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Abstract

We consider inference in a widely used predictive model in empirical finance. "Stam-

baugh Bias" arises when innovations to the predictor variable are correlated with those in

the predictive regression. We show that high values of the "Stambaugh Correlation" will

arise naturally if the predictor is actually predictively redundant, but emerged from a ran-

domised search by data mining econometricians. For such predictors even bias-corrected

conventional tests will be severely distorted. We propose tests that distinguish well be-

tween redundant predictors and the true (or "perfect") predictor. An application of our

tests does not reject the null that a range of predictors of stock returns are redundant.
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There is an extensive literature in empirical finance that focusses on inference difficulties in

a predictive framework of the form

rt+1 = α+ βzt + et+1

zt+1 = φzt + wt+1

where the first equation captures the degree of predictability of some variable, rt (usually some

measure of returns or excess returns) in terms of some predictor variable zt, (frequently some

indicator of value, such as the price-dividend ratio); while the second models the predictor as

an AR(1) process. Usually we are interested in testing H0 : β = 0, i.e., that zt is predictively

redundant for rt+1. Since Stambaugh (1999) it has been well known that if the predictor variable

is persistent and there is a high absolute “Stambaugh Correlation” between the two innovations,

et and wt, then conventional OLS will lead to estimates of β that are biased in finite samples.

Other authors have also noted the risks of various forms of data mining - whether in choosing

from a list of possible regressors (eg, Ferson, Sarkissian and Simian, 2003) or by sample selection

(eg Goyal & Welch, 2003), while yet others have noted that Stambaugh Bias also affects long-

horizon regressions (Boudhoukh et al,2006).

While our analysis will largely focus on this simple system, the framework generalises fairly

straightforwardly to allow for multiple predictors, structural breaks, etc. We can in principle

incorporate considerable generality, by letting zt be a weighting of underlying predictors, eg

let zt = h0Zt, where Zt is a vector of p predictors, that follows the vector autoregressive

process, Zt+1 = ΦZt +Wt+1.This replaces the second equation in the system, but leaves the

first unchanged. The Stambaugh Correlation then naturally generalises to ρ = corr (H 0Wt, et) .

By allowing for non-standard but serially independent innovations we can also incorporate

Markov switching models, etc (see Hamilton (1994, pp 678-9). We discuss these generalisations

further in the main paper.

It is now standard to subject predictive regressions to various corrections for Stambaugh

bias, structural stability and data mining. Only when the null H0 : β = 0 can be convincingly

rejected after these corrections is a predictor variable deemed to have any genuine statistical
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significance.

In most of the existing literature, a high Stambaugh Correlation is typically simply treated

as a nuisance that complicates inference. In more recent contributions, Cochrane (2008a) and

Pastor & Stambaugh (2009) have both put forward strong arguments that, under the natural

alternative hypothesis that zt is (in Pastor & Stambaugh’s terminology) a “perfect” predictor

(in the sense that a model with β 6= 0 and et white noise is the true data generating process),

then on a priori grounds we would expect the Stambaugh Correlation to be high.

In this paper we show that high Stambaugh Correlations may also occur for a very different

reason: if the predictor variable is redundant (in the sense that it tells us nothing about the

future of returns that is not already in the history of returns), but simply proxies univariate

predictability. This is all the more likely to occur if the predictor has emerged from a process

of data mining. By analogy with the infinite number of monkeys ultimately typing the works

of Shakespeare, we can think of this as an experiment in which an infinite number of monkey

econometricians randomly sift through available data and run regressions, with the experi-

menter then simply choosing the predictor that has the highest R2 for future returns. For such

predictors, even the most stringent test procedures used in past research may not be enough

to detect redundancy.

The standard null β = 0 implies rt = α + et, where in most of the existing literature,

et is assumed to be white noise. We propose a generalised null, in which we allow for a

degree of predictability of returns from some information set that may not be observable to the

econometrician. Even if the true predictable component is unobservable, the history of returns

itself will in general have some (but usually quite weak) predictive power, that can be captured

by an ARMA representation.1

We show that, in this more general null model, if a predictive regression is estimated by

OLS, conditioning only on zt, then even if zt is predictively redundant, it may be sufficiently

correlated with the predictions from the ARMA representation to reject the standard null

in its usual form, even after correcting for biases in the usual way, and even if the ARMA

1This necessary link goes back at least as far as Fama & French (1988) and underpins, whether explicitly or
implicitly, the literature on “mean reversion” of asset returns.
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representation has very weak predictive power. Furthermore, if zt is a redundant predictor that

has emerged from a data mining by monkey econometricians, we show that it will in some key

respects strongly resemble Pastor & Stambaugh’s (2009) “perfect predictor”: it will have a high

Stambaugh Correlation, and similar persistence to the true predictable component of returns;

and the innovations in the predictive regression will be close to white noise.

Despite these superficial similarities, we show that there is a simple testing procedure for

the null that zt is a redundant predictor. Our tests exploit the property that if zt is redundant,

its marginal predictive power must disappear, once we condition correctly upon the univariate

prediction.2 Our tests have good power against the obvious alternative, that zt is a "perfect

predictor" (Pastor & Stambaugh, 2009). We also note a simple diagnostic: redundant predictors

will tend to resemble closely a “univariate predictor” that is simply an exponentially weighted

average of past returns, and will tend to predict better, the closer is this resemblance. In

contrast, a “perfect” predictor (or even an imperfect, but non-redundant proxy thereof) will

tend to look less like the univariate predictor, the better it predicts.

To illustrate our proposed testing procedure, we examine four candidate predictors that

have been used in past research, several of which appear to reject the standard null even

using bias-corrected test procedures. However, most signally fail to reject our generalised null

- leading to the conclusion that such indicators are doing little or nothing more than proxy

univariate properties. This conclusion is reinforced by the observation that these predictors

closely resemble the univariate predictor, that simply summarises the history of returns. Indeed

we note that two widely used indicators, the price-dividend and price-earnings ratios, actually

predict less well than the univariate predictor.

The analysis of this paper can be linked to two important recent contributions to the

literature.

Pastor & Stambaugh (2009) analyse a system very similar to our own, in which predictors

are in general “imperfect” in that they are imperfectly correlated with the true predictable

2The null of redundance as used in this paper is identical to the null of No Granger Causality as originally
stated in Granger (1969). But our test procedures differ from the usual Granger Causality tests in that we
allow rt to be an ARMA process of the same order under both H0 and H1. We also discuss extensions to allow
for higher order ARMA processes.

3



component of returns. They also propose conditioning on the joint histories of returns and

observable predictors. They do not however consider the possibility that some imperfect pre-

dictors may be redundant; nor, in their Bayesian framework, do they consider tests of the

null of redundance. They also propose that low Stambaugh Correlations and non-white noise

residuals in the predictive regression can provide a useful diagnostic of predictor imperfection.

Our analysis runs directly counter to their proposed strategy, since it suggests that neither

diagnostic will screen out redundant predictors, particularly if these emerge from horse races.

Ferson, Sarkissian and Simin (2003) consider systems that can be viewed as special cases of

our own system, but in which a redundant predictor is always assumed to have a Stambaugh

Correlation of zero. In our framework such predictors would, in sufficiently long samples,

never win horse races; but in short samples they show that even such predictors may appear

significant due to a spurious regression problem, if the predictable component of returns has

high persistence. Whiel Ferson et al make an important contribution to our awareness of the

risks of data mining, we argue that, by restricting their definition of redundant predictors

to the subset with zero Stambaugh Correlations, they neglect a crucial feature of observable

predictors: whether redundant or otherwise. Indeed we argue elsewhere (Robertson & Wright,

2009) that observable univariate properties of returns require that a “perfect predictor” must

have a high Stambaugh Correlation.

The paper is structured as follows. In Section 1 we derive the relationships between the

true process for returns and a redundant predictor. In Section 2 we describe our proposed

test procedures. In Section 3 we describe our empirical applications, and Section 4 concludes.

Appendices provide technical details.
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1 Univariate Properties of Returns and Redundant Pre-

dictor Variables

1.1 The predictive system

We assume that the joint process for rt and some predictor zt can be represented in what Pastor

& Stambaugh (2009) refer to as a "predictive system".3

The process for returns is given by

rt+1 = μt + ut+1 (1)

μt = r + a (L) vt (2)

where r = E (rt) ; [ ut vt ]
0 is a vector of serially uncorrelated shocks, with “true” Stam-

baugh Correlation ρ =corr(ut, vt) ; and the persistent process μt (which may not be observable)

captures the predictable components of the true process for returns, with a (L) = a0 + a1L +

a2L
2+ ...some (possibly infinite order) polynomial in the lag operator (defined by Lxt = xt−1).4

We define R2μ = 1− σ2u/σ
2
r as the proportion of the total variance of returns explained by this

predictable component.

The representation of returns is supplemented by an autoregressive representation of an

observable predictor variable, zt (which we assume for simplicity has a zero mean)

zt+1 = φzt + wt+1 (3)

where zt may in principle be, in Pastor & Stambaugh’s (2009) terminology, either an "imperfect"

or "perfect" predictor, depending on the value of φ, and the correlation between wt and vt.5

3Very similar systems are found in, for example, Campbell Lo and Mackinlay (1997) Chapter 7; Ferson,
Sarkissian and Simin (2003); Cochrane (2008b).

4μt is often referred to as the expected return, since clearly, for some information set Ωt, μt = E (rt+1|Ωt).
However, except in the context of a model of perfectly functioning complete markets with a rational represen-
tative investor who knows the full model, it is not clear whose conditional expectation this will be. But viewed
as a state space model in which μt is the unobserved state variable for rt+1 (see, for example, Cochrane, 2008b)
the model is considerably more general.

5The predictor is “perfect” if μt = βzt, implying |corr (wt, vt)| = 1; φ = λ, but more generally “imperfect”
if |corr (wt, vt)| < 1; φ 6= λ
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We shall show that it may also be predictively redundant, in a sense to be defined below, even

when this correlation is non-zero.

We follow most of the literature in assuming an AR(1) representation of μt in (2), ie we set

a (L) = 1/ (1− λL) , so that (2) becomes

μt+1 = (1− λ) r + λμt + vt+1 (4)

It is well known (see, for example, Campbell, Lo and Mackinlay, 1995, Chapter 7; Cochrane,

2008b; Pastor & Stambaugh, 2009) that if the predictable component of returns takes this

AR(1) form then the reduced form for rt will be an ARMA(1,1). We could in principle make

the dynamics of both expected returns and the predictor variable more complex. Both could

in principle be linear combinations of elements of autoregressive vector processes . Much of

our analysis extends to this more complex setup (we comment below on such extensions).

However, we follow Pastor & Stambaugh’s example in focussing in the bulk of the paper on the

simple representations in (3) and (4), both on grounds of transparency, and because univariate

predictability in returns is sufficiently weak that it provides no basis for assuming a higher

order ARMA process.6

1.2 Conditioning on the history of returns

Substituting from (4) into (1) we can derive the reduced form ARMA(1,1) process for rt:

rt+1 = (1− λ) r + λrt + εt+1 − θεt = r +

µ
1− θL

1− λL

¶
εt+1 (5)

where εt is a white noise innovation. If θ = λ the AR and MA components cancel and returns

are univariate white noise. Note that this special case can arise even when R2μ > 0.
7

Using the ARMA(1,1) representation in (5) we can reverse-engineer a useful limiting repre-

6See Robertson & Wright, 2009.
7This feature of the reduced form is well-known: see for example Campbell, Lo and Mackinlay (1997), Pastor

& Stambaugh (2009). For a full derivation of the ARMA representation, and a discussion of how the moving
average parameter, θ, relates to the properties of the underlying system, see Robertson & Wright, 2009.
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sentation of the same form as (1) and (2). Let

μRt ≡ E (μt|Rt) ≡ E [rt+1|Rt] (6)

where Rt =
£
{ri, εi}ti=0 , λ, θ, r

¤
contains the history of returns and the components of the ARMA

representation. Thus μRt would be the expected return, if we conditioned upon an infinite history

of returns.8 We can then write down an alternative representation of (5), that takes the same

form as (1) and (2), ie,

rt+1 = μRt + εt+1 (7)

μRt+1 = (1− λ) r + λμRt + (λ− θ) εt+1 (8)

where in this special case the Stambaugh Correlation ρR is equal to unity in absolute value. In

the case of univariate white noise returns (θ = λ) this collapses to a model of constant expected

returns, conditional upon Rt. More generally the proportion of the variance of total returns

explained by μRt , which we denote R
2
R ≡ 1− σ2ε/σ

2
r, must lie between zero (if θ = λ) and R2μ.

While Rt is effectively an infinite history, and hence in finite samples the univariate predic-

tion μRt will not be observable, its finite sample equivalent E
£
μt| {ri}ti=0

¤
will be observable,

and will converge on μRt as the sample size increases. In contrast the true state variable for

returns, μt, may be permanently unobservable.
9

8Our finite sample definition of the information set would make it possible to generate forecasts for any
period t > 0 using the true ARMA representation in (5). This information could also be derived from an
infinite sample of returns {ri}ti=−∞. We can also think of μRt as the limiting conditional forecast of μt by
applying the Kalman Filter to a finite sample of returns, given knowledge of the structural model in (1) and
(2), once the Kalman Filter has converged to its steady state.

9More precisely, for |ρ| 6= 1, if we condition only on Rt,

lim
t→∞

var
h
μRt −E

³
μt| {ri}

t
i=0

´i
= 0 but lim

t→∞
var

£
μt − μRt

¤
> 0
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1.3 The Univariate Predictor

In setting up our tests, below, it will be helpful to define a "univariate predictor" xRt , which

drives the time variation in the univariate prediction, μRt , such that, using (8)

μRt = r + (λ− θ)xRt (9)

where we note that the univariate predictor xRt satisfies

xRt ≡
εt

1− λL
≡ rt − r

1− θL
≡

∞X
i=0

θi (rt−i − r) (10)

Thus the univariate predictor is simply an exponentially weighted moving average of lags of

rt. Introducing this predictor variable has the advantage that in the special case of white noise

returns, while the variance of μRt collapses to zero, x
R
t is still well defined (despite having, from

(9), no predictive power for returns).

1.4 A Redundant Predictor

We wish to consider the null hypothesis that the observable predictor zt is predictively redun-

dant, in the following general sense:

Definition 1 A redundant predictor for returns, rt+1 contains no information of predictive

value that is not already in the history of returns, Rt

Note that this is simply a statement that a predictor does not Granger-Cause rt, in the

original very general sense of Granger (1969). However, in practical applications the null of

no Granger Causality is almost always represented in the more restrictive sense of predictive

redundance conditional upon a finite order autoregressive representation of rt (and possibly a

set of other variables).10 When the reduced form for rt contains a moving average component,

as in (5) (which it will always do if there are unobservable state variables) this distinction can

be very important, as we shall show below.

10See for example the discussion in Hamilton, 1994.
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Supppose that zt is a redundant predictor in the sense of Definition 1, and we run the

predictive regression

rt+1 = α+ βzt + et+1 (11)

which is simply a least squares linear projection of rt+1 on zt and a constant term. The resulting

error process et+1 will, by construction, be orthogonal to zt but will not typically be white noise.

We can then derive the following properties of the predictor and the predictive regression:

Proposition 1 Assume that zt follows the AR(1) process in (3).

a) A sufficient condition for zt to be redundant for rt+1 by Definition 1 is that wt, the

innovation to zt can be written as

wt = ψεt + t (12)

where εt is the innovation in the ARMA reduced form (5), t is a white noise process that

satisfies E ( tεt−i) = E ( tut−i) = E ( tvt−i) = 0, ∀i, and ψ is some constant;

b) Let R2z ≡ 1− var (et) /var (rt) be the predictive R-squared from a linear projection of rt

on zt−1, of the form in (11); and let ρz = corr(et, wt) be the associated Stambaugh Correlation.

If zt is a redundant predictor by Definition 1, with innovations as in (12), then

R2z
1−R2z

≤ ρ2z
R2R

1−R2R
(13)

where R2R ≡ 1 − σ2ε/σ
2
r is the predictive R-squared for the fundamental ARMA representation

of rt in (5). The expression for R2z in (13) holds with equality if φ = λ , and the implied upper

bound R2z = R2R is attainable for some zt since ρz ∈ [−1, 1] .

Proof. See Appendix 1.

The characteristics in Proposition 1 define a set of redundant AR(1) predictors with rela-

tively simple and empirically relevant properties.11 The specification of the innovation in Part

a) of the proposition means that zt is clearly redundant by Definition 1 (since any representation

11We show in the appendix that the complementary set of redundant AR(1) predictors that do not satisfy
all of the conditions in part a) of the proposition (because E (ωtεt−i) 6= 0 for some i, or because ωt is not
white noise, or both) will either have a predictive R-squared that is strictly bounded below R2R, or will have
innovations containing a process ωt that must satisfy very tight restrictions such that wt remains white noise
(which we require for zt to be AR(1)).
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of the history Rt has an equivalent representation in terms of {εi}ti=−∞). For any specification

that allowed the innovation wt to be independently correlated with either current or lagged

values of the true innovations ut and vt, zt would not be redundant.

Part b) of the Proposition shows that a redundant predictor can appear to have significant

predictive power in the predictive return regression (11). The apparent degree of predictive

power will depend, first, on how well the ARMA representation of returns itself predicts (ie, on

how high R2R is) and second, on how good a proxy the observable predictor is for the univariate

prediction defined in Section 1.3. This is in turn determined by two factors. The first is the

predictor’s Stambaugh correlation, ρz. In the Appendix we show that this is very closely related

to the correlation between the innovations to the redundant predictor, in (12), and those to the

ARMA representation in (5) (indeed we show that for rt reasonably close to white noise, ρz ≈

corr(wt, εt)). The second is the extent to which the the persistence of the redundant predictor

matches the AR(1) parameter of μt, the true state variable for returns; we show that the closer

φ is to λ, the better the prediction.

Proposition 1 provides an important insight into the characteristics of observable predic-

tors. We frequently observe high Stambaugh correlations in predictive return regressions. In

the existing empirical finance literature this characteristic has mainly been treated simply as a

nuisance that complicates inference. In more recent contributions, Pastor & Stambaugh (2009)

and Cochrane (2008a) have put forward a priori arguments why the “true” Stambaugh Cor-

relation, ρ =corr(ut, vt) is likely to be strongly negative. But Proposition 1 suggests that high

(absolute) Stambaugh Correlations may also arise for quite different reasons.

Consider the case where a given predictor variable has been the result of a wider search of

candidate predictors (cf Sullivan, Timmerman and White, 1999; Ferson, Sarkissian and Simin,

2003) by way of some form of repeated data-mining horse race procedure. For a redundant

predictor to win out in this procedure, a high absolute Stambaugh correlation is a necessary

characteristic, since, from (13), the higher is the absolute Stambaugh correlation, the higher

is R2z. Furthermore, data-mining econometricians will also have a greater tendency to single

out redundant predictors with AR(1) parameters as close as possible to the true predictor,

since, for a given Stambaugh Correlation, the proposition shows that this will also push up
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R2z.
12 Indeed, if we follow the logic of data mining through to its ultimate conclusion, there is

a straightforward corollary to Proposition 1:

Corollary 1 Assume that data mining econometricians run horse races between redundant

predictors with the characteristics given by Proposition 1, in which the sole objective is to

maximise the predictive R-squared, R2z of the predictive regression (11). If there is no constraint

on the number of such potential indicators or on the manner in which they are constructed, then,

as the sample size increases,

a) The redundant predictor with the best track record will yield one-period-ahead predictions

of rt+1 arbitrarily close to μRt , as defined in (6);

b) Its Stambaugh correlation ρz will be arbitrarily close to unity in absolute value;

c) The innovations et in the predictive regression will be arbitrarily close to white noise.

This corollary is similar in spirit to the claim that an infinite number of monkeys typing for

an infinite amount of time will almost surely type the complete works of Shakespeare:13 here we

are in effect modelling an indirect method of ARMA estimation by monkeys. The difference is

that the monkey typists’ behaviour is purely random, while our monkey econometricians could

in principle be replaced by computer programs with relatively straightforward data-mining

algorithms, with a well-defined objective function. And our empirical results will show that

Corollary 1 appears to come quite close to explaining the nature of some predictors of stock

returns.14

Proposition 1 and Corollary 1 point up a distinct contrast between our framework and

that of Ferson et al (op cit). Their model can be viewed as a special case of ours, in which

the Stambaugh Correlation ρz is zero. Proposition 1 implies that in this special case, and

in sufficiently long samples, estimates of R2z would converge to their population value of zero.

However, Ferson et al show that in small samples, even such predictors may appear predictively

significant, given a spurious regression problem, when both φ and λ are close to unity. In our
12See equations (23) and (25) in the proof of the proposition in Appendix 1.
13Strictly speaking, one monkey will do, but will take infinitely longer.
14The data-mining monkey econometricians in Corollary 1 are of course unsophisticated in that they ignore

Stambaugh Bias. If the monkeys’ objective criterion included a penalty for Stambaugh Bias we would not expect
to find Stambaugh Correlations of precisely unity. However, as our empirical examples show, some predictors
of stock returns get very close.
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framework, since we allow data mining econometricians to pick predictors with ρz > 0, R2z is

in general positive in population, hence the apparent predictive power of redundant predictors

would not disappear even in an infinite sample. We would also argue strongly that the case

with ρz > 0 is more empirically relevant. Virtually all observable predictors of returns that

have been proposed in the literature have high Stambaugh Correlations. They are also typically

quite strongly correlated with the univariate prediction and thus with each other (see Section 2).

That being the case, the data mining process modelled by Ferson et al, in which econometricians

search through a sequence of predictors that both have ρz = 0 and are mutually uncorrelated,

would in practice yield a very restricted set of predictors to choose from.

1.5 Predictor Characteristics, and a Predictive Hierarchy

As noted above, a priori arguments put forward by Pastor & Stambaugh (2009) and Cochrane

(2008a) argue for the true Stambaugh correlation, ρ, being strongly negative. Robertson &

Wright (2009) also show that observable univariate properties of returns must imply the same

characteristic.15 It is also fairly straightforwardly the case that the innovations, ut in the

"true" predictive regression must be white noise. Somewhat disconcertingly, the Proposition

and Corollary imply that a redundant predictor also has both characteristics.16

This implies a caveat to the suggestion made by Pastor & Stambaugh (2009), drawing on

their analysis of predictive systems, that low absolute Stambaugh Correlations and serially

correlated residuals in the predictive regression should be viewed as indicating that predictors

are "imperfect". While undeniably correct within their framework (in which, by construction,

predictors in general are not redundant) Proposition 1 and Corollary 1 imply that a purely

redundant predictor will appear to do very well on both criteria - and particularly so if it has

arisen from a process of data mining. Thus use of these diagnostic tools in isolation may well

lead to misleading conclusions.

15It arises by necessity if there is “mean reversion”, in the sense that the variance ratio of long-horizon returns
slopes downwards, and the true state variable has positive persistence.
16Since the limiting case of the Corollary has φ = λ, ρz = 1, hence et = εt, and hence is white noise. (For

a discussion of the more general case, see Appendix). Note that, while, for generality, the Corollary relates to
the absolute Stambaugh Correlation, the same univariate characteristics that Robertson & Wright (2009) show
must pin down the sign of the true Stambaugh correlation ρ will also imply the same sign for ρz if we normalise
zt to have the same sign as the predictions in (11).
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However, there is a characteristic that does clearly distinguish between redundant pre-

dictors and either imperfect or "perfect" predictors: namely, the degree of predictive power,

both absolute and marginal. It follows fairly straightforwardly from our analysis that, if zt is

redundant, we have the following ranking in terms of one-period-ahead goodness of fit:

0 ≤ R2z ≤ R2R ≤ R2μ (14)

where all the inequalities hold in strict form if |ρ| 6= 1, |ρz| 6= 1, and θ 6= λ. A redundant

predictor must predict less well than the ARMA, which in turn must predict less well than the

true state variable, μt. There is also an equivalently ordered predictive hierarchy in terms of

marginal predictive power: ie, zt is redundant if we observe μRt (or equivalently xRt ) while μ
R
t

in turn is redundant if we observe μt.
17 This is the basis for our tests.

Note also that our framework suggest a further useful diagnostic. We have:

R2z
R2R

= corr
¡
zt, μ

R
t

¢2
R2μ
R2R

=
1

corr (μt, μ
R
t )
2

If zt is redundant, it will predict better, the higher is its correlation with μRt (and hence x
R
t , as

defined in Section 1.3) whereas, for the true state variable μt, the better it predicts, the lower

is its correlation with μRt . So if a predictor is strongly correlated with the univariate prediction,

this should be a warning signal of potential redundance.

Note that, while we have exploited the properties of the predictive hierarchy in (14) for the

case of an ARMA(1,1) and a single redundant predictor, Robertson & Wright (2011) show that

in principle it applies equally well to the case where rt is an ARMA(p, p) , and zt is a some

combination of multiple predictors.

17Note that this does not follow directly from the inequalities in (14). In fact, the inequalities stem from the
marginal predictive hierarchy.
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2 Testing for predictive redundance

2.1 A general framework for testing the null of predictive redun-

dance.

We wish to test the null hypothesis that zt is a redundant AR(1) predictor with the charac-

teristics in Proposition 1, given that the true process for rt is given by the predictive system

(1) and (2), or equivalently, the reduced form (5). We consider tests of this null against the

alternative, H1 : μt = α + βzt, ie, that the observable predictor is a "perfect predictor" in

Pastor & Stambaugh’s (2009) terminology.18

Under our null, if we condition only on zt, it may appear to have statistically significant

predictive power for rt+1; however it is redundant once we condition on the history of returns.

Both null and alternative hypotheses can be represented straightforwardly in the following

multivariate predictive regression:

rt+1 = γ0 + γ1x
R
t + γ2zt + ξt+1 (15)

where xRt , as defined in (10), captures the time variation in the univariate prediction, μ
R
t . The

null of predictive redundance is H0 : γ2 = 0 (and ξt = εt), whereas under the alternative

H1:γ1 = 0 (and ξt = ut).

A key feature of this testing framework is that, in general, rt is ARMA(1,1) under both the

null and the alternative. In contrast, in the standard testing framework a predictive regression

of the form in (11) and the predictor autoregression (3) are usually analysed on the assumption

that et is white noise, hence under the null H0 : β = 0, rt is white noise plus a constant.

But the alternative hypothesis in the standard framework is the same as in ours, namely

H1 : μt = α+ βzt, hence rt is ARMA(1,1) in reduced form. Thus for tests of the standard null

the order of the ARMA representation differs between the null and the alternative.

18We could in principle consider intermediate cases, for example where zt is an imperfect predictor, but with
some predictive power, even conditioning upon the ARMA prediction, because it provides a noisy signal of μt.
However in this case, as noted by Pastor & Stambaugh (2009) even a non-redundant predictor would lead to
a mis-specified predictive regression since the innovations would not be white noise. The cleaner alternative is
therefore that zt is “perfect”.
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Note that our null nests the standard null as a special case if (and only if) θ = λ, and hence

rt is univariate white noise. In this case both γ1 and γ2 are zero under the null. This does not

rule out the existence of returns being predictable conditional upon the "true” information set

Ωt (or even some subset thereof) but under the null zt is as useless in predicting rt+1 as the

univariate predictor, xRt , hence the standard null applies.

The practical obstacle to the implementation of a test procedure based on (15) is that

it requires an estimate of the univariate predictor, xRt , or equivalently of the one-step-ahead

prediction from the ARMA representation, μRt . As noted above, in finite samples this will not

be observable.

We consider three tests that use alternative approaches to this problem. We first describe

the tests, and then, in Section 2.4, discuss their sampling properties.

2.2 Three Tests of Predictive Redundance

2.2.1 A two stage ARMA-based approach (RP1)

By definition, μRt the one-step-ahead prediction of rt from the ARMA representation is, from

(9) simply a scaling of the univariate predictor, xRt . The reverse is also, straightforwardly,

the case, and our first test exploits this equivalence. In the first stage of the test procedure

we estimate an ARMA(1,1) representation of rt. We then take the one-step-ahead predictions

from the estimated ARMA model and include them as a proxy for the univariate predictor in

a multivariate predictive regression of the same form as (15). We then conduct an F -test for

the marginal significance of zt in this regression, and denote the resulting test statistic RP1

((Redundant Predictor1).19

2.2.2 A one stage ARMAX-based approach (RP2)

A more direct approach is to estimate an equation of the same form as the standard predictive

regression (11), but allowing the error term et to follow an ARMA(1,1). Under the null that zt
19Note that here, as with the other two tests, since our objective is hypothesis testing, rather than prediction

per se, we use full sample parameter estimates (for a discussion of the contrast between the two approaches,
see Cochrane, 2008a). For predictive testing it would clearly be possible in principle to derive recursive ARMA
predictions and run recursive F Tests.
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is a redundant predictor, once we allow this specification of the error term then we again have

H0 : β = 0, since under the null the process for et can capture the reduced form for rt itself

as in (5). The test statistic RP2 is the likelihood ratio statistic for this restriction against the

unrestricted ARMAX(1,1) representation of rt.

Note that in principle the methodology of both of our ARMA based tests, RP1 and RP2

can be extended straightforwardly to the more general ARMA processes that arise when true

expected returns and the redundant predictor arise from a multiple predictor framework.

2.2.3 The indirect univariate predictor approach (RP3)

A practical problem with the first two tests discussed above is that they rely on ARMA estima-

tion, which is well-known to be problematic, particularly when (as will typically be the case)

returns are close to white noise. We thus also consider an alternative approach, which, while

more convoluted, has the advantage that it does not rely on ARMA estimation, but instead

exploits information from the estimated predictive regression (11) and the properties of the

observable predictor zt.

A useful feature of the univariate predictor xRt defined in (10) is that it can be expressed

solely in terms of the history of returns and the MA parameter, θ. Our third test procedure

circumvents the problems of ARMA estimation by modifying the null to include a further

restriction that allows us to derive an indirect estimate of θ, solely from the properties of

the predictive regression (11) and the predictor autoregression (3). We shall show below that,

under this modified null, the resulting indirect estimate has distinctly better sampling properties

than the direct estimate. We give a precise description of the derivation in Appendix 2; here

we simply provide a brief sketch.

It is possible to show (see Robertson & Wright, 2009) that the MA parameter θ in (5) can

be expressed in terms of three unit-free characteristics of the underlying process for returns:

θ = θ
¡
λ, ρ,R2μ

¢
(16)

where, as defined after (1) and (2), ρ is the "true" Stambaugh Correlation, R2μ is the proportion
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of the variance of rt+1 due to the true state variable, μt and λ is its persistence. We noted

above that if we replace μt with μRt , the univariate prediction, defined in (6) we can derive a

special case of the system for returns, as in (7) and (8), with a Stambaugh Correlation of unity

in absolute value, which by construction must be consistent with the ARMA representation.

Thus θ must also satisfy

θ
¡
λ, ρ,R2μ

¢
= θ

¡
λ, ρR, R

2
R

¢
(17)

where, from (8), ρR = sign (λ− θ) .

While the arguments of the right-hand side of (17) depend on univariate properties, a natural

amendment to our null hypothesis allows us to estimate them, and hence θ, indirectly from the

predictive system in terms of zt in (11) and (3).

Consider the joint null that zt is redundant and that λ = φ. From Corollary 1 this is a

natural restriction on the null model if the predictor may have arisen from a process of data

mining. (A similar argument is also used by Ferson et al, 2003 ).20 Under this amended null,

the estimate of λ is straightforward since we can set bλ = bφ. But we can also exploit the fact
that if φ = λ, the inequality between R2z, ρz and R

2
R in (13) in Proposition 1 holds with equality.

Thus if we have estimates of R2z and ρz from the system in (3) and (11) then we can derive an

implied estimate of R2R from (13), which coupled with an estimate of φ, is sufficient to derive

an estimate of θ. We refer to this estimate as bθz.21
Using this indirect estimate of θ, an estimate of the univariate predictor bxRt consistent with

the null can then be derived from (10), conditional upon some initial estimate bxR0 which for
simplicity can be set to its unconditional mean of zero. The null that zt is a redundant predictor

can then be tested by a simple F -test of the hypothesis that γ2 is zero in the multivariate

predictive regression (15), with xRt replaced by bxRt . We refer to this test statistic as RP3.
The convoluted nature of this indirect approach can be readily justified by sampling proper-

ties. We show in Appendix 2 that, under this restricted version of our null, the implied indirect

estimate, bθz has distinctly lower sampling variation than the direct ARMA estimate (partic-
20This does however have implications for the choice of critical values (see discussion in Section 3 below).
21We give a precise description of how bθz is calculated in Appendix 2, where we also consider the impact of

small sample biases, and discuss sampling properties.
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ularly when the true value of λ and θ are very close), and hence we have a better estimate

of the univariate predictor in deriving the test statistic. A corresponding disadvantage is the

usual joint null problem, that we may reject the null, even when zt is truly redundant, because

φ differs from λ. However, as noted above we are, given Corollary 1, likely to be particularly

interested in this joint null. While our other two tests do not suffer from a joint null problem,

they have the offsetting disadvantage that they rely on ARMA estimation.

2.3 A link with the standard Stambaugh Bias problem

Consider the multivariate predictive regression (15). As already noted, we can consider our

tests as alternative ways of producing an estimate of the univariate prediction μRt , and hence of

the true univariate predictor, xRt . Suppose, for the sake of argument, that we actually had data

for xRt , and knew the true values of λ and θ. Then, using (7) and (9), it follows that, by setting

γ1 = λ− θ in (15), we would have rt+1 −
£
r + γ1x

R
t

¤
= εt+1, the true univariate innovation. If

this were the case then (15) could be re-written as

εt+1 = γ2zt + ξt+1

where, under the null that zt is predictively redundant, γ2 = 0 and ξt = εt; but innovations

to zt are correlated with εt (recall that from Proposition 1, they must be, since otherwise zt

would not appear to have any predictive power). By inspection this equation has exactly the

same form as the predictive regression (11) but with a dependent variable that is univariate

white noise by construction. Hence in this case the only form of small sample biases we would

have to worry about would be those identified by Stambaugh (1999). Given that, as we have

already noted, a redundant predictor is likely to have a high Stambaugh Correlation, we would

expect that, at a minimum, our test statistics would be distorted by Stambaugh bias in small

samples.

However, in practice we must form an estimate of the univariate predictor xRt (or, equiv-

alently, of μRt , the univariate prediction). To the extent that these estimates are imperfect,

we shall introduce additional sources of small sample distortions. Thus the distribution of all
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three test statistics will in principle depend on both the true ARMA parameters, as well as

on the Stambaugh correlation and the persistence of the predictor variable. These latter two

parameters are likely to be reasonably well-estimated in the data, but estimates of λ and θ (on

which both RP1 and RP2 rely) are more problematic, particularly when rt is close to being

white noise. For this reason we also examine the distribution of the test statistic RP3 under the

more general null, φ 6= λ, despite the fact that in this more general case it is mis-specified.22

2.4 Monte Carlo Evidence

While all our simulations are carried out for a wide range of values of λ and θ, it should

be borne in mind that we are likely to be particularly interested in combinations where the

two parameters are close to being, or are actually equal (ie, near or on the diagonal in the

table) since in all such cases returns are near-white noise. Additionally, Robertson & Wright

(2009) argue that if returns are both near-white noise and have a declining horizon variance

ratio (commonly termed “mean reversion”), then there is a strong argument for focussing on

combinations with relatively high values of λ, and with θ lying strictly between λ and unity.

Table I provides some background and motivation for the Monte Carlo evidence we present

for our three proposed tests. We first illustrate the difficulties the standard test procedure may

encounter when the true predicted process is, as we assume, an ARMA(1,1).

[Table 1 about here]

Panel A of Table I shows the implied population R-squared, R2z, from a least squares linear

projection of the form (11) when the predictor, zt is redundant by Definition 1. The Stambaugh

correlation, ρz is set at 0.9. For simplicity the figures in the table assume that the AR(1)

parameter of the redundant predictor is equal to that of the true predictor, ie φ = λ, since,

from Proposition 1, for a given value of the Stambaugh correlation, this implies the maximum

apparent predictive power for a redundant predictor. Given this assumption, (13) in Proposition

1 holds with equality, and R2z is to a reasonable approximation just a scaling-down of R
2
R, the

ARMA R-squared. The table shows that the key determinant of R2z is therefore how far the

22While the first two tests generalise readily and straighforwardly to multiple predictor models, our third test
becomes even more convoluted in its construction, but in principle the approach remains valid.
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two key ARMA parameters, λ and θ, are from the diagonal. Along the diagonal the predicted

process, rt, is white noise, so the true values of both R2R and R2z are precisely zero. In the

cells next to the diagonal, where λ is usually quite close to θ, there is only weak univariate

predictability, and hence even weaker predictability from the redundant predictor (since its

predictive power stems solely from its correlation with the ARMA predictions). However,

further away from the diagonal the redundant predictor has much stronger predictive power,

reflecting the (even stronger) degree of univariate predictability.

Panel B of Table I shows the simulated size23 of a 1-sided t-test on the OLS estimate of β

in (11), at a nominal 5% level. The size distortion along the diagonal corresponds precisely to

the bias originally noted by Stambaugh (1999). Moving down the diagonal, as λ, and hence

φ increases, the bias increases.24 But the size distortion along the diagonal due to Stambaugh

bias is dwarfed by the size distortion away from the diagonal, due to the correlation of the

redundant predictor with the ARMA predictions. Even for cells next to the diagonal, where,

as the top panel of the table shows, there is a very modest degree of true predictability, a

redundant predictor will nonetheless, for most values of λ and θ, appear to have significant

predictive power in the majority of replications. Given the much more modest size distortion

due to pure Stambaugh bias (ie when the predicted process is white noise) as shown on the

diagonal, the null of no predictability is likely to be rejected frequently even after correcting

for Stambaugh bias. The table therefore clearly illustrates the difficulties of inference if we do

not allow for univariate predictability.

Tables II to IV provide estimates of the size of our three proposed test statistics. All three

Tables show the rejection rate at a nominal 5% level under the null hypothesis that zt is a

redundant predictor, for the three test statistics,25 for a range of values of λ and θ. As in

Table I we set ρz, the Stambaugh Correlation of the redundant predictor, to 0.9. For the AR

parameter φ of the redundant predictor, we consider three different variants. In Table II we

assume φ = λ; in Table III we assume that it is systematically lower (φ = λ
2
), while in Table

23For details of simulation methodology see Appendix 3.
24The size distortion along the diagonal increases for lower values of T : For example, for φ = λ = θ = 0.95

the simulated size of a nominal 5% test increases to 10% and 14% for T = 100 and T = 50 respectively.
25For comparability between the three tests we show the size of a two-sided test. We have also carried out

simulations of the size of 1-sided t-test versions of the first and third tests but the results are very similar.
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IV we assume it is systematically higher
¡
φ = λ+ 1−λ

2

¢
.26

[Tables II to IV about here]

The most notable feature of these tables is that, while all three tests clearly display size

distortions, these are typically much more modest, and, crucially, vary much less with θ and λ

than do the size distortions associated with tests on the simple predictive regression, illustrated

in the bottom panel of Table I. The comparison with the standard testing framework is also,

for all three tests, most favourable in the cells next to the diagonal, where rt is close to, but

not quite, white noise.

In terms of a comparison between our three proposed tests, the key features worth noting

in the tables are:

• The two-stage ARMA-based test RP1 (as described in Section 2.2.1) fairly systematically

under-rejects the null in the neighbourhood of the diagonal, due to a generated regressor

problem more than offsetting Stambaugh bias. In contrast the ARMAX-based test, RP2

(as described in Section 2.2.2) systematically over-rejects the null. However in both cases

the size distortion is sufficiently stable across population parameters, particularly in the

neighbourhood of the diagonal, that simple adjustments to critical values, or simulation of

p-values based on estimates of the population parameters should allow reasonably accurate

inference (we provide an illustration of the latter approach in our empirical examples).

• Under the restricted null that φ = λ, size distortions for our third test, RP3 (as described

in Section 2.2.3) are very much more modest except well away from the diagonal. To the

extent that there are size distortions, these are largely due to Stambaugh bias (for reasons

outlined in Section 2.3) , and thus can in principle be allowed for fairly easily. But it is

also striking that even when φ is not equal to λ, as shown in Tables III and IV, and thus

the test statistic is mis-specified, the size distortions remain fairly modest, and are again

largely explicable by Stambaugh bias.27 Well away from the diagonal the size distortions
26It is reasonable to assume some relationship between φ and λ, given that, as noted in Proposition 1, R2z is

decreasing in the absolute difference between the two AR parameters - hence redundant predictors with very
different AR parameters from the true predictor are much less likely to appear significant.
27The link with Stambaugh bias is most easily seen along the diagonal, where the size distortion is system-

atically larger in the top panel of Table IV (since φ is systematically higher), and systematically less in the top
panel of Table III (since φ is systematically lower).
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become more significant, particularly in Tables III and IV, but univariate predictability

in such cases is likely to be so readily detectable that these are much less likely to be

relevant.

Table V provides an indicator of the power of the three tests. It shows rejection rates at a

nominal 5% level under the alternative hypothesis that μt = α+ βzt, ie, that zt is a "perfect"

predictor. To quantify the alternative hypothesis we need to make some assumption about the

nature of the true process for returns. We have noted already, in Section 1.2, that the univariate

representation puts a lower bound on the true R-squared in (1); ie we have min
¡
R2μ
¢
= R2R

which is a function solely of the ARMA parameters, λ and θ. Robertson & Wright (2009) show

that it is also possible to derive an upper bound on R2μ that also depends on just λ and θ.28

In the simulations summarised in Table V, we set R2μ = 0.75min
¡
R2μ
¢
+ 0.25max

¡
R2μ
¢
, such

that μt, the true state variable for returns offers only a relatively modest improvement over the

univariate representation. For reference, the table also shows, in the bottom two panels, the

implied value of R2μ and of the true Stambaugh Correlation, ρ. The lowest panel shows that for

a wide range of values of λ and θ the true Stambaugh Correlation will be quite close to unity

in absolute value: hence Stambaugh bias would affect small sample estimation even if we had

data on the true state variable for returns.29

For most values of θ and λ all three tests correctly reject the null of redundance with high

probability.30 Only for values of θ > λ and both close to unity do rejection rates fall off.31 Thus

power is generally good even for a modest degree of true predictability of returns.

[Table V about here]

28See Appendix 2.1 for a brief summary.
29The Table also illustrates a result proved in Robertson & Wright (2009) that if θ > λ (which implies

that the variance ratio of long-horizon returns slopes downwards) the Stambaugh correlation must be negative
(consistent with the a priori arguments of Cochrane, 2008a and Pastor & Stambaugh, 2009) and tends to -1 as
θ tends to unity.
30Note that the comparison between the tests is complicated by the differences in size distortions - the relevant

values of which are shown in Table II. While ideally we should calculate size-corrected power this is by no means
straightforward given the degree to which true size depends on unknown parameters, as illustrated in Tables 1
to 4.
31In such cases, Robertson & Wright (2009) show that the upper and lower bounds for R2μ become very close,

and, as shown in the bottom panel of Table V, ρ, the true Stambaugh Correlation, tends to -1. Thus in these
limiting cases μt becomes harder to distinguish from μRt , and hence it becomes harder to reject the null that it
is redundant. However, in such cases, arguably this reduction in power is of no great importance, because the
marginal predictive power of μt is so modest.
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3 Testing for Redundant Predictors of Real Annual US

Stock Returns

In Table VI we apply our proposed test procedure to a range of alternative predictors of real

stock returns, over a long sample of annual data:32 the dividend yield; the P/E multiple

(cyclically adjusted using ten year average earnings as in Campbell & Shiller, 1988); Tobin’s q;

and an alternative Miller-Modigliani-consistent "cashflow" yield.33

[Table VI about here]

In Panel A we show the two key characteristics of each of the predictors on which our

analysis has focussed. All are strongly persistent (ie bφ is high), and most have high absolute
Stambaugh Correlations (bρz).34 We noted in Section 1.4 that high Stambaugh Correlations may
be a feature of both redundant predictors and the true predictor. The conventional approach

to testing does not convincingly distriminate between these two explanations. The bottom row

of Panel B shows that nominal p-values for a t-test on bβz in a predictive regression of the form
(11), estimated by OLS, reject the "standard null" H0 : β = 0 at conventional significance

levels for three out of the four indicators. Even if we correct for Stambaugh bias by simulating

bootstrapped p-values under the null that returns are white noise (as shown in the bottom row

of Panel D) two out of the four still appear to have quite strongly significant predictive power,

and a third is significant at the 10% level.35

In Panel B we show nominal p-values for the three test statistics that we have proposed as a

means of weeding out redundant predictors. For three out of the four predictors, the dividend

32All data are taken from the dataset described in Wright (2004), updated to end-2007. P/E and dividend
yield data (both from spliced Cowles/S&P 500 data, as in Shiller, 2000) are available on the same basis from
1871 onwards, but for comparability we align the samples for these predictors with those for the other two,
which are only available from 1900 onwards.
33The literature on the dividend yield is massive. See Campbell, Lo and Mackinlay, (1995) for a survey of the

early literature; Goyal & Welch (2003) as an example of the recent critique, and Cochrane (2008a); Campbell
& Thompson (2007) for responses. The use of a cyclically adjusted P/E dates at least as far back as Graham
& Dodd (1934) but more recently was revived by Campbell & Shiller (1998) and Carroll (2008) as a tool for
long-horizon forecasting. See also Lamont (1998) on the unadjusted P/E. On Tobin’s q (and the closely related
book-to-market ratio), see Smithers & Wright, 2000; Robertson & Wright, 1998; Vuolteenaho, 1999. On the
"cashflow" yield, see Robertson & Wright, 2006; Boudhoukh et al, 2007.
34The positive sign is consistent both with our priors and those of Cochrane (2008a) and Pastor & Stambaugh

(2009) because all indicators have price in the numerator, and hence β < 0, so innovations to the indicators are
all negatively correlated with innovations to predicted returns.
35Bootstrapping methodology is described in Appendix 3.
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yield, the P/E and q, we cannot reject the null that all three are redundant predictors of stock

returns, once we condition on the history of returns. This result can be read off straightforwardly

from the nominal p-values for all three of our proposed tests, shown in Panel B; this conclusion

is unaffected when bootstrapped (Panels C and D) p-values are used. Furthermore we do not

reject the restricted version of the null, such that φ = λ, so we can rely simply on our third

test, RP3, that uses an indirect estimate of the univariate predictor, and which, as we noted in

Section 2.4, has the most reliable sampling properties under the null. We thus cannot reject

the null that, for these three predictors, their apparent predictive power simply reflects their

correlation with the univariate predictor, as evidenced by their high Stambaugh Correlations.

In the case of the dividend yield, we would have arrived at the same conclusion simply by

looking at the predictive regression, since even the nominal p-value on β (shown in Table VI,

Panel B) suggests insignificance.

For the cyclically adjusted P/E, which appears significant at at least the 10% level on stan-

dard (Stambaugh-proofed) tests, it is noteworthy that the very high Stambaugh correlation of

0.98 shows a striking similarity with the result we proposed in Corollary 1. This suggests that

the cyclical adjustment of earnings is required simply to boost the Stambaugh Correlation, and

hence the apparent significance of this predictor. Results with unsmoothed earnings lower the

Stambaugh correlation significantly, but simultaneously greatly weaken the apparent predictive

power of this predictor. Essentially, the P/E multiple can only be turned into anything resem-

bling a useful predictor of stock returns by eliminating any of its independent informational

content.

Results for the fourth indicator, the cashflow yield, are less clear-cut. There is a strong

rejection of redundance on our third test, RP3. However, there is a joint null problem, arising

from the restriction that φ = λ. We therefore need to look at the first two tests, RP1 and

RP2, that do not impose this restriction. Our simulation results showed that size distortions

were larger for these tests, hence we focus on bootstrapped p-values: for both tests these

indicate more marginal rejections. A further caveat arises from our discussion of data mining

in Section 1.4. To the extent that a predictor variable is chosen on the basis of horse races

between predictive regressions, this prior filtering of the data means that there can be significant
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distortions to p-values (cf Ferson, Sarkissian and Simin, 2003; Sullivan, Timmerman andWhite,

1999). Arguably therefore the results for this predictor should be regarded as more marginal

even than suggested by the bootstrapped p-values shown in Panel C.36

Figure 1 provides some insight into the results. It shows each of the four predictor variables

over the common sample period from 1900 to 2007, along with estimates of the univariate

predictor, constructed using the formula in (10) from the history of returns, and the indirect

estimates of bθz derived from the properties of each of the predictor variables as described in

Section 2.2.3. Unsurprisingly the estimated univariate predictors are very similar in all four

panels, since all are long moving averages of the same return process, and the estimates of θ

are all quite similar (and all quite close to unity).

The charts show that for both the price-earnings ratio and Tobin’s q the correlation with

the univariate predictor is very strong (around 0.85 for both predictors), while for the dividend

yield (plotted as the price-dividend ratio) the correlation is lower (0.68). This is consistent

with the analysis of Section 1.4, in which we noted that, for a redundant predictor, there will

be a direct correspondence between this correlation and its apparent predictive power. Thus it

seems reasonable to conclude that the dividend yield is simply a poorer proxy for the univariate

predictor than are the P/E or q.

Cochrane (2008a) argues strongly that the weak predictive power of the dividend yield

cannot be viewed in isolation, and that return predictability should be inferred from the joint

properties of a system that exploits the present value relation beween the dividend yield, returns

and future dividend growth. Since the dividend yield does not predict dividend growth, he

argues that it must predict returns. Our results do not conflict with this conclusion. We simply

argue that, in predicting returns, the dividend yield is proxying the univariate predictor.

Figure 1. Predictors and Univariate Predictors for US Stock Returns
36We are thus undermining the claim, in Robertson & Wright (2006), that the cashflow yield is a significant

predictor of stock returns. The basis for this claim was essentially the p-value of 0.002 on βz under the
"Stambaugh Null" that yt is white noise, as shown in the bottom line of Panel D of Table VI. Robertson &
Wright showed that this rejection of the Stambaugh Null was robust to sample changes and to a range of
different simulation techniques for p-values. The evidence of the tests in Table VI makes these results look
distinctly more marginal. However, the cashflow yield is at least to some extent proof against the data mining
critique since it has a stronger basis in economic theory than the conventional dividend yield, and thus was
picked as a predictor for this reason, rather than simply on the basis of its predictive power.
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Figure 1 also shows that the correlation between the price-dividend ratio and the univariate

predictor is much higher up until the mid 1980s. In this sample the apparent statistical signif-

icance of the dividend yield is also higher - consistent with the conclusion of Goyal and Welch

(op cit) that the evidence of predictability from the dividend yield is an artefact of sample

selection. Our results suggest the interpretation that during this shorter sample the dividend

yield was simply a better proxy for the univariate predictor. Note however that even if we

carry out our three tests over the truncated sample, we still do not reject the null that it is a

redundant predictor.

In contrast Figure 1 shows that the cashflow yield has a much lower correlation with the

univariate predictor (0.46) despite (as Table VI showed) having stronger predictive power for

returns. This is again broadly consistent with our discussion in Section 1.4, in which we noted

that the true predictor may have a quite low correlation with the univariate predictor. The

marginal nature of the results for this variable in Table VI mean that we certainly cannot claim

confidently that the cashflow yield is a "perfect" predictor in Pastor & Stambaugh’s (2009)

terms, but they do suggest that it is at least a non-redundant imperfect proxy for the true state

variable.

26



It should be stressed that the evidence presented in both Table VI and Figure 1 does not

rely on the assumption that stock returns have a significant degree of univariate predictability.

Simulated p-values are also shown in Table VI, Panel D, under the null that returns are white

noise. For our three proposed test statistics the associated p-values are typically quite similar,

and the conclusions to be drawn from them are unaltered. This is in marked contrast to the

simulated p-values for bβ, which quite strongly reject the white noise null for one predictor (q) and
marginally so for another (the P/E). The reconciliation of these two results is straightforward:

these two predictors do have a degree of predictive power that we would be very unlikely to

observe if returns were pure white noise. But our results suggest that this is simply because

they are proxies for the univariate predictor which captures univariate predictability. For these

two indicators (and all the more so for the dividend yield) the evidence of predictability of real

stock returns (such as it is) is thus almost entirely univariate in nature. (It is noteworthy that

their respective univariate predictors actually predict better, in-sample, than both the P/E

and the dividend yield.)

4 Conclusions

We have examined a predictive model that is widely used in empirical finance. In such models

the “Stambaugh Correlation” between the innovations in a predictive regression, and to the

predictor variable is usually very high in absolute value. It is well-known (since Stambaugh,

1999) that this may lead to small sample bias problems when testing the null that the coefficient

on the lagged predictor variable is zero (and hence returns are white noise). We show that,

in a more general process for returns, high Stambaugh Correlations will arise naturally if the

predictor is redundant, but is correlated with the predictions from an ARMA representation

of returns. This tendency will be reinforced if the predictor has emerged from data mining.

For such predictors even bias-adjusted tests on the predictive regression may fail to detect

redundancy. We propose three new tests that appear on the basis of simulation evidence

to discriminate well between such redundant predictors and the true or "perfect" (Pastor &

Stambaugh, 2009) predictor. When we apply these tests to four observable predictors used
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in past research, we cannot reject the null that three out of the four (the dividend yield, the

price-earnings multiple and Tobin’s q) are redundant, and are simply acting as proxies for the

history of returns.

While we have focussed primarily on one-period-ahead prediction of a single return processs,

by a single predictor, most of what we propose generalises readily to multiple periods, multiple

predictors, and even multiple predicted processes.37

Do our theoretical and empirical results represent a counsel of despair for those interested in

stock market predictability? Not necessarily. First, the finding that a given predictor is redun-

dant on our definition does not necessarily invalidate the insights that it provides, especially if

these are derived from a framework that can be related to an underlying present value model

(as argued forcefully by Cochrane, 2008a, for example). Second, the reminder that certain key

aspects of predictability may be essentially univariate in nature does not of itself diminish the

economic significance of this predictability (cf Campbell & Thompson, 2007). Nonetheless

the approach we advocate does suggest strongly that a reorientation of predictability testing is

required, the essence of which is that any predictive model must outperform the ARMA if if it

is to be taken seriously. We believe that this reorientation should also extend beyond predictive

return regressions to a much wider class of predictive models.38

37Boudoukh et al’s (2006) analysis suggests strongly that Stambaugh bias contaminates tests of long-horizon
predictability at least as much as one-period-ahead tests. A more fundamental problem that we analyse in
Robertson & Wright (2009) is that sufficiently strong long-horizon predictability must of itself be essentially a
univariate phenomenon.
38Two obvious examples of time series that have similar near-white noise properties to those of real returns

are real GNP growth and changes in real exchange rates. Predictor variables for such series also tend to have
high Stambaugh Correlations, particularly if they are derived as cointegrating combinations; hence these are
both obvious areas for extension of our testing approach.
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Appendix

1 Redundant Predictors

1.1 The general innovation specification

Assume that zt is a redundant predictor by Definition 1. By an innocuous re-scaling of zt, let

the innovation to the AR(1) process in (3) be given by

wt = ψεt + t (18)

= ρεwεt + σε
p
1− ρεwqt

where E (qt) = 0, E (q2t ) = 1. This gives the useful normalisation

σw = σε;

corr (wt, εt) = ρεw

The AR(1) property of zt requires wt to be white noise, for which a sufficient (but not necessary)

condition is that t is white noise. We first consider the benchmark case where t is white

noise, and is also orthogonal to all lags of εt, as assumed in Proposition 1, before considering

more general cases where wt is white noise, but t is not.

1.2 Proof of Proposition 1: The predictive R-squared if t is white

noise orthogonal to all lags of εt.

Given the normalisation of the innovation variance we have, for the general case,

β =
cov (rt+1, zt)

var (zt)
=

cov (rt+1, zt)

σ2ε/
¡
1− φ2

¢

29



and, given the orthogonality assumption we have, using (5),

cov (rt+1, zt) = cov

µ
εt+1 + (λ− θ)

εt
1− λL

,
wt

1− φL

¶
= (λ− θ) ρεwcov

µ
εt

1− λL
,

εt
1− φL

¶
= (λ− θ) ρεwcov

£¡
1 + λL+ λ2L2 + ...

¢
εt,
¡
1 + φL+ φL2 + ...

¢
εt
¤

=
(λ− θ) ρεwσ

2
ε

1− λφ

hence we have, for the general case

β = (λ− θ) ρεw

µ
1− φ2

1− λφ

¶
(19)

and hence

R2z =
β2σ2z
σ2r

= (θ − λ)2 ρ2εw

µ
1− φ2

1− λφ

¶2
σ2ε¡

1− φ2
¢ 1
σ2r

(20)

but we have, using the Yule-Walker equations,

R2R ≡ 1−
σ2ε
σ2r
=

(θ − λ)2

1− λ2 + (θ − λ)2
(21)

hence we have
σ2ε
σ2r
= 1−R2R and (θ − λ)2

¡
1−R2R

¢
= R2R

¡
1− λ2

¢
so that substituting into (20) we can write

R2z = ρ2εwR
2
Rg (λ, φ) (22)

where

g (λ, φ) =

¡
1− λ2

¢ ¡
1− φ2

¢
(1− λφ)2

(23)
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The expression in (22) is defined in terms of ρεw = corr (εt, wt) . To show the link with the

Stambaugh Correlation, note that we have

et = rt − βzt−1 =

µ
1− θL

1− λL

¶
εt − β

Ã
ρεwεt−1 + σε

p
1− ρ2εwqt−1

1− φL

!

hence

ρz ≡ corr (et, wt) =
ρεwσ

2
ε

σeσε
= ρεw

σε
σe
= ρεw

s
1−R2R
1−R2z

(24)

Note that, as discussed in Section 1.4, if returns are sufficiently close to white noise, both R2R

and R2z are close to zero, and hence ρz ≈ ρεw. Using (24) to substitute into (22), we have

R2z
1−R2z

= ρ2zg (λ, φ)

µ
R2R

1−R2R

¶
(25)

Equivalently, as in the Proposition

R2z
1−R2z

≤ ρ2z

µ
R2R

1−R2R

¶
(26)

since g (.) has a maximum value of unity at φ = λ. This in turn implies an equivalent upper

bound on R2z itself since f (x) = x/ (1− x) is a strictly increasing function. By inspection of

(24) ρz lies within [−1, 1], hence for |ρz| = 1 we have R2z = R2R.¥

1.3 Time series properties of et, the error term in the predictive

regression (11) if zt is redundant.

We have

et = rt − βzt−1 =

µ
1− θL

1− λL

¶
εt − β

Ã
ρεwεt−1 + σε

p
1− ρ2εwqt−1

1− φL

!
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so in general wt is an ARMA(2,2). In the limiting case of Corollary 1 we have φ = λ, so the

above expression simplifies to

et =

Ã
(1− θL) εt − βρεwεt−1 + σε

p
1− ρ2εwqt−1

1− λL

!

=
(1− [θ (1− ρ2εw) + λρ2εw]L) εt + (θ − λ) ρσε

p
1− ρ2εwqt−1

1− λL

since, from (19), setting φ = λ, β = (λ− θ) ρεw. Thus in this case et is an ARMA(1,1). If we

write this as

et =

µ
1− ψL

1− λL

¶
ζt

for some white noise process ζt, then the moment condition for ψ is

ψ

1 + ψ2
=

θ (1− ρ2εw) + λρ2εw
1 + [θ (1− ρ2εw) + λρ2εw]

2 + (θ − λ)2 (1− ρεw)
2

which gives the special cases

ρεw = ±1⇒ ψ = λ⇒ et = εt

ρεw = 0⇒ ψ = θ ⇒ et = rt

hence the ARMA(1,1) for et lives between white noise and the ARMA(1,1) for rt in (5). But

Corollary 1 implies ρz → 1 ⇒ ρεw → 1, so that redundant predictors that are most likely to

win horse races, will be closest to having white noise residuals.

1.4 More general processes for t

Consider the more general processes for wt and t

wt = γ0εt + t; E (εt t) = 0
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t =
∞X
i=1

γiεt−i + ξt; E (ξtεt−i) = 0 ∀ i ≥ 0

ξt =
∞X
i=0

πist−i

where st is white noise hence we require

E (ξtεt−i) = πiE (st−iεt−i) = 0 ∀ i > 0

⇒ E (st−iεt−i) = 0 ∀ i

hence if wt is white noise, which we require for AR(1)ness of zt, we require

E (wtwt−k) = E

"Ã ∞X
i=0

γiεt−i +
∞X
i=0

πist−i

!Ã ∞X
i=0

γiεt−k−i +
∞X
i=0

πist−k−i

!#
= σ2ε

£
γkγ0 + γk+1γ1 + ...

¤
+ σ2s [πkπ0 + πk+1π1 + ...]

= σ2ε

∞X
i=0

γk+iγi + σ2s

∞X
i=0

πk+iπi = 0 ∀ k > 0 (27)

It is evident that if we set γi = 0 ∀ i > 0 then if we also set πi = 0 ∀ i > 0 then the condition

is satisfied for all k. This is the benchmark case analysed in Proposition 1, where t is white

noise uncorrelated with all lags of εt.

We next consider two cases that satisfy the autocovariance condition in (27) for more general

processes

1.4.1 Special case: t is white noise but E ( tεt−j) 6= for some j > 0

For this condition to hold we may allow γj 6= 0 for some j > 0. But by inspection of (27)

this requires γi = 0 for i 6= j (which in turn implies γ0 = 0 - hence a zero contemporaneous

correlation of wt and εt) and an equivalent restriction on the πi (which will be satisfied if, eg

πi = 0 ∀i > 0). Then we can write, subject to a normalisation

wt = γjεt−j + t
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which is a white noise process, as is t = st. From this specification it follows that zt will be a

scaling of xRt−j, plus an orthogonal but serially correlated error. Hence it also follows that we

must have

R2z ≤ λ2jR2R

(where the upper bound is attained when γj = 1, st = 0), thus the higher is j the lower the

upper bound on the predictive R-squared.

1.4.2 A more general case: t not white noise

In this more general case, while t may not be white noise, the autocovariance condition (27)

puts a very tight restriction on the nature of the two underlying polynomials γ (L) and π (L) ,

such that wt is white noise. Any non-zero γi put corresponding restrictions on the πi, which

in turn increases the noise element in wt, which in turn must lower the predictive R-squared.

Whilst we have as yet not been able to establish any general implications of such a process, we

suspect that most such processes will as a result have low R-squareds. Some processes are also

entirely ruled out (eg γ (L) and π (L) cannot both be finite order ARs).

2 Properties of bθz, used in the indirect univariate pre-
dictor based test, RP3

2.1 Derivation

Robertson & Wright (2009) show that, by using the moment condition satisfied by the MA

component of the univariate representation, it is possible to derive an expression for θ of the

form39

θ
¡
λ, ρ,R2μ

¢
=
1− (1− 4κ2) 12

2κ
(28)

39The expression used here modifies the original expression in Robertson & Wright (2009) to allow for the
different sign convention for ρ in this paper.
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where

κ(λ, ρ,R2μ) =
λ− ρF

1 + λ2 + F 2 − 2λρF

F (R2μ, λ) =

s¡
1− λ2

¢ R2μ
1−R2μ

To derive bθz as defined in Section 2.2.3, using this formula, we need estimates of λ and R2R.
The first is easy given the additional restriction φ = λ. It also allows us to write (25), using

g (λ, λ) = 1, as

f
¡
R2z
¢
= ρ2zf

¡
R2R
¢

(29)

where f (x) = x/ (1− x) , so for a given Stambaugh correlation, inverting (29), we have

R2R =
f (R2z)

ρ2z + f (R2z)
(30)

Hence we can write, given λ = φ,

θ
¡
λ, ρR, R

2
R

¢
= θ

µ
φ, ρR,

f (R2z)

ρ2z + f (R2z)

¶
= θz

¡
φ, ρz, R

2
z

¢
. (31)

where

ρR (φ, θ) = sign (φ− θ) ; θ 6= φ

= −1; θ = φ

Under the restricted null the final expression in (31) implicitly defines a functional relationship

that holds exactly in terms of population parameters. For purposes of estimation, in both

Monte Carlo simulations and in our applications, we find the value of θ that satisfies bθz =
θz
³
φ,bρz, bR2z´ ,given ρR = ρR

³bφ,bθz´
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2.2 Sampling Properties of bθz
Table A1 provides a comparison of the sampling properties of bθz and the ARMA estimate of
θ, under the joint null that zt is predictively redundant and φ = λ, as for our proposed test

statistic RP3.

[Table A1 about here]

The first two panels show the sampling properties of the ARMA estimate for a range of

values of the true population parameters, λ and θ, on the assumption (as in previous tables)

that the Stambaugh Correlation ρz = 0.9. The top panel shows that the ARMA estimate

displays non-trivial bias for virtually all population values of λ and θ, with severe bias near

the diagonal (the white noise case), the second panel shows that there is an equivalent increase

in dispersion. We have in fact arguably somewhat understated the problems with the ARMA

estimates, since for each replication the estimation is actually carried out twice: once without

starting values; and once using starting values (for convenience given by bφ and bθz) to reflect
the prior that the true values are both positive. The program then chooses the estimate with

the highest value of the estimated log likelihood. Both the bias and the wide dispersion in part

reflect the fact that, even exploiting these starting values, a high proportion of estimated values

of θ are negative.

The lower two panels of Table A1 provide equivalent simulation evidence for our indirect

estimate, bθz. Both bias and dispersion are dramatically lower. Given the nonlinearity of the
expression derived in the previous section it is perhaps surprising that there is so little bias.

However, while it is well known that OLS estimates of λ are downward-biased in small samples,

at the same time R2z is upward biased (due to Stambaugh Bias) For most values of the true

parameters these two biases appear to offset. In principle a more sophisticated attempt at bias

correction could be applied.

The low dispersion of the indirect estimate bθz means in turn that the resulting estimated
univariate predictor used in deriving the test statistic RP3 is, under the null, very close to being

the true univariate predictor, which helps to explain why size distortions for this test statistic

are so low.
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Lest we appear to be getting the econometric equivalent of something for nothing, it should

be stressed that this indirect method of estimating the MA parameter from the properties of

the redundant predictor hinges crucially upon the assumption that φ = λ. Hence if the joint

null underlying RP3 is rejected this may be because zt is not redundant, but it could also be

because the assumption that φ = λ is incorrect (which, for sufficient differences between φ and

λ will imply that the indirect estimate bθz may be severely biased).
3 Simulation Methodology

3.1 Monte Carlos

The input parameters for each simulation are λ, θ, ρz and φ and a weight, τ , such that R2x =

(1− τ)min (Rμ) + τ max (Rμ) , where, min
¡
R2μ
¢
= R2R (λ, θ) , as defined in (21), and, using

Robertson & Wright (2009), Proposition 1, we have max
¡
R2μ
¢
= R2R

¡
λ, θ−1

¢
. By inverting the

formula for θ (λ, ρ,R2x) in (28) this yields a value of ρ, the true Stambaugh Correlation. We

then simulate underlying joint normal white noise innovations ut vt and t (in equations (1),

(2) and (12) respectively with the appropriate correlations. This in turn generates processes

for μt, rt εt (using εt = (1− θL)−1 [(1− λL) ut + vt−1]) and zt. Note that for Tables I to IV and

A1 we could equally well simulate εt and generate rt from the ARMA(1, 1) , but for Table V

we need to generate the data from the underlying model. For each replication we simulate 100

initial observations before estimation to approximate the unconditional distribution.

3.2 Bootstrapped p-Values

For bootstrapped p-values in Table VI, we use different methods of bootstrapping depending

on the test statistic and the null model, as follows:

InPanel C, for test statisticsRP1, RP2 and t (β) we estimate an ARMA(1, 1) representation

of the dependent variable (as in (5)) and an AR(1) representation of the predictor (as in (3))

and store the residuals {bεt,bvzt}Tt=1 and the estimates of the parameters ³bθ, bλ, bφ,bρz´ . For RP3 we
estimate the predictive regression and the predictor autoregression, use the properties thereof

37



to derive an estimate of bθz as outlined in Appendix 2 and hence derive an estimate of the
univariate predictor bxft (these are shown in Figure 1). We then estimate a predictive regression
of the same form as (1) in terms of the estimated univariate predictor, which under the null

gives an estimated series for εt. We again store the residuals {bεt, bvzt}Tt=1 and the estimates
of the parameters

³bθ, bλ, bφ,bρz´ (where the first two of these are indirect estimates, setting
θ = θz

³bφ,bρz, bR2z´ and bλ = bφ).
In Panel D, for all test statistics we assume that rt is white noise, hence simply set bεt = rt.

We again store the residuals {bεt,bvzt}Tt=1 and the estimates of the parameters ³bθ, bλ, bφ,bρz´ (where
under the white noise null we can arbitrarily set bλ = bθ = bφ).
To simulate p-values we re-sample (using 5000 replications) from the relevant sets of es-

timated residuals and simulate as described in the previous section using estimated values of

the input parameters, except that here we generate rt directly from the ARMA representation

(since we do not need to make any assumption on the nature of the true predictor).

References

Boudoukh, Jacob, Roni Michaely, Matthew Richardson, and Michael R. Roberts, (2007), "On

the importance of measuring payout yield: Implications for empirical asset pricing," Journal of

Finance 62:2, 877-916.

Boudoukh J, Richardson M and R Whitelaw (2006)“The Myth of Long Horizon Predictability”

forthcoming: The Review of Financial Studies

Campbell J Y, A W Lo and A C Mackinlay (1995) The Econometrics of Financial Markets

Princeton University Press

Campbell, J Y. and Shiller, R J (1998), Valuation Ratios and the Long-Run Stock Market

Outlook,” Journal of Portfolio Management 24: 11—26

Campbell, J Y, and Thompson, S (2007) "Predicting Excess Stock Returns Out of Sample:

Can Anything Beat the Historical Average?" , forthcoming Review of Financial Studies

38



Carroll C (2008) "Recent Stock Declines: Panic or the Purge of ‘Irrational Exuberance’"?, The

Economist’s Voice, November 2008, www.bepress.com/ev

Cochrane J H (1997), Where is the Market Going? Uncertain Facts and Novel Theories,

Economic Perspectives, XXI (6)

Cochrane J H (2008a) The Dog that Did Not Bark: A Defense of Return Predictability Review

of Financial Studies, 2008, pp 1533-1575.

Cochrane, J H (2008b) “State-Space vs VAR Models for Stock Returns” Mimeo

Fama, Eugene F and French, Kenneth R (1988) .“Permanent and Temporary Components of

Stock Prices”. Journal of Political Economy, 96 (2),

Ferson W E , S Sarkissian and T Simin (2003) "Spurious regressions in Financial Economics?",

Journal of Finance 58, 1393-1414 (August)

Goyal, A., and I. Welch (2003). Predicting the equity premium with dividend ratios, Manage-

ment Science 49, 639-654.

Graham, B and Dodd, D (1934) Securities Analysis. New York: McGraw-Hill.

Granger, C (1969) Investigating Causal Relations by Econometric Models and Cross-spectral

Methods, Econometrica, Vol. 37, No. 3 (Aug., 1969), pp. 424-438

Hamilton J D (1994)Time Series Analysis 1994 Princeton University Press

Lamont, O (1998), "Earnings and expected returns", Journal of Finance 53, 1563—1587.

Pastor L and R F Stambaugh (2009) “Predictive Systems: Living with Imperfect Predictors”

Journal of Finance 64(4) p1583-1628

Robertson D and S Wright (1998) The Good News and the Bad News about Long-Run Stock

Returns, University of Cambridge Working Paper

Robertson D and S Wright (2006) Dividends, Total Cash Flow to Shareholders, and Predictive

Return Regressions Review of Economics and Statistics, vol. 88, issue 1, pages 91-99

39



Robertson D and S Wright (2009) The Limits to Stock Return Predictability, Working Paper

Robertson D and S Wright (2011) Univariate Bounds for Predictive Systems, Working Paper

Shiller R (2000) Irrational Exuberance Princeton University Press

Smithers, A and Wright, S (2000)Valuing Wall Street, McGraw Hill, New York

Stambaugh R F (1999) “Predictive Regressions”, Journal of Financial Economics 54: 375—421.

Sullivan, R., A. Timmerman and H. White (1999). Data-Snooping, Technical Trading Rule

Performance, and the Bootstrap. The Journal of Finance 54, 1647-1691

Vuolteenaho, T (1999) "Understanding the aggregate book-to-market ratio", Working Paper

Wright S (2004) "Measures of Stock Market Value and Returns for the US Nonfinancial Cor-

porate Sector, 1900-2002" Review of Income and Wealth, 50 (4) pp 561-584

40



Table I. OLS-Based Tests of a Redundant AR(1) Predictor of an ARMA(1,1) returns process  
 
Panel A: Population R-Squared of Redundant Predictor, ρz=0.9 

  θ 
  0 0.5 0.7 0.8 0.9 0.95 

0 0.000 0.168 0.284 0.341 0.396 0.422 
0.5 0.213 0.000 0.041 0.089 0.147 0.179 
0.7 0.438 0.060 0.000 0.016 0.060 0.090 
0.8 0.590 0.168 0.022 0.000 0.022 0.048 
0.9 0.775 0.406 0.146 0.041 0.000 0.011 

λ 

0.95 0.882 0.627 0.342 0.157 0.020 0.000 
Panel B: Size of 1-sided t-test on OLS estimate of β, at notional 5% level,T=200, 
when zt is a redundant predictor 

  θ 
  0 0.5 0.7 0.8 0.9 0.95 

0 0.040 1.000 1.000 1.000 1.000 1.000 
0.5 1.000 0.054 0.881 0.999 1.000 1.000 
0.7 1.000 0.856 0.067 0.495 0.996 1.000 
0.8 1.000 0.994 0.426 0.065 0.668 0.978 
0.9 1.000 1.000 0.969 0.594 0.072 0.397 

λ 

0.95 1.000 1.000 0.999 0.918 0.305 0.080 
 
Table I assumes that the returns process is ARMA(1,1): rt =(1-θL)/(1-λL)εt; and zt is a redundant 
AR(1) predictor with φ λ=  in the predictive system (1) to (3) and Stambaugh correlation 
ρz=corr(et,wt)=0.9 in the predictive regression (10). Panel A gives the value of 2

zR  from 
Proposition 1 (where the inequality holds precisely since φ λ= ). Panel B shows the simulated size 

of a t-test on β̂  in equation (9) in 5000 replications. 



Table II. Simulated size of three tests of the null that z is a redundant predictor  
φ λ=  

 
  θ 

RP1 λ 0 0.5  0.7 0.8 0.9 0.95 
 0 0.018 0.041 0.050 0.054 0.060 0.076 
 0.5 0.054 0.017 0.044 0.041 0.054 0.063 
 0.7 0.063 0.043 0.029 0.042 0.061 0.071 
 0.8 0.072 0.051 0.022 0.030 0.057 0.069 
 0.9 0.082 0.073 0.059 0.042 0.036 0.057 
 0.95 0.097 0.094 0.092 0.075 0.036 0.038 

RP2    
 0 0.131 0.120 0.165 0.229 0.150 0.117 
 0.5 0.100 0.107 0.205 0.232 0.189 0.124 
 0.7 0.099 0.145 0.116 0.168 0.191 0.132 
 0.8 0.106 0.135 0.129 0.112 0.143 0.115 
 0.9 0.127 0.113 0.167 0.169 0.075 0.091 
 0.95 0.163 0.132 0.163 0.198 0.137 0.082 

RP3    
 0 0.065 0.055 0.073 0.097 0.200 0.290 
 0.5 0.077 0.060 0.060 0.059 0.092 0.139 
 0.7 0.092 0.060 0.077 0.073 0.064 0.092 
 0.8 0.106 0.083 0.060 0.085 0.067 0.065 
 0.9 0.187 0.095 0.081 0.079 0.107 0.062 
 0.95 0.329 0.171 0.129 0.113 0.116 0.112 

 
Table II shows  the simulated size, in 5000 replications, of the three tests that zt is a redundant 
predictor of an ARMA(1,1) returns process, rt as described in Section III, Subsections B.1 to B.3. 
The processes for rt and zt are as for Table I. T=200 



Table III. Simulated size of three tests of the null that z is a redundant predictor  
 

2
λφ =  

 
  θ 

RP1 λ 0 0.5 0.7 0.8 0.9 0.95 
 0 0.018 0.041 0.05 0.054 0.06 0.076 
 0.5 0.034 0.014 0.037 0.035 0.044 0.068 
 0.7 0.01 0.029 0.017 0.032 0.045 0.074 
 0.8 0.004 0.012 0.023 0.02 0.039 0.064 
 0.9 0.004 0.002 0.01 0.02 0.019 0.035 
 0.95 0.005 0 0.005 0.013 0.017 0.026 

RP2    
 0 0.131 0.12 0.165 0.229 0.15 0.117 
 0.5 0.087 0.118 0.18 0.205 0.185 0.106 
 0.7 0.071 0.125 0.112 0.158 0.157 0.094 
 0.8 0.071 0.085 0.115 0.102 0.141 0.096 
 0.9 0.065 0.066 0.08 0.108 0.105 0.097 
 0.95 0.053 0.056 0.065 0.083 0.112 0.117 

RP3    
 0 0.065 0.055 0.073 0.097 0.2 0.29 
 0.5 0.081 0.062 0.052 0.07 0.201 0.388 
 0.7 0.114 0.072 0.063 0.061 0.139 0.311 
 0.8 0.176 0.098 0.073 0.063 0.076 0.196 
 0.9 0.298 0.512 0.213 0.089 0.059 0.074 
 0.95 0.437 0.873 0.711 0.376 0.073 0.069 

 
Table III shows  the simulated size, in 5000 replications, of the three tests that zt is a redundant 
predictor of an ARMA(1,1) returns process, as described in Section III, Subsections B.1 to B.3. 
The processes for rt and zt are as for Table I, but with / 2φ λ= . T=200 



Table IV. Simulated size of three tests of the null that z is a redundant predictor  
 
1

2
λφ λ −

= +  

 
  θ 

RP1 λ 0 0.5 0.7 0.8 0.9 0.95 
 0 0.018 0.016 0.019 0.027 0.04 0.057 
 0.5 0.033 0.029 0.036 0.032 0.046 0.059 
 0.7 0.05 0.042 0.037 0.04 0.057 0.055 
 0.8 0.06 0.04 0.029 0.041 0.054 0.065 
 0.9 0.076 0.069 0.06 0.043 0.039 0.07 
 0.95 0.108 0.098 0.086 0.078 0.04 0.05 

RP2    
 0 0.104 0.115 0.156 0.219 0.163 0.104 
 0.5 0.072 0.127 0.193 0.212 0.163 0.099 
 0.7 0.082 0.088 0.102 0.147 0.144 0.119 
 0.8 0.087 0.07 0.099 0.085 0.126 0.158 
 0.9 0.082 0.078 0.094 0.106 0.068 0.138 
 0.95 0.076 0.076 0.086 0.119 0.101 0.115 

RP3    
 0 0.06 0.348 0.743 0.071 0.333 0.709 
 0.5 0.074 0.081 0.109 0.311 0.127 0.22 
 0.7 0.07 0.064 0.095 0.092 0.211 0.121 
 0.8 0.072 0.087 0.069 0.11 0.103 0.112 
 0.9 0.094 0.111 0.101 0.096 0.12 0.112 
 0.95 0.148 0.152 0.143 0.136 0.142 0.131 

 
Table III shows  the simulated size, in 5000 replications, of the three tests that zt is a redundant 
predictor of an ARMA(1,1) returns process, as described in Section III, Subsections B.1 to B.3. 
The processes for rt and zt are as for Table I, but with ( )1 / 2φ λ λ= + − . T=200 



Table V Simulated rejection rates of the three tests under H1: μt = βzt. 
 

( ) ( )2 2 20.75min 0.25maxR R Rμ μ μ= +  
 

  θ 
RP1 λ 0 0.5 0.7 0.8 0.9 0.95 

 0 1 1 1 0.992 0.772 0.304 
 0.5 1 1 0.998 0.995 0.763 0.324 
 0.7 1 1 1 0.985 0.754 0.318 
 0.8 1 1 0.996 0.987 0.752 0.334 
 0.9 1 1 0.997 0.987 0.799 0.4 
 0.95 1 1 0.998 0.985 0.809 0.475 

RP2    
 0 0.981 0.999 0.998 0.988 0.895 0.718 
 0.5 0.999 1 0.999 0.991 0.906 0.738 
 0.7 0.997 1 1 0.99 0.893 0.744 
 0.8 0.998 1 0.995 0.978 0.887 0.734 
 0.9 0.999 1 0.998 0.989 0.85 0.683 
 0.95 0.996 1 0.998 0.988 0.874 0.634 

RP3    
 0 1 1 1 0.998 0.93 0.786 
 0.5 1 1 1 0.998 0.901 0.662 
 0.7 1 1 0.999 0.991 0.886 0.609 
 0.8 1 1 0.997 0.991 0.861 0.558 
 0.9 1 1 1 0.99 0.875 0.548 
 0.95 1 1 1 0.993 0.879 0.593 

Memo: R-Squared of True State Variable for Returns ( 2Rμ ) 
 0 0.250 0.350 0.414 0.445 0.474 0.487 
 0.5 0.438 0.188 0.172 0.188 0.215 0.232 
 0.7 0.618 0.247 0.128 0.108 0.117 0.131 
 0.8 0.730 0.350 0.151 0.090 0.073 0.082 
 0.9 0.858 0.559 0.279 0.136 0.048 0.037 
 0.95 0.927 0.736 0.468 0.261 0.071 0.024 

Memo: True Stambaugh Correlation (ρ) 
 0 0.000 -0.839 -0.954 -0.982 -0.996 -0.999 
 0.5 0.655 -0.277 -0.767 -0.911 -0.982 -0.996 
 0.7 0.771 0.207 -0.375 -0.723 -0.943 -0.988 
 0.8 0.811 0.419 -0.009 -0.419 -0.859 -0.970 
 0.9 0.842 0.580 0.360 0.121 -0.461 -0.862 
 0.95 0.855 0.642 0.504 0.382 0.059 -0.481 

 
Table V shows  the rejection rate at a nominal 5% size, in 5000 replications, of the three tests that 
zt is a redundant predictor, as described in Section III, Subsections B.1 to B.3, under the alternative 
hypothesis H1: μt=βzt. The true state variable μt is assumed to have a predictive R-squared.given by 
a fixed linear  weighting of the upper and lower bounds given in Proposition 2: 

( ) ( )2 2 20.75min 0.25maxR R Rμ μ μ= + , where both upper and lower bounds are functions of the ARMA 

parameters alone. T=200. The bottom two panels show, for reference, the implied values of the R-
Squared and the Stambaugh Correlation for the true state variable, derived from formulae in 
Appendix 1A. 
 
 



Table VI. Testing for Redundant Predictors of Real Annual Stock Returns, 1901 
2007 (107 observations) 
 

 Predictor  
 log(price / 

dividend) 
log(price / 10 
year earnings) 

log(Tobin's q) log(price / total 
cash transfers) 

Panel A.  Predictor Characteristics 
Stambaugh Correlation ( zρ ) 0.835 0.983 0.914 0.552

Predictor AR(1) parameter (φ )* 0.922 0.928 0.905 0.694

Panel B. Nominal p-Values 
RP1 0.898 0.885 0.567 0.068
RP2 0.872 0.255 0.132 0.014
RP3 1.000 0.888 0.440 0.011
t(β) 0.141 0.034 0.009 0.002
Panel C: Bootstrapped p-Values, rt =ARMA(1,1)** 
RP1 0.9218 0.9456 0.659 0.0994
RP2 0.9038 0.8368 0.6876 0.0578
RP3 0.9996 0.8984 0.6882 0.0178
t(β) 0.9474 0.9184 0.6088 0.0308
Panel D: Bootstrapped p-Values, rt  =white noise 
RP1 0.8898 0.8546 0.5222 0.0706
RP2 0.8524 0.2516 0.1712 0.0362
RP3 0.9994 0.9078 0.5286 0.0164
t(β)) 0.1838 0.0634 0.0148 0.0026

 
Table VI summarises tests that each of the four predictors shown is a redundant predictor. 
Panel A summarises the two key predictor characteristics. In Panels B, C and D, the first 
three lines show two-sided p-values for our three tests of predictor redundance, as 
described in Section III, Subsections B.1 to B.3; the fourth line shows 1 sided p-values for a 
t-test on β in the predictive regression (9). 
Notes: * AR(1) estimates include bias-correction.  ** Bootstrapped p-values for RP3 set 
φ λ= ; θ=θz(.) as in equation (15); bootstrapped p values for other tests use direct ARMA 
estimates of λ and θ . See Appendix 3 for further detail 



Table A1 Sampling Properties of ARMA vs Indirect Estimates of θ 
 

  θ 
 λ 0 0.5 0.7 0.8 0.9 0.95 

Mean ARMA estimate of θ 
 0 0.027 0.532 0.729 0.830 0.935 0.977 
 0.5 -0.031 0.293 0.735 0.840 0.936 0.977 
 0.7 -0.020 0.403 0.417 0.748 0.934 0.975 
 0.8 -0.017 0.465 0.467 0.513 0.871 0.963 
 0.9 -0.013 0.483 0.656 0.611 0.590 0.832 
 0.95 -0.011 0.488 0.681 0.755 0.612 0.613 

Standard Deviation of ARMA estimate 
 0 0.626 0.136 0.080 0.064 0.046 0.024 
 0.5 0.157 0.655 0.235 0.104 0.055 0.027 
 0.7 0.109 0.312 0.662 0.396 0.135 0.066 
 0.8 0.095 0.159 0.501 0.652 0.274 0.157 
 0.9 0.085 0.096 0.181 0.435 0.637 0.455 
 0.95 0.080 0.080 0.091 0.193 0.573 0.642 

Mean of Indirect Estimate (θz) 
 0 0.061 0.500 0.700 0.801 0.901 0.948 
 0.5 0.001 0.546 0.700 0.800 0.900 0.950 
 0.7 0.001 0.501 0.734 0.801 0.900 0.950 
 0.8 0.001 0.502 0.696 0.825 0.900 0.950 
 0.9 0.001 0.502 0.701 0.798 0.914 0.950 
 0.95 0.001 0.501 0.701 0.801 0.890 0.958 

Standard Deviation of Indirect Estimate (θz) 
 0 0.081 0.032 0.032 0.033 0.034 0.031 
 0.5 0.036 0.065 0.027 0.026 0.025 0.024 
 0.7 0.036 0.032 0.051 0.022 0.021 0.021 
 0.8 0.037 0.033 0.030 0.040 0.019 0.018 
 0.9 0.042 0.036 0.030 0.025 0.025 0.014 
 0.95 0.061 0.043 0.035 0.028 0.029 0.016 

 
Table A1 compares, for different values of the population parameters θ and λ, sampling properties 

of the ARMA estimate of θ and the indirect estimate, ( )2
,ˆ ,z zz z Rθ θ φ ρ=  derived from the 

properties of the predictive regression (9) and the predictor autoregression (3) under the 
joint null that φ λ=  and zt is redundant (see Section III, Subsection B.3 and Appendix 2). 
Results are shown for 5000 replications, with ρz=0.9, T=200.To allow for the prior that λ 
and θ are both positive, ARMA estimates in each replication use as starting values 
estimates of φ  and θz but discard these if zero starting values yield a higher value of the 
estimated log likelihood. 



 




