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Abstract

We examine predictive return regressions from a new angle. We ask what observable

univariate properties of returns tell us about the “predictive space” that defines the true

predictive model: the triplet
¡
λ,R2x, ρ

¢
, where λ is the predictor’s persistence, R2x is the

predictive R-squared, and ρ is the "Stambaugh Correlation" (between innovations in the

predictive system). When returns are nearly white noise, and the variance ratio slopes

downwards, the predictive space can be tightly constrained. Data on real annual US stock

returns suggest limited scope for even the best possible predictive regression to out-predict

the univariate representation, particularly over long horizons.
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1 Introduction

A perennial problem in empirical finance is the question of whether it is possible to predict stock

market returns using some predictor variable. In addition to the question of what predictor

variable to use (the list of potential predictors includes, inter alia, dividend yields, interest

rates, book-market values, price-earnings ratios), there are econometric questions regarding the

appropriate distributional theory for inference (Stambaugh 1999, Campbell and Yogo 2006, Ang

and Bekaert 2006 and many others); whether any underlying relationships are stable enough

to allow useful predictability, or may simply arise from data mining (Pesaran and Timmerman

1995, Timmermann and Paye 2006, Ferson et al 2003, Goyal and Welch 2003, Campbell and

Thomson 2008, Cochrane 2008a); and whether observable predictors may be at best imperfect

proxies for the true predictor (Pastor & Stambaugh, 2009). Finally there is a closely related

literature that addresses differences between one period ahead and long horizon regressions (see

for example Campbell and Viceira 2002; Cochrane, 2008a; Boudoukh et al, 2008).

In this paper we examine predictive return regressions from a new angle. It is well-known

that when one time series predicts another the properties of the predictive system (including

the univariate properties of the predictor variable) determine the univariate properties of the

predicted variable (in this case returns).1 But we can also view the process in reverse. In this

paper we ask what the observable univariate properties of returns tell us about the “predictive

space” that defines the true predictive model: the triplet (λ,R2x, ρ) where λ is the predic-

tor’s persistence, R2x is the predictive R
2, and ρ is the "Stambaugh Correlation" (between the

innovations to the predictor autoregression and those in the predictive return regression ).2

If these insights depended on tight estimates of parameters in an ARMA representation

our analysis would not be of much practical value. But in fact the reverse is the case. The

very fact that ARMA representations of returns fit so poorly is informative about the nature

of the predictive space for predictive models in general. But a second feature of returns data

1Note that we are assuming that the predictor is, in Pastor & Stambaugh’s (2009) terminology, a "perfect
predictor", ie one that captures "true" expected returns, and hence, up to a white noise expectational error,
also generates the actual data for returns.

2In this paper we focus on a widely used predictive regression framework that can be reduced to just three
parameters. Some of our key results also extend to more general predictive models.
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also has potentially very significant implications for the predictive space: whether the variance

ratio of long-horizon returns slopes downwards. The academic literature that directly tests for

this latter feature has not yielded unanimous conclusions (contrast, for example, the orginal

evidence presented by Poterba and Summers 1988 with the revisionist approach of, eg, Kim et

al 1991. But we would argue that the implications of what we term “variance compression”3

are worth considering, first, because it is usually taken for granted (whether explicitly or im-

plicitly) by investment practioners as the basis for the buy-and-hold strategy (for the classic

explicit statement of this view see Siegel, 1998); and second, because the analysis we present

in this paper will lead us to argue that it is also implicit in a much wider range of literature

that assumes predictability of returns, especially over long horizons (for example, Campbell &

Viceira 2002, Cochrane, 2008a).

Since a declining variance ratio is a univariate property it cannot co-exist with returns being

completely unpredictable from their own past, although we show that there is no necessary

contradiction between a quite significantly declining variance ratio at long investor horizons

and a very weak degree of short-term univariate predictability. However, the combination of

these two features does have significant implications for the predictive space that contains

all logically possible true predictive regressions. We show that the predictive space for stock

returns can quite easily contract to such an extent that there is little, if any, scope for predictive

regressions to out-predict the univariate representation, particularly at long horizons.

Recent stock market movements have been a reminder of the continuing significance of this

issue. Many predictors of stock returns originate as valuation indicators. In the late 1990s most

were signalling that the market was “over-valued”, in the very broad sense of the word4 that

such indicators were predicting weak returns (see, for example, Campbell & Shiller, 1998;Shiller,

2000; Fama & French, 2002). In the more recent past, as markets have weakened sharply, the

issue has arisen of when they become sufficiently “cheap” to offer a good prospect of unusually

strong returns. Most such indicators can be interpreted as the ratio of the stock price to some

3For reasons noted below we prefer this term to the more commonly used “mean reversion”, which a) is not
always consistently defined by different authors; and b) we argue can be a misnomer.

4That is, without putting any necessary interepretation in terms of market effficiency: contrast the perspec-
tives of Shiller, 2000 and Fama & French, 2002, for example.
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estimate of the underlying fundamental. Our analysis suggests that even if the best possible

measure of the fundamental were found, its price ratio might barely predict any better than

simply using the history of returns to forecast future returns.

The paper proceeds as follows.

We first, in Section 2, briefly summarise the evidence for the two key empirical features of

stock returns that motivate our analysis: a low univariate R2 and a declining variance ratio.

We then show, in Section 3, the links between the standard predictive regression framework

and the univariate representation of returns.

Our key results are in Section 4, where we show how observable univariate properties of

returns can restrict the predictive space. We show that we show that we can derive lower

and upper bounds for the predictive R2 of the true predictor that depend solely on univariate

properties.5 We then show that a declining variance ratio for long-horizon returns implies that

the Stambaugh Correlation, ρ, is in general bounded away from zero, and for a plausible range

of ARMA parameters can be close to unity. A high Stambaugh Correlation is usually treated as

a nuisance that complicates inference; we show that it is an intrinsic characteristic of the true

predictor of stock returns if there is variance compression.6 Finally we show a further feature

that arises from these restrictions on the predictive space: the correlation between the true

predictor and a “pseudo predictor”, derived solely from the history of returns, is also bounded

away from zero. It approaches unity as the predictive space contracts; however even when the

predictive space is quite tightly constrained this correlation can still be some way below unity.

In Section 5 we provide an empirical illustration. Point estimates derived from estimated

ARMA representations of returns suggest that the predictive space is very tightly constrained.

5The sole case in which this result lacks any content arises if the predictor has persistence λ = 0, and returns
are white noise. In this limiting case the predictor may predict as poorly as the ARMA representation (ie,
have an R2 of zero) or (in the limit) perfectly, with an R2 of unity (albeit in the latter case only if by divine
dispensation, if the predictor this year is simply next year’s return). But in all other cases the bounds are
non-trivial, in the sense that either upper or lower bound, or both, lie strictly between zero and unity.

6This feature is closely related both to Pastor & Stambaugh’s (2009) analysis of the correlation between
expected and unexpected returns and the present value based analysis of Cochrane (2008). However while these
authors base their arguments on a priori reasoning; our analysis is based solely on the observable phenomenon
of variance compression. Note that our conceptualisation of the true predictor as a price-fundamental ratio,
coupled with variance compression, means that innovations will be of the same sign as innovations to returns,
and hence of opposite sign to innovations to expected returns. Our ρ, is therefore of opposite sign, but otherwise
identical, to the correlation between expected and unexpected returns in Pastor & Stambaugh (2008).

3



The estimate of the best possible predictive R2 of any possible predictor is around 10%, and of

the minimum absolute Stambaugh Correlation is at least 0.9. The implied lower bound for the

correlation between the best possible predictor and the “pseudo predictor” is lower, but still a

long way from zero. These estimates therefore suggest limited scope for even the best possible

predictor of returns to out-perform the univariate representation.

Given the imprecision of ARMA estimation, we acknowledge that a quite wide range of

near-white noise processes could also be generating the return series, for some of which the pre-

dictive space is less constrained. However, a key requirement for a significantly less constrained

predictive space is that the true predictor must have quite low persistence. Our analysis there-

fore suggests two simple pre-tests for potential predictors of stock returns: they should not look

too similar to the “pseudo predictor” that summarises the history of returns; and they should

not be too persistent. It is notable that few, if any, commonly used predictors of stock returns

match up to either of these criteria.

Finally, in Section 6 we note a further implication of our analysis for the the predictability

literature. The strength of long-horizon return predictability is driven by a combination of

predictor persistence and a declining variance ratio; but it is exactly these features that lead

to a tightly restricted predictive space. It therefore follows that significant long-horizon return

predictability, if it exists, must be close to being a univariate phenomenon.

In Section 7 we draw conclusions and implications of our analysis; appendices provide

algebraic derivations and proofs.

2 Univariate features of returns

We first briefly summarise the observable features of returns that we shall draw on in the rest

of the paper.

2.1 Returns are near-white noise

In Figure 1 we show the autocorrelation function for real annual stock returns in the United

States over two samples, 1871-2008 and 1945-2008. The first spans the full available dataset on
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a reasonably consistent basis for a broad based US stock market measure (the Cowles (1938)

industrial index from 1871-1925, and the S&P 500 thereafter).7 The shorter sample allows for

the possibility that return properties may have changed in the postwar era (consistent with the

claims discussed below by Kim et al, 1991).

Figure 1. The Autocorrelation Function of Real US Stock Returns
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We also show bootstrapped 5% and 95% bounds when returns are resampled with replace-

ment to destroy any possible temporal dependence. In the full sample this illustrates that, while

autocorrelations are generally very small in absolute terms, a subset are individually marginally

significant against the null of white noise; the same applies for the standard Ljung-Box Q port-

manteau test at some horizons. However even these apparent rejections of the white noise null

are subject to a well-known data mining critique, if we focus only on a relatively small number

of rejections. In Table 1 we show simulated p-values for the largest absolute autocorrelation

over a different range of lag lengths up to some maximum, over the two different samples, and

for the most significant rejection on the Ljung-Box test, both under the null of white noise. This

shows that even white noise processes will appear to have significant autocorrelations at some

lag length with quite high probability; with the probability increasing with the total number of

autocorrelations considered. Thus on the basis of standard analysis of autocorrelations, returns

7We have also extended this series backwards to 1801 using Siegel’s (1998) dataset, as in Pastor & Stambaugh
(2008, 2009). Results are very similar.
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appear to be very close to white noise even over the full sample. In the postwar sample, there

is even less reason to reject the white noise null.

Of course, as is equally well-known, tests of the white noise null will have very low power

against an alternative that the true process is close to, but is not quite white noise. But

for our purposes the distinction is not of any great importance. We shall show below that

even if we allow returns to deviate from white noise by estimating ARMA(1,1) representations

(which appears to be quite adequate to remove any serial correlation structure in the resulting

residuals) the resulting representations have very low R2s.

Thus the first key (and probably uncontentious) feature that informs our analysis is that

returns are, at best, barely predictable in terms of their own past.

Table 1. Bootstrapped p-values under the white noise null

max(Absolute Autocorrelation) min (p-value on Q test) min (Variance Ratio)

hmax 1871-2008 1945-2008 1871-2008 1945-2008 1871-2008 1945-2008

10 0.089 0.797 0.095 0.643 0.225 0.648

20 0.196 0.835 0.142 0.762 0.165 0.761

30 0.314 0.967 0.193 0.796 0.032 0.155

40 0.452 0.973 0.262 0.554 0.074 0.030

Notes to Table 1 We simulate the white noise null by resampling with replacement from the
empirical distribution of real annual stock returns, in 10,000 repetitions. The first two columns of Table
1 show the bootstrapped probability of a larger value than in the data for the maximum autocorrelation
from 1 to hmax, under the white noise null. For Columns 3 and 4, we carry out Ljung-Box Q tests of
the joint significance of autocorrelations from 1 to h, in the data, and in each replication, then find the
minimum nominal p-value over h=1 to hmax: the table shows the probability, across all replications,
of observing a lower minimum nominal p-value than in the data. In Columns 5 and 6 we show the
bootstrapped probability across all replications, of a lower minimum variance ratio than in the data
over horizons 1 to hmax.
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2.2 The variance ratio slopes downwards

In Figure 2 we show the sample variance ratio for real annual stock returns at horizon h,

V R(h) = V ar(
Ph

i=1 rt+i)/ (V ar(rt).h) for horizons 1 to 40.
8

Figure 2. The Variance Ratio of Real US Stock Returns
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The first panel shows clearly, over the long sample 1871-2008, the pattern identified by

Poterba & Summers, (1988). The sample variance ratio declines nearly monotonically as the

horizon increases until around h = 30, at which point it appears to level out at a value of around

0.2: thus indicating a reduction in volatility for long-horizon returns that is, in economic terms,

highly significant, compared to the white noise benchmark. This pattern has been widely used

to argue that investment in stock portfolios is relatively less risky at long horizons.9 We also

show simulated 5% and 95% bounds for the sample variance ratio under the bootstrapped white

noise null. The observed pattern does not differ much from white noise at short horizons; but

appears increasingly different as the horizon lengthens. While the data mining critique again

8We do not include the small sample adjustment proposed by Cochrane (1988) and others. Given our focus
on simulated results, where the variance ratio is calculated in the same way in both data and simulations, any
adjustment is unnecessary. Under the white noise null the unadjusted sample variance ratio is biased downwards;
however under alternatives where returns are near-white noise such as the ARMA(1,1) we analyse below, we
show that the unadjusted sample variance ratio appears to be close to unbiased.

9See, for example, Siegel, 1998; Campbell & Viceira, 1999. Note that we are referring here to true uncondi-
tional variance, rather than (conditional) “predictive variance”, that allows for parameter uncertainty. Pastor
& Stambaugh (2008) show that the horizon profile of predictive variance can difffer quite significantly from that
of true variance.
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argues against placing too much weight on individual horizons, the third and fourth column of

Table 1 shows that if we focus on the minimum variance ratio across all horizons up to a given

maximum horizon, the longer the horizon, the lower is the probability of observing such a low

value under the white noise null.10

The second panel of Figure 2 shows that if we calculate the variance ratio only over the

postwar period there is no systematic tendency to decline until h = 20 - a result consistent with

the estimates in Kim et al (1991). However, for longer horizons the decline is quite marked,

and, as Table 1 shows, statistically significant against a white noise null, even allowing for the

rather limited number of degrees of freedom.11 We shall show below that there are also clear

indirect measures of a declining variance ratio that persist into the postwar era.

There is no necessary contradiction between our weak rejection of the white noise null for the

autocorrelation function and the stronger results for the variance ratio, since the latter relates

to a long weighted average of autocorrelations.12 In principle “variance compression”13 can be

both quite significant, and consistent with a very limited degree of short-term predictability.

This is indeed what appears to be the case in the data.

It should also be stressed that the probability that both these features would appear in the

data would be very small under the white noise null. Figure 3 illustrates for the full sample.

We resample 138 observations of the real stock return to simulate the white noise null. Figure

10Pastor & Stambaugh (2008) Figure 10 shows an almost identical pattern using a longer sample, starting in
1802, which implies an even stronger rejection of the white noise null.
11The downward bias noted in footnote 8, which is quite severe in such a relatively short sample, is very

evident in the simulated upper and lower bounds.

12From Cochrane’s (1988) orginal analysis showed, we have V R(h) = 1 + 2
h−1P
j=1

³
h−j
h

´
corr(rt, rt−h).

13This feature is often referred to as mean reversion (following Poterba & Summers, (1988)), but we avoid
this term deliberately, first, because this usage is not universal (cf Pastor & Stambaugh, 2008); and second,
because it is a somewhat confusing misnomer. Poterba & Summers define mean reversion as "stock prices (or
cumulative returns) have a mean-reverting transitory component". Following Beveridge & Nelson (1981) we
can write any general ARMA(p, q) univariate representation of returns as

rt = a(L)εt = a(1)εt + a∗(L)(1− L)εt

with the second term defining the mean-reverting transitory component in cumulative returns = a∗ (L) εt.
Such a term will be present for any stationary univariate representation where returns have some serial correla-
tion structure, but not all such representations will have a downward sloping variance ratio. It is straightforward
to show that a(1) < 1 is a sufficient condition for the variance ratio to slope downwards. Since a(1)+a∗(0) = 1,
in this case the transitory component will be positively correlated with returns, whereas for a(1) > 1, which
implies that the variance ratio slopes upwards, it will be negatively correlated. But in both cases the transitory
component will be mean-reverting (cf Kim et al (1991) who refer to the latter case as “mean aversion”).
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3 is then a scatter plot of the minimum variance ratio, over horizons 1 to 40, against the sample

R2 for an ARMA(1,1) representation of returns, for each replication. The crossing point of the

two lines on the chart shows the values observed in the data.

Figure 3. Univariate Predictability and a Declining Variance Ratio:

Data versus White Noise
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Figure 3 shows that the bulk of replications would have a low ARMA R2, but with con-

siderable spread: 24% of the sample estimates of the ARMA R2 would be above the value in

the data (very much in line with the evidence on the autocorrelations shown in Table 1). The

majority of simulations would generate a minimum variance ratio well above that in the data;

the points below the horizontal line correspond to the 7.4% probability given in the bottom

row of Table 1. But, most strikingly, samples in which the variance ratio does appear to slope

significantly downwards are almost always also samples in which the ARMA model appears to

predict distinctly better than in the data: only 1.4% of replications generated combinations in

the bottom left quadrant, ie, with both a lower R2 and a lower minimum variance ratio than

in the data.14

14For the postwar sample only 1% of replications lie in this quadrant.
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3 The predictive regression framework

3.1 The general system

Consider the system used by Stambaugh (1999) and many others in the analysis of predictive

return regressions

rt = −βxxt−1 + ut (1)

xt = λxt−1 + vt (2)

where the first equation captures the degree of predictability of some variable rt, typically

stock returns or excess returns over some interval, in terms of a predictor variable xt−1, and

the second describes the autocorrelation of the predictor variable. We assume 0 ≤ λ < 1, so

that both rt and xt are stationary.15 We put no restrictions on the innovations ut and vt other

than that they be (jointly) serially uncorrelated mean zero with finite variance. We assume all

data are de-meaned for simplicity, hence neglect constants.

Equation (1) is quite general, since xt−1 may in principle be some weighting of a set of

variables with predictive power for rt and the error term may capture a range of nonlinearities.

Equation (2) is distinctly more restrictive, but, since Stambaugh (1999) has been widely used in

the literature and, again, allowing for exotic errors, can still encompass a wide range of models

(including for example two state Markov switching models, Hamilton 1989).16

Substituting from (2) into (1) we derive the reduced form process for rt, which is an

ARMA(1,1):17

rt = λrt−1 + εt − θεt−1 =

µ
1− θL

1− λL

¶
εt (3)

15Most of our results generalise to, but are complicated by, λ < 0; however we regard this as empirically less
likely to be of interest.
16Apart from differences in notation, our predictive framework is also identical to, eg, Cochrane (2008);

Campbell, Lo and Mackinlay (1997), Chapter 7 and Pastor & Stambaugh (2009) (in the the latter context,
xt would be characterised as a “perfect predictor” -ie, one that captures all available information relevant to
expected returns).
17By letting x be a vector process, with an AR matrix with p distinct roots, we can generalise up to an

ARMA(p, p) representation of rt. We note below that some of our results below still apply in this much more
general case, but the ARMA(1, 1) representation considered here has the dual advantage that it can be related
much more readily to the standard predictive regression framework, and yields relatively simple analytical
results.
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where L is the lag operator, such that Lxt = xt−1; εt is a serially uncorrelated innovation; and

as long as ut and vt are less than perfectly correlated, we can choose the “fundamental” solution

for the MA parameter that has θ ∈ (−1, 1), so the representation is strictly invertible in terms

of the history of rt.18 If θ = λ the AR and MA components cancel, and rt will be white noise.

We first note that in the ARMA representation the properties of rt are entirely determined,

up to a scaling factor, by the pair (λ, θ). The properties of the underlying predictive system

(1) and (2) can in turn be characterised by the three unit-free parameters (λ, ρ,R2x) where

ρ = σuv/(σuσv) is the Stambaugh Correlation, and R2x = 1− σ2u/σ
2
r is the R

2 in the predictive

regression. We shall refer to the triplet (λ, ρ,R2x) as the “predictive space”.

The autoregressive coefficient of the predictor variable translates directly to the AR coeffi-

cient of the reduced form (3). For the case of the MA parameter θ things are more complicated.

In Appendix A we show that, subject to an innocuous normalisation on the sign of βx, θ depends

on all three parameters that define the predictive space,

θ = θ
¡
λ, ρ,R2x

¢
(4)

We shall show that the two univariate properties summarised in Section 2 mean that the

predictive space can be quite tightly constrained. In so doing it will be helpful to make reference

to two important benchmark cases that we shall show determine the nature of these restrictions.

3.2 “Pseudo Predictor” Representations

In this section we define two limiting cases of the predictive system in (1) and (2), both of

which can be derived directly from the properties of the ARMA representation. We shall then

go on to show, in Section 4, that these limiting cases provide benchmarks that allow us to set

limits on the “predictive space” that contains all possible predictive systems of the form in (1)

and (2).

18See Appendix A.
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3.2.1 The fundamental pseudo predictor

We can rewrite the ARMA(1,1) representation in (3) as a predictive system of the same general

form as (1) and (2):19

rt = −βfxft−1 + εt (5)

xft = λxft−1 + εt (6)

where βf = θ − λ, and we refer to the predictor variable, xft , as the “fundamental pseudo

predictor”. It has the same AR(1) form as the true predictor variable, but with innovations

identical to those in the predictive regression, hence the Stambaugh Correlation is precisely

unity. It will generate identical predictions to the fundamental ARMA representation in (3),

and will therefore have the same predictive R2, which we show in Appendix B is given by

R2f (λ, θ) ≡ 1−
σ2ε
σ2r
=

(θ − λ)2

1− λ2 + (θ − λ)2
(7)

Note that, using (6) and (3) we can also write

xft =
rt

1− θL
=

∞X
i=0

θirt−i (8)

so the fundamental pseudo predictor is simply an exponentially weighted moving average of

rt.
20

19See Appendix A.
20An alternative interpretation of xft is, up to a scaling factor, as the optimal estimate of the true predic-

tor xt given the information set {ri}ti=−∞. Cochrane (2008b) refers to this as the “Observable State Space
Representation”; it is also a special case of Hansen & Sargent’s (2005) “Innovations Representation".
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3.2.2 The non-fundamental pseudo predictor

For every fundamental ARMA(1,1) representation with θ 6= 021 there is an associated “non-

fundamental” representation, given by

rt =

µ
1− θ−1L

1− λL

¶
ηt (9)

with σ2η = θ2σ2ε. This representation generates an identical autocorrelation structure for returns

to that of the fundamental representation, but, as is well known (see for example Hamilton,

1994, pp 66-67), the non-fundamental innovations, ηt cannot be recovered from the history of

rt, hence the non-fundamental representation does not represent a viable predictive model. As

a result, with a few exceptions (Lippi & Reichlin 1994; Hansen & Sargent, 2005; Fernandez-

Villaverde, Rubio-Ramirez, Sargent, and Watson, 2007) non-fundamental representations have

received relatively little attention.

To see why ηt cannot be recovered from the data, note that if we attempt to solve (9) for

ηt we have

ηt =

µ
1− λL

1− θ−1L

¶
rt =

∞X
i=0

θ−i [rt−i − λrt−i−1]

given that
¯̄
θ−1
¯̄
> 1 the sum does not converge, hence the representation in (9) is not invertible

in terms of the history of rt. However, if (strictly hypothetically) we had data on current and

future values of rt, we could write

ηt =

µ
1− λL

1− θ−1L

¶
rt = −θF

µ
1− λL

1− θF

¶
rt = −θ

∞X
i=1

θi [rt+i − λrt+i−1] (10)

where F is the forward shift operator, such that Fxt = L−1xt = xt+1, and in this case the

sum does converge. Thus the non-fundamental ARMA representation does have an invertible

representation, but only in terms of current and future values of rt, making it valueless as a

predictive model.

Of course, if we already knew the entire future of rt, we would not need a predictive model

21In Appendix D we discuss the special case θ = 0, for which the representation in (9) is undefined, and which
we need to deal with separately, but this does not affect any of our results.
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at all, therefore there would be no point in constructing a series for ηt. But the reverse is not

the case. In general, even if we did have data on ηt (perhaps by some divine dispensation) this

would not reveal the entire future of rt, but rather a particular linear combination of future

values. Thus while (as we show below) the non-fundamental representation would, if we had the

history of ηt, predict better than the fundamental representation, it would not predict perfectly.

While it may seem somewhat peculiar to take an interest in a predictive model that is so

manifestly non-viable, it turns out that it provides us with an extremely useful benchmark.

And it does so because, while we will never be able to observe ηt in practice, we do know

the predictive properties of the non-fundamental representation, even if we cannot actually

use it to predict, since these can be inferred directly from the properties of the fundamental

representation.22

As noted above, the equivalence of the two representations must imply that, for θ 6= ±1,

ηt has lower variance than εt, the fundamental innovation (since σ2η = θ2σ2ε), hence, if we did

have data on ηt, the non-fundamental representation would predict strictly better than the

fundamental representation. Its (strictly notional) predictive R2 can be derived by replacing θ

with θ−1 in (7), giving

R2n (λ, θ) ≡ 1−
θ2σ2ε
σ2r

=
(1− θλ)2

1− λ2 + (θ − λ)2
> R2f (λ, θ) ; for θ ∈ (−1.1) (11)

As for the fundamental ARMA representation, we can again reverse-engineer a representa-

tion of the same general form as (1) and (2), and write

rt = −βnxnt−1 + ηt (12)

xnt = λxnt−1 + ηt (13)

22In Lippi & Reichlin’s (1994) terminology the non-fundamental representation in (9) is a “basic” non-
fundamental representation, in that it is of the same order as the observable fundamental representation.
There is in principle an infinity of "non-basic" non-fundamental representations of arbitrary higher order,
since any white noise innovation can always be given a non-fundamental representation: ie, we could write
ηt =

¡
1− φ−1L

¢
(1− φL)

−1
ωt, with σ2ω = φ2σ2η, and in principle then find a non-fundamental representation

of ωt, and so on ad infinitum. But nothing in the data tells us anything about φ, and hence about ωt, hence
we can infer nothing from the data about the properties of such non-basic representations.
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with βn = θ−1−λ, where xnt , the “non-fundamental pseudo predictor” has the same innovations,

and the same predictive R2 for rt, as the non-fundamental ARMA representation, and again

has a Stambaugh Correlation of precisely unity.

3.3 The variance ratio in the ARMA(1,1) reduced form

We have already referred, in our discussion of univariate properties in the data, to the variance

ratio at horizon h, as originally defined for the general case by Cochrane (1988) as

V R(h) =
1

h

V ar(
Ph

i=1 rt+i)

V ar(rt)
(14)

It is straightforward to show23 that, for the ARMA(1,1) process (3), V R(h) is monotonic in h

and that

V R(h)

⎧⎪⎨⎪⎩ < 1⇔ θ > λ

> 1⇔ θ < λ
;∀ h > 1 (15)

We shall also make use of the limiting value of the variance ratio, which in the ARMA(1,1) can

be expressed as

V = lim
h→∞

V R(h) = (1−R2f)

µ
1− θ

1− λ

¶2
(16)

where, given the monotonicity of the V R (h) in h, we also have V < 1⇔ V R (h) < 1 ∀h > 1.

4 The Predictive Space for Stock Returns

4.1 Bounds on the ARMA(1,1) coefficients, θ and λ

In Section 2 we discussed two univariate properties of real stock returns in the data: first that

they were near-white noise (hence barely predictable in the short term); and second that there

appears to be quite strong evidence of “variance compression” (ie, a declining variance ratio).

It is straightforward to show that these two features of the data constrain quite tightly the

possible values of λ and θ in the ARMA representation. We shall subsequently see that this in

23See Appendix C.
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turn will place quite significant restrictions on the predictive space.

Using the ARMA(1,1) framework outlined above we show, in Figure 4, contours in (θ, λ)

space of equal R2f and of equal V (the limiting value of the variance ratio).24 The top panel of

Figure 4 shows contours for V = 0.4 and R2f = 0.05. The shaded area then gives the admissible

set of (θ, λ) that generate values of V no greater than 0.4 and R2f of no more than 0.05. Lower

values of V push the V -contour up and to the left, while lower values of R2f move the R2f -

contours towards the 45 degree line, thus reducing the admissible (θ, λ) area. The second panel

of Figure 4 illustrates: the shaded area is now the (θ, λ) combinations consistent with V no

greater than 0.2, and R2f below 0.025: the permissible space for both ARMA parameters now

becomes very tightly constrained: λ must be quite close to unity, and θ must be even closer.25

We showed in Section 3 that the ARMA representation inherits the AR parameter λ from

the true predictor. Figure 4 shows that the requirement that λ be large arises naturally from

the univariate properties of returns. Virtually all observable predictors of stock prices (most

notably valuation ratios like the price-dividend ratio or the price-earnings ratio) have this

characteristic.26 But the analysis illustrated by Figure 4 shows that, for sufficiently strong

variance compression, and sufficiently weak short-term univariate predictability, the same must

apply for any logically possible predictor.

We now go on to show that these univariate features can put significant restrictions on the

predictive space of the underlying model that generates them.

24For given values of R2f and V, we solve (7) and (16) for θ in terms of λ. The former gives two solutions for
θ, symmetric around the 45 degree line.
25The numbers used for R2f and V in Figure 4 are illustrative, but are quite consistent with the evidence

illustrated in Figures 1 to 3. Sample estimates of R2f are, if λ is high, subject to severe Stambaugh (1999) bias.
Simulation evidence shows that even in a sample as long as the 1871-2008 period discussed in Section 2 a true
R2f of 0.025 would result in a mean sample estimate at least twice as large, thus consistent with what we observe
in the data. For large λ and θ we can also have V R (h) well above the limiting value V even for horizons as
long as those shown in Figure 2.
26On annual data, the AR(1) coefficients for the dividend yield and the cyclically adjusted P/E multiple, for

example, are 0.92, 0.93.
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Figure 4 
The Permissible Space for ARMA Parameters for Stock Returns 
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4.2 Bounds for the one-period-ahead predictive R2

Proposition 1 For a fundamental ARMA(1,1) representation of returns which is a reduced

form of a predictive regression (1) and a predictor autoregression (2) the one-period-ahead R2

of the predictive regression, R2x, satisfies

R2f (λ, θ) ≤ R2x ≤ R2n (λ, θ) (17)

where R2f and R
2
n are as defined in (7) and (11).

Proof. See Appendix D.

The lower bound for R2x is the predictive R2 of the fundamental ARMA representation,

or, equivalently, of the “fundamental pseudo predictor” defined in Section 3.2.1. As such it is

quite easy to interpret. As long as the true predictor provides some predictive information for

rt beyond that contained in the history of rt itself (ie, if βx 6= 0, ρ ∈ (−1, 1)) it must have a

strictly higher predictive R2; only if βx = 0, or in the special case of the fundamental pseudo

predictor, is the lower bound attained.27

The upper bound for R2x is the predictive R
2 of the non-fundamental ARMA representation,

or equivalently of its associated pseudo predictor, defined in Section 3.2.2. The intuition for

this result can be related to our earlier discussion of the properties of the non-fundamental

representation. We showed in Section 3.2.2 that the non-fundamental innovation ηt can be

expressed, in (10), as a linear combination of current and future returns: so we know already

that it must have some predictive power beyond that already in the history of returns. But

the result in Proposition 1 is distinctly stronger: it shows that the non-fundamental pseudo

predictor in period t is the best possible predictor of rt+1 consistent with its observable univariate

properties.28

27We noted in Section 3.2.1, the alternative interpretation of the fundamental pseudo predictor, xft as the
optimal estimate of the true predictor xt given the information set {ri}ti=−∞. If we have data on xt, rather

than its estimate, we must be able to predict better, except in the special case that xt = xft .
28Given the ARMA(1,1) property of returns we know that the true predictor must be an AR(1). For rea-

sons discussed in footnote 22 there may in principle be multiple predictors, of arbitrary ARMA order, that
predict arbitrarily better. But the data tell us absolutely nothing about such predictors. Equivalently, the
non-fundamental ARMA representations associated with such predictors are, in Lippi & Reichlin’s (1994) ter-
minology, “non-basic”.
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We shall show that when the ARMA parameters, θ and λ, lie within the permissible range

illustrated in Figure 4, for a given degree of variance compression and low short-term pre-

dictibability then the allowable range of R2x given by Proposition 1 can become quite small.

We have already noted that if θ = λ returns are white noise. This arises trivially if βx = 0.

But there is also a more interesting special case:

Remark (Predictable White Noise) If R2x > 0 but θ (λ, ρ,R2x) = λ, the inequality in

(17) reduces to

0 < R2x ≤ 1− λ2

We discuss the properties of this special case in more detail in Section 4.5 below.

4.3 Bounds for ρ for predictor variables

Our focus thus far has been on just two of the elements in the predictive space, namely λ and

R2x. But a further important feature of Proposition 1 is that both the upper and lower bounds

arise in limiting cases of the predictive system (in (5) and (6), and in (12) and (13)) for which

the Stambaugh Correlation, ρ, is precisely unity. We now examine intermediate cases in which

the innovations are not perfectly correlated.

We have from (4) that the ARMA coefficients θ and λ are linked to the predictive R2x and the

Stambaugh Correlation between the innovations, ρ, by θ = θ (λ, ρ,R2x) . Thus for a given (θ, λ)

pair there is a contour of possible values of (R2x, ρ) consistent with the ARMA representation.

Again it turns out that the univariate properties of rt impose limits on the possible values of ρ.

Proposition 2 Consider a fundamental ARMA(1, 1) univariate representation (3) which is a

reduced form of a predictive regression (1) and a predictor autoregression (2). For 0 < λ < θ (ie

the variance ratio slopes downwards and the predictor has positive persistence) the Stambaugh

correlation ρ satisfies

|ρ| ≥ ρmin (λ, θ) > 0

Proof. See Appendix E.

Figure 5 illustrates the link betweeen Propositions 1 and 2. We graph the contours in (R2x, ρ)

space for a range of different representations of the return process. To simplify the presentation
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we constrain ρ to be non-negative (which we can always ensure is the case by an appropriate

rescaling of the data for xt).29

Figure 5. The Predictive Space for Stock Returns: R2x and ρ
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As a benchmark for comparison, the lowest contour line shows combinations of the two

parameters consistent with the special case of predictable white noise noted in the previous

29As noted in the introduction, ρ will be positive if xt is expressed as a log ratio of price to fundamental, and
hence has innovations of the opposite sign to those to expected returns.
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section, when the predictor is quite strongly persistent (θ = λ = 0.78). The better the predictive

model, the higher the associated Stambaugh Correlation, ρ, must be. While ρ can take any

value in [0, 1], the lower bound for ρ will only be attained with R2x = 0. Thus even in the white

noise case any useful predictor with positive λ must also have non-zero ρ.

The remaining contour lines represent a range of near-white noise processes, all with the

same univariate R2 (R2f = 0.025) but with progressively stronger degrees of variance compres-

sion (ie, lower values of V ). For a given degree of short-term predictability, this correponds to a

progressive reduction in the upper bound for R2x. Since ρ = 1 at both upper and lower bounds,

the range of possible values of ρ is progressively reduced, hence ρmin in Proposition 2 becomes

progressively closer to unity.This feature of our results sheds light on a significant feature of

the the empirical literature on predictive regressions. In most of this literature a high value of

the Stambaugh Correlation is usually treated simply as a nuisance that complicates inference.

Our results show that when returns have declining variance ratios (or even if they are purely

white noise) it is an intrinsic feature of the true predictor of returns.30

4.4 How different are predictor variables from the history of re-

turns?

We have shown in the previous section that, given observable univariate properties of returns,

the Stambaugh Correlation is likely to be close to unity in absolute value (ie, innovations to the

predictor variable will be strongly correlated with innovations in the predictive regression). We

also know that, by construction, the fundamental pseudo predictor, which from (8) is simply

a weighted average of past returns, has a Stambaugh Correlation of precisely unity. It might

therefore seem that any predictor must resemble the pseudo predictor quite closely. In fact,

while this may be the case for certain univariate processes, the correlation between the true

predictor and the fundamental pseudo predictor can in principle cover a distinctly wider range

than the Stambaugh Correlation, as the following proposition shows:

30Compare the related arguments of Cochrane, 2008 and Pastor & Stambaugh, 2009, discussed in footnote 6.
To complicate matters, in Robertson & Wright, 2009 we show that it also an endemic feature of predictors that
are actually redundant once we correctly condition on the history of returns, thus making it hard to distinguish
between true and redundant predictors, especially if returns exhibit significant variance compression.
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Proposition 3 If xt is the true predictor in the predictive regression (1), with predictive R-

squared R2x, and xft is the fundamental pseudo predictor, which, from (8) can be constructed

from the history of returns, then

corr(xt, x
f
t )
2 =

R2f
R2x
≥

R2f
R2n

=
1

θ2

µ
θ − λ

θ−1 − λ

¶2

where R2f (λ, θ) and R
2
n (λ, θ) are the upper and lower bounds given in Proposition 1.

Proof. See Appendix F.

By inspection of the relationship in Proposition 3, it is evident that in the limiting case of

white noise returns (θ = λ) the correlation is precisely zero, since R2f = 0. Indeed it is of the

essence of a white noise process that it its own history is entirely uninformative about its own

future values, and hence it must be uninformative about any predictor of its future values.

For near-white noise processes the correlation is non-zero, and the proposition shows that

the better the true predictor predicts, the less similar it will be to the fundamental pseudo

predictor. But the upper bound on R2x given in Proposition 1 implies a lower bound on the

correlation in Proposition 3: hence the narrower is the range of possible values of R2x, the more

similar the true predictor must be to the fundamental pseudo predictor. The lower bound

in Proposition 3 is determined by the relative predictive power of the fundamental vs non-

fundamental representations.

Figure 6 (below Figure 5) illustrates, for the three near-white noise processes already illus-

trated in Figure 5. Since all three have the same value of R2f , the univariate R
2, the relationship

between corr
³
xt, x

f
t

´
and R2x given in Proposition 3 is identical for all three processes. If the

true predictor predicts barely any better than the univariate representation, it will very closely

resemble it, but the better it predicts the weaker this resemblance will be. The only impact

of greater variance compression (a lower value of V ) will be that, since this reduces the upper

bound for R2x, it must increase the lower bound for corr
³
xt, x

f
t

´
(the lower bounds for each of

the three processes are shown as dotted lines).31

31Figure 6 is placed directly below Figure 5 to illustrate that, for each process in Figure 6, the lower bound
corresponds to the point in Figure 5 where the Stambaugh correlation for that process hits unity.
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However, Figure 6 illustrates that even when there is very significant variance compression

(as θ approaches unity) there is still scope for the true predictor to look quite dissimilar to

the fundamental pseudo predictor. This suggests a simple pre-test when looking for predictor

variables for stock returns: we should seek those that do not simply look like the history of

returns.

4.5 A special case: predictable white noise

We have already noted, in our discussion of Proposition 1, that the special case in which returns

are entirely unpredictable from their own past does not rule out predictability from some other

predictor variable. This case is worth considering not just as a benchmark for comparison,

but also because it is an implication (whether implicit or explicit) of a range of revisionist

investigations of return predictability. Some of these (eg, Goyal & Welch, 2003) have concluded

that there is simply no return predictability at all of any kind (ie, βx = 0) ; others (eg Kim et

al, 1991) have concluded that the true variance ratio does not differ significantly from unity at

any horizon, which must imply directly that there may be little or no univariate predictability

(ie, the more general white noise case θ = λ). Even defenders of return predictability such as

Campbell & Viceira (2002), Cochrane (2005, Chapter 20) have acknowledged the possibility

that there may be no univariate predictability.

Of course if returns are white noise, we have no way of inferring anything directly from

the history of returns about the values of the ARMA parameters, except that they must be

equal. But this still tells us something about the predictive space: that it depends on a

single parameter, λ, the persistence of the true predictor, since the white noise property means

that the predictive space must always satisfy θ (λ, ρ,R2x) = λ. We noted in Section 4.1 that

most observable predictors of stock returns are strongly persistent. In Table 2 we show that

the maximum possible predictive R2, as given by Proposition 1, declines as λ increases. For

strongly persistent predictors the scope for return predictability, from any possible predictor

of a white noise return process, is therefore quite limited.
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Table 2. The predictive space if stock returns are white noise

λ 0.0 0.25 0.5 0.6 0.7 0.8 0.9 0.95

max (R2x) = R2n (λ, λ) 1 0.94 0.75 0.64 0.51 0.36 0.19 0.10

ρ|R2x = 0.05;βx > 0 0 0.06 0.13 0.17 0.22 0.31 0.47 0.70

Notes to Table 2 In line 1 of the Table we show the maximum predictive R2 for a white noise
process, using Proposition 1, which implies max (R2x) = 1 − λ2. Line 2 shows the required value of
the Stambaugh correlation ρ, for a given value of R2x using equation (39) setting θ = λ. We constrain
ρ to lie in [0, 1] by normalisation of the data for xt such that βx > 0 .

At the other extreme, Table 2 also highlights a further special case of a white noise predictor

of white noise returns (ie, λ = θ = 0). This is the sole case for which the inequality in

Proposition 1 is devoid of content, since it reduces to the condition that R2x ∈ [0, 1] . In this case

the predictor has (trivially) the same ARMA order as returns (ie, they are both ARMA(0, 0)),

which therefore nests the case: xt = rt+1 ⇒ R2x = 1. Thus in this case the absolute upper

bound for R2x can be attained, at least in logic, if not (in the absence of divine dispensation or

time travel) in practice.32

As noted in our discussion of Proposition 2, the predictable white noise case means that,

subject to our normalisation of xt, the Stambaugh Correlation, ρ, can in principle live anywhere

in [0, 1] ; but a useful predictor with λ, βx > 0 must have a positive Stambaugh Correlation, and

the better it predicts the higher ρ must be (since the limiting case of the best possible predictor

is the non-fundamental pseudo predictor defined in Section 3.2.2, with ρ = 1). Furthermore,

for any given value of R2x, ρ is also increasing in λ, because a higher value of λ brings down the

upper bound at which ρ equals unity. The bottom row of Table 2 illustrates this relationship.

This necessary link between ρ, R2x and λ in the case of predictable white noise returns casts

another interesting light on the predictability literature. As noted above, valuation ratios such

as the price-dividends and price-earnings ratios have frequently been proposed as predictors of

returns. In Robertson & Wright (2009) we show that a range of such predictors all have AR(1)

parameters in the neighbourhood of 0.9; with estimated Stambaugh Correlations also around

this value, or in some cases, even closer to unity. In contrast the bottom row of Table 2 shows

32Note that the key condition here is actually θ = 0, which, from (37), always implies max
¡
R2x
¢
= R2n = 1.
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that for white noise returns, and R2x = 0.05 (a figure not out of line with those found in the

return predictability literature) the required value of ρ for λ = 0.9 is very much lower than this.

An immediate conclusion that follows is that it would not be possible to claim simultaneously

that any one of these predictors is the true predictor, and that returns are white noise. We

shall see in the next section that higher values of ρ are more consistent with a predictor of

a return process with a declining variance ratio, but in that case the univariate predictability

that necessarily follows from this provides an alternative benchmark against which to compare

such predictors. In Robertson & Wright (2009) we conclude that none of these commonly

used predictors can be distinguished in the data from the pseudo predictor consistent with this

univariate predictability.

5 The predictive space for real US stock returns 1871-

2008: some empirical estimates

In estimating the limits to the predictive space consistent with the observed history of returns

examined at the start of the paper, we should note at the outset that, given the near-white noise

properties of returns, no method of estimation can be expected to yield well-determined results.

Nor do we wish to pin ourselves down to any assumption that the univariate representation has

been stable, and of the restrictive ARMA(1,1) form, over the entire sample of returns.33 Our

estimates in this section are thus largely illustrative.

Even in the absence of any empirical estimates, it should be noted that, simply by allowing

for the possibility that returns may be near-white noise with a declining variance ratio, it follows

straightforwardly that, for any given degree of predictor persistence, the predictive space must

contract relative to the white noise case. Variance compression requires θ > λ. This raises R2f ,

the fit of the fundamental ARMA representation, above zero, but at the same time decreases

33It is quite possible that there may have been structural shifts in the ARMA parameters as well as both
the volatility and unconditional mean of real returns. However, there is a non-trivial caveat: the extent of any
shifts in the mean return cannot have been too large. If such shifts are treated as stochastic, in, for example, a
Markov Switching Model, then, following Hamilton (1989), the reduced form process has a higher order ARMA
representation. For sufficiently strong shifts the declining variance ratio observed in the data would be ruled
out.
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the maximum possible predictive R2 (that of the non-fundamental representation, R2n.) thus

contracting the space that R2x can feasibly inhabit. At the same time, from Propositions 2 and

3, increasing variance compression raises towards unity the lower bounds on both the absolute

Stambaugh Correlation and the correlation between the predictor and the fundamental pseudo

predictor. Thus on the basis of a priori reasoning alone we know that greater is the degree of

variance compression, the more the predictive space must contract.

Our starting point is simply to estimate the ARMA representation. There are obvious

caveats: the near-white noise property means that the AR and MA components are very close

to cancellation, and thus, as is well known, both λ and θ are likely to be poorly estimated, and

subject to significant small-sample (essentially Stambaugh, 1999) bias. There is however an

important cross-check on our results, in the spirit of Cochrane, 1988. We showed in Section 3.3

that in the ARMA(1,1) there is a direct correspondence between the sign of θ−λ and the slope

of the variance ratio. It is also straightforward to show34 that, if θ > λ, the rate at which the

variance ratio slopes downwards is determined solely by the magnitude of V (λ, θ) (the limiting

variance ratio) and λ. In principle direct measurement of the variance ratio could, for some

processes, yield very different answers from that implied by ARMA estimates;35 but in both

the long annual sample 1871-2008 and (with caveats) the shorter postwar sample 1945-2008,

the results are reassuringly similar.

Figure 7 illustrates. We estimate ARMA(1,1) representations of returns in both samples.

In terms of the expectations derived from our analysis thus far the point estimates are certainly

in the right ballpark: for the full sample we have bλ = 0.860 and bθ = 0.977, and in the postwar
sample we have bλ = 0.89 bθ = 0.95, thus in both samples the point estimates are consistent

with variance compression,36 but they are somewhat closer together in the postwar sample,

and hence returns are somewhat closer to white noise. Figure 7 shows that if we treat the

ARMA estimates as equal to their true population values, the results are not in conflict with

the evidence from direct measurement of the variance ratio.
34See Appendix C.
35See, for example, the comparison between the very different implications of the variance ratio and ARMA

representations of GNP growth in Cochrane, 1988.
36In Appendix C we show that they are also consistent with a conditional variance ratio for the true predictor

below unity for all h > 1, (cf Pastor & Stambaugh, 2008).
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Figure 7. The Variance Ratio:

Data vs Implications of ARMA Estimates
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Notes to Figure 7 We show the variance ratio in the data, as in Figure 2. The 5% and 95%
bounds and mean estimates are simulated in 10,000 replications using the estimated ARMA model
as the data generating process. The two panels also show the calculated true value of the variance
ratio, as given by (34) in Appendix C, on the same assumptions.otes to Table 1. We simulate the
white noise null by resampling with replacement from the empirical distribution of real annual stock
returns, in 10,000 repetitions.

In the full sample this consistency is particularly marked. The implied “true” horizon

variance ratio matches the sample variance ratio well, particularly at longer investor horizons;

and even when the two profiles differ somewhat at shorter horizons, the deviation is well within

the range of sampling variation.37

In the post-war sample, while the ARMA estimates are quite similar to those estimated

over the full sample, they are less consistent with direct measurement of the variance ratio.

But the differences are not in general statistically significant. Given the short sample, if the

estimated ARMA parameters were truly generating the returns data, the range of sampling

variation of the variance ratio would be quite wide, especially at short horizons, hence the lack

of any decline for horizons up to around 15 years (as noted by Kim et al, 1991) would not of

37Note that if this is the true data generating process the extent of sampling variation in the directly measured
variance ratio is very much lower than in the white noise case, additionally there is essentially no small sample
bias (in the left-hand panel of Figure 7 the mean estimate and the “true” value are indistinguishable).
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itself be particularly significant. Indeed the only statistically significant contrast between the

two approaches is at very long horizons, when the observed variance ratio actually breaches the

lower 5% bound consistent with the ARMA estimates being the true model. However, given

the range of uncertainty in both approaches, it is fairly obvious that it would take only a very

limited amount of data mining to find an ARMA representation that was consistent both with

the direct ARMA estimates and the evidence of the variance ratio, over both samples. Any

such representation would have a high value of λ, and θ > λ.

Given the mutual consistency of the two approaches (particularly in the long sample) we

have no obvious reason, in terms of the variance ratio evidence at least, to object to the ARMA

estimates. In Table 3 we therefore take these estimates at face value, and use them to calculate

the implied constraints on the predictive space, using estimates from both long and short

samples.38

The implied value of R2f the univariate R
2, which, from Proposition 1, provides the lower

bound for the predictive R2 of the true predictor is around 5% in the long sample. This

is reasonably consistent with the sample estimate (if anything, given the known impact of

Stambaugh Bias, we might expect the sample value to be rather higher). In the postwar

sample, as noted above, returns appear closer to white noise, hence the implied true R2f is

distinctly closer to zero.39

For the upper bound, max (R2x) = R2n, the notional R
2 of the non-fundamental ARMA

representation, we have, of course, no cross-check from the data, but we can calculate it directly

from the estimated values of λ and θ if we treat them as the true parameters. This calculation

implies that, in both samples, the best possible predictor of stock returns would have an R2 of

around 10%: thus in terms of predictive R2 the predictive space is quite narrow. The implied

space for the Stambaugh Correlation is even more tightly constrained: the point estimate of

ρmin, as defined in Proposition 2, is very close to unity, particularly for full sample estimates.

38We do not report standard errors, because in this region of the parameter space they are likely to be highly
misleading.
39Note that in our theoretical analysis we focussed on the true R2, which is a function of the true values of

λ and θ. In any given finite sample if we use the formula for the population value to calculate R2f
³bλ,bθ´ the

result of this calculation need not be the same as the sample R-squared calculated from the ARMA estimation;
in practice, however, simulation evidence shows that the two figures are usually quite close.
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Table 3 Point Estimates of Limits on the Predictive Space for US Stock Returns

Implied by ARMA Estimates

(1) (2) (3) (4) (5) (6)

Sample bλ bθ min (R2x) max (R2x) ρmin min
h
corr

³
xt, x

f
t

´i
1871-2008 0.860 0.977 0.052 0.095 0.986 0.739

1945-2008 0.891 0.955 0.020 0.106 0.908 0.429

Notes to Table 3 Columns (1) and (2) show the estimated autoregressive (λ) and moving average
(θ) parameters in estimated ARMA(1,1) representations of returns over the given samples. Columns
(3) and (4) give the implied upper and lower bounds for the predictive R-squared from Proposition 1,

given by (column 3) min (R2x) = R2f

³bλ,bθ´ and (column 4) max(R2x) = R2n

³bλ,bθ´ . Column (5) gives
the implied lower bound, ρmin

³bλ,bθ´ for the Stambaugh Correlation from Proposition 2. Column (6)

gives the lower bound for the correlation between the true predictor and the pseudo predictor, as given

by Proposition 3, as
³
R2f

³bλ,bθ´ /R2n ³bλ,bθ´´1/2.
In the final column of the table we calculate the implied lower bound for the correlation

between the true predictor and the fundamental pseudo predictor. It is noticeable that, despite

the apparently very limited predictive space for R2x and ρ, the true predictor can still in princi-

ple look reasonably different from the pseudo predictor - particularly so if we use the postwar

ARMA estimates.40 Nonetheless the clear implication of Table 3 is that point estimates consis-

tent with the data suggest only very little space for any predictor to out-predict the univariate

representation.

Of course, given the known problems in estimating ARMA representations with near-

cancellation of AR and MA roots, the figures in Table 3 should only be treated as illustrative.

We certainly would not wish to state categorically that the true predictive space must be as

narrow as the ARMA estimates suggest. Given sampling variation, the history of returns is

in principle consistent with a range of true data generating processes, some of which have a

distinctly less constrained predictive space. However, if we wish to argue that the predictive

space is less constrained, we show in the next section that this has important implications for

40This reflects the fact that, while the difference between R2f and R2n is small, it is the ratio that determines
the lower bound for the correlation, and in the postwar sample in particular this ratio is quite high, despite the
low value of R2n itself.
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another aspect of return predictability on which we have not yet touched: namely long-horizon

predictability.

6 The predictive space and long-horizon return predictabil-

ity

We have stressed already that the estimates in Table 3 are only illustrative. Given the range of

sampling variation of ARMA estimates we might quite easily derive point estimates of a similar

order of magnitude to those in Table 3 for a quite wide range of white and near-white noise

processes, albeit subject to the following considerations:

• First, and fairly obviously, the true process cannot be very far from white noise. In terms

of Figure 4, the true values of θ and λ must lie within the quite narrow range given by

the R2 contour lines. Hence we would reject any data generating process for returns for

which θ was very far from λ.

• Additionally we have strong grounds to reject near-white noise processes with variance

expansion rather than compression (ie, with θ < λ, and hence an upward sloping variance

ratio), given the quite strong rejection of the white noise null by sample variance ratio

data, discussed in Section 2. Even if the true variance ratio had only a modest upward

slope, the probability of observing the low values observed in the data rapidly wouuld be

vanishingly small.

• On the other hand we know that the rejection of the strict white noise case is at best only

marginal. Hence the data also do not reject values of θ and λ for which the variance ratio

only slopes down very modestly (ie, for which V is less than, but quite close to unity)

While these considerations rule out quite a wide range of (λ, θ) combinations, it is evident

that the data do admit representations that lie roughly between the 45◦ line and the upper

R2 contour in Figure 4. Since this includes representations in which λ and θ are both close

to zero, this means that the true predictive space could be considerably less constrained than
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the point estimates in Table 3 suggest. For true processes sufficiently close to white noise, and

with sufficiently low λ, we showed in Section 4.5, Table 2, that the upper bound for R2x could

in principle be close to unity, and the lower bound for ρ could be close to (though not below)

zero.

However, while this is a logical possibility, if we did wish to argue that the predictive

space were significantly wider, we could only do so by simultaneously assuming that another

often-assumed characteristic of stock returns is absent, namely long-horizon predictability. Any

predictive regression system has an associated profile for the horizon R2, given by R2x (h) , which

is the R2 in predicting the average return over h periods from period t, rt,t+h ≡ h−1
Ph

i=1 rt+h.

In the literature41 it is commonly found that the R2x (h) profile peaks at long investor horizons.

For example, Cochrane (2008a) reports regression estimates that imply a peak at horizons of

20 years or more.42

A convenient way to summarise the characteristics of the horizon profile is to define the

horizon, h∗ at which the horizon R2 is at its maximum value. In Appendix G we show that

the system in (1) and (2) has the convenient property that the horizon R2 profile for the true

predictor is simply a scaling of the univariate horizon profile, R2f (h). It follows that we have

h∗ ≡ argmax
¡
R2x (h)

¢
= argmax

¡
R2f (h)

¢
= h∗ (λ, θ) (18)

so that, while the true predictor could in principle have a very different value of R2x (h
∗) from

the univariate representation, the horizon at which this maximum occurs is identical to that

for the equivalent univariate R2 profile, R2f (h) .
43

Table 4 illustrates the link between horizon predictability and different (λ, θ) pairs in the true

process for returns. The shaded area shows values for which the one-period ahead univariate

R2 is less than 5%, hence any data-consistent representation of returns must lie roughly in this

41See for example Campbell and Viceira 2002; Cochrane, 2008; Boudoukh et al, 2008
42We use Cochrane’s Table 6, p 1561, direct and indirect coefficient estimates for the unweighted sum of

returns
Ph

i=1 rt+i; we then calculate the implied R-squared profile using the formulae in Appendix G, which
are consistent with Cochrane’s regression framework.
43The expression in (18) holds for any value of θ 6= λ, hence for any return process that is arbitrarily close to

white noise. For the case θ = λ we can however still derive h∗, by using the horizon profile of the non-fundamental
pseudo predictor, R2n (h) .
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area.

The table shows that for quite a wide range of (λ, θ) pairs close to zero, there are no horizon

effects at all (ie h∗ is unity). Only as we move north-eastwards, for relatively high values of of

both parameters, do horizon effects become more significant. In order to match values of h∗ of

20 or above we need to assume either very high values of λ (with strict white noise returns),

or, for (somewhat) more modest values of λ, we need to assume θ > λ, and hence variance

compression (Table 4 shows that this accentuates horizon effects). But we have seen already

that is precisely for these parameter values that the predictive space becomes very tightly

constrained. Putting it another way, if there is strong long-horizon predictability, it must be

close to being a univariate phenomenon.

Table 4. The optimal horizon for the horizon R2 of the true predictor of

ARMA(1,1) returns.

0 0.2 0.4 0.6 0.8 0.9 0.95 0.98
0.98 1 5 8 13 22 33 46 62
0.95 1 4 6 9 14 20 24 29
0.9 1 3 5 7 9 12 14 15
0.8 1 2 3 4 6 7 7 7
0.6 1 2 2 2 3 3 3 3
0.4 1 1 1 2 2 2 2 2
0.2 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1

AR Parameter, λ

M
A

 P
ar

am
et

er
, θ

Notes to Table 4 The table shows the value of h∗, as defined in equation (18) for different
values of θ and λ in the ARMA(1,1) representation of returns in (3). The figures for h∗ shown in the
table are calculated numerically using the general formula for the horizon R-squared profile in (42) in
Appendix G. The shaded area shows (λ, θ) pairs with R2f ≤ 0.05, bolded figures are the special case
of predictable white noise.

7 Conclusions

This paper shows that the univariate properties of stock returns can be used to infer restrictions

on the nature of any true predictor variable for stock returns, because these univariate properties
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depend in specific ways on the parameters that characterise the predictive system, which we

call the predictive space. The argument does not hinge particularly on whether we are able

to estimate a univariate ARMA model precisely, because merely knowing that returns are

near-white noise and have a downward sloping variance ratio provides sufficient information to

restrict strongly the predictive space.

Our results have three strong implications for the return predictability literature. First, if

predictor variables are persistent then it may be that the predictive space contracts to such

an extent that no predictor variable will predict very much better than a “pseudo predictor”,

that is itself simply a weighted average of past returns. Second, the converse also applies, that

is if we seek predictor variables that have meaningful predictive ability, they will have to be

dissimilar to weighted past returns and will likely have lower persistence than most existing

predictor variables. Third, strong horizon effects imply a tightly constrained predictive space,

leaving little scope for the true predictor to outperform the univariate representation.
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Appendix

A The ARMA(1,1) Reduced Form.

A.1 Normalisations

In what follows we assume that by an appropriate scaling of the data for the true predictor,

xt, we can ensure βx ≥ 0. To ensure that both fundamental and non-fundamental pseudo

predictors satisfy this sign convention, in what follows we also re-define each by

xft =
ρfεt

1− λL
(19)

βf = |θ − λ|

ρf = 1; θ ≥ λ;

= −1; θ < λ

xnt =
ρnηt
1− λL

(20)

βn = |θ−1 − λ|

ρn = sign
¡
θ−1 − λ

¢
An intuitive rationale for this normalisation is that in our benchmark case of variance

compression, βf > 0, hence for both xft and xnt we have, ut = vt in (1) and (2) hence the

Stambaugh Correlation ρ is unity. In this benchmark case, given the assumption that βx is

also positive, the true predictor xt can be interpreted as some “valuation ratio” with the stock

price in the numerator, hence of opposite sign to Etrt+1. As a result ρ is also positive, and thus

of opposite sign to its equivalent in Pastor & Stambaugh, 2009, 2008.

While we restrict ourselves to this benchmark case for Proposition 2, the sign convention

above allows for the logical possibility of variance expansion (θ < λ), for which the proofs of

the remaining propositions remain valid.
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A.2 Derivation of reduced form

Start from

rt = −βxxt−1 + ut

xt = λxt−1 + vt

where

⎛⎜⎝ ut

vt

⎞⎟⎠ are jointly serially uncorrelated mean zero with covariance matrix
⎛⎜⎝ σ2u σuv

σuv σ2v

⎞⎟⎠.
Solving gives us the ARMA reduced form for rt

rt = λrt−1 + εt − θεt−1

where

εt − θεt−1 = ut − λut−1 − βxvt−1

Where θ must satisfy the moment condition

−θ
1 + θ2

=
cov (−βxvt−1 + (1− λL)ut,−βxvt−2 + (1− λL)ut−1)

var (−βxvt−1 + (1− λL)ut)

=
− (λσ2u + βxσvu)

β2xσ
2
v + σ2u(1 + λ2) + 2λβxσvu

=
− (λ+ βxρs)

1 + λ2 + β2xs
2 + 2λρβxs

where ρ = σvu/(σuσv); s = σv/σu.

Note also that if R2x is the R
2 from the predictive regression then

R2x =
β2xσ

2
x

σ2r
=

β2xs
2

β2xs
2 + 1− λ2

implying

β2xs
2 = F 2 where F (R2x, λ) =

s¡
1− λ2

¢ R2x
1−R2x

(21)

hence the moment condition defining θ can be written as

θ

1 + θ2
= κ(λ, ρ,R2x) (22)
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where κ(λ, ρ,R2x) =
λ+ ρF (R2x, λ)

1 + λ2 + F (R2x, λ)
2 + 2λρF (R2x, λ)

(23)

A real solution for θ ∈ (−1, 1) requires that κ ∈
¡
−1
2
, 1
2

¢
. Note first that we have

∂κ/∂ρ =
F
¡
1 + F 2 − λ2

¢¡
1 + λ2 + F 2 + 2λρF

¢2 > 0, λ ∈ (0, 1), R2x ∈ (0, 1) (24)

Thus, for ρ ∈ (−1, 1) , we have

κ
¡
λ, ρ,R2x

¢
∈
¡
κ
¡
λ,−1, R2x

¢
, κ
¡
λ, 1, R2x

¢¢
∈ (g (λ− F ) , g (λ+ F ))

where

g (z) =
z

1 + z2
∈
µ
−1
2
,
1

2

¶
(25)

hence we do indeed have κ ∈
¡
−1
2
, 1
2

¢
. Given this, we know that

∂θ

∂κ
=
1

2

µ
1−
√
1− 4κ2

κ2
√
1− 4κ2

¶
≥ 0 (26)

which in turn gives us
∂θ

∂ρ
=

∂θ

∂κ

∂κ

∂ρ
≥ 0 (27)

which we shall exploit later.

The MA parameter in the fundamental representation is then given by44

θ
¡
λ, ρ,R2x

¢
=
1− (1− 4κ (λ, ρ,R2x)

2
)
1
2

2κ (λ, ρ,R2x)
(28)

44The other solution to (23) gives the nonfundamental representation.
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A.3 Pseudo Predictor Representations

To derive the representation in terms of the fundamental pseudo predictor in (5) and (6), write

the ARMA as

rt =

µ
1− θL

1− λL

¶
εt = εt +

(λL− θL)εt
1− λL

= εt + (λ− θ)
εt−1
1− λL

if we then define the fundamental pseudo predictor and βf as in (19), and substitute, we can

write the system as in (5) and (6) which is nested within the general system (1) and (2).

Analogous substitutions can be used to derive (12) and (13).

B The Fundamental ARMA R2

We have

R2f = 1−
σ2ε
σ2r

We can use the Yule-Walker equations to derive

σ2r =

µ
1− λ2 + (θ − λ)2

1− λ2

¶
σ2ε

hence

R2f = 1−
σ2ε
σ2r
=

(θ − λ)2

1− λ2 + (θ − λ)2
(29)

C The Variance Ratio and ARMA Parameters

C.1 The Unconditional Variance Ratio

The standard definition of the unconditional variance ratio given in Cochrane (1988) is

V R(h) = 1 + 2
h−1X
j=1

µ
h− j

h

¶
corr(j) h = 1, 2, . . . (30)
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where corr(h) = corr(rt, rt−h). In the ARMA(1,1) we have, using the Yule-Walker equations,

corr(1) =
cov(rt, rt−1)

var(rt)
= −

µ
(θ − λ) (1− θλ)

1− λ2 + (θ − λ)2

¶
(31)

corr(j) = corr(1)λj−1; j > 1 (32)

hence substituting and evaluating the sum we have

V R(h) = 1 + 2.
corr(1)

1− λ

µ
1− 1− λh

h (1− λ)

¶
(33)

and note that 1−λ
h

h
is decreasing in h for h > 1 so V R(h) decreases or increases monotonically

from V R(1) = 1.

As h→∞ we have the limiting variance ratio

lim
h→∞

V R(h) = 1 + 2.
corr(1)

1− λ
= 1− 2

1− λ

µ
(θ − λ) (1− θλ)

1− λ2 + (θ − λ)2

¶

noting that

1−R2f =
1− λ2

1− λ2 + (θ − λ)2
=

(1− λ)(1 + λ)

1− λ2 + (θ − λ)2

and writing

V = lim
h→∞

V R(h) = 1
1−λ

µ
(1−λ)(1−λ2+(θ−λ)2)−2(θ−λ)(1−θλ)

1−λ2+(θ−λ)2

¶
=

(1−R2f)((1−λ)(1−λ2+(θ−λ)
2)−2(θ−λ)(1−θλ))

(1−λ)2(1+λ)

which simplifies to

V = (1−R2f)

µ
1− θ

1− λ

¶2
Now by inspection

θ > λ⇒ V < 1
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Conversely

V < 1⇒µ
1− λ2

1− λ2 + (θ − λ)2

¶
(1− θ)2 < (1− λ)2

0 < λ2 − λ− λθ2 + λ2θ2 − θλ+ λ2θ − λ3θ + θ

0 < (1− λ3)θ +
¡
1 + θ + θ2

¢
(λ2 − λ)¡

1 + θ + θ2
¢
λ(1− λ) < (1− λ3)θ

λ(1− λ)

1− λ3
<

θ

1 + θ + θ2
=

θ(1− θ)

1− θ3

f(λ) < f(θ)

with f(z) = z(1−z)
1−z3 . Now f(.) is a monotone increasing function since

f 0(z) =
1− z2

(1 + z + z2)2
> 0 for |z| < 1

hence

V < 1⇔ θ > λ

and this plus monotonicity of V R(h) gives the result in (15).

Finally note that we have

V R(h) = V + (1− V )

r
H (h, λ)

h
(34)

where

H(h, λ) =
1

h

µ
1− λh

1− λ

¶2

C.2 The Conditional Variance Ratio

By definition, we have, for any predictor xt, using the definition in Section 6,

R2x (h) = 1−
σ2t (h)

σ2 (h)
= 1− σ2t (h) /σ

2 (1)

V R (h)
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where σ2t (h) is the conditional variance of the h-period average return, and σ2 (h) its uncondi-

tional variance. Hence,
σ2t (h)

σ2 (1)
=
¡
1−R2x (h)

¢
V R (h)

and since, σ2t (1) = (1−R2x)σ
2 (1) the conditional variance ratio (defined as in Pastor & Stam-

baugh, 2008) is

V Rt (h) =
σ2t (h)

σ2t (1)
= S (h)V R (h)

where S (h) =
1−R2x (h)

1−R2x

hence note that

V Rt (∞) =
1

1−R2x
V R (∞) = V (λ, θ)

1−R2x

the better the predictor, the higher is the asymptote for the conditional ratio, relative to that

of the unconditional ratio, defined in (16).

For any predictor with a hump-shaped horizon profile (see Section 6 and Appendix G) S (h)

is initially downward sloping in h, reaches a minimum at h = h∗ = argmax (R2x (h)) (as in

(18)) and then slopes upwards. If there is no hump S (h) simply slopes upwards. A sufficient

condition for V Rt (h) to be always less than unity is therefore if V R (h) and V Rt (∞) are both

less than unity. The latter requires R2x < 1−V, but, from Proposition 1, we haveR2x ≤ R2n (λ, θ) ,

hence a sufficient condition for the conditional variance ratio for the true predictor to be always

less than unity is

R2n (λ, θ) < 1− V (λ, θ)

which solves, using (37) and (16), to give the very simple condition

θ >
1

2− λ
= λ+

(1− λ)2

2− λ
> λ (35)

hence this condition is somewhat (but only marginally) stronger than the condition θ > λ ⇒

V R (h) < 1∀h (see 15), hence both conditions are satisfied.

The condition in (35), which implies only a modestly downward sloping profile for V R (h) ,
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is easily satisfied by both ARMA representations of real US stock returns used in Section 5.

D Proof of Proposition 1

We wish to establish the inequality

R2f (λ, θ) ≤ R2x ≤ R2n (λ, θ)

D.1 Relation of R2x to R2f

The first inequality is straightforward. Using the derivation of the ARMA(1,1) representation

in Appendix A we have, for −1 < ρ < 1, βx 6= 0,

εt =
1

1− θL
[−βxvt−1 + (1− λL)ut]

= ut − λut−1 − βxvt−1 + θεt−1

= ut + ψt−1

hence

var(εt) = var(ut) + var(ψt) > var(ut)

since cov(ut, ψt−1) = 0, hence

1− σ2ε
σ2r

< 1− σ2u
σ2r

R2f < R2x

For the limiting case of the fundamental pseudo predictor representation in (5) and (6), we

have σ2u = σ2ε ⇒ R2x = R2f ; and for βx = 0, trivially, we have R
2
x = R2f = 0. so for the general

case we have

R2f ≤ R2x
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D.2 Relation of R2x to R2n

For θ 6= 0 we have the non-fundamental representation

rt =

µ
1− θ−1L

1− λL

¶
ηt (36)

where ηt is the non-fundamental innovation, and we know (Hamilton, 1994, pp 66-67)

σ2η = θ2σ2ε

hence

R2n = R2f +
¡
1− θ2

¢ σ2ε
σ2r
= R2f +

¡
1− θ2

¢ ¡
1−R2f

¢
which, after substituting from (29) gives

R2n =
(1− θλ)2

1− λ2 + (θ − λ)2
(37)

which can also be derived directly from (29) by substituting θ−1 for θ.

Note that for θ = 0 the non-fundamental representation (9) is undefined. As θ → 0 we have

σ2η = θσ2ε → 0, but, expanding (10),

Etrt+1|xnt = −
¡
θ−1 − λ

¢ £
−θrt+1 − θ2rt+2 + ....

¤
so we have limθ→0Etrt+1|xnt = rt+1, consistent with setting θ = 0, giving R2n = 1 in (37). For

θ = ±1 the non-fundamental and fundamental representations coincide but the moving average

representations do not converge either backwards or forwards. However the formula in (37) is

valid for any θ ∈ [−1, 1]

We wish to establish the inequality

G
¡
λ, ρ,R2x

¢
≡ R2n

¡
λ, θ

¡
λ, ρ,R2x

¢¢
−R2x ≥ 0

While G depends in principle on the triplet (λ, ρ,R2x) we shall analyse its properties for a
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given (λ,R2x) pair; we shall show that the result holds for any (λ,R
2
x) within their allowable

ranges. Note that for this proof we do not require λ to be positive.

Thus we can write G = G (θ (ρ)). From (27) we also have ∂θ/∂ρ > 0, hence we can write

G = G (θ) ; θ ∈ [θmin, θmax]

where

θmin = θ
¡
λ,−1, R2x

¢
; θmax = θ

¡
λ, 1, R2x

¢
and we have

G0 (θ) =
∂R2n
∂θ

= −2θ
Ã¡
1− λ2

¢
(1− θλ)

1− λ2 + (θ − λ)2

!
⇒ sign (G0 (θ)) = −sign(θ) (38)

There are four cases:

Case 1: θmin > 0 : For this case,we have G (θmax) = 0, since at this point x is the non-

fundamental pseudo predictor with R2x = R2n, and, from (20) we have ρ = ρn = sign
¡
θ−1 − λ

¢
=

1. From (38) we also have G0 < 0 hence G ≥ 0.

Case 2: θmax < 0 : For this case,we have G (θmin) = 0, since at this point x is again the

non-fundamental pseudo predictor with R2x = R2n, but with ρ = sign
¡
θ−1 − λ

¢
= −1. From

(38) we have G0 > 0 hence G ≥ 0.

Case 3: θmin < 0 < θmax : For this case,we have G (θmin) = G (θmax) = 0, G0 (θmin) > 0;

G0 (θmax) < 0, and, from (38) G has a single turning point at θ = 0, hence again we have G ≥ 0.

Case 4: θmin = θmax = 0 : This is the limiting case in which R2x = R2n = 1 (ie, as discussed

in Section 4.5, xt = rt+1), giving G = 0.

Since the inequality holds in Cases 1 to 4 for any θ and λ, by implication it also holds for

any λ and R2x.We have thus established the right-hand inequality in (17) for all possible cases,

completing the proof.¥
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E Proof of Proposition 2

Any given values of θ and λ must imply a condition on κ (as defined in (23)) of the form

κ(λ, ρ,R2x) =
θ

1 + θ2

For given values of θ and λ this can be taken to imply a restriction on ρ, the correlation between

the two underlying innovations, which solves to give

ρ(θ, λ,R2x) =
(θ − λ) (1− θλ) + F (λ,R2x)

2θ¡
1− λ2 + (θ − λ)2

¢
F (λ,R2x)

; ρ ∈ (−1, 1) (39)

where F (λ,R2x) is as defined in (21). If the solved value for ρ lies outside this range, the triplet

(θ, λ,R2x) is not feasible (ie, taking θ and λ as given, R
2
x does not satisfy the inequality condition

(17)).

The first order condition yields a unique stationary point:

∂ρ(θ, λ,R2x)

∂R2x
= 0⇒ R2x =

(θ − λ) (1− θλ)

θ − λ+ θ (1− θλ)

which after substituting into (39) yields a real solution if

(θ − λ) θ > 0

which is satisfied for θ > λ, given λ > 0, as in the Proposition. The second-order condition

confirms that this then yields the minimum value

ρmin = sign (θ − λ)
2
p
(θ − λ) (1− θλ) θ¡
1− λ2 + (θ − λ)2

¢ > 0.¥

F Proof of Proposition 3

Consider the regression

rt = −βxxt−1 − βfx
f
t−1 + ut
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where xft is the fundamental pseudo predictor and xt the predictor variable. Then given the

true model (1) that generates the data, it must be that βf = 0. Treating xt−1 as an omitted

variable in the regression

rt = −βfxft−1 + wt

then wt = −βxxt + ut.

Using the formula for omitted variable bias we can obtain population values via moment

conditions as

−βf =
Cov

¡
xf , r

¢
V ar (xf)

=
Cov

¡
xf ,−βxx+ u

¢
V ar (xf)

= −βx
Cov

¡
xf , x

¢p
V ar (xf)V ar (x)

p
V ar (x)p
V ar (xf)

= −βxcorr(xf , x)
σx
σxf

hence

βf
σxf

σr
= corr(xf , x)βx

σx
σr

Squaring both sides we get

µ
βf

σxf

σr

¶2
=

µ
βx

σx
σr

¶2
corr(xf , x)2

or

R2f = corr(xf , x)2R2x

which rearranges to give the expression in the Proposition¥

G The horizon R2

Using (1) and (2), we have

Etrt+h = −βxEtxt+h−1 = −βxλh−1xt

Et

Ã
1

h

hX
i=1

rt+i

!
= −βx

h

hX
i=1

λh−1xt = −βhxt
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where

βh =
βx
h

µ
1− λh

1− λ

¶
= βx

r
H (h, λ)

h
(40)

so the horizon coefficient profile is just a scaling of the variance ratio profile in (34).

We also know, from the definition of the variance ratio,

var

Ã
1

h

hX
i=1

rt+i

!
=
1

h2
h.σ2rV R(h) =

σ2r
h
V R(h) (41)

hence

R2x(h) =
β2hσ

2
x

σ2r
h
V R(h)

= β2x
σ2x
σ2r

H (h;λ)

V R(h)
= R2x

H (h;λ)

V R(h)
(42)

Note that H (h;λ) and V R (h) depend only on ARMA parameters and h. Since we could also

derive an equivalent horizon profile, R2f (h) for the fundamental pseudo predictor, by replacing

R2x with R2f , the horizon profile for the true predictor is a scaling of the univariate horizon

profile and hence has the same turning point, h∗ (λ, θ) .
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