.

[19] Hamzwawi S., Management and planning of airport gate capacity: a

microcomputer-based gate assignment simulation model, Transportation Plan-

ning and Technology, 11, 189-202, 1986.

[20] Hassounah M., Steuart G., Demand for aircraft gates, Transportation Research

Record, 1423, 26-33, 1993.

[21] Lim A., Wang F., Robust airport gate assignment, Proceedings of the 17th IEEE

International Conference on Tools with Artificial Intelligence, 2005.

[22] Lim A., Rodrigues B., Zhu Y., Airport gate scheduling with time windows, Ar-

tificial Intelligence Review, 24, 5-31, 2005.

[23] Mangoubi R., Mathaisel D., Optimizing gate assignments at airport terminals,

Transportation Science, 19, 173-188, 1985.

[24] Markowitz H. M., Portfolio selection, Journal of Finance, 7(1), 77-91, 1952.

[25] Ogryczak W., Ruszczyński A., Dual stochastic dominance and related mean-risks

models, SIAM journal of optimization, 13(2), 60-78, 2002.

55

[26] Pintea C., Pop P., Chira C., Dumitrescu D., A hybrid ant-based system for gate

assignment problem, Lecture Notes in Computer Science: Springer Berlin, 5271,

273-280, 2008.

[27] Prékopa, A., Stochastic Programming, Kluwer Academic, Dordrecht, Boston,

1995.

[28] Xu J., Bailey G., The airport gate assignment problem: mathematical model and

a tabu search algorithm, Proceedings of the 34th Hawaii International Conference

on System Sciences, 2001.

[29] Yan S., Chang C., A network model for gate assignment, Journal of Advanced

Transportation, 32, 176-189, 1998.

[30] Yan S., Huo C., Optimization of multiple objective gate assignments, Transporta-

tion Research, 35A, 413-432, 2001.

[31] Yan S., Shieh C.Y., Chen M., A simulation framework for evaluating airport gate

assignments, Transportation Research, 36A, 885-898, 2002.

[32] Yan S., Tang C.H., A heuristic approach for gate assignments for stochastic flight

delays, European Journal of Operational Research, 180, 547-567, 2007.

56

