
Improved Self-management of DataCenter Systems

Applying Machine Learning

by
Josep Llúıs Berral Garćıa

Advisors:
Prof. Jordi Torres Viñals

Prof. Ricard Gavaldà Mestre

A dissertation submitted in partial fulfilment of the requirements for
the degree of Doctor per la Universitat Politècnica de Catalunya

Universitat Politècnica de Catalunya PhD program
Departament d’Arquitectura de Computadors

Barcelona, Catalunya (Spain), 2013

2

Abstract

Autonomic Computing is a Computer Science and Technologies research area, originated dur-
ing mid 2000’s. It focuses on optimization and improvement of complex distributed computing
systems through self-control and self-management. As distributed computing systems grow in
complexity, like multi-datacenter systems in cloud computing, the system operators and archi-
tects need more help to understand, design and optimize manually these systems, even more
when these systems are distributed along the world and belong to different entities and authori-
ties. Self-management lets these distributed computing systems improve their resource and energy
management, a very important issue when resources have a cost, by obtaining, running or main-
taining them. In this Ph.D.Thesis we propose to improve Autonomic Computing techniques for
resource management by applying modeling and prediction methods from Machine Learning and
Artificial Intelligence. Machine Learning methods can find accurate models from system behaviors
and often intelligible explanations to them, also predict and infer system states and values. These
models obtained from automatic learning have the advantage of being easily updated to workload
or configuration changes by re-taking examples and re-training the predictors. So employing
automatic modeling and predictive abilities, we can find new methods for making ”intelligent”
decisions and discovering new information and knowledge from systems. Summarizing, we try
to improve multi-datacenter systems using machine learning by 1) finding automatic learned de-
cision makers, easier to build and update than hand-made ones, and not much worse or even
better; 2) being more energy efficient, optimizing resource usage without compromising the quality
of service offered by the system; and 3) managing them autonomously enough to free operators
from supervising the system constantly.

3

4

Agräıments

Permeteu-me en un primer moment, abans de començar amb la chicha que pertoca a aquesta
tesi, de fer una relació de totes aquelles persones que, durant aquests darrers 5 anys, m’han
ajudat o m’han hagut de suportar. Persones de qui no només he obtingut ajut i suport, si no
també de qui he après gairebé tot el que he vist i fet durant aquesta tesi, i que m’han servit
d’exemple a seguir com a acadèmic, com a professional i com a persona.

Primer de tot agräır tota la feina i esforç dels meus dos directors, en Jordi Torres i en
Ricard Gavaldà. Em van oferir la oportunitat de coneixer el món de la recerca i d’obtenir nous
coneixements de dues arees de coneixement tan ortogonals però tan complementàries com son
l’Autonomic Computing i el Machine Learning. Sense la seva dedicació i recolzament no hagués
estat possible aquest treball.

Cal fer menció especial a dues persones que m’han ajudat en extrem durant tot aquest temps,
que son l’́Iñigo Goiri, un gran professional de la ciencia i de la vida, i en Javier Alonso, gran
investigador i encara millor persona. També fer un reconeixement especial a la gent del grup
abans conegut com “eDragon”, com en Ramon Nou, en Ferran Julià, en Nico Poggi, en Jordi
Guitart i en David Carrera, amb qui treballar o compartir coneixements és sempre un plaer.

Indicar també un reconeixement a la gent del grup LARCA de qui també he après molt,
com en Borja Valle, en Dani Alonso, en Miquel Camprodon i en Ramon Xuriguera; aix́ı com els
companys del LSI, en Sergi Oliva, en Jorge Muñoz, en Javier De San Pedro, en Nikita Nikitin,
l’Adrià Gascón i l’Alessandra Tosi, l’Albert Vilamala, l’Eva Garćıa i en Carles Creus. Ha estat
un plaer servir aqui amb vosaltres.

Important recordar a la gent que ha estat la meva segona familia durant els darrers dotze
anys en aquesta arcàdia anomenada Campus Nord, la gent de l’Oasi i Distorsió, a qui dedico
aquesta obra. Tant els antics Oasieros com en Modesto, Juan Pedro, David, Álvaro i Sergio, i els
Distorsionats Romà, Guille, Carlos, Miguel, Arnau, Guillem, David, Christian, Ramon, Nicolás,
Pedro, Judit, Dani, Jordi i Alex; aix́ı com els nous (antics nous i nous de trinca) Alberto (F),
Alberto (K), Hector, Eric, Elisabeth, Natàlia (que s’ha currat aquesta fantàstica portada), David,
Arnau, Agust́ın, Lino, Maǵı, Sergi, Ignacio, Marc, Quimi, Alejandro L., Alejandro N. i Imanol.
Només dir que ens veiem al bar, ara baixo.

Un agräıment especial també a la gent del GCO-DAC, companys de dinars i cafès, i també
de feines presents i futures, en Luis Velasco, en Marc Ramirez, l’Alberto Castro i Llúıs Gifré.
Espero que poguem seguir fent ciència plegats i potser fer-nos rics algun dia.

No voldria oblidar-me d’aquella gent que van abandonar els seus paisos per trobar-se a Nou
Brunswick, Nova Jersey, amb qui vaig compartir uns mesos molt valuosos a Rutgers: en Cheng
Li, en Quingyuan Deng, en Guilherme Cox i el professor Ricardo Bianchini. Espero de veritat
que els vagi molt bé la vida i que cadascú trobi el seu camı́ per ser feliç.

In Memoriam al Ministeri d’Innovació i Ciència d’Espanya, sense el qual això no hagués estat
possible, i que fou una de les primeres v́ıctimes de la involució en cultura i coneixement soferta
en aquest pais recentment.

Finalment, dedicar aquesta feina a la meva famı́lia, per haver-me suportat tot aquest temps
i haver tingut paciència amb mi.

5

6

This work has been supported by the Spanish Ministry of Science and the Spanish Secretariat
for Research (nowadays part of the Ministry of Finances and Competition), under contract
TIN2011-27479-C04-03 and under FPI grant BES-2009-011987 (TIN2008-06582-C03-01), by EU
PASCAL2 Network of Excellence, and by the Generalitat de Catalunya (SGR-2009-1428).

Contents

1 Introduction 17
1.1 Introduction . 17
1.2 Motivation . 19
1.3 Goals of this thesis . 19
1.4 About this thesis . 21
1.5 Document Outline . 22

2 Background 23
2.1 Relevant Concepts on Autonomic and Cloud Computing 23

2.1.1 About Autonomic Computing . 23
2.1.2 About Cloud Computing . 25
2.1.3 Related Concepts: the Grid and Virtualization 26
2.1.4 Cloud Resource Business . 27

2.2 Relevant Concepts on Green Computing . 28
2.2.1 Green Computing Techniques . 29
2.2.2 Green DataCenters . 31

2.3 Relevant Concepts on Artificial Intelligence . 31
2.3.1 AI and Intelligent Management . 31
2.3.2 Machine Learning Techniques . 32
2.3.3 Relevant Machine Learning Algorithms 33

3 Previous Experiences with ML and Web-Services 35
3.1 Our Previous Works on User Modeling . 35

3.1.1 The AUGURES Prototype . 36
3.1.2 Experimental results . 39
3.1.3 Conclusions for User Modeling . 40

3.2 Our Previous Works on Self-Protection . 40
3.2.1 Distributed Data Collection . 41
3.2.2 Reaction and Feedback . 42
3.2.3 Summary of the Node and Network Algorithm 42
3.2.4 Conclusions for Self-Protection . 44

3.3 Collaboration Work on Self-Healing . 44
3.3.1 Software Aging Scenario . 45
3.3.2 Prediction Experiments . 46
3.3.3 Conclusions on Learning Towards Self-Healing 48

4 Tailoring Jobs and Resources 51
4.1 Introducing the Resource Modeling Approach . 51
4.2 Ad-Hoc Modeling of Virtualized DataCenter . 52

4.2.1 Time References . 52
4.2.2 Revenue and SLA Factors . 53
4.2.3 Performance Factors . 54
4.2.4 Power and Energy Factors . 54
4.2.5 Other Factors and Important Issues . 55

4.3 Modeling the Costs-Benefit . 55

7

8 CONTENTS

4.4 Scheduling following the Model . 58
4.4.1 Solving Scheduling . 58

4.5 Conclusions on Tailoring Jobs and Resources . 59
4.6 Note on Experimental Environments . 60

4.6.1 Energy-Efficient Simulator . 60
4.6.2 Experimental Real Environments . 61
4.6.3 The LiBCN’10 Workload . 61
4.6.4 Experimental Methodology . 61

5 Predictions on Decision Making 63
5.1 Introducing Energy-aware Prediction and Scheduling 63
5.2 Energy-aware management . 64

5.2.1 Machine Learning approach . 65
5.2.2 Relevant factors and basic assumptions 65
5.2.3 Data sets and prediction algorithms . 66

5.3 Simulation and Metrics . 67
5.3.1 Simulation and power models . 67
5.3.2 Metrics . 69

5.4 Evaluation of the Energy-aware Schedule . 70
5.4.1 Experimental environment . 70
5.4.2 Power vs. SLA fulfillment trade-off . 70
5.4.3 Validation of ML models . 71
5.4.4 Scheduling policies . 72

5.5 Conclusions for energy-aware scheduling . 74

6 DC Mathematical Modeling 77
6.1 Introducing the Modeling Approach for DataCenters 77
6.2 A MILP Representation for DataCenters . 78

6.2.1 Scheduling Approach . 78
6.2.2 Minimizing the power cost . 79
6.2.3 Maximizing the profit . 80
6.2.4 Quality of Service as a factor . 81

6.3 Studying the Behavior of the Model . 82
6.3.1 Programming and Simulation Environment 82
6.3.2 Experiments . 84
6.3.3 Impact of Policies and Trade-offs . 87

6.4 Discussion on MILP Modeling of DataCenters . 88
6.5 Introducing Machine Learning into the Model . 89

6.5.1 Web-Services and Prediction . 89
6.5.2 Adapting the Mathematical Model . 90
6.5.3 Experiments . 91

6.6 Conclusions on Introducing Machine Learning on Data-Center Modeling 94

7 Modeling Resources With Machine Learning 95
7.1 Introducing the DataCenter Scenario . 95
7.2 Infrastructure and Monitoring . 96

7.2.1 Service DataCenter Architecture . 96
7.2.2 Service Level Agreements . 96
7.2.3 Information Monitoring . 97
7.2.4 Modeling and Prediction . 97
7.2.5 Framework Schema . 98

7.3 Resource Modeling and Learning . 98
7.3.1 CPU Prediction . 99
7.3.2 Memory Modeling . 99
7.3.3 Bandwidth Prediction . 101
7.3.4 SLA Prediction . 103

CONTENTS 9

7.4 Managing and Scheduling DataCenters . 104
7.4.1 Scheduling Algorithms . 104
7.4.2 Environment Description . 104
7.4.3 ML-augmented scheduling algorithms . 105
7.4.4 Validation on Real Machines . 105

7.5 Conclusions on Modeling DataCenter Resources using Machine Learning 107

8 Extending to Multi-DataCenters 109
8.1 Introducing the Multi-DataCenter Management using Machine Learning 109
8.2 The Multi-DataCenter Scenario . 110
8.3 Mathematical Approach and Models . 111

8.3.1 Adaptive Models . 113
8.3.2 Scheduling Algorithms . 113

8.4 Experiments and Studies over the Multi-DC . 114
8.4.1 Environment Description . 114
8.4.2 Intra-DC Comparatives . 115
8.4.3 Inter-DC Comparatives . 116

8.5 Conclusions for Multi-DC Modeling and Managing 120

9 A Green Approach for Placing DataCenters 123
9.1 Introducing Green DataCenter Placement . 123
9.2 Green Energy DataCenter Placement . 124
9.3 Green datacenter placement tradeoffs . 129
9.4 Scheduling VMs Among Green Energy Availability 132
9.5 Conclusions for Green Placement of DataCenters 135

10 Conclusions 137
10.1 Main Contributions . 137
10.2 Topics for Further Research . 139
10.3 List of Publications . 141

10 CONTENTS

List of Figures

2.1 Commercial hosting infrastructure . 28
2.2 Virtualization middleware schema . 29
2.3 Consolidation Strategy . 29
2.4 Inductive Learning Schema . 33

3.1 AUGURES architecture . 36
3.2 %admitted vs. recall and %admitted vs. precision 40
3.3 Detection and Reaction Mechanism . 43
3.4 Confusion Matrix on Attack Ratios and Thresholds 44

4.1 Examples of SLA fulfillment kinds . 53
4.2 Information flow schema using models . 62

5.1 Simulator Diagrams . 68
5.2 Power behavior of the target PC . 69
5.3 SLA and Power using different turn on/off thresholds [Source: eEnergy’10 [30]] . 71
5.4 Power consumption of different schedulers with a Grid workload 74
5.5 CPU usage and SLA fulfillment with heterogeneous workload; Most significant

policies: Dynamic Backfilling, Machine Learning and Random 75

6.1 Power consumption in for each model . 84
6.2 Benefit obtained from each model . 85
6.3 Number of migrations for each model . 86
6.4 Power versus migrations and migration restriction policy 87
6.5 Power versus QoS (health) and QoS Loss restriction policy 88
6.6 Power and SLA Comparative on the Schedulers 93

7.1 Prediction of VM CPU demand for Xeon-4Core 100
7.2 Typical VM Memory Behavior, with memory Flushing and Garbage Collection . 100
7.3 Prediction of MEM VM demand (TR: ∆T ∈ [10s, 10min, 1h]; TS: ∆T = 5min) 101
7.4 Prediction of PM Bandwidth demand . 102
7.5 Prediction of Response Time, in a non-stress and stress situation. Stress begins

around instance 1400, where RT begins to increase 103
7.6 BF-noML against BF+ML SLA (based on response time) and machines used . . 106

8.1 Results and Factors for Intra-DC Scheduling . 115
8.2 VM placement following the Load for Inter-DC Scheduling 117
8.3 Results and Factors for Inter-DC Scheduling . 118
8.4 Comparative Static vs Dynamic Inter-DC for 5 VMs 119
8.5 Relation of the SLA vs Energy vs Load . 120

9.1 Optimization function and constraints . 128
9.2 Cost of building a 50% green network of DCs with a computation capacity of 50MW129
9.3 Cost of building a network of DCs depending on green % required using net metering129
9.4 Cost of building a network of DCs depending on confidence using net metering . 130

11

12 LIST OF FIGURES

9.5 Cost of building a network of datacenters depending on confidences with no energy
storage . 130

9.6 Cost of building a network of datacenters depending on the confidence using batteries131
9.7 Cost of building a 100% green network of datacenters depending on the migration

requirements with no energy storage . 131
9.8 Constraints for the load placement problem . 132
9.9 Load distribution to achieve 50% confidence of having 100% green energy using

net metering . 134
9.10 Load distribution to achieve 100% green energy without energy storage 134

List of Tables

3.1 MAEs obtained predicting time until failure on deterministic software aging . . . 47
3.2 MAEs obtained predicting time until failure on software aging hidden within pe-

riodic pattern . 48

4.1 Summary of symbols and functions . 53
4.2 Summary of Costs . 55

5.1 Summary of symbols and functions . 67
5.2 Scheduling results . 72

6.1 Properties of the simulated datacenter . 83
6.2 Workload details . 83
6.3 Comparative between models . 86
6.4 Statistical analysis for each algorithm and metric. 92
6.5 Scheduling Comparative between techniques applying Migration Penalties 93
6.6 Scheduling MILP Solver with different electric costs and migration penalty . . . 93

7.1 Attributes obtained from the monitoring agents 97
7.2 Learning Load vs CPU function . 99
7.3 Learning Load vs MEM function . 101
7.4 Learning Load vs IO function . 102
7.5 Learning Load,Resources vs RT function . 103
7.6 Comparative of algorithms from the relevant business model values 105

8.1 Learning details for each predicted element and selected method. All training processes

are done using random split of instances (66/34) . 114
8.2 Prices and Latencies table (Latencies in ms [10Gbps line]) 116
8.3 Comparative of results for the multi-DC per 5 VMs 119

9.1 Parameters and Variables for the Placement Mathematical Problem 125
9.2 Summary of parameters and variables for the load placement problem 132
9.3 Datacenter network details for 50% confidence of having 100% green energy using

net metering . 133
9.4 Datacenter network details for 100% green energy without energy storage 133

13

14 LIST OF TABLES

Acronyms

AI Artificial Intelligence

BWD Bandwidth

CAPEX Capital Expenditures

DC DataCenter

DDoS Distributed Denial of Service

DVFS Dynamic Voltage/Frequency Scaling

EEFSIM Energy-Efficient Simulator

HPC High Performance Computing

IO Input/Output

ISP Internet Service Provider

IT Information Technologies

MAE Mean Absolute Error

MAPE Monitor/Analize/Plan/Execute

MSE Mean Squared Error

MILP Mixed Integer Linear Program

ML Machine Learning

OPEX Operational Expenditures

PM Physical Machine

PUE Power Usage Efficiency

QoS Quality of Services

RL Reinforcement Learning

RR Round-Robin

RT Response Time

SLA Service Level Agreement

SLO Service Level Object

VM Virtual Machine

WS Web-Service

15

16 LIST OF TABLES

Chapter 1

Introduction

“Intelligence”: The art of good guessing. - H.B.Barlow
“Artificial Intelligence”: Artifact able to guess good, given limited resources, time or space.

1.1 Introduction

The Web 2.0 and the computing/storage web service business have contributed to democratize
the Internet, allowing everybody to share information, services and Information Technologies
(IT) resources around the network. With the arrival of social networks and the introduction
of new IT infrastructures into the business world, the Internet population has grown enough to
make the need for computing resources an important matter to be treated. While few years ago
enterprises had all their IT infrastructures in privately owned DataCenters (DC), nowadays the
big IT corporations have started a DataCenter-race, offering computing and storage resources at
low prices, looking for outside companies to trust their data or IT needs on them.

These offered resources are also referred as “the Cloud”, a place in the Internet where you can
access from anywhere, upload and download all your information, send your data to compute,
without the need of knowing where and how the physical infrastructure is. For the user, every-
thing is reduced to a user-friendly web service, so companies can delegate their e-mail boxes,
web applications, and the computing jobs to pay-as-you-go IT resources companies like Amazon,
Google, etc, instead of spending money on private datacenters, with all the extra infrastructure
it requires. And this makes not only enterprises to work into the Cloud, but also casual users
start using it. Most of the existing social networks and popular web-services began from user
initiatives, and as these services grow popular, more IT resources are required to run them. Only
a few extremely large companies such as Facebook need their own Cloud for handling all the
users and data stored into.

Handling these requirements to give good Quality of Service (QoS) requires not only a pow-
erful enough single datacenter. A single web application or piece of data can be easily used
by people around the world, so often it mush be available from everywhere, keeping in mind
things like quality of service and service level agreements between users and service providers.
For example, Google and Youtube receive queries from around the world at the same time, and
must keep replicas of their web-services near each client, and move each piece of data as close
to its final user as possible. For a service that can be replicated, it requires moving just data,
otherwise copies of unique set of services must be placed wisely among the datacenter farms
among the planet, to ensure QoS and reduce costs. This means coordinating all jobs, services
and applications in the Cloud system with all its resources, and given the amount of jobs running
nowadays on it, this becomes a hard optimization problem.

Before the Cloud and the Web 2.0, technological improvement sufficed to cover the increasing
IT demand, bringing faster processors, larger storage devices, and faster connections between re-
sources. But now the demand is growing faster than technological improvement, so every day we
require larger datacenters and more computational power, with a larger energetic demand, and
the requirement of strategic placement of resources and distribution of load around the world.
Further more, in most situations more computational power or larger DCs do not mean better

17

18 CHAPTER 1. INTRODUCTION

QoS and more availability, and reaching a (near) optimal performance of Cloud services and re-
source management passes through an Intelligent Management, aware of the state and capability
of each resource used and the needs of each user. This Intelligent Management complements the
technological improvement, allowing better resource use, borrowing and lending resources when
it is convenient to do so, and improving the quality of service without scaling the DataCenters
unnecessarily.

In order to proceed with decision making, knowing in detail the structure and environment
of every element involved in the system is crucial. Not having this information prevents us of
having experts (automatic or human), advising about what to do in each situation, giving us
hints for best solutions and best practices, and having reactive elements keeping an eye over the
system constantly to cover any incident or change.

Unfortunately, in the Cloud all of this is not possible, as 1) it becomes an abstract set of
resources, each one with abstract set of properties. Each domain of resources has its own resource
broker and interface for dealing with resource borrowers and lenders, so a part of the Cloud can
not manage or get all the information to other parts of it. 2) Systems running on the Cloud
are hard to model explicitly by hand and hard to predict due its internal complexity and also
complex dependence on external input including human input. For most of the applications
and services running in the Cloud there are no experts, and most variables indicating the system
status are hidden to the naked eye, making it difficult to predict the behavior of the hole (or even
a part of) the system. 3) Given the amount of elements to control and monitor, also the amount
of data generated by each element to be checked, keeping a human operator watching over each
warning, change or information, reacting in front of each, becomes practically impossible. In
front of these problems, automation and novel techniques for understanding the system become
part of the solution, “understanding” what is happening in the system and handling all the
decisions to be made in the most autonomous way as possible.

Current datacenters and large-scale distributed computing systems (the underlying structure
of the Cloud) are recently implementing techniques of autonomic computing, a field on science
focusing on the automation of computation systems (from single computers to multi-DC systems).
The need for managing large-scale systems has made this automation a hot topic on research,
opening sub-topics focusing on different areas of improvement: self-healing, as the automation of
detecting and solving system failures; self-protection, as the automation of enforcing security over
systems and data; self-configuration, as the automation of deploying services and applications
on systems; and self-optimization, as the automation of improving performance of services and
systems. By default, the research on these topics is been done taking advantage of ad-hoc hand-
crafted expert systems, statistic models and rules. We put forward the central hypothesis of this
thesis: that these solutions can be improved if the system is able to generate models and rules
from what it can observe, adapting each model to the given states and environment, “learning
by itself” how the system behaves.

Machine learning (viewed as part of a larger field, data mining) brings a methodology to,
given a set of observations from a given system, discover knowledge from its behavior, and predict
elements of it. The advantage of using machine learning instead of systems built from explicit
modeling is that 1) we do not always we have an expert, 2) we have too much information to treat,
3) this information may be incomplete, missing, or uncertain, 4) the system may change over
time. Machine learning methods focuses on these issues, some of them being robust against sparse
scenarios (scenarios with states sharing low similarity among them), some robust against changes
(scenarios changing constantly) or easy to update, and ready to handle high dimensionality
(scenarios with too much data and features for each piece of information to be treated).

The usual methodology for creating models using inductive learning require 1) a period of
observation of the system to be learned from, 2) a learning process to create a model describing
the system behavior, and 3) a testing period.

The ability of using this learned knowledge to improve performance of large-scale systems
like Cloud systems opens a new wide research area combining all the capabilities of Autonomic
Computing and the capabilities of learning and discovering knowledge from these systems.

1.2. MOTIVATION 19

1.2 Motivation

Currently, intense research is done related to learning and artificial intelligence application into
networks and systems. Many existing works focus on specific details of a given system, like a
specific component or studying a specific policy. This thesis and research goes beyond this kind
of solutions requiring fixed models created by experts or specific ad-hoc details over components
or single policies. Often, in large-scale computing systems, we do not know about the whole
system; often it is too complex to understand each piece or detail; often the system is in constant
change, enough to invalidate all fixed models or established policies.

This thesis is about making management of large-scale systems to be as automatic but ac-
curate as possible. We want management to be adaptive, able to get and adjust the models
describing web-services and infrastructures, in order to

• let administrators and operators to make their work easier

• make decisions (scheduling, allocate resources and switch on and off resources) automati-
cally, including energy management

• offer good quality of service to the users of the infrastructure also to the users of the
web-services relying on the infrastructure

• obtain knowledge from the system learning from the generated models

This thesis researches and develops a set of techniques, methods and strategies, letting the
system learn about its own behaviors and responses given expected and unexpected scenarios,
model these, and find the adequate policies to improve the system management using the result-
ing models. We focus on a particular scenario, very common in datacenter infrastructures and
services (like e.g. web-service hosting at Amazon), the virtualized environments. The methods
and strategies can be studied by observing how machine learning improve management in au-
tonomic scenarios, or how if made decisions make the system perform as well as ad-hoc made
expert systems, all of this obtaining adaptively by itself this expert knowledge.

1.3 Goals of this thesis

The main goal of this thesis is to demonstrate that, with the use of machine learning techniques,
management of virtualized web-services on a multi-datacenter system can be improved in quality
of service terms and energy consumption.

In order to achieve this main goal, this thesis takes a walk from the state of the art where the
management of virtualized web-services is based on administrators expertise, well known data,
ad-hoc studied algorithms and models, and elements to be studied to be from computing machine
point of view; to reach a novel state of the art where the management is driven by models learned
from the same system, providing useful feedback, making up for incomplete, missing or uncertain
data, from a global network of datacenters point of view.

The steps in this walk can be seen as a movement between scaling the scenario, from com-
puting machines to multi-datacenters, and the required level of knowledge and prediction, from
having a given explicit model to having no a-priori knowledge of the system potential environ-
ment and behavior. We start by automatically modeling a single machine, pass by the level of
a computing cluster, and reach the level of a multi-datacenter infrastructure. In between we
model each system mathematically, identify the relevant information required to manage it and
find methods to predict that information and apply it.

Stage 1 - Tailoring Jobs and Resources: We depart from a point where, having a datacen-
ter or a set of machines hosting virtualized jobs (be High Performance Computing (HPC) or
Transactional jobs like Web-Services (WS)), everything must be arranged and scheduled so as to
maintain these jobs accomplishing their deadlines and respecting their quotas of resources (CPU
or Memory). This first stage covers the scenario where the decision maker works knowing all
pieces of information from the system: how much will each job consume, how is and will be the

20 CHAPTER 1. INTRODUCTION

desired quality of service, what are the deadlines for the workload, etc. All of this focusing on
each component and policy of each element involved in executing these jobs. The work included
in this stage coincides in part with the PhD thesis of Íñigo Goiri, working on modeling in detail
virtualized environments towards economic profit, where we had an active involvement as a col-
laboration on the experimental part. Here we only present the modeling work corresponding to
this thesis.

Stage 2 - Predictions on Decision Making : When controlling components in a real environment,
and also when making decisions that affect the future, we need to predict what the future may
look like including the effect of our decisions and actions. Usually estimators are built by experts
who know the system, but the experts may not be available when the system becomes large,
or the situation to be handled is complex enough to design an ad-hoc decision maker worth it.
In this stage the work contemplates the scenario where instead of fixed oracles that provide us
information from an expert formula or set of conditions, machine learning is used to create these
oracles. Here we stand in a point where we look at components and specific details while some
part of the information is not known and must be learned and predicted.

Stage 3 - Mathematical Modeling of DCs: When energy becomes an important factor, the
function optimizing costs and benefits must take care of consumption, and reduce the usage of
resources while maintaining performance. It should not only be limited to CPUs in a machine,
but extended to a whole datacenter by reducing the on-line machines to the minimal required.
So the optimization can be expanded by looking to the global datacenter environment. This
stage begins reducing the problem of optimizing the resource allocations and requirements for
virtualized web-services to a mathematical problem, indicating each factor, variable and element
involved, also all the constraints the scheduling process must attend to. Our scheduling problem
can be modeled as a Mixed Integer Linear Program (MILP). Here we are in a point where we
face an scenario of a full datacenter, further we introduce some information prediction (for only
CPU resources at this step) using the methodologies from the previous step.

Stage 4 - Learning in DataCenters: Our mathematical problem can be guided also by learned
modules providing predictions for each placement so a solver will require less expert ad-hoc
speculations, also less information from noisy monitors. Each element can be modeled so the
scheduler can use a predictor for each piece of data coming from monitors, speculate with ten-
tative schedules, and choose the predicted best situation. We complement the previous stage
by expanding the predicted elements, studying the main resources, this is CPU, Memory and
IO, that can suffer from noise, inaccuracy or unavailability. Once learning predictors for certain
components let the decision making improve, the system can become more “expert-knowledge
independent” and research can focus on an scenario where all the elements provide noisy, uncer-
tainty or private information.

Stage 5 - Extending to Multi-DCs: What can be achieved by managing efficiently a datacenter
can be exported to a model where this datacenter is spread along the world, or what is the
same, several datacenters distributed along the world are united as a federation. New factors are
involved in the optimization, as for each datacenter, costs may change as energy has different
prices in different locations. Also each datacenter may provide different times of service due to
proximity to the client.

Stage 6 - Green Multi-DataCenters: A final approach, once we have a system relying on a dat-
acenter network, is to optimize the energy costs by powering them using green energy (energy
from renewable sources). Unlike other chapters, in this one we do not address the management
of an existing computing structure, but its design and placement before it is built. Planning and
building the datacenters near renewable sources and take advantage of solar and wind energy
availability results cheaper and more affordable than the usually expected. We finish this thesis
with a view of the cost of placing datacenters depending on green energy sources, and distribute
the load according to green energy availability.

1.4. ABOUT THIS THESIS 21

At the end of the journey we have moved from a stage where every policy is calculated ad-hoc
for each job and component, to a stage where the scenario is a full system of datacenters. All
important information that can become inaccurate or missing is predicted, driving the decision
manager to grant quality of service to datacenter customers and web-service clients, having into
account very important factors like energy consumption.

Note that all the steps above are orientative: they may overlap and often are anticipated
elements of the next.

1.4 About this thesis

This thesis is a multidisciplinary work joining two different research areas, autonomic computing
and machine learning. While Autonomic Computing cares about self-management techniques
like self-healing, self-protection, self-configuration and self-optimization, machine learning brings
a set of methods for modeling systems, predicting system values, making ”intelligent” decisions,
and adapting these models and predictions when the system changes. Further, this thesis is
being developed as a research project inside two research groups:

• The LARCA research Group (Laboratori of Relational Algorithmics, Complexity and
Learnability) is a research group composed by members of LSI Departament de Llenguatges
i Sistemes and mostly of the UPC, working on data mining, complexity and computational
learning, and its applications; directed by professor Ricard Gavaldà.

• The Autonomic-HPC (Autonomic Computing, at the High Performance Computing re-
search Group) is a research group composed by members of the DAC Departament d
Arquitectura de Computadors of the UPC and the BSC-CNS Barcelona Supercomputing
Center - Centro Nacional de Supercomputación, working on Autonomic Computing and
new methods for self-management in distributed systems; directed by professor Jordi Tor-
res.

Also, this work is or has been financially supported by:

• The Spanish Ministry of Science FPI grant BES-2009-011987

• The Spanish Ministry of Science MOISES-BAR project (Individualized Modeling of Sym-
bolic Sequences) TIN2005-08832-C03-03, coordinated by Ricard Gavaldà.

• The Spanish Ministry of Science SESAAME project (SEcuencias Simbólicas: Análisis,
Aprendizaje, Modelado y Evolución) TIN2008-06582-C03, coordinated by Ricard Gavaldà.

• The Spanish Ministry of Science BASMATI project (Biological and Social Mining: Al-
gorithms, Theory, and Implementation) TIN2011-27479-C04-03, coordinated by Ricard
Gavaldà.

• The Spanish Ministry of Science CAP-VI project (Computación de Altas Prestaciones VI)
TIN2012-34557.

• The Generalitat de Catalunya (2009-SGR-1428).

• The EMOTIVE-Cloud BSC Project directed by Jordi Torres.

• The EU COST Action IC0804, Energy Efficiency In Large Scale Distributed Systems,
coordinated by Jean-Marc Pierson.

• The EU PASCAL2 Network of Excellence. Pattern Analysis, Statistical Modelling and
Computational Learning.

• The EU CoreGRID Network of Excellence. European Research Network on Foundations,
Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-
Peer Technologies.

22 CHAPTER 1. INTRODUCTION

1.5 Document Outline

The remainder of this document is structured as follows:

Chapter 2 provides some Background Concepts and the State of the Art in the relevant areas:
autonomic computing, data mining and machine learning concepts, and the current applications
of machine learning to Autonomic Computing. Given that the project is multidisciplinary, a
broad survey becomes necessarily.

Chapter 3 visits works done previous to targeting the current goal and stages, in order to explore
and perform some experiences toward the possibility of applying machine learning modeling to
direct applications in distributed systems and autonomic computing, related to web-service self-
optimization, self-defense and self-healing. This chapter is based on already published material
(GDN07 [109], UM07 [131], TR-DAC07 [135], ComNet09 [133]), also (DSN10 [3], DPDNS10 [4]),
also material presented as Master Thesis (AISec08 [32]).

Chapter 4 presents work on analytical and theoretic ad-hoc modeling on HPC and transactional
virtualized jobs from a computing machine/datacenter (Stage 1). This chapter is based on al-
ready published material (ICAC08 [156], GRID10 [67], Cluster10 [70], FGCS12 [66]).

Chapter 5 presents work on machine learning applied to predicting components and variables to
drive decision managers concerning to autonomic computing issues like self-optimization for a
computing machine/datacenter (Stage 2). This chapter is based on already published material
(EEnergy10 [30], GreenBook12 [31]).

Chapter 6 presents work on modeling a full datacenter reducing it to a mathematical program,
optimizing the costs for running it taking into account quality of service for datacenter cus-
tomers and web-service clients, and applying the machine learning techniques developed in pre-
vious stages (Stage 3). This chapter is based on already published material (TR-LSI10 [24],
GRID11 [25],TR-LSI11 [26]).

Chapter 7 presents work on the study of learning and prediction of datacenter and comput-
ing machine component performance towards web-service load and different resource allocation
scenarios (Stage 4). This chapter is based on already published material (SAC13 [27], TR-
LSI13 [28]).

Chapter 8 presents work on managing world-wide datacenter systems, focusing on distribution of
jobs according on energy obtaining, energy consumption, service placement and proximity to the
web-service clients (Stage 5). This chapter is based on material being published (PASA13 [29]).

Chapter 9 presents work on building a world-wide datacenter system, oriented towards the avail-
ability of green energy sources, like solar and wind capacity (Stage 6). Material in this chapter
is subject of a paper to be submitted to a main conference.

Chapter 10 draws the main conclusions of the thesis and proposes new issues to continue the
research field and proposes some lines to continue the research in this thesis.

Chapter 2

Background

Nowadays data mining techniques and other stochastic models are being introduced into
the field of autonomic computing, improving on modeling and prediction for decision making.
This section explains some background concepts and provides some examples of applications to
Autonomic Computing, Cloud Computing and self-management topics. Mostly, works provided
in this section are focused on the direction of this thesis, by applying autonomic strategies,
artificial intelligence or statistical learning in some way. Further, each chapter will include
its own related work section pointing on their specific relevant concepts and important related
works..

2.1 Relevant Concepts on Autonomic and Cloud Comput-
ing

2.1.1 About Autonomic Computing

Autonomic Computing definition can be found in the manifesto and challenge visions written by
J.Kephart [91, 90] from IBM Watson Research Center:

As systems become more interconnected and diverse, architects are less able to anticipate and
design interactions among components, leaving such issues to be dealt with at runtime. Becoming
too massive and complex for even the most skilled system integrators to install... the only option
remaining is computing systems that can manage themselves given high-level objectives from ad-
ministrators.

So, the more complex and large systems become, operators and architects are less able to
manage and create components that will fit accurately into these systems. For this, autonomic
computing is responsible of giving self-management abilities to such complex systems, allow-
ing degrees of autonomy for making decisions, like following self-healing, self-optimizing, self-
configuring and self-protecting policies.

• Self-Healing: Self-Healing techniques are in charge of automatically detecting, diagnosing
and repairing localized software and hardware problems. There is a lot of work done on
recovering systems from a failure, but predicting these failures before they happen can
help us to prepare the system for these recovery processes. If we are able to anticipate
a failure, we can take some actions to prevent it or to attenuate its consequences. Some
works are done on self-healing considering that recovering systems can be more efficient
than prevent systems from failures, like Patterson et al. [38]. Anticipating the kind of
failure, the moment of failure and as most details as possible, we can set up the recovery
mechanism ready minimizing the impact of the process. E.g. works presented by Alonso,
Silva et al. [6, 5, 143] are about these system rejuvenation methods, by predicting crashes

23

24 CHAPTER 2. BACKGROUND

for web-service components and enabling replicas before crash. Prediction and anticipation
require some modeling. Works like Cherkasova [181], Cohen [48] or Barham et al. [20] try
to discover if a system is going to crash or not from its behavior by modeling it. While
Cherkasova [181] relates a methodology obtaining linear regressions for system exhaustion,
Cohen and Barham [48, 20] are about the system instrumentation in order to find a good
model for diagnosis purposes.

• Self-Configuration: Self-Configuration techniques are in charge of configuring components
and software of an autonomous system following high-level policies, often being these com-
ponents from different vendors and providers. This makes installing and configuring them
in a proper way a consumption of time and effort for operators, also finding the best inte-
grated configuration is hard enough. There are some examples of works on self-configuring,
like the ones from Wildstrom et al. [175, 174, 173], where reinforcement learning techniques
are used to change configuration of software components, looking for improving execution
of these components.

• Self-Optimization: Self-Optimization techniques are in charge of automatically improving
the system goals, usually performance or economic values where performance is heavily
implied. The decisions to be made are usually deciding the best values for parameters,
selecting the best strategies to be followed, enabling the best policies to reach the system
goals, or finding solutions to General Allocation Problems like scheduling tasks. As having
a lots of manually set parameters, variables and decisions to be made over a given system,
as it becomes complex these decisions become harder; another reason to automate the self-
optimization tasks and proceed through “intelligent management”. Self-Optimization is a
challenging area where several works have been done. Examples are in Parashar, Chandra
et al. [183, 42], where frameworks for self-managing like PRAGMA are extended by using
predictive behavior models for applications and system status, adapting the policies on
runtime. The challenge here is on perform this optimization over heterogeneous workloads
and heterogeneous resources. While in systems where the owner is always the same (e.g.
a grid system), optimization could be easier to perform as it was possible to know the
dimensions of the whole domain and have most of the information of it available, but now
in Cloud systems the optimization becomes harder as management systems may not know
its full shape, or parts of the information required to manage the system is not available;
another reason to proceed with data mining and machine learning techniques, exploring
the data finding information and knowledge.

• Self-Protection: Self-Protection techniques are in charge of detecting attacks towards the
system or cascade failures, letting management to react, warn or anticipate them, prevent-
ing a system-wide failure or data and information compromise. They are also in charge of
preventing intrusions, malicious behaviors, exploitation of errors or any kind of happening
that may harm the system or the users of such system. Recent advances have helped to
take some of the burden of security maintenance of overloaded system administrators, such
increasing of usage of automatic intrusion detection systems, secure embedded processors,
proactive security measures, and automated virus response mechanisms, but there is much
more to do. In the work of Chess et al. [46] some keys to be researched in the field of
self-protection are summarized: ways to represent the security and privacy policies, rep-
resent the security states and trust relationships, resistant algorithms against fraud and
persuasion, taxonomies for communication the privacy states and policies, methods for dif-
ferentiating normal status and attacks and ways to construct autonomic elements so that
their collective behavior is both trustworthy and trusted. Currently most of works on au-
tomated security are focused on Intrusion Detection Systems and Anti-Spam and Flooding
Avoidance. E.g. works presented by Lee et al. [95] exposing IDS frameworks being updated
using Data Mining techniques, incorporating new policies and patterns when needed. Or
works presented by Y.M.Wang et al. [172] exposing frameworks to avoid spammers to pro-
mote their spam links into top search results using reinforced statistic techniques. Further
works presented by Parashar, Berral et al. [178, 32] with methods for enhancing Intru-
sion Prevention Systems to avoid network and web-services flooding attacks automatically

2.1. RELEVANT CONCEPTS ON AUTONOMIC AND CLOUD COMPUTING 25

from collecting and sharing information between agents in the network, learning patterns
of attacks, predicting them and reacting.

Most of the current advances on Autonomic Computing are converging on the usage of more
sophisticated techniques than simple statistical models and heuristics, introducing techniques
from approximate algorithms, artificial intelligence, modeling and prediction, and data mining.
Approaches with more capabilities by understanding better the system and making automatically
decisions, and with better adaption to changes and noise.

2.1.2 About Cloud Computing

Nowadays the concept of Cloud has become one dominating paradigm in the externalization of
information and IT resources for people and enterprises. In the “Cloud” business, the concept of
“Cloud” can be defined as a “resource pool with on-demand resource allocation”, a pay-as-you-go
everything-as-a-service system, spread on an abstract infrastructure as seen by the common user
(also more details for its definitions are found on [106]). The fact is that the Cloud is actually
a name for the abstract concept of having data, web-services and computing resources available
through the Internet, with no need of knowing details of the supporting infrastructure, but just
a user-friendly interface to manage them. The infrastructure maintaining these systems, given
their complexity and operational costs must be organized and managed in the most optimal,
secure, robust and adaptable way. Again, the main focuses of Autonomic Computing.

The possibility of offering “everything as a service” (platform, infrastructure and services)
has allowed companies to move their IT, previously in private, owned data-centers, to external
hosting. Resource renting and Cloud resource offering has become an important business for
IT companies, who have started, in the late 2000’s, the business of offering infrastructures,
platforms and services as a service. For companies that have IT needs, it is cheaper and more
comfortable to rent resources (computational, storage or back-end and front-end services) than
own IT equipment, paying just what the client company requires. As a consequence, the Cloud
led to the creation of computing-resource provider companies, starting a datacenter race offering
computing and storage resources at low prices. E.g. companies like Amazon with its EC2 and
S3 [8], Google with its AppEngine and Cloud services [1], and IBM with the Blue Cloud [84],
offer these resources with costs lower than a company buying and maintaining new IT that will
be used temporarily [56].

The datacenter administration will essentially try to maximize its revenue by executing as
many hosted services as possible, but is constrained by the its infrastructure: If too many
services are accepted, quality of service will degrade, leading to immediate penalties as per
Service-Level-Agreements (SLA), and eventually to prestige and customer satisfaction losses.
Additionally, power consumption costs are becoming a growing portion of the operationg costs,
besides increasing societal and environmental concerns. Naturally, high job throughput and user-
satisfaction can be obtained by deploying a large amount of resources, but this incurs in high
resource usage costs.

So, research is also on Cloud management, as it actually relies on (multi) datacenter infras-
tructures to be managed, optimizing processes and operations, always helping the operators and
always transparent to its users. Works on self-management of these multi datacenter infrastruc-
tures are generally oriented to manage workloads, broker resources, and provide high quality
of service to the resource customers. A large part of this work is focused on the middlewares
managing the different Cloud layers (E.g. [118] for media file storage, [117, 122] for job and
virtualization management), and different Cloud kind of works and workloads [40].

Resource Brokers

In the driving middlewares is where the autonomic computing techniques are applied. Resource
brokering is in charge of manage resources to be given/obtained for each job or virtualized
service. High-level brokers manage resources according to SLA policies, while low-level brokers
attend to CPU/Memory/IO costs, distribution of the systems, system overheads for migration,
virtualization, and running resources costs. All in all, the goal for resource brokers are to
optimize the resource usage and assignation. This is why one commonly kind of resource broker

26 CHAPTER 2. BACKGROUND

used is the economy-driven resource managers [37, 35, 171], where resources are driven, shared
or allocated following market-oriented policies. Several works developed frameworks or methods
for this economic resource management, e.g. projects Grace, Sorma, Spawn, Tycoon, etc.

The Sorma project [113, 120] presented an economic approach for efficient resource alloca-
tion in a Cloud, using market mechanisms. Their ”Decentralized Local Greedy Mechanism”
satisfies desirable economic properties for each supplier and requester promising to enable an
efficient allocation of resources. With this mechanism, the participants in a network (companies,
research institutes, etc.) try to selfishly maximize their individual benefit from participating in
the network, and setting the right incentives for suppliers and requesters, for an efficient usage
of the limited available resources, motivating the participants to cooperate and provide their
idle resources. The Grace project (Grid Architecture for Computational Economy) [36] also pre-
sented another economy-based architecture for efficient resource allocation, where both resource
owners and users maximize their objective functions, defining their charging and access policies,
interacting with the resource pool by defining their requirements through high-level tools.

There are more frameworks (like [93], etc.) apart of these two, all of them with the purpose of
allocating resources in a fair way, where clients and providers specify their conditions in service
level agreements, and the brokers try to satisfy all the agreements as most as possible, considering
the profit for each exceeded or violated agreements and other cost-benefit variables. Further,
apart of market-based metrics, also other works treated the resource provisioning based on other
ones, not only on the cost of the resources, like the waiting time for the resource or the runtime
execution time of the workload [137].

2.1.3 Related Concepts: the Grid and Virtualization

Some concepts should be explained or visited to understand the fundamentals of Cloud Com-
puting research area: “the Grid” and Virtualization techniques.

The Grid

Before the idea of “Cloud” developed, the research on managing distributed systems was focused
on Clusters and “Grid” systems. I. Foster and C. Kesselman defined Grid systems as a hardware
and software infrastructure that provides dependable, consistent, pervasive and expensive access
to high-end computational capabilities [63, 64]. They also designed a list of requirements or goals
for what a Grid system should be able to do:

• Coordinate resources that are not subject to centralized control, integrating and coordi-
nating resources and users within different control domains.

• Do it using standard and general-purpose protocols and interfaces, built from multi-purpose
protocols and interfaces that address such fundamental issues as authentication, authoriza-
tion, resource discovery, and resource access.

• And deliver non-trivial qualities of service to be used in a coordinated fashion to deliver var-
ious qualities of service meeting complex user demands so that the utility of the combined
system is significantly greater than that of the sum of its parts.

The concepts and implementations of the Cloud have inherited many of the properties, concepts
and problems from the Grid systems.

Virtualization

Virtualization is a technique (or set of techniques) to run processes, jobs, guest OS and also
“machines” inside one or several Physical Machines (PM). The main capabilities of virtualization
are to provide a confined environment where applications can be run, limit hardware resource
access and usage or expand it transparently for the applications, adapt the runtime environment
to the application, use dedicated or optimized OS mechanisms for each application, manage
the whole applications and processes running within Virtual Machines (VM). These virtualized
elements can be migrated among physical machines with different relying infrastructures or OSes,

2.1. RELEVANT CONCEPTS ON AUTONOMIC AND CLOUD COMPUTING 27

dimensioned dynamically defining the size of the virtual machine (resources that will demand
to the physical environment), also treated as a process for the host operating system. For more
information about the architecture of VMs see [144], among other works on that area. Here we
summarize the basic aspects of current products and solutions, obtained from [168]:

• Operating system-level approaches: these approaches allow to virtualize a physical server
enabling multiple isolated and secure virtualized servers to run on a single physical server.
No guest OS are used and applications run in a specific view of the only one OS as if they
were alone running on the operating system. Some of these approaches are VServer [101], a
kernel patch based on partitioning, using a ”security context” inside a UNIX OS, FreeBSD
Jail [136], and also Solaris Containors, OpenVZ, etc.

• Emulators: Virtual machines simulate the complete hardware used by a guest OS. VMware
[169] is a virtualization software for machines based on x86 architecture, where virtualiza-
tion works at the processor level, the virtual machine privileged instructions are trapped
and virtualized by the VMware process and other instructions are directly executed by the
host processor. All hardware resources of the machine are also virtualized. Other solutions
are Microsoft VirtualPC, Oracle VirtualBox, QEMU [23], etc.

• Operating system in user space: These approaches provide virtualization through the exe-
cution of guest operating systems directly in user space. Some approaches are User Mode
Linux [82], that allows launching Linux OS as applications of a host machine running Linux,
and also coLinux, Adeos, L4Ka based projects, etc.

• Paravirtualization: the paravirtualization technique does not necessarily simulate the hard-
ware, but instead offers a special API requiring modifications to the guest OS. The hardware
resources are abstract resources not necessarily similar to the actual hardware resources of
the host machine. Xen [21] is a virtual machine monitor for x86 architecture, allowing the
concurrent executions of multiple OS while providing resource isolation and execution con-
finement between them. Other projects using this paravirtualization approach are Denali
and Trango.

• Hardware-assisted virtualization: this virtualization allows to run unmodified guest OS
giving to the VM its own hardware. This is possible thanks to an increase set of processor
instructions provided by Intel VT (IVT [86]), AMD (AMD Pacifica x86 virtualization [9]),
IBM (IBM Advanced POWER virtualization [83]) and Sun (Sun UltraSPARC T1 hyper-
visor [107]).

The design of Cloud systems take advantage of the possibility of virtualizing services, jobs
and processes, as one physical machine can hold several of them. Further, services and HPC jobs
running in the Cloud can be easily run in isolation, tailoring their resources and consumptions,
moving them across the network of multi-DCs for placing them in the most proper location, and
stopping and resuming the virtual machines conveniently. Encapsulating these jobs in virtual
machines, the system manager can migrate the job across the network of datacenter looking
for proximity of services toward clients (improving the quality of experience), scheduling the
job with the required resources (speeding up job deadline or enforcing resource agreements, and
thus improving quality of service), or placing the job in a place where operational costs can
be reduced (e.g. energy availability, looking for cheap available energy or green energy, further
applying consolidation techniques to reduce resource consumption).

Virtualization has to pay usually overheads, as it implements a software layer in the OS
software stack; also VM operations like VM migration requires time to get accomplished, where
the service or job is not running or providing service. Although that, as we see in works using
virtualization, if well used it becomes an affordable cost in front of all the capabilities this
technology provides.

2.1.4 Cloud Resource Business

The main actors on the datacenter business model are:

28 CHAPTER 2. BACKGROUND

• The datacenter manager, or cloud service provider, wants to maximize its final revenue by
optimally using the physical and virtual resources she has provisioned. To this end he/she
has a certain freedom to allocate his customer’s tasks to physical and virtual resources over
time.

• The Cloud customers want to run their services on the cloud. In order to do this, they
negotiate with the the cloud provider a certain amount of quality of service or service level
agreements that they deem sufficient for their desired level of client satisfaction.

• The service clients want to accede to the services on the Cloud, paying the service owners
for it. Client satisfaction affects whether the service will produce revenue or not.

Typical commercial datacenters are designed so that customers can run web-services running
without knowing details of the infrastructure. Customers pay the providers on a usage-basis, and
providers ensure that the web-services will be running according the service level agreements,
negotiated by customers to accommodate their clients requests at sufficient satisfaction level.
The datacenter contains physical machines, and each one holds virtual machines containing data
and services from different customers. Virtualization is used to ensure isolation of customer and
client contents, privacy of sensitive data, and allow for VM and service migration among PMs.
The provider enables a VM for each customer, adjusts the granted resources for the web-service
given the QoS, and set it into a PM with these available resources. His/her goal is to maximize
the profit of each VM fulfilling the QoS and reduce the cost of running resources. Figure 2.1
shows the business infrastructure.

Figure 2.1: Commercial hosting infrastructure

A middleware software such as OpenNebula [147], Eucaliptus [122] or EmotiveCloud [162]
is typically used in cloud-like architectures in order to manage PMs, VMs, network elements
and traffic. Figure 2.2 shows the typical cloud middleware infrastructure. An agent on each
PM controls VMs and monitors PM resources and VM requirements; the decision maker, on the
machine hosting the resource manager and scheduler, reads all monitored lectures and makes
decisions on a “Monitor/Analize/Plan/Execute” (MAPE) control loop [43]; also an agents on
the network gateways redirect and also monitor traffic.

2.2 Relevant Concepts on Green Computing

Energy-related costs have become a major economical factor for IT infrastructures and datacen-
ters because of the power’s price escalation. Companies are now focusing more than ever on the
need to improve energy efficiency. A new challenge has appeared besides the energy cost, the re-
duction of the carbon footprint, due to many EU regulations and campaigns demanding greener
businesses. Commercial electricity consumption is a major contributor to the rising atmospheric
CO2 levels and datacenters are one of the foremost parts of the problem. Energy costs are rising,
datacenter equipment is stressing power and cooling infrastructures, and the main issue is not

2.2. RELEVANT CONCEPTS ON GREEN COMPUTING 29

Figure 2.2: Virtualization middleware schema

the current amount of datacenter emissions but the fact that these emissions are increasing faster
than any other carbon emission. For this reason nowadays there is a growing interest in “Green”
datacenters and supercomputer centers [72].

In this area, the research community is being challenged to redesign datacenters, adding en-
ergy efficiency to a list of critical operating parameters that already includes service availability,
reliability, and performance. A large variety of power-saving methods has been presented in re-
cent literature. Two of the most representative ones, namely workload consolidation and turning
off spare servers, have been shown as an effective way to save energy. Server consolidation implies
combining workloads from separate machines and different applications into a smaller number
of systems (e.g. Figure 2.3). This approach solves some interesting challenges: less hardware
is required, less electrical consumption is needed for server power and cooling and less physical
space is required. Intelligently turning off of spare servers that are not being used is an obvious
way to reduce both power and cooling costs while maintaining good performance levels.

Figure 2.3: Consolidation Strategy

2.2.1 Green Computing Techniques

Power management in cluster-based systems is an emerging topic in the resource management
area. As explained in previous chapters, there are several works proposing energy management for

30 CHAPTER 2. BACKGROUND

servers that focus on applying energy optimization techniques in multiprocessor environments,
such as Lefurgy et al. [97] and Bianchini et al. [33]. Another proposal for load balancing for
power and performance optimization in this kind of environment can be found in Pinheiro et
al. [129]. Economical approaches are also used for managing shared server resources in e.g. Chase
et al. [44], where authors use a greedy resource allocation distributing a web workload among
different servers assigned to each service. This technique demonstrates to reduce server energy
usage by 29% or more for a typical Web workload. B.G.Chun et al. [47] proposes a hybrid
datacenter architecture that mixes low power systems and high performance ones.

Dynamic Voltage/Frequency Scaling (DVFS) is one of the techniques that can be used to
reduce the consumption of a server and minimize the total energy expenditure, as seen in Lee
et al. [96] and Horvath et al. [81]. Other works such as the presented by Elnozahy et al. [59]
propose adding other power management mechanisms to DVFS, as the dynamic turning off of
idle machines when the workload is low.

Khargharia et al. [92] introduce a theoretical methodology for autonomic power and perfor-
mance management in e-business data centers. They optimize the performance/watt at each level
of the hierarchy while maintaining scalability. The authors opt for a mathematically-rigorous op-
timization approach that minimizes wasted power while meeting performance constraints. Their
experimental results show near 72% savings in power as compared to static power management
techniques and 69.8% additional savings with the global and local optimizations. Petrucci et
al. [125] developed a mixed integer linear programming formulation to dynamically configure the
consolidation of multiple services/applications in a virtualized server cluster. The approach is
power efficiency centered and takes into account the cost of turning on/off the servers. This
turning on-off technique is also applied in by Kamitsos et al. [88], which sets unused hosts to a
low consumption state in order to save energy; also in energy concerned frameworks like GREEN-
NET [51], where hardware components are set-up/shut-down, driven by the schedule of jobs to
be run.

The advantages of consolidation using virtualization were pointed out, e.g., Vogels et al. [170],
while e.g. Nathuji et al. [112] widely explored its advantages from a power efficiency point of
view. This idea is also shown in Petrucci et al. [125], which proposes a dynamic configura-
tion approach for power optimization in virtualized server clusters and outlines an algorithm
to dynamically manage the virtualized server cluster. Following the same idea, Liu et al. [102]
aims to reduce virtualized data center power consumption by supporting VM migration and VM
placement optimization while reducing the human intervention. Based on these works, Goiri et
al. [69, 70] introduce the SLA-factor into the self-managing virtualized resource policies. Other
works presented by Verma [166, 167] also propose a virtualization aware adaptive consolidation
approach, measuring energy costs executing a given set of applications, also dealing with uncer-
tainty, where statistic methods based on correlation are used to predict usage and so consolidate
works. They measure SLA but do not take it directly into account when consolidating tasks.

Using heterogeneous workloads leads to SLA’s where some of the applications in the sys-
tem can have stringent conditions to be met. There have been several proposals into resource
capacity planning and dynamic provisioning issues for QoS control (e.g. [15, 138, 141]). Chen
et al. [45] states that new power saving policies, such as DVFS, or turning off idle servers can
increase hardware problems as well as the problem to meet SLAs in this reduced environment.
Also, Fitó et al. [62] show that decreasing the number of on-line machines obviously decreases
power consumption, but impacts the ability to service workloads appropriately, so a compromise
between the number of on-line machines and energy saving must be found.

Filani et al. [61] offer a solution that includes a platform resident Policy Manager which
monitors power and thermal sensors and enforces platform power and thermal policies. They
explain and propose how the PM can be used as the basis of a data center power management
solution.

We want to indicate that other works focusing on green computing and related techniques
will be introduced at the proper time in next chapters, comparing their approaches to the ones
presented in each work of this thesis.

2.3. RELEVANT CONCEPTS ON ARTIFICIAL INTELLIGENCE 31

2.2.2 Green DataCenters

Despite the optimization techniques for reduce energy consumption on datacenters, another way
to reduce the impact of computing on environment is to reduce the “brown energy” consump-
tion (energy generated from non-renewable sources). Focusing on the availability of “green
energy” (energy obtained from renewable sources) when building datacenter networks, is a way
to contribute on green computing, building the datacenters as independent of “brown-energy”
as possible. As a result of increasing societal awareness of climate change, governmental agen-
cies, non-profits, and the public at large are starting to demand cleaner datacenters. Multiple
companies have announced plans to build “green” datacenters (DCs at least partially powered
by renewable energy that they themselves generate). I.e. Apple is building a 20MW solar array
for its North Carolina datacenter [54], whereas McGraw-Hill has just completed a 14MW solar
array for its datacenter in New Jersey [55]. However, the rate of adoption of these sources of
energy in datacenters has been limited by their perceived high cost.

As far as we know, at this time no other works have considered the placement of exclusively
green powered datacenters at global scale. The closest related work is Goiri et al. [115], which
presents a framework to place Internet services oriented datacenters, characterizing different US
regions including costs of building, costs of utilities and distances to the end-user cities, looking for
placing the datacenters in an intelligent way saving in costs. Other works considered datacenter
placement by ranking potential locations based on operating costs, but without considering all
the relevant costs involved on datacenter deployment [2, 123, 149].

Works like Stewart et al. [150] focuses on how energy policies can manage the usage of
renewables (wind energy in their case) fitting datacenter workloads to wind energy production.
In that work they put emphasis in wind energy intermittent behaviour and the need of policies
to hold or move load according to the green energy production.

Considering load management depending on green energy availability, some works presented
approaches to schedule properly the deployment of load depending on the predicted amount
of available solar energy, like GreenHadoop [71] and Liu et al. [103]. The workload schedule
also considers the energy consumed by the cooling systems and the quality of service offered by
datacenters.

After datacenter placement, strategies must be applied to reduce the impact of brown or
maximize the usage of green energy. To that effort works like Le et al. [94] study policies from
exploiting datacenter with different variable electricity prices to the usage of datacenters near
green energy sources. Further, focusing explicitly on green energy, the strategy of “following the
renewals” has become a relevant topic on energy and computer science, and works like Lin et
al., Liu et al., Zhang et al. [99, 104, 182] present studies of algorithms to solve geographical load
optimizing the usage of renewable energy depending on availability, constrained by budgeting,
latencies and switching cost.

Finally, in the works presented by J.M.Pierson [127, 128] we see a detailed relation of elements
to be taken into account for green task allocation, as counting on all energy-consuming elements,
the sources of energy and the fluctuation of energy availability on time.

2.3 Relevant Concepts on Artificial Intelligence

2.3.1 AI and Intelligent Management

Even though adaptive and updatable mechanisms have been developed to optimize Cloud man-
agement, knowledge-based and data mining techniques are being applied to improve the resource
usage and improve quality of service. As the multi-DC systems are becoming more complex and
application requirements are increasing, Artificial Intelligence (AI) and also Machine Learning
(ML) can be applied to deal with problems difficult to solve, predictions and information retrieval,
letting the system to make these decisions with more autonomy in a treatable time.

To help with this intelligent management, several techniques and science fields are available.
The first ones are standard AI-based applications, using prediction and heuristic algorithms in
order to anticipate the system performance and act in consequence. Using generally expert
knowledge to tune the heuristics, it includes fuzzy logic, genetic algorithms and other AI space-

32 CHAPTER 2. BACKGROUND

search methods. The second ones are the Machine Learning-based applications, using observed
behaviors to create models that fit best to key behaviors, letting the system to create its predictors
and decision makers without so much expert knowledge.

This thesis is focusing on the application of machine mearning techniques in the decision
processes of the control loop in autonomic computing. The main works and solutions done
in this joint of fields are promising approaches proposing applications and solutions for specific
problems including the idea of supervised learning, reinforcement learning, and other data mining
or artificial intelligence methods.

2.3.2 Machine Learning Techniques

Although ad-hoc and holistic methods have been created to self-manage processes and executions
on the Cloud, the system is complex enough to have available experts defining the system piece by
piece, also operators capable to attend each event on the whole system covering all the problems
of uncertainty, lack of information or even worse, with noisy information. A very relevant solution
to solve the problem of modeling the system is Machine Learning, a subfield of Data Mining in
charge of learning models of very complex systems from examples and observations of the same
system, in an easy way to update the model, deciding the model to be enough general or specific,
also once the model is built the architects and operators may use the learned description of
the system to understand it better, finding weaknesses or flaws, or discovering new details or
techniques to improve it. Further, these models can provide classification or prediction for the
information we ofter require to drive our system. We base our work in a ML hypothesis:

Hypothesis 1. For each situation, we can have a model obtained by careful expert modeling
and tuning better than any ML-learned model. But, for each situation, ML can obtain semi-
automatically a model which is as good as or better than a generic model built without intensive
expert knowledge or intensive tuning work.

The usual procedure for applying machine learning methods is to collect examples of the
system (observations from the monitors, snapshots of the system status, etc.), extract from these
examples the attributes that most represent the system and can provide information towards the
classification or regression the model must learn, create the model that explains the system from
this set of attributes and examples, and from this model make predictions we can use to make
decisions.

Machine Learning techniques can be divided into supervised learning (like classification and
regression), unsupervised learning (discover the relationship between the input data), clustering
(find clusters from the examples), reinforcement learning (select the best decision from the past
experiences feedback). Here we focus on the supervised and reinforcement learning techniques,
directly applied to drive autonomic system.

Supervised Learning

Supervised Learning is the task of inferring a model from labeled training data, this data consist-
ing in a set of training examples. Each training example consists on a set of attributes defining
an observation or status of our system to model, and an output value. The learning algorithm
should create a model (a classifier or a regression function) relating an observation to its output
value, for any valid input, and generalize enough to predict unseen examples with a minimal
error. Figure 2.4 shows the basic schema of supervised learning.

The usual methodology for creating and testing models is the following: 1) Two (or more)
sets of data are used, the first one (or all sets except one) is used to create the model, while the
other set is used to validate it; 2) Observing the results, the model is selected as “good enough”,
or the modeling algorithm is tuned or the data is treated, in order to train again the model; 3)
When a “good enough” validated model is found, a test is done using a new set of data, not seen
or used before; 4) Observing the test results, the model is accepted, or the process must begin
again, not using this test data as new test data next time. This process ensure that any model
is not tested with the same data involved in the creation of the model.

The usage of supervised ML in self-management is quite extended as inference and prediction
can be a substitution for any ad-hoc function or model, but here a few examples are related.

2.3. RELEVANT CONCEPTS ON ARTIFICIAL INTELLIGENCE 33

Figure 2.4: Inductive Learning Schema

Works like the PUNCH framework [89] presented a instance-based learning, regression and near-
est neighbor algorithms are used to model and predict application performances, in order to
be able of allocating or scheduling the application in a Grid environment. Detecting failures in
resources and applications, and also discovering the root of failures have become a very inter-
esting area. Hofer et al. [78] presents an application-specific fault diagnosis based on indicators,
symptoms and rules, using a supervised classification to find the reason of the failure, and clus-
tering techniques to find what failures are result of the same cause. Other works presented by
Cherkasova et al. [181] and Alonso et al. [6, 5] focus explicitly on regression functions to detect
memory leaking, focusing on web-service applications also proposing techniques for detecting
the leaking component. These supervised learning techniques are usually combined with macro-
policies and utility functions. Works presented by Poggi, Moreno et al. [132, 110, 134] show an
scenario where, depending on e-shopping user modeling predictions, it is decided which users are
kept in the system and how, to reduce the number of machines are kept on-line or shut down,
saving energy while preserving the QoS for users providing benefit to the e-shop owner. Also
works presented by Wildstrom et al. [175, 174, 173] expose an approach for on-line hardware
reconfiguration using the Weka Toolkit [76] algorithms for rules and decision taking.

2.3.3 Relevant Machine Learning Algorithms

The machine learning algorithms we are using along the works presented this thesis are mainly
supervised learning algorithms, some of them for classification and others for stistical regression.
In order to select the proper algorithm at each time, we first look at the kind of value to predict:
if it is a qualifying value (a class or descriptive value) we are classifying, otherwise it is a value
indicating “a quantity of something” and we are doing a statistical regression.

Machine learning algorithms have different complexity levels and properties, also their tuning
and working methods are really different among them. Deciding which machine learning algo-
rithm we choose to solve a given problem does not rely only in which works better on it. For a
regression problem we start from the “simplest” algorithm, e.g. a Linear Regression method, and
if results are not favorable or good enough for us, we test more complex algorithms expected to
be more powerful and capable of learning. When a complex algorithm returns the same results
as a simpler one, we select the simpler one.

Here we present some of the algorithms we use along this thesis:

• Linear Regression: this algorithm returns the linear function that best fits given a set of
“explanatory variables” (our data attributes) with a “dependent variable” (the attribute
to be learned). Provided a set of inputs shaped as 〈x1, . . . , xn, y〉, the algorithm finds the
linear function f(~x) = c0 + c1 ·x1 + . . .+ cn ·xn = ŷ that minimizes the sum of the squared
error of each example instance (ŷ − y).

34 CHAPTER 2. BACKGROUND

• Regression Trees: algorithms like M5P and RepTree are decision tree algorithms that return
a value. These algorithms build a tree from a set of input instances of explanatory and
dependent variables, describing a set of rules for input instances are classified and provided
a quantitative value (for RepTrees) or a linear regression (for M5Ps). This is, a RepTree is
a decision tree with values on its leaves and an M5P is a decision tree with linear regression
on its leaves, built using information gain/variance methods (attributes in the tree are set
according the amount of uncertainty they solve). The M5P algorithm is specially useful
when modeling piecewise functions (as each leaf can represent a segment of such functions)
or non-linear functions that can be approximated by piecewise functions.

• Nearest Neighbors: this algorithm assumes that the input instances provided represent
reality as is. The algorithm memorizes the example instances with explanatory and depen-
dant variables, and when providing a new instance to predict its dependent variable, the
algorithm looks for the k most similar memorized examples. When classifying, it returns
the most common class among those k nearest neighbors, may be weighted by neighbor
distances. When predicting, it returns the most common value, the average value, the
weighted average value, . . . among those k nearest neigbors.

• Näıve Bayes: this algorithm is a classifier based on the Bayes rule, and assumes that ex-
planatory variables for each instance are statistically independent among them. Given a
set of input instances with explanatory and dependant variables, it computes the proba-
bility of each explanatory variable value conditioned to each class, the probability of each
explanatory variable value, and the probability of an instance to belong to a class. Using
the Bayes rule, given a new instance with explanatory variables, the algorithm computes
the probability of belonging to a class conditioned to the explanatory variables, and re-
turns the rank of classes by probability (so we can assume the instance belongs to the most
probable class).

When applying a machine learning algorithm we follow a training/validation process. First
of all we use a training dataset to create a prediction/classification model, and it is tested using
a second dataset different of the training dataset. According to this test, we tune the algorithm
until we consider the obtained model returns proper predictions. Then we apply a testing dataset
(different from any other dataset seen or used before) over the selected model to see if the model
is valid for new unseen data.

For prediction models we evaluate the results by looking at the mean absolute prediction
error (or the mean squared error) and standard deviation of prediction errors, so we know how
well the model is predicting and how disperse are the prediction errors. For classification models
we build a matrix with the values of classification as 〈Class, ClassifiedAsClass〉: this matrix
(called “Confusion Matrix”) shows the Accuracy as the instances classified correctly (sum of the
matrix diagonal); also we can compare the instances of a given class against the instances of
such class correctly classified (known as Recall), and the instances classified as a class against
the instances of such class correctly classified (known as Precision).

In our works here presented we are using the implementation of such algorithms from the
WEKA Toolkit [76] and the R [80] Statistical package.

Chapter 3

Previous Experiences with
Machine Learning and
Web-Services

The contributions detailed in this chapter are a set of preliminary experiences with machine
learning and web-service modeling, which allowed us to see the connections between autonomic
computing and machine learning, gain experience in the field, and sketch the goals of this thesis.
They constituted the Diploma of Advanced Studies of Toni Moreno (2008), the PhD thesis of
Javier Alonso (2011), the forthcoming PhD of Nicolás Poggi, and our own undergraduate project
and Master in Sciences degree thesis. Focusing on the idea of self-management, we did some
work to solve real autonomic computing problems like web-service user admission and balancing,
around the concept of starting-up and shutting-down hosting machines on a economic saving
policy, or denial of service protection and reaction policies. All of this using machine learning
models and predictions, willing to automate the modeling and adjusting process. These works
have contributed in finding the way of how an “intelligent” autonomous controller component
should be structured. All these works are summarized in this chapter, explaining the most
important details and some valuable results.

The first works [109, 131, 133, 135] focus on applying machine learning on user modeling and
behavior prediction, and user admission macropolicies. Here we have a set of web-service hosting
machines that must be set up or shut down for cost saving, being driven by a prediction of the
web-service client intentions (buyers, not buyers or automated bots). The cost of setting up or
shutting down a hosting machine is given by an utility function, calculating the cost of taking
each action, while predicting the number of users willing to buy inside the system.

Other preliminary works focused on self-protection [32]. In particular, introducing a novel
method for distributed systems to defend themselves against overwhelming distributed denial of
systems (DDoS). The main problem in this scenario is the data collection and reaction mecha-
nism, as all the information to recognize attacks is spread all over the whole network. Also the
system have to react in front of the attacks in a distributed way, as the components reacting are
routers, gateways and firewalls along the network.

Finally, a collaboration work [3, 4] focused on self-healing, applying machine learning to
predict resource exhaustion due to software bugs causing degradation. The main problem in this
scenario is to predict the time a web-service will run out of memory due to an unpredictable
memory leaking, so it can be rebooted in proper time.

3.1 Our Previous Works on User Modeling

An approach to solve the web-site infrastructure scaling, counting on cost reasons and infrequent
client peaks, is presented in [109, 131, 133, 135]. The approach proposes to learn models for

35

36 CHAPTER 3. PREVIOUS EXPERIENCES WITH ML AND WEB-SERVICES

anonymous web user behavior in a real and complex website by learning from observed data.
The model is used to support decisions regarding the allocation of web-services users into hosts,
by admitting and discarding them depending on their predicted intentions, balancing the benefits
of user admissions and the costs of required resources to hold all the admitted clients. As a proof
of concept, to model the web-service users we focus on the features related to the visit and actions
taken by this one, that make him/her more likely to realize a purchase in the web-site. A user
that presents a behavior pattern oriented towards our goals (i.e. realize a purchase) must have
priority in being kept inside the system in case of service overloading. In this work we took as
metric the completed sessions that end in purchase.

For this we developed a framework prototype, named AUGURES, implementing the model
learning and the policies application to admit or discard users. Also we tested it in simulation
experiments performed from the weblogs from the servers of a high-traffic online travel agency
“Atrapalo.com” [18]. The experiments show that using AUGURES to prioritize customer sessions
can lead to increased revenue in at least two situations: the first one, when overload situations
occur; that is, the incoming transaction load exceeds the site’s capacity and some sessions will
have to be queued, redirected to a static site, or dropped; for this study, these should be mostly
non-buying sessions, while we try to admit most buying ones. The second one is when keeping
a server running has a quantifiable cost; in this case, one could try to group buying sessions a
small number of servers, possibly shutting down those other servers that would produce little or
no revenue.

3.1.1 The AUGURES Prototype

In this subsection we proceed to describe the architecture of the prototype AUGURES. Currently
AUGURES has two subsystems: an offline component (the learner) that obtains the historical
logfile and produces a predictive model or predictor ; and a real-time component, the selector,
implemented as a service that runs along the session manager of the firewall. The selector
analyzes the incoming requests, runs them through the predictor, and outputs the priority along
with other static information for the session. These two subsystems are presented graphically in
Figure 3.1.

Figure 3.1: AUGURES architecture

The input for the offline component is the logfile produced by the web-site logging module,
containing non-ambiguous session and page actions/tags as historical data, which is first cleaned
and reorganized by a preprocessor. The preprocessor produces an intermediate file with one

3.1. OUR PREVIOUS WORKS ON USER MODELING 37

line for each transaction. These lines are largely computed independently from each other, so
they do not contain information about the user navigational pattern; that is why we call the
information in this file static. Next, this file is enriched with dynamic information reflecting the
user navigation sequence, relating the different transactions of the same session. This is done by
computing a Markov model for each value of the class, in our case buying and non-buying; the
prediction of these models for each individual request is added as extra information to each line of
the preprocessed file. Finally, this enriched dataset is passed to a learning module that produces
a predictor, some mathematical function that, given a request, assigns it a buying probability.
More details are given in the following subsections.

The real-time component, the selector, runs side-by-side with the session manager of the
firewall. When an incoming HTTP/S request arrives, the selector reads the entry produced by
the firewall, retrieves from a database existing information about the user and session (if any),
and then evaluates the request through the predictor, the (offline built) model. The result is
a predicted probability of purchase, which is written to the firewall’s active session table along
with other useful information such as: current load, server conditions, and enterprise policies.
This information can then be used by the firewall (in ways outside the scope of this paper) to
prioritize and even discontinue some of the sessions according to the current load and policies.
We remark that the firewall is not a part of AUGURES: it is often a complex, and very sensitive,
part of the infrastructure so we do not aim at replacing it. AUGURES, however, provides
additional information to the firewall which helps it in taking informed decisions rather than
blind or random ones.

In contrast to the selector, which has a real-time requirement, the offline component can be
executed at scheduled intervals to rebuild the predictor (daily, weekly, etc.) at periods of low
load, and even in an off-site machine. Therefore the requirements of speed and low memory
use are not a limitation for this component, while the real-time part needs to be as efficient as
possible.

The Preprocessor: Generating Static Information

The goal of the preprocessor is two-fold: First, it should clean the logfile of static content i.e.
images, CSS, javascript or other media files. It should also be cleaned of irrelevant and non-
user-initiated transactions, such as AJAX autocomplete controls, background checks and offsite
requests via web services (Business-to-Business communication). The second goal is to add
information that cannot be derived from the logfile only, such as background information on
previous sessions and, if available, user details form the company’s customer database.

The preprocessor reads the log and produces one output line for each input transaction,
producing a dataset relevant to learning containing the following fields:

• Date and time as a timestamp

• The tag, action performed by the page or non-ambiguous URL

• Whether the user has already logged in the system during this session

• Whether the customer is a returning customer, retrieved from cookies or matching IP
address

• Whether the customer has purchased in the past, and if so how far back

• Session length so far, in number of transactions (clicks)

• The referer tag, the tag of the previously visited page, this is an external page for the first
click of each session

• The class assigned to this session, that is, what the “correct” prediction should be for this
log entry, In our case, there are two class values: buyer and non-buyer

Note that all fields except for the class can be computed from information in the previous en-
tries of the log, or from separately stored information. The class, however, can only be computed

38 CHAPTER 3. PREVIOUS EXPERIENCES WITH ML AND WEB-SERVICES

by looking forward in the same session, and checking whether it contains any tag indicating pur-
chase. Clearly, this is not possible in the online process, since this information is precisely what
we are trying to predict. Thus, the class can only be computed in datasets with past information,
those used for offline learning.

Generating Dynamic Information

We use the information obtained from the user’s navigation sequence as the dynamic information
of the session; it is the sequence of URLs followed by the user. Unfortunately, most machine
learning algorithms are not well adapted to dealing with variables that are themselves sequences.
In AUGURES we propose to use high-order Markov chains to address this issue.

A Markov chain describes (is) a probability distribution on the set of all finite paths along a
finite set of states S. In general, for a path s1s2 . . . sn and any probability distribution we have
the following rule

Pr[s1s2s3 . . . sn] = Pr[s1] · Pr[s2 | s1] · Pr[s3 | s1s2] · · ·Pr[sn | s1 . . . sn−1].

For general distributions these probabilities can be all distinct. The assumption in a kth order
Markov chain is that, given any previous history, only the k most recently visited states affect
the future transitions, formally

Pr[sn | s1 . . . sn−1] = Pr[sn | sn−k . . . sn−1], for n− k ≥ 1.

As an example, in a Markov chain with k = 2 the rule above simplifies to

Pr[s1s2s3 . . . sn] = Pr[s1] · Pr[s2 | s1] · Pr[s3 | s1s2] · Pr[s4 | s2s3] · · ·Pr[sn | sn−2sn−1].

Therefore, a k-th order Markov chain is described by giving, for each state s ∈ S and path p of
length at most k, a probability that the next state is s given that the k last visited states are
those in path p. This implies that the distribution given by the Markov chain can be specified
by giving at most |S|k+1 numbers, rather than infinitely many.

Furthermore, given a set of data consisting of paths along S, one can build a kth order Markov
chain that approximates their distribution as follows: compute all the empirical probabilities
Pr[si+1 | s1 . . . si] for 0 ≤ i ≤ k on the data. By the discussion above, these figures are enough
to approximate Pr[p] for each path p of every length. Of course, whether the figure computed in
this way approaches the real probability of p in the source of the data depends on 1) the amount
of training data available (the more data, the better approximation), and on 2) the degree to
which the Markovian assumption is valid for the source.

In our methodology, we define the set of states S to be the set of tags in our log data.
Then, for some parameter k, we create a k-th order Markov chain for each of the classes, each
one modelling the typical sequences of tags (requests) for that class. In our case, we train two
models: one for buyers and one for non-buyers. Given the path followed in the current session,
these two chains can be used to compute probabilities Pr[p | buyer] and Pr[p |nonbuyer], where
p is the sequence of previous k tags in the session. Using Bayes’ rule, we can then estimate the
converse probabilities Pr[buyer | p] and Pr[nonbuyer | p]. For example,

Pr[buyer | p] = Pr[p | buyer] · Pr[buyer]/Pr[p]

where we approximate Pr[buyer] as the fraction of buyers in the data, and Pr[p] can be ignored
because what matters really is the ratio of Pr[buyer | p] to Pr[nonbuyer | p]. That is, given that
the user has followed this path, the Markov chains guess the probabilities that later in the future
s/he buys or does not buy. At training time, these two figures (the buying and non-buying
probabilities) are added as new variables to the line describing the current transaction in the
training set. At prediction time, these two figures are added as new variables to the information
passed to the predictor for the current transaction.

We have used k = 2 (second-order Markov chains) for the experiments reported in the next
sections. After some experimentation, this value seemed to provide the best results ono our
attemps. It is intuitively clear that remembering the last two visited pages gives more information

3.1. OUR PREVIOUS WORKS ON USER MODELING 39

than remembering only the last one. On the other hand, as k grows, each individual path is less
frequent in the data, the approximations of the probabilities are coarser, and predictive accuracy
is reduced (i.e., overfitting tends to appear). This effect is especially harmful on buying paterns
which are rare on our datasets. In particular, k = 3 gave results comparable to k = 2, and
predictions were significantly worse for k > 3. This conclusion may, of course, be different in
other contexts.

Learning Module

The resulting sequence of transformed and enriched log entries can be treated as a dataset where
the order of examples is irrelevant and each example is a tuple of simple values (numerical
or categorical values). In this first prototype we have chosen the Näıve Bayes classifier as a
learning algorithm [76], for a number of reasons: 1) it is easy to understand, has no user-entered
parameters, and has very low CPU time and memory requirements, both for training and for
prediction; 2) in preliminary experiments [132], it performed about as well as more sophisticated
methods, such as decision trees and boosting; and 3) it assigns probabilities to its predictions,
rather than hard buy/non-buy decisions, and this is essential for our prototype. Naturally, there
is ample room for trying other and more advanced prediction methods in later versions, which
administrators can choose according to their data and available resources.

3.1.2 Experimental results

We tested the method using a dataset consisting in transactions collected over approximately 5
days (3.7 million transactions). We consider a transaction a user-initiated action (click) to the site
that he/she views as an atomic operation. To log user actions only, the dataset was produced by
the web-server logging mechanism; additional code was added at the end of each executing script
to log the transaction data after actions were executed. By doing so, the data is already cleaned
and more accurate. A session is considered as a sequence of transactions initiated by a user in a
definite timespan. We also discovered that some transactions are produced by automated bots,
i.e. crawlers or web fetching form other sites, of course never ending in purchase. We kept them
in the dataset as it is important that our system learns to identify these as non-buyers: since
search queries to B2B providers have a cost and the bots could be abusive or even malicious, they
should be assigned low priority or denied access. The relevance of B2B communication could be
studied afterwards, as it could be relevant to our web-service.

After building a classifier using the training dataset, we compute for each transaction in the
testing set a “true” buying/nonbuying label and a “predicted” label. Our ultimate goal is to use
these predictions for prioritizing sessions, so that low priority sessions can be queued, redirected
to a static page, or even dropped when the server is under heavy load condition. In our case,
since we are using the Näıve Bayes classifier, we have good control over the %admitted quantity.
Indeed, this classifier provides a probability of buying p(t) for each transaction t. Set some
threshold value T ∈ [0, 1], then we can decide to admit those transactions t such that p(t) > T .
By increasing T , we will make it more difficult for a transaction t to pass this test, hence we will
admit less transactions. Conversely, if we lower T , more transactions will be admitted. Once the
Näıve Bayes classifier is built, we use the training set to tabulate the function of T to the actual
%admitted, for future use.

A set of results was obtained applying the learned Näıve Bayes classifier (containing the
Markov models prediction) on the testing dataset (Figures 3.2). Recall represents the fraction
of real buyers that are admitted by the predictor, while precision is the fraction of predicted
buyers. There is a nontrivial relation between %admitted, recall, and precision. As we become
more restrictive in the number of admissions, we loose true customers, but at a rate smaller than
if we were choosing at random. Example given, if we choose to admit 50% of the transactions,
AUGURES will still admit 91% of those that will end in purchase (rather than 50% as we would
if we were selecting them randomly).

40 CHAPTER 3. PREVIOUS EXPERIENCES WITH ML AND WEB-SERVICES

Figure 3.2: %admitted vs. recall and %admitted vs. precision

3.1.3 Conclusions for User Modeling

When a peak situation occurs most infrastructures become stalled and throughput is reduced,
and to prevent this, load admission control mechanisms are used to allow only a certain number
of sessions, but as they do not differentiate between users, users with intentions to purchase
might be denied access. In this approach, we took data from a high-traffic online travel agency
and learned to predict users’ purchasing intentions from their navigational patterns.

In our experiments we are able to train a model from previously recorded navigational in-
formation that can be used to tell apart, with nontrivial probability, whether a session will lead
to purchase from the first click. The maximum number of allowed users to the site can be reg-
ulated, according to the infrastructure’s capacity and goal specification, by placing a threshold
over the predicted buying probability of incoming transactions. That is, the model can adapt
itself dynamically to the workload while maintaining reasonable recall and precision.

The relevance of this work towards the current thesis is a first approximation towards de-
cision making at web-service and hosting machines load distribution, minimizing the costs of
maintatining resources online while maintaining the revenue from clients given an exceptional
overloading situation. Also we got a first experience on applied machine learning, that although
being also included in the thesis of N.Poggi, the DEA of T.Moreno and also our own undergrad-
uate project, it is a relevant work done for this thesis as a guide to frame the next works done
here.

3.2 Our Previous Works on Self-Protection

In our work [32], we presented an approach to look towards the utility of machine learning
classifiers inside a self-controlled system and the capability of recognizing online network patterns.
Also this work had the component of cooperation among the distributed classifiers, so all the
information and activities involves a set of components that must be aggregated and coordinated.
This work is an extension of previous work by Zhang and Parashar [179], but including the
machine learning component to classify traffic as attack.

For this case of study we took Distributed Denial of Service (DDoS) flooding attacks as
example. The distributed mechanism presented in the work gathered information from each
important point of the system, sharing and using it to discover patterns with machine learning
techniques, that let the network stop and avoid a distributed attack, abuse, or flooding. And
what is more important, the mechanism let the network configure the traffic classification system
the best as possible by itself, using this example-based learning. Each element involved in the
mechanism computed its own local probability of abnormal behaviours and abnormal network
status, shared it with the neighbours, aggregated the received information to its own one, and
classified the received traffic with all the obtained knowledge. The method let each element
learn about the behaviour of its portion of network, adjusting its classifiers to its location in the
network and its usual traffic.

In that work we showed that an intelligent autonomic system needs a part of data obtaining,
a trained predictor able to classify the system status and some judgement to act in front the

3.2. OUR PREVIOUS WORKS ON SELF-PROTECTION 41

prediction. The relevance of this work towards the thesis relies in the fact that we can complement
the system information with new predicted one using machine learning, often required to know
in more detail the status of the system. Once it helps we can apply prediction mechanisms to
complement monitors and system statistics, as we will see in next chapters.

3.2.1 Distributed Data Collection

In front of distributed attacks, self-protection requires knowing what is happening along all the
system and network. While other kind of attacks and failures can be detected in single points
in the network, DDoS uses distribution techniques not only to launch a more powerful attack
but also to be undetected on any specific point, firewall, or bordergate node. To know that
an attack is going on, information must flow through the affected network area to warn all
the affected points. In this case, the required data must be collected from all the intermediate
network nodes, informing of abnormal behaviours and circulating the required feedback among
them, letting each element of our intermediate network have a local and a global vision about
what is happening. This information-sharing mechanism is composed by an overlay network
intercommunicating the intermediate nodes, and a detection mechanism able to record all the
signals of attack. These signals are transported with the complementary data captured from the
network to the prediction module in order to determine whether an attack is ongoing.

Sharing the Obtained Information

Our scenario is composed by a network, with bordergate nodes, intermediate nodes, and services
to be protected. The data to be collected must be obtained from all the network and for that an
overlay network is used for passing messages with the shared information. This overlay network
joins the most important nodes we want to use for the detection and packet filtering. The selected
nodes are equipped with the detection and classification capabilities, and are the responsible to
share information about abnormal behaviours and also information about previous detections of
attack made by another node.

Detecting Abnormal Behaviour

In order to detect the malicious traffic, the monitors must identify first changes on the traffic, such
as “amount of traffic towards a given node”, “relation between amount of traffic sent/received
to a particular service”, or others depending on protocols, message headers, or specific behavior
patterns. In that work we used only the first, amount of traffic towards a given node. For the
particular case of distributed flooding attacks which, by definition have “large amount of traffic”
as the only common feature, we worked specially using the variation on the amount of traffic
received towards a specific victim. We used CUSUM algorithm to determine when the traffic
towards a particular node changes significantly.

For that current setting, once a node is declared to be under attack, it is impossible to
distinguish the packets belonging to the attack from the legitimate packets still flowing to it,
because we define an attack not by the kind or intention of the packets arriving to a node but
by its number. In particular, it could happen that our system totally blocks the well-intentioned
traffic directed to e.g. a site that has become suddenly popular and sees an increase in the
number of visitor. In this sense, the method was not strictly speaking an attack-filtering one but
rather a method for protecting sites from dangerous overloads.

Prediction for Specific Traffic

After a sample of traffic is recorded, the information is used to classify that traffic at each node.
We collected the information from the same node and the aggregated information from other
nodes. For our approach we used the well-known Naive Bayes method as the classifier method,
which declares when an attack is occurring from the local information and the one obtained from
the neighbours. Also we used decision trees and feature selection algorithms in our first tests in
order to check the relevance of the obtained information, and see how useful was is aggregated

42 CHAPTER 3. PREVIOUS EXPERIENCES WITH ML AND WEB-SERVICES

information. However, we eventually decided to use the Naive Bayes method because it obtained
better accuracy and the method is simpler anyway.

3.2.2 Reaction and Feedback

Once threatening behaviour is detected locally (this is, on a single node), the traffic classified
as an attack is stopped and this information is shared among the neighbour nodes, letting them
aggregate this information with the one-self collected. An abnormal increase of traffic happening
in a single node can easily be result of a heavy connection but if this increase is repeated in
other nodes of the network simultaneously, the aggregation of this increase on the victim could
become a threat.

Details of the Reaction

The reaction in front of the attack is the result of evaluating, using the predictor, the two
kind of messages sharing the information: gossips, indicating suspicion of a flooding attack, and
warnings, indicating a high possibility of being under attack. Gossips transmit the knowledge
information about the attack, and warnings transmit the feedback of other nodes that also
detect and confirm the attack. Also, while gossips are sent to and received from neighbors in any
direction of the overlay network, warnings are sent only in the direction of (apparent) attackers,
in order to strangle attacks as close to the source as possible.

So, when a detector (the CUSUM algorithm for traffic volume towards a particular victim)
considers that traffic to a victim is increasing in an abnormal way, a gossip is spread among the
neighbors indicating that a victim can be under attack. In one extreme, all neighbors receive
the gossip, and in the other extreme, only the next-step-node receive the gossip. The message
contains the possible victim ID and the confidence, that is, the number of gossips received
referring to the same possible victim. Also, when a classifier determines that a victim is under
attack while classifying a message destined to it, a warning is sent to node from which the
message is received (i.e., towards the source of the attack), and sent too to the neighbours if
required. Each node uses the aggregated gossips and warnings received as inputs to its classifier.

In other words, the idea of this scheme is the following: With the warnings, victim-closest
nodes indicate to the bordergate nodes to stop the attack flow, and with the gossips, the source-
closest nodes indicate to the intermediate network nodes that the aggregated traffic is still at-
tempting to enter the network, instead of letting the attack flow in. The result should be both
to improve the accuracy in classification, but also, when an attack is detected, to stop undesired
traffic as close to the sources as possible, thus freeing resources in the network.

3.2.3 Summary of the Node and Network Algorithm

The detection algorithm at a node compares the accumulated sum of means for each time unit
with a threshold that may be different for each destination. When a traffic packet arrives, the
accumulated mean for its destination is updated and if it reaches the given threshold, the confi-
dence value for that destination increases, and the node sends gossips containing this confidence
value to p neighbours. Each node, at each time unit, accumulates self-confidence values and
neighbour confidence values. Also, for each time unit (empty time units included) means and
accumulated means are updated according the last time-unit statistics.

Also, for each message received the node applies its classifier to the message attributes,
adding the aggregated information from gossips about confidences for the destination, and the
alerts about the source, from warnings. If the classifier concludes that the message belongs to
an attack, the message is not forwarded and also a warning was sent to the backward node. The
evaluation algorithm is provided in Algorithm 1, and the schema for the information spreading
is shown in Figure 3.3.

The threshold for a destination node should be such that it indicates the maximum amount
of traffic that the node can reasonably handle. This number can vary wildly among nodes. For
example, current routers can process several million packets per second, while a few thousand,
or even a few hundred, packets per second may be enough to damage a server if these packets

3.2. OUR PREVIOUS WORKS ON SELF-PROTECTION 43

Algorithm 1 Message evaluation algorithm in each node
for each received message do:

if accumulated mean > destination threshold then:

gossip[destination] ++

end if

if time unit changes then:

if gossips[destination] > 0:

send (destination,gossip[destination]) to neighbour node

end if

update the traffic mean and accumulated mean

clean gossips and warnings

end if

evaluate line <message, gossips for dest, warn for src>

if classified as attack then:

warning[source]++

send (source,warning[source]) to backward node

else

forward message to destination

end if

end for

Figure 3.3: Detection and Reaction Mechanism

correspond to expensive requests. Thus, we expect these thresholds to vary by several orders of
magnitudes among nodes in a real network.

Experimentation Results

We tested the mechanism with ad-hoc scripts and more realistic simulations, using different ratio
attacks and different threshold for the detection algorithm. We performed experiments assigning
all nodes the same threshold and also assigning internal nodes (routers) a threshold 100 times
larger than terminal nodes (servers). We also wanted to check that our mechanism is able to
detect both massive-scale attacks and small-scale ones. We have thus run the experiment with
an attack that is 100 times the normal volume of traffic with the victim and with an attack that
is only 2 times the normal volume of traffic with the victim. The possible dangers were, in the
first case, that still too many packets filtered through the network and reached the victim and,
in the second case, that the attack is confused with normal traffic and is undetected. The results
in Figure 3.4 show the four combination of these two values for these two parameters, and show
that these two dangers are actually avoided.

The number of gossips and warnings vary depending on the threshold set for the CUSUM
algorithm. When giving the intermediate network a higher threshold value, the closest nodes
to the server detected the major part of the attack and sent gossips when they were really
overwhelmed. The intermediate nodes detected the attack guided by the closest nodes when

44 CHAPTER 3. PREVIOUS EXPERIENCES WITH ML AND WEB-SERVICES

Classified as → Legitimate Attack
Really ↓
Legitimate 20000 0
Attack 300 20000

(a) Attack Ratio = 2; Same Thresholds

Classified as → Legitimate Attack
Really ↓
Legitimate 22800 0
Attack 0 21000

(b) Attack Ratio = 2; Interm. Thresholds =
Threshold * 100

Classified as → Legitimate Attack
Really ↓
Legitimate 250000 0
Attack 21000 13500

(c) Attack Ratio = 100; Same Thresholds

Classified as → Legitimate Attack
Really ↓
Legitimate 284000 0
Attack 2000 13500

(d) Attack Ratio = 100; Interm. Thresholds =
Threshold * 100

Figure 3.4: Confusion Matrix on Attack Ratios and Thresholds

they received these gossips and warnings, causing less false negatives. The classifiers on the
intermediate nodes also learned to react with less gossips in the intermediate network. We
observed that the intermediate nodes have higher accuracy and less false negatives when having
a higher detection threshold than the closest nodes. Also we tested higher threshold ratios
(>100), but the number of gossips in the intermediate network is so reduced that some classifiers
only memorize the attack sources for the training, invalidating the learning process; this problem
can surely be solved by a slightly more involved learning algorithm. As a detail, we observes
that there are no false positives. As we cannot detect, by now, a legitimate request to the victim
from an attacker during an attack, we did the tests without introducing this kind of connections.

Finally, we observed that the Naive Bayes classifier achieves high accuracy (above 95%) and
all classification mistakes are false negatives, that is, some attacking messages are let through.
We observe no false positives when no attack is occurring, all traffic arrives to the destination
service. Moreover, most of the mistakes in one node are corrected in the next node in the path
to the victim.

3.2.4 Conclusions for Self-Protection

In this work we saw how to complement a previous work of flooding detection (intrusion detection
system) towards a mechanism to detect and prevent flooding (intrusion prevention system), using
machine learning mechanisms. The mechanism is able to stop all flooding traffic close to the
source, freeing the intermediate network of flooding traffic and preventing service overload during
the attack. All in all, the network blocked flooding traffic with accuracy above 95%, with no
false positives. The false negatives (attacking messages not classified as such) at the bordergate
nodes were stopped in the intermediate network, but far enough from victim service.

The data used here is as simple as the aggregation of counters all around the network, but
the useful contribution was the use of this distributed information recollection for train and run
the classifiers and have knowledge of the system status from all the points of the network, react
in front of the bad behaviours, and also use the information of the action to reinforce all the
decision elements of the system.

The conclusion of this work for this thesis is that machine learning methods can provide
improvement to complex and distributed systems, as the system is able to provide information
of its status or the information about the load it must hold. This work also was presented as our
Master thesis.

3.3 Collaboration Work on Self-Healing

In our work [3, 4] we presented an approach on applied machine learning towards predicting the
time to crash for a web-service, due to memory leaking. This is another example of how we can
apply machine learning to predict consequences on a web-service environment, letting us time

3.3. COLLABORATION WORK ON SELF-HEALING 45

to react in front of an unwanted situation, like degradation of the quality of service or crash of
the service itself. In this work, we focus on a software aging prediction model based on M5P
algorithm and its evaluation in front of a varied and complex software aging scenarios, predicting
the resource exhaustion time.

3.3.1 Software Aging Scenario

Because system complexity is growing day by day, the number of failures due (directly or indi-
rectly) to this complexity has also been growing, resulting in undesirable behaviors, poor levels of
service, and even total outages. The need to prevent or gracefully deal with outages of businesses
and critical systems is clear, given the industry huge loss due to the downtime per hour. Studies
like [158, 58] reported that one of the causes of unplanned software outages is the software ag-
ing phenomena: the accumulation of errors, usually provoking resource contention, during long
running application executions,causing applications/systems hang or crash [74]. Software aging
has been observed in web-servers [13], spacecraft systems [151], and even military systems [105],
with severe consequences such as loss of lives.

Software rejuvenation, a set of strategies to deal with software aging, can be divided into
Time-based (rejuvenation is applied regularly and at predetermined time intervals, e.g. [161]) and
Proactive/Predictive-based strategies (system is continuously monitored and action is triggered
when a crash due to software aging seem to approach). If we can predict the crash and apply
rejuvenation actions only when required, we can reduce the number of rejuvenation actions.
Traditionally, software rejuvenation has been based on a restart of the application/system or
even a whole machine, but we can also micro-reboot [39], i.e. rebooting only the suspicious
web-service component. Predicting the time until resource exhaustion due to software aging is
far from easy, as its consumption may not be linear or change along time. It could be related
to the workload or be undetected due to granularity used to monitor resources. Even it could
happen due to two or more resources simultaneously involved in the service failure [41].

A lot of effort along modeling resource consumption has been concerned with capacity plan-
ning and predict resource exhaustion. In [48] Tree Augmented Naive Bayesian Networks are
proposed to determine which resources are most correlated to performance behavior, in per-
formance analysis and post-mortem analysis of the causes of Service Level Objective (SLO)
violations. In [180], Linear Regression is used to build an analytic model for capacity planning
of multi-tier applications, showing how it offers successful results for capacity planning and re-
source provisioning, even under variable workloads. In [160], authors use a semi-Markov reward
model using the workload and resource usage data collected from the system to predict resource
exhaustion in time. In [98], authors use time-series ARMA models from the system data to
estimate the resource exhaustion due to workload received by the system. In [11] evaluation of
three well-known ML algorithms: Naive Bayes, decision trees and support vector machines to
evaluate their effectiveness to model and predict deterministic software aging. These previous
works did not treat software aging changing with time, did not keep in mind to learn which
resource is involved in software aging, or did not test their approach against a dynamic and more
than one resource involved in order to evaluate the effectiveness of their approach.

Modeling and Prediction Assumptions

This work proposes to use ML to predict time until failure caused by software aging. Due to the
complexity of modeling these growing complex environments and with low knowledge a priori
about them, we decide to build automatically the model from a set of metrics easily available in
any system like CPU utilization, system memory, application memory, Java memory, threads,
users, jobs, etc. Among many ML algorithms and models available we have chosen to use the M5P
algorithm, included in WEKA package [76], a decision tree with linear regression on its leaves.
The rationale is that while a global behavior may be highly nonlinear, it may be (or approximate
by) a linear-per-parts function. This may well be the case for many system behaviors of the kind
we want to analyze, where the system may be in one of a relatively small number of phases,
each of which is essentially linear. A preliminary comparison of the M5P and other regression
algorithms like Linear Regression or Decision Trees on this scenario was presented in [5].

46 CHAPTER 3. PREVIOUS EXPERIENCES WITH ML AND WEB-SERVICES

The model is trained and validated using samples of different executions that finished in
crash. An important detail is that the model predicts time until failure if the state of the system
and workload do not vary in the future. If the situation changes the model has to be able to
recalculate the time until failure under the new circumstances. As variables we not only use direct
metrics but also derived ones to achieve a more accurate prediction. Some variables representing
the consumption speed of resources are computed using sliding window averages, collecting the
last n observations and calculating their averages, to smooth out noise and fluctuation. This n
is a certain trade-off and it must be set by considering the expected noise and the frequency of
change in our scenario.

We conducted a set of experiments to evaluate the effectiveness of the approach for complex
software aging scenarios. The prediction accuracy is shown used the Mean Absolute Error
(MAE). However, predicting exactly the time until failure is probably too hard even as a baseline,
so we also used as a accuracy indicator the Soft Mean Absolute Error (S-MAE), that counts
accuracy not from the real value but from a margin around 10% of the real time until crash
(named security margin). As the moments when crash is near imminent are more important
towards the rejuvenation mechanism, we have calculated the MAE for the last 10 minutes of
every experiment (POST-MAE) and for the rest of experiment (PRE-MAE). The idea is that
our approach has to have lower MAE in the last 10 minutes than the rest of experiment, showing
that the prediction becomes more accurate when it is more needed.

3.3.2 Prediction Experiments

Experimental Setup

The experimental environment simulates a real web environment, composed by the web applica-
tion server, the database server and the clients machine. We have used a multi-tier e-commerce
site that simulates an on-line book store, following the standard configuration of TPC-W bench-
mark [157], with Tomcat 5.5.26 servlets [14] and MySQL 5.0.67 [111], on a 4Core Intel XEON 1.4
GHz with 2 GB RAM. TPC-W allows us to run different experiments using different parameters
and under a controlled environment, allowing us to conduct the evaluation of this approach.
TPC-W clients, called Emulated Browsers (EBs), access the web site (simulating an on-line
book store) in sessions, a sequence of logically connected requests from the EB point of view,
with proper thinking times between requests. In our experiments we have used the “shopping
distribution” of the TPC-W set of workloads.

We have introduced changes into the TPC-W to simulate software-aging errors consuming
memory or java threads. Random memory consumption is produced by an altered servlet (TPCW
search request servlet) computing a random value between 0 and N, determining how many
requests will handle the servlet before the next memory leakage is injected. This makes the
variation of memory consumption to depend of the number of clients and the frequency of
servlet visits, so with high workload our servlet injects memory leaks more often, and with low
workload the injection becomes low. Thread injection is produced by calculating two random
values, one between 0 and M indicating how many threads are injected, and other between 0 and
T indicating the time until next thread injection. This injection is independent of the workload.

System information and used variables include elements from the load like the current through-
put, requests load, response time per request; elements like the cpu/mem/IO usage and charac-
teristics; further elements from the java virtual machine like the java heap usage and properties;
also elements from the Tomcat web-service like the number of threads, opened connections and
mysql connections. In order to train the model, the time to failure is labeled into the training
and validation observations.

Deterministic Software Aging Experiments

The first experiment was to evaluate M5P to predict the time until failure due to deterministic
software aging. We decided to inject a 1MB of memory leak with N = 30. We trained our model,
generated using M5P, with previous 4 executions with 25 EBs, 50EBs, 100EBs and 200EBs,
becoming 2776 instances. The M5P model generated was composed by a tree with 33 Leafs
and 30 inner nodes, using 10 instances to build every leaf. The four training experiments were

3.3. COLLABORATION WORK ON SELF-HEALING 47

executed until the crash of Tomcat, to let the M5P to learn the behavior of the system under
a deterministic software aging. Finally, to evaluate the accuracy of the model, we evaluated
the model built with these four experiments using two new experiments with different workload
(75EBs and 150EBs). Table 3.1 shows the results obtained. We can observe how M5P obtains
better results than simple linear regression due because it handles better the trend changes due
to the Heap Memory Management actions, even when we do not add the specific information.

Linear Regression M5P
75EBs MAE 19 min 35 secs 15 min 14 secs
75EBs S-MAE 14 min 17 secs 9 min 34 secs
150EBs MAE 20 min 24 sec 5 min 46 secs
150EBs S-MAE 17 min 24 secs 2 min 52 secs
75EBs PRE-MAE 21 min 13 secs 16 min 22 secs
75EBs POST-MAE 5 min 11 secs 2 min 20 secs
150EBs PRE-MAE 19 min 40 secs 6 min 18 secs
150EBs POST-MAE 24 min 14 secs 2 min 57 secs

Table 3.1: MAEs obtained predicting time until failure on deterministic software aging

Dynamic and Variable Software Aging Experiments

Our next experiment was to evaluate our model to predict progressive but dynamic software aging
under constant workload. We trained the model with 4 different executions (1710 instances): one
hour execution where we did not inject any memory leak and three executions where we injected
1MB memory leak with constant ratio (N = 15,N = 30 and N = 75 in every respective execution).
The model generated was composed by 36 leafs and 35 inner nodes, using 10 instances to build
every leaf. It was tested with an execution with injection ratios changing every 20 minutes. MAE
and S-MAE measures are adjusted to the moment injection rate.

In the experiments predicting time vs. Tomcat memory evolution during the execution,
we observed that while there is no injection, the predictor determines that the time to crash
becomes “infinite” (actually it returns “3 hours” periodically, standing for “very long time to
crash”). When injection begins, the Tomcat memory starts decreasing gradually and predicted
time to crash decreases. Important details are noticed, like some anomalies appearing in memory
consumption, as the Heap Management interferes spontaneously with the memory occupation.
Further, the sliding window introduces some delay in trend change detection.

Another detail found is when memory is almost depleted. Then, there is a moment where
prediction is not quite accurate, as the injection rate is so slow the model has trouble detecting it,
and it keeps the prediction almost constant. Furthermore, when the java memory heap is almost
full, the heap manager starts more often cleaning rutines interfering with our monitored values.
When the heap manager stops interfering, the predictor reacts again reducing the estimated
time until crash. The MAE and S-MAE obtained in this scenario was 16 min. 26 secs. and 13
min. 3 secs. respectively, which we believe is a quite reasonable accuracy. On the other hand
the PRE-MAE and POST-MAE were, respectively, 17 min. 15 secs. and 8 min. 14 secs. The
experiment was running for 1 hour and 47 minutes.

Software Aging Hidden within Periodic Pattern Resource Behavior

Our next experiment was to evaluate the model in front of a deterministic software aging masked
by a periodic pattern of memory acquisition followed by memory release. The experiment is
similar to the previous one, but now we control the periodic memory acquisition and release to
a 20 minutes phase, leaking memory at each one,so a crash is bound to happen after several
periodic phases. The workload is set constant with 100EBs, and the injection phase follows N =
30 and release phase follows N = 75, allocating and releasing 1MB each time.

This experiment showed us that the M5P model should be retrained after applying a more
detailed feature selection, following the conclusion extracted in [79], as the variables used for
previous models were now irrelevant and the model should focus directly on java heap monitor

48 CHAPTER 3. PREVIOUS EXPERIENCES WITH ML AND WEB-SERVICES

variables only. The new model was formed by 17 inner nodes and 18 leafs. For this scenario,
the time to crash is linear and the Java Heap memory is being consumed and released in every
phase until exhaust the memory resource. M5P can manage the periodic pattern, unlike Linear
Regression which obtains worse results. However, we have to point that in this case M5P has
problems to be accurate in the last 10 minutes of the experiment.

Linear Regression M5P
MAE 15 min 57 secs 3 min 34 secs
S-MAE 4 min 53 secs 21 secs
PRE-MAE 16 min 10 secs 3 min 31 secs
POST-MAE 8 min 14 secs 5 min 29 secs

Table 3.2: MAEs obtained predicting time until failure on software aging hidden within periodic
pattern

Dynamic Software Aging due to Two Resources

Next step was to consider aging caused by two resources simultaneously, memory and threads.
An important point in this experiment is that creating java threads have impact over the memory
java heap, relating the two causes of aging.

The model for this experiment was trained with several executions at different constant
workload and injection rates (N = 15, 30, 75, M = 15, 30, 45 and T = 60, 90, 120, so 6
executions, 2752 instances), but in all of them only one resource involved in the execution.
The model generated was composed by 35 inner nodes and 36 leafs. The MAE and S-MAE,
PRE-MEA and POST-MAE obtained by M5P in this experiment was: 16min. 52secs., 13min.
22secs, 18min. 16secs. and 2min. 5 secs. respectively: this is about 10% error (MAE and
S-MAE), given that the experiment took 1 hour and 55 minutes until crash. We can observe
how the M5P is able to predict with great accuracy the time to crash, when it is near, and most
importantly, the model never was trained using executions where both resources were injecting
errors simultaneously. These results show the promising adaptability of this approach to new
situations not seen during training.

An interesting point to remark is that when inspecting the models generated by the M5P
algorithm at each experiment, some clues about the root cause of failure can be drawn. Relevant
variables are in relevant positions in the decision tree, while important threshold values on the
system are learned to make decisions over these variables. So, interpreting the models generated
via ML models has an additional interest besides prediction.

3.3.3 Conclusions on Learning Towards Self-Healing

In this work we proposed a machine learning approach to build automatically models from system
metrics to detect and predict software aging and being able to decide when to trigger self-healing
actions. ML is used due to the complexity of the resources behavior and the complexity of the
environment. We studied the effect of software aging errors which gradually consume resources
until its exhaustion, in a way that cannot be attributed to excess load. Our approach is oriented
towards feeding our modeling algorithm and predictor with a set of monitored and derived
variables on memory status and web-service load, where the most important variables resulted to
be the consumption speed of the relevant resources. All of this smoothed out using average sliding
windows of instantaneous measures. The M5P predictor is evaluated in different, complex and
dynamic software aging scenarios, showing how M5P obtains acceptable accuracy. and ability of
adapting scenarios never seen during training. Finally, we suggested that interpreting the models
generated by M5P can help to determine the root cause software aging.

This work, although being also included in the PhD thesis of Javier Alonso, provided expe-
rience on the field of prediction applied towards decision making, also the importance of feature
selection depending on which scenario and resource we are focusing on. Also this work provided
interesting details on web-services memory behavior, to be used for future memory modeling and

3.3. COLLABORATION WORK ON SELF-HEALING 49

prediction in the following thesis works, driving virtualized web-services. Further, this works re-
marks the idea of creating human-readable models to help system operators and architects to
improve their systems. A very important detail not only at web-service level but at any level.

50 CHAPTER 3. PREVIOUS EXPERIENCES WITH ML AND WEB-SERVICES

Chapter 4

Tailoring Jobs and Resources in
Clusters and DataCenters

As long as virtualization has been introduced in datacenters, it has been opening new chances
for resource management. This chapter exposes the work done proposing a manual modeling
from expertise and scheduling policy for virtualized datacenters, which mainly focuses on the
multiple facets of VMs and datacenter nodes (energy efficiency, virtualization overheads, and
SLA violation), optimizing the provider’s profit. The work presented in this chapter is a co-
work with Íñigo Goiri, mainly presented as part of his PhD Thesis, and it serves as base and
starting point on this thesis research, as this approach presents models and decision policies made
manually from expertise. In this chapter we report on work that is, on the one hand, mostly
our contribution and, on the other hand, a direct basis for the forthcoming chapters, unlike the
research presented in Chapter 3 which are side tracks.

4.1 Introducing the Resource Modeling Approach

Datacenters must be able to deal with new challenges: new virtualization capabilities [146],
economic and social pressure to reduce their energy consumption [102], and offer high availability
[19] and performance to their users bound to SLAs. All in all, while being economically profitable.
In this chapter we see a way of modeling a virtualized datacenter, focusing on the allocation of
VMs in host machines, from its different facets representing benefits and costs. All derived from
revenues of running virtualized jobs and the costs of running them according to requirements
and quality of service, looking for optimizing the provider benefit. We take into consideration
revenues for running HPC and web-service jobs and workloads, and we consider running costs
for energy consumption, VM operation overheads, penalizations for SLA violations, outsourcing
of resources, etc.

The modeling proposed here is an analytical way to provide managers and schedulers a way
to compute benefits and costs of performing operations over the virtual machines and hosts on
a datacenter. As experts on virtualization, we detail a set of features and issues we find in
the VM execution and management, important details we consider are relevant for improving
benefit or enforcing service level agreements. After modeling these datacenter features, we design
a scheduling method to attempt to find the best operations to be performed over VMs (basically
allocation and migration decisions).

Related Work

As explained in the previous Background Chapter 2, energy efficiency is a hot topic addressed in
cluster-based systems [126], treated by different kind of strategies like DVFS or turning on/off
machines depending on workload requirements, also depending on trade-offs between perfor-

51

52 CHAPTER 4. TAILORING JOBS AND RESOURCES

mance and power consumption [47]. Following these ideas, our approach is able to take profit of
homogeneous or hybrid datacenter architectures.

Works like [125] propose a dynamic configuration approach for power optimization in virtu-
alized server clusters, and outlines an algorithm to dynamically manage them. Their approach
also takes into account the cost of turning on or off servers. Nevertheless, the approach can lead
to a too slow decision process as it is focused in a very static environment and highly focused on
HPC jobs. In this sense, our proposal is more suitable for an on-line scheduler.

VM migration and VM placement can be used to reduce virtualized datacenter power con-
sumption [102]. Following this idea, we propose the use of VMs for executing heterogeneous
applications taking into account virtualization overheads. However, virtualization makes the
overall system more complicated and requires well-designed policies which take VM manage-
ment problem into account. Until today, virtualization management overheads have been only
considered individually when managing virtual resources [145, 12].

We remark that previous works only take into account individual factors in terms of managing
a datacenter, while our contribution in this work is an integrated and complete solution for
managing virtualized datacenters.

4.2 Ad-Hoc Modeling of Virtualized DataCenter

The main idea of the model presented here is to calculate all the costs and revenues for a given
schedule, deciding whether an allocation of a VM in a given execution platform will provide a
benefit or not. This platform is usually a local host of the datacenter which can execute VMs,
but it can refer to assets of an external provider (i.e. outsourced) or any other kind of resources.
Nevertheless, from the model point of view, all the execution platforms will be seen as a host
with different costs and features.

Having a model that involves several factors and measures, it is usual to have different
measuring units representing their values. Power related values are expressed in watts or watts
per hour in case of energy, economic revenues are expressed in currency units, timing variables
are expressed in time units, and the penalties and weights we define to enforce policies are usually
non-dimensional values. All these variables should be unified in a same unit, as our goal is to
optimize benefits from a single benefit function:

Benefit(h, vm) = Revenue(vm)−
i∈Costs∑

i

Costi(h, vm) (4.1)

The benefit of placing a virtualized job vm in a host h is the revenue from the VM minus
the sum of costs derived from having the VM deployed at h. This benefit function represents
a currency unit. Power and energy can be converted to costs by applying the cost of watt per
hour, the revenue of the VM can be expressed as the revenue of CPU per hour, the penalties can
be converted also to costs using a penalty to cost function, agreed by the service provider and
the clients and owners of VMs, etc. The following Table 4.1 shows the list of symbols, factors
and functions involved on our datacenter modeling. After it we explain with more detail each
one of them.

4.2.1 Time References

The execution time for a job in a dedicated machine Td(vm) is used as a reference for the
scheduler, and it will be used for billing and calculating the final revenue according to the SLA.
This means that, in case the execution of vm goes far beyond this time, it will violate the SLA
terms. The extra time added due to operations or virtualization overheads is represented as
Textra(vm), the estimated remaining time as Trem(vm), and the estimated remaining time plus
extra time Tr(vm). Other times are the time of operating a virtual machine vm in a given host
h as Tc(h, vm) and Tm(h, vm) (creation and migration time), and the aggregation of these times
as Top(h, vm).

4.2. AD-HOC MODELING OF VIRTUALIZED DATACENTER 53

List of Time references

Td(vm) vm execution time in a dedicated machine
Textra(vm) Extra time added to vm
t(vm) Time since vm submission
Trem(vm) vm remaining time: Td(vm) − t(vm)
Tr(vm) vm remaining time including virtualization overheads Trem(vm) + Textra(vm)
Top(h, vm) Extra time over vm produced by operations in host h
Tc(h, vm) Time to create vm in host h
Tm(h, vm) Time to migrate vm to host h

List of Factors

Host(vm) Host where vm is allocated
R(vm) Revenue to be obtained for running vm
Prhour(vm) Price to be paid by customers per vm per hour
He(h) Health: Ratio between available resources and required resources at h
Speed(h, vm) Speed at which a vm job will perform at a host h
Perf(h, vm) Performance of a vm placed at host h
Occup(h) Occupation of host h
Power(h, o) Power consumed by a host h given its occupation o per hour

List of Penalties

PenDL(h, vm) Penalty for SLAs based on deadlines, for vm in host h
PenPerf (h, vm) Penalty for SLAs based on performance, for vm in host h

ˆPen(h, vm1, vm2) Estimator of Penalties for vm2 in host h when placing vm1

Penmig(h, vm) Time Penalty for migrating vm to host h
Penvirt(h, vm) Time Penalty for operating over vm in host h
Penconc(h, vm) Time Penalty for concurrent operations over host h if holding vm

Table 4.1: Summary of symbols and functions

4.2.2 Revenue and SLA Factors

We consider heterogeneous workloads composed by two kinds of jobs with different goals and
functionality: HPC jobs and web-services. In both the customer must pay R(vm) for executing a
VM during an amount of time Td(vm) at an agreed pricing Prhour(vm). Furthermore, each kind
of job has a specific SLA with the penalties the provider must pay for not offering the desired
quality of service, depending on the application and its performance.

In this work we define the performance of HPC jobs through the fulfillment of the execution
deadline, determined by a soft deadline where time starts to penalize and a hard deadline where
it reaches the maximum penalty. SLA fulfillment degrades from the soft to the hard deadline,
as seen on Figure 4.1a. Also penalties in web-services depend on the performance they get and
this can be measured in different terms, such as response time. If response time is used, it will
depend on the amount of resources assigned to the web-service and the amount of requests that
it receives. A service with not enough resources to satisfy all the requests will start increasing
its response time and thus will start violating an agreed threshold in the the SLA (and then
degrading its fulfillment). In this work the SLA fulfillment depends on the percentage of time
that it has been fulfilling the SLA (see Figure 4.1b).

(a) Deadline (DL) (b) Performance (P)

Figure 4.1: Examples of SLA fulfillment kinds

54 CHAPTER 4. TAILORING JOBS AND RESOURCES

The performance of the job is evaluated when it finishes its execution by using the SLA terms.
Nonetheless, an estimation of this SLA fulfillment can be calculated during jobs execution, to
preview the possibility of violating an SLA term when performing operations or selecting locations
for a given VM. E.g. when the demanded resources in a host are more than the available resources,
they have to be shared among VMs and this can lead to low performances.

We introduce here the concept of health, referring to the capability of a host to attend the
resource demands of the VMs it hosts. We define a function He(h) as a heuristic relating the
amount of available resources and the total demanded ones with the performance. The health
factor can be used to estimate the availability of resources in hosts and the effects of resource
overloading over the jobs, web-services, their deadlines and SLA fulfillments. This factor can be
applied with the performance factor Perf(h, vm), to adjust it on a non-dedicated machine. The
introduction of this factor and its basic idea is extremely important in this thesis, as in next
chapters performance predictors will be modeled automatically using machine learning, instead
of doing it manually or ad-hoc like here in this work.

One of the most important costs comes with the penalties incurred by violating SLA terms.
As explained before, overcrowding a host can degrade the performance of the jobs running on
it, so we defined a health heuristic to estimate the impact of placing VMs overloading a given
host. Here the He(h) function depends on the total CPU capacity in a host CPUavail(h), and
the CPU demand of each VM running on that host CPUreq(vmi).

He(h) = min

(
1,

CPUavail(h)∑h
vmi

CPUreq(vmi)

)
(4.2)

This function follows a behavior observed in our testbed hosting machines, where the per-
formance is directly related to the ratio of offer/demand of CPU (In next chapters we see how
to model this function not only with CPU resources but also with Memory and IO resources).
This health factor estimates whether and how the host can handle all its load, and in case of
overwhelming how much performance is degraded. We will use it for estimating the execution
delays and then the SLA penalties.

4.2.3 Performance Factors

Datacenters are usually composed by hosts with different capabilities and speeds (resource het-
erogeneity). The performance and the speed of applications are highly variable depending on
the speed of the nodes and this influences the levels of SLA fulfillment. This model currently
focuses on CPU speed as the provider targets HPC jobs, which directly depend on CPU, and
Web-services, which CPU is also in part a bottleneck. However, it can be extended to memory
or IO resources.

The model calculates data for each vm (e.g. elapsed times, accumulated extra times, etc),
for a referenced dedicated host Href , with a defined speed as Speed(Href , vm). A given VM can
be executed in a host with different speed regarding the reference machine. To consider this, we
define a performance factor Perf(h, vm) for a VM running in a host h as follows:

Perf(h, vm) =
Speed(Href , vm))

Speed(h, vm)
(4.3)

This performance factor, as a ratio of progression speeds, can be used to estimate time
variations when migrating a vm from one host to another: Td(vm, h) = Td(vm) · Perf(h, vm).

4.2.4 Power and Energy Factors

Power consumption varies depending on the utilization of the system. It needs to be modeled from
each kind of machine, according to the load on it and the resource usage. Using the information
obtained from measuring the power consumption of a physical machine stressed with different
loads, we can model the power consumption of a machine given its current occupation or its
resources usage Occup(h) (as number of CPUs used, etc). We represent this model with the
function Power(h, o).

4.3. MODELING THE COSTS-BENEFIT 55

4.2.5 Other Factors and Important Issues

Those VMs which are not running in any host, including those that have not been yet executed
or previous execution has failed must be held in queue, waiting to be resubmitted to a running
host. We represent the queue as a virtual host holding that non-running VMs not allocated in
any physical machine. As the provider wants to run as many VMs as possible in the shortest
time, the stay of VMs in an execution queue has to be minimized, and thus holding a VMs in
the queue must be strongly penalized. This makes any other available and profitable allocation
better than not running the VM.

Also, each job has its own hardware and software requirements, like system architecture, type
and number of CPUs, required basic software, or the hypervisor. These requirements can also
vary along time.

Another capability of the datacenter business is outsourcing resources. Outsourcing can
suppose an extra solution for an overloaded datacenter, as some resources can be externalized
paying the cost of acquiring temporarily resources from other clouds or datacenters.

Finally, virtualization technology has overheads that we must deal with, or at least have them
into account. Some of the relevant factors are the VM creation overhead (time to create and
deploy the VM), and the VM migration overhead (time to stop and pack a VM, move it to another
host, and deploy and run it again). These times are computed as Tc(h, vm) and Tm(h, vm), and
are part of the extra operation time. Further, when an operation is being applied over a VM, no
other operation can be applied to it. Also performing more than one VM operation in the same
host machine (concurrency) introduces overhead too, as CPU usage for VM operations.

4.3 Modeling the Costs-Benefit

The functions and factors involved in the cost-benefit for this model can be treated as costs of
an allocation, and these costs are subtracted from the revenue, finding the resulting benefit for
a host×VMs schedule. Also, some of them represent non-economic units, so penalties must be
derived to express each handicap and overhead as a cost or benefit. Table 4.2 summarizes the
involved costs, and following this we explain each one of them.

List of Costs

Creq(h, vm) Cost of having available the vm required resources in host h
Cpen(h, vm) Cost of SLA violation when placing vm in host h
Cenh(h, vm) Cost of energy for vm placed in host h
Cops(h, vm) Cost of operating vm when placing in host h

Table 4.2: Summary of Costs

Cost Availability for VM Requirements

Checking the capability of a host for holding a given VM must be addressed by the scheduler. In
case the host is not available to execute that VM, the cost of placing this VM into that host can
be considered as the maximum penalty for that job as specified in the SLA and the allocations
in that host will not be performed. If the maximum penalty can be infinity when we do not have
a fixed maximum cost. When placing a VM, unfeasible placements will be discarded because of
having an “infinite” cost, while feasible placements will not be penalized. This cost is defined as
follows:

Creq(h, vm) =

{
∞ if h does not have the resources required by vm
0.0 otherwise

(4.4)

56 CHAPTER 4. TAILORING JOBS AND RESOURCES

Cost of Estimated SLA Penalties

Violating SLA terms represents one of the most important costs. For each kind of SLA we must
define a penalty, that here we will use as a factor or weight upon the revenue obtained from each
vm. As much we violate a SLA, less the owner of the virtualized job will pay for it.

Regarding SLAs based in deadlines (HPC jobs), we consider the extra time accumulated
due to operations Textra(vm), and the extra time accumulated due to lower than expected per-
formance, derived from Trem(vm) and adjusted according to the host health He(h) and its
performance factor Perf(h, vm). With these two extra times we can figure out how much time
this VM will be delayed beyond its deadline.

PenDL(h, vm) = max

(
0,

1hour

3600sec
·
(
Textra(vm) +

Trem(vm) · Perf(h, vm)

He(h)
− Trem(vm)

))
(4.5)

Regarding SLAs based on performance (web-services), managing SLA threshold violations
and thus response times and CPU quotas at each time, is a matter of considering the extra CPU
load each operation incurs. We can estimate the penalty for a web application trying to figure
out the amount of time it will receive less CPU than required during its remaining execution
time Trem(vm), which basically depends on the host health He(h) and its performance factor
Perf(h, vm).

PenPerf (h, vm) = max

(
0,

1hour

3600sec
·
(
Trem(vm) · Perf(h, vm)

He(h)
− Trem(vm)

))
(4.6)

The SLA for two kind of jobs is based mainly on their health and in their performance factors,
so we can generalize the two penalty functions if we consider that web-services have always a
Textra(vm) = 0. This cost is defined as follows:

Cpen(h, vm) = Prhour(vm) · Pen(h, vm) (4.7)

We must recall that placing a VM in a host not only affects its own execution and performance,
but also the execution and performance of the other Vms running in the same host (We will
need to keep this in mind in next chapters, when learning how a VM placement affects the rest
of hosted VMs). Then we should have an estimation function ˆPen(h, vm1, vm2) that calculates
the penalization of a vm2 in a host h, when introducing vm1 on it. This is, if we have the vm1

placed, how would this affect to vm2. So when we decide where to place a VM, we will try not
to degrade the SLA of previous hosted VMs. Notice that all those penalty estimations return
positive values, since there is no reward if the jobs finishes earlier or the web-service performs
better when running in a better machine.

Cost of Power Consumption

The consumed energy of each host can be calculated in watts per hour, if we previously modeled
the power consumption function of the host, and we know the occupation of it (number of VMs
or amount of resources used). if we have the electricity prices for the corresponding host, we can
convert the cost into currency units. This cost is defined as follows:

Cenh(h, vm) =
CPUreq(vm)∑vm∈h

i CPUreq(vmi)
· Power(h,O(h, vm)) · Prwph · Tr(vm) (4.8)

Cost of Outsourced External Resources

We also have the capability of using rented resources from other providers when we do not dispose
of the required resources and we do not want to stop or reject a job execution. This cost depends
on how much the external provider will demand for its services, the overhead of migrating jobs
towards it, and the availability of resources in the external provider. Usually external resources
are only used when their costs are cheaper than the penalties to be paid if we keep a VM in our
datacenter. Considering hp as a host from an external provider, this cost is defined as follows:

Crent(hp, vm) = Prhour(hp, Type(vm)) · (Td(vm) + Textra(vm)) (4.9)

4.3. MODELING THE COSTS-BENEFIT 57

Cost of Virtualization Overheads

The virtualization overhead can be considered as an overhead over VM basic operations, concur-
rent VM operations over the same VM, and concurrent VM operations over the same host.

Basic virtualization operations Here, virtualization overheads such as VM creation and VM
migration affect as an operation time, and these operations can have an estimated or defined time
Tc(h, vm) and Tm(h, vm). The cost for migrating a VM must consider the remaining execution
since it is not worth to move a VM which will finish shortly. For this purpose we consider a
migration penalty depending on the remaining required execution time.

Penmig(h, vm) =

{
2 · Tm(h, vm) Tr(vm) < Tm(h, vm)
Tm(h,vm)
Tr(vm) · Tm(h, vm) Tr(vm) ≥ Tm(h, vm)

(4.10)

We consider here, as a possible example, that the weight of the migration time becomes the ratio
of migration and remaining times, so as fewer execution time remains, migrate a VM becomes
more penalized. Also we set a limit for situations where migration time exceeds remaining time
as two times the migration time.

Blocking VMs when operating over them When an action is being performed in a VM,
starting another action on that VM can put the system under not desired situations like migrating
VMs when they are not ready yet, or trying to destroy a VM which is being migrated. For this
reason, while the VM is being operated it should be locked for other operations. For this purpose
we consider a blocking penalty when operating over a VM.

Pvirt(h, vm) =

0.0 if Host(vm) = h
∞ if action performed in vm
Tc(h, vm) if Host(vm) = ∅
Pm(h, vm) if Host(vm) 6= h

(4.11)

Penalizing concurrent operations on the same host When performing a VM operation,
overhead is added on the system. Thus, we consider a penalization for operating a vm on a host
h where other VMs are being operated.

Pstate(h, vm) =

 Tc(h, vm) if h is creating vm
Tm(h, vm) if h is migrating vm
0.0 otherwise

(4.12)

Pconc(h, vm) =

{
0.0 if Host(vm) = h∑h
vm Pstate(h, vm) if Host(vm) 6= h

(4.13)

Finally, all these penalties can be aggregated in one only penalty for operations allocating a
vm in a host h. Also, as these penalties are time units, as they represent extra time to be added
towards the execution (for deadline SLA jobs) or time when the job will not run (and then do
not provide service, for performance SLA web-services).

Top(h, vm) = Pvirt(h, vm) + Pconc(h, vm) (4.14)

Converting operation time to cost The aggregation of all the penalties, representing the
operational extra time Top to be added to the execution time of the VM, must be converted to
currency units as a cost to be computed with other costs and benefits. A VM in operation time
implies different costs: the power consumed during this process, and the cost incurred by the
possible violation of the SLAs running in that node. In addition, the cost for creating, migrating,
or performing any action in a VM affects to all the VM in that host (ˆPen(h, vmi, vm)). This
cost is defined as follows:

Cops(h, vm) =

(
Prkwh + Prhour(vm)

3600

)
· Top(h, vm) +

h∑
vmi

ˆPen(h, vmi, vm) · Prh(vm) (4.15)

58 CHAPTER 4. TAILORING JOBS AND RESOURCES

4.4 Scheduling following the Model

The model of costs and benefits presented in this chapter focuses in taking profit of the different
capabilities that a virtualized environment offers, to place VMs on a datacenter in order to
maximize its benefit. The model includes most of the relevant factors to drive this scheduling
process, like job execution, power consumption, resource outsourcing, operational costs and
overheads, and enforcement of service level agreements.

The scheduling process must attempt to increase the datacenter resource provider benefit,
by placing the VMs on the most suitable hosts, looking for the best profitable combination of
VMs × hosts. Each possible solution has an economic addition of revenues and costs, the benefit
function seen in Equation 4.1, result of each placement and its consequences.

Factors involved in the process are included as costs in currency units, more intuitive for clients
and providers (as here we look for optimize an economical oriented datacenter management). So
the scheduling will be guided by these values, revenues for VMs, feasibility of placements, costs
for placing VMs on hosts, and quality of service enforcement represented by the SLA penalties.

4.4.1 Solving Scheduling

Scheduling is represented here by a matrixHosts×VMs, where each cell represents the placement
of a VM in a Host, as a binary value. Note that a VM can not be in two hosts at the same time
(we do not consider transitional effects of migration here). Also, to decide the schedule, we use a
second matrix, a scoring matrix, also Hosts× VMs, where each cell represents the sum of costs
and benefits for a VM to be placed in the corresponding cell host. The VMs are intended to be
moved to hosts where their revenues minus costs are maximized. Given a scoring matrix, once
masked by the corresponding scheduling matrix (multiplying the two matrices through cell by
cell values), the sum of all its values result in the total benefit of the scheduling solution.

The optimization mechanism consists in finding iteratively the best VM movements, improv-
ing the overall benefit. Initially, we set the current schedule in the scheduling matrix and we
compute its related scoring matrix with the current costs of holding VMs in their places and the
costs for each VM to be moved to another host. Centering values in zero, by subtracting the
cost of not moving a VM to the rest of placement costs for this VM, is an option that could be
taken, so all costs would represent improvement if positive or degradation if negative.

Once having the initial matrices, representing the current status, the optimization algorithm
should proceed. We iterate over the matrices looking for the highest value of the scoring matrix,
representing the best movement of VM to host to be performed, at only one step beyond. Once
movement is selected, we update the scheduling matrix and update the scoring matrix given the
new movement. Recall that each VM movement affect the other VMs in the origin host and the
tentative host. The algorithm iterates until the scoring matrix has no positive values, we reach
a defined number of iterations to be performed, or we reach a previously visited status. As there
is a chance of not converging and reach a movement cycle of tentative solutions, we limit the
number of movements or set up a mechanism for detecting loops on visited status. When one
of the finishing conditions is triggered, we assume to have reached a suboptimal solution for the
current schedule. Algorithm 2 shows the scoring matrix optimization algorithm.

We use a Hill Climbing based methodology to solve the scheduling and scoring matrices.
There is no guarantee of convergence to global optimum, let alone in short time it finds a
suboptimal solution much faster and cheaper than evaluating all possible configurations. Each
step takes to a more suboptimal configuration until there are no better configurations, an iteration
limit is reached, or we are evaluating a previously visited configuration. The algorithm complexity
has an upper bound of O(#Hosts · #VMs) · C since it iterates over the 〈host,VM〉 matrix C
times. Also note that in the current case of study, we can perform some tweaks to cut bad or
infeasible configurations by taking advantage of some costs and constraints. I.e. the resource
requirement constraint can discard a great amount of combinations by marking as invalid cells
with incompatible 〈VM, host〉 placements, at the beginning of the algorithm.

4.5. CONCLUSIONS ON TAILORING JOBS AND RESOURCES 59

Algorithm 2 Scheduling and Scoring Matrix Algorithm

/* Method to fill or update the Matrices */

action calculate_score (Matrix M, Matrix S):

/* Fill cells with revenues - costs */

for each VM vm and each Host h:

M[h][vm] <- calculate_revenues(h,vm);

M[h][vm] <- M[h][vm] - calculate_costs(h,vm);

end for

/* Set cell values to improvement | degradation */

for each VM vm:

nop <- sum(M[][vm] * S[][vm]);

for each Host h:

M[h][vm] <- M[h][vm] - nop;

end for

end for

end action

/* Create Scoring and Schedule Matrices */

M <- Matrix [Hosts][VMs];

S <- get_schedule();

/* Fill Matrices */

calculate_score (M, S);

/* Iterate Matrix */

iters <- 0;

while has_positive_values(M) and iters < limit and no_loop(S) do:

/* Find best movement */

bestval <- 0;

for each VM vm and each Host h:

if M[h][vm] > bestval then:

<i,j> <- <h,vm>;

bestval <- M[h][vm];

end if

end for

S[*][j] <- 0;

S[i][j] <- 1;

/* Update Matrices and Iterate */

calculate_score (M, S);

iters <- iters + 1;

done

4.5 Conclusions on Tailoring Jobs and Resources

Virtualization is making providers more profitable every day thanks to its consolidation capabil-
ities and dynamism. Towards making providers more profitable, energy consumption is a critical
issue for large-scale datacenters, which hold hundreds or thousands of machines and cooling
equipment. To reduce energy dissipation, dynamic job scheduling is beneficial. The work shown
in this chapter identifies a real problem and creates a mathematical apparatus to describe a
virtualized datacenter and solves the problem from an economic point of view by merging sev-

60 CHAPTER 4. TAILORING JOBS AND RESOURCES

eral factors, such as hardware and software requirements, SLAs, virtualization overhead, power
efficiency, etc. Based on this model it uses a hill climbing methodology to rearrange VMs using
power-aware placement and migration.

This chapter provides to this thesis a starting point towards resource and job modeling,
where althought being a collaboration and part of the PhD thesis of Íñigo Goiri, many elements
here described were oriented towards setting a base for the forthcoming works in next chapters.
The introduction of the health function and predictors, to estimate performance on tentative
actions and schedules, is key for the introduction of machine learning models on decision making
towards scheduling. Also the methods for detecting infeasible VM placements, for making explicit
the relations between all the involved elements in the scheduling, also AI algorithms to solve
schedules, are basic for the mathematical modeling of the datacenter system and its management,
as we will see from here on.

Experimentation and evaluation of the models presented in this chapter have been omitted in
this thesis, as we consider that what is relevant on this thesis are the model and methodologies
themselves. The experiments concerning to the research and publications of this work follow the
thesis line of I. Goiri, not this one. The work presented in this chapters has been published in
the journal “Future Generation Computer Systems” [66] (2012).

Next chapters will use as a base the idea of modeling, placing VMs on hosting machines while
focusing on energy-efficiency, economic costs of actions, quality of service, and incorporating
behavior prediction components, through data mining and machine learning techniques.

4.6 Note on Experimental Environments

Departing from the hand-made expert modeling presented in this chapter, next works present
the evolution of this thesis changing the models and formulas introduced by experts, knowing
the system and jobs behaviors, by semi-automatically learned models. Here we briefly describe
the experimental environment and the changes made on it during this thesis.

4.6.1 Energy-Efficient Simulator

In order to test the following approaches and methods we start from a simulated scenario, where
we have an expert who knows how the system works (the same person who set the scenario), to a
real scenario, where workloads and machines are real and with real and live experiment executions
on these machines. The usage of a simulator shows us (as we will see in next chapter 5) that
expert algorithms are able to create exact models to manage the system, but when uncertainty
and elements out of the human expert scope are introduced into the system, models using machine
learning are able to improve generic algorithms. After using the simulated scenario, we switch to
a real scenario where we are able to learn from real systems with non-perfect monitors, inaccurate
information about jobs and VMs, and web-service client behaviors. Using our methods on a real
datacenter environment let us to learn about real web-service client and computing resources
behavior, and validate our models and mechanisms managing real virtual machines and serving
real web-service requests.

The simulation environment for evaluating the chapters 5 and 6, is a framework mainly
oriented towards energy consumption monitoring. As a testbed simulator we use the EEFSIM,
our simulation technology based on the OMNeT++ [124] platform. The simulation uses similar
techniques as seen in R.Nou [121], but centered on power usage (measured in a real machine)
and the scheduling of the different CPUs in the machines. The EEFSIM simulates the execution
of HPC jobs on a set of hosts with a set of CPUs each, scheduling internally CPU quantum times
and switching jobs inside the CPU. It can start-up, shut-down or reboot simulated machines,
and adds booting times and virtualization overheads, parametrized by the expert programmer.

In chapters 7 and 8 we abandon the simulator to implement the method and scheduler directly
on a real datacenter environment, with physical machines, virtualized machines, web-services and
complete client-server workloads.

4.6. NOTE ON EXPERIMENTAL ENVIRONMENTS 61

4.6.2 Experimental Real Environments

During most of this thesis we are working with high-performance computing architectures, but
we change to low-energy consumption computing architectures for the last works here presented.
This change is caused by external factors to this thesis, but it has been taken as an oportunity to
learn and test our methods on different architectures with very different properties. As a result
we will see in next chapters that our methodologies and models are independent to the kind of
environment thanks to using adaptable/re-trainable machine learning models, and when changing
elements of the environment the only required operation is to re-learn the ML models describing
a given job or resource. The semi-automatic methodology for learning models without so much
human expert involvement, provided by machine learning, allows us enough generalization to not
depend so much on contexts.

For the experiments done in chapters 5 and 6, where an expert should set up the simulator
and models, the HPC machines (Intel Xeon 4 Core, 3GHz 16GB RAM) were taken as reference
for CPU and power consumption models. These machines were monitored and measured by
the experts completing the simulator, making it to behave as a standard 4Core HPC machine.
Also, for experiments on real machines in chapter 7, we deployed an OpenNebula virtualization
middleware and our scheduler on a set of 10 Intel Xeons 4Core, with an Oracle VirtualBox
virtualization platform on them, and a set of virtual machines containing Apache Tomcat web-
services, with LiBCN’10 web sites (seen in next subsection).

For the experiments done in chapter 8, we use low-energy consumption machines (Intel Atom
2 Core, 1.6GHz 4GB RAM). These machines consume much less power than the HPC (an order
below), but have much less computational power. We deployed the same software infrastructure
of the previous chapter on a set of Atom 2Core machines to test our approaches.

4.6.3 The LiBCN’10 Workload

While in chapter 5 we use a standard Grid5000 workload [155], providing a list of jobs to be
executed with their execution times and CPU consumption, for experiments involving web-
services we introduce a new workload: the Li-BCN Workload 2010 [26]. The Li-BCN’10 Workload
is a collection of traces from different real hosted web-sites offering services from file hosting to
forum services (deployed on a Apache v2.1 with PHP 5.1 and MySQL) with different input loads
for each site and time. These web-applications correspond to a set of customers who run their
services and web-sites on top of the provider, in a virtualized environment. The advantage of
these workloads against others is that here we have directly the Apache logs, so we can replicate
loads exactly with a client emulator, and we have the workbench web-sites corresponding to the
Apache logs, to be placed in the (virtual) machines of the testbed.

4.6.4 Experimental Methodology

As said several times, here we are substituting the human-expert models for semi-automatically
learned models using machine learning. Our environment (simulated and real) consists in the
implementation of a hardware/software stack as shown in Figure 2.2. We set virtual machines
with our jobs (HPC jobs or web-services), managed by a virtualization middleware (OpenNebula
+ our decision maker/scheduler). The important work is done on the decision maker and the
information to be communicated between monitors and the decision maker. Figure 4.2 depicts
the information flow and elements composing our decision making schema, showing the monitors,
the models and expert functions, and the resulting schedule.

The obtained schedule is communicated to the resource manager, in charge of allocating the
physical resources to virtual machines. For now, here the decision making is done centralized, as
our algorithms take the whole system into account to optimize performances. A machine (or set
of machines) compute the scheduling, another machine (if not the same as before) receives the
schedule and execute the planed actions according to the schedule communicating each physical
machine (and datacenters in multi-DC systems) the orders and actions to be applied individually.
This makes that all elements in the system to communicate their monitorized information to a
centralized system. A future work beyond this thesis would be how to perform the processes we
are deploying here in a more decentralized way, further in multi-datacenter systems, so not all

62 CHAPTER 4. TAILORING JOBS AND RESOURCES

Figure 4.2: Information flow schema using models

the information must be shared but each different part of the system (cluster/datacenter/set of
DCs) can partially manage itself.

Also, machine learning requires examples from the system to feed the learning algorithms
and create the models. For this, previously of applying any model we run the system using the
default decision makers and models, setting resources and services in several and different states
(stressed, non-stressed, idle, isolated, ...), to collect as many different examples from the system,
obtaining a representative sample of system behavior.

Chapter 5

Applying Predictions to Decision
Making

In order to obtain an energy-efficient data center, in this chapter we present a framework that
introduces an intelligent consolidation methodology using different techniques such as turning
on/off machines and power-aware consolidation algorithms, applying machine learning techniques
to deal with uncertain information while maximizing performance. For the machine learning
approach, we use models learned from previous system behaviors in order to predict power con-
sumption levels, CPU loads, and SLA timings, and improve scheduling decisions. The framework
presented here is vertical, because it considers from watt consumption to workload features, and
cross-disciplinary, as it uses a wide variety of techniques. We evaluate these techniques within the
framework exposed in the previous chapter, covering the whole control cycle of a real scenario,
using a simulation with representative heterogeneous workloads, and we measure the quality of
the results according to a set of metrics focused toward our goals, besides traditional policies.
The results obtained indicate that our approach is close to the optimal placement and behaves
better when the level of uncertainty increases.

5.1 Introducing Energy-aware Prediction and Scheduling

Recalling the “green computing” idea explained in the Background Concepts, companies and
IT infrastructures are focusing now on the need to improve energy efficiency. A large variety of
power-saving methods has been presented in the last years, e.g. consolidation techniques, and
“intelligent” turning on/off servers and resources.

Nevertheless, most previous proposals focus only on particular scenarios, cover only single
strategies, or deal with synthetic data for some phases of the control cycle. For this reason, we
propose a framework based on classical workload consolidation for reducing the power consump-
tion of a data center executing a real dynamic workload, which covers the whole control cycle:
from the acquisition of real power measures to the scheduling of the resources in the most power-
efficient way according to these measures. Our approach applies some scheduling policies that
reduce the number of unused machines according to the workload needs in each moment, and
decide task placing and reallocation in order to compact jobs in the lowest number of machines
without degrading their service level agreements. A new challenge that needs to be addressed
here is providing a well-defined metric to evaluate the effectiveness of different adaptive solutions.
For this, we define additional metrics in addition to power consumption to assess the quality of
a given approach.

Furthermore, some scheduling information is sometimes not available or imprecise due to the
user task specification or different unexpected events inherent to the system. Some decisions
use information that can vary during the execution time or is heuristically obtained. When
the system and the required application-level measures might be wrong or absent, we can use

63

64 CHAPTER 5. PREDICTIONS ON DECISION MAKING

predictive methods to ’model’ this missing information. In order to provide a better and more
intelligent consolidation, we propose a machine learning-based method for obtaining models of
application and machine behaviors that let us predict service levels before applying changes
on the system, maintaining QoS while reducing energy consumption. This work is a proof-of-
concept on applying new machine learning techniques in situations where information can be
missing or unclear, so for now we focus on CPU dependent workloads and CPU usage timing
constraints, expecting to extend the approach towards full resource representative environments
and workloads.

Related Work

Lost of works have been done in the last decade focusing on applying energy optimization tech-
niques in multiprocessor environments (e.g. [97][33]), load balancing and performance optimiza-
tion (e.g. [129]), or economical approaches (e.g. [44]). Usually all of these approaches use greedy
resource allocation to distribute web workload or high performance tasks (like [47]).

We propose adding smarter scheduling policies, using machine learning techniques, to dy-
namically turn off idle machines and reduce the overall consumption. While some approaches
like [92] or [125] use rigorous mathematical formulations to minimize wasted power or dynami-
cally configure consolidation in virtualized server clusters, while turning on/off the spare ones.
However, these works are too focused in web workloads and the decision algorithm is intended
to run every 5 minutes, in contrast with our current approach that can handle heterogeneous
workloads and adapt the system at every new job arrival, making better use of energy. The use
of heavy mathematical calculus in the scheduling can lead to a too slow decision process for an
online scheduler like the one we are looking for at this time.

Following the idea if virtualized jobs consolidation, [102] and [166] propose virtualization
aware consolidation approaches. In [166] they use correlation techniques in order to predict
usage, while we use machine learning to predict application power and performance, but at this
moment they do not apply powering off techniques, just analyze the system. Also there have
been also several proposals into QoS control (e.g. [15, 138, 141]), applying energy saving policies
while meeting the problem of fulfilling SLAs [45]. Following this idea, we show how scheduling
policies can take into account such problems.

Machine learning approaches have also been used to reduce power consumption in clusters.
Tesauro, Kephart et al. [153, ?] present a reinforcement learning approach to simultaneous online
management of both performance and power consumption. These approaches look at learning
what policies should be applied given a system status. Such policies save more than 10% on
server power while keeping performance close to a desired target. Das et al. [53] present an
approach using multi-agents in order to turning-off servers under low-load conditions, achieving
25% power savings without incurring SLA penalties on server farms. All these approaches use
reinforcement learning in order to learn management policies from given data, while we are using,
at this moment, induction learning to model the data for a given policy.

5.2 Energy-aware management

Our approach uses two different mechanisms in order to reduce the power consumption of a
data center while respecting the different SLAs. One of the mechanisms that allows saving
more power is turning off idle machines, which saves more than 200W in testbed machines. A
complementary mechanism is trying to execute all the tasks but with the minimum amount of
machines, consolidation, as seen in previous chapters. Therefore, scheduling takes a main role in
order to achieve this power consumption reduction.

We want to turn off some idle machines in order to save power and we turn on them again if
they are needed when a peak load occurs. For this purpose, our strategy is based on consolidating
a set of tasks, distributed among a set of machines, into as few machines as possible without
degrading excessively the execution of these jobs. Here, several scheduling policies could be
applied in order to assign new jobs in the system to available machines and redistribute jobs
being executed in order to make some machines idle and then turning them off [77]. Notice that

5.2. ENERGY-AWARE MANAGEMENT 65

turning on machines again is not a free and instantaneous process and this overhead, which can
take more than a minute, must be taken into account.

We consider several traditional scheduling policies, including; Random which assigns the
tasks randomly (taking into account if the node fits there); Round Robin which assigns a task
to each available node, which implies a maximization of the amount of resources to a task but
also a sparse usage of the resources; Backfilling which tries to fill as much as possible the nodes,
thus solving the former problem; Dynamic Backfilling which is able to move (i.e. migrate) tasks
between nodes in order to provide a higher consolidation level. When tasks enter or exit the
system, it checks if any tasks should be moved to other nodes according to different parameters
such as the system occupation, current job performance, or expected user SLA satisfaction.

While Dynamic Backfilling performs well when having precise information (as shown in the
evaluation), other policies are necessary when information is incomplete or imprecise. For this
reason, a machine learning policy is introduced in order to predict features that will only be
known in the future. This lets us anticipate the SLA degree and the power consumption before
placing or moving jobs, and therefore choose a job configuration that is expected to be good.

5.2.1 Machine Learning approach

In this study, we use machine learning techniques in order to predict, from our set of machines
and set of jobs, the resulting client satisfaction level of each job and power consumption before
placing tasks in machines or moving tasks across machines. These predictions are then used by
a move selection algorithm to choose destination machines with good resulting client satisfaction
and opportunities for consolidation.

For this prediction process, we need to choose suitable predictor algorithms, computationally
light but able to obtain good results once trained with data from various workloads. Also, we
need to obtain a good training set (a set of data containing labeled instances from representative
executions) and another test (or validation) set. If, after training, the predictors’ guesses are
close to the correct values on the test set, we expect that they will also be correct on future real
workloads.

The machine learning aided policy implements a Dynamic Backfilling scheduler replacing the
static decision maker, using the information provided directly by the user, and using as decision
maker the results of the performance and power consumption estimators. This is, instead of
fitting jobs in host machines directly from the user specifications, we estimate the impact the job
will cause in the potential host machine, in performance parameters and power consumption.

In the line of Dynamic Backfilling, for each reschedule we attempt to empty low-used host
machines fulfilling nearly fully-booked ones. Then, for each movement we estimate whether
the job will interfere in the resource requirements of all other jobs in the machine, and the
estimated new power consumption of this machine will compensate the possible performance
degradation. This permits to obtain a more adaptive and robust system, where user or application
specifications can be imprecise or change over time.

5.2.2 Relevant factors and basic assumptions

When a new job arrives, the system will try to allocate it to some host, and then perform a
scheduling round in order to find a more efficient schedule. The candidate moves are of the form
“move job j from its current host to host h”, and the chosen one will be the one with maximum
expected benefit. This benefit is the combination of two factors: the future performance of the
jobs and power consumption in the resulting allocation, that we call R and C. Given a host, Rh
and Ch cannot be known beforehand in general, so we will predict these values from our learned
models obtaining the estimated R̂h and Ĉh.

The factor Rh indicates the health status of the jobs running on a machine h. This factor
can be represented as a number between 0 and 100; a value close to 0 will indicate unacceptable
performance, and a value close to 100 will indicate a good performance of the jobs in the machine.
For this case of study, as a proof of concept we will assume that Rh depends only, for each job
allocated to h, on the particular deadline constraint, indicating the SLA fulfillment.

66 CHAPTER 5. PREDICTIONS ON DECISION MAKING

Usually an SLA is an agreement on application resource consumption or performance guar-
antees (bandwidth, disk and CPU quotas, response time or throughput, time deadlines). In this
paper we use a time deadline metric as SLA guarantee. The SLA fulfillment level follows a grid
client satisfaction ratio, where it is fulfilled when the task completion time takes less than the
deadline given by the user.

In next chapters we are including other relevant metrics into the SLA objectives, such as
throughput constraints for service applications and time of response for interactive applications.

We can define a finished job j by a tuple

j = 〈UserTj , SLAFactorj , StartTj , EndTj〉

where UserTj is the user estimation of the time to complete the job, SLAFactorj is the factor
over UserTj that the user is willing to accept, and StartTj and EndTj are the times in which
the job was started and finished.

The performance factor Rh can be calculated in the way of

Rj = f(UserTj , SLAFactorj , StartTj , EndTj)

where function f , which is negotiated with the user, indicates the penalty for not satisfying
the user’s requirement, and we use it to define the fulfillment of job j, Rj (independently of
the machines in which it has been executed). A very strict function f (fhard) would indicate
maximum loss when the SLA is not totally satisfied, while softer functions (fsoft) could go from
100 to 0 smoothly.

fhard =

{
100 if EndTj − StartTj ≤ UserTj · SLAFactorj
0 otherwise

fsoft = max(100,
UserTj

EndTj − StartTj
· SLAFactorj · 100)

At this stage of the work we use the softer version of f , expecting to use more elaborated
functions when we dispose of more complex workloads with complex SLA requirements. For
this work, the value of Rh given a machine h should be the aggregation of the values Rj for all
allocated jobs on h. Supposing an initial hypothesis of fairness between the jobs on a machine,
for this version of our work we take as aggregation function g the arithmetic mean of the Rj ’s

g(h) =
∑Jobsh
j Rj/(Num Jobsh)

The consumption factor Ch indicates the power consumption of machine h. It can be mea-
sured empirically for the training data sets, and possibly during the execution. Our experiments
and common knowledge indicates that it depends mostly (but is not linearly proportional to)
the percentage of CPU usage at h.

The global function that the system should optimize is a combination of the aggregated
levels of SLA fulfillment and the total power consumption, that is of R = g(R1, . . . , RH) and

C =
∑H
h=1 Ch if we have H host machines. For the moment, we decided to choose moves that

maximize R under the condition that they do not increase C; this maintains SLA accomplishment
as a priority over consumption, which is the usual practice up to date. A summary of symbols
is shown on Table 5.1.

5.2.3 Data sets and prediction algorithms

The values of Rh and Ch as described above are usually not known before performing the
job allocation and finishing the running jobs in the machine. But we can run representative
executions in order to obtain examples of 〈jobs,machine,Rh, Ch〉 configurations, and learn a
model capable of predicting, from 〈jobs,machine〉 ⇒ 〈R̂h, Ĉh〉

To predict the power consumption Ĉh, we found it useful to predict first the percentage of
CPU usage at h. We used the Linear Regression algorithm, where the most relevant attributes
resulted to be the CPU usage for each individual job in h and, with smaller weight, the num-
ber of jobs in the candidate host. This attribute choice was to be expected. Predicting power
consumption is more complex that a simple linear regression, because it has a nonlinear rela-
tion with CPU usage, so we used the more sophisticated M5P algorithm. As explained in the

5.3. SIMULATION AND METRICS 67

UserTj User estimation of time to complete job j
SLAFactorj Weighting SLA Factor in [0, 1] for job j
StartTj Start time for job j
EndTj Ending time for job j
Rj Performance obtained for job j
fhard(Rj) SLA fulfillment for job j, hard threshold
fsoft(Rj) SLA fulfillment for job j, using decayment function
Rh = g(h) Aggregation function for all Rj in host h
Ch Power consumption for host h
ExecTj Execution time for job j (EndTj − StartTj)
ExpectedTj Estimated total execution time for job j

Table 5.1: Summary of symbols and functions

Background chapter, M5P builds a decision tree splits on attributes at inner nodes and applies
different linear regression at the leaves. It therefore computes a piecewise linear function of the
attributes, which is enough to approximate the nonlinear dependence of power consumption on
(mostly) CPU usage and number of jobs.

The real problem is predicting the deadline fulfillment of a given job, Rj because the most
important value EndTj−StartTj will not be known until the job ends, and also the user estimate

UserTj may be inaccurate. Using the learned model we predict R̂j using as known information:
the amount UsageCPUj of CPU used by the jobs on h (included the new job), time spent so
far Now−StartTj and the characteristics of the machine where it is executing AvailableCPUh.
For this prediction we have used another linear regression function, where the most relevant
values are the timing values for j and other jobs in the same machine. In this preliminary
work, assuming that all the machines have identical capacity, some attributes about machine
characteristics need not to be included into the learned model, but as see during the experiments
of the Linear Regression, a coefficient exists directly related to the capacity of the machine.

The algorithm pseudo-code is shown in Algorithm 3. Basically it performs a dynamic back-
filling strategy, using the learned model to decide whether the new allocation of the job will bring
an energetic improvement given an estimated performance cost. At each scheduling round, the
underused hosts are selected to be emptied, and their jobs are virtually allocated in nearly-full
hosts. Using the model, we can estimate if this is a suitable allocation. If it is, and we consider
the host can be emptied, we proceed to perform the jobs reallocation. Note that it is a greedy
algorithm that is not guaranteed to find the theoretically best possible list of movements.

5.3 Simulation and Metrics

Simulation consists of the evaluation of a set of nodes which are stressed by a given workload.
The system performance is evaluated according to a set of different metrics that take into account
consolidation and power consumption.

The simulation is able to compare different scheduling policies. They are implemented in
a modular way and can be plugged on top of other architectures, such as EMOTIVE [68] or
XtreemOS [177, 49] (inside its component Application Execution Management, AEM [50]), where
a set of schedulers can be introduced and selected by the administrator. XtreemOS follows a
scheme of local scheduling rather than a global one, but its direct interaction with the kernel
and its dynamic resource discovery via DHT can provide a way to simplify the switch on-off
techniques.

5.3.1 Simulation and power models

In this section we present the framework for evaluating the power efficiency of a data server which
executes an heterogeneous workload. This framework tackles the whole problem from the power
consumption measurement of a single machine to the execution of different applications on a data
center which allows evaluating different approaches such as dynamic turn on/off or consolidation.

68 CHAPTER 5. PREDICTIONS ON DECISION MAKING

Algorithm 3 Machine learning move selection algorithm
Poll hosts for information about their jobs and status;

OH := select "Emptiable Machines" [jobs < 4];

For each Machine (oh) in OH do:

For each Job (j) in oh do:

CH := select "Fillable Machines" [enough CPU and mem];

For each Machine (ch) in CH do:

-- predict effect of moving j from oh to ch;

predict R(oh) and R(ch) after movement;

predict C(oh) and C(ch) after movement;

compute global R and C after movement;

End For

Get ch leading to highest R among those that decrease C;

add movement (j,oh,ch) to List_of_movements;

End For

If (all jobs in oh can be reallocated) then:

proceed with the List_of_movements;

End If

End For

It is based on a simulator in order to evaluate the performance of a whole data center focusing on
power consumption. It allows obtaining different metrics of the modeled cluster while applying
different workloads in order to optimize different policies.

Figure 5.1a shows the development cycle of the simulator used in our framework. Firstly,
different applications with different typologies and profiles are executed (on a real, not simulated,
machine) and their resource usage and power consumption monitored. Power usage is recorded
using an external device which monitors the whole machine energy consumption. From these
recordings, a model of the machine is built, which is then used to simulate a data center with
many (identical) machines. Validations are applied to refine the model and the simulator. Finally,
the simulator is executed to provide the experimental data described here.

Physical
Machine

Model Simulator

Load

Po
w
e
r

*

Output

Validation

...
App

0

App
M Power Nodes SLACPU

(a) Simulator workflow

Simulator

Workload Output

...Sched0 SchedN

(b) Simulator

Figure 5.1: Simulator Diagrams

This simulator is able to add and remove nodes dynamically including the boot time and
load times. It allows using different scheduling techniques which can take advantage of different
capabilities such as migration of running tasks between nodes. Finally, the simulator is able to
read a workload and apply the different scheduling policies to output the results of executing
the workload, including power consumption and other resource usage statistics, as shown in
Figure 5.1b.

Energy consumption measurement

We measured the real power consumption using different workloads in a 4-CPU computer (the
Intel Xeons) whose kernel includes some energy efficiency policies. The power consumption of
the machine was gathered using digital methods via an ammeter. In the past, analogical methods
via oscilloscope where used, as seen in [119], but similar results are obtained with the ammeter
method (however, instantaneous wattage is lost; we can only measure stable workloads). The

5.3. SIMULATION AND METRICS 69

resolution of the measurements is below 1 Watt. Figure 5.2 shows the system behavior; we can
see that wattage increases with the workload (in a non constant slope), but that it is noticeable
even in an idle machine, which is the main reason why we can gain by consolidation. This graph
was included in the simulator, as part of the model. It is important that idle wattage level should
be decreased in the industry as it is one of the most used states and it is not energy efficient, as
seen in [22].

0

50

100

150

200

250

300

OFF IDLE 100% 200% 300% 400%

W
at

ts

CPU Load (4-CPU)

OFF

Figure 5.2: Power behavior of the target PC

Testbed Simulator and Model validation

Our testbed simulator is the Energy-Efficient Simulator EEFSIM, previously introduced in chap-
ter 4. The EEFSIM contains the models tailored by the human experts and workload models
from HPC jobs and transactional (web-service) jobs.

We have validated the model using special schedulers whose outcome we can predict separately
and testing that the simulation obtains the expected relative values (such as SLA = 1.0 or
similar). Moreover we tested that simulating one machine produces similar power usage values
as in the real case. Future work may include fine-tuning and a more detailed validation, as
some smaller overheads and other issues that can show in the real world should be modeled and
introduced in the simulator.

5.3.2 Metrics

One of the key proposals of this paper is the ability to compare different techniques for efficient
power usage. Currently, there is no standard approach for measuring the power efficiency or the
consolidation of a datacenter. For example, [140] proposes a benchmark for measuring power
efficiency on a set of different scenarios such as mobile devices or servers. However, it does not
address consolidation.

In this paper, we introduce some metrics to compare adaptive solutions. To this end, the
energy consumption must be evaluated precisely. This part is mandatory to be able to compare
different approaches. Nevertheless, it is not enough since a given policy can decrease the efficiency
energy but it can make some tasks violate their SLAs. In addition, consolidation factors are also
important for measuring the scheduling policy quality as understanding what a scheduler is doing
is not easy just evaluating energy or SLA fulfillment. For this purpose, we add some other metrics
that would help to comprehend and measure different relevant aspects.

Working nodes The number of nodes that are executing some task. Hence, in order to allow
shutting down more nodes, less working nodes are better.

70 CHAPTER 5. PREDICTIONS ON DECISION MAKING

Running nodes The number of nodes that are turned on. Having a lower number of these
machines is one of the key issues for saving energy in order to reduce the idle machine
consumption.

CPU usage The amount of CPU time that has been used.

Power consumption Total energy consumed by the nodes.

SLA fulfillment level The client satisfaction based on the task SLAs. We evaluate a service
by its availability ratio, which is 100 if it is always available, and 0 if it never is. On the
other hand, we will use the typical grid client satisfaction ratio, which is 100 if execution
time is less than expected time and 0 if completing the task takes longer than twice the
expected time. This is defined by this equation:

SLAFulfillment =

{
100 if ExecT < ExpectedT

100 ·max{1− ExecT−ExpectedT
ExpectedT , 0} if ExecT ≥ ExpectedT

5.4 Evaluation of the Energy-aware Schedule

In this section, we present the experimentation regarding our strategy and the different used
techniques, and also the simulation and power consumption models used for evaluating them.

5.4.1 Experimental environment

The experiments will consist of the simulation of a whole datacenter with 400 nodes that will
execute different workloads and will evaluate its behavior according to different metrics including
power consumption.

The presented approached intends to take benefit of the variation and the heterogeneity in
current datacenters. For this reason, the evaluation includes two different workloads: Grid and
service oriented. The former is a Grid workload obtained from Grid5000 [155] on the week that
starts on Monday first of October of 2007. The training of the ML model has been performed
using the workload corresponding to the week of third of September. For evaluating the SLA
satisfaction, SLAs have been added to the Grid jobs, specifying tolerance factors in execution
times in the range 1.1. . . 2.0.

The latter workload results from the aggregation of different services based on the load of
Ask.com [17]. These services correspond to three different profiles. One that represents a single
day execution from 0:00 to 23:59 with a low usage during the night and a classical increase at the
start of day. The second one follows the same behavior but it has a bigger load in the afternoon.
The third uses a whole week in order to represent the weekend user decrease.

Finally, the evaluation also includes a mix of the already presented workloads in order to
simulate a heterogeneous datacenter and test the functionality of the approaches with a realistic
approach for current datacenters.

5.4.2 Power vs. SLA fulfillment trade-off

In our approach, one of the key decisions is determining when a node should be turned off
in order to save power consumption or when to turn on it again in order to be used to fulfill
the tasks SLAs. This decision is driven by means of two thresholds: the minimum Working
nodes threshold λmin, which determines when the provider can start to turn off nodes, and the
maximum Working nodes threshold λmax, which determines when the provider must turn on
new nodes. Finally, in order to set a minimum working set, the minimum amount of machines
minexec is also specified.

The effect of these two thresholds has been tested by executing the Grid workload on top of
the simulated datacenter following the Dynamic Backfilling policy, which is the one which makes
a more aggressive consolidation without taking into account the task SLA. This allows evaluating
the influence of the turning on/off thresholds by showing the SLA and the power consumption
respectively.

5.4. EVALUATION OF THE ENERGY-AWARE SCHEDULE 71

(a) SLA satisfaction using different turn on/off
thresholds

1020304050607080

20
30

40
50

60
70

80
90

1000

1500

2000

2500

3000

Power consumption (kW)

500

1000

1500

2000

2500

3000

3500

minλ

maxλ

(b) Power consumption using different turn on/off
thresholds

Figure 5.3: SLA and Power using different turn on/off thresholds [Source: eEnergy’10 [30]]

Figure 5.3b shows that waiting the nodes to reach a high utilization before adding new nodes
(high λmax) makes the power consumption smaller. In the same manner, the earlier the system
shutdowns a machine (high λmin), the smaller the power consumption is. It demonstrates how
turning on and off machines in a dynamic way can be used to dramatically increase the energy
efficiency of a consolidated datacenter.

On the other hand, SLA fulfillment decreases, as shown in Figure 5.3a, when the turn on/off
mechanism is more aggressive and it shuts down more machines (in order to increase energy
efficiency). Therefore, this is a trade-off between the fulfillment of the SLAs and the reduction of
the power consumption, whose resolution will eventually depend on the service provider interests.

Fortunately, average threshold values give a balanced trade-off between energy and SLA.
According to this, in the evaluation we will use λmin = 30% and λmax = 60% in order to ensure
almost complete fulfillment of the SLAs while getting substantial power consumption. A next
step would be to dynamically adjust these thresholds, and it remains for future work for ad-hoc
modeling techniques.

5.4.3 Validation of ML models

In this section, we evaluate the accuracy of the machine learning models derived during the
training process, to assess their reliability to predict future situations. Furthermore, we evaluate
the performance of our overall method for scheduling and consolidating.

The role of the machine learning methods is to provide predictions of values that are unknown
at the time in which they are needed. In our setting, they provide some of the inputs to the
Backfilling and Dynamic Backfilling algorithms that they need to perform their scheduling,
namely, anticipated power variation and SLA fulfillment resulting from a possible move. Luckily,
at the validation stage, the information about actual power variation and SLA fulfillments can be
read from the available datasets. We can thus evaluate predictor accuracy on a test/validation
subset, disjoint from the training set.

The linear regression model to predict SLA fulfillment ratio fits with the real measurements
with average accuracy close to 0.985. This very high value is explained in part by our current
choice of priorities. Since we prioritize SLA fulfillment over consumption, the algorithm’s choices
are conservative or cautious with respect to SLA’s, which are therefore almost always fully
satisfied, and therefore easy to predict. In fact, we did not find situations where the predicted
SLA value is 1 but the actual SLA is lower: the 0.015 fraction of prediction errors are on the
side of SLA’s that are predicted to fail but finally succeed. This will generally implied that our
algorithms do well on the SLA side at the expense of somewhat higher than necessary power
consumption.

The model for predicting CPU usage, basically using the CPU usage of all jobs allocated to
it, is accurate up to 0.997, almost perfectly. CPU usage prediction is in turn used to predict
the power consumption of a machine after adding a job, and we obtained a high accuracy of

72 CHAPTER 5. PREDICTIONS ON DECISION MAKING

Working Running CPU usage
nodes (avg) nodes (avg) (hours) Power (kW) SLA (%)

Grid workload

Round Robin 16.11 41.37 5954.91 1696.66 85.99
Random 16.51 40.76 6017.85 1671.16 88.38
Backfilling 10.18 27.10 6022.34 1141.65 100.00
Dynamic Backfilling 9.91 26.46 6104.33 1118.86 100.00
Machine Learning DB 15.04 37.92 6022.27 1574.78 99.69

Service workload

Round Robin 290.99 400.00 78419.97 19761.54 100.00
Random 218.46 400.00 75336.88 19784.38 100.00
Backfilling 108.79 352.88 59792.09 16257.26 100.00
Dynamic Backfilling 108.79 352.88 59748.10 16229.22 100.00
Machine Learning DB 99.61 270.50 61379.38 13673.71 100.00

Heterogeneous workload

Round Robin 260.66 400.00 84432.96 19713.72 94.20
Random 224.08 400.00 82137.27 19763.63 88.53
Backfilling 110.85 330.19 65894.46 16304.38 99.50
Dynamic Backfilling 111.03 329.07 66020.58 16214.49 99.59
Machine Learning DB 124.20 307.89 68554.01 15110.33 98.63

Table 5.2: Scheduling results

0.98 between the model and the workload data, so the model is able to predict consumption for
low loads, average loads, and high loads. Having so validated the models, we can use them to
provide inputs to the ML-based scheduler. Next subsection shows the results of this and other
schedulers considered.

5.4.4 Scheduling policies

This experiment evaluates the behavior and performance of the different scheduling policies using
three different workloads, namely a Grid workload, a Service workload, and a Heterogeneous
workload. It uses the turn on/off thresholds λmin = 30% and λmax = 60% derived in Section 5.4.2.

We have evaluated five scheduling algorithms: Random and Round-Robin (see Algorithm 4)
do not use any user-provided information about the jobs and do not consolidate. For Backfilling
and DynamicBackfilling (see Algorithm 5), the user provides for each job a figure indicating
which % of a CPU capacity should suffice to satisfy the task SLA’s. The algorithms trust this
figure as totally reliable, and therefore will make decisions that may fit very tightly the SLA’s
and therefore save power. Our algorithm, Machine Learning, has the drawback with respect
to these algorithms that it does not use any user-provided information. Therefore, a priori we
should expect it to perform worse in general, as it has to pay a price for this lack of information,
but the closer in performance it is to these two algorithms with privileged information, the
more successful we can consider our approach. Somewhat surprisingly, we will see that it does
sometimes better than the algorithms having additional information. The results are presented
in Table 5.2, according to the metrics proposed in Section 5.3.

The results obtained using the Grid workload show that non-consolidating policies such as
Random and Round-Robin give a poor energy efficiency while violating some SLAs: these policies
give the worst results on both criteria. Backfilling and Dynamic Backfilling fulfill all SLA’s with
substantially lower cost. Machine Learning performs almost perfectly w.r.t. SLA’s (as we have
seen that predictions for SLA fulfillment are very accurate), but with respect to power is closer to
Random than to the backfilling algorithms. The reason is that the user-provided figures for the
tasks are very close to the real ones (and the load quite steady), so the backfilling algorithms will

5.4. EVALUATION OF THE ENERGY-AWARE SCHEDULE 73

Algorithm 4 λ-Round Robin algorithm
for each vm i:

get_data(i);

res_quota[i] <- get_required_resources(i);

end for

for each host j:

res_avail[j] <- get_total_resources(j);

end for

numHosts <- calculateNumHosts(res_quota[],lambda);

c_host <- 1;

for each vm v:

visited <- 1;

while (not fit(res_quota[v],res_avail[c_host]) and visited <= numHosts) :

c_host <- (c_host + 1) % numHosts;

visited <- visited + 1;

done

if (visited <= numHosts) :

assign_vm_to_host(c_host,v);

update_resources(res_avail[c_host],v);

else :

assign_vm_to_host(null_host,v);

end if

end for

Algorithm 5 (Dynamic)Backfilling algorithm

for each vm i:

get_data(i);

res_quota[i] <- get_required_resources(i);

end for

for each host j:

get_data(j);

res_avail[j] <- get_available_resources(j);

end for

order[] <- order_by_empty(hosts,res_avail[]);

for each host h in order[]:

for each vm v in host h:

k <- numHosts;

l <- index_of(h,order[]);

stay <- true;

while (k > l and stay) :

c_host <- order[k];

if (fit(res_quota[v],res_avail[c_host]))

move_vm_to_host(c_host,v);

update_resources(res_avail[c_host],v);

stay <- false;

end if

k--;

done

end for

end for

74 CHAPTER 5. PREDICTIONS ON DECISION MAKING

0

Dynamic Backfilling
Round Robin

Machine Learning DB

Mon ThuWed Fri Sat SunTue

40

35

30

25

20

15

10

5

Po
w

er
 (K

W
at

ts
)

Figure 5.4: Power consumption of different schedulers with a Grid workload

take many decisions that will not violate any SLA but that look too risky to Machine Learning,
that pays a high price in consumption for its caution.

Note that this workload makes a very variable use of the power consumption over time as
it is graphically shown in Figure 5.4. This is due to the fact it makes the system creating
and destroying many VMs, which implies a high variability in the number of running nodes
and power consumption during time. The figure shows the power consumption pattern of the
different schedulers and enforces the table results.

On the Service workload, the Machine Learning scheduler is the clear winner with respect to
energy consumption. Note first that on this workload all the schedulers executed all the tasks, so
all SLA’s are fulfilled. The workload has a very variable CPU usage. This means that the user-
provided estimation about the CPU to be used for the given jobs will be a large overestimation
for large periods (while it was very tight on the Grid workload), and power will be unnecessarily
wasted. Here is where the Machine Learning scheduler takes advantage because of the capability
of computing somewhat conservative but adaptive estimates of the degree of SLA fulfillment,
and adapt its power consumption accordingly. Thus, it is able to work better when the features
of the input load are not known or the user-provided estimates are misleading, which is very
often the case.

Finally, the results obtained using the Heterogeneous workload are, as expected, a mix of
the two previous workloads. In this case, the overall SLA fulfillment by our algorithm is worse
by about 1%, but its overall power consumption is better by about 10%. Figure 5.5 shows
the evolution over time, and one can see that machine learning does worse with respect to SLA
when the CPU utilization is higher (i.e., when the other algorithms can exploit the user-provided
information they have), but much better than Random and Round Robin, which behaves very
similar to Random.

5.5 Conclusions for energy-aware scheduling

In this chapter we have introduced and presented a framework that provides a vertical and intelli-
gent consolidation methodology to deal with uncertain information keeping in mind performance
and power consumption at the same time. This framework covers the whole control cycle of
a real scenario with a holistic approach that requires a collaboration among researchers from
different disciplines. The results obtained in this paper indicate that significant improvements
can be achieved using machine learning models in order to predict application SLA timings and

5.5. CONCLUSIONS FOR ENERGY-AWARE SCHEDULING 75

0

100

200
300

400

500

600

Mon ThuWed Fri Sat SunTue

100
80
60
40
20

100
80
60
40
20

100
80
60
40
20

Dynamic Backfilling
Machine Learning DB

Random

0
0-0.3
0.3-0.6
0.6-1
1Dynamic Backfilling

Machine Learning DB

Random

S
LA

 S
at

is
fc

ac
io

n
C

P
U

 U
sa

ge

0

100
80
60
40
20

Round Robin

Figure 5.5: CPU usage and SLA fulfillment with heterogeneous workload; Most significant poli-
cies: Dynamic Backfilling, Machine Learning and Random

decide the movements and operations to be done within scheduling functions.
The experiments, performed using real workloads, exemplify that these techniques can offer

substantial improvements in energy and performance efficiency in these scenarios. Using the Grid
workload the experiments demonstrate how non-consolidation aware policies give a poor energy
efficiency. Backfilling gets a good performance and its dynamic extension demonstrates power
efficiency in order to reduce power consumption, but only if reliable a priori information on the
tasks is available, and if the task features are steady over time. The machine learning method is
close enough to these models that use external information w.r.t. SLA fulfillment (performance),
and much better with respect to power consumption when the information provided by the user
is not uniformly accurate. On mixed, heterogeneous workloads, it obtains noticeable reductions
in power consumption at the expense of only a slight decrease in performance.

On this work, as a proof of concept, we used a greedy algorithm for scheduling (Dynamic
backfilling) and we departed from basic attributes (CPU Usage, Timing SLAs), as a first approx-
imation of a decision making methodology. Therefore, as being proved the viability of adding
ML techniques to improve power management, we are now including the concept of resource
aggregation of not only CPU but also memory and IO, and expanding the concept of SLA.

The work presented in this chapter has been published in the “international ACM eEnergy
2010 Conference” [30] (2010) and as a chapter in the book “Energy-Efficient Distributed Com-
puting Systems” [31] (2012).

76 CHAPTER 5. PREDICTIONS ON DECISION MAKING

Chapter 6

Mathematical Modeling of
DataCenters

In this chapter we expose how to represent a datacenter based scheduling problem, taking the
advantages of the virtualization and consolidation techniques, as a mixed integer linear problem
meeting energy saving, economic profit, and customer satisfaction. First we expose step by step
the fundamentals for representing the DC, and how factors and variables relate among them.
Then we study the trade-offs between those factors. Secondly we test the model in a framework
for autonomic scheduling of jobs and web-services, optimizing the profit, taking into account
revenue for task execution minus SLA violation penalties, minus energy costs. We use an exact
solver based on mixed linear programming as a proof of concept but, since it is an NP-complete
problem, we show that approximate solvers provide valid alternatives for finding approximately
optimal schedules. Also we introduce machine learning techniques to complement unknown or
unavailable data (field to be expanded in the next chapter). In particular, here we predict a priori
CPU consumption by different web-services under real workloads, and estimate the web-service
SLA (such as response time) given workload features, host characteristics, and contention among
other web-services in the same host.

6.1 Introducing the Modeling Approach for DataCenters

In datacenter services, the goal of the manager is to maximize its revenue, executing as many
hosted services as possible but constrained by the infrastructure. Overloading the infrastructure
will lead to a QoS degradation and thus unfulfilled SLAs. Also high job throughput and user-
satisfaction can be obtained by deploying large amount of resources, incurring in high energy
costs. The aim of this work is to propose a method for adaptively remaining at the sweet spot
where enough resources (hosts - hence electrical power) are deployed to achieve almost maximal
throughput and user-satisfaction, while minimizing its costs.

This chapter presents a datacenter modeling focused on the three main goals: economic
revenue, power saving and quality of service. This model represents a data-center as a set
of elements (machines, processors and web-services in virtual machines) to be scheduled in an
optimal way, setting for each element a set of constraints to be accomplished, representing the
capabilities of each one and its requirements. The proposed methodology models a grid based
data-center as a set of resources and as a set of virtualized web-services, each one with its
energetic or resource requirements, involving a consumption cost and a rewarded execution. The
problem to be solved at each scheduling round is decide what resources are assigned to each VM,
while maximizing a function result of the benefit from VMs revenues, the power costs and how
much loss of QoS is tolerated in order to save energy. For this reason, this approach represents
the model as a mixed integer linear program, solving each scheduling using well known linear
programming techniques and integer optimizers.

77

78 CHAPTER 6. DC MATHEMATICAL MODELING

It is well known that solving a MILP can become a hard computational problem, also the
integer optimization is often fitted within a time function, but having good constraints and a
well defined problem can help to find, in a short time, solutions very close to the lower bounds of
the problem. This lets the middleware specialists to understand better the system and be able
to create good heuristics close to the optimal/sub-optimal solutions found with MILP solvers.
In fact, this work will be really useful in order to obtain data and information towards analyze
the behavior of grid datacenters and learn new management rules.

Related Work

As shown in previous chapters, here we use virtualization and consolidation as a basic strategy.
Our work is based on the advantages of these technologies, in order to build the mathematical
model, and in order to build upon it the machine learning mechanisms. Also we take advantage on
the ability to determine when to turn on and off physical machines. The ideas for this model are
based in the work done by J.S.Chase et al., presenting the MUSE framework [43], a framework for
modeling and autonomically control hosting centers and its policies. They present an economical
managing approach for scheduling jobs to resources, where hosts and jobs bid for resources, and
elasticity is allowed taking into account penalties for not fully attended resources. The model
presented here follows the same outline and basic concepts they used, with the addition of our
own policies and introducing a ML contribution.

Mathematical modeling is a good way to depict an optimization problem, as it lets to detail
all elements involved and the problem constraints. Petrucci et al. [125] developed a MILP
formulation to dynamically configure the consolidation of services in a virtualized server cluster,
with the problem of heavy calculus required per schedule. Also works like [34] present the
energy-aware service allocation problem as a mathematical program, driven by an effectiveness
energy utilization factor instead of economic SLA constraints as we do here. Also they indicated
the hardness of solving a MILP in practice and compared the exhaustive solving with greedy
algorithms. Here we follow the same methodology, by depicting the model, testing exhaustive
solving solutions, and then compare with heuristic or approximate algorithms as an alternative.

6.2 A MILP Representation for DataCenters

A grid based data-center can be modeled as a set of resources, each one with a consumption
cost, and a set of web-services in VMs to be executed with a set of resource requirements and
a set of benefits and execution penalties. The problem to solve at each scheduling round is
to decide what resources are assigned to each VM, depending always in its requirements and
conditions established by the agreement between the provider and the client submitting the job
(the service level agreement). The best solution will be that one that maximizes or minimizes a
target function, usually a function describing the benefit of the solution.

In the proposed situation, the three elements to maximize or minimize are the power con-
sumption, the economic benefit and the client satisfaction, so a good solution is that one assigning
resources to VMs (or VMs to resources) saving the most electrical power while granting a good
quality of service and having a positive benefit value by serving that clients. So the problem can
be represented by a function to maximize the optimal balance between the three elements, and a
set of conditions and rules in order to set VMs and resources without overloading the resources
and granting viable and real solutions. At this time we consider that a VM can not be split
between two or more hosts. When scheduling a VM into a host, the VM remains completely in
that host, turning the problem “integral”.

6.2.1 Scheduling Approach

The solution for the problem defined here is a scheduling integer binary matrix Hosts × VMs,
where each position [h, j] indicates whether the job j is or not in host h. A valid solution must
accomplish the condition that a job must be run entirely in a unique host, so it can not be split
in different hosts at this time.

6.2. A MILP REPRESENTATION FOR DATACENTERS 79

Each job needs determined resources to run properly at each moment, like CPU quota,
memory space and I/O access. At this time, as an example and case of study we focus on CPU
resources, understanding that memory and I/O can also be represented following the same model
and expanding it. With this purpose, the system must be able to observe the CPU consumption
of each task, and also the available CPU for each host. A solution looking for assuring the VMs
requirements must allocate VMs in hosts in a way that each VM has its CPU quota, and the
host is able to give that required CPU. So the sum of the VMs CPU demands in a given host
must not surpass the CPU capabilities. These conditions are the basic problem constraints. So
a solution consists in a schedule where VMs are in one host only, the load of a host does not
surpass the capabilities of it:

Variables: schedule[Hosts, V Ms], as Integer Binary ; representing the Schedule

Parameters: cpus(h), as CPUs existing in host h

cons(j), as the CPU consumption of VM j

Constraints: Unique{j ∈ VMs} :=
∑

h∈Hosts schedule[h, j] = 1

Capacity{h ∈ Hosts} :=
∑

j∈V Ms schedule[h, j] · cons(j) ≤ cpus(h)

Note: Consider that a VM CPU consumption can be a positive real value instead of a positive
integer value. When a VM enters in CPU keeps the CPU for itself during its time quantum,
but as VMs tend to block themselves waiting for IO or resting in idle/sleeping status, given a
determined amount of time the expectation of CPU consumption can differ from rounded values.

6.2.2 Minimizing the power cost

Introducing the first factor, one of the main goals is to schedule properly datacenters while
minimizing the power consumption. At this first stage, the search problem focuses on reducing
the number of CPUs used to run the datacenter VMs by consolidating them. The idea of
consolidation consists in running the commended VMs using the least resources as possible, and
in our case it means running as more VMs as possible in as less hosts as possible. As shown
in our previous work [70], given a host the power curve grows in a logarithmically alike way,
understanding that two machines with many processors running only one each of them consumes
more power that only one of those machines running two processors, keeping the second one in
a low-power state or just shut down.

In order to model the CPU power consumption of a given host, the CPUs of it can be consid-
ered as on-Line or off-Line depending on the required load. New technologies and architectures
not only allow to maintain multi-processor in idle states but also shut down processors and com-
ponents on demand. I.e. a load of 2.50 CPU should make a host to run 3 CPUs, leaving a 0.5
CPU in idle state (consuming power) and letting a VM with a demand of 0.5 CPU to enter and
take profit of this CPU waste. And when CPU load goes beyond 2.0 the host is allowed to shut
down a CPU reducing the consumption waste.

This brings new conditions to be accomplished: the solution will consider that the number of
CPUs given a host is a natural value, so the schedule will also consider separately the processors
(CPUs) of a given host. Also, the number of active CPUs in a host will not surpass the maximum
number of CPUs available on that host (this condition looks silly at first time, but must be
considered when having a model with different shaped hosts in the data-center).

In order to keep the representation of the problem as much linear and clear as possible,
the value to minimize is the sum of all the power consumed by the scheduled solution and its
active CPUs. This is, for each host, look at how much CPUs are running, and check the power
consumption according to the host characteristic power curve. I.e. the function to minimize for
the host represented, consisting in a 4 CPUs Xeon machine following its power curve, would be
pr1 · 267.8 + pr2 · 17.7 + pr3 · 17.0 + pr4 · 15.4 (In this case coefficients are kWatts/hour). Then,
the sum of the power consumption of all the data-center is the sum of all power measures. This
representation of the problem requires a last condition in order to make it reliable, as CPUs will
be started up and shut down in order, so the first CPU to be active in the representation model
will be pr1, then pr2 and successively.

80 CHAPTER 6. DC MATHEMATICAL MODELING

The resulting model minimizes the consumed power taking into account the consolidation
goals, like filling a half-empty host is better that starting a stopped one:

Variables: schedule[Hosts, V Ms], as Integer Binary ; representing the Schedule

pri[Hosts], as Integer Binary ; representing the use for each host of its i-essim CPU

Parameters: pwri, as the power consumed by an i-essim CPU

cpus(h), as CPUs existing in host h

cons(j), as the CPU consumption of VM j

Minimize:
∑

h∈Hosts,i∈cpus(h) pri[h] · pwri

Constraints: Procesors{h ∈ Hosts, i ∈ cpus(h)} := pri[h] ≥ pri+1[h]

Unique{j ∈ VMs} :=
∑

h∈Hosts schedule[h, j] = 1

MaxCPU{h ∈ hosts} :=
∑

i∈cpus(h) pri[h] ≤ cpus(h)

Capacity{h ∈ Hosts} :=
∑

j∈V Ms schedule[h, j] · cons(j) ≤
∑

i∈cpus(h) pri[h]

6.2.3 Maximizing the profit

Once having modeled system from a power consumption point of view, the economic factor can
be introduced. Successfully accomplished VMs are rewarded with revenue, so clients pay the
data-center provider for running their applications on it. Given this obvious fact, VMs can
be translated to money according the data-center pricing or service level agreements. Power
consumption can be represented as kWatt/hour, tons of CO2, or also money per kWatt/hour,
evaluating the power consumption by the cost of buying the required electricity. In this manner,
revenues and power costs can be included in the same equation: Benefit = Revenue− Costs.

When VMs and power have a fixed value, and VM revenue is above power cost, benefit
will always imply running the most applications as possible while consolidating, so power waste
is minimized. Unfortunately, consolidation strategies have a great handicap: migration costs.
Changing a VM from a host to another implies that during this process the VM is stopped or
replicated, and this can make the SLA fail due to broken deadlines or interruptions of service,
and also extra CPU load while moving the VM. For this reason, migration is penalized with an
economical cost referring to client-provider SLAs or to time and resource wasting [69].

At this time, the model attempts to maximize the benefit of the data-center, as the revenue
for all tasks minus the power cost, and minus a penalty for each migration done towards the
previous schedule (excluding finished and new-coming VMs). That penalty can be considered,
i.e., as the nonpayment for the migration time, an insurance for the unfulfilled SLA, or predict
the risk of an SLA failure and its consequences. As an example, we will consider the nonpayment
for that migration time, but keeping in mind all the other options:

Variables: schedule[Hosts, V Ms], as Integer Binary ; representing the Schedule

pri[Hosts], as Integer Binary ; representing the use for each host of its i-essim CPU

Parameters: pwri, as the power consumed by an i-essim CPU

cpus(h), as CPUs existing in host h

cons(j), as the CPU consumption of VM j

Functions: migr(scheduleold, schedule), as 1
2
· (scheduleold ⊕ schedule) (w.o. leaving or new VMs)

Maximize: +
∑

j,h∈V Ms,Hosts schedule[h, j] · Revenue VM/Hour

−
∑

i,h∈cpus(h),Hosts(pri[h] · pwri) · power price

− migr(scheduleold, schedule) · timemigration · Revenue VM/Hour

Constraints: Procesors{i, h ∈ cpus(h), Hosts} := pri[h] ≥ pri+1[h]

Unique{j ∈ VMs} :=
∑

h∈Hosts schedule[h, j] ≤ 1

MaxCPU{h ∈ hosts} :=
∑

i∈cpus(h) pri[h] ≤ cpus(h)

Capacity{h ∈ Hosts} :=
∑

j∈V Ms schedule[h, j] · cons(j) ≤
∑

i∈cpus(h) pri[h]

6.2. A MILP REPRESENTATION FOR DATACENTERS 81

Note that the impact of migration can affect CPU loads and many other relevant factors on
the system, depending on the relation of the migration time and re-scheduling time.

6.2.4 Quality of Service as a factor

Often systems can be enough flexible to allow some tolerance to Quality of Service, and that
means that VMs are not strictly tight to a fixed QoS, and sometimes this QoS can be relaxed
letting the system to certain overload in order to improve consolidation and reduce power con-
sumption. By relaxing the QoS, some penalization can be applied specified in the SLA, so the
schedule is able to alter the demands of each VM by attending at the economic consequences.

In order to define the level of accomplishment of the VM goals and SLA conditions, the
concept Health is defined. The health is an index indicating how well is performing a VM, and
often depends on the amount of the required resources are received. A value of 1 means that the
VM is performing optimally, and 0 that the VM is not running nor progressing in its execution.

When turning the VMs CPU requirement into variables, in a range between a maximum
CPU (original required) and minimum CPU (SLA failure assured), we can estimate the health
level using knowledge from the system, heuristics, or prediction [30] comparing the offered CPU
with the maximum required CPU. This health value can be used to establish the penalty to be
subtracted to the revenue, or by default use a fixed value explicitly indicated in the SLA.

The function to be optimized includes now the new factor, by scaling the revenue with the
health function, adding the before fixed VM requirements as variables, and establishing a range
for that variable. Changes to be introduced are reflected in the following parts of the problem:

Variables: jcpu[VMs], as Integer ; representing the CPU usage of VM j

Parameters: consmin(j), as the minimum required CPU consumption of VM j

consmax(j), as the maximum required CPU consumption of VM j

Functions: health(j), level of QoS of the VM j result of jcpu[j] ∼ 〈consmin(j), consmax(j)〉

Constraints: MarginCPU{j ∈ VMs} := 0 < consmin(j) ≤ jcpu[j] ≤ consmax(j)

Capacity{h ∈ Hosts} :=
∑

j∈V Ms schedule[h, j] · jcpu[j] ≤
∑

i∈cpus(h) pri[h]

Maximize: +
∑

j,h∈V Ms,Hosts(schedule[h, j]) · Revenue VM/Hour

−
∑

j∈V Ms(1− health(j)) ·QoS agreed penalty

−
∑

i,h∈cpus(h),Hosts(pri[h] · pwri) · power price

− migr(scheduleold, schedule) · timemigration · Revenue VM/Hour

At this moment, note that the problem as written as shown loses its linearity as scheduling
and jcpu are being multiplied as being both variables of the same problem, and this requires to
re-write some details in order to obtain again a linear problem.

Having the variable schedule as a binary values matrix, the Capacity constraint can be
understood as

Capacity{h ∈ Hosts} :=
∑

j∈V Ms[if (schedule[h, j] = 1) jcpu[j] else 0] ≤
∑

i∈cpus(h) pri[h]

For this, a change of variables can be performed and rewrite the constraint as

Capacity{h ∈ Hosts} :=
∑

j∈V Ms quota[h, j] ≤
∑

i∈cpus(h) pri[h]

quota[h, j] = if (schedule[h, j] = 1) jcpu[j] else 0

This quota condition formulated as a set of linear constraints in the following way

quota[h, j] ≥ schedule[h, j]

quota[h, j] ≤ schedule[h, j] ·BigConst1

quota[h, j]− jcpu[j] ≤ (1− schedule[h, j])

jcpu[j]− quota[h, j] ≤ (1− schedule[h, j]) ·BigConst2

82 CHAPTER 6. DC MATHEMATICAL MODELING

being BigConsti constant values always big enough to surpass the sum of the VM require-
ment ranges, just assuring that the inequalities of conditions always are valid letting the model
to perform the target condition. Also remember that jcpu[j] is an integer greater than zero.

The final integer linear program is as follows:

Variables: schedule[Hosts, V Ms], as Integer Binary ; representing the Schedule

quota[Hosts, V Ms], as Integer ; representing CPU quota for each VM in each host

pri[Hosts], as Integer Binary ; representing the use for each host of its i-essim CPU

jcpu[VMs], as Integer ; representing the CPU usage of VM j

Parameters: pwri, as the power consumed by an i-essim CPU

cpus(h), as CPUs existing in host h

consmin(j), as the minimum required CPU consumption of VM j

consmax(j), as the maximum required CPU consumption of VM j

Functions: migr(scheduleold, schedule), as 1
2
· (scheduleold ⊕ schedule) (w.o. leaving or new VMs)

health(j), level of QoS of the VM j result of jcpu[j] ∼ 〈consmin(j), consmax(j)〉

Maximize: +
∑

j,h∈V Ms,Hosts(schedule[h, j]) · Revenue VM/Hour

−
∑

j∈V Ms(1− health(j)) ·QoS agreed penalty

−
∑

i,h∈cpus(h),Hosts(pri[h] · pwri) · power price

− migr(scheduleold, schedule) · timemigration · Revenue VM/Hour

Constraints: Procesors{i, h ∈ cpus(h), Hosts} := pri[h] ≥ pri+1[h]

Unique{j ∈ VMs} :=
∑

h∈Hosts schedule[h, j] ≤ 1

MaxCPU{h ∈ hosts} :=
∑

i∈cpus(h) pri[h] ≤ cpus(h)

Capacity{h ∈ Hosts} :=
∑

j∈V Ms quota[h, j] ≤
∑

i∈cpus(h) pri[h]

MarginCPU{j ∈ VMs} := 0 < consmin(j) ≤ jcpu[j] ≤ consmax(j)

QoSAux1{j, h ∈ VMs, hosts} := quota[h, j] ≥ schedule[h, j]

QoSAux2{j, h ∈ VMs, hosts} := quota[h, j] ≤ schedule[h, j] ·BigConst1

QoSAux3{j, h ∈ VMs, hosts} := quota[h, j]− jcpu[j] ≤ (1− schedule[h, j])

QoSAux4{j, h ∈ VMs, hosts} := jcpu[j]− quota[h, j] ≤ (1− schedule[h, j]) ·BigConst2

6.3 Studying the Behavior of the Model

In this section the method is evaluated, exposing the scenario used in order to test the approach.
Also all the decisions taken in order to set up a representative testbed are exposed, building a
good scenario to focus on the method while letting the addition of new elements or variables.

6.3.1 Programming and Simulation Environment

The experiments performed to test this approach have been done simulating a real workload and
also simulating a datacenter formed by different sized testbed machines. In this occasion, as the
important thing to be evaluated and tested is the methodology and algorithms for scheduling
and making decisions, a real data-center and a scheduling mechanisms have been recreated in
R [80], extracting the behavior formulas and data-center working modules directly from the cloud
simulator EEFSIM, explained in previous chapter 4.

For this approach, the modules and formulas have been implemented in R, using workloads
and data-center configurations generated from real loads and examples. The example simulated
datacenter is presented in Table 6.1.

The used workload corresponds to a transactional workload on application web-servers, ob-
tained from a real web-applications workload. These web-applications simulate customers who
wants to run their services on top of the the provider. The behavior of these applications de-
ployed corresponds with the one of SPECweb2009 e-Commerce application [148] which is used

6.3. STUDYING THE BEHAVIOR OF THE MODEL 83

Number of Hosts CPU Memory

20 4 @ 3GHz 4 GB

10 2 @ 3GHz 4 GB

10 1 @ 3GHz 4 GB

Table 6.1: Properties of the simulated datacenter

as web-based application and its model has been obtained by stressing this application (deployed
on a Tomcat v5.5 with an hybrid architecture) with different input loads and with different
processing units. The details of the workload are shown in Table 6.2.

Type SLA type #VMs Description Mean duration

Web Performance 10 Monday 86400”
Web Performance 10 Tuesday 86400”
Web Performance 10 Wednesday 86400”
Web Performance 10 Thursday 86400”
Web Performance 10 Friday 86400”
Web Performance 5 Saturday 86400”
Web Performance 5 Sunday 86400”
Web Performance 20 One week 604800”

Table 6.2: Workload details

This modeling, as proposed in [87], focuses on the response time high-level metric and, relating
this metric with both incoming users load and CPU usage of the server. The modeling details
include an stationary response time (RT), when the incoming load causes a CPU utilization less
than 60%; a slightly increased RT when this CPU utilization is between 60% and 80%; and a
polynomial behaved RT when the server is overloaded.

The power consumption is also determined in EEFSIM, where the real power consumption
is measured using different workloads in a 4-CPU computer whose kernel includes some energy
efficiency policies. As seen in previously the wattage increases with the CPU requirements on
a physical machine, but this increment is lower with each extra processor used on a machine.
This is the reason why consolidation optimizes the power consumption. Also, in the experiments
of this approach the turning on and off of used and idle machines is considered to reduce the
consumption, as seen in works like [70, 30].

In order to set the economic values of each involved element, the EEFSIM and its related
works (as seen below) established that providers behave as a cloud provider similar to Amazon
EC2, where users will rent some VMs in order to run their tasks. The pricing system for the
VMs is similar to the one EC2 uses and medium instances with high CPU load are assumed,
which have a cost of 0.17 euro/hour (EC2 pricing in Europe). Also the electricity pricing used
is the Spanish one, that is 0.09 euro/KWh [60]. The VM migration process can be performed in
several ways: as stopping the service and resuming it after full VM data is copied, or creating
a copy into the physical destination before deleting the original and then change the load flow.
Anyway, this process may cause in some occasions a interruption of service or just degrade the
user experience for a short period of time, and as example of a simple valid SLA in this model
is proposed a migration penalty consisting in a economic compensation to the client (i.e. the
execution during a migration period becomes for free). For the present approach, the maximum
migration time is set to 5 minutes, while each scheduling round is set to 1 hour, according to the
variability of the performed workloads.

As a parameter defining the Quality of Service at low level, the concept health is defined
as the ratio between obtained CPU and the required CPU in function of the client load. The
maximum loss of QoS permitted can be determined in each VM SLA, but as an example and
case of study here a range [0.8, 1.0] is determined as acceptable offered CPU, and a penalization
of (1 − CPUV M

OfferedCPUV M
) ∗ 0.17euro/hour (revenue of VM per hour) is applied in order to add a

benefit factor. These parameters can vary in function of each VM SLA adjusting the minimum

84 CHAPTER 6. DC MATHEMATICAL MODELING

accepted health factor, the way of calculating the health factor, and the revenue of the VM.
Finally, in order to find good scheduling results implementing the here described integer linear

programs, different popular implementations of the simplex algorithm [52] have been used. For
the here exposed results shown in next subsections the GNU Linear Programming Kit (glpk) has
been used, but other options have been run in order to find enhanced simplex algorithms like
lpsolver or CPLEX [85]. Here we will not discuss a comparison between them, as lpsolver often
find better solutions than glpk with the same running time and CPLEX is able to find optimal
solutions in seconds instead of minutes like the other ones. The glpk has been selected here just
because is the easiest to apply and experiment with, without a license requirement (i.e. CPLEX
requires a limited payment license to be run).

6.3.2 Experiments

In this subsection the model is run focusing on each of its factors (power, economic, qos) one by
one. The integer linear program can be compared in an only-power version, looking for minimize
the power consumption; in an economic versus power version, looking for increase the revenue
minus the power economic cost; and in the full version, including the tolerance to some loss of
QoS in favor to the power saving.

As expected, the experiments reveal that the power model is the one that performs the
maximum number of migrations as its priority is to reduce the consumption and in a natural way
the scheduler consolidates the VMs at each round. This model only contemplates options that
reduce the number of processors used and machine on-line, and this brings the policy of migrating
VMs as many times as required. Without any restriction referring to migration penalization,
this model is the one that performs best in an energetic way. The “economic vs power” and full
models do not optimize as good in energy, mainly because they include restrictions at applying
this migration policy. The power consumption is shown in Figure 6.1.

Figure 6.1: Power consumption in for each model

The “economic vs power” model and the full model include the policy of reducing the number
of migrations by penalizing them. This makes that their power saving is reduced compared with
the power only model, but here the schedule is reducing the number of times a VM can be

6.3. STUDYING THE BEHAVIOR OF THE MODEL 85

temporally “out of service”. As Figure 6.1 shows, the “economic vs power” model and full model
power consumption is similar, also QoS tends to improve the economic only model, as lets the
reduction of resource quotas to improve power saving.

When introducing the explained migration penalty the optimization changes as the economic
based models improve the revenue brought by maintaining machines running without being
migrated. As seen in Figure 6.2, power model degrades in revenue as migrations are done without
restrictions. The model tolerating some QoS loss maintains similar revenues than the economic
model reducing the number of migrations by reducing the quota of resources, also penalized by
the explained health rule. This temporary reduction of resources in order to reduce the migration
needs is shown in Figure 6.3, where clearly the full model nearly avoids migration.

Figure 6.2: Benefit obtained from each model

It is important to remark the fact that the reason for penalizing migrations is that each
migration brings chances of interrupting the service during a brief period of time or any other
drawback of this technology like having duplicated services or VMs. For this reason economic and
QoS models should be preferred than power-only models, as they attempt to reduce the number
of chances of service interruption. For future models, whether knowing the exact migration
specifications, this chances and exact SLA penalization could be added to the optimization
model, so the decision of migrating a VM versus do not do it would be better weighted assuming
a more accurate probability of interruption of service.

Table 6.3 summarizes the consumption, benefit and number of migrations performed by each
model. In the table a Round Robin scheduling algorithm has been added in order to compare
with a naive scheduler. This Round Robin algorithm performs all allocations always assuring
that the VM fits into the target machine.

The coefficients applied in the problem weighting each task execution, the power price, the
migration penalty and the QoS penalty define the policy to be followed in order to optimize.
This case of study assumed a policy that obviously can change when prices change, and when
technology changes. If migration technology is improved reducing the maximum migration time,
the penalty of migration can be reduced so in some occasions moving VMs will be better than
sacrificing VMs performance. Furthermore, a modeling of each kind of VM could provide a
characterization of the probability of “out of service” when migrating a specific VM and adjust

86 CHAPTER 6. DC MATHEMATICAL MODELING

Figure 6.3: Number of migrations for each model

Model Power cons.(watts) Benefit (euro) Migrations (#)
Round Robin 1687717.0 598.1375 4712
Power Only 236398.3 794.5513 3944
Economic Oriented 419813.1 782.7054 100
QoS relaxation 376801.8 780.8093 35

Table 6.3: Comparative between models

the migration penalty depending on the VM to be moved. This also would provide an accurate
selection of which VMs are more candidates to be moved when the situation requires it. The
same occurs with the QoS threshold, being modified for each VM and circumstance, so some
VMs are more or less able to be economized depending on their execution time. Here a VM
migration vs VM compression situation is faced, depending entirely of the policy applied at each
moment.

Integer linear programming can be used directly as a scheduling algorithm in some occasions,
when engineers and designers know that the situations to control will be solvable in short time
(seconds or minutes). But unfortunately, simplex algorithm can become exponential, and the
integer optimization usually is exhaustive, and in some situations finding a good enough solution
requires excessive search time. For this case of study the average time in order to find a good
solution: an average of 0.2447% difference respect the simplex relaxed lower bound [min 0.0%,
mean 0.2447%, max 7.0530%], with a mean of 14 seconds time search for scheduling often 30
VMs x 40 machines (with a maximum search time of 2 minutes, not often reached). Next
section will show that when expanding and adding more complex constraints to the model, this
computing time will increase significantly, and alternatives will be required as an alternative to
the exhaustive solving.

6.3. STUDYING THE BEHAVIOR OF THE MODEL 87

6.3.3 Impact of Policies and Trade-offs

Finally by looking at the proposed model, each element included in the benefit function can be
seen as an element of a policy system. Denoting Benefit with B, Revenue with R, Migrations
with M , Loss of QoS with Q and Power with P as: B = R −M −Q− P , the elements M and
Q represent the policy of the system in front of the possibility of migrations and task resources
compression. The impact of each policy can be measured by testing them using multipliers in
order to check how much vary the power and real benefit while varying the enforcement of the
migration penalty or the loss of QoS penalty. Setting B̃ = R − (λM + εQ) − P and a policy
Π = 〈λ, ε〉 indicating how each element will be weighted in the MILP solver, some tests are run
to obtain the relation between each migration and loss of QoS for each power saving unit. A
first set of executions test the migration policy by varying its weight (λ) and forbidding the loss
of QoS (ε = ∞), while other set of executions test the tolerance to QoS loss by forbidding the
migrations (λ =∞) and varying the weights of the QoS loss penalty (ε) and letting no minimum
bound to the QoS loss.

In the case of the migration policy test, it is obvious that the migration technique is always
applied in order to reduce the number of running processors in the whole system, so as shown in
Figure 6.4a the number of migrations is reversely related to the consumed power. This can be
understood as “migrations relief power consumption, while paying a price”, and it is the relation
between the cost per kWh and the penalty for each migration. If the price of the amount of
power a migration can save is bigger than the cost of performing this migration, do it is better.
So policies based in migration can modify the migration penalty in order to adjust the number
of migrations to be performed in front of a determined amount of power to be saved, as seen in
Figure 6.4b.

(a) Power vs Number of Migrations (b) Power vs Migration Restriction

Figure 6.4: Power versus migrations and migration restriction policy

Finding the best fitting linear regression from the power vs. migration results, the generated
model matches with the form: ˆPower 'MinimumRequiredPower+(maxPossibleMigrations−
#Migrations)∗MachineBasePower. This means that in average for each migration performed,
the power of having on-line one machine is saved, demonstrating that the method performs first
that migrations that improve most the power saving. In this case, performing a migration that
allows to shut down a machine is preferred to perform a migration that just saves a few watts.
From Figure 6.4a we can distinguish three parts, the first one where the policy optimizes only
with migrations that directly shut-down machines (0-200 migrations), the second one where mi-
grations shut-down machines and reduce the number of running processors (200-800 migrations),
and the third part where saturation comes and no for more migrations done the power will be
easily reduced due to reaching the minimum required power.

88 CHAPTER 6. DC MATHEMATICAL MODELING

In the case of Power versus Loss of QoS it can be observed that the power is related to the
level of Quality of Service (in terms of resource occupation) and the restrictions to be applied
on QoS loss, as seen in Figures 6.5a and 6.5b.

(a) Power vs QoS level (b) Power vs QoS Loss Restriction

Figure 6.5: Power versus QoS (health) and QoS Loss restriction policy

Note that the policy values λ and ε are directly related to the number of migrations and QoS
respectively. So in tuning the model establishing the weight of each condition (or policy or price),
a trade-off between the provider revenue per application and the penalties for each migration
and loss of QoS. The MILP model presented here is complemented by finding these penalization
weights by applying the policy that minimizes the power consumption while granting a good
QoS level and reducing the possibilities of service outage caused by migrations. Also with this
information the model can be adjusted if business policies decide not to allow more than X
migrations per time unit, or not to set a determined average of QoS allowed (or also a minimum
QoS level without restricting it in the MILP constraints).

6.4 Discussion on MILP Modeling of DataCenters

In order to optimize the scheduling and management of datacenters several factors must be kept
in mind, like the economic ones (obtaining revenues from task executions and resource usage),
bringing good service quality to the customers and clients, and also the energy-related factors
required to run infrastructures. This optimization problem can be modeled as an integer linear
program, so MILP methods can help in order to solve it, or also help to find other accurate
models and solving methods.

Taking the advantages of virtualization and consolidation techniques, this model can address
policies that focuses on energy-saving goals, like using migration to turn-off unnecessary ma-
chines, or lend tasks fewer resources in order to save power. The results obtained show that
the MILP model allows to find optimal (or near-optimal) solutions bringing good QoS levels (by
giving tasks the required resources), and each new technique introduced in form of rules and
constraints allows the scheduler new options to expand the model.

Also, from the obtained results an expected fact can be observed: in order to maximize
economic benefit the usually most “sacrified” factor is the cheapest one. In this case it is power
consumption. When the schedules attempts to make a decision that maximizes revenue while
not degrading QoS, migrating as minimum as possible and consuming low power, as power
consumption is economically weaker than the revenue obtained by the rest of the system, it
receives less attention and so benefit increases response to higher power consumptions.

6.5. INTRODUCING MACHINE LEARNING INTO THE MODEL 89

A way to adjust this energy consumption is to play with policies, adjusting weight to power-
saving techniques in order to relax their usage penalties, so here the system would risk some
economical benefit or QoS in order to save some energy. Also policies decide which kind of risks
are to be taken between chances of service outage caused by migrations or chances of QoS loss by
reducing the given resources to tasks. Future work is addressed to research in the way of decision
makers and modeling the kind of risks to be taken at each moment, so static policies can turn
into dynamic depending on the context, the load and the interests of providers and clients.

6.5 Introducing Machine Learning into the Model

In this section we present some experiments done to compare the MILP solving with some
generic approximate algorithms, in order to prepare the research for the next chapter, where we
will apply machine learning to model and predict component behavior, to be applied as part of
the fitting functions in our mathematical modeling. Many of the concepts introduced here will
be more completely explained and detailed in the next Chapter 7.

A cloud can be viewed as a set of VMs or tasks to be distributed along a set of resources,
so the main decisions to make are what resources are given to what VMs, assuring that each
VM receives enough resources to be executed properly with respect to global goals and customer
requirements. In order to make this management more efficient, here we employ methods from
Machine Learning. This is a subfield of the data mining area in charge of modeling systems
from real examples of their past behavior. These models can then be used to predict future
behaviors. The advantage of Machine Learning, compared to explicit expert modeling, is that it
applies when systems are complex enough that no human expert can explore all relevant model
possibilities, or in domains when no experts exist, or when the system is so changing over time
that models have to be rebuilt autonomously over time.

6.5.1 Web-Services and Prediction

Each VM has its own behavior and resource requirements. Often these requirements are not
known in advance, so the system manages the amount of resources at each scheduling round
taking as valid values the previous monitored demand. In other situations the user providing the
VM (customer) provides a guess on average or maximum requirements, and either the system
trusts the (often inaccurate) customer advice, or else overbooks resources. In this work we focus
on web services, as their requirements are more sensitive towards volume of load than other
high-performance tasks, and tend to change unpredictably in time. The methodology proposed
in this work includes learning to predict, for each kind of VM entering the system, the amount
of required resources as a function of the kind of load it is receiving.

When a new kind of VM arrives we train a model mapping load to resources for that particular
kind. A load is specified as a vector of load attributes determined beforehand (such as requests
per second, bytes transferred per request or processing time per request). Given such a load, the
model provides a vector describing the predicted usage of a number of resources (CPU, memory,
bandwidth. . .). Kinds of VMs could be web services running on specific software packages
like Apache v.X, Tomcat v.Y, with attached modules like PHP or MySQL DB services. Each
execution of the VM provides pairs of 〈workload attributes, resources used〉 that can be used for
(further) training the model describing this kind of VM.

Once in the scheduling phase, the goal is to assign as few resources as possible to running
VMs keeping user satisfaction but reducing power usage. We assume in this work that the notion
of user-satisfaction is captured by SLAs for each VM, that is an agreement between customer
and provider about the quality of service that the provider assures the VM will offer externally.
For a web service, and for this case of study, a relevant SLA term is the maximum response time
the service will provide per request. A commonly used form of SLA function for response time
RT

SLA(VMi) = max(min(1− αRT −RT0

RT0
, 1), 0)

where RT0 is the response time desired by the customer, and the SLA level goes from 1 to 0 when
the provided RT surpasses the desired time, with 0 fulfillment at β times RT0 (where α = 1

β−1).

90 CHAPTER 6. DC MATHEMATICAL MODELING

For our purposes, this SLA fulfillment function has the advantage of being piecewise linear, and
so can be easily integrated into a linear programming model.

This response time factor can be obtained a posteriori, by monitoring clients requests and
times for responses, but often the scheduler is interested in predict this information a priori.
For a given application and system a behavior model can also be learned from a training run,
adding different kinds of stress to the execution, in order to learn the relation between amount of
load, amount of required resources, amount of given resources and response time. This learned
function allows the scheduler to predict response times by trying different amounts of resource
allocations.

6.5.2 Adapting the Mathematical Model

The introduction of predictors into the explained mathematical model are done in the fitting
functions and the input for resource parameters. This is, instead of providing as input the
amount of CPU a virtualized web-service will require, we will provide the input about load for it
and predict from it the required CPU for the web-service; also we will predict for each placement
the response time for the web-service (and thus the SLA fulfillment), and add this SLA reward
to the optimization function:

Maximize:

Profit =
∑
frevenue(VMi, SLA(VMi))− fpowercost(Power)− fmigpenalty(migrations)

Subject To:

(1) ∀i ∈ J : fMaxRes(i) = fCPU (Loadi)

(2) ∀i ∈ J : R̂T i = fRT (Loadi, ReqResi, GivenResi)

(3) ∀i ∈ J : SLA(i) = fSLA(R̂T i, RTi,0, α)

Here we faced the possibility of using an exact solver and different heuristics and ad-hoc
solvers. We used GLPK [65] MILP solver and two classical approximate algorithms (First-fit
and ordered Best-fit, as seen in Algorithms 6,7), also the ad-hoc λ-Round Robin seen in previous
chapters, in order to compare optimal values and cost in time. Besides the fact that they are
faster than exact solvers, an additional advantage of such heuristics is that they can deal with
possibly non-linear constraints, letting to deal with non-linearity in the model in next works.

Algorithm 6 Descending First-Fit algorithm
for each vm i:

get_data(i);

res_quota[i] <- get_required_resources(i);

end for

for each host j:

res_avail[j] <- get_total_resources(j);

end for

order[] <- order_by_demand(vms,res_quota[],desc);

for each vm v in order[]:

for each host h and #processors:

if (fit(v,h,p,res_quota[v],res_avail[h])) :

assign_vm_to_host(c_host,v);

update_resources(res_avail[c_host],v);

continue next vm;

end if

end for

end for

6.5. INTRODUCING MACHINE LEARNING INTO THE MODEL 91

Algorithm 7 Descending Best-Fit algorithm
for each vm i:

get_data(i);

res_quota[i] <- get_required_resources(i);

end for

for each host j:

res_avail[j] <- get_total_resources(j);

end for

order[] <- order_by_demand(vms,res_quota[],desc);

for each vm v in order[]:

best_profit <- 0;

c_host <- 0;

for each host h and #processors:

profit <- profit(v,h,p,res_quota[v],res_avail[h]);

if (profit > best_profit) :

best_profit <- profit;

c_host <- h;

end if

end for

assign_vm_to_host(c_host,v);

update_resources(res_avail[c_host],v);

end for

6.5.3 Experiments

Environment and Workload

The experiments to test this application of the model are done with the simulated environment
explained before, using the HPC machines environment (using 40 Intel Xeon 4 Core simulated
PMs). Also we introduce here the the LiBCN Workload 2010 [26], as explained also in chapter 4.
As we are using a simulated environment to test the algorithms, we do not reproduce the exact
load of the LiBCN’10 over a real VM environment yet. But we use the indicative load values to
determine the performance of each virtualized web-service, also substituting some of the human-
expert placed models by our obtained machine learning models (CPU and RT). The following
stress experiments represent a run of these workload pieces during 4 days (monday to thursday).

As a parameter defining the Quality of Service, the response time at the data-center output
is used. As a case of study a penalization of SLA(VM) · Revenue(VM) (revenue of VM per
hour) is applied in order to add a profit factor. The VMs on workload have as RT0 the values
of 0.004s or 0.008 (each VM can have different SLA terms), as experiments with the Xeon test
machine shown that it is a reasonable response value obtained by the web service without stress
or important interferences. The initial α parameter is set to 1 (SLA fulfillment is 0 if RT exceeds
2RT0). Besides these basic settings, VM pricing, power pricing, and the SLAα parameter have
been set to other values in some of the experiments.

Learning Process and Validation

The first function to be learned is Load ∼ CPU for a given web-service, as for this first approach
we address CPU prediction and leave the full study of memory and IO models for the next
chapter. The value to be predicted is the CPU consumed by the web service inside a VM, and in
the workbench scenario built to collect data from the VM, CPU is the critical resource disposing
of enough memory and bandwidth, so the relevant data describing the usage of CPU is reduced
to requests per second, average bytes per request and average processing time per request.

The chosen learning method is a regression tree algorithm M5P explained in chapter 2, also
following the selection methodology also explained there. The model obtained mean squared
error is around 9.9%CPU during the model selection test and 12%CPU for the validation test,
each one with around 3000 instances (two different subsets of the workload). This amount of

92 CHAPTER 6. DC MATHEMATICAL MODELING

accuracy should suffice for useful prediction.
The second model to be learned is Load ∼ Response Time. The objective is to learn how the

web service VMs RT behaves in front of stress, so we can predict RTs for different possible VM
schedules. After a feature selection process, the most relevant attributes selected to predict the
RT for this situation are the load attributes, the total used CPU from physical machine, the given
CPU to the VM and the required CPU from the web service VM. Note that the memory attributes
do not appear this time, as memory becomes a non-critical resource for the experiments done
with the Xeon machine, while in previous experiments using a non-HPC architecture (Celeron M,
single core @ 2Ghz, 512Mb RAM) RAM memory became a critical resource and it was present
during the prediction process.

As a learning method, we simply used linear regression because it gave reasonably good results
and is conveniently linear to be plugged in constraint (2). The selected algorithm is the linear
regression method. With this model, the mean squared error obtained from the predictions
is around 2.374979 · 10−5s (stdev 0.004s), each one with around 3000 instances (another two
different subsets of the workload).

MILP and Algorithms testing

After performing some complete experiments, we found that given our scenario 4 minutes are
enough to find the optimal solution, but still leaving part of the search space without exploring
(with no better solution). So for current experiments, we set a time limit of 4 minutes for the
MILP solver. Further, for these experiments the λ for the Round Robin is set to 30 because the
study in Chapter 5 seemed to indicate it is optimal for settings similar to ours. Also, the best-fit
algorithm uses as input the VMs ordered by descending minimum CPU required. Table 6.4 show
the result for the run of all algorithms, and its statistic information from running each method
10 times.

Avg QoS Energy Profit Migs Hosts

mean 0.6047 294.5 210.349 1488 934
FF stdev 0.0060 2.807 2.47682 16 9.404

max 0.6176 298.4 215.592 1513 947
min 0.5975 289.9 207.181 1465 919

mean 0.7136 355.1 240.232 523 1228
λ-RR stdev 0.0059 2.946 2.34982 10 9.555

max 0.7232 359.8 244.184 536 1245
min 0.7054 351.7 236.839 506 1214

mean 0.8649 204.4 320.363 1688 663
BF stdev 0.0013 1.677 0.52711 23 5.926

max 0.8669 206.8 321.123 1717 671
min 0.8631 201.7 319.562 1652 653

mean 0.8772 173.8 327.406 1988 586
MILP Solver stdev 0.0018 3.887 0.78141 20 14.792

max 0.8782 179.2 328.767 2012 605
min 0.8740 169.8 326.849 1963 571

Power Cost = 0.09e/Kwh, VM Revenue = 0.17e, MaxRT = 2·RT0

[Energy = kWh; Profit = Euro]

Table 6.4: Statistical analysis for each algorithm and metric.

As can be seen here, the exhaustive (sub)-optimal solution obtains higher profit than the
other methods, as its solution is (with the required time) complete and exhaustive. The ordered
best-fit solution, however, is very close - often by less than 1%. Furthermore, it is far faster –
it requires only 4 seconds instead of 4 minutes in this example (in some occasions +4 hours!).
Additionally, as discussed before, it can potentially accommodate non-linear constraints better
than MILP. It is thus a strong candidate to replace the exhaustive search method in future work.
Figure 6.6 shows dynamically the comparative of power and SLA fulfillment level over time for

6.5. INTRODUCING MACHINE LEARNING INTO THE MODEL 93

the different used schedulers.

Figure 6.6: Power and SLA Comparative on the Schedulers

Method Energy Migs Profit AvgQoS RangeQoS UsedCPU UsedHosts

FirstFit 290.2 1421 177.29 0.519 [0.524,1] 3523 921
λ-RR 358.9 520 241.04 0.716 [0.001,1] 3917 1237
Ordered BF 203.1 991 304.88 0.860 [0.316,1] 2250 658
MILP Solver 194.9 232 321.31 0.877 [0.346,1] 1702 662

Parameters: Power Cost = 0.09 euro/kWh, VM Revenue = 0.17 euro, MaxRT = 2 ·RT0

Migration Penalty = 0.014 euro; [Energy = kWh; Profit = Euro]

Table 6.5: Scheduling Comparative between techniques applying Migration Penalties

e/kWh Energy Migs Profit AvgQoS RangeQoS T.Spent GapLB CPUs Hosts

0.00 365.5 195 353.55 0.883 [0.368,1] 94.88 0.047 4600 1150
0.01 242.8 225 340.00 0.879 [0.351,1] 115.18 0.055 1798 846
0.09 194.9 232 321.31 0.877 [0.346,1] 191.98 0.213 1702 662
0.14 170.7 330 312.52 0.878 [0.355,1] 216.12 0.273 1619 571
0.45 150.2 445 264.77 0.870 [0.310,1] 230.41 0.637 1492 498
0.90 137.2 550 199.36 0.857 [0.229,1] 234.02 0.966 1380 455
1.80 128.0 600 81.18 0.840 [0.190,1] 239.26 1.574 1327 422
3.60 120.1 776 -136.81 0.815 [0.155,1] 240.01 1.964 1285 392
7.20 115.3 889 -559.54 0.776 [0.101,1] 235.17 2.647 1274 374

14.40 110.0 837 -1344.66 0.737 [0.065,1] 232.42 2.951 1248 357
28.80 110.4 913 -2933.12 0.738 [0.085,1] 229.43 3.560 1251 356

Parameters: Power Cost = variable, VM Revenue = 0.17 euro, MaxRT = 2 ·RT0

Migration Penalty = 0.014 euro; [Energy = kWh; Profit = Euro; Time Spent = Seconds]

Table 6.6: Scheduling MILP Solver with different electric costs and migration penalty

Table 6.5 shows the results for the exhaustive solver and the other algorithms, seeing that
the ordered BestFit obtains closer results to the exhaustive solver, that given small lower bound

94 CHAPTER 6. DC MATHEMATICAL MODELING

gaps, we can assume it is extremely close to the optimal results. Further, table 6.6 shows how
when the power cost increases, the model increases the number of migrations in order to reduce
the energy consumption, also in consequence profit degrades.

6.6 Conclusions on Introducing Machine Learning on Data-
Center Modeling

Nowadays optimizing the management of data-centers to make them efficient, not only in eco-
nomic values but also in power consumption, requires the automation of several systems such as
VM scheduling and resource management. And automation needs knowledge about the system
to act in an “intelligent” way. As shown here machine learning can provide this knowledge and
intelligence, as well as adaptivity.

Compared to previous works, we have shown here that it is possible to model VMs and system
behaviors towards resources and SLA metrics in an automatic manner through machine learning,
and apply them to full-scale datacenter models, letting schedulers more adjusted estimation
functions a priori, to make better their decisions for each system and kind of VM.

Also, by focusing the data-center model towards factors to be optimized (economics, service
quality to clients, and energy-related ones), a mathematical model can be built and solved by
different methods. Allocation problems like the presented VM×host scheduling are NP-hard
problems, so solving them with exact methods can be intractable given (not so) high sizes
or problem dimensions. Experiments have shown that our model can find optimal solutions
according to the introduced policies, but paying a high cost in computation time. For this
reason, heuristics and approximate algorithms can be applied over the same model, obtaining,
in the case of the Best Fit, solutions enough close to the optimal in extremely low time.

In next chapters we will include the study of scenarios where the CPU is not the only critical
resource, so the ML methods have to deal with a more complex space of attributes, identifying
different situations. The effects of the memory behavior of web server platforms will be studied to
model and predict that factors affecting the memory occupation. Also the impact of input/output
resources like network. Complementing the learned models revealing new hidden factors will
make the model easier to handle and solve. Finally, new heuristics and approximate algorithms
will be studied to solve the model without applying exhaustive solvers with high cost in time.

The works presented in this chapter have been published in the “IEEE International Confer-
ence on GRID Computing 2011” [25] (2011) an the UPC-LSI technical report UPC-LSI-10-21-
R [24] (2010).

Chapter 7

Modeling DataCenter Resources
using Machine Learning

As shown in the lately previous chapter, machine learning can be applied to discover infor-
mation and improve DC management thanks to modeling and prediction. In this chapter we
show the modeling of basic cloud resources (not only CPU, but also Memory and network IO),
predicting resource requirements from context information like workload. Also we predict the
QoS from resource planning to help scheduling algorithms make better decisions about job and
resource allocation, aiming for a balance between throughput, quality of service, and power con-
sumption. The approach is tested first with real data and web-services on a datacenter simulator,
and further validated in a real execution on a reduced scale cluster running the OpenNebula [147]
virtualization platform.

7.1 Introducing the DataCenter Scenario

In Chapter 6 we showed how the datacenter can be modeled using a mathematical program,
including all the parameters affecting the system, all the internal variables that affect the output,
the constraints that define the problem, and the output variables that provide the solution to our
resource allocation problem. Our work in this chapter goes substantially beyond that, since then
we considered only one resource (CPU usage) while here we model all the main resources on the
datacenter. This makes the problem multidimensional, and it remained to be shown whether ML
techniques can capture in a useful way the subtle interactions among resources. I.e, when a task
runs out of memory and resorts to swapping, CPU consumption will dramatically decrease (for
no apparent reason, if looking only at CPU consumption). If several tasks in the same physical
machine compete for bandwidth, again each of it will slow down in CPU, etc.

In order to make decisions matching services and resources, as managers we may use low-
level measurements (resource, power, and operating system monitors) and high-level data (user
behavior and service performance such as up-time, response time and availability). Here we
extend the methodology presented in previous chapters to, learn high-level information from low-
level information and drive decision-making algorithms for virtualized job schedulers, without
much expert knowledge or real-time supervision. All in all, the problem to solve is to decide the
effects of resource allocations on hosts using consolidation towards QoS and power consumption.

In this chapter we focus on Intel Xeon HPC architectures, as a state of the art architectures
looking for high performance, also we tested some non HPC architectures like Intel Celeron out
of scene (results not shown here as not relevants for our current purposes), but with validating
results as the obtained with the Xeon processors. In order to test the approach after validating

95

96 CHAPTER 7. MODELING RESOURCES WITH MACHINE LEARNING

each models, we compare a set of ad-hoc and off-the-shelf algorithms for scheduling, with and
without using predictive ML functions. Finally, we validate the algorithms and models on a real
datacenter using the virtualization platform OpenNebula.

Related Work

As seen on Background Chapter 2, there are relevant previous works on autonomic computing
and datacenter management using machine learning techniques. As many use Reinforcement
Learning (e.g. [164][154][152][88]), to manage resource allocation and power consumption, others
focus on status prediction using supervised learning or fuzzy logic (e.g. [57][10]). Almost all the
current approaches, as far as we know, are oriented towards learning the consequences of using
policies on determined states of the cloud or its elements. Here we focus on learning component
behaviors as a way to improve the decision-making process in resource allocation and web-service
job placement, instead of learning policies for components or global systems.

7.2 Infrastructure and Monitoring

In this chapter we focus on a set of techniques for modeling Cloud resources, having enough
information to manage and schedule jobs on host machines in the most proper way. From each
job (web-services in this case) we want to discover how much resources it will demand to the
cloud, given the characteristics of its clients. Also we want to discover how giving more or less
resources affects each job taking into account its load and machine hosting it, so we can decide
how much resources we give to each one and where we allocate it. How services work on the
cloud is explained in the following subsection.

7.2.1 Service DataCenter Architecture

As seen in chapter 2, in commercial datacenters, the web-service owners (datacenter customers)
pay the resource providers on a usage-basis. The resource provider’s goal is to maximize its profit,
by fulfilling the QoS of each virtualized web-service and reduce the cost of running resources.
For this, consolidation is a technique consisting on filling PMs with most VMs as possible and
shutting down empty PMs, reducing energetic consumption.

Typical measures of quality of service on web sites are the average response time for web
queries, the web site up-time and the ratio of satisfactory replies. The RT (focused as quality
measure in this case of study) is affected directly by the amount of resources given to the VM and
the amount of requests and clients received by the web-service. Also up-time can be considered
as “acceptable RT” or “timed out request” from the client point of view. If a service receives
insufficient resources than the required for handling a given load, the reply to the user web query
will be slower; but over-granting resources to it will not imply a quicker reply.

The web-services this work focuses on are web applications, with a typical stack formed by
the Operating System, the web server, the app environment, and the data-base server, like e.g.
GNU/linux OS + apache server + PHP + MySQL. Each VM contains a replica system with
this infrastructure, so customers add their services on the web server. Also we focus on the basic
resources found in a datacenter (CPU, memory and input/output network).

7.2.2 Service Level Agreements

Quality of Service as perceived by the client is a highly complex issue, involving technological
and psychological factors. Response Time, the amount of time required by our DCs to reply
to a request, is a typical object in service level agreements, the contracts where providers and
customers agree on a common notion of QoS. Here we make the simplifying assumption that
SLA fulfillment is strictly a function of RT; further factors such as up-time rate could be added
to our methodology, as long as they are measurable from monitored data. To be specific, here
we measure the RT on the datacenter domain and network, not at the client side since he may
use unpredictable thinking time and may have a slow machine or connection at their end.

7.2. INFRASTRUCTURE AND MONITORING 97

We recall the common “RT to QoS function” in SLAs that we have used in previous chapters,
setting a threshold α and a desired response time RT0, and set SLA fulfillment level to

SLA(VMi) = max(min(1− αRT −RT0

RT0
, 1), 0)

that is, the SLA is fully satisfied up to response time RT0, totally violated if it exceeds α ·RT0,
and degrades linearly in between. We use this function for simplicity in our experiments, but
this is a nonessential choice.

7.2.3 Information Monitoring

At scheduling time, we are interested on obtaining as much system information as possible, so
knowing the requirements of each VM, availability of each PM, and RTs obtained from current
loads and scheduling. Monitors get the load and resources from hosting machines and VMs,
obtaining the following set of attributes per time unit: timestamps; number of requests; average
response times; average requested bytes; and resource usage and bandwidth (BWD). Table 7.1
summarizes all these attributes.

time Timestamp (timeunit) for current measure.
requests Number of requests for the current time unit.
rtpr Average response time per request for the current time unit.
bytespr Average bytes per request for the current time unit.
cpuvm Average CPU demanded by the VM for the current time unit.
memvm Average memory demanded by the VM for the current time unit.
invm Amount of input bandwidth used by the VM for the current time unit.
outvm Amount of output bandwidth used by the VM for the current time unit.
cpupm Average CPU occupied in the PM for the current time unit.
mempm Average memory allocated in the PM for the current time unit.
inpm Amount of input bandwidth used by the PM for the current time unit.
outpm Amount of output bandwidth used by the PM for the current time unit.
rcpuvm Average CPU given to the VM in the PM for the current time unit.
rmemvm Average memory given to the VM in the PM for the current time unit.
cpugw Average CPU occupied in the network gateway for the current time unit.
memgw Average memory allocated in the network gateway for the current time unit.
ingw Amount of input bandwidth used by the network gateway for the current time unit.
outgw Amount of output bandwidth used by the network gateway for the current time unit.

Table 7.1: Attributes obtained from the monitoring agents

This information can be grouped in two classes: Load (#requests, response time per request,
bytes per request), and resources (CPU, memory, and bandwidth, both at the PM and VM levels,
and both requested and granted). Further, other useful information or attributes can be derived
from the obtained from monitors, like the time elapsed from last time unit (previous measures
and current measures); any load or difference of load respect the last time unit; any resource or
difference of resources respect the last time unit; and any aggregation of resources on VMs, PMs
or gateways.

7.2.4 Modeling and Prediction

When making decisions in this context, often the required information 1) is not available, 2) is
available but highly uncertain, or 3) cannot be read because of privacy issues. Examples of the
three cases occur when reading from both PMs and VMs, and information coming from VMs
is extremely delicate to handle and interpret. First, observed resource usage often differs a lot
if monitored at the PM level and at the VM level. VM apparent CPU usage is affected by its
stress level and the virtualization software overhead. Secondly, monitors on the PM may read
information of consumption relative to available resources, e.g. if a VM is running alone in a
PM, consuming 25% effective CPU, but having CPU quota ∼ 100%, as the virtualization agent

98 CHAPTER 7. MODELING RESOURCES WITH MACHINE LEARNING

has all the CPU for itself or it runs its own VM-inside IDLE process. And third, pinning the
VM to read information from its internal system log could be against the customer privacy, as
property of the data and code inside the VM.

In order to solve these lacks of information and uncertainty, we employ here machine learning
methods, basing the work on the hypothesis presented in Section 2.3.2, where we understand
that for each situation, an expert can carefully obtain a model or tuning better that any ML-
learned model, but ML can obtain semi-automatically a model as good or better that a generic
model built without intensive expert knowledge. The advantage of ML over explicit expert
modeling is when systems are complex enough that no human expert can explore all relevant
possibilities, when no experts exist, or when system changes over time so models must be rebuilt
periodically or reactively to changes. This is the main reason we use these ML modeling and
prediction techniques, to obtain accurate models of the datacenter we are managing, and predict
information and behaviors to manage it properly.

7.2.5 Framework Schema

The first contribution of this chapter is to model the VM and PM behaviors (CPU, Memory
and IO) from the amount of load received, to be predicted on-line, boosting the decision making
algorithm (here the PM×VM scheduler) with extra information. By learning a model of the
function f(load) → E[CPU,MEM, IO], lectures from inside the VM can be replaced, and
predict the estimated effective resources required by a VM depending only on its received load
without interferences of stress on the VM or occupation on the PM or network.

The second contribution is the prediction of the QoS variables (this is, the RT). When the
scheduler has to make decisions on where to place each VM depending on the expected resource
usage, minimization of power consumption will consolidate VMs in PMs. Giving each VM always
the maximum resources would not consolidate resources as much as could be, and giving each
VM less than the minimum required given the load would degrade the RT. By learning a function
expecting the RT from placing a VM in a PM with a given occupation f(status, resources) →
E[RT], scheduler can consolidate VMs without risking the RT in excess, and grant resources
playing safe.

As seen in previous Figure 4.2, showing the information flow and elements composing our
decision making schema, we substitute all the human-expert models by the semi-automatically
learned ones. From past monitoring information we obtain a model for load versus CPU, MEM
and I/O consumption for each VM/web-service (or each kind of). Also we obtain a model for load
and context vs RT. Then the decision maker, powered by current on-line monitoring information
plus model predictions, creates the next schedule for VMs, using some classic fitting function like
“always give maximum resources” or using the RT prediction by playing with tentative resource
grants.

7.3 Resource Modeling and Learning

The following subsections explain each modeling and Figure 8.1 shows the numeric results for
each one. Note that to obtain accurate data from the resource usage all measures are taken on
a VM running alone in a test run in void, without other VMs or jobs in the PM. The learned
models must include only the VM behavior with the virtualization overheads.

We used the machine learning methodology and algorithms seen in previous chapters and
explained in the Background chapter, for all our learning tasks. We tested different regression
methods (LinReg, M5P, k-NN, RepTree, ...) for each model, with tuned parameters, selecting
the simplest model among the ones that bring the best or almost-best results.

Further, the experiments to test this approach have been performed obtaining data from real
workloads applied to real hosting machines, and then using this information in a simulated a
datacenter in order to check the scalability of the method. All the following experiments and data
about behaviors and response times, have been obtained from a full recreation of the LiBCN’10
workload [26] on the datacenter provided by RDLab-UPC [139], with Intel Xeon 4 Core machines
running at 3Ghz and with 16Gb RAM, running jobs of kind [Apache v2 + PHP + MySQL v5]
in a virtualized environment [Ubuntu Linux 10.10 Server Edition + VirtualBox v3.1.8]. The

7.3. RESOURCE MODELING AND LEARNING 99

workload have been properly scaled on some experiments according to the workload instructions
in order to recreate different load volumes.

7.3.1 CPU Prediction

CPU is the main element in resource brokerage. To serve incoming requests, the VM running a
web-service will demand CPU depending mainly on the amount of requests. From the monitors
we can obtain, for example, the current number of requests per time unit E[requests], the average
time per request E[timepr] (in a no-stress situation), and the average number of bytes exchanged
per request, E[bytespr]. The function to be learned, one for each type of PM in the datacenter,
maps E[requests], E[bytespr], and E[timepr] to some figure E[cpuvm] denoting the expected
percentage of the PM CPU that will be used by the VM in these circumstances. Other predictive
variables can be added to the function, but these are the ones we found significant in our specific
experiments.

The expected number of requests E[requests] can be obtained by observing the number of
requests of the last time units, or knowing a priori the usual amount of requests given the week
day and time hour, among other techniques; the expected bytes per request E[bytespr] can be
obtained or modeled by having the averages of bytes per request; and the CPU time per request
E[timepr] can be obtained also by measuring the average CPU time spent per request on a VM
running alone in a test run without interferences of other VMs or jobs. All the other variables
have been dismissed as they will not be available at the time of using this model, they have been
considered independent to this specific problem, or they showed very low relevance.

By modeling the amount of CPU given the load (without other VMs or jobs in the Physical
Machine) we obtain the natural CPU demand function of the VM and its contained web-services.
This model will also include the CPU overhead provided by the virtualization platform. This
predicted information will be necessary to learn the same behavior under stress, where VMs will
compete for the same CPU resources of the PM. The function to be learned is:

f learnedcpuvm (E[requests], E[bytespr], E[timepr])→ E[cpuvm]

In order to learn this function, we used a M5P algorithm [76]. The relation between requests,
bytes per requests and time per requests seemed to be non-linear, as two of their parameters are
averages laying over the third. But the algorithm M5P is able to approximate this non-linear
relation by parts. Figure 7.1 shows the model selection test and the validation test, also Table 7.2
shows the details of the CPU training result:

Learning Results

Method M5P (M ∈ [50, 70])
Training Dataset 3968 instances
Model Selection Random split (66%,34%)
Validation Dataset 7528 Instances
Error / StDev MAE = 2.53% CPU; σ = 4.511
Data Range [2.37,100.0] % CPU

Table 7.2: Learning Load vs CPU function

The tree of regressions obtained shows that requests and timepr are the most relevant variables
by driving the tree. It explains how requests and the CPU time per requests increase the amount
of CPU required by the VM, something we expected and very reasonable.

7.3.2 Memory Modeling

The second resource to model is the Memory allocated to the VM. Unlike other resources,
memory consumption has. . . memory, that is, the memory used at any given moment cannot be
determined or even approximated from the currently observable measures, but strongly depends
on the past evolution. This is because because virtualization software, operating systems, the

100 CHAPTER 7. MODELING RESOURCES WITH MACHINE LEARNING

Figure 7.1: Prediction of VM CPU demand for Xeon-4Core

Java Virtual Machine, application servers, and databases typically will initially request large
chunks of memory for buffering and caching, which is retained until some limits are reached,
when memory space is reorganized by flushing caches, freeing unused elements, and general
garbage collection (Figure 7.2 shows the memory reorganization on a apache web server given
different amounts of memory limit.). These changes are known to be nightmarishly difficult
to model explicitly. At this stage, we propose to learn to predict the amount of used memory
memvmt used at the t-th measurement as a function of memvmt−1 and the variable describing
the load, say E[requests], E[bytespr], E[timepr].

Figure 7.2: Typical VM Memory Behavior, with memory Flushing and Garbage Collection

Knowing how web servers usually work, each new client (web user) makes the web server
and application server to allocate memory for his transactions, and also caches grow with each
new request until reaching the memory limit when memory allocated for old clients and unused
cached elements is freed. In order to predict memory we should know how much memory we had
previously allocated for the VM, and the expected amount of load incoming. So it can be learned
as a function of the elements representing load (E[requests], E[bytespr], E[timepr], E[mbps],
. . .) and the previous memory status (memvmt−1) and the time t of last memory measure. Being
memvmt−1 the amount of memory used at the previous observation, and ∆T the amount of time
elapsed since then, the function to learn at this moment is:

f learnedmem (E[requests], E[bytespr], E[timepr], E[mbps],memvmt−1,∆T)→ E[memvm]

7.3. RESOURCE MODELING AND LEARNING 101

First experiments trying to find a function that fits the sample data, using regression methods
like LinReg or M5Ps showed models incompatible between different time intervals ∆T , as each
model fitted the average of ∆T , and new measures with extreme time intervals missed the target,
and M5P tended to create a branch for each seen ∆T . After some observations and conclusions,
we discovered that the relation of all our input data is not linear, asmemvmt−1 and ∆T followed a
polynomial relation, as the weight of memvmt−1 could vary depending on the age of the measure
∆T .

In order to confirm this suspicion, adding a new attribute memvmt−1 ·∆T on the datasets,
linear regression method fits adequately independently of the ∆T factor and correcting previous
experiments without this attribute. Figure 7.3 shows the result of applying a Linear Regression
as a memory learner, also the details of the training and testing are shown in table 7.3.

Learning Results

Method Linear Regression
Training Dataset 108 instances
Model Selection Random split (66%,34%)
Validation Dataset 243 Instances
Error / StDev MAE = 4.3963 MBytes; σ = 8.3404
Data Range [124.2,488.4] MBytes

Table 7.3: Learning Load vs MEM function

Figure 7.3: Prediction of MEM VM demand (TR: ∆T ∈ [10s, 10min, 1h]; TS: ∆T = 5min)

An interesting thing is that the function obtained in the regression shows that the expected
VM Memory is almost always the previous memory value plus an increase depending on the load:

E[memvmt] = α ·memvmt−1 + (1− α) · f(Loadt,∆T,memvmt−1)

with ∆T being the real time between measurements t and t− 1, and α about 0.9 in our experi-
ments. We observed that linear regression of this form gave reasonable results. Obviously, more
complex models with nonlinear dependencies and longer memory are up for research.

7.3.3 Bandwidth Prediction

The final resource we model is the network bandwidth used by each VM. VM’s in a PM usually
share the network interface, which implies that all VMs dump and receive data directly from
the same physical interface. PM traffic is then the sum of all VMs network packets plus some
extra PM network control packets. This traffic also includes the data transfer from external file
system servers, something common in commercial DCs, so the usage of disk requires network.

102 CHAPTER 7. MODELING RESOURCES WITH MACHINE LEARNING

Knowing the volume of data the host will transmit up and down over the network is also an
important issue to take into account. Low load imply the network is usable and VMs can deliver
the responses to requests at the moment, and high loads can saturate networks and requests or
responses can not be delivered to the VMs. We then would like to learn a function returning the
expected number of incoming and out-coming packets at a PM as a function of the sums of load
parameters E[requests], E[bytespr], E[timepr] of the VM’s allocated to it. The function to be
learned, using the appropriate time aggregation of data, is:

f learnedbwd (E[requests], E[bytespr], E[timepr])→ 〈E[#PktIn], E[#PktOut]〉

After experimenting with several different models (LinReg, decision trees, ...), we again selected
the tree-of-models M5P algorithm because of its results. Figure 7.4 shows the model selection
test and the validation test, also the details of the M5P usage are shown in table 7.4.

Figure 7.4: Prediction of PM Bandwidth demand

Learning Results

Method M5P (M ∈ [10, 15])
Training Dataset 1623 instances
Model Selection Random split (66%,34%)
Validation Dataset 2423 Instances
Error / StDev IN: MAE = 926 Pkts; σ = 1726 OUT: MAE = 893 Pkts; σ = 1807
Data Range IN: [56,31190] #Packets OUT: [25,41410] #Packets

Table 7.4: Learning Load vs IO function

7.3. RESOURCE MODELING AND LEARNING 103

7.3.4 SLA Prediction

Finally, we need to predict the expected SLA fulfillment levels given a placement of VM’s in
PM’s and resource allocation within each PM. Our decision making method (allocator) is based
on a fitting function that predicts the degree SLA fulfillment of a VM (a figure within 0 and 1)
from its load parameters and its context, i.e., the features of the PM where it is currently or
tentatively placed, the load parameters of the VM in the same PM, and the amount of physical
resources currently allocated to each VM.

f learnedRT (Load, V M Required, V M Granted)→ E[RT]

As explained, we made the simplifying assumption for the moment that SLA fulfillment
depends exclusively on response time, RT, via a known and simple function. The task is thus
to learn a function relating a high-level measure, response time, to low-level measures, such
as number of requests, bytes per request, CPU, memory, and bandwidth used by each VM.
Most importantly, we are predicting the response time if we (hypothetically) placed VMs in a
particular candidate way that the scheduling algorithm is currently considering among others.
Therefore, we do not really have most low level measures: we will instead use the predictions by
the respective learned models discussed before.

For this prediction stage, we use again the M5P method, since simple linear regressions were
incapable of representing the relations between resources and RT. The details of the M5P usage
are shown in Table 7.5, and prediction results are shown in Figure 7.5.

Learning Results

Method M5P (M ∈ [10, 15])
Training Dataset 38040 instances
Model Selection Random split (66%,34%)
Validation Dataset 15216 Instances
Error / StDev MAE = 9.9ms; σ = 35.4ms

Data Range [0, 2.78]s, R̂T 17ms

Table 7.5: Learning Load,Resources vs RT function

Figure 7.5: Prediction of Response Time, in a non-stress and stress situation. Stress begins
around instance 1400, where RT begins to increase

104 CHAPTER 7. MODELING RESOURCES WITH MACHINE LEARNING

7.4 Managing and Scheduling DataCenters

7.4.1 Scheduling Algorithms

Following the schema explained in previous chapters, the datacenter benefit optimization problem
can be formulated as a Mixed Integer Program, which can be made linear if the elements in it
are themselves linear. In short, the function to be maximized is the sum of:

• the income from customers from executed jobs,

• minus the penalties paid for SLA violation, typically a function of the SLA fulfillment level
as described above,

• and minus the power costs, which we can take as the sum of power consumed by all machines
during the times are turned on, times the cost of a power

The function reflects the trade-off we have been discussing so far: one would like to have as
many machines turned on as possible in order to run as many customer jobs as possible without
violating any SLA, but at the same time to do this with as few machines as possible to reduce
power costs. The unknowns of the program describe which tasks are allocated to each PM, and
how resources of each PM machine are split up among the tasks allocated to it. Constraints
in the program link these variables with the high level values (degree of SLA fulfillment, power
consumption). The point of our methodology is that the functions linking the former to the
latter are, in many cases, learned via ML rather than statically decided when writing up the
program as explained in previous Chapter 6 and [25]. Here we expand the previous introduced
machine learning elements considering several resources instead of CPU only.

Such Mixed Integer Programs can be in theory solved exactly via exhaustive solvers, but
due to its exponential cost in the number of variables and constraints, this becomes unfeasible
for realistic settings. In previous Chapter 6 we saw that approximate algorithms and heuristics
can obtain results close to an exhaustive search solution. Thus we use here approximate or
heuristic, faster algorithms: the generic for bin packing problems, Ordered First-Fit and Best-
Fit algorithms [163] (as seen in previous chapters as Algorithms 6,7). We also use two the
BackFilling and the λ-Round Robin algorithms (as seen in previous chapters as Algorithms 4,5),
specialized for load-balancing via consolidation.

All such algorithms use as an oracle some “fitting function” used to evaluate how well a VM
“will fit” into a PM which has already been assigned some VMs. We propose to substitute the
conventional fitting functions by the learned function mapping tasks descriptions and assigned
functions to response times. This predicted time in turn is monetized, via the SLA fulfillment
function, into a predicted SLA economic penalty, hence into its effect on the function to be
maximized.

7.4.2 Environment Description

We have performed different test to demonstrate how ML can match or improve approximate
and ad-hoc algorithms using explicit knowledge, and to validate the models on real machines.
The experiments have been performed using real workloads for the model learning process, an
analytic simulator to compare the different ML-augmented algorithms, and real hosting machines
for the model validation.

The testbed used for experimentation is similar to the seen previously in Chapters 6 and 5,
but here we do not only take models from real systems but also use them to validate the whole
approach. As a testbed we used the previously described HPC machine environment (Intel Xeon
4Core), first to tune the R version of the previously seen cloud simulator EEFSIM to test the
ML-augmented algorithms; and then we deployed our OpenNebula + Scheduling middleware
over the set of 10 Xeon 4Core machines, as explained previously. The simulator allowed us to
test different configurations and models before validating the model on a real datacenter, also
recreate big scenarios easily. The workload used corresponds to the Li-BCN Workload 2010 [26].

To price each element involved on our minimization function, we established that providers
behave as a cloud provider similar to Amazon EC2, where users will rent some VMs in order

7.4. MANAGING AND SCHEDULING DATACENTERS 105

to run their tasks. The pricing system for the VMs is similar to the one EC2 uses and medium
instances with high CPU load are assumed. We fixed their cost to 0.17 euro/hour (current EC2
pricing in Europe), and the power cost to 0.09 euro/KWh (representative of prices with most
cloud-providing companies).

As a parameter defining the QoS, we used the response time at the datacenter exit gateway.
The jobs on workload have as RT0 the values ∈ [0.4, 1.2]s (each job can have different SLA terms),
as experiments on our datacenter showed that it is a reasonable response value obtained by the
web service without stress or interferences. The initial α parameter is set to 1 (SLA fulfillment
is 0 if RT ≥ 2RT0).

7.4.3 ML-augmented scheduling algorithms

In the following experiments we compare the λ-RR and BackFilling algorithms, also First Fit
and Best Fit algorithms, these two last ones with and without ML added functions. Their basic
versions require expert information on the models and the fitting function. E.g. checking if a
VM fits in a PM requires getting the VM CPU usage and add at least +20% of virtualization
overhead, while the ML version uses the VM CPU as a parameter of the RT prediction function
without pre-known factors. The same happens with the memory, as instead of multiplying the
VM memory per 2 as memory caching overhead, the predictor uses this value without extra
knowledge. Further, each version with machine learning uses the learned function RT as a fitting
function E[RTvm] ≥ RT0,vm or profit function SLA(E[RTvm], RT0,vm), while the others use as
fitting function cpupmh + cpuvmvm ≤MaxCPUh and mempmh +memvmvm ≤MaxMEMh.

Benefit (euro) Energy (wh) Avg.QoS Migrations Avg.PMs/h
λ-RoundRobin 33.94 2114 0.6671 33 9.416
BackFilling 31.32 1032 0.6631 369 6.541
First-Fit 28.77 1874 0.5966 139 6.542
First-Fit + ML 29.99 1414 0.6032 153 5.000
Best-Fit 29.85 778 0.5695 119 2.625
Best-Fit + ML 31.771 1442 0.6510 218 4.625

Table 7.6: Comparative of algorithms from the relevant business model values

These comparative experiments are simulator-based, running 20 VMs containing web-services
in a datacenter of 20 machines with 2 or 4 cores, for a 24 hours workload, and scheduling rounds
of 1 hour. Data monitoring and statistics are taken each 10 minutes, and the measures used to
perform each schedule are the ones taken previously to the scheduling round flank. Table 7.6
shows the results.

From the results we observe that the versions using the learned model perform similar or
better than the versions including expert knowledge, and they approach relatively well to the
ad-hoc expert algorithms, backfilling and λ-RR, using the optimal configurations for this kind
of datacenter, calculated in [70]. While ML version of the approximated algorithms are better
than their expert-knowledge versions, the Best Fit + ML approach is close to the ad-hoc expert
algorithms in QoS and benefit.

7.4.4 Validation on Real Machines

After the initial experimental check on the simulated datacenter, we move to validating and
testing the method in a real environment. The set-up consists in a small workbench composed
by 5 Intel Xeon 4core machines, 3 as datacenter nodes, 1 as gateway and 1 attacking machine
reproducing client requests, in a different datacenter than the previous training experiments.
The virtualization environment is the same as in ML training and testing (Oracle VirtualBox),
and as virtualization middleware framework we use OpenNebula, replacing the default scheduler
by our own, having implemented on it our policies and algorithms. We introduce on the system
10 VMs, each one containing a replica of the LiBCN10 imageboard website. Also for each VM,
an attacker is launched replicating the load of a whole day scaled by 100-300 times to reproduce

106 CHAPTER 7. MODELING RESOURCES WITH MACHINE LEARNING

heavy load (using different days and scaled different for each VM in order to create some diversity
on traffic). We ensured that all of CPU, memory, and bandwidth overload occur separately and
in combination in our benchmarks, to test the full spectrum of prediction models.

We used physical machines with the same architecture than those used for the training, so
that we could import the learned models for CPU, memory, and I/O. The Response Time model
had to be learned again, as the network environment and topology were different and response
time certainly depends on them. We observed that linear regression, in this case, seemed to
perform significantly worse than before. We trained a nearest neighbor model, which recovered
the previous performance. Let us recall that the contribution we want to emphasize is not
the particular models but the methodology: this episode suggests that, methodologically, it is
probably a good idea to fix on any particular model kind, and that upon a new environment or
system changes, several model kinds should be always tested.

For this validation experiments we run Best-Fit against its ML-augmented version in this
reduced environment. Figure 7.6 presents the results. We can see that best-fit considers that all
VMs will fit in CPU and Memory (virtualized and physically) in one machine, which degrades
RT. The ML approach, instead, is able to detect from low-level measures situations where RT
would not be achieved (because of CPU competition, but also because of memory exhaustion
and network/disk competition), hence migrating sufficient VMs to other machines where, for
example, network interfaces not so loaded.

Figure 7.6: BF-noML against BF+ML SLA (based on response time) and machines used

We observe that the ML-augmented versions of Best-fit and First-fit improve the final figure
(revenue) over their non-ML counterpart, and gets closer to the revenue of ad-hoc algorithms such
as λ-RR, which needs to be parametrized and tuned by the administrators. Not reported here is
the fact that these ML-augmented versions can automatically adapt to changes in task execution
prices, SLA penalties, and power price as shown on [25]. Adapting the ad-hoc algorithms to these
changes requires expert (human) intervention, and is simply unfeasible in the highly changing
scenarios envisioned for the future, where virtual resources, SLA penalties, and power prices will
interactively and constantly be in negotiation, for example by means of auctions and automatic
agents. In fact, the ML hypothesis can be verified, as for any fixed parametrization of λ-RR,
there will be some scenario where a real-time, on-line learned ML-model will perform better.

7.5. CONCLUSIONS ONMODELING DATACENTER RESOURCES USINGMACHINE LEARNING107

7.5 Conclusions on Modeling DataCenter Resources using
Machine Learning

In this chapter we presented a methodology for modeling cloud computing resources of a web-
service based datacenter using machine learning, obtaining good predictors to empower and
drive decision-making algorithms for virtualized job schedulers, without the intervention of much
expert knowledge. Using these models, CPU, memory, input/output and web-service response
times can be predicted, so classic scheduling generic algorithms such as First-fit and Best-fit
can use predictions to make more accurate decisions driven by goal functions (SLA depending
on response times). This is a more economical and sustainable solution than resource over-
provisioning, which is still the predominant one in practice.

Models and schedulers have been trained in a real datacenter using as input real web-service
traces, tested in a simulation environment to compare behaviors in large scale datacenters, and
latter tested in short scale in a real cluster, using the OpenNebula virtualization platform as
testbed. We observe that the ML-augmented generic algorithms behave often equal or better
than ad-hoc with expert tuning. Response time and quality of service is better maintained on
some stress situations when it is possible, by consolidating and de-consolidating by predicting
the required computing resources and the resulting RT for a given schedule.

Further, a reason to obtain learned models, far away from applying them into autonomic
systems, is that it has been useful to examine them. From the models we can observe the
patterns for a resource or the whole system, relevant system variables, characteristics of specific
situations. All of this using modeling methods that provide readable model, able to be easily
understood by system operators, resource designers and datacenter architects, so the human
personnel can also learn from the system and improve it thanks to machine learning.

The current experiments are performed using Intel Xeon architectures, focusing on high
performance. An effect seen on these experiments, is that the resource that easily saturates and
becomes bottleneck is network, as checked on machines during experiments and also seen on the
created models, where IO attributes become most important. CPU and memory became here
hard-to-deploy resources, and although putting several virtual machines in a single physical one
did not fulfill CPU and memory, response time degraded due to competition for network usage.
As commented in the chapter introduction, before choosing Xeon we performed some experiments
(not reported) with Intel Celeron processors, and saw the same effect but with memory, as the
usage of memory became bottleneck as seen in monitors and learned models.

In the next chapter we will focus on scalability and on hierarchically modeling the cloud
system as a set of datacenters where services can not only move between machines but among
locations around the world. We will introduce DC to DC network elements, like the service time
DC-client as another SLA object, and forcing the services to go near their demand. Further
we will turn to low-powered architectures such as Intel Atom processors, where in contrast with
Xeon, CPU may become the bottleneck and models will learn about it.

The work presented in this chapter has been published in the “ACM Symposium on Applied
Computing 2013” [27] (2013).

108 CHAPTER 7. MODELING RESOURCES WITH MACHINE LEARNING

Chapter 8

Extending to Multi-DataCenter
Systems

The Cloud is not only a collection of individual datacenters, but a collaborating multi-
datacenter infrastructure distributed along the world. Continuing from previous chapters, we
need to expand the consolidation strategy from a single DCs to a full network of DCs, taking
advantage of local energy prices, and assuring quality of service and proximity to clients and
customers. (De)consolidation and priming proximity to clients become two main strategies to
allocate resources and properly place these web-services in the multi-DC network. In this chap-
ter we expand the previously mathematical model, including multi-DC and VM transportation
variables.

8.1 Introducing the Multi-DataCenter Management using
Machine Learning

Proximity of resource datacenters to datacenter customers and clients is usually translated into
quality of service, as response times are an important Service Level Object (SLO) as part of
service level agreements. So service placement in a spread DC network is extremely important
when assuring a minimal quality of service. Naturally, providers want in turn to optimize the use
of the resources they have deployed with their own metrics. Because the volume, heterogeneity,
and complexity to be managed, this has become today a hard optimization problem. It is even
harder for a typically provider who owns a multi-DC system, usually distributed through the
world, and must balance response times, data and task location, and energy consumption. All
of this management and access tasks being with total transparent view of the infrastructure to
their customers.

In this chapter we model the multi-DC system as a mathematical optimization problem, to
schedule virtualized web-services inside DCs and across DC networks, using energy consumption,
resource allocation and QoS as decisive factors. As seen in previous chapters we use machine
learning to predict the effect of VM placement moves. These techniques for local DC management
previously studied, are now scaled to multi-DC systems having into account the new relevant
factors like proximity service-client, migration overheads, and modularity between inter-DC re-
lations and information. The main contribution here is thus the hierarchical extension of those
techniques to the multi-DC scenario, where latencies and energy prices vary among DCs.

The problem is to decide the best placement for each VM depending on the energy costs, re-
quest processing time, network latencies, and delays between clients and VMs, the virtualization
and VM migration overheads, and resource allocation to each VM, while consolidating and not
degrading the QoS. To test the approach we prepared ML models of CPU, memory, bandwidth,
response times and SLA fulfillments from a real system and workloads. We compare a previously
studied method based on the best-fit heuristics algorithm for scheduling in previous chapters,

109

110 CHAPTER 8. EXTENDING TO MULTI-DATACENTERS

with and without using predictive ML functions to test each prediction and the benefits of using
learned models. And finally we study the performance of our formulation using energy, latencies,
and QoS factors on a real DC environment using the OpenNebula [147] virtualization platform.

Related Work

Load distribution among datacenter networks is also an important aspect to be dealt with. Virtu-
alization technology allows an easy management and migration of jobs among hosting machines
and DCs [108], and orchestrating this management on DCs and multi-DC networks is currently
a challenging topic (see [73][16]). Works like [176] present within the Sandpipe framework strate-
gies and key points to migrate virtualized jobs mitigating hotspots on hosting systems. Also
other works focus explicitly on balancing load by following renewable energies (as seen in previ-
ous sections on this chapter), like [100] and [71], where optimization focus on move load where
renewable energy is at each moment. Here we apply virtualization on our system to migrate the
load across a worldwide distributed multi-DC network, including a policy optimizing DC-user
proximity versus migration costs vs energy consumption, but letting room to introduce other
policies like “follow the sun/wind” into the energy cost computation.

8.2 The Multi-DataCenter Scenario

Business Model for Multi-DCs

Companies offering computational power or web hosting (e.g. Amazon [8]) base their business
on offering customers resources from their multi-DC system for running web-services (often
virtualized). Customers pay the provider according an SLA, generally focused on QoS objects
toward the web-service clients. Usually this QoS depends on the amount of resources (CPU,
Memory, IO...) granted to each VM (hence to the web-service), but these resources have a cost
in running them (energy, maintenance, cooling, . . .). The provider goal is to ensure the agreed
QoS for the VMs, while minimizing the costs by reducing the resource usage.

A typical QoS measure on web sites is response time, and this response time is affected by
the time to process a client request and dispatch it, also the proximity of the service to the client.
The time to process and dispatch is affected by the resources dedicated to the VM and the load
towards the web-service (number of requests competing for it) at that same time. A VM receiving
insufficient resources will be slower to reply to user requests, but over-granting resources past a
certain point will not necessarily speed-up the replies. Proximity to the client depends on the
localization of the client requesting the web-service, the placement of the required VM holding
the web-service, and the connection between the DC with the client. Here we consider that
client requests going to non-local DCs can pass through our inter-DC network, while the client
is connected through his/her local DC [7].

Finally, thanks to VM migration, web-services can be moved following the best benefit. When
the benefit function involves green energy (with really low cost or none), involves the usage of
the web-service in regular office time schedule, or a factor that moves across the world on a given
pattern (i.e. daylight), the resulting strategies are the kind of “follow the X” strategy. On green
energy aware systems, VMs follow the sun, or the solar and wind production, minimizing the
usage of “brown” energy. Other systems, like ours, use a “follow the load” policy according to
clients requests, moving VMs next to clients to provide good response times, but balancing it
with the costs of energy and process QoS.

Collecting Information

In cloud-like architectures oriented to multi-DC infrastructures, middlewares are in charge of
managing VMs and PMs in an autonomic way, following policies and techniques based in the
MAPE schema [43]. We rely on such middlewares both for collecting high- and low-level data
(monitoring), and for managing VMs and PM resources (executing). The typical middleware
schema shown in previous chapters (see again Figure 2.2) can be expanded to multi-DC infras-
tructures, where the physical components can be distributed among different s.

8.3. MATHEMATICAL APPROACH AND MODELS 111

When we are scheduling a VM in a given DC we are interested in each VM requirements
and each PM resource availabilities, also to be aware of current loads to each VM and resulting
RTs. We can monitor the load to each VM by measuring the number of requests, the average
response time per request and the average bytes per request, also how much CPU, Memory and
Bandwidth is used in each PM, and how those are being shared among the VMs. Using machine
learning methods we want to 1) anticipate the VM requirements given an expected incoming
load, 2) reduce overhead of PM monitors, when observations can be replaced by estimations,
and 3) predict an expected RT and QoS given tentative placements, making better scheduling
decisions to maximize QoS.

Handling all this information becomes difficult the larger, more distributed, and loaded the
system becomes. For this reason multi-DC systems management tend to decentralize, allowing
each DC to administer their PMs and VMs, transferring VMs across DCs only when required.
Here we propose allowing each DC to deal with its VMs and resources (as shown on Chapter 7),
bringing to the global scheduler information about the offered or tentative host where each VM
may be placed for each DC. This modularity lets the global scheduling to drive the multi-DC by
load sources, energy costs, and also predicting QoS using the provided host information for such
DC; and after locating the VM into a DC, the local DC will decide if it reallocates properly the
VM inside it or (de)consolidates intra-DC.

Service Level Agreements

As a service level agreement we use the response time function, previously explained in Chapter 7.
This time, when computing RT, we should differentiate the time to process the request and
produce a reply; and the time to transmit the reply to the client (a VM in a DC near the client
will bring lower latency than in a farer DC). The resulting RT is the addition of the time to
produce RTp and the time to transmit RTt.

8.3 Mathematical Approach and Models

The following mathematical model represents the system to be optimized:

Maximize:

Profit =
∑i∈VM

frevenue(SLA[i])−
∑i∈VM

fpenalty(Migr[i],Migl[i], ImgSize[i])

−
∑h∈PM

fenergycost(Energy[h])

Output:

Schedule[PM,VM], Integer Binary ; the Schedule

Parameters:

Resources[PM], resources 〈CPU,MEM,BWD〉 per host

Load[VM, Locs], requests, bytes/req, ... per VM and source

pSched[PM,VM], previous schedule

LatHL[PM, Locs], latency between hosts and sources

LatHH[PM,PM], latency between two hosts

ImgSize[VM], size for the image for current VM

RT0i and αi, RT0 and α for VM i to fully satisfy its SLA

112 CHAPTER 8. EXTENDING TO MULTI-DATACENTERS

Constraints:

1. ∀i ∈ VM :
∑h∈PM

Schedule[h, i] = 1

2. ∀h ∈ PM :
∑i∈VM

GivenRes[i] · Schedule[h, i] ≤ Resources[h]

3. ∀h ∈ PM : Energy[h] = fEnergy(
∑i∈Schedule[h,∗]

GivenRes[i])

4.1. ∀i ∈ VM : Migr[i] = d
∑h∈PM

(Schedule[h, i]⊕ pSched[h, i])e1

4.2. ∀i ∈ VM : Migl[i] =
∑h1,h2∈PM2

Schedule[h1, i] · pSched[h2, i] · LatHH[h1, h2]

5.1. ∀i ∈ VM : ReqRes[i] = fReqRes(VMi, Load[i, ∗])
5.2. ∀i ∈ VM : GivenRes[i] = fOccup(ReqRes[i], Schedule[i, h])

6.1. ∀i ∈ VM : RTp[i] = fRT (Load[i, ∗], ReqRes[i], GivRes[i])

6.2. ∀〈i, l〉 ∈ 〈VM, L〉 : RTt[i, l] =
∑h∈PM

LatHL[h, l] · Schedule[h, i]
6.3. ∀〈i, l〉 ∈ 〈VM, L〉 : RT [i, l] = RTp[i] +RTt[i, l]

7. ∀i ∈ VM : SLA[i] = fSLA(RT [i, ∗], RT0i, αi)

Goal Function: In short, the function to be maximized is the sum of:

• income from customers for executed VMs according to the SLA

• minus the penalties paid for SLA violation when migrating

• minus the energy costs, as the sum of energy consumed by all on-line machines

The function reflects the trade-off we have been discussing so far: one would like to have as
many machines turned on as possible in order to run as many customer jobs as possible without
violating any SLA, but at the same time to do this with as few machines as possible to reduce
power costs. The unknowns of the program describe which tasks are allocated to each PM, and
how resources of each PM machine are split up among the tasks allocated to it. Constraints
in the program link these variables with the high level values (degree of SLA fulfillment, power
consumption). The point of our methodology is that the functions linking the former to the
latter are, in many cases, learned via ML rather than decided when writing up the program.

Target Variable: The schedule, containing which PM must hold each VM.

Problem Parameters: Host Resources: CPU, Memory, and Bandwidth characteristics per
PM; Job Load: Amount of load (number of requests, average bytes per request, average CPU
process time per request, etc) for each different topological load source; Previous Schedule: Useful
to count migrations; Latencies: latency between each load source and each PM (PMs in the same
DC will have the same values), also latency between two hosts; Image Size: size of VM images,
to calculate the time of transportation; Basic Response Time and QoS Tolerance Margin: The
two parameters in the SLA describing its fulfillment according to the resulting RT.

Problem Constraints: 1) We assure a VM involved in this scheduling round is finally placed
in one and only host. 2) The resources granted to the set of jobs allocated in one host must
not exceed the amount of resources the host has available. 3) For each host we set the power
consumed by all its granted resources. 4) For each job we set whether it is being migrated or
not, and its latency between origin and destination. 5) Resources required and granted to a job
given its tentative placement. 6) Response Time (production RT) given the load, required and
granted resources, also the transport RT for each location. 7) SLA fulfillment for each job, from
the RT obtained, the basic RT and tolerance margins agreed with the customer. This function
can be used over each request or over the average RT (weighting the different load sources).

Multi-core computers energetic consumption depends primarily on their CPU usage, and once
on-line, increasing load does not make consumption to grow linearly. E.g. in a Intel Atom 4-Core
machine (the ones used here), the energy consumption (in Watts per hour) when all CPUs are
29.1, 30.4, 31.3, and 31.8 when 1, 2, 3, and 4 CPUs are active. This implies that two such

8.3. MATHEMATICAL APPROACH AND MODELS 113

machines using one processor each consume much more energy than a single machine executing
the same work on two (or even four) and shutting down the second machine. This explains the
potential for power saving by consolidation. Further, usually in DCs, for each 2 watts consumed
an extra watt is required for cooling functions, another reason to reduce energy consumption.

To calculate the migration penalty we must assume that during migration (freeze VM, trans-
port the image, restore VM) the SLA fulfillment may become 0, so we compute the migration
time as time the SLA may be 0. Finally, to determine required and given resources, we can get
information from the monitors, or use the ML predictors to be explained in the next subsection.
Also to determine the RT and SLA, in a reactive system we can try to obtain it statistically from
the previous executions, while we are doing it proactively using our learned models.

8.3.1 Adaptive Models

When making decisions we often find that the required information 1) is not available, 2) is
highly uncertain, 3) cannot be read because of privacy issues, or 4) obtaining it interfere with
the system. Examples of this occur when reading from both PMs and VMs, and information
coming from VMs is extremely delicate to handle and interpret. Observed resource usage can be
altered by the observation window, the spawn of time between samples, or the stress of the same
PM. Overheads of virtualization also add noise to the resource observation, independently of the
load received by each VM. Further pinning the VM to read information from its internal system
log could be against the customer privacy. Furthermore monitors can add also overhead to the
PM altering the VMs performance (e.g. during experiments we observed sampling monitors peak
up to 50% of an Atom CPU thread). We apply all the knowledge and techniques developed and
described previously on Chapter 7 about datacenter model learning, employing methods from
machine learning, creating system models automatically from real examples of observed past
behavior.

Here we predict all elements that could be obtained through monitoring considered relevant
to decide VM placement according to maximize benefit. From load characteristic of each web-
service and its clients (Requests per Time Unit, average Bytes per Request, average Computing
Time per Request in no-stress context), we learn and predict the resources demanded by the VM
to produce replies (CPU, Memory and IO network traffic). Being the VMs not like HPC jobs,
the total used PM CPU is not the sum of the VM CPU peaks and can not be computed just as
its sum, so we learn also the PM CPU usage for a set of VMs (the total occupation of the PM
in CPU terms). We assume the PM Memory usage to be the sum of VM real allocated memory,
being memory not as shifty as CPU. Also network IO can be considered the sum of VM IO. With
these predicted values, plus information from the gateway element (queue sizes for not replied
requests towards each VM), we can learn and predict the variables involved in profit: Response
Time and/or SLA fulfillment level, by using the load information (current or expected for next
time unit), the predicted resources given it, the predicted context (PM CPU,MEM,IO), and the
queues information.

As most of the functions that model resources and response times are piecewise linear or
polynomial functions approximated by piecewise linear functions, we studied linear regressions
and M5P regression trees among other discarded regression techniques (i.e. RepTrees). For
SLA prediction, being hard to fit a regression function given the observed examples, we used a
K-Nearest Neighbor technique to predict a SLA for each VM, by comparing each situation with
previous seen before. Table 8.1 shows the details for each predicted element validation.

Once seen the results for RT and SLA prediction, we decided to use the SLA predictor instead
of the RT (and then compute the SLA with it) to drive the VM placement.

8.3.2 Scheduling Algorithms

As our model becomes easily integral-linear we could use a MILP solver, but as seen in previous
chapters, using solvers like GLPK [65] or more specialized solvers like GUROBI [75] required
several minutes to schedule 10 jobs among 40 candidate hosts. Now, by having more complex
functions (SLA function becomes a K-NN method, visiting several times all examples×variables
for each tentative solution), MILP methods become intractable if we want to get schedules at least

114 CHAPTER 8. EXTENDING TO MULTI-DATACENTERS

ML Method Correl. MAE Err-StDev Train/Val Date Range
Predict VM CPU M5P (M = 4) 0.854 4.41%CPU 4.03%CPU 959/648 [0, 400] %CPU

Predict VM MEM Linear Reg. 0.994 26.85 MB 93.30 MB 959/1324 [256, 1024] MB
Predict VM IN M5P (M = 2) 0.804 1.77 KB 4.01 KB 319/108 [0, 33] KB
Predict VM OUT M5P (M = 2) 0.777 25.55 KB 22.06 KB 319/108 [0, 141] KB

Predict PM CPU M5P (M = 4) 0.909 14.45%CPU 7.70%CPU 477/95 [25, 400] %CPU

Predict VM RT M5P (M = 4) 0.865 0.234 s 1.279 s 1887/364 [0, 19.35] s
Predict VM SLA K-NN (K = 4) 0.985 0.0611 0.0815 1887/364 [0.0, 1.0]

Table 8.1: Learning details for each predicted element and selected method. All training processes are
done using random split of instances (66/34)

once per hour. We use again the alternative approximate greedy algorithms, as seen in previous
chapters (Chapter 7), the classic Ordered Best Fit to solve the program. The profit function
is the responsible of computing the SLA, energy, migration and latency factors, computing the
profit for each tentative placement. Also the local DC schedule will compute it using local values
(fixed watt-price and low migration latencies), while the general will include them all, also each
host becomes the representative host for each DC (if, as said, we don’t want to use all hosts of
all DCs in a centralized schedule).

8.4 Experiments and Studies over the Multi-DC

To test our approach, we have performed experiments to 1) see how using the learned models
we can schedule by consolidating while taking care of QoS, without introducing direct expert
knowledge to the best-fitting algorithm; and 2) how the model can schedule across DCs based on
client proximity and energy cost saving, distribute the VMs by following the load source against
following the cheapest energy price against consolidating and keeping the QoS. These tests have
been performed replicating real web-service workloads on real hosting machines.

8.4.1 Environment Description

Instead of using HPC-designed machines, where to fulfill any resource requirement becomes
adding physical resources to increment the computational power, we have based the experiments
on low-energy consumption machines (Intel Atom 4 Core), where resource management is critical
in order to hold as most load as possible without degrading QoS. PMs run Oracle VBox virtual-
ization platform, and each VM runs a web-service software stack (Apache, PHP, MySQL). The
workload used corresponds to the Li-BCN Workload [26] previously described.

Our scenario, as a case of use, is composed of 4 DCs in different continents (e.g. Brisbane,
Australia; Bangaluru, India; Barcelona, Spain; Boston, Massachussets), connected by high-speed
network (network costs are not part of this work, but are kept as future work). For each DC
there is an amount of clients accessing to the services according to their local workload. [Note: as
we do not dispose of DCs in all 4 places, we performed the experiments in our local DC, splitting
it and setting up the corresponding network latencies and delays between pretended DCs and
clients].

To price each element involved in the system, we established that providers behave as a cloud
provider similar to Amazon EC2, where customers rent VMs in order to run their web-services
(0.17 euro per VMs). For energy costs, we obtained the energy cost (euros per kWh) for the
different places where we have a DC placed, so the cost of running a PM will depend on the
DC where it is placed. Also, the migration costs depend on the latency and bandwidth be-
tween DC connections. We took as example the intercontinental network of the Verizon network
company [165] to obtain latencies between locations and assumed a fixed bandwidth of 10 Gbps.

The RT, as a QoS measure in our SLA, is measured from the arrival of a request to the exit
of the reply for it through the Internet Service Provider (ISP). As SLA parameters, we set as
RT0 the values 0.1s, as experiments on our system showed that it is a reasonable response value
obtained by the web service without stress, and the α parameter is set to 10 (SLA fulfillment is
0 if RT ≥ 10RT0).

8.4. EXPERIMENTS AND STUDIES OVER THE MULTI-DC 115

8.4.2 Intra-DC Comparatives

First experiments are to check the benefits of driving an intra-DC scheduling for VMs using the
learned models. As seen in previous chapter 7, best-fit performs better among greedy classical
ad-hoc and heuristics, and here we check it against the environment. We compare the best-fit
algorithm, checking if a VM has room in the PM given the recent required resources (last 10
minutes), and optimizing just power and latency to clients; the best-fit algorithm with resource
overbooking (BF-OB), reserving the double required resources for each VM, as an example of how
we could reserve more resources to assure unexpected load peaks; and the ML enhanced best-fit,
where the fitting function becomes the SLA prediction, having into account the predicted CPU,
MEM and IO required for each VM. The goal is to see how the learned models drive the best-
fit into a consolidate/de-consolidate strategy given the SLA, without introducing much expert
knowledge.

We set up 4 PMs with OpenNebula and VirtualBox, holding 5 VMs, a PM acting as gateway
and DC manager, and 4 machines generating LiBCN’10 scaled load towards the 5 VMs. Figure 8.1
shows the results of running the workload for 24 hours, with a scheduling round of 10 minutes.

Figure 8.1: Results and Factors for Intra-DC Scheduling

116 CHAPTER 8. EXTENDING TO MULTI-DATACENTERS

The Best Fit algorithm with ML enhancement (de)consolidates constantly to adapt VMs
to the load level, while Best Fit without ML considers that given the monitored data it is not
required to do so, and uses less CPUs and less PMs risking the SLA. So the ML approach learns
to detect situations where SLA fulfillment may not be achieved (because of CPU competition,
memory exhaustion and/or IO competition), hence migrating sufficient VMs to other machines
with better contexts. The drawback of de-consolidate is the extra energy utilization, but while
SLA revenue pays for the energy and migration costs, the Best-Fit with ML will usually choose
to pay energy to maintain QoS.

Not reported here, for space reasons, is the fact that these ML-augmented versions can auto-
matically adapt to changes in task execution prices, SLA penalties, and power prices. Adapting
the ad-hoc algorithms to these changes requires expert (human) intervention, and is simply un-
feasible in the highly changing scenarios envisioned for the future, where virtual resources, SLA
penalties, and power prices will interactively and constantly be in negotiation, for example by
means of auctions and automatic agents.

8.4.3 Inter-DC Comparatives

After checking the learned consolidation best-fit strategy we study the inter-DC scenario, where
VMs can be placed in multiple DCs, each one with different energy prices and different laten-
cies between them and clients. Issues with multi-DC systems are that often the best placement
according to SLA requires pay more for energy, or migration penalties make better a differ-
ent placement, consolidating and moving VMs differently to a single fixed factor, but as the
combination of all the factors.

As a case of study, here we set a PM per DC, as the average on-line PM for that DC (as the
local scheduler will arrange local PMs to a correct SLA fulfillment level, this PM will represent an
available on-line machine to host an incoming VM). Each DC has an access point for clients (an
ISP) machine collecting all the requests sent into any VM on our system coming from the region
the DC is placed, and requests going to a VM on a non-local DC will be served through our
network, suffering the latency between the local DC and the remote DC. We apply our workload
upon each VM from each ISP, each place being scaled different and having each region different
time-zone and load time pattern. Table 8.2 shows the used prices and latencies.

Euro/Wh LatBRS LatBNG LatBCN LatBST
Brisbane (BRS) 0.1314 Wh 0 265 390 255
Bangaluru (BNG) 0.1218 Wh 265 0 250 380
Barcelona (BCN) 0.1513 Wh 390 250 0 90
Boston (BST) 0.1120 Wh 255 380 90 0

Table 8.2: Prices and Latencies table (Latencies in ms [10Gbps line])

Follow the Load and Consolidation

First of all we perform a “sanity check”, looking at the movements of VM without adding SLA
or Energy factors yet (the simple “follow the load” policy), having a driving SLA function using
only the request latency. Given this, the best-fit tries to put each VM as close to the major load
source as possible. Figure 8.2 shows the movement of a single VM being driven only by this kind
of SLA, without any resource competition or energy awareness. The VM follows the main source
load to reduce the average latency to its globally distributed clients.

After following the load we also checked the “energy consumption” factor. When the scheduler
becomes energy aware it tends to consolidate, having also into account client proximity and
migration costs (it will consolidate to the place where it is easier to move the VMs, versus the
energetic cheapest place to do it). Results of this tests are as expected, as VMs are consolidated
always in just one DC, generally the one nearest to the clients. Results are not reported.

Benefit of De-locating Load

Next, we study the differences between a scenario with a single DC (in an averaged location for
energy costs and latencies), where all VMs are held receiving all the load, and an scenario where

8.4. EXPERIMENTS AND STUDIES OVER THE MULTI-DC 117

Figure 8.2: VM placement following the Load for Inter-DC Scheduling

this DC can de-locate VMs (migrate VMs to neighbor DCs temporarily) when it is overloaded.
Despite having worse latencies and migration overheads when de-locating, SLA fulfillment in-
creases from an average SLA of 0.8115/1 to an SLA of 0.8871/1 per VM doing this. This would
translate, in the current experiment, to an average net benefit increase of 0.348 euro/VM a day.

In this experiment, the migration to another DC incurs in a latency increase of 0.09 to 0.39
seconds, but happens at the time when the load was so severe on the VM that its response time
had degraded to about these 0.09 seconds over the desired 0.1 seconds. We observe that for lower
SLA increments it prefers to consolidate in the local DC. Obviously the de-location threshold
will depend on the RT0 values and inter-DC latencies, but it is clear that the method is able to
decide when de-locating VMs is worth it or not.

Full Inter-DC Scheduling

Once checking latency and energy factors, and observing the de-location benefit from a DC point
of view, we perform the complete scheduling of the multi-DC system. From experiments, as seen
in Figure 8.3, we have seen several details:

1. When having heavy load, the scheduler distributes VMs across DCs, (de)consolidating as
doing with intra-DC hosts (assuming that all hosts in the DC are represented by the current
PM, also as seen previously, if the DC has available machines, they can be included in the
scheduling process with the representative-full PM of that DC). Thus, the SLA fulfillment
and its revenue is still the most important factor as it drives (de)consolidation [see high
load moments, or when SLA is lower than 1].

2. When SLA is not compromised, energy energy consumption pushes for consolidation [see

118 CHAPTER 8. EXTENDING TO MULTI-DATACENTERS

low load moments] into the DC with most cheap energy.

3. When attempting to move a VM do not suppose any improvement in SLA or energy saving,
the VM stays in its DC or is consolidated to the nearest DC in latency.

Figure 8.3: Results and Factors for Inter-DC Scheduling

Again, de-consolidation effects are seen when load (requests) increases or requests become
more expensive to answer, we are able to improve the SLA thanks to de-consolidation, countering
the migration penalties also enforcing the reduction of service-client latencies. Note that the
workload generator produced a flash-crowd effect in the workload in minutes 70-90, for about 15
minutes, which clearly exceeds the capacity of the system. We kept this part of the workload in
the test for realism.

Benefit of Inter-DC Scheduling

The fundamental question we address is whether inter-DC optimization is better than intra-
DC optimization, that is, whether distributing the VMs depending on the global load and
(de)consolidating at multi-DC level is better than keeping moving VMs within their own DCs
only. Here we compare two scenarios: 1) The static global multi-DC network, where the VMs
for each DC stay fixed without moving across DCs, where clients around the world can access
to every version but each web-service stays always in the same DC near its potential clients or
customer selected DC; in other words, DCs do not cooperate by exchanging VM’s, but just by
redirecting the load they receive and is intended for VM’s located somewhere else. And 2) the
dynamic multi-DC scenario we propose, where VMs may migrate among DCs to improve global
benefit.

The benefit of the dynamic approach is basically the capability of moving the VMs towards
the place where the energy is cheaper and/or available. As seen already in Figure 8.3, when load
is low, the algorithm chooses to consolidate in DCs with lowest energy cost. For higher loads,
de-consolidation becomes necessary, and energy price is still one of the factors to choose where
de-consolidation occurs, together with latencies, SLAs, and migration overheads. At this stage,
we chose for realism to use actual electricity prices for the four locations we have considered,
which are relatively similar. As energy costs rise and markets become more heterogeneous and
competitive, one should anticipate larger variations of energy prices across the world, and the

8.4. EXPERIMENTS AND STUDIES OVER THE MULTI-DC 119

benefit of inter-DC optimization priming energy consumption should be more obvious. This is
particularly so as renewable sources such as solar energy become more widespread, because of
their hour-to-hour variability and its very low cost once the production infrastructure is in place.

Figure 8.4 shows the comparative among the static context and the dynamic, when wanting
to consolidate VMs among DCs.

Figure 8.4: Comparative Static vs Dynamic Inter-DC for 5 VMs

The large savings in energy is largely due to our experimental limitation (one PM per DC),
which leaves no room for intra-DC energy savings by consolidation. One can observe, though,
that even in this restricted setting the algorithm manages to slightly improve global average SLA
and revenue while reducing energy costs.

Avg Euro/h Avg Watt/h Avg SLA
Static-Global 0.745 175.9 0.921
Dynamic 0.757 102.0 0.930

Table 8.3: Comparative of results for the multi-DC per 5 VMs

Previous studies [70] showed that consolidation can achieve a power consumption reduction
of more than 30% without counting the energy saving on cooling overheads (which may cause
around a 1.5 increase in power consumption). So while maintaining SLA stable, we are able
to improve energy consumption in a 42% by (de)consolidating in an inter-DC way, and further

120 CHAPTER 8. EXTENDING TO MULTI-DATACENTERS

improve benefit by a 2% a day, for VMs that can not be consolidated in their local DCs.

Trade-Offs for QoS and Energy Costs

Finally, trade-offs between Quality of Service and energy costs depend in the amount of load the
VMs are receiving. Figure 8.5 shows the relation of the 3 variables from the observations of the
given scenario (“load” is represented by amount of requests per time unit, as the most significant
attribute of load). Given the amount of load, as we want to improve the SLA fulfillment we
are forced to consume more energy. For each level of load he can infer a characteristic function
SLA vs Energy, so we can choose how much energy we want to spend to achieve a desired level
of QoS. With low load we do not require to spend much energy as QoS will be always around
[0.9,1.0], and in some situations, given the huge amount of load per time unit overwhelming
a PM, we will be unable to achieve the maximum SLA level despite consuming the maximum
energy available. So, once knowing the load to handle, the datacenter manager must decide how
much consolidation applies depending on the SLA fulfillment levels he/she desires to obtain.

Figure 8.5: Relation of the SLA vs Energy vs Load

8.5 Conclusions for Multi-DC Modeling and Managing

Optimizing the schedule and management of multi-DC systems requires balancing several factors,
like economic revenues and operational costs, depending on Quality of Service and also the energy
to run the required infrastructures. As seen in previous chapters, this problem can be modeled
as a mathematical problem, solved using heuristics or approximate algorithms. Also it can be
improved using machine learning models to resolve uncertain or unavailable information, making
decisions adapted to the environment without requiring much expert knowledge, and providing
the operators and DC architects knowledge of the learned behaviors.

8.5. CONCLUSIONS FOR MULTI-DC MODELING AND MANAGING 121

Taking advantage of virtualization technology, we presented a model to solve a multi-DC
scheduling for web-service, using learned models to enhance its decisions towards enhancing
quality of service, keeping in mind energy consumption and transmission time factors. Experi-
ments showed that the ML models can provide the required information to (de)consolidate across
DCs according to load towards web-services. Also we have seen that the model is able to schedule
according to proximity to clients, and improve the energy costs per location without degrading
the quality of service.

Important issues must be treated in the future work, like how we decide which VMs are
excluded from inter-DC scheduling or which PMs are offered as host candidates for scheduling,
affecting directly to scalability of the method. This can provide us information about how many
PMs/VMs we can manage per scheduling round, and deciding whether solving the model using
exhaustive solvers, being exponential in time, or the approximate algorithms, that grow linear
in time with the number of candidate PMs also linear in time with the number of VMs to be (or
not) migrated.

From this work on, more operational costs like networking costs and management of band-
widths according to punctual requirements can be studied, also the inclusion of green energy
availability into the schemes to reduce not only energy costs but also environmental impact of
computation. In the next section, an approach of DC placement is shown, where DCs are de-
picted with high detail, presenting all the elements involved in their construction based on solar
and wind capacity of production for each tentative location. Also a model to schedule load among
DC following the renewables, totally compatible and attachable to our presented mathematical
DC model.

The work presented in this chapter will be published in the “Workshop on Power-aware
Algorithms, Systems, and Architectures 2013” [29] (2013).

122 CHAPTER 8. EXTENDING TO MULTI-DATACENTERS

Chapter 9

A Green Approach for Placing
DataCenters

In this chapter we do not address directly the management of existing datacenters, but the design
and placement of it, seeking to quantify green datacenter building costs for high-performance
computing cloud service providers. A set of suboptimal choices for allocating jobs and load
can hardly be compensated for once the infrastructure has been deployed, as a bad decision
on placing infrastructures has extremely more impact than a placing incorrectly a VM on a
scheduling round. We first propose an optimization framework for intelligently selecting the
best geographical locations for the provider’s green datacenters. We characterize areas around
the world as potential locations for green datacenters, also we illustrate the location selection
tradeoffs by quantifying the minimum cost of achieving different amounts of renewable power at
different levels of confidence. Further we design and implement a cloud middleware capable of
migrating VMs across the green DCs to follow the availability of renewable energy.

9.1 Introducing Green DataCenter Placement

In the following work, we seek to demonstrate that green cloud services can be built at low cost.
For this case of study, it focuses on high performance computing cloud services, such as Amazon’s
EC2 Cluster Instances. HPC applications typically do not involve user interactivity, allowing
the cloud provider to place its datacenters at the best world-wide geographical locations for
renewable energy generation, regardless of how remote they are. Moreover, these applications
often run for long periods of time, allowing the provider to migrate them across locations to
follow the availability of renewable energy.

With these observations in mind, here it is proposes a cost-centric optimization mathematical
model for intelligently selecting the best geographical locations for the provider’s green datacen-
ters. The capital costs of green datacenters include purchasing and installing the solar and/or
wind plant, land acquisition, datacenter construction, and bringing enough network bandwidth
and grid (or “brown”) electricity to the datacenter. The operational costs include paying for
brown electricity and for the system administration staff. Many of these costs depend heavily
on geographical location. For example, the size of a solar installation and the amount of energy
spent in cooling depend on how exposed the location is to sun light. Further, based on the
framework, we characterize areas around the world as potential locations for green datacenters.
The characterization includes potential for solar and wind energy, average temperature, brown
electricity prices, average datacenter Power Usage Efficiency (or simply PUE), and proximity to
network backbones and brown electricity transmission lines.

Furthermore, we illustrate the location selection tradeoffs by quantifying the minimum cost
of building green HPC cloud services of different sizes. This study explores a large parameter
space covering different amounts of required renewable power at different levels of confidence.
The benefit of provisioning batteries at the green datacenters is also explored. Finally, as solar
and wind energy are intermittent, a scheduling algorithm for cloud middleware is designed and

123

124 CHAPTER 9. A GREEN APPROACH FOR PLACING DATACENTERS

implemented, capable of migrating virtual machines across the green datacenters to follow the
availability of renewables. The middleware enables service providers to maximize the amount of
renewable energy they consume during periods of less-than-peak load.

Related Work

At this time no other works have considered the placement of exclusively green powered dat-
acenters at global scale, having in mind all the relevant costs involved on datacenter deploy-
ments [2, 123, 149]. The idea of revising the usage of grid while maximizing the use of off-grid
renewable energy is a hot topic nowadays. As seen in the Background Chapter, works like [150]
focuses on renewable energy policies on wind powered DCs. Other works like [71] and [103] con-
sider load management depending on green energy availability, and works like [94] study policies
on the energy prices for datacenters near green energy sources. Also works like [99, 104, 182]
study algorithms for geographical load optimizing the usage of renewable energy depending on
availability and costs.

Here, a simple implementation of such policies over a well known datacenter virtualization
platform, using as a goal the maximum usage of self-produced green energy, is presented.

9.2 Green Energy DataCenter Placement

The goal here is to efficiently select locations for one or more datacenters, so that the overall cost
is minimized, and together the datacenters can always provide a given level of green energy with
a given level of confidence. To that end, here the most important parameters in the selection
process are defined. Based on these parameters, a cost model and optimization problem can be
formulated.

Domain and Parameters of the Problem

Table 9.1 lists the entire set of parameters for the mathematical model. They range from inputs
provided by the user to parameters that we seek to instantiate via optimization. Among the
more interesting parameters are those related to costs, green energy generation, and confidence
for green energy generation.

Symbol Meaning Unit

List of Parameters

totalCapacity desired minimum total power capacity of DC network for computing kW
minAvailability desired minimum availability for DC network #DC
minGreen desired minimum percentage of green energy %
confidence desired minimum confidence of achieving minGreen %

α(d, t) solar energy production factor at d during t [0,1]
maxα(d) maximum solar energy production factor at d [0,1]
β(d, t) wind energy production factor at d during t [0,1]
maxβ(d) maximum wind energy production factor at d [0,1]
PUE(d, t), PUE at d during t [1,1.69]
maxPUE(d) maximum PUE at d [1,1.69]
priceLand(d) land price at location d $/m2

areaDC land area needed per kW DC capacity m2/kW
areaSolar land area needed per kW solar energy production m2/kW
areaWind land area needed per kW wind energy production m2/kW
costLineNet(d) cost to layout optical fiber at location d to closest network backgone $
costLinePow(d) cost to layout power line at location d to closest power plant $
priceEnergy(d) brown energy (electricity) price at location d $/kWh
priceBuildDC(c) price of building a DC with c power capacity $/kW
priceBuildSolar price of building a solar energy plant $/kW
priceBuildWind price of building a wind energy plant $/kW
priceMaintain price to maintain DC $/kW
priceOp price of operation of IT equipment $/serv

9.2. GREEN ENERGY DATACENTER PLACEMENT 125

priceServer price of a server $/serv
priceSwitch price of a network switch $/switch
serverPower server power consumption W/srv
switchPower network switch power consumption W/switch
serversPerSwitch number of servers per switch srv/switch
priceNetBandServer cost of external network bandwidth per server $/srv
priceBatt price of batteries $/kWh
battEff efficiency for charging batteries %
nearestPPCap(d) size of the nearest power plant to location d kW

List of Variables

placed(d) a DC is placed at location d [0,1]
capacity(d) maximum power capacity for computing of DC at d kW
solarCap(d) solar power capacity at location d kW
windCap(d) wind power capacity at location d kW
battCap(d) size of batteries needed at location d kWh

compPow(d, t) computing power demand for DC at d during t kW
extraGreenPow(d, t) average unneeded green power produced at d during t kW
battChargePow(d, t) average power needed to charge batteries at d during t kW
netChargePow(d, t) average power net metered into the grid at d during t kW
solarPow(d, t) average solar power produced at d during t kW
windPow(d, t) average wind power produced at d during t kW
brownPow(d, t) average brown power needed at d during t kW
battDisPow(d, t) average power drawn from batteries at d during t kW
netDisPow(d, t) average net metered power from grid at d during t kW

migratePow(d, t) max(compPow(d, t) − compPow(d, t− 1), 0)
greenPow(d, t) solarPow(d, t) + windPow(d, t) + battChargePow(d, t)

−battDisPow(d, t) + netChargePow(d, t) − netDisPow(d, t)
powDemand(d, t) (computePow(d, t) +migratePow(d, t)) · PUE(d, t)
powAvail(d, t) greenPow(d, t) + brownPow(d, t)

landCost(d) priceLand(d) · (capacity(d) · areaDC + solarCap(d) · areaSolar
+windCap(d) · areaWind)

buildCost(d) capacity(d) ·maxPUE(d) · priceBuildDC(capacity(d))
+solarCap(d) · priceBuildSolar + windCap(d) · priceBuildWind

maintainCost(d) capacity(d) ·maxPUE(d) · priceMaintain
numServers(d) capacity(d)/(serverPower + switchPower/serversPerSwitch)
serverCost(d) numServers(d) · priceServer
switchCost(d) (numServers(d)/serversPerSwitch) · priceSwitch
networkCost(d) numServers(d) · priceNetBandServer
operatorCost(d) numServers(d) · priceOperator
battCost(d) battCap(d) · priceBatt
brownEnerCost(d)

∑
t∈T brownPow(d, t) · t · priceEnergy(d)

CAP ind(d) costLinePow(d) + costLineNet(d)
CAP dep(d) landCost(d) + buildCost(d) + serverCost(d) + switchCost(d) + battCost(d)

OP (d) operatorCost(d) +maintainCost(d) + networkCost(d) + brownEnerCost(d)

Table 9.1: Parameters and Variables for the Placement Mathematical Problem

Explanation of Costs

The overall cost of a network of datacenters can be broken down into capital (CAPEX) and
operational (OPEX) expenditures. The CAPEX costs are those investments made upfront and
depreciated over the lifetime of the datacenters. CAPEX can be further divided into capital costs
that are independent of (CAP ind) and those that are dependent on (CAP dep) the number of
servers to be hosted.

The CAP ind costs relate to bringing electricity and external networking to the datacenters.
Although the amount of electricity and external bandwidth depends on the number of servers,
the base cost of laying out any transmission line and/or optical fiber dominates. These costs
for each location can be estimated from the distance between the location and 1) the closest

126 CHAPTER 9. A GREEN APPROACH FOR PLACING DATACENTERS

transmission line or power plant; and 2) the closest network backbone.
The CAP dep costs relate to land acquisition, datacenter construction, construction of the

green-energy plants, purchasing and installing the power delivery, backup, and cooling infrastruc-
tures, and purchasing servers and internal networking equipment to be hosted by the datacenters.
The land price varies according to location, whereas the other costs do not to a first approxima-
tion. All of these costs depend on the level of redundancy that will be built into each datacenter.
The construction cost is typically estimated as a function of the maximum power to be consumed
by the datacenter. This maximum power is that required by the maximum number of servers
and networking gear when running at 100% utilization times the maximum expected PUE of
the datacenter. The PUE is computed by dividing the overall power consumption by the power
consumption of the computational equipment. The PUE is higher when temperature and/or
humidity are high, since cooling consumes more energy under those conditions.

The OPEX costs are those incurred during the operation of the datacenters. These costs
relate to the maintenance and administration of the equipment, external network bandwidth
use, and the electricity required to run the datacenters. There is also a cost for water that
currently is not considered, but it can be easily added to the model. Electricity cost can be
computed based on the IT equipment’s energy consumption, the PUE, the amount of green
energy generated locally, and the electricity price. This cost may vary with location.

Finally, lower taxes and one-time incentives are another important component of the cost of
a datacenter. For example, some states in the US lower taxes on datacenters, as they generate
employment and wealth around them. This component depends on the nature of the savings and
applies to each cost component in a different way. Although this component is not considered
further, it is also easy to include it in our framework.

Green-Energy Generation

Two key factors that affect the cost and benefit of building green-energy generation systems
include efficiency and capacity factor. Efficiency refers to the percentage of sunlight energy and
wind energy that is transformed into electricity for solar and wind energy plants, respectively.
The efficiency of today’s most affordable PV technology (multi-crystalline silicon) hovers around
15% and around 50% for wind (where the theoretic limit wind efficiency to 59% due to rotational
generators).

Capacity factor refers to the percentage of the maximum theoretical energy production (e.g.,
24 hours of maximum sunlight every day for a solar energy system) that is actually produced.
Capacity factors vary depending on location and weather. For example, Berlin (Germany),
New York (NY-US), Canberra (Australia), and Phoenix (AZ-US) have solar capacity factors of
roughly 13.5%, 16.4%, 20.2%, and 22.9%, respectively. (For wind it would be 3.4%, 18.9%, 8.4%,
3.4%.)

In this model, we combine the efficiency and capacity factor of solar and wind generation at
a location into α and β respectively, being α and β the ratio of power production versus the
maximum power capable to be produced.

Confidence for Green-Energy Generation

Generation of green energy is dependent on weather conditions. Thus, to achieve a minimum
fraction of green energy used at all times may be very expensive since it would require significant
over-provisioning of the green power plants. Here instead a minimum percentage of green energy
is target with a given confidence for each time segment (e.g., 1 hour) within a longer time span
(e.g., 1 year).

Let greenCap be the maximum power capacity of a green energy plant, greenProd(t) be
the average green power produced by the plant during time period t, P (greenProd(t) ≥ x)
be the probability of greenProd(t) ≥ x, and powerDemand(t) is the total power demand of
a datacenter during t, then to meet a target minimum fraction of green power used at the
datacenter, minGreenFrac, with a confidence of conf , means that

∀t ∈ T, P (
greenProd(GP, t)

powerDemand(t)
≥ minGreenFrac) ≥ conf (9.1)

9.2. GREEN ENERGY DATACENTER PLACEMENT 127

Granting Availability for DataCenters

We model the availability of the network of datacenters as:

Availability =

n−1∑
i=0

(
n

i

)
· i · (1− a)n−i · (a)i (9.2)

where n is the number of datacenters and a is the availability of each datacenter. This model
has been used in multiple previous reliability and availability works, e.g. [130][142]. The avail-
ability of each datacenter depends on the level of redundancy in its design. Industry commonly
classifies datacenters into tiers [159], where each tier implies a different redundancy level and
expected availability. At one extreme, Tier I datacenters have a single path for power and cool-
ing distribution. At the other extreme, Tier IV datacenters have two active power and cooling
distribution paths, with redundant components in each path. Existing Tier I datacenters have
been found to achieve an availability of 99.67%, whereas Tier II datacenters achieve 99.74%, Tier
III datacenters achieve 99.98%, and Tier IV datacenters achieve 99.995% [159].

Formulating the optimization problem

Using the available parameters the cost model and optimization problem can be formally defined.
The problem setup consists of an HPC cloud service provider that seeks to selet locations for
a set of datacenters out of a set of potential locations for them (D). The set of datacenters by
design should be able to support a workload requiring a given power capacity (e.g., 10MW),
with a given percentage (e.g., 80%) coming from local green sources at a given confidence. The
optimization goal is to minimize the overall cost of the datacenter network, while respecting the
power and availability constraints.

The inputs to the optimization are (1) the minimum total power capacity that must be
supported by the datacenter network at any given point in time, (2) the minimum percentage of
green energy, (3) the confidence that the minimum percentage of green energy is met within a
given time period, (4) the amount of redundancy that will be built into each datacenter, (5) the
CAPEX and OPEX costs for each location d ∈ D, and (6) the sizes of the power plants that can
be used to supply the datacenters with brown energy (since this constrains the maximum size of
a datacenter that can be placed at a given location). The outputs of the optimization are the
optimal cost, and, at each location d, the required power capacity, the green-energy generation
capacity, and the battery storage capacity.

Figure 9.1 provides the functions and constraints that define the problem. Further equa-
tion 9.3 defines the cost function to minimize (TotalCost), where placed(d) is a boolean repre-
senting the placement of a datacenter at location d. Recall that CAP ind is the CAPEX cost
that is independent of the power capacity of the datacenter, CAP dep is the CAPEX cost that
depends on the size of the datacenter, and OP is the OPEX cost of operating the datacenter.
All costs assumes 12 years of lifetime for datacenters and solar and wind plants and 4 years for
IT equipment. In addition, our modeling assumes that the CAPEX costs already embody the
depreciation costs and any interest payments they may incur.

TotalCost =
∑
d∈D

placed[d] · (CAP ind(d) + CAP dep(d) +OP (d)) (9.3)

TotalCost should be minimized under the constraints that follow the equation in the figure.
The constraints include power consumption and generation capacity, confidence for generation
of green energy, battery capacity [116], and brown power demand. In reality, the availability
constraint is more complex than in the figure. In particular, in a network with at least 2
datacenters and S servers, we also ensure that the failure of 1 datacenter will leave S/2 servers
available to handle the load.

Heuristic solver

This problem can be programmed as a MILP and solve it using any MILP solver. However,
some of the constraints make the problem very hard to solve. In particular, confidence for

128 CHAPTER 9. A GREEN APPROACH FOR PLACING DATACENTERS

1. ∀d ∈ D,∀t ∈ T : capacity(d) ≥ migratePow(d, t) + computePow(d, t)

2. ∀t ∈ T :
∑
d∈D computePow(d, t) = totalCapacity

3. ∀t ∈ T : P (
∑

d∈D greenPow(d,t)∑
d∈D powDemand(d,t) ≥ minGreen) ≥ confidence

4. ∀d ∈ D : placed[d] = 0⇒ capacity(d) = 0

5. ∀d ∈ D,∀t ∈ T : powDemand(d, t) + extraGreenPow(d, t) = powAvail(d, t)

6. ∀d ∈ D,∀t ∈ T : battLevel(d, t) = battLevel(d, t− 1) + battEff · battChargePow(d, t) · t−
battDisPow(d, t) · t

7. ∀d ∈ D,∀t ∈ T : 0 ≤ battLevel(d, t) ≤ battCap(d)

8. ∀d ∈ D,∀t ∈ T : netLevel(d, t) = netLevel(d, t − 1) + netChargePow(d, t) · t −
netDisPow(d, t) · t

9. ∀d ∈ D,∀t ∈ T : netChargePow(d, t) + battChargePow(d, t) + extraGreenPow(d, t) =
solarPow(d, t) + windPow(d, t)

10. ∀d ∈ D,∀t ∈ T : brownPow(d, t) ≤ nearestPowP lantCap(d) · F

11. n =
∑d∈D

placed(d) :
∑n−1
i=0

(
n
i

)
· i · (1− a)n−i · (a)i ≥ minAvailability

Figure 9.1: Optimization function and constraints

green-energy generation increases the number of variables and constraints exponentially. For
this reason, heuristics may be used to solve the problem.

Here a heuristic is developed, which has two steps: (1) solve a simplified version of the problem
using MILP; and (2) evolve this initial solution to obtain a solution for the actual problem. For
simple constraints, the optimal solution can be found, otherwise a suboptimal is obtained.

The first step solves the problem for 100% confidence and obtains the optimal result. This is
a MILP problem that can be solved using GUROBI [75] in a reasonably short amount of time.
If this is a solution for the original problem, the solution is directly returned as final.

In the second step, a local search approach is used to find a solution for the initial problem.
It starts from the solution obtained in the previous step, then generates random neighbors and
evaluates if they are feasible and their cost. The way to get these neighbors is merging two existing
datacenters, changing location of a placed datacenter, or removing a placed DC. It finishes when
we get to a certain number of iterations without getting better results. The solving process can
be parallelized, so it can try different neighbors at the same time, synchronizing periodically the
parallel threads.

A case of study: Placing a datacenter network

Figure 9.2 shows the costs of building a network of datacenters that provides 50MW of compu-
tation and at least 50% of the energy comes from green sources. This placement assumes the
use of net metering to store the surplus green energy in the grid and use it later. In particular,
the obtained placement returns 3 datacenters, 2 in the USA and one in Kenya.

The largest datacenter, with a computation capacity of 19.8MW (∼70000 servers), is placed
in New Hampshire. This location has a wind capacity factor of 56.8% (the highest capacity
factor in all the evaluated locations). This location is fully powered by a wind farm of 51.4MW
and does not use any brown energy (considering the net metered green energy). Note that the
land for the wind farm represents the main cost as it requires more than 0.61km2. The second
datacenter is placed in Cleveland where the wind capacity factor 20.9%. This datacenter has a
wind farm of 15.2MW and uses and average of 21.9MW of brown power (76% of the total power).

9.3. GREEN DATACENTER PLACEMENT TRADEOFFS 129

0 2 4 6 8 10 12 14 16

Mount Washington
(New Hampshire)

Cleveland
(Ohio)

Nairobi
(Kenya)

Cost (in million dollars)

Land Wind

Building Wind

Network
Energy

Connection

Staff

IT

Land DC

Building DC

13.3MW (22.5MW)

16.9MW (28.6MW)

19.8MW (33.4MW)

Figure 9.2: Cost of building a 50% green network of DCs with a computation capacity of 50MW

The smallest datacenter is placed in Kenya with a computing capacity of 13.3MW. Even though
the wind capacity factor is pretty low (less than 7%), this datacenter is powered by a 60.1MW
wind farm. The reason is the land is much cheaper in Kenya than in the other locations. In
addition, 64% of the energy comes from brown energy as the electricity is relatively cheap.

9.3 Green datacenter placement tradeoffs

Green energy requirement

Figure 9.3 shows the total cost per month of a network of datacenters, as a function of the
percentage of green energy required. Here netmetering is used to “store” surplus green energy
into the grid, retrieving it when required. It can be seen that a 100% green network is almost
two times more expensive ($43.5M/month) than a network with no green energy requirements
($25.8M/month), due to the green infrastructure requirements.

In the case of a solar only installation, the cost per month is almost three times higher
($70.5M/month), due to the base cost of a solar installation, more than three times more ex-
pensive than a wind one ($5500/kW + 20m2/kW vs $5500/kW + 12m2/kW). However, the cost
of solar-only is less than two times higher than wind-only because the green farm represents less
than the 40% of the total cost. Complementing a wind only location with solar when having net
metering does not help much as net metering already adds predictability to wind.

0

10

20

30

40

50

60

70

0 25 50 75 100

C
os

t (
in

 m
ill

io
n

do
lla

rs
)

Green percentage (%)

Wind
Solar
Wind and solar

Figure 9.3: Cost of building a network of DCs depending on green % required using net metering

130 CHAPTER 9. A GREEN APPROACH FOR PLACING DATACENTERS

Confidence in green energy

Figure 9.4a shows the cost of confidence on having 100% green energy. Note that having 0%
confidence is like having a completely brown network of datacenters and then the cost is much
lower. Further, figure 9.4b shows the cost of confidence and the proportion of green. It can be
seen that having high confidence and a high green energy percentage is the most expensive. The
lower the confidence and the percentage of green energy, the closer to the cost of a completely
brown network of datacenters.

0

10

20

30

40

50

60

70

0 25 50 75 100

C
os

t (
in

 m
ill

io
n

do
lla

rs
)

Confidence of 100% green (%)

Wind
Solar
Wind and solar

(a) Cost of building a network of DCs depending
on the confidence of being 100% green using net
metering

0
20

40
60

80
100 0

20

40

60

80

100

20

30

40

50

60

70

C
os

t (
in

 m
ill

io
n

do
lla

rs
)

Wind
Solar

Wind and solar

Green percentage (%)

Confidence (%)

C
os

t (
in

 m
ill

io
n

do
lla

rs
)

(b) Cost of building a network of datacenters de-
pending on the confidence and the percentage of
green using net metering

Figure 9.4: Cost of building a network of DCs depending on confidence using net metering

Energy storage and Batteries

As previously seen, the usage of net metering saves cost spikes on placement. Here the effect of
having any energy storage are evaluated.

First evaluations are to see the effect of not having any energy storage. Figures 9.5a and 9.5b
show that when green energy cannot be stored to deal with unpredictability, the cost spikes from
around $70M/month to more than $200M/month. When not disposing of storage to handle
unpredicted solar/wind blackouts for some periods, overbuilding happens for solar and wind
farms and a lot of green energy is wasted during great part of the time. In particular, this effect
strongly affects wind as it goes from being 40% ($40M/month) cheaper than solar to be 14%
($50/month) more expensive. As wind is more variable and this green energy cannot be stored
to use it later, more datacenters are required.

0

20

40

60

80

100

120

140

160

180

200

0 25 50 75 100

C
os

t (
in

 m
ill

io
n

do
lla

rs
)

Green percentage (%)

Wind
Solar
Wind and solar

(a) Cost of building a network of datacenters de-
pending on the percentage of green required with
no energy storage

0

20

40

60

80

100

120

140

160

180

200

0 25 50 75 100

C
os

t (
in

 m
ill

io
n

do
lla

rs
)

Confidence of 100% green (%)

Wind
Solar
Wind and solar

(b) Cost of building a network of datacenters de-
pending on the confidence of being 100% green
with no energy storage

Figure 9.5: Cost of building a network of datacenters depending on confidences with no energy
storage

Figures 9.6a and 9.6b show the costs when using batteries to store energy instead of net
metering. Costs for solar follow the same trends with a slightly higher cost than net metering,
because unlike net metering, this battery capacity must be paid for, and this is limited. This

9.3. GREEN DATACENTER PLACEMENT TRADEOFFS 131

effect is clearly seen in a wind only setup where the total cost is much closer to the solar-only
installation. This is because the deployment of 50% more batteries than for solar only to deal
with the unpredictabile peaks and valleys of wind generation.

0

10

20

30

40

50

60

70

80

0 25 50 75 100

C
os

t (
in

 m
ill

io
n

do
lla

rs
)

Green percentage (%)

Wind
Solar
Wind and solar

(a) Cost of building a network of datacenters de-
pending on the percentage of green required using
batteries

0

10

20

30

40

50

60

70

80

0 25 50 75 100

C
os

t (
in

 m
ill

io
n

do
lla

rs
)

Confidence of 100% green (%)

Wind
Solar
Wind and solar

(b) Cost of building a network of datacenters de-
pending on the confidence of being 100% green
using batteries

Figure 9.6: Cost of building a network of datacenters depending on the confidence using batteries

Migration impact

Finally, an addition to the placement sizing is to be able to hold the load when migrating, as
load must be maintained in origin and destination datacenter. In a conservative assumption
where load must not be migrated the oversize is not required, while in a situation 100% is always
being moved, some extra sizing is mandatory. When not having energy storage, load is moved
trying to follow the renewables; but when having energy storage, this migration overhead is not
noticeable as the number of migrations is seen to be very low.

Figure 9.7 shows the costs of a 100% green network of datacenters with no storage when
migration needs are from 0% to 100% of the load. As seen, the overhead can increase the cost
by almost $30M/month. This cost does not only come from the energy spent to migrate but
also by the capital costs. To support higher migration overhead, more datacenters with higher
capacities are needed.

0

20

40

60

80

100

120

140

160

180

200

0 25 50 75 100

C
os

t (
in

 m
ill

io
n

do
lla

rs
)

Migration (%)

Wind
Solar
Wind and solar

Figure 9.7: Cost of building a 100% green network of datacenters depending on the migration
requirements with no energy storage

132 CHAPTER 9. A GREEN APPROACH FOR PLACING DATACENTERS

9.4 Scheduling VMs Among Green Energy Availability

Once found the placement for the green network of datacenters, they must be operated and their
load to be distributed following the availability of green energy on each location. The most well
known strategy for this goal is the “follow the renewables” (FTR). This approach migrates the
load according to the forecast of green energy around the network while considering constraints
like migration time, energy spent on migration or the amount of data to migrate.

Scheduling VMs Model and Mathematical Program

The placement model and problem is completed with an implementation of the FTR strategy, on
top of a virtualized environment as it allows migrating the workload transparently. In practice
it has been implemented for the OpenNebula datacenter virtualization platform. The scheduler
periodically calculates the optimal placement for the VMs and migrates them accordingly, using
again a mathematical program to model the problem. Table 9.2 shows the parameters and
variables for the load distribution problem.

Domain of the Problem

Locations L Set of locations to place datacenters

List of Parameters

Capacity[L] Datacenter capacity in L in Watts
Green[L] Current green power produced in L in Watts
PriceBrown[L] Current cost of brown in L in $/kWh
PUE[L] Current PUE in L in [1,1.69]

List of Variables

Load[L], ≥ 0 Power load in L in Watts
PreviousLoad [L] Load executed in L at previous time slot in Watts
Brown[L], ≥ 0 Additional brown power required in L in Watts
NetMeter[L], ≥ 0 Additional brown power required in L in Watts
Migration[L] Power load migrated from L in Watts
MigrOut[L], ≥ 0 Power load migrated out of location L in Watts

Table 9.2: Summary of parameters and variables for the load placement problem

For every scheduling round, it calculates how much load will be executed in each location,
also considering the cost to migrate load (VMs) from a datacenter to another. The cost to run
a VM in two different locations for a period of time is in (Migration), and MigrOut is the
positive component of Migration, which makes the problem MILP with one binary variable per
location. It is also done under the assumption the green energy available in the near future (i.e.,
next hour) can be predicted with high accuracy [114, 71]. In addition to these parameters and
variables, the problem has the constraints shown in Figure 9.8, also objective cost function in
Equation 9.4.

1. ∀ l ∈ L : Load[l] +Migration[l] = PrevLoad[l]

2. ∀ l ∈ L : Load[l] +MigrOut[l] ≤ Capacity[l]

3. ∀ l ∈ L : (Load[l] +MigrOut[l]) · PUE[l] = Green[l] +Brown[l] +NetMeter[l]

Figure 9.8: Constraints for the load placement problem

Cost =

l∈L∑
Brown[l] · PriceBrown[l] (9.4)

These constraints are explained as follows: (1) for all locations, the load plus the load migrated
(positive or negative) must be equal to the previous load; (2) for all locations, the load plus the

9.4. SCHEDULING VMS AMONG GREEN ENERGY AVAILABILITY 133

load being migrated cannot exceed the total capacity; and (3) for all locations, the total power
required in a datacenter is equal to the produced green energy plus the brown energy (to be
minimized) and the netmetering obtained from the netmetering credit (when enabled).

This MILP problem can be solved with, e.g., GUROBI [75] again. Once the scheduler finds
the values of Load[l] that minimizes the total cost, it decides which VMs to move. In particular,
it orders the datacenters taking into account their Migration[l]. A positive Migration[l] implies
the datacenter is a “donor” while a negative values means a “receiver”. It follows a first fit
strategy to migrate VMs from a “donor” to the closest “receiver”. To reduce useless migrations,
this policy with the green energy prediction is extended to the next time slot, avoiding migrations
when both locations have free energy

Experiments on load distribution

In the following experiments, the policy to distribute load according to the green energy avail-
ability is evaluated, using one host to emulate one datacenter, and moving VMs across them.
All of this assuring that it is possible to migrate VMs working over 750MB of data in less that
one hour, as seen in performed experiments migrating VMs between Barcelona (Spain) and
Piscataway (New Jersey). So an hour is the time period considered in these load balancing
experiments.

Having Net Metering : The first evaluation case of study is a situation with two datacen-
ters, obtained from previous datacenter placement experiments, which are able to provide 50%
confidence of being 100% using net metering to store green energy. Table 9.3 describes the char-
acteristics of such datacenters. Note that only two datacenters are needed and they are only
powered by wind as it is much cheaper.

Location Capacity Solar Wind
Mount Washington, Vermont 42.2MW - 28.9MW
Dodge City, Kansas 42.2MW - 88.6MW

Table 9.3: Datacenter network details for 50% confidence of having 100% green energy using net
metering

Figure 9.9 shows the energy profile of the two datacenters during one of the days of the
Typical Meteorological Year. As seen, the load is split between the two datacenters. Around the
17th hour of the experiment, the datacenter in Kansas has surplus green energy that stores in
the grid (net metering), to be returned again from the grid when it has no enough green energy.
At the end of the year, the datacenter achieves the 50% confidence requirement.

Without Net Metering : As having net metering, load migration is not much required. For
this reason, here the behavior of another example where we do not have any green energy storage
is also shown. Table 9.4 describes the datacenters required to be 100% green with no storage.
This placement requires four datacenters powered by a mix of solar and wind.

Location Capacity Solar Wind
La Paz, Bolivia 42.4MW 69.3MW 12.3MW
Andersen, Guam 84.5MW 514.2MW 308.1MW
Harare, Zimbabwe 84.5MW 257.0MW 44.7MW
Acapulco, Mexico 74.3MW 321.2MW -

Table 9.4: Datacenter network details for 100% green energy without energy storage

Figure 9.10 shows a clear follow the renewables pattern (i.e. follow the sun). It starts hosting
the load in Guam, then it moves to Zimbabwe, then Bolivia and Mexico, and finally, it goes back
to Guam. As seen in the aggregated figure (bottom-left), the green energy is clearly overbuild to

134 CHAPTER 9. A GREEN APPROACH FOR PLACING DATACENTERS

0

10

20

30

40

50

60

70

0 5 10 15 20

P
ow

er
 (

M
W

)

Mount Washington, Vermont

Migration PUE
Migration

Load PUE
Load

Net meter

Green available
IT capacity

Capacity
Solar Capacity
Wind Capacity

0

10

20

30

40

50

60

70

0 5 10 15 20

P
ow

er
 (

M
W

)

Dodge City, Kansas

Migration PUE
Migration

Load PUE
Load

Net meter

Green available
IT capacity

Capacity
Solar Capacity
Wind Capacity

0

20

40

60

80

100

0 5 10 15 20

P
ow

er
 (

M
W

)

Total

Migration PUE
Migration

Load PUE
Load

Net meter
Green available

Figure 9.9: Load distribution to achieve 50% confidence of having 100% green energy using net
metering

support days with low green energy availability. The figure also shows the overhead to migrate
load between locations.

0

20

40

60

80

100

120

140

P
ow

er
 (

M
W

)

La Paz, Bolivia

Migration PUE
Migration

Load PUE
Load

Net meter

Green available
IT capacity

Capacity
Solar Capacity
Wind Capacity

P
ow

er
 (

M
W

)

Andersen, Guam

Migration PUE
Migration

Load PUE
Load

Net meter

Green available
IT capacity

Capacity
Solar Capacity
Wind Capacity

0

20

40

60

80

100

120

140

P
ow

er
 (

M
W

)

Acapulco, Mexico

Migration PUE
Migration

Load PUE
Load

Net meter

Green available
IT capacity

Capacity
Solar Capacity
Wind Capacity

P
ow

er
 (

M
W

)

Harare, Zimbabwe

Migration PUE
Migration

Load PUE
Load

Net meter

Green available
IT capacity

Capacity
Solar Capacity
Wind Capacity

0
50

100
150
200
250
300
350
400
450

0 5 10 15 20

P
ow

er
 (

M
W

)

Total

Migration PUE
Migration

Load PUE
Load

Net meter
Green

Figure 9.10: Load distribution to achieve 100% green energy without energy storage

9.5. CONCLUSIONS FOR GREEN PLACEMENT OF DATACENTERS 135

9.5 Conclusions for Green Placement of DataCenters

In this new approach, the problem studied is the costs of building a network of datacenters fully
or partially powered by green sources of energy. These green datacenters have solar or wind
farms attached to harvest green energy and they are distributed along the world to exploit the
variability of green sources. An analytical framework, using mathematical programming, MILP
and local search heuristics, is proposed to place datacenters, minimizing the economic costs while
maximizing the green power generation obtainment.

The mathematical formulation optimizes for the capacities and sizes for power generation in-
frastructure for each placement selected location. In particular, the main capital and operational
costs for building an maintaining these datacenters in each geographic location are considered.
To proceed with the testing and experimentation for this approach, the climatic and weather
factors of more than 3000 locations is collected, to calculate the generation of solar and wind
energy.

From this study we conclude that wind energy is cheaper for green datacenters. In particular,
using energy storage (both net metering or batteries) it is the cheapest way to green datacenters.
However, if high confidence in being completely green with no energy storage is required, the use
of solar energy becomes cheaper.

Finally, based in the results and observations from the placement study, a scheduler using the
“follow the renewables” policy is implemented, using as base middleware OpenNebula, to test
the operation of such network of placed datacenters. This scheduler distributes the load across
the datacenter “following the renewables”, that is, depending on the energy availability for each
location.

The work presented in this chapter is being submitted to a conference on the energy efficiency
area on Fall 2013.

136 CHAPTER 9. A GREEN APPROACH FOR PLACING DATACENTERS

Chapter 10

Conclusions

10.1 Main Contributions

First of all we started with preliminar experiences with machine learning and web-services model-
ing, as shown in Chapter 3, to allow us to sketch the goals of this thesis and seek the way this work
should visit in the so broad field of distributed systems, autonomic computing and data mining.
Also these preliminary works provided experience on the field with novel approaches on self-
management, like web-service user admission and balancing, around the concept of starting-up
and shutting-down hosting machines on a economic saving policy, or denial of service protection
and reaction policies. The novelty of the presented techniques is the use of machine learning
models and predictions, to automate the modeling and adjusting process of the decision making
mechanisms. The first works focus on applying machine learning on user modeling and behavior
prediction, and user admission macropolicies. Given a set of web-service hosting machines that
must be set up or shut down for cost saving, we decide which servers are used to host clients
and which clients enter in the on-line hosts, all according to a benefit/cost function. Also other
preliminary works focus on self-protection, introducing a novel method for distributed systems
to defend themselves against overwhelming distributed denial of systems. A distributed data col-
lection mechanism is used to recognize abnormal situations on traffic towards a web-service, and
a classification system determines if it is a thread or not, spreading the required commands over
the routers and firewalls. Further, supporting the study of machine learning for decision making
is topic for another preliminary work presented here, which studies the application of machine
learning over memory behavior attempting to manage self-healing schedules on web-services.

Virtualization has opened new oportunities for resource management in datacenters. The
virtualization technology encapsulates Web-based applications or HPC jobs in virtual machines
and see them as a single entity which can be managed in an easier and efficient way. It is used as
a tool for consolidating underused nodes and save power, but it also allows new solutions to well-
known challenges such as resource heterogeneity management. One of the works proposed in this
thesis, as seen in Chapter 4, exposes a way to model and manage a virtualized data center which
mainly focuses on the allocation of VMs in data center nodes according to multiple facets while
optimizing the provider’s profit. We consider energy efficiency, virtualization overheads, and
SLA violation penalties, while providing the ability to outsource resources to external providers.

Lately, energy-related costs have become an important economical and social factor towards
IT infrastructures and datacenters and companies. Research community is also challenged to
find better and more efficient power-aware management strategies, as there is a big gap to be
covered in this area yet. In Chapter 5 we focused on energy-efficiency datacenters, introducing
an intelligent consolidation methodology using different techniques, including turning on/off ma-
chines, power-aware consolidation algorithms, also applying machine learning techniques to deal
with uncertain information while maximizing performance. Based on our previous experiences,
we applied machine learning techniques in these scenarios for modeling system behaviors in order
to predict power consumption levels, CPU loads and SLA timings, improving scheduling deci-

137

138 CHAPTER 10. CONCLUSIONS

sions. These techniques are evaluated covering the whole control cycle of a real scenario, with the
EEF-Simulator, oriented to energy efficiency, with representative heterogeneous workloads, and
measuring the quality of the results according to SLA defined goals. The results obtained indi-
cate that our approach is close to the optimal placement and behaves better that static or ad-hoc
models when the level of uncertainty increases, thanks to the machine learning component.

Knowing the principal factors on datacenter hosting businesses, like economic profit, customer
satisfaction and operational costs (like power consumption) for its correct performance, we show
in Chapter 6 how to represent the problem of scheduling a set of web-services to hosts in a
datacenter, relying on the advantages of the virtualization and consolidation techniques, as a
mathematical program represented in an integer linear model. We study the behavior of the
model and the trade-offs between those factors, and then we apply it in a framework for autonomic
scheduling of tasks and web-services on cloud environments, optimizing the profit taking into
account revenue for task execution minus penalties for service-level agreement violations, minus
power consumption cost. We combine here the previous seen technologies of consolidation and
virtualization, mathematical optimization methods, and finally applying the machine learning
methods to complement unknown or unavailable data. We prove the concept using an exact solver
for mixed integer linear programs, but since the problem is NP-hard and so untreatable, we show
that approximate algorithm solvers provide valid alternatives for finding good enough schedules,
close to the optimals. We apply here machine learning to estimate unknown parameters, avoiding
to model by hand web-service behaviors and requirements, as a first approach for joining the
learnability and predictability with an ordered mathematical problem statement.

Managing a cloud and optimizing its performance on a moment-by-moment basis is not easy
given as the amount and diversity of elements involved. This makes the Cloud and its architec-
ture a new scenario for data mining and machine learning to discover information, and use it to
improve datacenter management with modeling and prediction. In this thesis we show how to
model the basic cloud resources using machine learning, predicting resource requirements from
context information, like amount of load and clients, and also predicting the quality of service
from resource planning, in order to feed schedulers and decision makers. As shown in Chapter 7,
these learning techniques, combined to classical heuristics and approximate algorithms, help to
improve the performance and profitability of a data-center running virtualized web-services. We
model the datacenter main resources (CPU, Memory and Network/IO), the quality of service
(represented as response time or SLA fulfillment) and workloads (incoming streams of requests)
from observing past executions of this same system. Then these models help scheduling algo-
rithms to make better decisions about job and resource allocation, aiming for a balance between
throughput, quality of service, and power consumption. From here on, the approaches are tested
not only with real data and real web-services but also on a real execution on a reduced scale
environment, reproducing each set of requests given the workload upon the web-service.

The Cloud does not only rely on single datacenter systems, but also services are distributed
across the world to provide localized service, reducing latencies among services and clients, or
taking advantage of energy costs and obtainance. So in Chapter 8 we expand the presented model
towards a multi-datacenter scenario, where infrastructures are distributed along the planet, and
people and enterprises pay for resources to offer their web-services to worldwide clients. Intelli-
gent management is required to automate and manage these cloud multi-datacenter infrastruc-
tures, as the amount of resources and data to manage exceeds the capacities of human operators,
taking advantage of local energy prices, but assuring quality of service and also involving the
proximity to clients and customers. We expand the mathematical model to describe the schedul-
ing problem across a multi-datacenter system, while applying our learned models. After running
the system on real DC infrastructures we see that the model drives web-services to the best
locations given quality of service, energy consumption, and client proximity.

Finally, we present in Chapter 9 an approach for building datacenter networks, searching
for places where these datacenters can be entirely powered by “green energy”, being as much
“brown energy” independent as possible. We quantify the costs for high-performance computing
cloud service providers, characterizing areas around the world as potential locations for green
datacenters, and illustrating the location selection tradeoffs by quantifying the minimum cost
of achieving different amounts of renewable power at different levels of confidence. After that,
we design and implement a cloud middleware capable of migrating virtual machines across the

10.2. TOPICS FOR FURTHER RESEARCH 139

green datacenters to follow the availability of renewable energy. Among other interesting results,
we demonstrate that green cloud services can achieve significant reductions in carbon dioxide
emissions at a relatively low cost by intelligently placing their green datacenters around the
world.

10.2 Topics for Further Research

Energy Efficiency Techniques

This thesis, focusing on energy efficiency, has explored techniques like consolidation, using the
advantage provided by virtualization. Thanks to virtualization we could take advantage of being
able to dimension the job and web-service containers, and even more important, to move them
across physical machines, placing jobs and services in the closest locations. There are also other
techniques, like dynamic voltage/frequency scaling (DVFS), that offer other kind of actions to
save energy alternatively to turn on/off resources, and they can be introduced in the presented
models and strategies, as extra operations that may be performed, complementing consolidation.
E.g. instead of using only operations like “migrate a VM from location A to location B” and
“switch power on host C”, operations like “change the frequency of host A” or “change the
operational mode of host A” can be added to the problem. The mathematical problem would
add a new degree of freedom to the scheduling solver, as it could play with a Hosts × VMs
placement scheduler and also a Hosts×WorkingMode planning.

Non-Economical “Green” Strategies

Here we based our approaches in an economic model, based on the revenue per SLA fulfill-
ment against power costs. But there are other approaches and green computing proposals more
oriented toward optimizing energetic utility on resources or keep in mind the importance of non-
economical factors, like social and environment elements. Combining economic models using
SLA enforcement driving functions with these new factors, pseudo-economic models can result.
Research would take into account how to merge directly these two kind of elements, as at this
time the only way to compare green energy and brown is in price, and when green energy be-
comes too much expensive (because of lack of availability or high construction costs) it is directly
discarded. The results would find a set of trade-offs between the profitability of the datacenter
business and “green” performance ratio of datacenters, allowing to involve more factors related to
green computing, like the source of energy powering the datacenters, not represented by economic
models.

Learning HPC Job Behaviors

When learning relations on load versus jobs, in this thesis we focused mainly on web-services.
Other kind of jobs like HPC jobs, despite having a load versus deadline relation apparently
easy to find, just by test and observation, can be also subject of study. The SLA objects
and measures to be taken would be different to web-services, as the most usual QoS measure
for HPC jobs is finishing it on time. Despite that, modeling these jobs, in order to find the
proper combination of jobs × computing machines, could improve the utilization of datacenter
resources while preserving the QoS of these kind of jobs. For these jobs, an inconvenient arises
when modeling them, as the kind of HPC jobs are more sparse than web-services, that all share
a limited set of web platforms with similar behavior. Techniques like clustering would help to
classify these jobs and take advantage of their characteristics, also techniques like reinforcement
learning would help to schedule them properly by trial and observation.

Learning Load Behaviors

At this time, all approaches here presented are based on the fact that we can predict or we know
at short time-scale the workload. When managing web-services, we have so far assumed that the
load in the near future will be very similar to the load currently being received. But for most
webservices load experiences important, even drastic, fluctuations over time. A new research

140 CHAPTER 10. CONCLUSIONS

line would be to learn to predict the temporal evolution of the load and clients/users behaviors
over time and over each kind of web-service. For this kind of research methods oriented towards
learning time series could be used. Treating information about current load and characteristics
of the current load as a time serie, as this information will only be seen once and discarded after
its usage, we can learn to predict the future load and its characteristics. In many web-services
we can see that load presents periodical patterns (hourly, daily, weekly, monthly, yearly ...), so
if we are able to discover them we will be able to configure and optimize the system better by
constantly adapting it with better accuracy.

Learning About Resources and Services

At the beginning of the thesis, the principal resource involved in job management was CPU.
During this research, Memory and Network IO has been added. But other resources are still
to be introduced in the model, i.e. disks and storage systems. In a web-service environment,
other services like file systems, application services and database services can be understood as
“resources”. At this time each VM had its own FS, app-server and DB-server, and we treated it
as part of the CPU/MEM/IO process, as it is difficult to discriminate it inside a VM. But on a
system where these services are distributed among dedicated systems, we can start monitoring
them and treating them as shared resources. Many web-services can try to access an app-server,
a database or a file in a shared disk filesystem.

These non-physical-component resources must be added to the mathematical model, new
resource predictors should be learned from load and context. Even an availability function should
be learned from aggregated load and resource, the same way SLA predictors do, to determine
the QoS this resource is offering when it becomes overloaded by different web-service requests.

Improvements on Model Selection

During all this thesis we held as hypotesis that machine learned models could achieve similar
results as handcrafted models, without much expert intervention. However, here we required
“expert intervention” at each learning process, when selecting and validating models. We still
have advantage as once the expert has found the adequate machine learning algorithm, it can
be applied for the same kind of systems and adapt to each one specifically without so much
effort. Also we have the advantage of human learning over the machine learning models. A good
research topic, from the machine learning side, would be to find a method able to reduce the
expert intervention even when creating those learned models. In fact, building more autonomous,
self-adjusting learning systems is one of the most active research lines in machine learning these
days.

On-Line Model Learning

At this time all the learning process is done off-line, and this means that all training and validation
data must be obtained before the model is created, also when retraining the model, data must
be collected and labeled before having the model updated. Another improvement to be done, in
order to automate even more the learning process, is to realize this learning on-line. An on-line
methodology would allow, first of all, to learn models from the first instant we receive data from
the system. The period of supervision would be reduced, as the labeling of the input data should
be done automatically to provide some sense to the approach.

Also the on-line methods have the advantage that, when they get deprecated, there is no need
to “stop” the system and collect data again to retrain the model. There are ways to detect when
the model became deprecated, flush the old learned model and create a new one, or update the
old one automatically. All in all without too much supervision. Data stream mining methods can
be applied here, when constant input information can fit into our model or bring new behaviors
to be learned. E.g. when the web-service is changing and updating its contents periodically, the
users and clients may change their behavior. So the workload would be changing also periodically,
and learned models should be able to detect the changes in trends, discard old information and
old models, and create new ones.

10.3. LIST OF PUBLICATIONS 141

As seen in the hardware/software infrastructure and the information flow (Figures 2.2 and 4.2),
here a component whould be checking the monitors for changes on load trends or changes on
resource behaviors, and try to adapt the prediction models by updating them, or in worst case
re-training them. The system would start with an empty model or a generic model, and it would
be adjusted with observed and checked information from monitors. Notice that not all ML al-
gorithms can be updated (but all can be re-trained), so depending on how much we require the
models to be up-to-date we should choose wisely which algorithms we use for regression and
classification.

Further, for models that do not require supervision, reinforcement learning (RL) could be
used then. RL methods keep updating the models checking always each decision made with its
consequent observations of the system. So approaches different from predicting resources from
load, like e.g. QoS effects from a given schedule, could be implemented using RL and trained
online.

Better Heuristics and Solvers

Due to the intractability of solving the mathematical model in an exhaustive way, we had to fall
back to heuristic and approximate algorithms. Treating the problem as a Generall Allocation
Problem (a scheduling problem), we could apply classical algorithms like first-fitting and best-
fitting. But when adding more requirements and dimensions to the problem (like adding DVFS
or different system configurations), the problem will turn into a more complex one, and then
other algorithms should be researched.

During the modeling of datacenters and study of the MILP exhaustive solving, we attempted
to apply alternatives like Lagrange relaxation techniques. These techniques consist in turn the
problem in a more simple one by moving hard constraints to the maximization function with a λ
factor to be enforced when the constraint is violated, and to be relaxed otherwise. This method
is iterative and returns a solution after solutions converge. It does not reduce complexity but
in some situations finds acceptable solutions faster than MILP linear relaxation + branch and
bound methods. We abandoned for the moment this approach because the problem converted to
Lagrange format in the standard way became intractable in memory. However, further research
could either make it feasible or at least usable to find fast solutions to subparts of the scheduling
problem.

Managing Multi-DC Networks

In this thesis we made a first approach towards the management of a network of datacenters,
all driven by local energy costs, proximity to web-service clients, and preserving the quality of
service. But there is a lot of work to be done in this topic. First of all, more experiments around
the topic can be done, studying more details like a bigger fluctuation of energy prices and their
impact on the scheduling policy; like sudden changes in the world workload provoking huge VM
migrations among DCs, and then study the migration plan; or like mixing different workloads
in the network, treating the network as a new resource, and the possibility of it becoming a
bottleneck.

After this, the production of green energy seen in the last chapter of the thesis could be fully
integrated in the energy model for multi-DCs management. Turn the multi-DC network into
a “green” multi-DC system, where web-services are reallocated according to client proximity,
resource availability, and green energy availability.

10.3 List of Publications

The contributions of this thesis appear in the following publications:

Journals and Book Chapters

[31] Josep Ll. Berral, Iñigo Goiri, Ramon Nou, Ferran Julià, Josep O. Fitó, Jordi Gui-
tart, Ricard Gavaldà, Jordi Torres, “Toward Energy-Aware Scheduling Using Machine Learning”

142 CHAPTER 10. CONCLUSIONS

Energy-Efficient Distributed Computing Systems, Chapter 8. Editors: Albert Y. Zomaya, Young
Choon Lee, July 2012 .ISBN 9780470908754

[66] Iñigo Goiri, Josep Ll. Berral, J. Oriol Fitó, Ferran Julià, Ramon Nou, Jordi Gui-
tart, Ricard Gavaldà, Jordi Torres, “Energy-efficient and multifaceted resource management
for profit-driven virtualized data centers” Future Generation Computer Systems.5 - 28,pp. 718-
731.05/2012. ISSN 0167-739X

Publications in International Conferences and Workshops

[X] Josep Ll. Berral, Íñigo Goiri, Thu Nguyen, Ricard Gavaldà, Jordi Torres, Ricardo Bian-
chini. “Building Low-Cost Green DataCenters”. To be submitted to a conference next Fall 2013.

[29] Josep Ll. Berral, Ricard Gavaldà, Jordi Torres. “Power-aware Multi-DataCenter Manage-
ment using Machine Learning”. The 2nd International Workshop on Power-aware Algorithms,
Systems, and Architectures (PASA-2013). Lyon, France. October 1, 2013.

[27] Josep Ll. Berral, Ricard Gavaldà, Jordi Torres. “Empowering Automatic Data-Center
Management with Machine Learning”. The 28th ACM Symposium on Applied Computing (SAC
2013) Data-Mining track, Coimbra, Portugal, March 18-22 2013.

[25] Josep Ll. Berral, Ricard Gavaldà, Jordi Torres. “Adaptive Scheduling on Power-Aware
Managed Data-Centers using Machine Learning”. The IEEE International Conference on GRID
Computing (GRID 2011), Lyon, France, September 22-23 2011.

[30] Josep Ll. Berral, Iñigo Goiri, Ramon Nou, Ferran Julià, Jordi Guitart, Ricard Gavaldà,
Jordi Torres. “Towards energy-aware scheduling in data centers using machine learning”. 1st
ACM/SIGCOM Intl. Conf. on Energy-Efficient Computing and Networking (eEnergy 2010),
Passau, Germany, April 13-15 2010.

Preliminary and Collaboration Publications in Intl. Confs and Workshops

[3] Javier Alonso, Josep Ll. Berral, Ricard Gavaldà and Jordi Torres. “Adaptive on-line soft-
ware aging prediction based on Machine Learning”. The 40th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2010), Chicago (IL), USA, June 28 -
July 1, 2010.

[4] Javier Alonso, Josep Ll. Berral, Ricard Gavaldà, Jordi Torres. “J2EE Instrumentation
for software aging root cause application component determination with AspectJ”. 15th IEEE
Workshop on Dependable Parallel, Distributed and Network-Centric Systems (DPDNS 2010),
Atlanta (GA), USA, April 19-23 2010.

[67] Iñigo Goiri, J. Oriol Fitó, Ferran Julià, Ramón Nou, Josep Ll. Berral, Jordi Guitart, and
Jordi Torres. “Multifaceted Resource Management for Dealing with Heterogeneous Workloads in
Virtualized Data Centers ”. The 11th ACM/IEEE International Conference on Grid Computing
(GRID 2010), Brussels, Belgium, October 25-29, 2010.

[70] Iñigo Goiri, Ferran Julià , Ramón Nou, Josep Ll. Berral, Jordi Guitart and Jordi Torres.
“Energy-aware Scheduling in Virtualized Datacenters”. IEEE International Conference on Clus-
ter Computing (CLUSTER 2010), Heraclion (Creta), Greece, September 20 - 24, 2010.

[133] Nicolas Poggi, Toni Moreno, Josep Ll. Berral, Ricard Gavaldà, Jordi Torres, “Self-
Adaptive Utility-Based Web Session Management.” Computer Networks.53 - 10,pp. 1712 -
1721.07/2009 .ISSN 1389-1286

[32] Josep Ll. Berral, Nicolas Poggi, Javier Alonso, Ricard Gavaldà, Jordi Torres, Manish
Parashar. “Adaptive Distributed Mechanism Against Flooding Network Attacks Based on Ma-

10.3. LIST OF PUBLICATIONS 143

chine Learning.” 1st ACM Workshop on Artificial Intelligence on Security (AISec 2008), Alexan-
dria (VA), USA, October 27th 2008.

[156] Jordi Torres, David Carrera, Vicenç Beltran, Nicolas Poggi, Josep Ll. Berral, Ricard
Gavaldà, Eduard Ayguadé, Toni Moreno, Jordi Guitar, “Tailoring resources: Energy efficient
consolidation strategy goes beyond virtualization.” The International Conference on Autonomic
Computing (ICAC 2008), Chicago (IL), USA, 2 to 6 of July, 2008, IEEE International Conference
on Autonomic Computing.

[135] Nicolas Poggi, Josep Ll. Berral, Toni Moreno, Ricard Gavaldà, Jordi Torres, “Automatic
Detection and Banning of Content Stealing Bots for E-commerce.” Workshop on Machine Learn-
ing in Adversarial Environments for Computer Security, British Columbia, Canada, December
the 8th, 2007, The Neural Information Processing Systems (NIPS 2007) Foundation (Proceedings
of the NIPS Machine Learning in Adversarial Environments for Computer Security 2007).

[109] Toni Moreno, Nicolas Poggi, Josep Ll. Berral, Ricard Gavaldà and Jordi Torres, “Policy-
based autonomous bidding for overload management in eCommerce websites.” Group Decision
and Negotiation Meeting - GDN Section of INFORMS, Montreal, Canada, 14-1 of May, 2007,
Group Decision and Negotiation, INFORMS (Proceedings of the Group Decision and Negotia-
tion 2007, pages 162-166).

[131] Nicolas Poggi, Toni Moreno, Josep Ll. Berral, Ricard Gavaldà and Jordi Torres, “Web
Customer Modeling for Automated Session Prioritization on High Traffic Sites.” 11th Inter-
national Conference on User Modeling (UM 2007), Corfu, Grece, 25-29 of June, 2007. User
Modeling Inc. (Lecture Notes in Computer Science, Volumen 4511 páginas 450-454, Springer).

Technical Reports

[28] Josep Ll. Berral, Ricard Gavaldà, Jordi Torres. “Modeling cloud resources using Machine
Learning”. Research Report number: UPC-LSI-13-7-R, March 2013.

[26] Josep Ll. Berral, Ricard Gavaldà, Jordi Torres. “’Living In Barcelona’ Li-BCN Workload
2010” Research Report number: UPC-LSI-11-1-T, January 2011.

[24] Josep Ll. Berral, Ricard Gavaldà, Jordi Torres. “An Integer Linear Programming Rep-
resentation for DataCenter Power-Aware Management” Research Report number: UPC-LSI-10-
21-R, November 2010.

[87] Ferran Julià, Jordi Roldan, Ramon Nou, Oriol Fitó, Alex Vaqué, Iñigo Goiri, Josep Ll.
Berral. “EEFSim: Energy Efficency Simulator” Research Report number: UPC-DAC-RR-
CAP-2010-15, June 2010.

144 CHAPTER 10. CONCLUSIONS

Bibliography

[1] Google app engine. http://code.google.com/appengine.

[2] Douglas Alger. Choosing an optimal location for your data center. In InformIT, 2006.

[3] Javier Alonso, Jordi Torres, Josep Ll. Berral, and Ricard Gavaldà. Adaptive on-line soft-
ware aging prediction based on machine learning. In IEEE/IFIP Intl. Conf. on Dependable
Systems and Networks (DSN 2010), 2010.

[4] Javier Alonso, Jordi Torres, Josep Ll. Berral, and Ricard Gavaldà. J2ee instrumentation
for software aging root cause application component determination with aspectj. In IPDPS
Workshops, pages 1–8. IEEE, 2010.

[5] Javier Alonso, Jordi Torres, and Ricard Gavaldà. Predicting web server crashes: A case
study in comparing prediction algorithms. In Proceedings of the 2009 Fifth International
Conference on Autonomic and Autonomous Systems, ICAS 2009, pages 264–269, Wash-
ington, DC, USA, 2009. IEEE Computer Society.

[6] Javier Alonso, Jordi Torres, Luis Moura Silva, Rean Griffith, and Gail Kaiser. Towards
self-adaptable monitoring framework for self-healing. Technical Report TR-0150, Institute
on Architectural issues: scalability, dependability, adaptability, CoreGRID - Network of
Excellence, July 2008.

[7] Amazon DirectConnect (Jan.2013). http://www.amazon.com/DirectConnect/.

[8] Amazon WebServices (Jan.2013). http://aws.amazon.com/.

[9] AMD. Pacifica x86 virtualization. http://enterprise.amd.com/us-en/AMD-
Business/Business-Solutions/Consolidation/Virtualization.aspx.

[10] Artur Andrzejak, Sven Graupner, and Stefan Plantikow. Predicting resource demand in
dynamic utility computing environments. In Intl. Conf. on Autonomic and Autonomous
Systems (ICAS ’06), 2006.

[11] Artur Andrzejak and Luis Silva. Using machine learning for non-intrusive modeling and
prediction of software aging. In IN: IEEE/IFIP NETWORK OPERATIONS & MAN-
AGEMENT SYMPOSIUM (NOMS 2008), pages 7–11, 2008.

[12] Paolo Anedda, Simone Leo, Simone Manca, Massimo Gaggero, and Gianluigi Zanetti.
Suspending, migrating and resuming HPC virtual clusters. Future Generation Computer
Systems, 26(8):1063–1072, 2010.

[13] Apache Foundation, 2013. http://www.apache.org.

[14] Apache tomcat server, 2013. http://tomcat.apache.org.

[15] Karen Appleby, Sameh Fakhouri, Liana Fong, Germán Goldszmidt, Michael Kalantar,
Srirama Krishnakumar, Donald Pazel, John Pershing, and Benny Rochwerger. Oceano-SLA
based management of a computing utility. In 7th IFIP/IEEE International Symposium on
Integrated Network Management, volume 5. Citeseer, 2001.

145

146 BIBLIOGRAPHY

[16] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy
Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. A
view of cloud computing. Commun. ACM, 53(4):50–58, April 2010.

[17] Ask.com. http://www.ask.com.

[18] Atrapalo web travel agency, 2013. http://www.atrapalo.com/.

[19] Ramamurthy Badrinath, R. Krishnakumar, and R.K.P. Rajan. Virtualization aware Job
Schedulers for Checkpoint-restart. In Proceedings of the 13th International Conference
on Parallel and Distributed Systems (ICPADS 2007), Hsinchu, Taiwan, December 5-7,
volume 2, pages 1–7, 2007.

[20] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Using magpie for
request extraction and workload modelling. In OSDI’04: Proceedings of the 6th conference
on Symposium on Opearting Systems Design & Implementation, pages 18–18, Berkeley,
CA, USA, 2004. USENIX Association.

[21] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In SOSP ’03:
Proceedings of the nineteenth ACM symposium on Operating systems principles, pages
164–177, New York, NY, USA, 2003. ACM.

[22] Luiz Barroso and Urs Hölzle. The Case for Energy-Proportional Computing. Computer,
40(12):33–37, 2007.

[23] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In ATEC ’05: Proceedings
of the annual conference on USENIX Annual Technical Conference, pages 41–41, Berkeley,
CA, USA, 2005. USENIX Association.

[24] Josep Ll. Berral, Ricard Gavaldà, and Jordi Torres. An Integer Linear Pro-
gramming Representation for DataCenter Power-Aware Management, 2010.
http://www.lsi.upc.edu/dept/techreps/llistat detallat.php?id=1096.

[25] Josep Ll. Berral, Ricard Gavaldà, and Jordi Torres. Adaptive Scheduling on Power-Aware
Managed Data-Centers using Machine Learning. In 12th IEEE International Conference
on Grid Computing (GRID 2011), 2011.

[26] Josep Ll. Berral, Ricard Gavaldà, and Jordi Torres. Li-BCN Workload 2010, 2011.
http://www.lsi.upc.edu/dept/techreps/llistat detallat.php?id=1099.

[27] Josep Ll. Berral, Ricard Gavaldà, and Jordi Torres. Empowering Automatic Data-Center
Management with Machine Learning. In 28th ACM Symposium on Applied Computing
(SAC’13), 2013.

[28] Josep Ll. Berral, Ricard Gavaldà, and Jordi Torres. Modeling cloud resources using Machine
Learning, 2013. http://www.lsi.upc.edu/dept/techreps/llistat detallat.php?id=10XX.

[29] Josep Ll. Berral, Ricard Gavaldà, and Jordi Torres. Power-aware Multi-DataCenter Man-
agement using Machine Learning. In 2nd International Workshop on Power-aware Algo-
rithms, Services and Architectures (PASA’13), 2013.

[30] Josep Ll. Berral, Íñigo Goiri, Ramon Nou, Ferran Julià, Jordi Guitart, Ricard Gavalda, and
Jordi Torres. Towards energy-aware scheduling in data centers using machine learning. In
1st International Conference on Energy-Efficient Computing and Networking (eEnergy’10),
pages 215–224, 2010.

[31] Josep Ll. Berral, Íñigo Goiri, Ramon Nou, Ferran Julià, Josep O. Fitó, Jordi Guitart, Ricard
Gavaldà, and Jordi Torres. Toward Energy-Aware Scheduling Using Machine Learning.
Wiley Series on Parallel and Distributed Computing. Wiley, 2012.

BIBLIOGRAPHY 147

[32] Josep Ll. Berral, Nicolas Poggi, Javier Alonso, Ricard Gavaldà, Jordi Torres, and Manish
Parashar. Adaptive distributed mechanism against flooding network attacks based on
machine learning. In AISec ’08: Proceedings of the 1st ACM workshop on Workshop on
AISec, pages 43–50, New York, NY, USA, 2008. ACM.

[33] Ricardo Bianchini and Ram Rajaniony. Power and Energy Management for Server Systems.
IEEE Computer, Special issue on Internet data centers, 37(11):68–76, 2004.

[34] Damien Borgetto, Henri Casanova, Georges Da Costa, and Jean-Marc Pierson. Energy-
aware service allocation. Future Gener. Comput. Syst., 28(5):769–779, May 2012.

[35] Rajkumar Buyya, David Abramson, and Jonathan Giddy. An economy grid architecture
for service-oriented grid computing, 2001.

[36] Rajkumar Buyya, David Abramson, and Srikumar Venugopal. The grid economy. Pro-
ceedings of the IEEE, 93(3):698–714, 2005.

[37] Rajkumar Buyya, Chee Shin Yeo, and Srikumar Venugopal. Market-oriented cloud comput-
ing: Vision, hype, and reality for delivering it services as computing utilities. In Department
of Computer Science and Software Engineering (CSSE), The University of Melbourne, Aus-
tralia. He, pages 10–1016, 2008.

[38] George Candea, Aaron B. Brown, Armando Fox, and David Patterson. Recovery-oriented
computing: Building multitier dependability. Computer, 37(11):60–67, 2004.

[39] George Candea, George C, Emre Kiciman, Steve Zhang, Armando Fox, Pedram Keyani,
and O Fox. Jagr: An autonomous self-recovering application server, 2003.

[40] David Carrera, Malgorzata Steinder, Ian Whalley, Jordi Torres, and Eduard Ayguadé.
Enabling resource sharing between transactional and batch workloads using dynamic ap-
plication placement. In Middleware ’08: Proceedings of the 9th ACM/IFIP/USENIX Inter-
national Conference on Middleware, pages 203–222, New York, NY, USA, 2008. Springer-
Verlag New York, Inc.

[41] Karen J. Cassidy, Kenny C. Gross, and Amir Malekpour. Advanced pattern recognition for
detection of complex software aging phenomena in online transaction processing servers.
In 2002 International Conference on Dependable Systems and Networks (DSN 2002), 23-
26 June 2002, Bethesda, MD, USA, Proceedings, pages 478–482. IEEE Computer Society,
2002.

[42] Sumir Chandra, Shweta Sinha, Manish Parashar, Yeliang Zhang, Jingmei Yank, and Salim
Hariri. Adaptive runtime management of samr applications, 2002.

[43] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, and Amin M. Vahdat. Managing
energy and server resources in hosting centers. In 18th ACM Symposium on Operating
System Principles (SOSP), 2001.

[44] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, Amin M. Vahdat, and Ronald P.
Doyle. Managing Energy and Server Resources in Hosting Centers. ACM SIGOPS Oper-
ating Systems Review, 35(5):103–116, 2001.

[45] Yiyu Chen, Amitayu Das, Wubi Qin, Anand Sivasubramaniam, Qian Wang, and Natara-
jan Gautam. Managing Server Energy and Operational Costs in Hosting Centers. ACM
SIGMETRICS Performance Evaluation Review, 33(1):303–314, 2005.

[46] David M. Chess, Charles Palmer, and Steve R. White. Security in an autonomic computing
environment. IBM Syst. J., 42(1):107–118, 2003.

[47] Byung-Gon Chun, Gianlucca Iannaccone, Giuseppe Iannaccone, Randy Katz, Gunho Lee,
and Luca Niccolini. An energy case for hybrid datacenters. ACM SIGOPS Operating
Systems Review, 44(1):76–80, 2010.

148 BIBLIOGRAPHY

[48] Ira Cohen, Moises Goldszmidt, Terence Kelly, Julie Symons, and Jeffrey S. Chase. Cor-
relating instrumentation data to system states: a building block for automated diagnosis
and control. In OSDI’04: Proceedings of the 6th conference on Symposium on Opeart-
ing Systems Design & Implementation, pages 16–16, Berkeley, CA, USA, 2004. USENIX
Association.

[49] Toni Cortes, Carsten Franke, Yvon Jégou, Thilo Kielmann, Domenico Laforenza, Brian
Matthews, Christine Morin, Luis Pablo Prieto, and Alexander Reinefeld. XtreemOS: a
Vision for a Grid Operating System, 2008.

[50] Toni Cortes and Ramon Nou. AEM prototype, D3.3.6, XtreemOS deliverable, 2008.

[51] Georges Da Costa, Marcos Dias de Assunção, Jean-Patrick Gelas, Yiannis Georgiou, Lau-
rent Lefèvre, Anne-Cécile Orgerie, Jean-Marc Pierson, Olivier Richard, and Amal Sayah.
Multi-facet approach to reduce energy consumption in clouds and grids: the green-net
framework. In Proceedings of the 1st International Conference on Energy-Efficient Com-
puting and Networking, e-Energy ’10, pages 95–104, New York, NY, USA, 2010. ACM.

[52] George B. Dantzig and Mukund N. Thapa. Linear programming 1: introduction. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1997.

[53] Rajarshi Das, Gerald Tesauro, Jeffrey O. Kephart, David W. Levine, Charles Lefurgy, and
Hoi Chan. Autonomic multi-agent management of power and performance in data centers,
2008.

[54] Data Center Knowledge. Apple Plans 20MW of Solar Power for iDataCenter,
2012. ”http://www.datacenterknowledge.com/archives/2012/02/20/apple-plans-20mw-of-
solar-power-for-idatacenter/”.

[55] Data Center Knowledge. Data Centers Scale Up Their Solar Power, 2012.
”http://www.datacenterknowledge.com/archives/2012/05/14/data-centers-scale-up-
their-solarpower/”.

[56] Ewa Deelman, Gurmeet Singh, Miron Livny, Bruce Berriman, and John Good. The cost
of doing science on the cloud: the montage example. In SC ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, pages 1–12, Piscataway, NJ, USA, 2008. IEEE
Press.

[57] Gaurav Dhiman. Dynamic power management using machine learning. In IEEE/ACM
Intl. Conf. on Computer-Aided Design 2006, 2006.

[58] Tadashi Dohi, Katerina Goseva-popstojanova, and Kishor S. Trivedi. Analysis of software
cost models with rejuvenation. In Proc. of the IEEE Intl. Symp. on High Assurance Sys-
tems Engineering, HASE-2000, November 2000. Statistical Non-Parametric Algorithms to
Estimate the Optimal Software Rejuvenation, pages 25–34, 2000.

[59] Elmootazbellah N. Elnozahy, Michael Kistler, and Ramakrishnan Rajamony. Energy-
efficient server clusters. Lecture notes in computer science, pages 179–196, 2003.

[60] Europe’s energy portal. http://www.energy.eu.

[61] David Filani, Jackson He, Sam Gao, M. Rajappa, A. Kumar, R. Shah, and R. Nagappan.
Dynamic Data Center Power Management: Trends, Issues and Solutions. Intel Technology
Journal, 2008.

[62] J.Oriol Fitó, Íñigo Goiri, and Jordi Guitart. SLA-driven Elastic Cloud Hosting Provider.
In Euromicro Conference on Parallel, Distributed and Network-based Processing (PDP’10),
pages 111–118, 2010.

[63] Ian Foster. What is the grid? - a three point checklist. GRIDtoday, 1(6), July 2002.

BIBLIOGRAPHY 149

[64] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid - enabling scalable
virtual organizations. International Journal of Supercomputer Applications, 15:2001, 2001.

[65] GNU. Gnu linear programming kit, 2010. http://www.gnu.org/software/glpk/ (accessed
22 September 2010).

[66] Íñigo Goiri, Josep Ll. Berral, J. Oriol Fitó, Ferran Julià, Ramon Nou, Jordi Guitart,
Ricard Gavaldá, and Jordi Torres. Energy-efficient and multifaceted resource management
for profit-driven virtualized data centers. Future Gener. Comput. Syst., 28(5):718–731,
May 2012.

[67] Íñigo Goiri, J.Oriol Fito, Ferran Julià, Ramon Nou, Josep Ll. Berral, Jordi Guitart, and
Jordi Torres. Multifaceted resource management for dealing with heterogeneous workloads
in virtualized data centers. In Grid Computing (GRID), 2010 11th IEEE/ACM Interna-
tional Conference on, pages 25–32, 2010.

[68] Íñigo Goiri, Jordi Guitart, and Jordi Torres. Elastic Management of Tasks in Virtualized
Environments. In Proccedings of the XX Jornadas de Paralelismo 2009, pages 671–676,
2009.

[69] Íñigo Goiri, Ferran Julià, Jorge Ejarque, Marc De Palol, Rosa M. Badia, Jordi Guitart,
and Jordi Torres. Introducing Virtual Execution Environments for Application Lifecycle
Management and SLA-Driven Resource Distribution within Service Providers. In IEEE
International Symposium on Network Computing and Applications (NCA’09), pages 211–
218, 2009.

[70] Íñigo Goiri, Ferran Julià, Ramon Nou, Josep Ll. Berral, Jordi Guitart, and Jordi Torres.
Energy-aware Scheduling in Virtualized Datacenters. In Proceedings of the 12th IEEE
International Conference on Cluster Computing (Cluster 2010), Heraklion, Crete, Greece,
September 20-24, 2010.

[71] Ínigo Goiri, Kien Le, Thu D. Nguyen, Jordi Guitart, Jordi Torres, and Ricardo Bian-
chini. Greenhadoop: leveraging green energy in data-processing frameworks. In 7th ACM
European Conf. on Computer Systems (EuroSys), 2012.

[72] Green Grid Consortium, 2009. http://www.thegreengrid.org.

[73] Laura Grit, David Irwin, Aydan Yumerefendi, and Jeffrey Chase. Virtual machine hosting
for networked clusters: Building the foundations for ’autonomic’ orchestration. In Conf.
on Virtualization Technology in Distributed Computing (VTDC), 2006.

[74] Michael Grottke, Rivalino Matias, and Kishor Trivedi. The fundamentals of software
aging. In In Proc of 1st Int. Workshop on Software Aging and Rejuvenation (WoSAR),
in conjunction with 19th IEEE Int. Symp. on Software Reliability Engineering, Seattle,
November 2008.

[75] GUROBI. Gurobi optimization, 2013. http://www.gurobi.com/.

[76] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and
Ian H. Witten. The WEKA data mining software: an update. SIGKDD Explor. Newsl.,
11(1):10–18, 2009.

[77] Volker Hamscher, Uwe Schwiegelshohn, Achim Streit, and Ramin Yahyapour. Evaluation
of Job-scheduling Strategies for Grid Computing. In Proceedings of the 1st IEEE/ACM
International Workshop on Grid Computing (Grid 2000), Bangalore, India, December 17,
pages 191–202. Springer, 2000.

[78] Jürgen Hofer and Thomas Fahringer. Grid application fault diagnosis using wrapper ser-
vices and machine learning. In ICSOC ’07: Proceedings of the 5th international conference
on Service-Oriented Computing, pages 233–244, Berlin, Heidelberg, 2007. Springer-Verlag.

150 BIBLIOGRAPHY

[79] Gunther A. Hoffmann, Kishor S. Trivedi, and Miroslaw Malek. A best practice guide to
resources forecasting for the apache webserver. In Proceedings of the 12th Pacific Rim In-
ternational Symposium on Dependable Computing, PRDC ’06, pages 183–193, Washington,
DC, USA, 2006. IEEE Computer Society.

[80] Kurt Hornik. The R FAQ, 2010. ISBN 3-900051-08-9.

[81] Tibor Horvath, Tarek Abdelzaher, Kevin Skadron, and Xue Liu. Dynamic voltage scaling
in multitier web servers with end-to-end delay control. IEEE Transactions on Computers,
56(4):444–458, 2007.

[82] Hans-Jorg Hoxer, Kerstin Buchacker, and Volkmar Sieh. Implementing a user mode linux
with minimal changes from original kernel. In In Proceedings of the 2002 International
Linux System Technology Conference, pages 72–82, 2002.

[83] IBM. Ibm advanced power virtualization. http://www-03.ibm.com/systems/p/apv/f.

[84] IBM. Ibm blue cloud. http://www.ibm.com/cloud-computing/us/en/.

[85] IBM. Solver cplex, 2003. http://www-01.ibm.com/software/integration/optimization/cplex-
optimization-studio/ (accessed 17 September 2010).

[86] Intel. Intel virtualization technologies. http://www.intel.com/technology/virtualization/.

[87] Ferran Julià, Jordi Roldàn, Ramon Nou, J.Oriol Fitó, Alex Vaquè, Goiri. Í nigo, and
Josep Ll. Berral. EEFSim: Energy Efficency Simulator, 2010.

[88] Ioannis Kamitsos, Lachlan Andrew, Hongseok Kim, and Mung Chiang. Optimal sleep
patterns for serving delay-tolerant jobs. In Proceedings of the 1st International Conference
on Energy-Efficient Computing and Networking (eEnergy 2010), University of Passau,
Germany, April 13-15, pages 31–40, 2010.

[89] Nirav H. Kapadia, José A.B. Fortes, and Carla E. Brodley. Predictive application-
performance modeling in a computational grid environment, 1999.

[90] Jeffrey O. Kephart. Research challenges of autonomic computing. In ICSE ’05: Proceedings
of the 27th international conference on Software engineering, pages 15–22, New York, NY,
USA, 2005. ACM.

[91] Jeffrey O. Kephart. A vision of autonomic computing, 2005.

[92] Bithika Khargharia, Salim Hariri, and Mazin Yousif. Autonomic Power and Performance
Management for Computing Systems. Cluster Computing, 11(2):167–181, 2008.

[93] Kevin Lai, Lars Rasmusson, Eytan Adar, Li Zhang, and Bernardo A. Huberman. Tycoon:
An implementation of a distributed, market-based resource allocation system. Multiagent
Grid Syst., 1(3):169–182, August 2005.

[94] Kien Le, Ricardo Bianchini, Margaret Martonosi, and Thu D. Nguyen. Cost-and Energy-
Aware Load Distribution Across Data Centers. In Proceedings of the Workshop on Power
Aware Computing and Systems (HotPower 2009), Big Sky, MT, USA, October 10, 2009.

[95] Wenke Lee, Salvatore J. Stolfo, and Kui W. Mok. A data mining framework for building
intrusion detection models. In In IEEE Symposium on Security and Privacy, pages 120–
132, 1999.

[96] Young C. Lee and Albert Y. Zomaya. Minimizing Energy Consumption for Precedence-
Constrained Applications Using Dynamic Voltage Scaling. In 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid-Volume, pages 92–99. IEEE Computer
Society, 2009.

BIBLIOGRAPHY 151

[97] Charles Lefurgy, Karthick Rajamani, Freeman Rawson, Wes Felter, Michael Kistler, and
Tom W. Keller. Energy Management for Commercial Servers. Computer, 36(12):39–48,
2003.

[98] Lei Li, Kalyanaraman Vaidyanathan, and Kishor S. Trivedi. An approach for estimation
of software aging in a web server. In Proceedings of the 2002 International Symposium on
Empirical Software Engineering, ISESE ’02, pages 91–, Washington, DC, USA, 2002. IEEE
Computer Society.

[99] Minghong Lin, Zhenhua Liu, Adam Wierman, and Lachlan L. H. Andrew. Online algo-
rithms for geographical load balancing. In Proceedings of the International Green Comput-
ing Conference, San Jose, CA, 5-8 Jun 2012.

[100] Minghong Lin, Zhenhua Liu, Adam Wierman, and Lachlan L.H. Andrew. Online algorithms
for geographical load balancing. In Intl. Green Computing Conference (IGCC), 2012.

[101] Linux vserver. http://linux-vserver.org/Paper.

[102] Liang Liu, Hao Wang, Xue Liu, Xing Jin, Wen B. He, Qing B. Wang, and Ying Chen.
GreenCloud: a New Architecture for Green Data Center. In 6th International Conference
on Autonomic Computing and Communications, 2009.

[103] Zhenhua Liu, Yuan Chen, Cullen Bash, Adam Wierman, Daniel Gmach, Zhikui Wang,
Manish Marwah, and Chris Hyser. Renewable and cooling aware workload management
for sustainable data centers. SIGMETRICS Perform. Eval. Rev., 40(1):175–186, June 2012.

[104] Zhenhua Liu, Minghong Lin, Adam Wierman, Steven H. Low, and Lachlan L. H. An-
drew. Geographical load balancing with renewables. ACM SIGMETRICS Performance
Evaluation Review (PER), March 2012.

[105] Eliot Marshall. Fatal Error: How Patriot Overlooked a Scud. Science, page 1347, March
1992.

[106] Peter Mell and Tim Grance. The nist definition of cloud computing.
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf, 2011.

[107] Sun Microsystems. Sun ultrasparc t1 hypervisor. http://opensparc-
t1.sunsource.net/specs/Hypervisor-api-current-draft.pdf.

[108] Mayank Mishra, Anwesha Das, Purushottam Kulkarni, and Anirudha Sahoo. Dynamic
resource management using virtual machine migrations. IEEE Communications Magazine,
50(9):34–40, 2012.

[109] Toni Moreno, Nicolas Poggi, Josep Ll. Berral, Ricard Gavaldà, and Jordi Torres. Policy-
based autonomous bidding for overload management in ecommerce websites, 2007.

[110] Toni Moreno, Nicolas Poggi, Josep Ll. Berral, Ricard Gavaldà, and Jordi Torres. Policy-
based autonomous bidding for overload management in ecommerce websites. In Proceedings
of the Group Decision and Negotiation 2007, pages 162–166. Springer-Verlag, 2007.

[111] Mysql database server, 2013. http://www.mysql.com.

[112] Ripal Nathuji, Karsten Schwan, A. Somani, and Y. Joshi. Vpm tokens: virtual machine-
aware power budgeting in datacenters. Cluster Computing, 12(2):189–203, 2009.

[113] Dirk Neumann, Jochen StoBer, Arun Anandasivam, and Nikolay Borissov. Sorma - building
an open grid market for grid resource allocation. In Jorn Altmann and Daniel Veit, editors,
GECON, volume 4685 of Lecture Notes in Computer Science, pages 194–200. Springer,
2007.

[114] Íñigo Goiri et al. Greenslot: Scheduling energy consumption in green datacenters. In
Supercomputing, November 2011.

152 BIBLIOGRAPHY

[115] Íñigo Goiri et al. Intelligent placement of datacenters for internet services. In ICDCS11,
2011.

[116] Íñigo Goiri et al. Parasol and greenswitch: Managing datacenters powered by renewable
energy. In ASPLOS, 2013.

[117] Nimbus. Nimbus science cloud. http://workspace.globus.org/clouds/nimbus.html.

[118] Nirvanix web services. http://developer.nirvanix.com/.

[119] Ramon Nou. Energy Efficiency: A Case Study. Technical Report UPC-DAC-RR-CAP-
2009-14, Technical University of Catalonia (UPC) - Computer Architecture Department,
2009.

[120] Ramon Nou, Ferran Julia, Jordi Guitart, and Jordi Torres. Dynamic resource provisioning
for self-adaptive heterogeneous workloads in smp hosting platforms pdf. In ICE-B 2007,
the International Conference on E-business (2nd), Jul 2007.

[121] Ramon Nou, Samuel Kounev, Ferran Julià, and Jordi Torres. Autonomic QoS control in
enterprise Grid environments using online simulation. J. Syst. Softw., 82(3):486–502, 2009.

[122] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil Soman, Lamia
Youseff, and Dmitrii Zagorodnov. The eucalyptus open-source cloud-computing system. In
IEEE/ACM Intl. Symp. on Cluster Computing and the Grid (CCGRID 2009), Washington
DC, USA, 2009.

[123] Brian Oley. Where is the best place to build a data center? In Data Center Journal, 2010.

[124] Omnet, 2009. http://www.omnet.org.

[125] Vinicius Petrucci, Orlando Loques, and Daniel Mossé. A Dynamic Configuration Model
for Power-efficient Virtualized Server Clusters. In 11th Brazillian Workshop on Real-Time
and Embedded Systems (WTR), 2009.

[126] Vinicius Petrucci, Orlando Loques, and Daniel Mossé. A framework for dynamic adap-
tation of power-aware server clusters. In Proceedings of the ACM symposium on Applied
Computing (SAC 2009), Honolulu, Hawaii, USA, pages 1034–1039, 2009.

[127] Jean-Marc Pierson. Allocating resources greenly: reducing energy consumption or reducing
ecological impact? In Proceedings of the 1st International Conference on Energy-Efficient
Computing and Networking, e-Energy ’10, pages 127–130, New York, NY, USA, 2010.
ACM.

[128] Jean-Marc Pierson. Green Task Allocation: Taking into account the ecological impact of
task allocation in clusters and clouds. Journal of Green Engineering, 1(2):129–144, janvier
2011.

[129] Eduardo Pinheiro, Ricardo Bianchini, Enrique V. Carrera, and Taliver Heath. Load bal-
ancing and unbalancing for power and performance in cluster-based systems. In Proceed-
ings of the Workshop on Compilers and Operating Systems for Low Power (COLP 2001),
Barcelona, Spain, September 9, volume 180, pages 182–195, 2001.

[130] Eduardo Pinheiro, Ricardo Bianchini, and Cezary Dubnicki. Exploiting redundancy to
conserve energy in storage systems. In SIGMETRICS/Performance, pages 15–26, 2006.

[131] Nicolás Poggi, Toni Moreno, Josep Ll. Berral, Ricard Gavaldà, and Jordi Torres. Web
customer modeling for automated session prioritization on high traffic sites. In Proceedings
of the 11th International Conference on User Modeling. Corfu, pages 25–29, 2007.

[132] Nicolas Poggi, Toni Moreno, Josep Ll. Berral, Ricard Gavaldà, and Jordi Torres. Web
customer modeling for automated session prioritization on high traffic sites. In UM ’07:
Proceedings of the 11th international conference on User Modeling, pages 450–454, Berlin,
Heidelberg, 2007. Springer-Verlag.

BIBLIOGRAPHY 153

[133] Nicolas Poggi, Toni Moreno, Josep Ll. Berral, Ricard Gavald́ı, and Jordi Torres. Self-
adaptive utility-based web session management. Comput. Netw., 53(10):1712–1721, July
2009.

[134] Nicolas Poggi, Toni Moreno, Josep Ll. Berral, Ricard Gavald́ı, and Jordi Torres. Self-
adaptive utility-based web session management. Comput. Netw., 53(10):1712–1721, 2009.

[135] Nicolás Poggi, Josep Ll. Berral, Toni Moreno, Ricard Gavaldà, and Jordi Torres. Automatic
detection and banning of content stealing bots for e-commerce, 2007.

[136] The FreeBSD Project. The freebsd documentation project, 2007.

[137] Ioan Raicu, Yong Zhao, Catalin Dumitrescu, Ian Foster, and Mike Wilde. Dynamic resource
provisioning in grid environments, 2007.

[138] Supranamaya Ranjan, J. Rolia, H. Fu, and E. Knightly. Qos-driven server migration for
internet data centers. In 10th International Workshop on Quality of Service (IWQoS 2002),
pages 3–12. Citeseer, 2002.

[139] RDLab - Department of Software UPC, 2011. http://rdlab.lsi.upc.edu/.

[140] Suzanne Rivoire, Mehul A. Shah, Parthasarathy Ranganathan, and Christos Kozyrakis.
JouleSort: a balanced energy-efficiency benchmark. In 2007 ACM SIGMOD international
conference on Management of data, page 376, 2007.

[141] Kai Shen, Hong Tang, Tao Yang, and Lingkun Chu. Integrated resource management for
cluster-based internet services. SIGOPS OS Rev., 36(SI):225–238, 2002.

[142] Daniel P. Siewiorek and Robert S. Swarz. Reliable computer systems - design and evaluation
(3. ed.). A K Peters, 1998.

[143] Luis Moura Silva, Javier Alonso, Paulo Silva, Jordi Torres, and Artur Andrzejak. Using
virtualization to improve software rejuvenation. Network Computing and Applications,
IEEE International Symposium on, 0:33–44, 2007.

[144] Lindsay I. Smith. A tutorial on principal components analysis, 2002.

[145] Borja Sotomayor, Kate Keahey, and Ian Foster. Overhead matters: A model for virtual
resource management. In Proceedings of the 2nd International Workshop on Virtualization
Technology in Distributed Computing (VTDC 2006), Tampa, Florida, USA, November 11,
page 5, 2006.

[146] Borja Sotomayor, Kate Keahey, and Ian Foster. Combining Batch Execution and Leasing
using Virtual Machines. In Proceedings of the 17th International Symposium on High
Performance Distributed Computing (HPDC 2008), Boston, MA, USA, June 23–27, pages
87–96, 2008.

[147] Borja Sotomayor, Rubén S. Montero, Ignacio M. Llorente, and Ian Foster. Virtual infras-
tructure management in private and hybrid clouds. IEEE Internet Computing, 13(5):14–22,
September 2009.

[148] SPECweb2009 E-commerce workload, 2009. http://www.spec.org/web2009/.

[149] Matt Stansberr. Data center locations ranked by operating cost. In SearchDatacenter.com,
2006.

[150] Christopher Stewart and Kai Shen. Some joules are more precious than others: Managing
renewable energy in the datacenter. In HotPower, 2009.

[151] Ann T. Tai, Herbert Hecht, Savio N. Chau, and Leon Alkalaj. On-board preventive main-
tenance: Analysis of effectiveness and optimal duty period. In Proceedings of the 3rd
Workshop on Object-Oriented Real-Time Dependable Systems - (WORDS ’97), WORDS
’97, pages 40–, Washington, DC, USA, 1997. IEEE Computer Society.

154 BIBLIOGRAPHY

[152] Ying Tan, Wei Liu, and Qinru Qiu. Adaptive power management using reinforcement
learning. In International Conference on Computer-Aided Design (ICCAD ’09), New York,
NY, USA, 2009. ACM.

[153] Gerald Tesauro, Rajarshi Das, Hoi Chan, Jeffrey O. Kephart, David Levine, Freeman
Rawson, and Charles Lefurgy. Managing power consumption and performance of computing
systems using reinforcement learning. Advances in Neural Information Processing Systems,
20, 2007.

[154] Gerald Tesauro, Nicholas K. Jong, Rajarshi Das, and Mohamed N. Bennani. A hybrid rein-
forcement learning approach to autonomic resource allocation. In Intl. Conf. on Autonomic
Computing (ICAC 2006), 2006.

[155] The Grid Workloads Archive, 2009. http://gwa.ewi.tudelft.nl.

[156] Jordi Torres, David Carrera, Vicenç Beltran, Nicolás Poggi, Kevin Hogan, Josep Ll. Berral,
Ricard Gavaldà, Eduard Ayguadé, Toni Moreno, and Jordi Guitart. Tailoring resources:
The energy efficient consolidation strategy goes beyond virtualization. In Proceedings of
the 2008 International Conference on Autonomic Computing, ICAC ’08, pages 197–198,
Washington, DC, USA, 2008. IEEE Computer Society.

[157] Tpc-w java version, 2013. http://pharm.ece.wisc.edu/tpcw.shtml.

[158] Kishor S. Trivedi, Kalyanaraman Vaidyanathan, and Katerina Goseva-popstojanova. Mod-
eling and analysis of software aging and rejuvenation. In In Proceedings of the IEEE Annual
Simulation Symposium, pages 270–279, 2000.

[159] W. Pitt Turner, John H. Seader, Vince Renaud, and Kenneth G. Brill. Tier classifications
define site infrastructure performance, 2008.

[160] Kalyanaraman Vaidyanathan and Kishor S. Trivedi. A measurement-based model for es-
timation of resource exhaustion in operational software systems. In Proceedings of the
10th International Symposium on Software Reliability Engineering, ISSRE ’99, pages 84–,
Washington, DC, USA, 1999. IEEE Computer Society.

[161] Kalyanaraman Vaidyanathan and Kishor S. Trivedi. A comprehensive model for software
rejuvenation. IEEE Transactions on Dependable and Secure Computing, 2:2005, 2005.

[162] Alex Vaqué, Íñigo Goiri, Jordi Guitart, and Jordi Torres. EMOTIVE Cloud: The BSC’s
IaaS Open Source Solution for Cloud Computing. IGI Global, 2012-01-31 2012.

[163] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

[164] David Vengerov and Nikolai Iakovlev. A reinforcement learning framework for dynamic
resource allocation: First results. In ICAC ’05: Proceedings of the Second International
Conference on Automatic Computing, pages 339–340, Washington, DC, USA, 2005. IEEE
Computer Society.

[165] Verizon (Jan.2013). http://www.verizonenterprise.com/about/network/latency.

[166] Akshat Verma, Puneet Ahuja, and Anindya Neogi. Power-aware dynamic placement of hpc
applications. In ICS ’08: International Conference on Supercomputing, pages 175–184, New
York, NY, USA, 2008. ACM.

[167] Akshat Verma, Gargi Dasgupta, Tapan Kumar, Nayak Pradipta, and De Ravi Kothari.
Server workload analysis for power minimization using consolidation, 2009.

[168] Pascale Vicat-Blanc Primet, Jean-Patrick Gelas, Olivier Mornard, Dinil Mon Divakaran,
Pierre Bozonnet, Mathieu Jan, Vincent Roca, and Lionel Giraud. State of the art of os
and network virtualization solutions for grids. Technical report, INRIA, September 2007.
”Delivrable #1 : HIPCAL ANR-06-CIS-005”.

BIBLIOGRAPHY 155

[169] Vmware. http://www.vmware.com/.

[170] Werner Vogels. Beyond server consolidation. Queue, 6(1):20–26, 2008.

[171] Carl A. Waldspurger, Tad Hogg, Bernardo A. Huberman, Jeffrey O. Kephart, and Scott W.
Stornetta. Spawn: A distributed computational economy. Software Engineering, 18(2):103–
117, 1992.

[172] Yi-Min Wang and Ming Ma. Strider search ranger: Towards an autonomic anti-spam search
engine. In ICAC ’07: Proceedings of the Fourth International Conference on Autonomic
Computing, page 32, Washington, DC, USA, 2007. IEEE Computer Society.

[173] Jonathan Wildstrom, Peter Stone, and Emmett Witchel. Autonomous return on invest-
ment analysis of additional processing resources. In ICAC ’07: Proceedings of the Fourth
International Conference on Autonomic Computing, page 15, Washington, DC, USA, 2007.
IEEE Computer Society.

[174] Jonathan Wildstrom, Peter Stone, Emmett Witchel, and Mike Dahlin. Machine learning
for on-line hardware reconfiguration. In In Proceedings of the 20th International Joint
Conference On Artificial Intelligence, pages 1113–1118, 2007.

[175] Jonathan Wildstrom, Emmett Witchel, and Raymond J. Mooney. Towards self-configuring
hardware for distributed computer systems. In ICAC ’05: Proceedings of the Second In-
ternational Conference on Automatic Computing, pages 241–249, Washington, DC, USA,
2005. IEEE Computer Society.

[176] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin Yousif. Black-box and
gray-box strategies for virtual machine migration. In 4th USENIX Conf. on Networked
systems design & implementation (NSDI), 2007.

[177] XtreemOS European Project, 2006-2010. http://www.xtreemos.eu.

[178] Guangsen Zhang and Manish Parashar. Cooperative mechanism against ddos attacks. In
In: IEEE International Conference on Information and Computer Science (ICICS 2004),
Dhahran, Saudi Arabia, 2004.

[179] Guangsen Zhang and Manish Parashar. Cooperative defense against ddos attacks. Las
Vegas, NV, USA, 06/2005 2005. CSREA Press.

[180] Qi Zhang. A regression-based analytic model for dynamic resource provisioning of multi-tier
applications. In In proceedings of the International Conference on Autonomic Computing,
ICAC 2007, page 27, 2007.

[181] Qi Zhang, Ludmila Cherkasova, Ningfang Mi, and Evgenia Smirni. A regression-based ana-
lytic model for capacity planning of multi-tier applications. Cluster Computing, 11(3):197–
211, 2008.

[182] Yanwei Zhang, Yefu Wang, and Xiaorui Wang. Greenware: Greening cloud-scale data
centers to maximize the use of renewable energy. In Middleware, volume 7049 of Lecture
Notes in Computer Science, pages 143–164. Springer, 2011.

[183] H. Zhu and Manish Parashar. Self-adapting, self-optimizing runtime management of
grid applications using pragma. In PRAGMA, Proc. of NSF NGS Program Workshop,
IEEE/ACM 17th IPDPS, 2003.

