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Abstract 

This paper describes a design for a least mean square error estimator in discrete 

time systems where the components of the state vector, in measurement 

equation, are corrupted by different multiplicative noises in addition to 

observation noise. We show how known results can be considered a particular 

case of the algorithm stated in this paper  
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1. Introduction 

It was back in 1960 when R.E. Kalman [1] introduces his well known filter. 

Assuming the dynamic system is described through a state space model, 

Kalman considers the problem of optimum linear recursive estimation. From 

this event much other research work was developed including different 

hypothesis framework about system noises (Kalman [2], Meditch [3], Jazwinski 

[4], Kowalski and Szynal [5]).  

In all studies above mentioned the estimated signal (state vector) in 

measurement equation is only corrupted by additive noise. Rajasekaran et al. [6] 

consider the problem of linear recursive estimation of stochastic signals in the 

presence of multiplicative noise in addition to measurement noise. When 

multiplicative noise is a Bernoulli random variable, the system is called system 

with uncertain observations. The estimation problem about these systems have 

been extensively treated (Nahi [7], Hermoso and Linares [8], Sanchez and 

García [9]).  

This paper describes a design for a least mean square error (LMSE) estimator in 

discrete time systems where the components of the state vector, in measurement 

equation, are corrupted by different multiplicative noises in addition to 

observation noise. The estimation problems treated include one-stage prediction 

and filtering. 

The presented algorithm can be considered as a general algorithm because, with 

particular specifications, this algorithm degenerates in known results as in 

Kalman [1], Rajasekaran and Szynal [6], Nahi [7], , Sanchez and García [10]. It 

can also be infered that if multiplicative noises are Bernoulli random variables, 

such situation is not, properly speaking, a system with uncertain observations 

because the components of the state can be present in the observation with 

different probabilities. Therefore, the presented algorithm solves the estimation 

problems in this new system specification with complete uncertainty about 

signal. 

 

2. Statement and Notation 

We now introduce symbols and definitions used across the paper. Let the 

following linear discrete-time dynamic system with 1×n  elements be the state 

vector )(kx  
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xx
kkkkkxkkkx
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≥+Γ++Φ=+ ω

    (State Equation) 

and 1×m observation vector )(kz  be given by 

0),()()(~)()( ≥+= kkvkxkkHkz γ     (Observation Equation) 

where ),1( kk +Φ , ),1( kk +Γ  and )(kH  are known matrices with appropriate 

dimensions. 

Usual and specific hypothesis regarding probability behavior for random 

variables are introduced to formalize the model as follows:  

(H.1) 0x  is a centered random vector with variance-covariance matrix )0(P . 

(H.2) { }0),( ≥kkω  is centered white noise with [ ] )()()( kQkkE T =ωω .     

(H.3) )(~ kγ  is a diagonal matrix 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

)(

)(1

k

k

nγ

γ
 where { }0),( ≥kkiγ  is a 

          scalar white sequence with nonzero mean ( )im k  and variance ( )ii kσ ,      

          i 1,...,n= . It is supposed that { }0),( ≥kkiγ  and { }( ), 0j k kγ ≥  are     

          correlated in the same instant and ( )( ) ( ), ( )ij i jk Cov k kσ γ γ= , i,j 1,...,n= .    

          The next matrix will be used later on: 

1( )
( )

( )n

m k
M k

m k

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

(H.4) { }0),( ≥kkv  is a centered white noise sequence with variance    

         [ ] )()()( kRkvkvE T = . 

(H.5) { } { }0 , ( ), 0 , ( ), 0x k k v k kω ≥ ≥ are mutually independent. 

(H.6) The sequences { } nikki ,...,1,0),( =≥γ  are independent of initial state  

          0x , { }0),( ≥kkω  and{ }0),( ≥kkv . 

As we can observe, the components of the state vector, in the observation 

equation, are corrupted by multiplicative noise in addition to measurement 

noise. 
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Let )/(ˆ lkx  be the LMSE estimate of )(kx  given observations )(),...,0( lzz . 

)/(ˆ)()/( lkxkxlke −=  denote the estimation error, and the corresponding 

covariance matrix is [ ])/()/()/( lkelkelkP T= . 

The LMSE linear filter and one-step ahead predictor of the state )(kx  are 

presented in the next section. 

 

3. Prediction and filter algorithm 

Theorem 1. The one-step ahead predictor and filter are given by 

[ ]

ˆ ˆ( 1/ ) ( 1, ) ( / ), 0
ˆ(0 / 1) 0
ˆ ˆ ˆ( / ) ( / 1) ( ) ( ) ( ) ( ) ( / 1) , 0.

x k k k k x k k k
x
x k k x k k F k z k H k M k x k k k

+ = Φ + ≥
− =

= − + − − ≥

 

The filter gain matrix verifies 
1( ) ( / 1) ( ) ( ) ( )TF k P k k M k H k k−= − Π  

where 

( ) ( ) ( ) ( ) ( ) ( ) ( / 1) ( ) ( ) ( )T Tk H k S k H k H k M k P k k M k H k R kΠ = + − +  

with 

11 11 12 12 1 1

12 21 22 22 2 2

1 1 2 2

1( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )  where  (0 0 0 1 0 0)

( 1) ( 1, ) ( ) (

n n

n n

n n n n nn nn

T
ij i j i ni

T

k S k k S k k S k
k S k k S k k S k

S k

k S k k S k k S k

S k I S k I I

S k k k S k

σ σ σ
σ σ σ

σ σ σ

×

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

= =

+ = Φ + Φ 1, ) ( 1, ) ( ) ( 1, ), 0
(0) (0).

Tk k k k Q k k k k
S P

+ +Γ + Γ + ≥
=

 

The prediction and filter error covariance matrices satisfy 

.0),()()()1/()/(
)0()1/0(

0),,1()(),1(),1()/(),1()/1(

≥Π−−=

=−
≥+Γ+Γ++Φ+Φ=+

kkFkkFkkPkkP
PP

kkkkQkkkkkkPkkkkP

T

TT

 

Proof. 

By the state equation is easy to prove that the predictor )/(ˆ),1( kkxkk +Φ  

satisfies the Orthogonal Projection Lemma (OPL) [11]. In the initial instant, 

the estimate of )0(x  is its mean, so that 0)1/0(ˆ =−x . 
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As a consequence of the orthogonal projection theorem [11], the state filter can 

be written as a function of the one-step ahead predictor as 

0),()()1/(ˆ)/(ˆ ≥+−= kkkFkkxkkx δ  

where )1/(ˆ)()( −−= kkzkzkδ  is the innovation process. Its expression is 

obtained below. 

Since )1/(ˆ −kkz  is the orthogonal projection of )(kz  onto the subspace 

generated by observations{ })1(),...,0( −kzz , we know that this is the only 

element in that subspace verifying  

ˆ( ) ( ) ( / 1) ( ) , 0,..., 1.T TE z k z E z k k z kα α α⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦ ⎣ ⎦  

Then, by the observation equation and the hypotheses (H.3)-(H.6), it can be 

seen that ˆˆ( / 1) ( ) ( ) ( / 1)z k k H k M k x k k− = −  and the innovation process for the 

problem we are solving is given by 

ˆ( ) ( ) ( ) ( ) ( / 1).k z k H k M k x k kδ = − −  

To obtain the gain matrix ( )F k , we observe that, given the OPL holds, 

[ ] 0)()/( =kzkkeE T , and we have 

( / 1) ( ) ( ) ( )TE e k k z k F k k⎡ ⎤− = Π⎣ ⎦      (3.1) 

where ( )kΠ  are the covariance matrices of the innovation. From the 

observation equation and the hypotheses (H.2)-(H.6), it can easily checked 

( / 1) ( ) ( / 1) ( ) ( )T TE e k k z k P k k M k H k⎡ ⎤− = −⎣ ⎦  

and therefore 1( ) ( / 1) ( ) ( ) ( ).TF k P k k M k H k k−= − Π  

To obtain the covariance matrices of the innovation process, it can be seen that 

( ) ( ) ˆ( ) ( ) ( ) ( ) ( ) ( / 1)k H k k x k v k H k M k x k kδ γ= + − −  

and by adding and subtracting ( ) ( ) ( )H k M k x k ,  

( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ) ( / 1)k H k k M k x k v k H k M k e k kδ γ= − + + −  

Then 

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( / 1) ( ) .

T

T T

T

k E k z k

H k E k M k x k z k E v k z k

H k M k E e k k z k

δ

γ

⎡ ⎤Π = ⎣ ⎦
⎡ ⎤ ⎡ ⎤= − + +⎣ ⎦ ⎣ ⎦

⎡ ⎤−⎣ ⎦

 

Let us work out each of the terms in previous expression. By the observation 

equation we have that 



 

 

6

( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

T T T

T

H k E k M k x k z k H k E k M k x k x k k H k

H k E k M k x k v k

γ γ γ

γ

⎡ ⎤ ⎡ ⎤− = − +⎣ ⎦ ⎣ ⎦
⎡ ⎤−⎣ ⎦

and according to hypotheses in (H.4)-(H.6) the second term can be cancelled. 

Adding and subtracting ( )( ) ( ) ( ) ( ) ( ) ( ) ( )T TH k E k M k x k x k M k H kγ⎡ ⎤−⎣ ⎦ , 

( )
( ) ( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

T

T T

T T

H k E k M k x k z k

H k E k M k x k x k k M k H k

H k E k M k x k x k M k H k

γ

γ γ

γ

⎡ ⎤− =⎣ ⎦
⎡ ⎤− − +⎣ ⎦
⎡ ⎤−⎣ ⎦

 

where the second term is zero by (H.3) and (H.6). According to (H.6), if we 

label [ ])()()( kxkxEkS jiij =  for nji ,...,1, = , we get 

( ) ( )

( )
( )

( )

( )
( )

( )

1 1 1 1 1 1

2 2 2 2 2 2

11 11 12

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) (

T

T

n n n n n n

S k E k M k x k x k k M k

k m k x k k m k x k
k m k x k k m k x k

E

k m k x k k m k x k

k S k

γ γ

γ γ
γ γ

γ γ

σ σ

⎡ ⎤≡ − − =⎣ ⎦
⎡ ⎤− −⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟− −⎢ ⎥⎜ ⎟⎜ ⎟ =⎢ ⎥⎜ ⎟⎜ ⎟
⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− −⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

12 1 1

12 12 22 22 2 2

1 1 1 2

) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

n n

n n

n n n n nn nn

k S k k S k
k S k k S k k S k

k S k k S k k S k

σ
σ σ σ

σ σ σ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

Therefore 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).T TH k E k M k x k z k H k S k H kγ⎡ ⎤− =⎣ ⎦  

On the other hand, by the observation equation and (H.4)-(H.6) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ).

T T T TE v k z k E v k x k k H k E v k v k

R k

γ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ ⎣ ⎦
=

 

By the same reasons 

( ) ( ) ( / 1) ( ) ( ) ( ) ( / 1) ( ) ( ) ( )

( ) ( ) ( / 1) ( ) ( ).

T T T

T

H k M k E e k k z k H k M k E e k k x k M k H k

H k M k P k k M k H k

⎡ ⎤ ⎡ ⎤− = −⎣ ⎦ ⎣ ⎦
= −

 

In short, the covariance matrices of the innovations process verify 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( / 1) ( ) ( )T Tk H k S k H k R k H k M k P k k M k H kΠ = + + − . 

To obtain the components ( )ijS k  of the ( )S k , we only need to observe that 

( ) ( ) T
ij i jS k I S k I=  
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where ( ) ( ) ( )TS k E x k x k⎡ ⎤= ⎣ ⎦  and 1( )
(0 0 0 1 0 0)i ni

I ×= . The 

next recursive expression of ( )S k  is immediate given that { }0),( ≥kkω  is a 

white noise sequence and independent of )0(x  

( 1) ( 1, ) ( ) ( 1, ) ( 1, ) ( ) ( 1, ), 0
(0) (0).

T TS k k k S k k k k k Q k k k k
S P
+ = Φ + Φ + +Γ + Γ + ≥

=
 

The expression of the prediction error covariance matrices  

).,1()(),1(),1()/(),1()/1( kkkQkkkkkkPkkkkP TT +Γ+Γ++Φ+Φ=+  

is immediate since ( 1/ ) ( 1, ) ( / ) ( 1, ) ( )e k k k k e k k k k kω+ = Φ + +Γ + . 

In the other hand, given that ( / ) ( / 1) ( ) ( )e k k e k k F k kδ= − −  then  

( / ) ( / 1) ( / 1) ( ) ( )

( ) ( ) ( / 1) ( ) ( ) ( ).

T T

T T

P k k P k k E e k k k F k

F k E k e k k F k k F k

δ

δ

⎡ ⎤= − − − −⎣ ⎦
⎡ ⎤− + Π⎣ ⎦

 

It can be observed that  

ˆ( ) ( / 1) ( ) ( / 1) ( ) ( ) ( / 1) ( / 1)T T TE k e k k E z k e k k H k M k E x k k e k kδ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− = − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
where the second term cancels according to OPL and by equation (3.1) it is 

obtained that 

[ ] )()()1/()( kFkkkekE TT Π=−δ  

and then ).()()()1/()/( kFkkFkkPkkP TΠ−−= □ 

 

Next, we see how some known results can be considered as particular 

specifications of the general model proposed in this paper: 

o If 1( ) ( ) 1nk kγ γ= = =  the state vector are not corrupted by a 

multiplicative noise, then  

( ) ( )
( ) 0 ,

n n

ij

k M k I
k i j

γ
σ

×= =
= ∀

 

and our algorithm degenerates in Kalman algorithm [1]. 

o If 1( ) ( ) ( )nk k U kγ γ= = =  where { }( ), 0U k k ≥  is a scalar white 

sequence with nonzero mean ( )m k  and variance ( )n k , we end up with 

Rajasekaran’s [6] framework, ( ) ( ) n nk U k Iγ ×= , where the state vector 

(all components) is corrupted by multiplicative noise. In this case, 
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( ) ( )
( ) ( ) ,

n n

ij

M k m k I
k n k i jσ

×=
= ∀

 

and the presented algorithm collapses in Rajasekaran’s. 

o If 1( ) ( ) ( )nk k kγ γ γ= = =  where { }0),( ≥kkγ  is a sequence of 

Bernoulli independent random variable with [ ]( ) 1 ( )P k p kγ = = , then 

( ) ( ) n nk k Iγ γ ×=  and we end up with Nahi’s framework [7], where the 

state vector is present in the observation with probability )(kp . In this 

case,  

( )
( ) ( )
( ) ( ) 1 ( ) ,

n n

ij

M k p k I
k p k p k i jσ

×=

= − ∀
 

and the new algorithm collapses in Nahi’s. 

o If 1( ) ( ) 1pk kγ γ= = =  and 1( ) ( ) ( )p nk k kγ γ γ+ = = =  where 

{ }0),( ≥kkγ  is a sequence of Bernoulli independent random variable 

with [ ]( ) 1 ( )P k p kγ = = , the observations can include some elements of 

the state vector not being ensure the presence of the resting others 

(Sanchez and García’s framework [10]). In this case 

( )

( )

( ) ( ) ( )

0
( )

0

0, ,
0, ,

( )
0, ,

( ) 1 ( ) , ,

p p p n p

n p p n p n p

ij

I
M k

I

i j p
i p j p

k
i p j p

p k p k i j p

σ

× × −

− × − × −

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

≤⎧
⎪ ≤ >⎪= ⎨ > ≤⎪
⎪ − >⎩

 

and the new algorithm degenerates in Sanchez and García’s. 

Another interesting situation appears when some of the components in the state 

vector are present in the observation but appear with different probabilities. 

Such a situation is not a system with uncertain observations. The present 

algorithm solves estimation problems in this type of system, it is only necessary 

to suppose that the multiplicative noises are different Bernoulli random 

variables.  
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4. Some numerical simulation examples 

We show now some numerical examples to illustrate the filtering and 

prediction algorithm presented in Theorem 1.  

Example 1  

We consider the following linear system described by the dynamic equation:   

1 1

2 2

101

202

( 1) ( )0.06 0.67 0.02
( ), 0               (4.1)

( 1) ( )0.60 0.23 0.24

(0)
                                                                     

(0)

x k x k
k k

x k x k

xx
xx

ω
+⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞

= + ≥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

( ) 1 1

2 2

     (4.2)

( ) 0 ( )
( ) 0.85 0.42 ( ), 0   (4.3)

0 ( ) ( )
k x k

z k v k k
k x k

γ
γ

⎛ ⎞⎛ ⎞
= + ≥⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

 

where { }0),( ≥kkω  is centered Gaussian white noise with ( ) 2.89Q k = ; 10x  

and 20x  are centered Gaussian random variables with variances equal to 0.5; 

{ }0),(1 ≥kkγ  and { }0),(2 ≥kkγ  are Gaussian white noise with means 2 

and 3 and variances 11σ  and 22σ , respectively; { }0),(1 ≥kkγ  and 

{ }0),(2 ≥kkγ  are independent; { }0),( ≥kkv  is centered Gaussian white 

noise with variance 0.1R = .  

Using the estimation algorithm of Theorem 1, we can calculate the filtering 

estimate ˆ( / )x k k  of the state recursively. Fig. 1 and Fig. 2 illustrate the state 

( )ix k  and the filter ˆ ( / )ix k k , for 1, 2i = , vs. k  for the multiplicative Gaussian 

observation noises ( )1 2, 0.5Nγ →  and ( )2 3, 0.1Nγ → . The state is 

represented with black and the filter with red color. 
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Fig. 1. 1( )x k  and 1̂( / )x k k  vs. k  
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Fig. 2. 2 ( )x k  and 2ˆ ( / )x k k  vs. k  
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Tables 1 and 2 shows the mean-square values (MSVs) of the filtering errors 

ˆ( ) ( / )i ix k x k k−  for 1, 2i =  and 1,2,..., 200k =  corresponding to multiplicative 

white observation noises: 

1

2

: (2, 0.1), (2, 0.5), (2, 1)

: (3, 0.1), (3, 0.5), (3, 1).

N N N

N N N

γ

γ
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Table 1. MSV of filtering errors 1 1̂( ) ( / ), 1, 2,..., 200x k x k k k− =  

 22 0.1σ =  22 0.5σ =  22 1σ =  

11 0.1σ =  0.0171184 0.0194455 0.020916 

11 0.5σ =  0.022236 0.0211678 0.022704 

11 1σ =  0.0232388 0.023623 0.0237136 

 

Table 2. MSV of filtering errors 2 2ˆ( ) ( / ), 1, 2,..., 200x k x k k k− =  

 22 0.1σ =  22 0.5σ =  22 1σ =  

11 0.1σ =  0.0556318 0.0656372 0.0671069 

11 0.5σ =  0.0698304 0.0703345 0.0690113 

11 1σ =  0.0739651 0.075727 0.0730605 

 

Example 2 

We consider a linear system described by equations (4.1)-(4.3) where 

{ }0),(1 ≥kkγ  and { }0),(2 ≥kkγ  are sequences of independent Bernoulli 

random variables being 1 with probabilities 1p  and 2p , respectively.  

Fig. 3 and Fig. 4 illustrate the state ( )ix k  and the filter ˆ ( / )ix k k , for 1,2i = , vs. 

k  for the multiplicative observation noises ( )1 0.5Bernoulliγ →  and 

( )2 1Bernoulliγ → . The state is represented with blue and the filter with green 

color. 
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Fig. 3. 1( )x k  and 1̂( / )x k k  vs. k  
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Fig. 4. 2 ( )x k  and 2ˆ ( / )x k k  vs. k  
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Tables 3 and 4 shows the mean-square values (MSVs) of the filtering errors 

ˆ( ) ( / )i ix k x k k−  for 1, 2i =  and 1,2,..., 200k =  corresponding to multiplicative 

white observation noises: 

1

2

: (0.1), (0.5), (1)
: (0.1), (0.5), (1).
Bernoulli Bernoulli Bernoulli
Bernoulli Bernoulli Bernoulli

γ
γ
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Table 3. MSV of filtering errors 1 1̂( ) ( / ), 1, 2,..., 200x k x k k k− =  

 2 0.1p =  2 0.5p =  2 1p =  

1 0.1p =  0.0948355 0.0696956 0.0273215 

1 0.5p =  0.0616283 0.049987 0.0333839 

1 1p =  0.013194 0.0197576 0.0154067 

 

Table 4. MSV of filtering errors 2 2ˆ( ) ( / ), 1, 2,..., 200x k x k k k− =  

 2 0.1p =  2 0.5p =  2 1p =  

1 0.1p =  0.211223 0.164514 0.0634171 

1 0.5p =  0.184817 0.155435 0.09182 

1 1p =  0.154539 0.130428 0.0708851 

 

As we can observe, the simulation graphs and the MSV of the filtering in both 

examples show the effectiveness of the new algorithm. 
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