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Optimisation problems arising in industry are some of the hardest, often because of the tight specifications of the products involved.
They are almost invariably constrained and they involve highly nonlinear, and non-convex functions both in the objective and in the
constraints. It is also often the case that the solutions requiredmust be of high quality and obtained in realistic times. Although there
are already a number of well performing optimisation algorithms for such problems, here we consider the novel Plant Propagation
Algorithm (PPA) which on continuous problems seems to be very competitive. It is presented in a modified form to handle a
selection of problems of interest. Comparative results obtainedwith PPA and state-of-the-art optimisation algorithms of theNature-
inspired type are presented and discussed. On this selection of problems, PPA is found to be as good as and in some cases superior
to these algorithms.

1. Introduction

Optimisation problems in design engineering are oftenhighly
nonlinear, constrained and involving continuous as well
as discrete variables [1–5]. It is also often the case that
some of the constraints are active at the global optimum
[6]. This means that feasible approximate solutions are
that much harder to find. There is a variety of algorithms
for these problems, some exact, and others approximate.
In the exact category, one can name Branch-and-Bound,
[7], Recursive Quadratic Programming, [8], the Cutting
Plane Algorithm [9], Bender’s decomposition [10]. Of the
approximate variety, one can name Simulated Annealing,
[11–13], the Genetic Algorithm [14–16], and the Particle
Swarm Optimisation algorithm, [17, 18], to name a few.
The latter category is often referred to as the metaheuristic
algorithms. In general, they are characterised by two aspects

of the search: exploration of the overall search space and
exploitation of good areas in order to find local optima,
[19–22].

A new metaheuristic, the Plant Propagation Algorithm
(PPA), has recently been introduced [23]. PPA is nature
inspired [19, 23, 24]; it emulates the way plants, in par-
ticular the strawberry plant, propagate. A basic PPA has
been described and tested on single objective as well as
multiobjective continuous optimization problems in [23].
The test problems, though standard, were of low dimension.
The results showed that PPA has merits and deserves further
investigation on higher dimensional problem instances as
well as problems arising in practice, for these are often
very challenging. PPA is attractive because, among other
things, it is simple to describe and implement; it also involves
only few parameters that need arbitrary setting unlike most
other metaheuristics. Here, it will be tested on constrained
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optimisation problems arising in engineering. The paper is
organised as follows. Section 2 describes PPA. Section 3
presents a modified version to handle constrained problems.
Section 4 records the results obtained with PPA and a
number of other heuristics. In Section 5 a conclusion and
ideas for further investigation are given. The paper includes
appendices that describe the problems considered.

2. The Strawberry Algorithm as PPA

The Strawberry algorithm is an exemplar PPA which can be
seen as a multipath following algorithm unlike Simulated
Annealing (SA) [13, 25], for instance, which is a single path
following algorithm. It can, therefore, be perceived as a
generalisation of SA and other path-following algorithms
[26].

Exploration and exploitation are properties that effective
global optimisation algorithms have [19, 24, 26]. Exploration
refers to the property of covering the search space, while
exploitation refers to the property of searching nearer to good
solutions for local optima.

Consider what a strawberry plant and possibly any plant
which propagates through runners will do to optimize its
survival. If it is in a good spot of the ground, with enough
water, nutrients, and light, then it is reasonable to assume that
there is no pressure on it to leave that spot to guarantee its
survival. So, it will sendmany short runners that will give new
strawberry plants and occupy the neighbourhood as best they
can. If, on the other hand, the mother plant is in a spot that is
poor in water, nutrients, light, or any one of these necessary
for a plant to survive, then it will try to find a better spot for
its offspring.Therefore, it will send few runners further afield
to explore distant neighbourhoods. One can also assume that
it will send only a few, since sending a long runner is a big
investment for a plant which is in a poor spot.Wemay further
assume that the quality of the spot (abundance of nutrients,
water, and light) is reflected in the growth of the plant. With
this inmind and the following notation, PPA can be described
as follows.

A plant 𝑝
𝑖
is in spot 𝑋

𝑖
in dimension 𝑛. This means 𝑋

𝑖
=

{𝑥
𝑖,𝑗
, for 𝑗 = 1, . . . , 𝑛}. Let 𝑁𝑃 be the number of strawberry

plants to be used initially, and the PPA algorithm described
in pseudo-code Algorithm 1, relies on the following strategy
[23].

(i) Strawberry plants which are in good spots propagate
by generating many short runners.

(ii) Those in poor spots propagate by generating few long
runners.

It is clear that, in the above description, exploitation is
implemented by sending many short runners by plants in
good spots, while exploration is implemented by sending few
long runners by plants in poor spots.

The parameters used in PPA are the population size 𝑁𝑃
which is the number of strawberry plants, the maximum
number of generations 𝑔max, and the maximum number
of possible runners 𝑛max per plant. 𝑔max is effectively the
stopping criterion in this initial version of PPA.The algorithm

uses the objective function value at different plant positions
𝑋
𝑖
, 𝑖 = 1, . . . , 𝑁𝑃, in a normalised form 𝑁

𝑖
, to rank

them as would a fitness function in a standard genetic
algorithm (note that, unlike in the GA, individuals in PPA
are clones of the mother plant; they do not improve from
generation to generation). The number of plant runners 𝑛𝑖

𝛼
,

calculated according to (1) below, has length 𝑑𝑥
𝑖 calculated

using the normalised form of the objective value at 𝑋
𝑖
,

each giving a 𝑑𝑥𝑖 ∈ (−1, 1)
𝑛, as calculated with (2) below.

After all individuals/plants in the population have sent out
their allocated runners, new plants are evaluated and the
whole increased population is sorted. To keep the population
constant, individuals with lower growth are eliminated. The
number of runners allocated to a given plant is proportional
to its fitness as in

𝑛
𝑖

𝛼
= ⌈𝑛max𝑁𝑖𝛼⌉ , 𝛼 ∈ (0, 1) . (1)

Every solution𝑋
𝑖
generates at least one runner and the length

of each such runner is inversely proportional to its growth as
in (2) below:

𝑑𝑥
𝑖

𝑗
= 2 (1 − 𝑁

𝑖
) (𝛼 − 0.5) , for 𝑗 = 1, . . . , 𝑛, (2)

where 𝑛 is the problem dimension. Having calculated 𝑑𝑥𝑖, the
extent towhich the runnerwill reach, the search equation that
finds the next neighbourhood to explore is

𝑦
𝑖,𝑗
= 𝑥
𝑖,𝑗
+ (𝑏
𝑗
− 𝑎
𝑗
) 𝑑𝑥
𝑖

𝑗
, for 𝑗 = 1, . . . , 𝑛. (3)

If the bounds of the search domain are violated, the point
is adjusted to be within the domain [𝑎

𝑗
, 𝑏
𝑗
], where 𝑎

𝑗
and 𝑏
𝑗

are lower and upper bounds delimiting the search space for
the 𝑗th coordinate.

3. An Effective Implementation of PPA for
Constrained Optimization

In this implementation of PPA, the initial population is
crucial; we run the algorithm a number of times from
randomly generated populations. The best individual from
each run forms a member of the initial population. The
number of runs to generate the initial population is 𝑁𝑃;
therefore, the population size is 𝑟 = 𝑁𝑃. In the case of mixed
integer problems, the integer variable values are fixed when
they are showing a trend to converge to some values. This
trend is monitored by calculating the number of times their
values have not changed. When this number is greater than
a certain threshold, the variables are fixed for the rest of the
run.This strategy seems to work on the problems considered.
Let 𝑝𝑜𝑝 be a general matrix containing the population of a
given run. Its rows correspond to individuals. The following
equation is used to generate a random population for each of
the initial runs:

𝑥
𝑖,𝑗
= 𝑎
𝑗
+ (𝑏
𝑗
− 𝑎
𝑗
) 𝛼, 𝑗 = 1, . . . , 𝑛, (4)

where 𝑥
𝑖,𝑗

∈ [𝑎
𝑗
, 𝑏
𝑗
] is the 𝑗th entry of solution 𝑋

𝑖
and 𝑎

𝑗

and 𝑏
𝑗
are the 𝑗th entries of the lower and upper bounds

describing the search space of the problem and 𝛼 ∈ (0, 1).
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In the main body of the algorithm, before updating the
population we create a temporary population Φ to hold new
solutions generated from each individual in the population.
Then we implement three rules with fixed modification
parameter𝑃

𝑚
, chosen here, as𝑃

𝑚
= 0.8.The first two rules are

implemented if the population is initialized randomly. Rule 01
uses the following equation to update the population:

𝑥
∗

𝑖,𝑗
= 𝑥
𝑖,𝑗
(1 + 𝛽) , 𝑗 = 1, . . . , 𝑛, (5)

where 𝛽 ∈ [−1, 1] and 𝑥∗
𝑖,𝑗
∈ [𝑎
𝑗
, 𝑏
𝑗
].

The generated individual 𝑋∗
𝑖
is evaluated according to

the objective function and is stored in Φ. In rule 02 another
individual is created with the same modification parameter
𝑃
𝑚
= 0.8 as in the following equation:

𝑥
∗

𝑖,𝑗
= 𝑥
𝑖,𝑗
+ (𝑥
𝑙,𝑗
− 𝑥
𝑘,𝑗
) 𝛽, 𝑗 = 1, . . . , 𝑛, (6)

where 𝛽 ∈ [−1, 1], 𝑥∗
𝑖,𝑗

∈ [𝑎
𝑗
, 𝑏
𝑗
]. 𝑙, 𝑘 are mutually exclusive

indices and are different from 𝑖.
The generated individual 𝑋∗

𝑖
is evaluated according to

the objective function and is stored in Φ. The first two rules
are applicable for 𝑟 ≤ 𝑁𝑃 the number of runs. For 𝑟 >

𝑁𝑃 the algorithm also tries to recognise entries which are
settling to their final values through a counter 𝐼𝑁. If the 𝑗th
entry in current population has a low 𝐼𝑁 value, then it is
modified by implementing (7); otherwise it is left as it is. The
value (for 𝐼𝑁) that is suggested by experimentation over a
number of problems is 4.The following equation is usedwhen
modification is necessary:

𝑥
∗

𝑖,𝑗
= 𝑥
𝑖,𝑗
+ (𝑥
𝑖,𝑗
− 𝑥
𝑘,𝑗
) 𝛽, 𝑗 = 1, . . . , 𝑛, (7)

where 𝛽 ∈ [−1, 1], 𝑥∗
𝑖,𝑗
∈ [𝑎
𝑗
, 𝑏
𝑗
], and 𝑘 is different from 𝑖. To

keep the size of the population constant, the extra plants at
the bottom of the sorted population are eliminated.

4. Examples of Structural Engineering
Optimization Problems

PPA as explained in the pseudo-code Algorithm 1 is extended
to cater for constrained optimisation problems to be found
in the appendices [6, 27]. This extended version of PPA is
fully explained in the pseudo-codeAlgorithm 2. Note that the
penalty function approach is used to handle the constraints
[19, 22]. Equations are first transformed into inequality
constraints before they are taken into consideration. Table 1
records the parameter values used in the implementation.
Column 4 shows the value of 𝑃

𝑚
used throughout the exper-

iments. This value has been found through experimentation
on the problem described in Appendix B. The different runs
are represented in Figure 1 where for 40 trials corresponding
to the 30000 function evaluations threshold, 𝑃

𝑚
= 0.8 seems

to be the optimal value for this parameter. Other aspects of
the extended algorithm such as exploration and exploitation
are investigated in Figures 2 and 3. These figures, as one
expects, show that the magnitudes of the steps/perturbations
of the plant positions, that is the lengths of the runners,
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get shorter and shorter as the search progresses. Figure 4 is
a representation of the convergence of the objective values
of the problems described in Appendices A and C. In both
cases, these values fluctuate wildly before they settle down
to very good approximate values. The numerical results of
the experiments on all problems described in Appendices A,
through G are compiled in Tables 2, 3, 4, 5, 6, 7, and 8.

5. Conclusion

Wehave implemented PPA to solve sevenwell knowndifficult
constrained optimization problems arising in engineering
design with continuous domains. PPA found either near
best known solutions or optimal ones to all of them. The
results are compared to those obtained with other algorithms
found in the literature, namely GA (and variants of it,
here denoted EC and EP), PSO, HSA (and variants of it
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Table 1: Parameters used in PPA for seven engineering problems.

Problem Population size Maximum iteration 𝑃
𝑚

Max function evaluations Number of runners Runs
Welded beam 40 20 0.8 30000 3 100
Pressure vessel 40 20 0.8 30000 3 100
Spring design 40 25 0.8 30000 3 100
Speed reducer 40 20 0.8 30000 3 100
Constrained Problem I 40 20 0.8 24000 3 100
Constrained Problem II 40 20 0.8 24000 3 100
Himmelblau’s function 40 25 0.8 30000 3 100

Table 2: Welded beam design optimisation.

Solution vector GA [28] HSA [29] HSA [30] HHSA [31] BDA [32] PHS [27] IPHS [27] PPA
𝑤 0.2088 0.2442 0.2057 0.2057 0.2057 0.2057 0.2057 0.2057
𝐿 3.4205 6.2231 3.4704 3.4706 3.4704 3.4704 3.4704 3.4704
𝑑 8.9975 8.2915 9.0366 9.0368 9.0366 9.0366 9.0366 9.0366
ℎ 0.2100 0.2443 0.2057 0.2057 0.2057 0.2057 0.2057 0.2057
𝑔
1
(𝑥) −0.3378 ∗

a
∗ ∗ 0.0 0.0 0.0 −1.2733𝐸 − 11

𝑔
2
(𝑥) −353.9026 ∗ ∗ ∗ 0.0 0.0 0.0 −3.2378𝐸 − 11

𝑔
3
(𝑥) −0.0012 ∗ ∗ ∗ −5.5511𝐸 − 17 −5.5511𝐸 − 17 −5.55𝐸 − 17 −1.64𝐸 − 13

𝑔
4
(𝑥) −3.4118 ∗ ∗ ∗ −3.4329 −3.4329 −3.4329 −3.4329

𝑔
5
(𝑥) −0.0838 ∗ ∗ ∗ −0.0807 −0.0807 −0.0807 −0.0807

𝑔
6
(𝑥) −0.2356 ∗ ∗ ∗ −0.2355 −0.2355 −0.2355 −0.2355

𝑔
7
(𝑥) −363.2323 ∗ ∗ ∗ −9.0949𝐸 − 13 −9.0949𝐸 − 13 −9.09𝐸 − 13 −6.2755𝐸 − 11

𝑓(𝑥) 1.7483 2.38 1.7248 1.7248 1.7248 1.7248 1.7248 1.7248
aNot available.

Table 3: Pressure vessel design optimisation.

Solution vector IP(M-5) [7] GA [14] HSA [29] HSA [30] PHS [27] IPHS [27] PPA
𝑑
1

1.125 1.125 1.125 1.125 1.125 1.125 0.7781
𝑑
2

0.625 0.625 0.625 0.625 0.625 0.625 0.3846
𝑟 48.97 58.1978 58.2789 58.2901 58.2874 58.2901 40.3196
𝐿 106.72 44.2930 43.7549 43.6926 43.7075 43.6927 200.0
𝑔
1
(𝑥) −0.1799 0.0017 −0.0002 0.0000 −5.2058𝐸 − 005 −3.3595𝐸 − 7 3.627𝐸 − 12

𝑔
2
(𝑥) −0.1578 −0.0697 −0.0690 −0.0689 −0.0689 −0.0689 1.441𝐸 − 12

𝑔
3
(𝑥) −97.760 −974.3 −3.7162 −2.0150 −0.6122 −0.0705 1.1641𝐸 − 9

𝑔
4
(𝑥) −133.28 −195.707 −196.245 −196.307 −196.29 −196.307 −40.0

𝑓(𝑥) 7980.894 7207.494 7198.433 7197.730 7197.896 7197.730 5885.3327

Table 4: Minimization of the weight of a compression spring.

Solution vector MP(M-5) [33] EC [34] GA [28] BDAs [32] PHS [27] IPHS [27] PPA
𝑥
1

0.0500 0.0533 0.0519 0.0514 0.0500 0.0518 0.0515
𝑥
2

0.3159 0.3991 0.3639 0.3513 0.3173 0.3608 0.3541
𝑥
3

14.2500 9.1854 10.8905 11.6086 14.0375 11.0503 11.4387
𝑔
1
(𝑥) −0.00001 0.00001 −0.00001 −0.0033 −4.7653𝐸 − 6 −2.1962𝐸 − 6 −5𝐸 − 15

𝑔
2
(𝑥) −0.0037 −0.00001 −0.00002 −1.0970𝐸 − 4 −1.8124𝐸 − 4 −2.8408𝐸 − 7 −1.3901𝐸 − 9

𝑔
3
(𝑥) −3.9383 −4.1238 −4.0613 −4.0263 −3.9672 −4.0618 −4.0487

𝑔
4
(𝑥) −0.7560 −0.6982 −0.7226 −0.7312 −0.7550 −0.7248 −0.7294

𝑓(𝑥) 0.01283 0.01273 0.01268 0.01266 0.01272 0.01266 0.01266
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Table 5: Speed reducer design optimisation.

Solution vector PSO [6] AAI [35] PHS [27] IPHS [27] PPA [𝜇 = 𝐸5.488] PPA [𝜇 = 𝐸5.93101]

𝑥
1

3.50 3.50 3.50 3.50 3.4922 3.4971
𝑥
2

0.70 0.70 0.70 0.70 0.70 0.70
𝑥
3

17.0 17.0 17.0 17.0 17.0 17.0
𝑥
4

7.30 7.30 7.30 7.30 7.30 7.30
𝑥
5

7.80 7.71 7.7159 7.7153 7.80 7.80
𝑥
6

3.3502 3.35 3.3502 3.3502 3.3496 3.3500
𝑥
7

5.2866 5.29 5.2869 5.2866 5.2846 5.2866
𝑔
1
(𝑥) −0.0739 ∗

a
∗ ∗ −0.07185 −0.07317

𝑔
2
(𝑥) −0.1979 ∗ ∗ ∗ −0.1962 −0.1973

𝑔
3
(𝑥) −0.4991 ∗ ∗ ∗ −0.4988 −0.4990

𝑔
4
(𝑥) −0.9014 ∗ ∗ ∗ −0.9013 −0.9014

𝑔
5
(𝑥) 0.0000 ∗ ∗ ∗ 4.6229𝐸 − 4 1.667𝐸 − 4

𝑔
6
(𝑥) −5.000𝐸 − 16 ∗ ∗ ∗ 1.816𝐸 − 3 6.564𝐸 − 4

𝑔
7
(𝑥) −0.7025 ∗ ∗ ∗ −0.70250 −0.7025

𝑔
8
(𝑥) −1.000𝐸 − 16 ∗ ∗ ∗ 2.2248𝐸 − 3 8.0440𝐸 − 4

𝑔
9
(𝑥) −0.5833 ∗ ∗ ∗ −0.5842 −0.58366

𝑔
10
(𝑥) −0.0513 ∗ ∗ ∗ −0.0514 −0.05136

𝑔
11
(𝑥) −0.0108 ∗ ∗ ∗ −0.01114 −0.0108

𝑓(𝑥) 2,996.3481 2994.4 2994.9 2994.4 2994.4449 2996.1137
aNot available.

Table 6: Constrained optimization problem I.

Solution vector GAs [36] EP [37] HSA [29] PHS [27] IPHS [27] PPA [𝜇 = 𝐸4] Optimal solution
𝑥
1

0.8080 0.8350 0.8343 0.8230 0.8229 0.8298 0.8228
𝑥
2

0.8854 0.9125 0.9121 0.9113 0.9113 0.9098 0.9114
𝑔
1
(𝑥) 3.7𝐸 − 2 1𝐸 − 2 5𝐸 − 3 1.1880𝐸 − 4 3.8744𝐸 − 5 7.8953𝐸 − 05 7.05𝐸 − 9

𝑔
2
(𝑥) 5.2𝐸 − 2 −7𝐸 − 2 5.4𝐸 − 3 3.5443𝐸 − 4 1.8967𝐸 − 4 9.1722𝐸 − 05 1.73𝐸 − 8

𝑓(𝑥) 1.4339 2.3772 1.3770 1.3931 1.3932 1.3774 1.3935

0 10 20 30
0

1

2

3

4

5

6

7

8

9

Search limits

Pe
rt

ur
ba

tio
ns

 p
ro

du
ce

d 
by

 ru
le

 1

Speed reducer design optimization×10
5

−10−20−30

Figure 3: Exploration characteristic of PPA using rule 1.

0 20 40 60 80 100
0.012

0.014

0.016

Number of trial runs

O
bj

ec
tiv

e v
al

ue
s Tension compression spring design optimization

(a)

0 10 20 30 40 50 60 70 80 90 100
1.7
1.8
1.9

2

Number of trial runs

O
bj

ec
tiv

e v
al

ue
s Welded beam design optimization

(b)

Figure 4: Convergence plot of welded beam design and tension
compression spring design optimization problems over 100 trial
runs.
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(1) Initialization: Generate a population 𝑃 = {𝑋
𝑖
, 𝑖 = 1, . . . ,NP};

(2) 𝑔 ← 1;
(3) for 𝑔 = 1:𝑔max do
(4) Compute𝑁

𝑖
= 𝑓(𝑋

𝑖
), ∀𝑋
𝑖
∈ 𝑃;

(5) Sort 𝑃 in ascending order of𝑁 (for minimization);
(6) Create new population Φ;
(7) for each𝑋

𝑖
, 𝑖 = 1, . . . ,NP do

(8) 𝛼
𝑖
← set of runners where both the size of the set and the distance for each runner (individually)

are proportional to𝑁
𝑖
, the normalized objective value

(9) Φ ← Φ ∪ 𝛼
𝑖
{append to population};

(10) end for
(11) 𝑃 ← Φ {new population};
(12) end for
(13) Return 𝑃, the population of solutions.

Algorithm 1: Pseudocode of PPA, [23].

(1) Initialization: 𝑔max ←Maximum number of generations; NP← population size; 𝑟 ← trial run
(2) if 𝑟 ≤ NP then
(3) Create a random population of plants 𝑝𝑜𝑝 = {𝑋

𝑖
| 𝑖 = 1, 2, . . . ,NP}, using (4) and gather the best solutions.

(4) end if
(5) while 𝑟 > NP do
(6) Use population 𝑝𝑜𝑝

𝑔
formed by gathering all best solutions from previous runs.

Calculate 𝐼𝑁
𝑗
value for each column 𝑗 of 𝑝𝑜𝑝

𝑔
(see Section 3).

(7) end while
(8) Evaluate the population. In case of 𝑝𝑜𝑝

𝑔
the algorithm does not need to evaluate the population,

(9) Set number of runners, 𝑛
𝑟
= 3, 𝑛𝑔𝑒𝑛 = 1,

(10) while (𝑛𝑔𝑒𝑛 < 𝑔max) or (𝑛 𝑒V𝑎𝑙 < 𝑚𝑎𝑥 𝑒V𝑎𝑙) do
(11) CreateΦ:
(12) for 𝑖 = 1 to NP do
(13) for 𝑘 = 1 to 𝑛

𝑟
do

(14) if 𝑟 ≤ NP then
(15) if rand ≤ 𝑃

𝑚
then

(16) Generate a new solution𝑋∗ according to (5);
(17) Evaluate it and store it in Φ;
(18) end if
(19) if rand ≤ 𝑃

𝑚
then

(20) Generate a new solution𝑋∗ according to (6);
(21) Evaluate it and store it in Φ;
(22) end if
(23) else
(24) for 𝑗 = 1: 𝑛 do
(25) if (𝐼𝑁

𝑗
< 4) or (rand ≤ 𝑃

𝑚
) then

(26) update the 𝑗th entry of𝑋
𝑖
, 𝑖 = 1, 2, . . . ,NP, according to (7);

(27) end if
(28) Evaluate new solution𝑋∗ and store it in Φ;
(29) end for
(30) end if
(31) end for
(32) end for
(33) Add Φ to current population;
(34) Sort the population in ascending order of the objective values;
(35) Update current best;
(36) end while
(37) Return: Updated population.

Algorithm 2: Pseudocode of PPA for constrained optimisation.
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Table 7: Constrained optimization problem II.

Algorithms 𝑥
1

𝑥
2

𝑓(𝑥)

Deb [38]
GA with PS (𝑅 = 0.01) ∗

a
∗ 13.5895

GA with PS (𝑅 = 1) ∗ ∗ 13.5910
GA with TS-R ∗ ∗ 13.5908
HSA [30] 2.2468 2.3818 13.5908
HSA [29] 2.2468 2.3821 13.5908
PHS [27] 2.2480 2.4066 13.6117
IPHS [27] 2.2468 2.3818 13.5908
PPA 2.2468 2.3818 13.5908
Optimal solution 2.2468 2.3818 13.5908
aNot available.

namely PHS and IPHS), IP, MP, and BDA. Note that some
of the problems have not been solved by all algorithms. For
instance, the pressure vessel design problem has not been
solved with BDA or MP as far as we know. Similarly the
spring compression problem has not been solved with IP and
HSA. These gaps in the computational results found in the
literature on the considered problems are not substantial to
hinder our experimental work and conclusions. Indeed, the
recorded evidence in the large majority of cases points to
the overwhelming superiority of PPA. Having said that, it
must be added that further improvements to PPA and testing
are being carried out on a more extensive collection of test
problems including discrete ones.

Appendices

A. Welded Beam Design Optimisation

The welded beam design is a standard test problem for
constrained design optimisation [6, 22].There are four design
variables: the width 𝑤 and length 𝐿 of the welded area, the
depth 𝑑 and thickness ℎ of the main beam.The objective is to
minimise the overall fabrication cost, under the appropriate
constraints of shear stress 𝜏, bending stress 𝜎, buckling load
𝑃, and maximum end deflection 𝛿. The optimization model
is summarized as follows, where 𝑥𝑇 = (𝑤, 𝐿, 𝑑, ℎ):

Minimise 𝑓 (𝑥) = 1.10471𝑤
2
𝐿 + 0.04811𝑑ℎ (14.0 + 𝐿) ,

subject to 𝑔
1 (𝑥) = 𝑤 − ℎ ≤ 0,

𝑔
2 (𝑥) = 𝛿 (𝑥) − 0.25 ≤ 0,

𝑔
3 (𝑥) = 𝜏 (𝑥) − 13, 600 ≤ 0,

𝑔
4 (𝑥) = 𝜎 (𝑥) − 30, 000 ≤ 0,

𝑔
5 (𝑥) = 1.10471𝑤

2
+ 0.04811𝑑ℎ (14.0 + 𝐿)

− 5.0 ≤ 0,

𝑔
6 (𝑥) = 0.125 − 𝑤 ≤ 0,

𝑔
7 (𝑥) = 6000 − 𝑃 (𝑥) ≤ 0,

(A.1)

where

𝜎 (𝑥) =
504, 000

ℎ𝑑2
, 𝐷 =

1

2
√𝐿2 + (𝑤 + 𝑑)

2
,

𝑄 = 6000 (14 +
𝐿

2
) , 𝛿 =

65, 856

30, 000ℎ𝑑3
,

𝐽 = √2𝑤𝐿(
𝐿
2

6
+
(𝑤 + 𝑑)

2

2
) , 𝛼 =

6000

√2𝑤𝐿
,

𝛽 =
𝑄𝐷

𝐽
, 𝑃 = 0.61423 × 10

6 𝑑ℎ
3

6
(1 −

𝑑√30/48

28
) ,

𝜏 (𝑥) = √𝛼2 +
𝛼𝛽𝐿

𝐷
+ 𝛽2.

(A.2)

The simple limit or bounds are 0.1 ≤ 𝐿, 𝑑 ≤ 10 and 0.1 ≤
𝑤, ℎ ≤ 2.0.

B. Pressure Vessel Design Optimisation

Pressure vessels are widely used in our daily life, such as
champagne bottles and gas tanks [6, 39]. For a given volume
andworking pressure, the basic aim of designing a cylindrical
vessel is to minimize the total cost. Typically, the design
variables are the thickness 𝑑

1
of the head, the thickness 𝑑

2

of the body, the inner radius 𝑟, and the length 𝐿 of the
cylindrical section [6]. This is a well-known test problem for
optimization, where 𝑥𝑇 = (𝑑

1
, 𝑑
2
, 𝑟, 𝐿), and it can be written

as

Minimise 𝑓 (𝑥) = 0.6224𝑑
1
𝑟𝐿 + 1.7781𝑑

2
𝑟
2

+ 3.1661𝑑
2

1
𝐿 + 19.84𝑑

2

1
𝑟,

subject to 𝑔
1 (𝑥) = −𝑑

1
+ 0.0193𝑟 ≤ 0,

𝑔
2 (𝑥) = −𝑑

2
+ 0.00954𝑟 ≤ 0,

𝑔
3 (𝑥) = −𝜋𝑟

2
𝐿 −

4𝜋

3
𝑟
3
+ 1296000 ≤ 0,

𝑔
4 (𝑥) = −𝐿 − 240 ≤ 0.

(B.1)

The simple limits on the design variables are

0.0625 ≤ 𝑑
1
, 𝑑
2
≤ 99 × 0.0625,

10.0 ≤ 𝑟, 𝐿 ≤ 200.
(B.2)

C. Spring Design Optimisation

Themain objective of this problem [33, 34] is tominimize the
weight of a tension/compression spring, subject to constraints
of minimum deflection, shear stress, surge frequency, and
limits on outside diameter and on design variables. There
are three design variables: the wire diameter 𝑥

1
, the mean

coil diameter 𝑥
2
, and the number of active coils 𝑥

3
[6].



8 Mathematical Problems in Engineering

Table 8: Optimal solutions for a variation on Himmelblau’s function.

Solution vector GA [38] HSA [29] PHS [27] IPHS [27] PPA
𝑥
1

∗
a 78.0 78.0 78.0 78.0

𝑥
2

∗ 33.0 33.0 33.0 33.0
𝑥
3

∗ 29.995 30.0053 29.9953 29.9952
𝑥
4

∗ 45.0 45.0 45.0 45.0
𝑥
5

∗ 36.776 36.7521 36.7756 36.7758
𝑔
1
(𝑥) ∗ ∗ 91.9963 91.9999 92.0

𝑔
2
(𝑥) ∗ ∗ 98.8362 98.8404 98.8405

𝑔
3
(𝑥) ∗ ∗ 20.0 20.0 20.0

𝑓(𝑥) −30665.500 −30665.500 −30663.845 −30665.533 −30665.540

aNot available.

The mathematical formulation of this problem, where 𝑥𝑇 =
(𝑥
1
, 𝑥
2
, 𝑥
3
), is as follows:

Minimize 𝑓 (𝑥) = (𝑥
3
+ 2) 𝑥

2
𝑥
2

1
,

subject to 𝑔
1 (𝑥) = 1 −

𝑥
3

2
𝑥
3

7, 178𝑥4
1

≤ 0,

𝑔
2 (𝑥) =

4𝑥
2

2
− 𝑥
1
𝑥
2

12, 566 (𝑥
2
𝑥3
1
) − 𝑥4
1

+
1

5, 108𝑥2
1

− 1 ≤ 0,

𝑔
3 (𝑥) = 1 −

140.45𝑥
1

𝑥2
2
𝑥
3

≤ 0,

𝑔
4 (𝑥) =

𝑥
2
+ 𝑥
1

1.5
− 1 ≤ 0.

(C.1)

The simple limits on the design variables are 0.05 ≤ 𝑥
1
≤

2.0, 0.25 ≤ 𝑥
2
≤ 1.3, and 2.0 ≤ 𝑥

3
≤ 15.0.

D. Speed Reducer Design Optimization

The problem of designing a speed reducer [40] is a standard
test problem. It consists of the design variables as face width
𝑥
1
, module of teeth 𝑥

2
, number of teeth on pinion 𝑥

3
, length

of the first shaft between bearings 𝑥
4
, length of the second

shaft between bearings 𝑥
5
, diameter of the first shaft 𝑥

6
, and

diameter of the first shaft 𝑥
7
(all variables continuous except

𝑥
3
that is integer). The weight of the speed reducer is to be

minimized subject to constraints on bending stress of the gear
teeth, surface stress, transverse deflections of the shafts, and
stresses in the shaft [6]. The mathematical formulation of the
problem, where 𝑥𝑇 = (𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
7
), is as follows:

Minimise 𝑓 (𝑥) = 0.7854𝑥
1
𝑥
2

2
(3.3333𝑥

2

3

+14.9334𝑥
3
43.0934)

− 1.508𝑥
1
(𝑥
2

6
+ 𝑥
3

7
) + 7.4777 (𝑥

3

6
+ 𝑥
3

7
)

+ 0.7854 (𝑥
4
𝑥
2

6
+ 𝑥
5
𝑥
2

7
) ,

subject to 𝑔
1 (𝑥) =

27

𝑥
1
𝑥2
2
𝑥
3

− 1 ≤ 0,

𝑔
2 (𝑥) =

397.5

𝑥
1
𝑥2
2
𝑥2
3

− 1 ≤ 0,

𝑔
3 (𝑥) =

1.93𝑥
3

4

𝑥
2
𝑥
3
𝑥4
6

− 1 ≤ 0,

𝑔
4 (𝑥) =

1.93𝑥
3

5

𝑥
2
𝑥
3
𝑥4
7

− 1 ≤ 0,

𝑔
5 (𝑥) =

1.0

110𝑥3
6

√(
745.0𝑥

4

𝑥
2
𝑥
3

)

2

+ 16.9 × 106

− 1 ≤ 0,

𝑔
6 (𝑥) =

1.0

85𝑥3
7

√(
745.0𝑥

5

𝑥
2
𝑥
3

)

2

+ 157.5 × 106

− 1 ≤ 0,

𝑔
7 (𝑥) =

𝑥
2
𝑥
3

40
− 1 ≤ 0,

𝑔
8 (𝑥) =

5𝑥
2

𝑥
1

− 1 ≤ 0,

𝑔
9 (𝑥) =

𝑥
1

12𝑥
2

− 1 ≤ 0,

𝑔
10 (𝑥) =

1.5𝑥
6
+ 1.9

𝑥
4

− 1 ≤ 0,

𝑔
11 (𝑥) =

1.1𝑥
7
+ 1.9

𝑥
5

− 1 ≤ 0.

(D.1)

The simple limits on the design variables are

2.6 ≤ 𝑥
1
≤ 3.6, 0.7 ≤ 𝑥

2
≤ 0.8,

17 ≤ 𝑥
3
≤ 28, 7.3 ≤ 𝑥

4
≤ 8.3, 7.8 ≤ 𝑥

5
≤ 8.3,

2.9 ≤ 𝑥
6
≤ 3.9, 5.0 ≤ 𝑥

7
≤ 5.5.

(D.2)
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E. Constrained Optimization Problem 1

Minimize 𝑓 (𝑥) = (𝑥
1
− 2)
2
+ (𝑥
2
− 1)
2
,

subject to 𝑔
1 (𝑥) = 𝑥

1
− 2𝑥
2
+ 1 = 0,

𝑔
2 (𝑥) =

−𝑥
1

4
− 𝑥
2

2
+ 1 ≥ 0,

− 10 ≤ 𝑥
1
, 𝑥
2
≤ 10.

(E.1)

F. Constrained Optimization Problem 2

Minimize 𝑓 (𝑥) = (𝑥
2

1
+ 𝑥
2
− 11)
2

+ (𝑥
1
+ 𝑥
2

2
− 7)
2

,

subject to 𝑔
1 (𝑥) = 4.84 − (𝑥

1
− 0.05)

2

− (𝑥
2
− 2.5)

2
≥ 0,

𝑔
2 (𝑥) = 𝑥

2

1
+ (𝑥
2
− 2.5)

2
− 4.84 ≥ 0,

0 ≤ 𝑥
1
, 𝑥
2
≤ 6.

(F.1)

G. Himmelblau’s Optimization Problem

Minimize 𝑓 (𝑥) = 5.357847𝑥
2

3
+ 0.8356891𝑥

1
𝑥
5

+ 37.293239𝑥
1
− 40792.141,

subject to 𝑔
1 (𝑥) = 85.334407 + 0.0056858𝑥

2
𝑥
5

+ 0.00026𝑥
1
𝑥
4
− 0.0022053𝑥

3
𝑥
5
,

𝑔
2 (𝑥) = 80.51249 + 0.0071317𝑥

2
𝑥
5

+ 0.0029955𝑥
1
𝑥
2
+ 0.0021813𝑥

2

3
,

𝑔
3 (𝑥) = 9.300961 + 0.0047026𝑥

3
𝑥
5

+ 0.0012547𝑥
1
𝑥
3
+ 0.0019085𝑥

3
𝑥
4
,

0 ≤ 𝑔
1 (𝑥) ≤ 92, 90 ≤ 𝑔

2 (𝑥) ≤ 110,

20 ≤ 𝑔
3 (𝑥) ≤ 25, 78 ≤ 𝑥

1
≤ 102,

33 ≤ 𝑥
2
≤ 45, 27 ≤ 𝑥

𝑖
≤ 45, 𝑖 = 3, 4, 5.

(G.1)
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