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and-measurement equations that conform the possibly nonlinear dynamic state-space model, where

estimation is carried out using the particle filtering methodology. The background illustration that

is presented on the cover illustrates how a particle filter based on sampling importance resampling

works. Notice that the plot shown is chosen from Figure 2.3 in Chapter 2, which is itself taken from

Doucet, de Freitas, and Gordon (2001).
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ABSTRACT

The sequential estimation of the states (filtering) and the corresponding simultaneous estimation of

the states and fixed parameters of a dynamic state-space model, being linear or not, is an important

problem in many fields of research, such as in the area of finance.

The main objective of this research is to estimate sequentially and efficiently –from a Bayesian

perspective via the particle filtering methodology– the states and/or the fixed parameters of a non-

standard dynamic state-space model: one that is possibly nonlinear, non-stationary or non-Gaussian.

The present thesis consists of seven chapters and is structured into two parts. Chapter 1 introduces

basic concepts, the motivation, the purpose, and the outline of the thesis.

Chapters 2-4, the first part of the thesis, focus on the estimation of the states. Chapter 2 provides

a comprehensive review of the most classic algorithms (non-simulation based: KF, EKF, and UKF; and

simulation based: SIS, SIR, ASIR, EPF, and UPF1) used for filtering solely the states of a dynamic state-

space model. All these filters scattered in the literature are not only described in detail, but also placed

in a unified notation for the sake of consistency, readability and comparability.

Chapters 3 and 4 confirm the efficiency of the well-established particle filtering methodology, via

extensive Monte Carlo (MC) studies, when estimating only the latent states for a dynamic state-space

model, being linear or not. Also, complementary MC studies are conducted to analyze some relevant

issues within the adopted approach, such as the degeneracy problem, the resampling strategy, or the

possible impact on estimation of the number of particles used and the time series length.

Chapter 3 specifically illustrates the performance of the particle filtering methodology in a linear

and Gaussian context, using the exact Kalman filter as a benchmark. The performance of the four stud-

ied particle filter variants (SIR, SIRopt, ASIR, KPF, the latter being a special case of the EPF algorithm)

is assessed using two apparently simple, but important time series processes: the so-called Local Level

Model (LLM) and the AR(1) plus noise model, which are non-stationary and stationary, respectively.

An exhaustive study on the effect of the signal-to-noise ratio (SNR) over the quality of the estimation is

additionally performed. Complementary MC studies are conducted to assess the degree of degeneracy

and the possible effect of increasing the number of particles and the time series length.

Chapter 4 assesses and illustrates the performance of the particle filtering methodology in a non-

linear context. Specifically, a synthetic nonlinear, non Gaussian and non-stationary state space model

1See thet list of acronyms on page xxix
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taken from literature is used to illustrate the performance of the four competing particle filters under

study (SIR, ASIR, EPF, UPF) in contraposition to two well-known non-simulation based filters (EKF,

UKF). In this chapter, the residual and stratified resampling schemes are compared and the effect of

increasing the number of particles is addressed.

In the second part (Chapters 5 and 6), extensive MC studies are carried out, but the main goal is

the simultaneous estimation of states and fixed model parameters for chosen non-standard dynamic

models. This area of research is still very active and it is within this area where this thesis contributes

the most.

Chapter 5 provides a partial survey of particle filter variants used to conduct the simultaneous

estimation of states and fixed parameters. Such filters are an extension of those previously adopted

for estimating solely the states. Additionally, a MC study is carried out to estimate the state (level)

and the two fixed variance parameters of the non-stationary local level model; we use four particle

filter variants (LW, SIRJ, SIRoptJ, KPFJ), six typical settings of the SNR and two settings for the discount

factor needed in the jittering step. In this chapter, the SIRJ particle filter variant is proposed as an

alternative to the well-established filter of Liu West (LW PF). The combined use of a Kalman-based

proposal distribution and a jittering step is proposed and explored, which gives rise to the particle

filter variant called: the Kalman Particle Filter plus Jittering (KPFJ).

Chapter 6 focuses on estimating the states and three fixed parameters of the non-standard basic

stochastic volatility model known as stochastic autoregressive volatility model of order one: SARV(1).

After an introduction and detailed description of the stylized features of financial time series, the esti-

mation ability of two competing particle filter variants (SIRJ vs LW (Liu and West)) is shown empirically

using simulated data. The chapter ends with an application to real data sets from the financial area:

the Spanish IBEX 35 returns index and the Europe Brent Spot prices (in dollars).

The contribution in chapters 5 and 6 is to propose new variants of particle filters, such as the KPFJ,

the SIRJ, and the SIRoptJ (a special case of the SIRJ that uses an optimal proposal distribution) that have

developed along this work. The thesis also suggests that the so-called EPFJ (Extended Particle Filter

with Jittering) and the UPFJ (Unscented Particle Filter with Jittering) algorithms could be reasonable

choices when dealing with highly nonlinear models. In this part, also relevant issues within the particle

filtering methodology are discussed, such as the potential impact on estimation of the discount factor

parameter, the time series length, and the number of particles used.

Throughout this work, pseudo-codes are written for all filters studied and are implemented in R-

Language. The reported findings are obtained as the result of extensive MC studies, considering a

variety of case-scenarios described in the thesis. The intrinsic characteristics of the model at hand

guided -according to suitability– the choice of filters in each specific situation. The comparison of

filters is based on the RMSE, the elapsed CPU-time and the degree of degeneracy.

Finally, Chapter 7 includes the discussion, contributions, and future lines of research. Some com-

plementary theoretical and practical aspects are presented in the appendixes.



RESUM

L’estimació seqüencial dels estats (filtratge) i la corresponent estimació simultània dels estats i els

paràmetres fixos d’un model dinàmic formulat en forma d’espai d’estat –sigui lineal o no– constitueix

un problema de rellevada importància en molts camps, com ser a l’àrea de finances.

L’objectiu principal d’aquesta tesi és el d’estimar seqüencialment i de manera eficient –des d’un

punt de vista bayesià i usant la metodologia de filtratge de partícules– els estats i/o els paràmetres fixos

d’un model d’espai d’estat dinàmic no estàndard: possiblement no lineal, no gaussià o no estacionari.

El present treball consisteix de 7 capítols i s’organitza en dues parts. El Capítol 1 hi introdueix

conceptes bàsics, la motivació, el propòsit i l’estructura de la tesi.

La primera part d’aquesta tesi (capítols 2 a 4) se centra únicament en l’estimació dels estats. El

Capítol 2 presenta una revisió exhaustiva dels algorismes més clàssics no basats en simulacions (KF,

EKF, UKF2) i els basats en simulacions (SIS, SIR, ASIR, EPF, UPF). Per a aquests filtres, tots esmentats

en la literatura, a més de descriure’ls detalladament, s’ha unificat la notació amb l’objectiu que aquesta

sigui consistent i comparable entre els diferents algorismes implementats al llarg d’aquest treball.

Els capítols 3 i 4 se centren en la realització d’estudis Monte Carlo (MC) extensos que confir-

men l’eficiència de la metodologia de filtratge de partícules per estimar els estats latents d’un procés

dinàmic formulat en forma d’espai d’estat, sigui lineal o no. Alguns estudis MC complementaris es

duen a terme per avaluar diferents aspectes de la metodologia de filtratge de partícules, com ser el

problema de la degeneració, l’elecció de l’estratègia de remostreig, el nombre de partícules usades o la

grandària de la sèrie temporal.

Específicament, el Capítol 3 il·lustra el comportament de la metodologia de filtratge de partícules

en un context lineal i gaussià en comparació de l’òptim i exacte filtre de Kalman. La capacitat de fil-

tratge de les quatre variants de filtre de partícules estudiades (SIR, SIRopt, ASIR, KPF; l’últim sent un cas

especial de l’algorisme EPF) es va avaluar sobre la base de dos processos de sèries temporals aparent-

ment simples però importants: els anomenats Local Level Model (LLM) i el AR (1) plus noise, que són

no estacionari i estacionari, respectivament. Aquest capítol estudia en profunditat temes rellevants

dins de l’enfocament adoptat, com l’impacte en l’estimació de la relació entre el senyal i el soroll (SNR:

signal-to-noise-ratio, en aquesta tesi), de la longitud de la sèrie temporal i del nombre de partícules.

El Capítol 4 avalua i il·lustra el comportament de la metodologia de filtratge de partícules en un

context no lineal. En concret, s’utilitza un model d’espai d’estat no lineal, no gaussià i no estacionari

2Veure llista d’acrònims a la pàgina xxix
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pres de la literatura per il·lustrar el comportament de quatre filtres de partícules (SIR, ASIR, EPF, UPF)

en contraposició a dos filtres no basats en simulació ben coneguts (EKF, UKF). Aquí es comparen els

esquemes de remostreig residual i estratificat i s’avalua l’efecte d’augmentar el nombre de partícules.

A la segona part (capítols 5 i 6), es duen a terme també estudis MC extensos, però ara l’objectiu

principal és l’estimació simultània dels estats i paràmetres fixos de certs models seleccionats. Aquesta

àrea de recerca segueix sent molt activa i és on aquesta tesi hi contribueix més.

El Capítol 5 proveeix una revisió parcial dels mètodes per dur a terme l’estimació simultània dels

estats i paràmetres fixos a través de la metodologia de filtratge de partícules. Aquests filtres són una

extensió d’aquells adoptats anteriorment només per estimar els estats. Aquí es realitza un estudi MC

per estimar l’estat (nivell) i els dos paràmetres de variància del model LLM no estacionari; s’utilitzen

quatre variants (LW, SIRJ, SIRoptJ, KPFJ) de filtre de partícules, sis escenaris típics del SNR i dos esce-

naris per a l’anomenat factor de descompte necessari en el pas de diversificació. En aquest capítol,

es proposa la variant de filtre de partícules SIRJ (Sample Importance Resampling with Jittering) com a

alternativa al filtre de referència de Liu i West (LW PF). També es proposa i explora l’ús combinat d’una

distribució d’importància basada en el filtre de Kalman i un pas de diversificació (jittering) que dóna

lloc a la variant del filtre de partícules anomenada Kalman Particle Filtering with Jittering (KPFJ).

El Capítol 6 se centra en l’estimació dels estats i dels paràmetres fixos del model bàsic no estàndard

de volatilitat estocàstica denominat Stochastic autoregressive model of order one: SARV (1). Després

d’una introducció i descripció detallada de les característiques pròpies de sèries temporals financeres,

es demostra mitjançant estudis MC la capacitat d’estimació de dues variants de filtre de partícules

(SIRJ vs. LW (Liu i West)) utilitzant dades simulades. El capítol acaba amb una aplicació a dos conjunts

de dades reals dins de l’àrea financera: l’índex de rendiments espanyol IBEX 35 i els preus al comptat

(en dòlars) del Brent europeu.

La contribució en els capítols 5 i 6 consisteix en proposar noves variants de filtres de partícules,

com poden ser el KPFJ, el SIRJ i el SIRoptJ (un cas especial de l’algorisme SIRJ utilitzant una distribució

d’importància òptima) que s’han desenvolupat al llarg d’aquest treball. També se suggereix que els

anomenats filtres de partícules EPFJ (Extended Particle Filter with Jittering) i UPFJ (Unscented Particle

Filter with Jittering) podrien ser opcions raonables quan es tracta de models altament no lineals; el

KPFJ sent un cas especial de l’algorisme EPFJ. En aquesta part, també es tracten aspectes rellevants

dins de la metodologia de filtratge de partícules, com ser l’impacte potencial en l’estimació de la lon-

gitud de la sèrie temporal, el paràmetre de factor de descompte i el nombre de partícules.

Al llarg d’aquest treball s’han escrit (i implementat en el llenguatge R) els pseudo-codis per a tots els

filtres estudiats. Els resultats presentats s’obtenen mitjançant simulacions Monte Carlo (MC) extenses,

tenint en compte variats escenaris descrits en la tesi. Les característiques intrínseques del model baix

estudi van guiar l’elecció dels filtres a comparar en cada situació específica. A més, la comparació dels

filtres es basa en el RMSE (Root Mean Square Error), el temps de CPU i el grau de degeneració.

Finalment, el Capítol 7 presenta la discussió, les contribucions i les línies futures de recerca. Alguns

aspectes teòrics i pràctics complementaris es presenten en els apèndixs.



RESUMEN

La estimación secuencial de los estados (filtrado) y la correspondiente estimación simultánea de los

estados y los parámetros fijos de un modelo dinámico formulado en forma de espacio de estado –sea

lineal o no– constituye un problema de relevada importancia en muchos campos, como ser en el área

de finanzas.

El objetivo principal de esta tesis es el de estimar secuencialmente y de manera eficiente –desde

un punto de vista bayesiano y usando la metodología de filtrado de partículas– los estados y/o los

parámetros fijos de un modelo de espacio de estado dinámico no estándar: posiblemente no lineal,

no gaussiano o no estacionario.

El presente trabajo consta de 7 capítulos y se organiza en dos partes. El Capítulo 1 introduce con-

ceptos básicos, la motivación, el propósito y la estructura de la tesis.

La primera parte de esta tesis (capítulos 2 a 4) se centra únicamente en la estimación de los estados.

El Capítulo 2 presenta una revisión exhaustiva de los algoritmos más clásicos no basados en simula-

ciones (KF, EKF, UKF3) y los basados en simulaciones (SIS, SIR, ASIR, EPF, UPF). Para todos estos filtros,

mencionados en la literatura, además de describirlos en detalle, se ha unificado la notación con el ob-

jetivo de que ésta sea consistente y comparable entre los diferentes algoritmos implementados a lo

largo de este trabajo.

Los capítulos 3 y 4 se centran en la realización de estudios Monte Carlo (MC) extensos que con-

firman la eficiencia de la metodología de filtrado de partículas para estimar los estados latentes de

un proceso dinámico formulado en forma de espacio de estado, sea lineal o no. Algunos estudios

MC complementarios se llevan a cabo para evaluar varios aspectos de la metodología de filtrado de

partículas, como ser el problema de la degeneración, la elección de la estrategia de remuestreo, el

número de partículas usadas o el tamaño de la serie temporal.

Específicamente, el Capítulo 3 ilustra el comportamiento de la metodología de filtrado de partícu-

las en un contexto lineal y gaussiano en comparación con el óptimo y exacto filtro de Kalman. La

capacidad de filtrado de las cuatro variantes de filtro de partículas estudiadas (SIR, SIRopt, ASIR, KPF;

el último siendo un caso especial del algoritmo EPF) se evaluó en base a dos procesos de series tempo-

rales aparentemente simples pero importantes: los denominados Local Level Model (LLM) y el AR (1)

plus noise, que son no estacionario y estacionario, respectivamente. Este capítulo estudia en profun-

didad temas relevantes dentro del enfoque adoptado, como el impacto en la estimación de la relación

3Ver lista de acrónimos en la página xxix

xi
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entre la señal y el ruido (SNR: signal-to-noise-ratio, en esta tesis), de la longitud de la serie temporal y

del número de partículas.

El Capítulo 4 evalúa e ilustra el comportamiento de la metodología de filtrado de partículas en un

contexto no lineal. En concreto, se utiliza un modelo de espacio de estado no lineal, no gaussiano y

no estacionario tomado de la literatura para ilustrar el comportamiento de cuatro filtros de partículas

(SIR, ASIR, EPF, UPF) en contraposición a dos filtros no basados en simulación bien conocidos (EKF,

UKF). Aquí se comparan los esquemas de remuestreo residual y estratificado y se evalúa el efecto de

aumentar el número de partículas.

En la segunda parte (capítulos 5 y 6), se llevan a cabo también estudios MC extensos, pero ahora

el objetivo principal es la estimación simultánea de los estados y parámetros fijos de ciertos modelos

seleccionados. Esta área de investigación sigue siendo muy activa y es donde esta tesis contribuye

más.

El Capítulo 5 provee una revisión parcial de los métodos para llevar a cabo la estimación simultánea

de los estados y parámetros fijos a través de la metodología de filtrado de partículas. Dichos filtros son

una extensión de aquellos adoptados anteriormente sólo para estimar los estados. Aquí se realiza un

estudio MC para estimar el estado (nivel) y los dos parámetros de varianza del modelo LLM no esta-

cionario; se utilizan cuatro variantes (LW, SIRJ, SIRoptJ, KPFJ) de filtro de partículas, seis escenarios

típicos del SNR y dos escenarios para el llamado factor de descuento necesario en el paso de diver-

sificación. En este capítulo, se propone la variante de filtro de partículas SIRJ (Sample Importance

resampling with Jittering) como alternativa al filtro de referencia de Liu y West (LW PF). También se

propone y explora el uso combinado de una distribución de importancia basada en el filtro de Kalman

y un paso de diversificación (jittering) que da lugar a la variante del filtro de partículas denominada

Kalman Particle Filtering with Jittering (KPFJ).

El Capítulo 6 se centra en la estimación de los estados y de los parámetros fijos del modelo básico

no estándar de volatilidad estocástica denominado Stochastic autoregressive model of order one: SARV

(1). Después de una introducción y descripción detallada de las características propias de series tem-

porales financieras, se demuestra mediante estudios MC la capacidad de estimación de dos variantes

de filtro de partículas (SIRJ vs. LW (Liu y West)) utilizando datos simulados. El capítulo termina con

una aplicación a dos conjuntos de datos reales dentro del área financiera: el índice de rendimientos

español IBEX 35 y los precios al contado (en dólares) del Brent europeo.

La contribución en los capítulos 5 y 6 consiste en proponer nuevas variantes de filtros de partículas,

como pueden ser el KPFJ, el SIRJ y el SIRoptJ (Caso especial del algoritmo SIRJ utilizando una distribu-

ción de importancia óptima) que se han desarrollado a lo largo de este trabajo. También se sugiere

que los llamados filtros de partículas EPFJ (Extended Particle Filter with Jittering) y UPFJ (Unscented

Particle Filter with Jittering) podrían ser opciones razonables cuando se trata de modelos altamente

no lineales; el KPFJ siendo un caso especial del algoritmo EPFJ. En esta parte, también se tratan as-

pectos relevantes dentro de la metodología de filtrado de partículas, como ser el impacto potencial en

la estimación de la longitud de la serie temporal, el parámetro de factor de descuento y el número de
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partículas.

A lo largo de este trabajo se han escrito (e implementado en el lenguaje R) los pseudo-códigos para

todos los filtros estudiados. Los resultados presentados se obtienen mediante simulaciones Monte

Carlo (MC) extensas, teniendo en cuenta variados escenarios descritos en la tesis. Las características

intrínsecas del modelo bajo estudio guiaron la elección de los filtros a comparar en cada situación

específica. Además, la comparación de los filtros se basa en el RMSE (Root Mean Square Error), el

tiempo de CPU y el grado de degeneración.

Finalmente, el Capítulo 7 presenta la discusión, las contribuciones y las líneas futuras de investi-

gación. Algunos aspectos teóricos y prácticos complementarios se presentan en los apéndices.
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INTRODUCTION

1.1 Motivation and Purpose

Sequential state–estimation (filtering) and the simultaneous estimation of states and parameters of

nonlinear dynamic models is an important issue in many fields, such us in target tracking, modeling,

finance applications and so on. Within the finance literature, the most important class of nonlinear

models is the family of conditional heteroscedastic models including, among others, the stochastic

volatility model. Stochastic volatility models are quite popular in finance applications, especially in

describing series with sudden changes in the magnitude of variation of the observed data (Taylor 1986).

The need to develop optimal estimation algorithms for non-standard1 time series models, formu-

lated as state-space models, has been the motivating starting point of our research. For instance, in

the last two decades there has been a greater interest to develop and apply adequate methods to es-

timate the underlying volatility of stochastic volatility models and other involved model parameters.

Thus, estimation issues regarding volatility series, such as exchange rates or return prices, are a must

for finance analysts and practitioners (Taylor 1994).

Most common statistical packages are not suitable to handle non-standard models, at least not

directly. For instance, it is known that the Box-Jenkins methodology provides solutions for the well-

known autoregressive integrated and moving average (ARIMA) time series; which assume Gaussian

error terms. Additionally, it is assumed that stationarity must be fulfilled before modeling the series.

For a review on time series analysis and its modeling via the Box-Jenkins methodology, see Box, Jenkins,

and Reinsel (1994), Brockwell and Davis (1996), and Shumway and Stoffer (2006).

1By non-standard we mean series that are specified by dynamic models that exhibit either a nonlinear, non Gaussian, or

a non-stationary behavior.

1



2 CHAPTER 1 INTRODUCTION

According to our knowledge, the use of state-space models for the analysis of time series began

with the papers of Kalman (1960) and Akaike (1974), in the area of control engineering and the anal-

ysis of ARMA processes, respectively. Durbin and Koopman (2001) also consider time series analysis

based on a state-space representation, a formulation that results to be very flexible. Indeed, this for-

mulation allows a broader range of models to be cast in state-space form. For instance, all ARIMA

time series may be represented in state-space form. Specifically, it can be shown that an ARIMA(1,0,1)

model is equivalent to the state-space formulation of an AR(1) plus measurement noise model. This

type of relationship can be seen as an advantage when trying to estimate, for example, the parame-

ters for (possibly) non-Gaussian ARIMA models. Moreover, under this framework, non-standard time

series can be “more naturally” modeled for a later estimation of the underlying states and involved

parameters. In this thesis we adopt the state-space framework.

Before getting any further, we consider it appropriate to introduce some commonly used nota-

tion. Let y1:s =
{

y 1, y 2, . . . , y s

}
denote the sequentially observed data up to time s. Likewise, the set of

unobserved signals or latent state vectors to be estimated is denoted by x 1:s = {x1, x2, . . . , x s }. Additiona-

lly, let P
(
x t |y 1:s

)
be the conditional density of the state vector x t given the observations y 1:s and define

y1:T as the complete observed time series. Thus, depending on the values of t and s in P
(
x t |y 1:s

)
we

have the following stages:

• Prediction is given if s < t ; we speak of one step prediction when s = t −1.

• Filtering is given, in the case that s = t , t É T .

• Smoothing is given, when s > T , where t < T .

As previously mentioned, this work focuses mainly on non-standard state-space models. It is well

known that in the specific situation of filtering Gaussian linear models, the recursive Kalman Filter

provides an optimal and closed form solution, which can be explicitly derived (Kalman 1960; Kalman

and Bucy 1961). In practice, however, one mostly deals with data that is specified by non-standard

dynamic state-space models.

To deal with dynamic filtering non-standard models, several methods have been developed. The

most-used approaches are based on Taylor series expansions (Anderson and Moore 1979). Other meth-

ods are derived based on the underlying density functions, see e.g. Kitagawa (1987), Tanizaki and

Mariano (1998), and Acosta, Martí-Recober, and Muñoz (2003). More traditional approaches based

on maximum likelihood or grid-based methods are also an alternative (Shumway 1988; Shumway and

Stoffer 2006; Muñoz 1988).

Simulation-based approaches, such as the Markov chain Monte Carlo (MCMC) type filters and the

sequential Monte Carlo (SMC) type filters, can also be used to deal with filtering these non-standard

state-space models. Some authors consider the estimation of general state-space models via MCMC-

based filters; see for instance Carlin, Polson, and Stoffer (1992), Frühwirth-Schnatter (1994), Shephard

and Pitt (1995), and Chib, Nardari, and Shephard (2002). Further, Lopes and Tsay (2011) state that
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the MCMC-based filters can be prohibitively costly when dealing with the sequential estimation of

states and model parameters. More recently, a particle filter variant named the Particle Markov chain

Monte Carlo (PMCMC) approach has been introduced by Andrieu, Doucet, and Holenstein (2010).

These authors combine two approaches, powerful by themselves: the SMC and the MCMC methods,

whereby the former is used to construct an efficient (high dimensional) proposal distribution which is

used by the latter.

In this thesis, we restrict ourselves to study, in deep, some of the classic sequential Monte Carlo

methods, which are known as particle filters. The possibly nonlinear state-space models that are dealt

with consist of a univariate latent state vector x t and of a (possibly unknown) multivariate vector Θ

(order up to three) of fixed model parameters.

The simulation-based approach known as particle filtering is a sequential Monte Carlo methodol-

ogy suitable to deal with possibly non-Gaussian or nonlinear problems. A particle filter (PF) is a very

flexible SMC method that departs from a state-space formulation and allows an implementation of a

recursive Bayesian filter through Monte Carlo simulations (Kitagawa 1998; Doucet et al. 2001; Aru-

lampalam et al. 2002; Doucet and Johansen 2011). Under this methodology, once a process is cast

in state-space form, one is faced with the so-called optimal filtering problem, which consists of esti-

mating the conditional probability density function P(x t |y1:t ), of the latent variable/vector x t given

the observations y1:t . Hence, once this probability density function (PDF) is exactly or approximately

known, the optimal filtering problem is said to be solved and thus any characteristic of the states can

be easily obtained; for example the mean, root mean square error, credible intervals, median, kurtosis,

and so on.

Our main goal is to be able to sequentially estimate together the states and fixed parameters (apart

of only the states) of “non-standard” dynamic models and we aim to perform such estimation from a

Bayesian point of view. To achieve our goal, we adopt the very suitable methodology called particle

filtering. Have in mind that the used statistical and computational criteria to assess the performance

of the competing filters are the mean CPU time and root mean square error (RMSE), unless stated

otherwise.

Additionally, since we are aware of the inherent degeneracy drawback that can potentially affect

particle filters, we construct a measure to somehow quantify the degree of degeneracy present in the

particle filters studied. We believe that it is not only important to find the so-called effective sample size

(ESS) that tells the percentage of ‘surviving’ particles at a specific point of time, but also to quantify how

distinct the ‘surviving’ particles are. We provide a measure, denoted as %uNp, determining the mean

(in percentage) number of unique particles obtained at a specific point of time; usually we provide this

measure at the end of the time trajectory. This measure will account for both types of degeneracy that

one may encounter: the collapse of particles to few ones (or even to a single particle), and the collapse

to few and non unique particles; the latter being a more acute problem in case of the simultaneous

estimation of states and fixed model parameters. We consider that this idea of quantifying the degree

of degeneracy is justified per se, but it also goes in line with ideas stated recently in Andrieu, Doucet,
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and Holenstein (2010).

This work is structured into two parts. Part I focuses on filtering only the states of chosen linear and

nonlinear dynamic models, whereas Part II deals with estimating simultaneously the states and fixed

parameters of some selected non-standard dynamic models. Throughout this work, pseudo-codes are

written (and implemented in R-Language) for all filters studied. The comparison of filters is based on

the RMSE, the elapsed CPU-time and the degree of degeneracy. The reported findings are obtained as

the result of extensive MC studies, considering a variety of case-scenarios described in the thesis. The

intrinsic characteristics of the model at hand guided –according to suitability– the choice of filters in

each specific situation. Following, we provide an outline of the next chapters of this thesis.

1.2 Outline of the Thesis

Chapters 2–4, the first part of the thesis, deal with states estimation only. Chapter 2 reviews some tradi-

tional and some sequential Monte Carlo Bayesian approaches for filtering (mainly) non-standard dy-

namic models. Sections 2.1 and 2.2 present general concepts such as the state-space formulation for

dynamic models and the respective general prediction and filtering probability density function ex-

pressions. A fairly detailed description of the most useful traditional approaches to solve the nonlinear

and possible non-Gaussian filtering problem is given in Section 2.3. Therein, we begin by describing

the analytical and linear Kalman filter and then the nonlinear extended Kalman filter, which is based

on Taylor series expansions. Next, the main features of the so-called unscented Kalman filter, which

is also nonlinear, are provided. Finally, in Section 2.4, a rather complete survey of the classic sequen-

tial Monte Carlo methods, named Particle filters is provided. Several aspects of the particle filtering

methodology are thoroughly explained therein. Throughout the chapter, all filters studied are not only

fully described, but also corresponding pseudo-codes are provided.

Chapter 3 illustrates the performance of the particle filtering methodology in a linear and Gaussian

context. We are aware that in this case the Kalman filter provides not only a closed form analytical so-

lution, but the best possible solution; its optimality based on minimizing the root mean square error.

We take advantage of this fact to assess the ability of the studied particle filters for filtering two appar-

ently simple but important (as they are commonly used in theoretical and applied work) time series

processes: the so-called local level model and the first order autoregressive AR(1) plus noise model.

Thus, the optimal Kalman filter is taken here as a gold standard benchmark for the other filters enter-

tained. In this chapter, we make an exhaustive study of the impact of the signal-to-noise-ratio value on

the quality of the estimation in order to provide some useful guidelines for practitioners interested in

these type of models. Additionally, for the competing particle filters in question, key issues within the

adopted approach are addressed, such as the influence on estimation of the increase of the number of

particles, the length of the time series length, or the degree of degeneracy.

In Chapter 4, we illustrate the filtering performance of particle filters in a nonlinear context. Speci-

fically, a synthetic nonlinear, non-stationary and non Gaussian dynamic state-space model taken from

the literature is chosen to illustrate the performance of the four particle filter variants under study
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in contraposition to two traditional non-simulation based approaches: the nonlinear EKF and UKF

filters. Additionally, for the competing particle filters in question, key aspects like assessing the effect

of the increase of the number of particles or the choice of a resampling strategy are addressed.

In the second part (Chapters 5 and 6), extensive MC studies are also carried out, but the main goal

is the simultaneous estimation of states and fixed model parameters for some chosen non-standard

dynamic models. This area of research is still very active and it is in this area where this thesis con-

tributes the most. Chapter 5 provides a partial survey of methods for conducting the simultaneous

estimation of states and fixed parameters via particle filtering. Such filters, which are described in de-

tail, arrive as an extension of those previously adopted for estimating solely the states. Specific aspects,

such as how to avoid the collapse of the particles, are also fully described. In this chapter, one can find

fully documented pseudo-codes for all described algorithms, including those proposed by us. As new

particle filter variants we propose the KPFJ (Kalman particle filter with jittering), the SIRJ (sample im-

portance resampling particle filter with jittering), and the SIRoptJ (a special case of the SIRJ that uses

and optimal proposal distribution). We also suggest that the so-called EPFJ (extended particle filter

with jittering) and the UPFJ (unscented particle filter with jittering) algorithms could be reasonable

choices when dealing with highly nonlinear models; these filters combine a Kalman based proposal

PDF with a jittering step. Additionally, apart from a partial study of the impact of the signal-to-noise-

ratio on the quality of the estimations, relevant issues within the particle filtering methodology are

also addresed, such as the potential impact of the chosen discount factor parameter, the number of

particles used in the estimation procedure, or the time series length.

Chapter 6 focuses on estimating the states and parameters of the basic nonlinear stochastic volatil-

ity model known as stochastic autoregressive volatility model of order one: SARV (1). Therein, the styl-

ized features of a financial time series are described, the two most common stochastic volatility models

are briefly introduced, the corresponding state formulation of the SARV(1) model is specified, and also

two Monte Carlo studies are conducted: one for estimating only the states (volatility of volatility) and

another for estimating together the states and the parameters involved in the model. This chapter ends

up with an application to two data sets containing volatile data. The aim therein is to illustrate the es-

timation ability of the two competing particle filter variants (SIRJ vs LW (Liu and West)) using real data

sets from the financial area: the Spanish IBEX 35 returns index and the Europe Brent Spot prices (in

dollars).

Finally, Chapter 7 presents the discussion and future lines of research. Some complementary the-

oretical and practical aspects are contained in the appendixes. We remark that the contents of Ap-

pendix B can be found in http://www-eio.upc.edu/~lacosta/AppendixB.pdf [last visited: Septem-

ber 2013]. This document contains complementary graphical displays corresponding to the Monte

Carlo experiments carried out along the thesis using two linear models: the non-stationary local level

model and the stationary autoregressive plus noise model of order one (AR(1) plus noise model). In

the sequel, all figures with name starting with B are contained in the mentioned website.
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STATE-SPACE FORMULATION FOR DYNAMIC MODELS

AND STATE ESTIMATION WITH KNOWN PARAMETERS

Sequential–state–estimation or filtering is an interesting problem that researchers are often faced with.

In tracking problems, one could be interested in the kinematic characteristics of a target, for instance,

in tracking the position and velocity of a ship; see for example Pitt and Shephard (1999). Alternatively,

in finance problems, an important point of interest is the estimation of the underlying volatility of

return time series; see, among others, Márquez (2002), Acosta, Martí-Recober, and Muñoz (2004), and

Muñoz, Márquez, and Acosta (2007). Inflation time series is also a topic of interest as can be seen, for

example, in Stock and Watson (2007), Pellegrini (2009) and Rodriguez (2010).

In practice, nonlinear dynamic problems are the rule rather than the exception. Thus, to deal with

dynamic filtering non-standard models, several methods have been developed. The most heuristic and

appealing approaches, are based on Taylor series expansions; see for example Anderson and Moore

(1979). Other methods are derived based on the underlying density functions, (Kitagawa 1987; Muñoz,

Egozcue, and Martí-Recober 1988; Tanizaki 2001). Moreover, in the last two decades, there is a renewed

interest on sequential Monte Carlo (SMC) methods to perform Bayesian filtering, see among others

Kitagawa (1996, 1998), Doucet (1998), Doucet, de Freitas, and Gordon (2001), Andrieu, Doucet, and

Holenstein (2010) and Lopes and Tsay (2011). The sequential Monte Carlo methods known as particle

filters, naturally suited for online estimation, are the focus of this work.

This chapter is organized as follows. Section 2.1 specifies the state-space formulation for a general

dynamic model. Then in Section 2.2, the general prediction and filtering expressions are provided.

Section 2.3 describes three traditional, non simulation based, approaches used for state estimation

in dynamic models. Likewise, Section 2.4 describes four simulation based algorithms used for state

estimation in dynamic models. In this chapter, indeed in chapters 2 to 4, all existing model parameters

are assumed to be fixed and known.

9
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2.1 State Space Formulation

Let y t be the data sequentially observed at discrete time points t = 1, . . . ,T . The parametric state-

space formulation for a general dynamic model can be described by the following two equations (see,

for example, Shumway 1988; Tanizaki 1996):

x t = f (x t−1,ηt ), (Transition equation) (2.1)

y t = h(x t ,νt ), (Measurement equation) (2.2)

where x t ∈ Rnx is the unobserved state vector, ηt ∈ Rnη is the process noise and νt ∈ Rnν is the mea-

surement noise. The functional forms of f ∈ Rnx ×Rnη → Rnx and h ∈ Rnx ×Rnν → Rny are assumed to

be known, but not necessarily linear. Both, ηt ∼ pη and νt ∼ pν are generally white noise processes,

not necessarily Gaussian; pη and pν being the probability density function (PDF) of the state and mea-

surement noise, respectively. To complete the state-space model specification, it is assumed that the

PDF of the initial-state vector x0, p(x0|y 0) ≡ px0
, is available; where y0 is the set of no measurements.

Note that the functional forms f and h, as well as the probability density functions pη and pν, may

depend on parameters, say Θ.

Sometimes, it is convenient to formulate the general state-space model based on conditional dis-

tributions (Kitagawa and Sato 2001). In such case, the transition and measurement equations are spec-

ified by:

x t |x t−1 ∼ p(·|x t−1), (2.3a)

y t |x t ∼ p(·|x t ). (2.3b)

Under the state-space formulation framework, two basic assumptions are made. First, the states

x t have a Markovian nature of order one. Second, the observations y t are conditionally independent

given the states x t . For an illustration of the state-space model specification, see Figure 2.1. Note

that the state-space formulation cover a broad class of models with many practical applications; see

for example West and Harrison (1989), Kim, Shephard, and Chib (1998) and Muñoz, Márquez, Martí-

Recober, Villazón, and Acosta (2004).

In this work, we aim to obtain the marginal posterior probability density function, p(x t |y1:t ), and

not the joint posterior PDF p(x1:t |y 1:t ). Thus, we do not need to keep track of the complete state vector

trajectory and hence less storage capacity is needed.
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x ... x

y y y

x1 2 T

1 2 T
Observations

State
(latent)

Figure 2.1: State-space model graphic illustration: At any time index the latent state x t can only be

accessed through the noisy observation y t that is available. Two properties hold: the states x t have a

Markovian nature of order one and the observations y t are conditionally independent of the states x t .

2.2 General Prediction and Filtering Expressions

Herein, the general prediction and filtering expressions are derived for the completely specified para-

metric state-space model in equations (2.1) and (2.2). These well-known expressions are obtained as a

combined result of the basic assumptions of the state-space formulation and the use of the Bayes Rule,

see e.g. Jazwinski (1970), Shumway (1988), and Tanizaki (1996).

Predictive PDF

At a time t −1, assume that the prior PDF p(x t−1|y 1:t−1) is available. Additionally, assume that the fixed

parameter vector Θ is known. Then, using the Markovian property of the states, the general expression

for the one step-ahead prediction (time update) is given by:

p(x t |y1:t−1) =
∫

p(x t |x t−1, y 1:t−1)p(x t−1|y 1:t−1)d x t−1

=
∫

p(x t |x t−1)p(x t−1|y 1:t−1)d x t−1 (2.4)

where p(x t |x t−1) is the state evolution density specified in equation (2.3a).

Filtering PDF

Using Bayes Rule, once a new observation y t arrives, an update of the state vector can be obtained.

This update is given by the filtering PDF p(x t |y 1:t )1. The general expression for this filtering (measure-

ment update) PDF is derived as follows:

1Notice that the posterior PDF at time t becomes the prior for next time-index
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p(x t |y 1:t ) =
p(y1:t |x t )p(x t )

p(y 1:t )

=
p(y t , y 1:t−1|x t )p(x t )

p(y t , y1:t−1)

=
p(y t |y 1:t−1, x t )p(y1:t−1|x t )p(x t )

p(y t |y 1:t−1)p(y 1:t−1)

=
p(y t |y 1:t−1, x t )p(x t |y 1:t−1)

✘
✘
✘
✘✘p(y 1:t−1)✘✘

✘p(x t )

p(y t |y 1:t−1)
✘
✘
✘
✘✘p(y 1:t−1)✘✘

✘p(x t )

=
p(y t |x t )p(x t |y 1:t−1)∫

p(y t |x t )p(x t |y 1:t−1)d x t

∝ p(y t |x t )p(x t |y 1:t−1). (2.5)

The denominator p
(

y t |y 1:t−1

)
=

∫
p(y t |x t )p(x t |y 1:t−1)d x t is the normalizing constant, which, ex-

cept in few special cases, cannot be computed analytically. Additionally, p(y t |x t ) is the measurement

evolution density (likelihood of y t ) specified in equation (2.3b) and p(x t |y 1:t−1) is the predictive ex-

pression presented in equation (2.4).

Recursive Filtering PDF expression

Plugging (2.4) into (2.5), a recursive expression for the filtering PDF is obtained:

p(x t |y 1:t )∝ p(y t |x t )p(x t |y1:t−1) = p(y t |x t )︸ ︷︷ ︸
Likelihood dty.

∫
p(x t |x t−1)︸ ︷︷ ︸
Transition dty.

p(x t−1|y 1:t−1)︸ ︷︷ ︸
Filtering dty.

d x t−1 (2.6)

This recursive filtering PDF is defined in terms of the likelihood density (equation (2.2)), the state

transition density (equation (2.1)), and the filtering density at the previous time step.

Since the state vector x t embodies all the relevant information about the general dynamic state-

space model specified in equations (2.1) and (2.2), once p(x t |y 1:t ) is known, the optimal filtering prob-

lem is said to be solved. Within the Bayesian framework, this is known as the Bayesian filtering prob-

lem. Solving the optimal filtering problem consists thus on recursively estimating the posterior PDF of

the state x t given the noisy observations y 1:t . Then, any characteristic of the state, such as the mean,

median, credible intervals, kurtosis, and so on, can be easily obtained.

Later on in this work, the criterion used to assess the statistical performance of competing filters

is based on the mean square error (MSE); the lowest the MSE, the more eficient the filter is. In other

words, the mean of the posterior PDF p(x t |y 1:t given by x t |t =E(x t |y 1:t )=
∫

p(x t )p(x t |y 1:t ) is used as a

Bayesian estimator, which is known to be optimal in terms of mean square error (MSE). In the context

of linear and Gaussian dynamic models, the aforementioned PDFs are all Gaussian, which implies that

the optimal Bayesian estimator is exact. For general dynamic models, however, a close form solution

cannot (easily) be obtained as it may involve the evaluation of multiple integrals; see expressions in

equations (2.4)–(2.6). This issue highlights the need for approximative approaches.
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Practical applications of the optimal filtering problem include target tracking (Gordon, Salmond,

and Smith 1993) and estimation of stochastic volatility (Chib, Nardari, and Shephard 2002; Muñoz,

Márquez, and Acosta 2007). In the remainder of this chapter, for the sake of brevity, we refer to optimal

filtering by just the word “filtering”.

When coped with the filtering problem, one usually applies a specific type of methodological ap-

proach according to the class of models and data available. For instance, Bayesian methods are natu-

rally suited for online filtering that sequentially updates the knowledge of the states as a new observa-

tion becomes available on time. Offline filtering, however, estimates the states given a batch of data.

The data itself can be dynamic or static, depending on whether temporal dependence is present. Also,

the data could be observed/studied at discrete or continuous time points. Our emphasis in this work is

on discrete, dynamic, online, Bayesian and on non-standard – possibly non-stationary non-Gaussian

nonlinear – state-space models.

In the rest of this chapter, we describe some methods – scattered in the literature – used to solve

the nonlinear filtering problem. For completion, the linear and exact Kalman filter (KF) is included.

Thus, next section gives an overview of some analytical and approximative approaches for filtering.

2.3 Dynamic State Estimation: Traditional Filtering Methodology

Herein, some implementation algorithms of the predictive and filtering equations in (2.4)–(2.6) are de-

scribed. First, three well-known traditional approaches are presented; the Kalman filter, the extended

Kalman filter, and the unscented Kalman filter. Then, the particle filtering methodology, which is based

on simulations, is fully treated. Further, we write pseudo-codes for all filters described in the present

chapter. In later chapters, these algorithms will be further studied and implemented in R language.

2.3.1 The Kalman Filter

Linear and Gaussian models (known also as Kalman models) have been extensively investigated by the

engineering and control communities for decades. Traditionally, the emphasis has been on signal ex-

traction; that is, on filtering problems. The well–known Kalman filter (KF) gives a benchmark recursive

solution for the filtering problem in case of Gaussian and linear models with known model parame-

ters (Kalman 1960; Kalman and Bucy 1961). This analytical filter provides an exact computation of the

equations (2.4)–(2.6) provided that the functional forms f and h are linear, and that the probability

density functions ηt , νt and x0 are all Gaussian. Thus, in case of Kalman models, all the probability

density functions (p(x t |y1:s ), s, t ∈ {1, . . . ,T }) in equations (2.4)–(2.6) are Gaussian and, as a result, there

exists a finite number of parameters that characterize these densities. This implies that, at every time

step, the filtering PDF p(x t |y 1:t ) is Gaussian and hence parameterized by a mean and a covariance.

Intuitively, assuming that certain conditions hold, the KF solves the filtering problem by recursively

estimating the mean and covariance which characterize the posterior Gaussian PDF p(x t |y 1:t ) of the
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target state vector x t . Thus, in case of linear and Gaussian models, (2.1) and (2.2) can be rewritten as:

x t = Ft x t−1 +ηt , (Transition equation) (2.7)

y t = Ht x t +νt , (Measurement equation) (2.8)

where Ft and Ht are known matrices defining the linear functions. The known covariances of the state

and measurement noise densities ηt and νt are Qt and Rt respectively. Notice that the system and

measurement matrices Ft and Ht as well as noise parameters Qt and Rt could be allowed to vary. In

this work, unless stated otherwise, both ηt and νt are assumed to have zero means.

Based on the expressions for predictive and filtering probability density functions in (2.4)-(2.5), the

first and second moments x t |t and Σx t |t of a Kalman model state-vector x t are easily obtained by the

following recursive relationship:

p(x t−1|y 1:t−1) =N (·; x t−1|t−1,Σt−1|t−1) (2.9)

p(x t |y 1:t−1) =N (·; x t |t−1,Σt |t−1) (2.10)

p(x t |y 1:t ) =N (·; x t |t ,Σx t |t ) (2.11)

where

x t |t−1 = Ft x t−1|t−1 (2.12)

Σx t |t−1
= FtΣx t−1|t−1

F ′
t +Qt (2.13)

y t |t−1 = Ht x t |t−1 (2.14)

Σy t |t−1
= HtΣx t |t−1

H ′
t +Rt (2.15)

Kt =Σx t |t−1
H ′

tΣ
−1
y t |t−1

(2.16)

x t |t = x t |t−1+Kt (y t − y t |t−1) (2.17)

Σx t |t =Σx t |t−1
−Kt HtΣx t |t−1

(2.18)

and where N denotes a Gaussian density. Herein, xr |s and Σxr |s stand for the posterior mean and

covariance matrix of the state vector x at time r given the observations up to time s, y1:s . That is, for

any random state x t , xr |s = E(xr |y 1:s) and Σx r |s = Cov(x r |y1:s ), ∀r and ∀s. Also, H ′ and H−1 stand for

the transpose and inverse matrix, respectively.

Expressions (2.12) – (2.18) define the famous Kalman filter, which is a recursive updating procedure

that makes a preliminary estimate of the state x t |t−1 and then revises that estimate by incorporating

a correction step x t |t = x t |t−1 +Kt (y t − y t |t−1), where the so-called Kalman Gain Kt plays a key role in

revising the preliminary estimate of the state, see e.g. Wei (1994). Under the KF, the equations (2.12)

and (2.13) are called prediction (time update) equations. Likewise, equations (2.14) and (2.15) are the
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prediction estimate and conditional covariance of the observed data yt . The weight given to the infor-

mation provided by the new observation is determined by the magnitud of the Kalman Gain Kt com-

puted in equation (2.16); y t − y t |t−1 in equation (2.17) is called the innovation term. Finally, equations

(2.17) and (2.18) are called filtering (measurement update) equations.

The following pseudo-code (Algorithm 1) summarizes the KF algorithm.

Algorithm 1 Kalman Filter

Initialization t = 0

Set initial conditions: x0|0 and Σx0|0 .

for t = 1 to T do

Step 1 Prediction step (time update)

Compute the predictive expectation x t |t−1 and covariance Σx t |t−1
using equations (2.12) and (2.13),

respectively

Step 2 Kalman Gain step (including computation of the prediction estimate and conditional covari-

ance of the observed data yt .)

Compute the prediction estimate y t |t−1 and covariance Σy t |t−1
using equations (2.14) and (2.15),

respectively.

Compute the Kalman Gain Kt with equation (2.16).

Step 3 Filtering step (based on new observation y t )

Compute the filtering expectation x t |t and covariance Σx t |t using equations (2.17) and (2.18), re-

spectively

end for

Notice that from a computational point of view, the most expensive step is the inversion of the

matrix in equation (2.16). However, since its computation does not depend on the observations, it

could be computed offline.

As Jazwinski (1970) points out, in case of Kalman models, it is a relatively simple matter to compute

the conditional densities in (2.4) and (2.5). By contrast, in the nonlinear case, the situation is vastly

more difficult, because in general, there does not exist a finite number of parameters which charac-

terize these densities. Moreover, as Meinhold and Singpurwalla (1989) state, Kalman filters based on

normality assumption are known to be non–robust, which implies that the posterior density may be-

come unrealistic when there is a large difference between the prior density and the observed data.

In few cases, an explicit expression for the filtering problem can be derived in closed form; the lin-

ear and Gaussian dynamic model being one of the exceptions (Tanizaki 1991). Since most real-world

problems are specified by nonlinear and (possibly) non-Gaussian state-space dynamic models, that

usually preclude an exact solution of the filtering problem, approximative approaches are needed.

For instance, when f and h in (2.1) and (2.2) are nonlinear, Algorithm 1 is no longer operational, be-

cause it involves the expectations of nonlinear functions. Therefore, the nonlinear measurement and

transition equations would need to be approximated in order to evaluate the expectations involved in

equations (2.9) – (2.11).

A great deal of literature is devoted to the theory and development of algorithms to tackle the non-

linear filtering problem. The most heuristic and easiest approximation is based on the use of Taylor
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series expansions in order to linearize the nonlinear state-space model described by the system and/or

measurement equations (2.1) and (2.2). The extended Kalman filter is one of such methods.

Although the main focus of our work is the so-called particle filtering methodology (fully described

later on), next we first describe two non-simulation based nonlinear filters that have been used upon

improving existing particle filters; say the aforementioned EKF and the so-called unscented Kalman

filter.

2.3.2 The Extended Kalman Filter

Under the extended Kalman filter (EKF), the main idea is first to linearize the nonlinear functions f

and h in (2.1) and (2.2) to later apply the Kalman filter given in equations (2.12) – (2.18). That is, the

two nonlinear functions f (x t−1,ηt ) and h(x t ,νt ) are approximated by the first-order Taylor series ex-

pansion around (x t−1,ηt ) = (x t−1|t−1,0) and (x t ,νt ) = (x t |t−1,0), respectively. This is done so that the

expectations in (2.12) – (2.18) can be evaluated explicitly; see for example Wishner, Tabaczynski, and

Athans (1969), Anderson and Moore (1979), and Tanizaki and Mariano (1996).

Hence, in order to approximate the expectations of the dynamic nonlinear state-space model de-

fined by (2.1)–(2.2), the corresponding measurement and transition equations are approximated by

the following state-space model (SSM):

x t = f (x t−1,ηt )

≈ ft |t−1 + Jx t−1
(x t−1 −x t−1|t−1)+ Jηt

ηt , (2.19)

where

ft |t−1 = f (x t−1|t−1,0),

Jx t−1
=

∂ f (x t−1,ηt )

∂x ′
t−1

|(x t−1,ηt )=(x t−1|t−1 ,0),

Jηt
=

∂ f (x t−1,ηt )

∂η′
t

|(x t−1,ηt )=(x t−1|t−1 ,0),

and

y t = h(x t ,νt )

≈ ht |t−1+ Jx t
(x t −x t |t−1)+ Jνt

νt (2.20)

where

ht |t−1 = h(x t |t−1,0),

Jx t
=

∂h(x t ,νt )

∂x ′
t

|(x t ,νt )=(x t |t−1, 0),

Jνt
=

∂h(x t ,νt )

∂ν′
t

|(x t ,νt )=(x t |t−1, 0).
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Once the linearized system and measurement equations (2.19) and (2.20) are obtained, one is able to

apply the KF given in Algorithm 1. That means that expressions (2.9) – (2.18) are now equivalent to the

following alternative expressions (2.21) – (2.30):

p(x t−1|y 1:t−1)≈N (·; x t−1|t−1,Σt−1|t−1) (2.21)

p(x t |y 1:t−1)≈N (·; x t |t−1,Σt |t−1) (2.22)

p(x t |y 1:t )≈N (·; x t |t ,Σx t |t ) (2.23)

where

x t |t−1 = ft |t−1 (2.24)

Σx t |t−1
= Jx t−1

Σx t−1|t−1
J ′x t−1

+ Jηt
Qt J ′ηt

(2.25)

y t |t−1 =ht |t−1 (2.26)

Σy t |t−1
= Jx t

Σx t |t−1
J ′x t

+ Jνt
Rt J ′νt

(2.27)

Kt =Σx t |t−1
J ′x t

Σ
−1
y t |t−1

(2.28)

x t |t = x t |t−1 +Kt (y t − y t |t−1) (2.29)

Σx t |t =Σx t |t−1
−Kt Jx t

Σx t |t−1
(2.30)

Expressions (2.24) – (2.30) define the extended Kalman filter, with a pseudo-code given in Algorithm 2.

Algorithm 2 Extended Kalman Filter

Initialization t = 0

Set initial conditions: x0|0 and Σx0|0 .

for t = 1 to T do

Step 1 Prediction step (time update)

Compute ft |t−1, Jx t−1
, and Jηt

with equation (2.19).

Compute the predictive expectation x t |t−1 and covariance Σx t |t−1
using (2.24) and (2.25), respec-

tively.

Step 2 Kalman Gain step

Compute ht |t−1, Jx t
, and Jνt

using equation (2.20).

Compute the prediction estimate y t |t−1 and covariance Σy t |t−1
using equations (2.26) and (2.27),

respectively.

Compute the Kalman Gain Kt with equation (2.28).

Step 3 Filtering step (measurement update)

Compute the filtering expectation x t |t and covariance Σx t |t using (2.29) and (2.30), respectively.

end for

Recall that Qt stands here for the state-noise covariance matrix and Rt for the measurement-noise

covariance matrix. Both the system noise, as well as the measurement noise, are assumed to be zero
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mean Gaussian. Moreover, Jxt−1
and Jηt

are the Jacobian for the system, and Jxt
and Jνt

are the Jacobian

for the measurement. Notice that the EKF reduces to the plain KF algorithm when h and f are both

linear.

A drawback of this algorithm is that it can lead to poor representations of the nonlinear functions

and target probability distributions (Anderson and Moore 1979). The approximation errors introduced

when computing the posterior mean and covariance estimates obtained via the EKF could be large. As

a result, this filter may have poor estimation performance and could even diverge (Van der Merwe

2004).Additionally, from a computational point of view, also some efficiency is lost because no com-

putation can be made offline.

Since approximating the expectations of a nonlinear function by Taylor series expansion may give

a biased estimate and often seems to underestimate the covariance of the states, other methods are

required. Tanizaki (1996) studies different nonlinear algorithms based on Taylor series expansions (in-

cluding the EKF). Also, various density based filters are developed, including the well-known numerical

integration filter (NIF) and the so-called rejection sampling filter (RSF) introduced by Kitagawa (1987)

and Tanizaki and Mariano (1998), respectively. Another filter, introduced to overcome the approxima-

tion drawbacks of the EKF and studied in this work, is the so-called unscented Kalman filter (UKF)

(Wan and Van der Merwe 2001).

Next we provide a detailed description of the unscented Kalman filter as well as of the so-called

Unscented transformation UT) and the scaled Unscented transformation (SUT) methods, which are

the building blocks of the UKF.

2.3.3 The Unscented Kalman Filter

To fully describe the unscented Kalman filter (UKF) some fundamental ideas need to be presented: the

concepts of unscented transformation and scaled unscented transformation. Following, we describe

these concepts.

The Unscented Transformation

The unscented transformation (UT) is a method used to compute the statistics of a random variable

which undergoes a nonlinear transformation. It is founded on the principle that “it is easier to approx-

imate a probability distribution than it is to approximate an arbitrary nonlinear function” (Julier and

Uhlmann 1997).

The UT works as follows: Let x be an nx -dimensional random variable with mean x̄ and covariance

Σx . Suppose that the aim is to calculate the statistics of a nonlinear transformation or nonlinear func-

tion, say y = f (x). That is, the aim is to propagate the random vector x through the nonlinear function

f .

According to the UT, one proceeds to deterministically choose and calculate a set of 2nx +1 weighted

sigma (sample) points {(χ′
i
, ω′

i
), i = 0, . . . ,2nx }.
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The deterministically chosen sigma points and respective weights are given by:

χ′
0 = x̄ , ω′

0 =κ/(nx +κ), i = 0

χ′
i = x̄ +

(√
(nx +κ)Σx

)
i

, ω′
i =

1

2(nx +κ)
, i = 1, . . . ,nx

χ′
i = x̄ −

(√
(nx +κ)Σx

)
i

, ω′
i =

1

2(nx +κ)
, i = nx +1, . . . ,2nx . (2.31)

where

• κ is a scaling parameter (its choice is critical to guarantee a positive semi-definite covariance

matrix),

•
(p

(nx +κ)Σx

)
i is the i th row2 or column of the matrix square root3 of (nx +κ)Σx ,

• ω′
i

are the corresponding computed sigma points weights, such that
∑2nx

i=0
ω′

i
= 1.

Once the sigma points χ′
i

and respective weights ω′
i

are computed, each sigma point is propagated

in time through the true nonlinear function, say y ′ = f (χ′
i
), i = 0, . . . ,2nx . Then, an estimate of the

nonlinear transformed mean and covariance, based on statistics of the transformed sigma points, is

obtained. Specifically, the mean and covariance for y are approximated by a weighted average and a

weighted outer product of the transformed sigma points, y ′. That is,

ȳ ≈
2nx∑

i=0

ω′
i y ′

i

Σy ≈
2nx∑

i=0

ω′
i (y ′

i − ȳ)(y ′
i − ȳ)T .

Likewise, the cross-covariance is approximated by a weighted cross-covariance Σx y computed by

Σx y ≈
2nx∑

i=0

ω′
i (χ′

i − x̄)(y ′
i − ȳ)T .

The right panel of Figure 2.2 illustrates the functioning of the (just described) UT (building block of

the UKF) method. Additionally, this figure illustrates that the UT generally outperforms the EKF when

approximating the first two moments of a Gaussian random variable that undergoes an arbitrary non-

linear transformation. The poor performance in the posterior mean (clearly biased) and covariance

(highly inaccurate) estimates obtained via the EKF (middle) as opposed to the optimal filter (left) and

the UKF (right) is clearly portrayed.

Recall that the EKF has two well-known major drawbacks. First, if the local linearity assumption

does not hold, the performed linearization can lead to unstable filters. Second, implementation dif-

ficulties can occur in applications with nontrivial Jacobian matrices derivation. The UT, on the other

2Use the rows, if the matrix square root A of P is of the form P = A′A. In case P = AA′, the sigma points are formed from

the colums of A
3For its computation, a numerically efficient method should be used, such as Cholesky decomposition or singular-value

decomposition; see Wood (2004) and R Development Core Team (2013), respectively.
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hand, does not have to deal with such approximation problems. Therefore, the UT is used to con-

struct the scaled unscented transformation, which itself is used as a building block for the so-called

unscented Kalman filter (explained later on) aiming to overcome the approximation drawbacks of the

extended Kalman filter.

Figure 2.2: Illustration of the functioning of the UT (building block of the UKF) method. Addition-

ally, this figure illustrates that the UT generally outperforms the EKF when approximating the first two

moments of a Gaussian random variable that undergoes an arbitrary nonlinear transformation. The

poor performance in the posterior mean (clearly biased) and covariance (highly inaccurate) estimates

obtained via the EKF (middle) as opposed to the optimal filter (left) and the UKF (right) is clearly por-

trayed. Figure reproduced from Julier and Uhlmann (2004)

The unscented transformation provides a good approximation of the mean and covariance of y ′ =
f (x), nonetheless scaling problems might occur. In case of severe nonlinearities, things become worse.

For instance, the selection strategy just described has the property that the dispersion of the sigma

points increases as the dimension of the random variable increases. To avoid difficulties an appropri-

ate choice of the scaling parameter κ is then crucial to guarantee a positive definite covariance matrix.

All this can be summarized as follows: the use of UT under severe nonlinearities may cause scaling

problems. Thus, as a solution the scaled unscented transformation (SUT) is proposed to handle such

possible scaling problems.

The Scaled Unscented Transformation

The main feature of the SUT is that the sigma points can be scaled towards or away from the mean of

the prior distribution by a proper choice of the scaling parameterκ; see Wan and Van der Merwe (2001)
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and Julier (2002). Under this method, the original set of sigma points {χ′
i
} are scaled-transformed and

thus replaced by

χi =χ′
0 +α(χ′

i −χ′
0), i = 0, . . . ,2nx , (2.32)

whereα is a positive scaling parameter which determines the spread of the sigma points aroundχ′
0 = x̄ .

The advantage of using the later formulation is that it allows the controlling of the scaling of the sigma

points without causing the resulting covariance to possibly become non-positive semidefinite.

A form of obtaining the transformed sigma points χi in (2.32) is simply to apply the previously

described plain UT on a set of pre-scaled sigma points. Following this approach, the new set of properly

scaled sigma points and weights, {(χi , ωi ), i = 0, . . . ,2nx } is obtained by

χ0 = x̄ , ω(m)
0 =λ/(nx +λ), i = 0

χi = x̄ +
(√

(nx +λ)Σx

)
i

, ω(m)
i

=
1

2(nx +λ)
, i = 1, . . . ,nx

χi = x̄ −
(√

(nx +λ)Σx

)
i

, ω(m)
i

=
1

2(nx +λ)
, i = nx +1, . . . ,2nx

ω(c)
0 =λ/(nx +λ)+ (1−α2 +β), ω(c)

i
=ω(m)

i
, i = 1, . . . ,2nx (2.33)

where

• α is a positive scaling parameter which is usually set to a small positive value (e.g., 0.001). In case

of severe nonlinearities, 0 <α≤ 1 is chosen.

• κ is a secondary scaling parameter which is usually set to 0. Though its choice is not critical, to

guarantee a positive definite covariance matrix, κ≥ 0 must be chosen.

• β is a non-negative parameter introduced to incorporate prior knowledge of the distribution of

x . That is, β≥ 0 must be chosen and β= 2 is optimal for Gaussian distributions.

• λ=α2(nx +κ)−nx is the new scaling parameter defined in terms of α, κ and nx .

•
(√

(nx +λ)Σx

)
i

is the i th row or column of the matrix square root of (nx +λ)Σx ,

• ωi are the corresponding computed sigma points weights, such that
∑2nx

i=0
ωi = 1.

Once the scaled sigma points and corresponding weights are computed, each sigma point is prop-

agated through the nonlinear transformation, say y = f (χi ), i = 0, . . . ,2nx . The computation of the

mean ȳ , variance Σy and cross-covariance Σx y , based on the former properly scaled sigma points, is

given by

ȳ ≈
2nx∑

i=0

ω(m)
i

y i

Σy ≈
∑

ω(c)
i

(
y i − ȳ

)(
y i − ȳ

)T

Σx y ≈
2nx∑

i=0

ωi (χi − x̄)(y i − ȳ)T .
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The previous estimates, obtained through the SUT, are as accurate as the ones obtained through the

plain UT, but the scale unscented transformation allows one to better tackle the scale–errors intro-

duced by high non-linearities. The SUT is thus the main building block for the design of the unscented

Kalman filter.

The Unscented Kalman Filter Implementation

The unscented Kalman filter (UKF) is a straightforward application of the SUT to the recursive Kalman

filtering estimation problem (Wan and Van der Merwe 2000; Wan and Van der Merwe 2001; Van der

Merwe 2004). That is, the UKF provides a Gaussian approximation to the posterior state distribution,

where the first two moments are updated and obtained by using the SUT.

The general UKF approach works as follows:

First, under the UKF, the state random variable is redefined as the concatenation of the the original

state and the noise variables; say x a
t = (x ′,η′,ν′)′. Likewise, the augmented state covariance matrix Σ

a

is redefined in terms of the individual covariances of the state, process and measurement variables;

that is,

Σ
a =




Σ 0 0

0 Q 0

0 0 R


 . (2.34)

The augmented state random variable x a
t has the effective dimension na = nx +nη+nν; being nx , nη

and nν the original state-, the process noise- and observation noise dimension, respectively.

A natural consequence of augmenting the original state random variable with the noise variables is

that not only the uncertainty present in the states, but also the uncertainty in the noise disturbances,

are taken into account during the sigma (sample) points propagation. However in case of the EKF,

the nonlinear functions are first approximated (linearized) by a Taylor series expansion of order one

around the current expected means and the uncertainty is thus not taken into account in the lineariza-

tion.

Second, the SUT sigma point selection scheme, specified by equation (2.33), is used to compute

the new set of scaled sigma points χa
t for the augmented state random variable x a

t . Recall that λ is the

scale parameter computed itself as a function of the other parameters α (which determines the spread

of sigma points), κ (which guarantees a positive covariance matrix) and β (which incorporates prior

knowledge of distribution). The values of the parameters (α,κ,β) involved in the UKF can be tuned by

the researcher.

Finally, based on the SUT statistics, corresponding expressions for prediction, Kalman Gain, inno-

vation, and filtering (equivalent to the KF equations (2.12)–(2.18)) are obtained. The following pseudo-

code (Algorithm 3) subsumes the UKF algorithm.
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Algorithm 3 Unscented Kalman Filter

Initialization t = 0

Initial conditions:

x̄0 = E(x0)

Σ0 =E
(
(x0 − x̄0)(x0 − x̄0)′

)

x̄a
0 = E(x a

0 ) = (x̄ ′
0,0,0)′

Σ
a
0 =E

(
(x a

0 − x̄ a
0 )(x a

0 − x̄a
0 )′

)
using (2.34)

Set parameter values: α, β and κ.

Compute the dimension of augmented state: na = nx +nη+nν

for t = 1 to T do

Step 1 Computation of weighted sigma points

Compute λ using λ=α2(nx +κ)−nx

Define the augmented state and corresponding weights as:

x a
t−1 = (x ′,η′,ν′)′ and χa

t−1 = ((χx )′, (χη)′, (χν)′)′.
Obtain the sigma points with

χa
t−1 =

[
x̄a

t−1, x̄a
t−1 ±

(√
(na +λ)Σa

t−1

)]

and the corresponding weights using (2.33)

Step 2 Time update step (propagation of sigma points into the future)

χx
t |t−1 = f (χx

t−1,χ
η
t−1)

x̄ t |t−1 =
2na∑

i=0

ω(m)
i

χx
i ,t |t−1

Σt |t−1 =
2na∑

i=0

ω(c)
i

(χx
i ,t |t−1− x̄ t |t−1)(χx

i ,t |t−1− x̄ t |t−1)′

ỹ t |t−1 = h(χx
t |t−1,χν

t−1)

ȳ t |t−1 =
2na∑

i=0

ω(m)
i

ỹ i ,t |t−1

Step 3 Measurement update equations step (incorporate new observation)

Σỹ t , ỹ t
=

2na∑

i=0

ω(c)
i

(ỹ i ,t |t−1− ȳ t |t−1)(ỹ i ,t |t−1− ȳ t |t−1)′

Σx t , ỹ t
=

2na∑

i=0

ω(c)
i

(χi ,t |t−1− x̄ t |t−1)(ỹ i ,t |t−1− ȳ t |t−1)′

Kt =Σx t , ỹ t
Σ
−1
ỹ t , ỹ t

Σt =Σt |t−1 −KtΣỹ t , ỹ t
K ′

t

x̄ t = x̄ t |t−1 +Kt (y t − ȳ t |t−1)

end for
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A summarized comparison of two Nonlinear Filters: The EKF vs. the UKF

Comparing the EKF and UKF nonlinear filters, it is concluded that:

• Both filters, the EKF (with pseudo-code in Algorithm 2) and UKF (with pseudo-code in Algo-

rithm 3), provide a Gaussian approximation to the posterior state distribution, but differ in the

way the first two moments of such Gaussian posterior are estimated.

• Under the EKF, the nonlinear functions contained in the state-space model are first approxi-

mated using a Taylor series expansion of order one, and then the two moments (mean and co-

variance) of the Gaussian PDF of the states are propagated (in time) via the Kalman filter. That

is, a straightforward application of the Kalman filter (Algorithm 1) to the linearized nonlinear

functions involved in the state-space model gives rise to the nonlinear EKF.

• In contrast to the EKF, the UKF directly approximates the Gaussian posterior distribution of the

states p(x|y 1:t ) using the specified nonlinear model, being the UKF a straightforward applica-

tion of the SUT to the recursive Kalman filtering estimation problem (Wan and Van der Merwe

2000; Wan and Van der Merwe 2001). In other words, the UKF uses a minimal set of determinis-

tically chosen sigma points that are propagated (in time) through the true nonlinearity and are

then used to produce the Gaussian approximation to p(x|y 1:t ). These sigma points, which are

propagated (in time) through the true nonlinearity are said to completely capture the true mean

and covariance of the filtering Gaussian random variable; see again illustration in Figure 2.2.

• Under the UKF, the approximated first two moments of the filtering PDF of the states are gener-

ally more accurate than the ones yielded by the EKF (Van der Merwe 2004); specially in case of

high nonlinearities. Intuitively, if the nonlinear functions involved in the stat-space model are

not well approximated, the quality of the estimated mean and covariance of the filtering Gaus-

sian PDF will be negatively affected, since large errors may have been introduced.

• In contrast to the EKF, in case of the UKF no Jacobians need to be computed, which means that

the UKF is derivative free. As aforementioned, the EKF has two well-known major drawbacks.

First, if the local linearity assumption does not hold, the performed linearization can lead to

unstable filters. Second, implementation difficulties can occur in applications with nontrivial

Jacobian matrices derivation. Thus, the Unscented Kalman filter aims to overcome the approxi-

mation drawbacks of the extended Kalman filter.

• The computational cost of the UKF is said to be of about the same order as that of the EKF

(Van der Merwe, Doucet, de Freitas, and Wan 2001); we will consider this point further in Chapter 4

dealing with MC studies with nonlinear state-space model. A glance to the pseudo-codes for the

EKF (Algorithm 2) and the UKF (Algorithm 3) shows that the implementation of the UKF involves

more complex instructions.
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• Based on simulations, Wan and Van der Merwe (2000) show that compared to the EKF, the UKF

provides more accurate state estimates and much better estimates for the covariance of the

states. These authors also found that the UKF has the capability of generating heavier tailed

distributions than the EKF, and that the computational efficiency of the UKF and the EKF is of

the same order. In conclusion, they reported a superior filtering performance of the UKF over

the EKF. This feature naturally leads to the later use of the UKF in order to improve existing par-

ticle filters as done by Van der Merwe, Doucet, de Freitas, and Wan (2001) and Van der Merwe

(2004).

According to an analysis of reviewed literature, the UKF proves its superior performance in case

of complex nonlinearities (where the EKF is more prone to fail). This is confirmed by our MC experi-

ments in Chapter 4 (partially based on a smaller number of experiments presented in (Van der Merwe,

Doucet, de Freitas, and Wan 2001) and Van der Merwe (2004)), dealing with a dynamic state-space

model which is nonlinear, non-stationary and non-Gaussian. Though we also consider that the UKF

improves greatly upon the EKF, a major drawback remains: it does not apply to general non-Gaussian

distributions.

As mentioned earlier, the fully described nonlinear EKF and UKF filtering methods rely on approx-

imating the filtering distribution of the state variable by a Gaussian PDF. This may naturally lead to

estimation difficulties when dealing with general non-Gaussian models, specially the EKF which has

a lower order estimation accuracy compared to the UKF. A very different nonlinear filtering approach,

based on simulations, is the particle filtering methodology, which in contrast to previously described

filters does not impose a Gaussian posterior distribution of the variable (states) of interest.

Next section makes a thorough description of the main concepts within the particle filtering method-

ology. The limitations of this approach are also highlighted, together with proposed solutions pre-

sented throughout the time, which have given rise to several particle filter variants. This work focuses

on the most classic particle filter variants, based on sequential importance sampling, considered by us

the building blocks of more recent approaches within the particle filtering methodology.

2.4 Dynamic State Estimation: Sequential Monte Carlo Filtering

Methodology

The last two decades have brought about great developments in the theory and application of the se-

quential Monte Carlo (SMC) methodology known as particle filtering. This evolution can be noticed by

the number of publications that have appeared in the field after Gordon’s 1993 paper. For filtering the

states, see for instance the work of the authors Gordon, Salmond, and Smith (1993), Kitagawa (1996),

Fearnhead (1998), Pitt and Shephard (1999),Van der Merwe, Doucet, de Freitas, and Wan (2000), Wan

and Van der Merwe (2001),Arulampalam, Maskell, Gordon, and Clapp (2002), Van der Merwe (2004),

Muñoz, Márquez, and Acosta (2007), and Doucet and Johansen (2011).
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We state that our first incursion into the sequential Monte Carlo methodology began with Kita-

gawa’s 1996 paper which deals solely with optimal filtering and smoothing, assuming known model

parameters. To our knowledge, Kitagawa is the first author that uses the word ‘particles’ as a synonym

of the word samples, though the name ‘particle filter’ seems to be due to Fearnhead (1998).

A particle filter (PF) is a very flexible SMC approach that allows an implementation of a recursive

Bayesian filter through Monte Carlo simulations (Doucet, Godsill, and Andrieu 2000; Arulampalam,

Maskell, Gordon, and Clapp 2002; Doucet and Johansen 2011). It can be applied to a wide range of dy-

namic state-space models; being linear or not, Gaussian or not, stationary or not, discrete, continuous

or hybrid. Though flexible, the particle filtering methodology has its own drawbacks, such as sample

degeneracy and sample impoverishment. The existence of such drawbacks, the different attempts to

overcome them and thus improve upon existing particle filters, is what has given raise to the different

PF variants.

Particle filters have the main feature of approximating a target posterior probability distribution

function by a set of weighted ‘particles’. Hence, under the particle filtering methodology, the tar-

get posterior PDF of the state x t , in our case p(x t |y 1: t ), is approximated by samples (particles) that

are recursively generated from the prediction and filtering distributions as new information becomes

available. Once the filtering PDF p(x t |y 1: t ) is approximated, any characteristic of the state x t can be

estimated from the set of weighted particles.

By definition, all particle filters variants are sequential in nature and thus need a sampling scheme

to generate the particles sequentially over time. To achieve that, this work relies on the so-called se-

quential importance sampling (SIS) principle. We are aware, however, that other approaches such as a

rejection sampling filter can be used to generate samples in a sequential fashion (Hürzeler and Künsch

1998).

Let us first explain briefly the principle of importance sampling (IS).

Importance sampling

In practice it is seldom possible to sample directly from a true PDF, say p(z), which often is only known

up to a proportionality constant. In those cases, the IS principle allows us to choose an alternative

PDF, say q(z), from which it is easy to sample. This alternative PDF is called proposal or importance

distribution. Therefore, instead of sampling directly from p(z), we rather sample indirectly from it

through q(z). This proposal distribution must be as close as possible to the true one. Particularly, the

support of q(z) must include that of p(z) (Geweke 1989).

As stated before, a particle filter is a simulation based filter that aims to recursively approximate the

filtering PDF p(x t |y 1:t ) in (2.5). Suppose that at fixed time t , the filtering PDF of the random variable

x t |y1:t is approximated by a sufficiently large set of M particles4 x (1)
t , . . . , x (M)

t with discrete probability

mass of ω(1)
t , . . . ,ω(M)

t . Suppose further that these particles could not be drawn directly from p(x t |y 1:t )

4Throughout this work, both M or Np are used to denote the number of particles.
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but indirectly from the normalized importance PDF q(x t |y 1:t ), then the true filtering PDF p(x t |y 1:t ) at

a fixed time t would be approximated by

p(x t |y 1:t ) ≈
M∑

j=1

ω̃
( j )
t δ(xt −x

( j )
t ) (2.35)

where

ω̃
( j )
t =

ω
( j )
t

∑M
j=1ω

( j )
t

, and ω
( j )
t ≈

p(x
j
t |y 1:t )

q(x
j
t |y 1:t )

, (2.36)

and the values of ω
( j )
t are the importance weights with corresponding normalized weights given by

ω̃
( j )
t . The approximation in (2.35) converges to the true filtering PDF p(x t |y 1:t ) when the sample size

M →∞, being δ(.) the Dirac function (Doucet 1998; Doucet, Godsill, and Andrieu 2000).

However, since one needs to be able to estimate p(x t |y 1:t ) recursively in time, it becomes necessary

to define a proposal distribution that works well in a sequential framework. This gives raise to the

Bayesian sequential importance sampling (SIS) filter. Following, we present a detailed description of

the SIS filter.

2.4.1 The Bayesian Sequential Importance Sampling Filter

In a sequential framework, the IS principle must be modified so that at any time k , the estimate of

p(xk |y 1:k ) can be propagated in time without modifying subsequently the past simulated trajectories.

In other words, the importance PDF at time k + 1 must admit as a marginal distribution the impor-

tance PDF at previous time k (Doucet 1998). This is possible if one chooses proposal distributions that

factorize, such as

q(x t |y 1:t ) = q(x t |x t−1, y t )q(x t−1|y 1:t−1) (2.37)

which provides samples x
( j )
t ∼ q(x t |y 1:t ) by augmenting each of the existing samples x

( j )
t−1 ∼ q(x t−1|y1:t−1)

with the new state x
( j )
t ∼ q(x t |x t−1, y t ). Substituting the recursive filtering PDF expression (2.6) and

(2.37) in (2.36), the importance weight equation can be rewritten as

ω
( j )
t ∝

p(y t |x
( j )
t )p(x

( j )
t |x ( j )

t−1)p(x
( j )
t−1|y 1:t−1)

q(x
( j )
t |x ( j )

t−1, y t )q(x
( j )
t−1|y 1:t−1)

=
p(y t |x

( j )
t )p(x

( j )
t |x ( j )

t−1)

q(x
( j )
t |x ( j )

t−1, y t )
ω

( j )
t−1 (2.38)

and therefore the true posterior PDF p(x t |y 1:t ) can be sequentially approximated by the empirical PDF

p(x t |y 1:t ) ≈
M∑

j=1

ω̃
( j )
t δ(x t −x

( j )
t ), (2.39)

where in this case the normalized weights ω̃
( j )
t are obtained from the weights defined in equation

(2.38). These weights provide a measure of how likely the corresponding particle is, that is, large

weights are assigned to particles with a large likelihood, and low weights to the ones with small likeli-

hood values.
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Algorithm 4 SIS Filter

Initialization t = 0

for j = 1 to M do

Sample x
( j )
0 ∼ p(x0) (Random sample taken from p(x0) with ω

( j )
0 = 1

M
)

end for

for t = 1 to N do

Step 1 Importance sampling step

for j = 1 to M do

Prediction Sample particles from proposal PDF x
( j )
t ∼ q(x t |x

( j )
t−1, y t )

Filtering Assign to each particle x
( j )
t the importance weight ω

( j )
t according to (2.38)

end for

for j = 1 to M do

Normalize the importance weights: ω̃
( j )
t = ω

( j )
t∑M

i=1 ω
(i )
t

end for

end for

Following, the corresponding pseudo-code (Algorithm 4) for the general form of a SIS filter is given.

An important issue-but not an easy task-is the design of an optimal proposal distribution. Next,

this topic is briefly commented.

Proposal distribution design

Doucet (1998) mentions how to choose a good importance PDF and shows that the optimal impor-

tance distribution is one of the form q(x
( j )
t |x ( j )

t−1, y t ), which includes the information provided by the

last observation. In practice, however, the most usual (and appealing) strategy consists of sampling

from the probabilistic model of the states evolution, meaning to use as proposal PDF the so-called

transition prior:

q(x
( j )
t |x ( j )

t−1, y t ) = p(x
( j )
t |x ( j )

t−1) (2.40)

The transition prior is used as a proposal PDF by various authors; among others by Gordon, Sal-

mond, and Smith (1993), Kitagawa (1996), Hürzeler and Künsch (1998), Arulampalam, Maskell, Gor-

don, and Clapp (2002) and Muñoz, Márquez, and Acosta (2007). If the transition prior (2.40) is used as

proposal distribution, the general expression for the importance weights in (2.38) becomes

ω
( j )
t ∝

p(y t |x
( j )
t )p(x

( j )
t |x ( j )

t−1)

q(x
( j )
t |x ( j )

t−1, y t )
ω

( j )
t−1 =

p(y t |x
( j )
t )p(x

( j )
t |x ( j )

t−1)

p(x
( j )
t |x ( j )

t−1)
ω

( j )
t−1 = p(y t |x

( j )
t )ω

( j )
t−1 (2.41)

and are proportional to the product of the likelihood of the new observation yt given that particle and

the previous weight. Hence, under the Bayesian sequential importance sampling filter using the tran-

sition prior as a proposal PDF, the importance weights are propagated forward and updated as a new

observation arrives using equation (2.41). As a result, the prediction and filtering steps in Algorithm 4

will be modified and given by:
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Prediction Sample particles from transition prior x
( j )
t ∼ q(x t |x

( j )
t−1, y t ) = p(x t |x

( j )
t−1) by

• generating η
( j )
t according to the state–noise density (2.1)

• setting x
( j )
t = f (x

( j )
t−1,η

( j )
t )

Filtering Assign to each particle x
( j )
t the importance weight ω

( j )
t according to (2.41)

The previously described filter relies on sequential importance sampling. Sequential MC methods

based on importance sampling exist since the fifties and late sixties as mentioned in Van der Merwe

et al. (2000), but all these earlier Monte Carlo implementations based on SIS degenerate. In other

words, the SIS filter is known to fail after a few iterations because only the weights appended to the

particles are updated and as a result, many particles will have an almost zero contribution (negligible

weights) to the final estimate. Indeed, Doucet, Godsill, and Andrieu (2000) state that for importance

functions of the form (2.37), the variance of the importance weights increases (stochastically) over

time. Doucet (1998) gives formal proof of the divergence of the Bayesian sequential importance sam-

pling filter. To help to overcome the degeneracy drawback of the SIS algorithm, a resampling step is

introduced and since then several versions of the sequential MC filters known as particle filters have

emerge.

Generally speaking, different particle filter variants arise to deal with some inherent drawbacks

encountered under the particle filtering methodology. For instance, some PF variants aim to overcome

the inherent PF degeneracy problem or to overcome the collapse of the particles. Clearly, the main

motivation of all authors, also ours, is to contribute to the improvement of the performance of existing

particle filters so they can efficiently tackle a broader variety of models.

In the following section, as done with all previously studied filters, we present some particle filter

variants scattered in the literature; we unify notation for the sake of consistency and readability. For

a detailed monographic review on particle filters, see Doucet et al. (2001) and the references therein.

Also, Arulampalam et al. (2002), and Doucet and Johansen (2011) provide a tutorial on some PF vari-

ants.

2.4.2 Sequential Importance Sampling with Resampling

As aforementioned, all sequential MC implementations based solely on sequential importance sam-

pling (SIS) degenerate, and therefore are prone to diverge as t increases. The first known effective at-

tempt aiming to surmount these drawbacks consists of adding a resampling step to the SIS filter with

pseudo-code in Algorithm 4. This modification gives rise to a filter generally known as sequential im-

portance sampling with resampling (SISR). Some issues regarding the resampling step are presented

below.
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The Resampling Step

At a fixed time t , the resampling step consists of generating samples, say M , by sampling with replace-

ment from x
( j )
t particles, according to sampling probabilities given by the corresponding importance

weights, ω
( j )
t . That is, aiming to approximate p(x t |y 1:t ), both particles and weights are updated by

mapping a weighted measure to an unweighted measure, as illustrated in expression (2.42).

At a fixed time t : {x
( j )
t ,ω

( j )
t } −→ {x

j .

t ,1/M }, j = 1. . . M , j . = 1. . . M . (2.42)

For the sake of simplicity, we assume that the number of resampled particles, say R , equates the

original number of particles M . However, when needed, one might resample a greater amount of

particles, say {x
j .

t }, j . = 1. . . R with R >> M .

The addition of the resampling step to the SIS filter gives rise to the first operational algorithm

within the particle filtering methodology, named the sequential importance sampling with resampling

(SISR) PF variant. Thus, with the aim to prevent the degeneracy drawback, a resampling step is added,

and in this way the resulting filter concentrates on particles with large weights and eliminates particles

with negligible weights. Under the SISR PF variant, both, the particles and the weights are updated,

and not only the weights as happens with the non-operational SIS filter. The pseudo-code for the

generic form of a SISR particle filter variant is given in Algorithm 5. Figure 2.3 illustrates the SISR filter

behavior for M = 10 particles, when resampling takes place at every time step.

Original particles

Likelihood

Weighting

Resampling

Propagation

Figure 2.3: Illustration of SIS filter with resampling. Figure from Doucet et al. (2001)
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Algorithm 5 SISR PF

Initialization t = 0

for j = 1 to M do

Sample x
( j )
0 ∼ p(x0)

end for

for t = 1 to N do

Step 1 Importance sampling step

for j = 1 to M do

Prediction Sample x
( j )
t ∼ q(x t |x

( j )
t−1, y t )

Filtering Assign to each particle x
( j )
t the importance weight ω

( j )
t according to (2.38)

end for

for j = 1 to M do

Normalize the importance weights: ω̃
( j )
t = ω

( j )
t∑M

i=1 ω
(i )
t

end for

Step 2 Resampling step

Resample with replacement the particles x (1)
t , . . . , x (M)

t according to importance weights{
ω̃(1)

t , . . . ,ω̃(M)
t

}

end for

Notice that if resampling is applied at every time step, as portrayed in Figure 2.3, at time t −1 the

weights ω
( j )
t−1 are all equal to 1/M . Therefore, the importance weights in (2.38) would become

ω
( j )
t ∝

p(y t |x
( j )
t )p(x

( j )
t |x ( j )

t−1)

q(x
( j )
t |x ( j )

t−1, y t )
. (2.43)

If in addition, the transition prior is used as a proposal, the importance weights (2.43)are further

simplified as

ω
( j )
t ∝

p(y t |x
( j )
t )p(x

( j )
t |x ( j )

t−1)

p(x
( j )
t |x ( j )

t−1)
= p(y t |x

( j )
t ). (2.44)

An algorithm that resamples at every time step and uses the transition prior as a proposal is known

as sampling importance resampling (SIR) PF; being clearly a variant of the SISR particle filter. For

instance, the papers of Gordon et al. (1993) and Kitagawa (1996) are examples of this PF variant. In

fact, the SIR PF variant has been independently proposed and used by various authors and in different

fields. For instance, in computer vision area it is called condensation algorithm and in probabilistic

networks it is known as survival of the fittest; see MacCormick and Blake (1999) and Kanazawa, Koller,

and Russel (1995), respectively. In this work, we introduce the sampling importance resampling (SIR)

PF variant as described by Kitagawa (1996), since our incursion to the simulation based algorithms

started with that publication.
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2.4.3 The Sampling Importance Resampling Particle Filter

The authors Gordon et al. (1993) and Kitagawa (1996) proposed the addition of a resampling step to the

SIS filter that uses the transition prior as a proposal PDF. The inclusion of this resampling step gives

raise to the first effective operational particle filter, which is itself based on the weighted bootstrap

method presented in Smith and Gelfand (1992). Gordon et al. (1993) named this filter ‘bootstrap filter’.

The SIR filter aims to prevent the inherent degeneracy drawback of particle filters.

The pseudo-code for the SIR particle filter variant, as described in Kitagawa’s 1996 article, is given

in Algorithm 6.

Algorithm 6 SIR PF

Initialization t = 0

for j = 1 to M do

Sample x
( j )
0 ∼ p(x0)

end for

for t = 1 to N do

Step 1 Importance sampling step

for j = 1 to M do

Prediction Sample x
( j )
t ∼ q(x t |x

( j )
t−1, y t ) = p(x t |x

( j )
t−1) by

• generating η
( j )
t according to the state-noise density (2.1)

• setting x
( j )
t = f (x

( j )
t−1,η

( j )
t )

Filtering: Assign to each particle x
( j )
t the weight ω

( j )
t according to (2.44)

end for

for j = 1 to M do

Normalize the importance weights: ω̃
( j )
t = ω

( j )
t∑M

i=1 ω
(i )
t

end for

Step 2 Resampling step

Resample with replacement the particles x (1)
t , . . . , x (M)

t according to importance weights{
ω̃(1)

t , . . . ,ω̃(M)
t

}

end for

Although the resampling step is crucial to tackle the degeneracy problem, it may lead to other

problems. For instance, the resampling step is considered a bottleneck for the opportunity to paral-

lelize particle filters. Another potential problem is the so-called sample impoverishment or sample

attrition. Intuitively, frequent resampling can cause loss of diversity in the samples and thus the vari-

ance of the current estimates can increase, leading to a reduced accuracy. Hence resampling must be

applied with caution because, on the one hand, it helps on concentrating particles into domains of

higher posterior probability, but on the other hand, it may lead to a degradation of the support of the

particles (sample attrition), see Fearnhead (1998)5.

5When smoothing is a target, any smoothed–estimate based on impoverished particles’ paths can certainly lead to de-

generacy
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In his PhD thesis, Fearnhead (1998) provides guidelines, under importance resampling, question-

ing whether resampling is necessary at every time step. For instance, this author states that resampling

can be adopted every k time steps, where the value of k must be decided beforehand by the researcher.

Another alternative is to use a measure of the accuracy of particle filters called effective sample

size (ESS). This measure estimates how many particles from the target posterior PDF are necessary in

order to get an accurate estimate of the (functions of) states. Thus, a particle filter estimator based on

ÊSS = Me f f particles is considered to be appropriate. To get an estimate of the ESS, a formula based

on the particles weights is used (Liu and Chen 1998).

ÊSS = Me f f =
( M∑

j=1

(ω̃
( j )
t )2

)−1
. (2.45)

Intuitively, the estimated ESS takes possible values spanning from 1 to M . Moreover, extreme re-

sults correspond to two cases: if all particles have equal weights 1/M then ÊSS = Me f f = M , whereas if

all but one of the particles have negligible weights ÊSS = Me f f = 1.

The decision as to whether to resample or not is taken by comparing the estimated ÊSS = Me f f

with a threshold value Mt hr chosen arbitrarily by the researcher. The rule specifies that resampling

is needed when ÊSS = Me f f is below the chosen threshold value Mt hr . The present work adopts to

resample at every time instant, unless stated otherwise.

As can be inferred, the implementation of the resampling step is an important issue when using

the particle filtering methodology. The implementation of the resampling step can be performed in

various ways. Some authors use a multinomial resampling strategy; see for instance Ripley (1987) and

Gordon et al. (1993). In this work, we implement the stratified resampling strategy suggested in Kita-

gawa (1996). Additionally, the widely-used residual resampling strategy is considered for comparison

reasons (Higuchi 1997; Bergman 1999).

Resampling Implementation Strategies

Again, suppose that at fixed time t , the filtering random variable x t |y 1:t is approximated by a suffi-

ciently large set of particles x (1)
t , . . . , x (M)

t with discrete probability mass of ω(1)
t , . . . ,ω(M)

t . As aforemen-

tioned, the task of the resampling step consists in approximating p(x t |y 1:t ) by mapping a weighted

measure to an un-weighted measure as illustrated in expression (2.42) and Figure 2.3. This mapping

task is achieved by obtaining an empirical distribution function that mimics the target distribution of

the particles. Kitagawa (1996) points out that random resampling is thus not essential.

This author describes a basic algorithm for resampling-implementation, and states that several

modifications are possible depending on the way sorting and random number generation is accom-

plished. Following we present an algorithm for the basic random resampling strategy.

As aforementioned, the addition of the resampling step introduces extra variability and for that

reason the use of a variance reduction resampling scheme, such as the stratified or residual resam-
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Algorithm 7 Basic Random Resampling

Step 1 Initial random measure step

Assume we have arranged particles x (1)
t , . . . , x (M)

t with corresponding weights ω(1)
t , . . . ,ω(M)

t

Step 2

for j = 1 to M do

(2.1) Generate a uniform random number u
( j )
t ∼U [0,1]

(2.2) Find position j . such that c ( j .−1) =
∑ j .−1

k=1
ω

( j )
t

C < u
( j )
t ≤

∑ j .

k=1
ω

( j )
t

C = c ( j .) with

C =
∑M

k=1
ω(k)

t

(2.3) Define the j t h filtering particle as x
( j .)
t .

end for

pling strategies, is very favorable. The stratified resampling results after modifying the previous basic

random resampling algorithm, as follows.

Stratified Resampling

Carpenter, Clifford, and Fearnhead (1999) justify the use of stratification via sampling ideas. Stratified

resampling consists in dividing the interval [0,1) in M subintervals with identical width and a unique

realization is drawn from a group of particles with total weight 1/M .

Two special cases (systematic or deterministic) of stratified resampling arise by modifying the uni-

form random number generation Step (2.1) in Algorithm 7. Thus, the systematic and deterministic

resampling strategies are gotten as follows

(2.1−S) u
( j )
t ∼U [

j −1

M
,

j

M
), j = 1. . . M (2.46)

(2.1−D) u
( j )
t =

j −uα

M
for fixed uα ∈ [0,1). (2.47)

Kitagawa (1996) performed a comparative study among the resampling schemes mentioned, and

concludes that the stratified resampling scheme is an efficient method, specifically the determinis-

tic version of it. By efficient, one means that the method is easy to implement and that reduces the

Monte Carlo variation. Specifically, he concludes that the deterministic (i −D) and the systematic (i .S)

methods outperformed the random one and that within (i −D) and (i −S), the former is better.

An illustration of the resampling step using the deterministic stratified resampling scheme is pro-

vided in Figure 2.4, which is inspired in Bolic (2004). Therein, M = 5 particles are used and C (i ) denotes

the cumulative sum for the it h particle. Thus, once the resampling step has been applied, the first par-

ticle is sampled twice, whereas the second, third and and fifth particle only once. Note that in this case,

the fourth particle is not chosen at all.

The stratified algorithm is implemented by us in the R programming language, following descrip-

tions in Kitagawa (1996).
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Figure 2.4: An illustration of stratified deterministic resampling; inspired in Bolic (2004)

Residual Resampling

This widely-used resampling strategy is based on set restriction rather than on sampling methods

(Higuchi 1997; Bergman 1999; Liu and Chen 1998).

Under this method, a large part of the number of copies M j of particle j is obtained by taking the

integer part of M ·ω j ; i.e. without using random numbers. Since it is not guaranteed that the total

number of resampled particles
∑M

j=1 M j is M , a residual number of particles Mr must be randomly

selected with replacement according to normalized residual weightsωres . These ideas are summarized

in the following algorithm:

Step 1 Initial random measure step

Assume we have arranged particles x (1)
t , . . . , x (M)

t with normalized weights ω(1)
t , . . . ,ω(M)

t

Step 2 Obtain M j copies of particle x j using: M j = xMω jy, where xzy denotes the integer part of z.

Step 3 Compute the residual number of particles to sample by Mres = M −
∑M

j=1 M j

Step 4 Resample Mres particles from {x j } using weights ωres ∝ Mωj −M j using another resampling

scheme (we use the stratified strategy).

Step 5 Copy the resampled trajectories.
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This residual algorithm is written by us in the R programming language following existing MATLAB

instructions (reproduced in Appendix A). The original MATLAB instructions of Doucet and de Freitas

for implementing the residual resampling algorithm of Liu and Chen (1998) can also be found in

http://vismod.media.mit.edu/pub/yuanqi/mcep/residualR.m [last visited: September 2013].

Since different PF variants arise by incorporating new features aiming to improve upon existing

particle filters, following we study other three PF variants which are distinguished by the use of dif-

ferent proposal distributions. All of them are optimal in the sense that they all use the information

provided by the last observation. These particle filter variants are the auxiliary particle filter (ASIR, the

extended particle filter (EPF) and the unscented particle filter (UPF).

The following PF variant, auxiliary particle filter (ASIR), aims to improve upon the SIR particle filter

variant by using a “better” proposal PDF, that is by using a proposal PDF which includes the informa-

tion provided by the last observation.

2.4.4 The Auxiliary Particle Filter

Pitt and Shephard (1999) extend the SIR particle filter that had recently been suggested independently

by various authors. In order to improve upon the simulation design of the SIR particle filter variant,

these authors propose the auxiliary sampling importance resampling (ASIR) PF variant. A distinguish-

ing feature of the ASIR particle filter is that it appends an auxiliary variable (k) to the state vector x t

and thus samples from a higher dimensional state vector, (x t ,k). The auxiliary variable k is introduced

to aid the task of simulation. Thus, instead of generating samples from the filtering PDF p(x t |y 1:t )

as done by Algorithm 6, the auxiliary sampling importance resampling PF variant generates samples

from the joint PDF p(x t ,k |y1:t ). It can be verified by the Bayes rule that

p(x t ,k |y1:t ) ∝ p(y t |x t )p(x t |xk
t−1)ωk

t−1, k = 1, . . . , M . (2.48)

Pitt and Shephard aim to design a proposal distribution q(x t ,k |y1:t ) that allows sampling (indi-

rectly) from the joint PDF p(x t ,k |y1:t ). The ASIR method is said to be adaptable and extremely flexi-

ble, because one has complete control over the design of the (optimal) proposal PDF, say q , which can

depend on y t and xk
t−1. Further, these authors suggest a generic procedure for the choice of a proposal

PDF q . This procedure consists in approximating p(x t ,k |y1:t ) by sampling from an importance PDF of

the form

q(x t ,k |y1:t ) ∝ p(y t |µ
k
t ) p(x t |xk

t−1)ωk
t−1, k = 1, . . . , M , (2.49)

where µk
t denotes a characteristic associated to the density of x t |xk

t−1. This characteristic could be the

mean E(x t |xk
t−1), the mode, a draw, or some other likely value of the state x t given xk

t−1. The form of

the approximating density is designed so that

q(k |y1:t ) ∝ωk
t−1

∫
p(y t |µ

k
t )p(x t |xk

t−1d x t )=ωk
t−1p(y t |µ

k
t ). (2.50)

Thus, if q(x t |k , y 1:t ) is defined as p(x t |xk
t−1), the importance PDF (2.49) can be rewitten as the product

q(x t ,k |y1:t ) ∝ q(k |y1:t )q(x t |k , y 1:t ). (2.51)
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In conclusion, in order to sample from p(x t ,k |y1:t ), we sample from the alternative importance

PDF q(x t ,k |y1:t ). This is done by first simulating the index k with probability λk proportional to

q(k |y1:t ) =ωk
t−1p(y t |µk

t ) in (2.50) and then discarding the index k sample x
( j )
t from the marginalized

PDF p(x t |y 1:t ). That is, once the index k is sampled, we sample x
( j )
t just in the same way as done by

SIR. The weights λk are called the first-stage weights. The so-called second stage weights, say ω
( j )
t , are

given as the ratio of equations (2.48) and (2.49); that is

ω
( j )
t ∝

p(y t |xk ( j )

t )

p(y t |µk ( j )

t )
(2.52)

The following pseudo-code (Algorithm 8) summarizes the ASIR PF algorithm.

Algorithm 8 ASIR PF

Initialization t = 0

for k = 1 to M do

Sample x (k)
0 ∼ p(x0)

end for

for t = 1 to N do

Step 1 Auxiliary variable resampling step

for k = 1 to M do

Select and calculate µ(k)
t associated to the conditional PDF of (x t |x (k)

t−1)

Calculate the first stage weights λ(k)
t = q(k |y1:t ) in (2.50)

end for

for k = 1 to M do

Normalize the first stage weights λ̃
(k)
t = λ(k)

t∑M
i=1 λ

(k)
t

end for

Sample with replacement the index k M
j=1

according to the computed first stage weights.

Step 2 Importance sampling step

for j = 1 to M do

Sample x
j
t ∼ q(x t |k ( j ), y 1:t ) = p(x t |xk ( j )

t−1) as in the SIR filter, that is

Calculate the second stage weights ω
( j )
t using (2.52)

end for

for k = 1 to M do

Normalize the second stage weights ω̃(k)
t = ω(k)

t∑M
k=1 ω

(k)
t

end for

Step 3 Second Resampling step

Resample with replacement the particles x (1)
t , . . . , x (M)

t according to importance weights{
ω̃(1)

t , . . . ,ω̃(M)
t

}

end for

In contrast to the SIR approach, under the ASIR approach, one simulates from particles that have

high predictive likelihood. That is, making proposals with high conditional likelihood causes that par-

ticles with very low likelihoods will not be resampled at the second stage of the filter. Also, it is expected

that the weights (2.52) under the ASIR are much less variable than the ones under the SIR PF variant.
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Following, the so-called extended particle filter (EPF) variant is introduced. This PF variant aims

to improve upon the SIR particle filter variant by using an “ideal” proposal PDF; that is done by using

a Gaussian proposal PDF which includes the information provided by the last observation.

2.4.5 The Extended Particle Filter

The extended particle filter (EPF) is a hybrid method used for nonlinear online estimation. This parti-

cle filter variant combines a non-simulation based approach (the EKF) with the sequential Monte Carlo

particle filter approach. The key feature of this filter is that a Gaussian EKF approximation is used as the

proposal distribution for a particle filter (de Freitas, Niranjan, Gee, and Doucet 2000; Van der Merwe,

Doucet, de Freitas, and Wan 2000). Note that since the proposal PDF which is used includes the infor-

mation provided by the last observation, this Gaussian PDF is considered optimal.

Under the EPF, one samples the particles x
( j )
t from the Gaussian importance PDF obtained via the

EKF. That is, x
( j )
t ∼ q(x

( j )
t |x ( j )

t−1, y 1:t ) ⊜ N (x̄
( j )EK F

t ,Σ( j )EK F

t
) and thus the corresponding expression for

the importance weights in equation (2.38) is given by

ω
( j )
t ∝

p(y t |x
( j )EK F

t )p(x
( j )EK F

t |x ( j )
t−1)

N (x
( j )
t ; x̄

( j )EK F

t ,Σ( j )EK F

t
)

ω
( j )
t−1, (2.53)

and by

ω
( j )
t ∝

p(y t |x
( j )EK F

t )p(x
( j )EK F

t |x ( j )
t−1)

N (x
( j )
t ; x̄

( j )EK F

t ,Σ( j )EK F

t
)

, (2.54)

if resampling takes place at every time step (all ω
( j )
t−1 = 1/M ). The following pseudo-code (Algorithm 9)

on page 39 summarizes the general EPF algorithm.
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Algorithm 9 Extended PF (EPF)

Initialization t = 0

for j = 1 to M do

Sample x
( j )
0 ∼ p(x0) and fixed known parameters.

end for

for t = 1 to N do

Step 1 Importance sampling step

for j = 1 to M do

Step 2 Prediction step

Compute Jx t−1
, and Jηt

as in equation (2.19).

Compute the predictive expectation x̄
( j )

t |t−1
and covariance Σ

( j )
x t |t−1

using

x̄
( j )

t |t−1
= f (x

( j )
t−1,0) and

Σ
( j )
x t |t−1

= J
( j )
x t−1

Σ
( j )
x t−1|t−1

J
′( j )
x t−1

+ J
( j )
ηt

Qt J
′( j )
ηt

, respectively.

Step 3 Kalman Gain step

Compute Jx t
, and Jνt

as in equation (2.20).

Compute the prediction estimate y
( j )

t |t−1
and covariance Σ

( j )
y t |t−1

using equations (2.26) and (2.27),

respectively.

y
( j )

t |t−1
= h

( j )

t |t−1
= h(x̄

( j )

t |t−1
,0)

Σy t |t−1
= J

( j )
x t

Σ
( j )
x t |t−1

J
′( j )
x t

+ J
( j )
νt

Rt J
′( j )
νt

Compute the Kalman Gain Kt with equation (2.28).

Kt =Σ
( j )
x t |t−1

J
′( j )
x t

Σ
−1( j )
y t |t−1

Step 4 Filtering step

Compute the filtering expectation x̄ t |t and covariance Σx t |t using (2.29) and (2.30), respectively.

x̄
( j )EK F

t = x̄
( j )

t |t−1 +Kt (y t − y
( j )

t |t−1)

Σ
( j )EK F

t
=Σ

( j )
x t |t−1

−Kt J
( j )
x t

Σ
( j )
x t |t−1

Sample x
( j )
t ∼ q(x

( j )
t |x ( j )

t−1, y 1:t )⊜N(x̄
( j )EK F

t ,Σ( j )EK F

t
)

end for

for j = 1 to M do

Evaluate the importance weights up to a normalizing constant.

ω
( j )
t ∝ p(y t |x

( j )EK F

t ) p(x
( j )EK F

t |x ( j )
t−1)

q(x
( j )
t |x ( j )

t−1,y t )
using equation (2.53) or equation (2.54), as appropriate.

end for

for j = 1 to M do

Normalize the importance weights ω̃
( j )
t = ω

( j )
t∑M

i=1ω
(i )
t

.

end for

Step 5 Resample the discrete PDF to obtain a sample of size M .

Multiply/Supress particles x
( j )EKF

t according to high/low importance weights, ω̃
( j )
t

end for



40 CHAPTER 2 DYNAMIC STATE ESTIMATION METHODOLOGY

2.4.6 The Unscented Particle Filter

The unscented particle filter (UPF) is a novel method developed to tackle the nonlinear, non-Gaussian,

on-line estimation problem; see Van der Merwe, Doucet, de Freitas, and Wan (2001) and Van der Merwe

(2004). Similarly to the EPF, the UPF is a hybrid method which combines a non-simulation based ap-

proach (the UKF) with the sequential particle filter approach. In contrast to the EPF, the UPF uses the

UKF Gaussian approximation as an optimal proposal distribution.

Thus, in this case, the particles x
( j )
t are sampled from the Gaussian importance PDF obtained via

the UKF. That is, x
( j )
t ∼ q(x

( j )
t |x ( j )

t−1, y 1:t ) ⊜ N(x̄
( j )UK F

t ,Σ( j )UK F

t
) and thus the corresponding expression

for the importance weights in equation (2.38) is given by

ω
( j )
t ∝

p(y t |x
( j )UK F

t )p(x
( j )UK F

t |x ( j )
t−1)

N(x
( j )
t ; x̄

( j )UK F

t ,Σ( j )UK F

t
)

ω
( j )
t−1, (2.55)

and by

ω
( j )
t ∝

p(y t |x
( j )UK F

t )p(x
( j )UK F

t |x ( j )
t−1)

N(x
( j )
t ; x̄

( j )UK F

t ,Σ( j )UK F

t
)

, (2.56)

if resampling takes place at every time step (all ω
( j )
t−1 = 1/M ).

The pseudo-code in Algorithm 10 (see page 41) summarizes the general UPF algorithm.

The authors of the UPF, Van der Merwe et al. (2001), state that a particle filter with a proposal dis-

tribution obtained using the UKF is able to outperform not only the EKF and the UKF but also any

other standard PF variants. As stated in Subsection 2.3.3, the UKF is able to provide better mean and

covariance estimates than its counterpart EKF. Moreover, the UKF is able to generate heavier tailed dis-

tributions than the EKF, but it can struggle when dealing with general non-Gaussian distributions. A

careful glance to the UPF’s pseudo-code indicate that its implementation results relatively more com-

plex.

Particularly, we believe that a reason for the mentioned superior performance (Chapter 4 will cor-

roborate this) of the UPF is that it is a hybrid approach obtained by combining the non-simulation

based UKF algorithm and the particle filtering methodology. The accuracy attained by the UKF to-

gether with the lack of distributional assumptions of the particle filters make of the UPF a worthy

alternative to deal with more complex models which are highly nonlinear or largely departing from

normality.
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Algorithm 10 Unscented PF (UPF)

Initialization t = 0

Set parameter values: α, β and κ.

Compute the dimension of the augmented state: na = nx +nη+nν

for j = 1 to M do

Sample x
( j )
0 ∼ p(x0) and set:

x̄
( j )
0 = E(x0

( j ))

Σ
( j )
0 = E

(
(x0

( j ) − x̄
( j )
0 )(x0

( j ) − x̄
( j )
0 )′

)

x̄
( j )a
0 = E(x

( j )a
0 ) = ((x̄

( j )
0 )′,0,0)′

Σ
( j )a
0 = E

(
(x

( j )a
0 − x̄

( j )a
0 )(x

( j )a
0 − x̄

( j )a
0 )′

)
and fixed known parameters.

end for

for t = 1 to N do

Step 1 Importance sampling step

for j = 1 to M do

Step 2 Update the particles with the UKF

Compute the sigma points

χ
( j )a
t−1 = [x̄

( j )a
t−1 , x̄

( j )a
t−1 ±

(√
(na +λ)Σ

( j )a
t−1

)
)]

Time update (propagate particles into the future)

χ
( j )x

t |t−1
= f (χ

( j )x
t−1 ,χ

( j )η
t−1 ) x̄

( j )

t |t−1
=

2na∑

i=0

ω(m)
i

χ
( j )x

i ,t |t−1

Σ
( j )

t |t−1
=

2na∑

i=0

ω(c)
i

(χ
( j )x

i ,t |t−1
− x̄

( j )

t |t−1
)(χ

( j )x

i ,t |t−1
− x̄

( j )

t |t−1
)′

y
( j )

t |t−1
= h(χ

( j )x

t |t−1
,χ

( j )v
t−1 ) ȳ

( j )

t |t−1
=

2na∑

i=0

ω(m)
i

y
( j )

i ,t |t−1

Measurement update (incorporate new observation)

Σỹ t , ỹ t
=

2na∑

i=0

ω(c)
i

(y
( j )

i ,t |t−1
− ȳ

( j )

t |t−1
)(y

( j )

i ,t |t−1
− ȳ

( j )

t |t−1
)
′

Σx t , ỹ t
=

2na∑

i=0

ω(c)
i

(χ
( j )x

i ,t |t−1
− x̄

( j )

t |t−1
)(y

( j )

i ,t |t−1
− ȳ

( j )

t |t−1
)′

Kt =Σx t , ỹ t
Σ
−1
ỹ t , ỹ t

x̄
( j )UK F

t = x̄
( j )

t |t−1
+Kt (y t − ȳ

( j )

t |t−1
) Σ

( j )UK F

t =Σ
( j )

t |t−1
−KtΣỹ t , ỹ t

K
′
t

Sample x
( j )
t ∼ q(x

( j )
t |x ( j )

t−1, y 1:t )⊜N(x̄
( j )UK F

t ,Σ
( j )UK F

t )

end for

for j = 1 to M do

Evaluate the importance weights up to a normalizing constant.

ω
( j )
t ∝ p(y t |x

( j )UK F

t ) p(x
( j )UK F

t |x ( j )
t−1)

q(x
( j )
t |x ( j )

t−1 ,y t )
using equation (2.53) or equation (2.54), as appropriate.

end for

for j = 1 to M do

Normalize the importance weights ω̃
( j )
t = ω

( j )
t∑M

i=1
ω(i )

t

.

end for

Step 3 Resample the discrete PDF to obtain a sample of size M .

Multiply/Supress particles x
( j )UKF

t according to high/low importance weights, ω̃
( j )
t

end for
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2.4.7 Final Remarks

In summary, the present chapter dealt with the theory of optimal filtering, that is, optimal latent-state

estimation, specially in a non-standard framework. Herein, a survey of different nonlinear filters is

provided, including the gold standard filter for linear Gaussian models: the Kalman filter. The level

of detail in the description of all the algorithms is chosen having mostly a practitioner researcher in

mind, but aiming to be meticulous enough for all users. Indeed we make a comprehensive coverage of

all the filters that are later used within several Monte Carlo experiments carried out in this work.

As mentioned in Section 2.4, the particle filtering methodology is more flexible than the previously

described EKF and UKF filters. Particularly, the particle filtering methodology does not impose lin-

earity nor distributional restrictions, which makes it more suitable for the estimation of non-standard

dynamic state-space models.

We end this chapter by providing Tables 2.1–2.3. Table 2.1 summarizes the main features of three

non simulation-based filters (KF, EKF and UKF), which have been used to improve upon existing par-

ticle filters. In Table 2.2, we provide a summary of the main features related to the historical evolution

of the particle filter variants that have been fully described in this chapter: the SISR, SIR, ASIR, EPF

and UPF. Later on, when implementing these filters, some of them will be modified as needed. For

instance, a SIR particle filter variant that uses a fully adapted proposal distribution will be called by us:

optimal sampling importance resampling (SIRopt). Similarly, the EPF nonlinear filter (that uses the

EKF) will be modified to deal with a linear and Gaussian dynamic model; that is, by using the KF in

place of the EKF. The resulting filter will be called Kalman particle filter (KPF); being clearly a special

case of the EPF particle filter variant. All these filters will

Table 2.3 (also presented in Acosta and Muñoz (2007)) displays a summary of the form taken by the

importance weights under the different particle filter variants studied. The form of these weights vary

according to the adopted proposal or importance PDF q(x
( j )
t |x ( j )

t−1, y t ). Be reminded that the generic

form of the importance weights is ω
( j )
t ∝

p(y t |x
( j )
t )p(x

( j )
t |x ( j )

t−1)

q(x
( j )
t |x ( j )

t−1,y t )
ω

( j )
t−1 as given in equation (2.38).

The following two chapters (Chapter 3 and 4)are devoted to filtering dynamic models in a linear

Gaussian context and in a nonlinear non-Gaussian framework, respectively. On one hand, Chapter 3

illustrates the performance of a subset (or special cases) of the described algorithms – the KF, SIR,

SIRopt6, ASIR, and KPF7 – in a linear Gaussian context. On the other hand, Chapter 4 illustrates the

performance of all described algorithms used in a nonlinear non-Gaussian context; say the EKF, UKF,

SIR, ASIR, EPF and UPF filters. In subsequent chapters, some of these algorithms are further modified

to deal with the simultaneous estimation of states and model parameters.

6the fully adapted sampling importance resampling (SIRopt) uses the optimal proposal distribution of the form

q(x
( j )
t |x( j )

t−1
, y t ) = p(x

( j )
t |x ( j )

t−1
, y t ) as mentioned by Doucet (1998)

7being in the linear Gaussian context, we call this filter KPF instead of EPF because it uses the normal distribution pro-

vided by the KF as the optimal proposal distribution. The EPF uses, instead, the normal distribution obtained by the EKF
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Table 2.1: Historical evolution of the studied non-simulation based filters that tackle solely the estimation of the states.

Filter Authors (year) Stylized Featuresa Other Remarks

KF Kalman (1960); Kalman and Bucy (1961) Provides an optimal and closed form

solution in a linear and Gaussian context

Linear filter

EKF Wishner, Tabaczynski, and Athans (1969)

Anderson and Moore (1979)

Approximates the the two nonlinear

functions involved in the state-space model.

Uses a first order Taylor

series expansion to linearize such nonlinear functions.

Nonlinear filter

UKF Wan and Van der Merwe (2000, 2001)

Julier (2002); Julier and Uhlmann (1997, 2004)

Approximates the filtering distribution of the states

through the specified nonlinear model.

Uses a minimal set of deterministically chosen (weighted) sigma points

that are propagated (in time) through the true nonlinearity,

and are then used to produce the Gaussian approximation

to the filtering PDF p(x|y 1:t ).

Nonlinear Filter

aAll these filters approximate the posterior distribution of the states by a Gaussian distribution
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Table 2.2: Historical evolution of the studied simulation based filters that tackle solely the estimation of the states.

Particle Filter Authors (year) Resampling Scheme When to resample? Stylized Features Other Remarks

SISR Version of:

Gordon et al. (1993)

Multinomial At every time step Uses the transition prior

as a proposal PDF.

First operational particle

filter; also known as

Bootstrap filter.

Version of:

Kitagawa (1996)

Multinomial,

Stratified

At every time step Uses the transition prior

as a proposal PDF

Named in this work: SIR PFa

The author concludes that

the stratified scheme

is more efficient (easy to

implement and reduces

the Monte Carlo variation).

ASIR Pitt and Shephard (1999) Residual At every time step Appends an auxiliary

index-variable k to the

state vector x t and

thus samples from a

higher dimensional

state vector (x t ,k).

Uses a function of the past

states µk
t , being E (xt |xt−1)

the most commonly used, to

pre-select more likely

state-particles.

The authors mention that

the second resampling step

could be optional

EPF de Freitas et al. (2000) Residual At every time step Uses the normal distribution

obtained via the EKF as a

proposal PDF.

Named by us KPF when the

KF is used as a proposal PDF.

UPF Van der Merwe et al. (2001) Residual At every time step Uses the normal distribution

obtained via the UKF as a

proposal PDF.

aThe SIRopt PF variant arrives when instead of the transition prior, a fully adapted proposal (as mentioned by Doucet (1998)) is used
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Table 2.3: Form of the importance weights varying according to the adopted proposal or importance PDF q(x
( j )
t |x ( j )

t−1, y t ) under each filter

studied. The generic form of the importance weights given by ω
( j )
t ∝

p(y t |x
( j )
t )p(x

( j )
t |x ( j )

t−1)

q(x
( j )
t |x ( j )

t−1,y t )
ω

( j )
t−1 in equation (2.38)

Imp. PDF Imp. weights form Some Remarks

Filter q(x
( j )
t |x ( j )

t−1, y t ) ω
( j )
t ∝

SISR PF p(x
( j )
t |x ( j )

t−1) p(y t |x
( j )
t )ω

( j )
t−1

See equation (2.41)

These weights are reduced to the expression in

equation (2.44) when resampling takes place

at every time step.

EPF N (x̄
( j )EK F

t ,Σ( j )EK F

t
)

p(y t |x
( j )EK F

t )p(x
( j )EK F

t |x ( j )

t−1)

N (x̄
( j )EK F

t ,Σ
( j )EK F

t )
ω

( j )
t−1

See equation (2.53)

These weights are reduced to the expression in

equation (2.54) when resampling takes place

at every time step.

UPF N (x̄
( j )UK F

t ,Σ( j )UK F

t
)

p(y t |x
( j )UK F

t )p(x
( j )UK F

t |x ( j )
t−1)

N (x̄
( j )UK F

t ,Σ
( j )UK F

t )
ω

( j )
t−1

See equation (2.55)

These weights are reduced to the expression in

equation (2.56) when resampling takes place

at every time step.

ASIR PF q(x t ,k |y1:t ) ∝
p(y t |µk

t ) p(x t |xk
t−1)ωk

t−1

See equation (2.49)

p(y t |xk( j )

t )

p(y t |µk( j )

t )
; λk

t ∝ p(y t |µk
t ) w k

t−1

See equation (2.52)

The auxiliary variable k is introduced

to aid the task of simulation. When ASIR is implemented,

first the index k is sampled according to

the so-called first stage weights λk
t .

Once the index k is sampled,

the state-particle x
j
t are sampled

as done by the SIR PF, but according to

the so-called second-stage weights ω
( j )
t

obtained as the ratio of equations (2.48) and (2.49).
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BENCHMARK SIMULATION STUDY: FILTERING IN A

LINEAR FRAMEWORK

This chapter aims to illustrate the performance of the particle filtering methodology in a linear and

Gaussian context. For that reason, we conduct two exhaustive Monte Carlo studies confronting some

existing particle filter variants (or special cases of those) already described in Chapter 2 –named the

sampling importance resampling (SIR), the adapted sampling importance resampling (special case of

SISR PF, called by us SIRopt), the auxiliary sampling importance resampling (ASIR), and the special

form of the extended particle filter (called by us KPF)– in contraposition to the analytical and well-

known Kalman filter. Notice that all particle filters studied are variants of the generic SISR particle

filter, but are mainly distinguished by the use of a different proposal PDF or the adoption of a distinct

resampling scheme; see Table 2.2.

To achieve our goal, two apparently simple but important dynamic linear processes are chosen as

benchmark models: 1) the so-called local level model, also known as random walk plus noise model,

and 2) the contaminated AR(1) model, also known as AR(1) plus noise model. Consequently, we carry

out two distinguishing simulation experiments corresponding to the two chosen models: the non-

stationary local level model and the stationary AR(1) plus noise model.

This chapter is organized as follows. In Section 3.1, a generic state-space formulation of the linear

models under study is specified. Also, therein some issues regarding our interest in the two chosen

models are stated. Section 3.2 considers the general procedure used in the design of the simulation

studies. This general procedure undertakes three steps: Data and State Generation, Filtering Estima-

tion and Filtering Performance Criteria Computation. For completion a sketch illustrating the compar-

ison criteria used in both the non-simulation based filters and the different PF variants, is given. This

section also introduces the notation and formulae needed to define the criteria used for comparing all

47
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the filters; additionally, some implementation issues are pointed out. This section concludes with a

summary of the general simulation settings for the Monte Carlo (MC) experiments.

Section 3.3 presents the simulation study I dealing with the linear and Gaussian but non-stationary

dynamic model named local level model. Therein, the state-space formulation of the model is spec-

ified and the relationship between the traditional ARIMA(0,1,1) process and the structural local level

model is explicited. Also, for Np = 200 particles, the corresponding simulation results, remarks and

conclusions for simulation study I are reported, including a measure of degeneracy defined as the

number of unique particles at the end time-period t = T . Additional Monte Carlo studies are con-

ducted to determine the impact of increasing the number of particles and/or the time series length

over the statistical performance of the chosen particle filters. using representative signal-to-noise-

ratio settings.

Likewise, Section 3.4 deals with the simulation study II; in this case, the linear and Gaussian dy-

namic model under study is the stationary AR(1) plus noise model. Therein, the state-space formu-

lation of the model is specified and some specific simulation settings are defined. Also, for Np = 200

particles, the corresponding simulation results, remarks and conclusions for simulation study II are

reported, including a measure of degeneracy. Additional Monte Carlo studies are also conducted to

determine the impact of increasing the number of particles and/or the time series length over the sta-

tistical performance of the chosen particle filters.

To end up the chapter, in Section 3.5, final remarks and conclusions are stated.

We remark that in this chapter, all existing model parameters are assumed to be fixed and known

and the stratified resampling scheme is adopted. We show all our findings in an empirical fashion

using Monte Carlo experiments and put special effort in assessing the impact of the so-called signal-

noise-ratio1 (SNR) over the statistical performance of the studied filters.

3.1 Linear Models Under Study

As aforementioned, to illustrate how the chosen filters perform in a linear context, we use as a bench-

mark two linear dynamic models commonly studied by several authors and under different approaches:

the non-stationary local level model and the stationary AR(1) plus noise model. See among others West

and Harrison (1989), Harvey (1996), Kitagawa (1996), Doucet, de Freitas, and Gordon (2001), Tanizaki

(2001), Durbin and Koopman (2001), Stock and Watson (2007), Pellegrini (2009) and Rodriguez (2010).

Following, a generic state-space formulation for the two dynamic linear models under study is

provided. Specifically, the state transition equation for these two models can be expressed as

xt =φ1xt−1 +ηt (3.1)

1concept coming from the engineering terminology indicating a measure of the relative variation of the state evolution

equation to the observation equation; see West and Harrison (1989), p. 47.
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whereφ= 1 indicates that we are dealing with the local level model. On the other hand, |φ| < 1 specifies

a stationary AR(1) plus noise process. The corresponding measurement equation is specified by

yt = xt +νt . (3.2)

Notice that the assumed uncorrelated transition and measurement disturbances ηt and νt could be

non-Gaussian. However, unless stated otherwise, it is assumed that the state noise ηt follows a Gaus-

sian distribution with mean zero and variance σ2
ηt

and that the measurement noise νt also follows a

Gaussian distribution with mean zero and variance σ2
νt

. Consequently, the sequences defined by the

disturbances ηt and νt are not only uncorrelated but also mutually independent.

The above equations (3.1) and (3.2) clearly specify a linear, Gaussian and (non-) stationary dynamic

model state-space formulation. As known, if |φ| < 1, the state-space model just defined is a stationary

one; φ= 1 implies non-stationarity. A graphical representation of three exemplar runs of the generated

univariate data yt and corresponding state values xt with SN R = 1 is displayed in Figure 3.1, where the

local level model (with φ= 1) plots are shown in panel a) and the ones for the AR(1) plus noise model in

panels b) and c) for φ= 0.3 and φ= 0.8, respectively. Panel a) illustrates the seemingly non-stationary

character of the local level model; the generated state values xt do not vary about a fixed level. On the

contrary, panels b) and c) portray the stationary behavior typical of the specified contaminated AR(1)

models; the generated state values xt appear to vary about a fixed level.

Following, we state the reasons for our interest in these two models:

1. The local level model is the simplest form of the so-called structural time series models which are

a keystone within the time series analysis. Indeed, literature shows that they are important for the

further definition and analysis of more complex models (Harvey 1996).

2. The studied linear models are related to the traditional and well-known Box and Jenkins’ ARIMA

time series processes (Box and Jenkins 1976). It can be shown that the reduced form of the local level

model is represented by the ARIMA(0,1,1) model; see for instance Durbin and Koopman (2001).

Likewise, the reduced form of the AR(1) plus noise model can be represented as an ARIMA(1,0,1)

process; see among others Wei (1994), Gómez and Maravall (1994) and Shumway and Stoffer (2000).

3. The two chosen models are not only commonly found in the literature as illustrative examples but

also have multiple applications. For instance, see West and Harrison (1989), Doucet, de Freitas,

and Gordon (2001), Stock and Watson (2007), Pellegrini (2009) and Rodriguez (2010) for academic

and practical applications. Particularly, Stock and Watson (2007) propose the combination of the

local level model and the so-called stochastic volatility model to reflect the main features of the

U.S. inflation time series.

4. Most important, it is well known that when dealing with a linear and Gaussian dynamic model

where all parameters are known, a closed form solution exists and it is given by the non-simulation

based KF (pseudo-code in Algorithm 1), which full filter description is given in Section 2.3. The
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(a) Local level model (φ= 1)
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(b) AR(1) plus noise model with φ= 0.3
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(c) AR(1) plus noise model with φ= 0.8

Figure 3.1: Three exemplar runs of the generated data y t (black/continuous) and simulated states x t

(red/dashed) for each of the three models specified by φ= 1, φ= 0.3, and φ= 0.8, respectively. Results

shown for SN R = 1 with σ2
η =σ2

ν = 0.1.

fact that an analytical filtering solution exists helps us to get acquainted with the implementation

issues of the simulation based SIR, SIRopt, ASIR and KPF algorithms and to assess their behavior

in contrast to the analytical KF approach. Thus, this is an ideal context not only to illustrate the

performance of the particle filtering methodology in contraposition with the gold standard KF but

also, at the same time, to carry out a thorough MC study on the impact of the signal-to-noise-ratio

over the quality of the estimations.
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In the literature, one finds some references to the use of the signal-to-noise-ratio concept in relation

to applications and/or estimation issues. For instance, according to West and Harrison (1989), the

major number of applications of the local level model with constant variances (called by them: con-

stant model) are in short term forecasting and control with, typically, signal-to-noise-ratios span-

ning from 0.001 to 0.2. Also, Pellegrini (2009) considers some MC studies involving the estimation of

the parameters of the local level model with signal-to-noise-ratio values q ∈ {1,2}. This author also

considers an empirical application where the local level model is fitted to the daily Pound/Euro

exchange rate time series (T = 1626 and estimated value of the signal-to-noise-ratio q̂ = 2.338)2.

To our knowledge, no one has performed an exhaustive MC study of the influence of the signal-

to-noise-ratio on the quality of the estimations of different competing filters that usually appear

in the literature in separate studies. We carry out such a study and show (empirically) through

simulations the impact of the signal-to-noise-ratio over the statistical performance of the five cho-

sen competing filters. The chosen settings for the signal-to-noise-ratio are the 13 values in the set

q ∈ {0.0001,0.001,0.01,0.05, 0.1, 0.2, 0.3, 0.5,1,2,3,5,10,100}, which clearly cover the values usually

found in the consulted literature as well as extremely low/high values. Indeed, we consider this as

one of the main contributions of this chapter.

Next, we provide the general procedure to be followed for any benchmark Monte Carlo Study which

is tackled.

3.2 Simulation Design

The general procedure for our benchmark Monte Carlo studies undertakes the following three steps:

• STEP I: Data and state generation

• STEP II: Filtering estimation

• STEP III: Filtering performance criteria computation

Following, we provide a detailed description of the aforementioned general simulation steps. Notice

that within every simulation step, we further specify the needed instructions to carry out the MC ex-

periments with the two chosen models.

3.2.1 STEP I: Data and State Generation

Generate S = 100 realizations of the chosen dynamic model. For the models studied in this chapter,

this is carried out as follows:

2They use quasi-maximum likelihood (QML) estimation to obtain this value.



52 CHAPTER 3 BENCHMARK SIMULATION STUDY: FILTERING IN A LINEAR FRAMEWORK

(Ia) Specify the value for the parameter φ. Remind that φ = 1 indicates that we are dealing with the

local level model and if |φ| < 1 with the stationary AR(1) plus noise model. In this work, we will

handle values of φ ∈ {0.3,0.8,1}

(Ib) Specify the measurement noise variance σ2
νt

= 0.1, the time series data length T = 200 and the

value of the transition noise variance σ2
ηt

. Notice that σ2
ηt

takes a value from the second column

of Table 3.1 that contains 13 different settings.

(Ic) Generate the random numbers ηt and νt . In this case, both noises are generated from a univariate

normal distribution ηt ∼N (0,σ2
ηt

) and νt ∼N (0,σ2
νt

), respectively.

(Id) Simulate the state-values x t and data y t , t = 1, . . . ,T , from the transition equation (3.1) and the

measurement equation (3.2), respectively.

(Ie) Repeat (Ia)–(Id) S = 100 times.

As aforementioned, we consider 13 simulation settings varying accordingly to the 13 specified values

of the state noise variance parameter σ2
η; the true model measurement noise variance parameter is

fixed to σ2
ν = 0.1. For the sake of simplicity, in the sequel we refer to these different scenaries in terms

of the so-called signal-to-noise-ratio which is defined as the ratio q = σ2
η

σ2
ν

; see columns two and three

in Table 3.1. Notice that different signal-to-noise-ratio settings are chosen and ordered moving from a

non informative observations case (σ2
ν >> σ2

η) up to a very informative observations case (σ2
ν << σ2

η).

In the sequel, we refer to signal-to-noise-ratio values by SN R or q , indistinctively. The entries on the

last two columns of Table 3.1, related to the local level model, will be commented on later on.

We remark that in this chapter all model parameters are assumed to be fixed and known. Therefore,

we will focus on filtering the states via the chosen filters.

3.2.2 STEP II: Filtering Estimation

Herein, we provide the notation and general formulae needed in order to define the criteria for com-

paring the filters. Then, we list the further steps needed in order to perform the filtering estimation.

Notation and Formulae

Denote by T , Np , and S the total number of observations (time series length), the number of particles,

and the number of generated data sets, respectively.

For the replication set i , i = 1, . . . ,S, let {x t ,[i ], t = 1, . . . ,T } be the set formed by all the ‘true’ state

variable x t ,[i ] at time t . Likewise, denote by {x̂ f
t ,[i ], t = 1, . . . ,T } the i th set containing the filtering esti-

mates x̂ f
t ,[i ] obtained through the specified filter, say f. Recall that the estimate x̂ f

t ,[i ] is just the filtered

mean computed directly in case of the non-simulation based filter, in this case the KF. However, when

dealing with any of the particle filter variants, this estimate is computed as the arithmetic average of
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Table 3.1: Settings for the simulation studies with σ2
ν = 0.1

LLM

Case σ2
η SNR (q) Type θa Ab

1 0.00001 0.0001 Non informative −0.99 0.01

2 0.0001 0.001 ↓ −0.97 0.03

3 0.001 0.01 ↓ −0.90 0.10

4 0.005 0.05 ↓ −0.80 0.20

5 0.01 0.1 ↓ −0.73 0.27

6 0.02 0.2
... −0.64 0.36

7 0.03 0.3
... −0.58 0.42

8 0.05 0.5
... −0.50 0.50

9 0.1 1
... −0.38 0.62

10 0.2 2 ↓ −0.27 0.73

11 0.5 5 ↓ −0.15 0.85

12 1 10 ↓ −0.08 0.92

13 10 100 Very informative −0.01 0.99

a Corresponding MA parameter value of the reduced form ARIMA(0,1,1)

process
b Limiting value of the adaptive coefficient defining the rate of adaptation to

new data: A = q(
p

(1+4/q)−1)/2, West and Harrison (1989), p. 53.

the Np posterior particles, x̃
f( j )
t , j = 1, . . . , Np , generated by the specific particle filter f. That is, for a

replication set i , a chosen particle filter variant f and time index t , the filtering estimate is given by

x̂ f
t ,[i ] =

1

Np

Np∑

j=1

x̃
f( j )
t . (3.3)

Then, for each filter f, we compute the root mean square error (RMSE) over time corresponding to

replication set i as:

R MSE f
[i ] =

√√√√ 1

T

T∑
t=1

(
x t ,[i ] − x̂ f

t ,[i ]

)2
. (3.4)

Additionally, a measure of the computational performance of the filters is defined. That is, for each

filter f and replication set i , the total elapsed time for estimating the states of a time series of length T ,

is computed as:

C PU f
[i ] =

T∑
t=1

C PU f
t ,[i ]. (3.5)
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Filtering Steps

For each filter f , obtain both the statistical and computational measure of performance of the studied

filter f ; these are based on the previously defined root mean square error (RMSE) and the CPU time

criterion, respectively. Specifically, assuming known model parameters and given the simulated data

y1:T = y1, . . . , yT generated in step I), for replication set i , i = 1, . . . ,S, proceed to

(IIa) Compute the filtering estimates x̂ f
t ,[i ]

, t = 1, . . . ,T , using the filter in question, say f . Recall that

f ∈ {KF, SIR, SIRopt, ASIR, KPF}.

(IIb) Compute R MSE f
[i ]

: the RMSE over time index t = 1, . . . ,T with equation (3.4)

(IIc) Compute C PU f
[i ]

: the total elapsed time for a total of T observations with equation (3.5)

(IId) Repeat steps (IIa)–(IIc) S = 100 times.

Following, we explicitly provide the criteria for comparing the filters as well as the specific steps to

compute the statistical and computational measures of filtering performance.

3.2.3 STEP III: Filtering Performance Criteria Computation

The statistical performance of the filters is explicitly defined in terms of the mean and the variance over

replication sets of the root mean square errors computed in equation (3.4). In other words, for each

filter f, both Mean(R MSE )f and Var(R MSE )f are computed as the arithmetic average and variance of

R MSE f
[i ]

, i = 1, . . . ,S. Specifically,

Mean(R MSE )f =
1

S

S∑

i=1

R MSE f
[i ], (3.6)

Var(R MSE )f =
1

S −1

S∑

i=1

(
R MSE f

[i ]−Mean(R MSE )f

)2
. (3.7)

Notice that two sketches are provided for a better illustration of the simulation design and perfor-

mance criteria used. The first sketch illustrates the criteria for comparing the non-simulation based

filters; see Figure 3.2. Additionally, Appendix A, located at the end of this work, includes a sketch of the

comparison criteria for the simulation based filters; see Figure A.1.

The computational performance of the filters is defined in terms of the mean over replication sets

of the total elapsed time for estimating the states of a time series of length T already computed with

equation (3.5).

Mean(C PU )f =
1

S

S∑

i=1

C PU f
[i ]. (3.8)

Therefore, the followings specific steps must be undertaken:
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(IIIa) In step (IIb), we end up with S = 100 estimates of the RMSE: R MSE f
[i ]

; see the first column of

the second table in Figure 3.2 and Figure A.1. Based on these, obtain the mean and the variance

of the root mean square (RMSE) computed over time and over replication sets using equations

(3.6) and (3.7), respectively.

(IIIb) In step (IIc), we end up with S = 100 CPU elapsed-time estimates: C PU f
[i ]

; see the second column

of the second table in Figure 3.2 and Figure A.1. Based on these, obtain the mean CPU elapsed-

time computed over replication sets using (3.8).

Time index

Set(i ) Filter (f ) 1 2 . . . . . . T Comparison criteria

1 EKF/UKF x̂ f
1,[1] x̂ f

2,[1] . . . . . . x̂ f
T,[1] −→ RMSEf

[1] CPUf
[1]

2 EKF/UKF x̂ f
1,[2] x̂ f

2,[2] . . . . . . x̂ f
T,[2] −→ RMSEf

[2] CPUf
[2]

...
...

...
...

...
...

...
...

S EKF/UKF x̂ f
1,[S] x̂ f

2,[S] . . . . . . x̂ f
T,[S] −→ RMSEf

[S] CPUf
[S]

⇓ ⇓
Mean(RMSE)f Mean(CPU)f

Var(RMSE)f

Figure 3.2: Sketch I: Comparison criteria of non-simulation based filters EKF and UKF

We remark that we choose the statistical performance criteria presented by the authors of the un-

scented particle filter (Van der Merwe et al. 2001): the RMSE. Consequently, the general skeleton of our

main program is based on and inspired by these authors and on the technical report of Van der Merwe

et al. (2000) that develop a program-Demo which is the base for the results presented in Van der Merwe

et al. (2001). We stress, however, that the full implementation of every specific filter under study is per-

formed by the author of this PhD thesis and is one of the contributions of this work. Apart from the

statistical performance measures defined by the aforementioned authors and also used by us, we con-

structed the computational performance measure defined above and specified in equations (3.5) and

(3.8).

Following, we list the simulation settings needed to define all possible scenaries that are common

to the two carried out MC studies; further simulation settings are specified when needed.

3.2.4 Summary of General Simulation Settings

Herein, we present a summary of the simulation settings of the two Monte Carlo experiments which

have been conducted. As aforementioned, we consider two distinguishing simulations studies: Sim-
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ulation I referring to the non-stationary local level model and Simulation II when dealing with the

stationary AR(1) plus noise model.

• Filters: KF, SIRopt, SIR, ASIR and KPF

• Comparison criteria: RMSE and CPU time

• Initial state variance used in estimation procedure: P0 =σ2
η and P0 = 100 ·σ2

η (In Simulation II,

we consider only the case with P0 = 100 ·σ2
η).

• Measurement noise variance: Fixed to σ2
ν = 0.1

• State noise variance σ2
η: 13 settings defined in the second column of Table 3.1; see the corre-

sponding signal-to-noise-ratio values in the third column. In this work, we carry out an exhaus-

tive study of the impact of the signal-to-noise-ratio on the quality of the filtering estimates.

• Resampling scheme: Stratified resampling

• Number of replications: S = 100

• Number of particles: Np = 200

• Time series length: T = 200

Notice that though we first focus our attention on the performance of the different particle filters solely

for 200 particles, later we also present results which reflect how the increase on the number of particles

influence the quality of the estimation for the simulation based filters.

3.3 Simulation Study I: The Non-stationay Local Level Model

Under linearity and Gaussianity assumptions, this Monte Carlo study basically compares the perfor-

mance of some particle filter variants with the performance of the gold standard filter: the Kalman

Filter. The benchmark model in this case is the non-stationary process known as the local level model.

3.3.1 State Space Representation

The equations (3.1) and (3.2) with φ= 1 specify the state-space formulation of the linear, Gaussian and

non-stationary dynamic model known as local level model. In that case, the parametric state-space

formulation for this dynamic model can be described and subsumed by the following two equations

(see, for instance, Shephard and Harvey (1990) and Durbin and Koopman (2001)):

xt = xt−1 +ηt

yt = xt +νt

(3.9)
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To complete the state-space formulation, we must assume a distribution for the initial state variable

x0. In this particular case, x0 ∼ N(µx0
,Σx0

), the noise disturbances ηt and νt are assumed to follow a

Gaussian distribution with fixed and known variance parameters σ2
ηt

and σ2
νt

; thus only the states xt

are estimated. When the scale noise parameters are fixed and known, the local level model is called

constant model by West and Harrison (1989). Some other authors called it random walk plus noise

model; see for instance Harvey (1996).

As aforementioned, the reduced form of the local level model is an ARIMA process. Following,

the explicit relationship between a traditional ARIMA process and the structural local level model is

presented.

3.3.2 Reduced Form of the Local Level Model: an ARIMA(0,1,1) Model

The local level model can be represented as an invertible ARIMA(0,1,1) model under suitable values

for the moving average parameter θ.

Define ∆Zt = Zt − Zt−1 as the first difference for any stochastic variable Zt . Then, departing from

the state-space formulation of the local level model in (3.9), an ARIMA(0,1,1) type process can be

obtained as ∆yt = ηt +∆νt = at + θat−1 where the white noise, at , follows a Gaussian distribution,

at ∼N (0,σ2), and θ, the moving average parameter, is a function of the signal-to-noise-ratio, say

θ=
(
(q2 +4q)0.5 −2−q

)/
2; see (Harvey 1996).

In the reduced form of the local level model, the moving average parameter θ must lie in the in-

terval −1 < θ < 0. We verify this, empirically, by computing the moving average parameter value cor-

responding to the 13 settings on page 53 defined by the 13 chosen signal-to-noise-ratio values; focus

on the third and fifth columns of Table 3.1. As listed therein, for this model we consider a variety

of signal-to-noise-ratio settings including extremely low and high values, and we observe that as the

signal-to-noise-ratio q increases, the moving average parameter θ decreases. In column six of Table

3.1, we also report the measure A which defines the rate of adaptation to new incoming data; see page

53 of West and Harrison (1989). Notice that in this case, A = 1+θ. In this work, we aim to determine if

some patterns are observed on the quality of the filtering estimates as a function of the chosen signal-

to-noise-ratio values.

Following, the simulation results, remarks and conclusions regarding Simulation study I are pre-

sented.

3.3.3 Results, Remarks and Conclusions for Simulation Study I

Experimental Results

In Table 3.2, we provide the numeric results which summarize and assess the performance of the differ-

ent filters under study in handling the local level model. Firstly, this table is organized in three different

blocks where the first two correspond to the two estimation setting values used for the initial state vari-
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ance, P0 =σ2
η and P0 = 100 ·σ2

η. Each one of these blocks is composed itself of two columns containing

the two measures: Mean(RMSE) and Var(RMSE).

Secondly, being aware that by definition all particle filters at some point in time suffer the degen-

eracy problem, in the third block (last column) of Table 3.2 we report the mean and standard deviation

(mean (SD)) of the variable uNp, meaning unique number of particles at the end time-period t = T .

This is done with the aim to somehow quantify the potential degeneracy problem of all particle filter

variants under study. Finally, the average time in seconds for handling a data set containing T = 200

observations is also computed but reported afterwards in the text.

All the reported simulation results are later commented on, and, for the sake of a better under-

standing of them, different types of plots are constructed.

Table 3.2: Summary of simulation study I under 13 different settings: φ = 1, σ2
ν = 0.1, T = 200, and

Np = 200

P0 =σ2
η P0 = 100 ·σ2

η

RMSE RMSE uNp2

Setting Filter Mean Var Mean Var Mean(SD)

Case 1 σ2
η = 1e −05, SNR = 1e −04

KF 0.148 0.015 0.109 0.008 —

SIRopt 0.156 0.021 0.129 0.017 194.02 (4.88)

SIR 0.156 0.021 0.129 0.017 194.03 (4.88)

ASIR 0.158 0.021 0.134 0.018 199.69 (1.28)

KPF 0.179 0.024 0.174 0.022 35.78 (1.88)

Case 2 σ2
η = 1e −04, SNR = 1e −03

KF 0.101 0.004 0.073 9e-04 —

SIRopt 0.103 0.005 0.078 0.002 189.04 (8.74)

SIR 0.103 0.005 0.078 0.002 188.89 (8.85)

ASIR 0.106 0.005 0.081 0.003 198.23 (2.88)

KPF 0.116 0.006 0.095 0.004 59.73 (6.60)

Case 3 σ2
η = 0.001, SNR= 0.01

KF 0.109 6e-04 0.102 2e-04 —

SIRopt 0.109 6e-04 0.102 3e-04 180.43 (14.07)

SIR 0.109 7e-04 0.102 3e-04 179.65 (14.5)

ASIR 0.111 8e-04 0.103 3e-04 193.89 (4.7)

KPF 0.112 8e-04 0.105 3e-04 94.10 (8.62)

2uNp: average number (standard deviation) of unique particles at time t = T .



3.3 SIMULATION STUDY I: THE NON-STATIONAY LOCAL LEVEL MODEL 59

Table 3.2: Summary of simulation study I under 13 different settings: φ = 1, σ2
ν = 0.1, T = 200, and

Np = 200 (continued)

P0 =σ2
η P0 = 100 ·σ2

η

RMSE RMSE uNp

Setting Filter Mean Var Mean Var Mean (SD)

Case 4 σ2
η = 0.005, SNR= 0.05

KF 0.144 3e-04 0.142 2e-04 —

SIRopt 0.144 3e-04 0.144 2e-04 172.64 (17.79)

SIR 0.145 3e-04 0.144 2e-04 169.02 (19.57)

ASIR 0.145 3e-04 0.144 3e-04 185.63 (8.67)

KPF 0.145 3e-04 0.145 2e-04 121.17 (13.98)

Case 5 σ2
η = 0.01, SNR= 0.1

KF 0.165 2e-04 0.164 2e-04 —

SIRopt 0.166 2e-04 0.166 2e-04 169.22 (18.86)

SIR 0.166 3e-04 0.166 2e-04 162.43 (21.76)

ASIR 0.166 3e-04 0.165 2e-04 179.90 (10.65)

KPF 0.166 3e-04 0.166 2e-04 132.92 (17.58)

Case 6 σ2
η = 0.02, SNR= 0.2

KF 0.188 2e-04 0.188 2e-04 —

SIRopt 0.189 2e-04 0.189 2e-04 165.97 (19.88)

SIR 0.190 2e-04 0.190 2e-04 154.33 (24.43)

ASIR 0.189 2e-04 0.189 2e-04 171.82 (13.42)

KPF 0.190 2e-04 0.190 2e-04 142.20 (19.40)

Case 7 σ2
η = 0.03, SNR= 0.3

KF 0.203 2e-04 0.203 2e-04 —

SIRopt 0.204 2e-04 0.204 2e-04 164.99 (20.61)

SIR 0.204 2e-04 0.204 2e-04 148.92 (26.02)

ASIR 0.204 2e-04 0.204 2e-04 165.51 (14.83)

KPF 0.204 2e-04 0.204 2e-04 147.37 (20.25)

Case 8 σ2
η = 0.05, SNR= 0.5

KF 0.222 2e-04 0.222 2e-04 —

SIRopt 0.223 2e-04 0.223 2e-04 164.81 (20.37)

SIR 0.223 2e-04 0.223 2e-04 140.95 (27.71)

ASIR 0.223 2e-04 0.223 2e-04 156.12 (16.99)

KPF 0.223 2e-04 0.223 2e-04 153.32 (20.68)
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Table 3.2: Summary of simulation study I under 13 different settings: φ = 1, σ2
ν = 0.1, T = 200, and

Np = 200 (continued)

P0 =σ2
η P0 = 100 ·σ2

η

RMSE RMSE uNp

Setting Filter Mean Var Mean Var Mean (SD)

Case 9 σ2
η = 0.1, SNR= 1

KF 0.246 2e-04 0.246 2e-04 —

SIRopt 0.247 2e-04 0.247 2e-04 166.11 (19.85)

SIR 0.248 2e-04 0.248 2e-04 127.81 (29.28)

ASIR 0.247 2e-04 0.248 2e-04 139.86 (20.38)

KPF 0.247 2e-04 0.247 2e-04 160.82 (20.83)

Case 10 σ2
η = 0.2, SNR = 2

KF 0.268 2e-04 0.268 2e-04 —

SIRopt 0.269 2e-04 0.269 2e-04 170.23 (18.74)

SIR 0.270 2e-04 0.270 2e-04 112.15 (28.97)

ASIR 0.270 2e-04 0.271 2e-04 118.18 (23.55)

KPF 0.269 2e-04 0.269 2e-04 168.09 (19.66)

Case 11 σ2
η = 0.5, SNR = 5

KF 0.289 2e-04 0.289 2e-04 —

SIRopt 0.290 2e-04 0.290 2e-04 176.78 (15.39)

SIR 0.292 2e-04 0.292 2e-04 89.44 (25.79)

ASIR 0.297 2e-04 0.298 2e-04 87.92 (23.34)

KPF 0.290 2e-04 0.290 2e-04 175.54 (15.73)

Case 12 σ2
η = 1, SNR= 10

KF 0.299 2e-04 0.300 2e-04 —

SIRopt 0.300 2e-04 0.302 2e-04 181.93 (11.58)

SIR 0.304 2e-04 0.305 2e-04 72.13 (21.86)

ASIR 0.315 3e-04 0.315 2e-04 66.56 (20.61)

KPF 0.300 2e-04 0.300 2e-04 181.77 (12.67)

Case 13 σ2
η = 10, SNR= 100

KF 0.312 2e-04 0.312 2e-04 —

SIRopt 0.313 2e-04 0.314 2e-04 193.11 (2.85)

SIR 0.351 0.002 0.351 0.002 30.13 (10.01)

ASIR 0.373 0.002 0.369 0.001 25.66 (8.53)

KPF 0.313 2e-04 0.313 2e-04 193.31 (2.97)
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As aforementioned, we produce some figures, distinguished by the chosen signal-to-noise ratio

value denoted by q , to better illustrate the performance of the competing filters in estimating the states

for the local level model. Before proceeding to comment on the simulation results and figures, we

remark that in this chapter, on pages 62–64, we only show figures corresponding to three out of the 13

possible cases defined in Table 3.1; specifically, we present Figures 3.3–3.5 displaying results for cases

1, 9 and 13 which correspond to signal-to-noise ratio values q equal to 0.0001, 1 and 100, respectively.

The idea is to illustrate the performance of the competing filters at two extreme values of the signal-

to-noise-ratio and at a moderate value q = 1. For completion, the rest of the figures are included in

Appendix B, which can be found on the following website: http://www-eio.upc.edu/~lacosta/

AppendixB.pdf [last visited: September 2013].

In each figure, for each signal-to-noise ratio setting, we show a graphical illustration of the gen-

erating process (observations and states) as well as of the filtering performance. In other words, for

three particular sets of data, in the first row of the upper panel of these figures we plot together the

evolution of the generated observations yt and states xt |t , t = 1, . . . ,T . In the second row of this panel,

the evolution of the difference between the estimated state values and corresponding true state values

(x̂t |t − xt , t = 1, . . . ,T ) obtained via the studied filters, is displayed. Figures 3.3–3.5 (pages 62–64), with

the same y-scale, confirm the general results reported in Table 3.2 which suggest that an increase in the

signal-to-noise-ratio value q is related to less precise estimation results; we observe that the evolution

of the difference between estimated and true-state values show more variability as q increases.

For the last exemplar run and last time-index T , to further illustrate the behavior of the different

filters under study, in the bottom panel of each of the aforementioned graphs, we present the marginal

posterior densities (with corresponding histograms) estimated via the four PF variants under study

in contraposition with the exact Gaussian posterior density yielded by the gold standard KF. What is

shown in these plots is also in concordance with the results presented in Table 3.2. For example, Ta-

ble 3.2 and Figure 3.3 corresponding to Case 1 (q = 0.0001) indicate that the KPF particle filter variant

not only shows the worst performance in terms of RMSE but also the lowest average number of unique

particles at last time-index t = T . This worst performance is perfectly reflected in the histograms where

we observe that the estimated posterior density obtained via the KPF is the one that departs the most

from the density estimated by the optimal KF.
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(a) First row: Generated states and observations. Second row: Difference between estimated and true-state

values x̂t |t −xt , t = 1,. . . ,T .
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(b) Histogram (together with the estimated posterior density; black/dashed) of state values x̂T |T for last data set. The exact

posterior density obtained via the KF (black/continuous) is overlaid to each histogram.

Figure 3.3: Local level model: Case 1 with SNR q = 0.0001 (σ2
η = 1e −5 and σ2

ν = 0.1)
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(a) First row: Generated states and observations. Second row: Difference between estimated and true-state

values x̂t |t −xt , t = 1,. . . ,T .
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(b) Histogram (together with the estimated posterior density; black/dashed) of state values x̂T |T for last data set. The exact

posterior density obtained via the KF (black/continuous) is overlaid to each histogram.

Figure 3.4: Local level model: Case 9 with SNR q = 1 (σ2
η = 0.1 and σ2

ν = 0.1)
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(a) First row: Generated states and observations. Second row: Difference between estimated and true-state

values x̂t |t −xt , t = 1,. . . ,T .
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(b) Histogram (together with the estimated posterior density; black/dashed) of state values x̂T |T for last data set. The exact

posterior density obtained via the KF (black/continuous) is overlaid to each histogram.

Figure 3.5: Local level model: Case 13 with SNR q = 100 (σ2
η = 10 and σ2

ν = 0.1)
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Remarks and Conclusions for Np = 200 Particles

Based on simulation results reported in Table 3.2, considering only Np = 200 particles, we make the

following remarks and conclusions regarding the performance of the different filters under study when

handling the local level model:

First, we refer to the effect of the initial-state-variance, used in the estimation procedure, on the

statistical performance of the filters. To achieve that, we focus on the comparison of the respective

mean-RMSE3 estimates obtained at the two chosen initial state variances, P0 = σ2
η and P0 = 100 ·σ2

η,

and find that:

• For signal-to-noise-ratio values q ≤ 0.01 (Cases 1–3)4 all the filters under study are affected by the

increase of the initial state variance used in the estimation procedure; that is, all filters accuse a

reduction of the mean-RMSE when using P0 = 100 ·σ2
η as the initial state variance instead of the

true state noise variance value P0 = σ2
η. In all other cases with 0.01 < q < 100 (Cases 4–13) there

is practically no such effect.

• Therefore, based on the above results, when dealing with the local level model, in the future we

choose to use a bigger value of the true initial state variance: in this case P0 = 100 ·σ2
η is used.

This somehow goes in line with the theory encountered in the literature which suggest the use

of a diffuse prior when nothing is known about that variance (Shephard and Harvey 1990).

Second, we assess the impact of the signal-to-noise-ratio values q on the statistical performance

of the competing filters. To achieve that, we focus on the comparison of the mean-RMSE attained

at these different signal-to-noise-ratio settings and for the sake of simplicity and clarity we create

Figure 3.6. This figure depicts on the upper panel the mean-RMSE as a function of the 13 chosen

signal-to-noise-ratio values, and in the bottom panel the relative statistical performance of the com-

peting filters in relation to the SIR particle filter variant measured by the ratio RMSE(f)
RMSE(SI R)

, where f ∈
{KF, SIRopt, ASIR, KPF} denotes a competing filter. Notice that although the values displayed in these

plots correspond to the numerical results presented in second block of Table 3.2, that is when P0 =
100·σ2

η, the conclusions obtained when P0 =σ2
η are in concordance with the former diffuse case. Thus,

irrespective of the initial state variance (P0) used in the estimation procedure, we observe that:

• Starting with Case 2 (q = 0.001), for each filter the mean-RMSE increases as the signal-to-noise-

ratio value q increases. However, an apparently ill-behavior is attained at very low signal-to-

noise-ratio values as we observe that, contrary to the expected, when the signal-to-noise-ratio

value q increases from 0.0001 to 0.001, the mean-RMSE decreases; see upper panel of Figure 3.6.

We will further comment on this point at the end of the section.

3Mean-RMSE and Mean(RMSE) used interchangeably
4In this section, whenever we refer to a case, it should be understood as a case included in Table 3.2
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• Since the benchmark dynamic model is non-stationary but linear and Gaussian with known

model parameters, this implies that a closed form analytical solution exists, which is optimal

in terms of the RMSE. Further, being aware that this optimal solution is given by the KF, we de-

cide to consider the KF as the gold standard filter. In other words, in what follows we will not

only compare the different simulation based particle filters among themselves but also take as a

reference the filtering performance attained by the gold standard KF.

• For the local level model at hand, we found that, as expected, among the competing filters

the analytical KF provides the optimal filtering solution; that is, our simulation study confirms

that the gold standard KF always yields the minimum RMSE; see Figure 3.6 where the dark

circle (representing the KF) is always below or coincides with the other symbols (represent-

ing the four particle filter variants). We want to stress, however, that for the local level model

the KF is not always able to adequately filter the state; that is, even the KF may provide un-

satisfactory estimations of the mean level of the series as it is shown in Figure 3.3(a) corre-

sponding to Case 1 with signal-to-noise-ratio value q = 0.0001. Something similar, though in

a less degree, can be said for Case 2 with q = 0.001 (see Figure B.2 shown on website http:

//www-eio.upc.edu/~lacosta/AppendixB.pdf [last visited: September 2013].)

After confirming that the KF yields the best possible filtering estimates of the level for the model

at hand, our experimental results also indicate that –for a rather small number of particles Np =
200– the particle filtering methodology is able to perform (nearly) as good as the gold standard

KF at most signal-to-noise ratio values. Following, we discuss this point in detail for each signal-

to-noise-ratio setting.
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– For cases 1 and 2, corresponding to small signal-to-noise ratio values q ∈ {0.0001,0.001},

the KPF variant shows the worst statistical performance and, as expected, the analytical

KF yields the best one. The other three PF variants, SIR, SIRopt and ASIR, behave similarly

among themselves with RMSE values greater than the one obtained via the KF; see upper

panel of Figure 3.6 (and although not strictly necessary, for completion you may refer to

Figure 3.3 and Figure B.2 corresponding to the signal-to-noise-ratio values q = 0.0001 and

q = 0.001, respectively). We will further discuss this case at the end of this section.

– For case 3 with signal-to-noise ratio value q = 0.01, all particle filters, except the KPF that

shows the worse behaviour, have similar statistical performance to the gold standard KF;

see Figure 3.6 (although not strictly necessary, for completion you may refer to Figure B.3).

– For cases 4 and 5 with signal-to-noise ratio values q ∈ {0.05,0.1}, all PF variants behave sim-

ilarly among themselves with RMSE values that are slightly greater (practically the same)

than the one obtained via the KF; see Figure 3.6 (although not strictly necessary, for com-

pletion you may refer to Figures B.4 and B.5).

– For cases 6–10 with signal-to-noise ratio values q ∈ {0.2,0.3,0.5,1,2}, all PF variants achieve

similar performance to the KF; see Figure 3.6 and Figure 3.4 (although not strictly necessary,

for completion you may refer to Figures B.6–B.10).

– For cases 11 and 12 with signal-to-noise ratio values q ∈ {5,10} the SIRopt and the KPF have

similar statistical performance to the gold standard KF. The SIR and the ASIR show worse

behaviour, specially the second, as they do not reach the KF’s RMSE value; see Figure 3.6

(although not strictly necessary, for completion you may refer to Figures B.11–B.12).

– Finally, for case 13 with high signal-to-noise ratio value q = 100 both the SIR and the ASIR,

specially the second one, show worse performance. In this particular case, the best found

particle filter variant is the KPF followed by the SIRopt with RMSE values similar to the

one taken by the gold standard KF; see Figures 3.5 and 3.6, but mainly the second. We will

further discuss this case at the end of this section.

• Therefore, based on above findings and results displayed in Table 3.2 and Figure 3.6, we con-

clude that the particle filtering methodology (with Np = 200 particles) is able to reach a simi-

lar/equal statistical performance to the gold standard KF at moderate signal-to-noise-ratio val-

ues; discarding extremely low/high values. We observe that when the signal-to-noise-ratio takes

an extremely high value q = 100, the mean-RMSE yields higher values for the SIR and ASIR PF

variant; this explains partly the poor quality of the estimations obtained via these two filters in

comparison with the rest of the filters. Additionally, as previously mentioned, for extremely small

signal-to-noise-ratio values, say q ∈ {0.0001,0.001}, it is (empirically) shown that all four particle

filter variants display greater mean-RMSE values than the KF, being the KPF the worst. However,

in these two cases all filters, including the gold standard KF, fail to provide an adequate solution

for filtering the states; focus the attention on Figure 3.3(a).
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Third, in order to compare the relative statistical performance of the different filters in relation to

the SIR particle filter variant at different signal-to-noise ratio settings, we focus on the bottom panel

of Figure 3.6 which represents the measure RMSE(f)
RMSE(SI R) where f ∈ {KF, SIRopt, ASIR, KPF} denotes a com-

peting filter; values above one indicate worse performance in relation to the SIR particle filter variant.

From it, we confirm all the results commented above about the impact of the signal-to-noise ratio on

the statistical performance of the competing filters. Thus, the measure of the relative statistical perfor-

mance of the filters in relation to the SIR PF variant allows us to conclude that:

• As expected, the non-simulation based KF shows best statistical performance, but all PF variants

are able to practically equate KF’s mean-RMSE, as described below.

• For cases 1 and 2 with low signal-to-noise ratio values q ∈ {0.0001,0.001}, the KF has a better

performance than the reference SIR particle filter variant, which itself has an equal statistical

performance as the SIRopt and a better performance to the ASIR and the KPF; being the KPF the

worst.

• For case 3, the competing PF variants SIRopt and the ASIR behave in a similar manner as the ref-

erence SIR PF variant, which equates KF’s mean-RMSE. The KPF, however, shows a slight worse

performance.

• For cases 4–10 with signal-to-noise ratio values q ∈ {0.05,0.1,0.2,0.3,0.5,1,2} all competing filters

–including the KF– show practically equal performance as the reference SIR PF variant.

• For cases 11-13 with higher signal-to-noise-ratio values q ∈ {5,10,100} the competing PF variants

SIRopt and the KPF equate KF’s mean-RMSE outperforming the reference SIR PF variant, which

itself outperforms the ASIR PF variant. Thus, in these three cases both the SIR and the ASIR have

the worse performance; specially the latter at q = 100.

Fourth, we focus on exploring the impact of the SNR on the degeneracy problem which we know

inherently affects particle filters. That is, analyzing the reported mean (SD) of the unique number of

particles uNp at last time-index t = T , we aim to answer the question: Does the SNR play a role in the

degeneracy problem? We find that the degeneracy behavior varies from filter to filter as a function of

the signal-to-noise-ratio. These findings are summarized below:

• For the KPF particle filter variant, the mean(uNp) increases from about 36 to 193 as the signal-

to-noise-ratio q increases from q = 0.0001 to q = 100; focus on the last column of Table 3.2. Of

course, the higher the number of unique particles, the better.

• For the SIR and ASIR particle filter variants, contrary to what happens with the KPF, the mean(uNp)

decreases as the signal-to-noise-ratio q increases from q = 0.0001 to q = 100. Specifically, in our

simulation study, the mean(uNp) spans from about 194 to 30 for the SIR PF and from about 200

to 26 for the ASIR PF variant.
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• For the SIRopt particle filter variant, a rather distinct pattern in the behavior of the unique num-

ber of particles is observed. In this situation, the mean(uNp) first decreases from about 194

to 165 as the signal-to-noise-ratio q increases from q = 0.0001 to q = 0.5. Then, the opposite

happens, since we observe that the mean(uNp) increases from about 165 to 193 as the signal-

to-noise-ratio q increases from q = 0.5 to q = 100. That is, a decreasing pattern is observed on

mean(uNp) for signal-to-noise-ratio values q less than 1 and an increasing pattern for q greater

than 1. We believe that an even more exhaustive study could be performed in the future to con-

firm all the aforementioned suggested results. For example: will this behavior be confirmed if

one uses a higher number of particles or a greater time series length? Recall that the previous

MC experiments only consider T = 200 observations and Np = 200 particles.

• Therefore, what the attained results confirm is that in general, the SIRopt less suffers the degen-

eracy problem, that the KPF suffers it more at low signal-to-noise-ratio values (focus on first 3

cases) and that both the SIR and the ASIR particle filter variants are more affected by it at high

signal-to-noise-ratio values (focus on last three cases; specially in the last one with q = 100).

• As a by-product, our results indicate that worse statistical performance is generally attained

when the filters show more degeneracy. Thus, later on we will explore the effect of increasing

the number of particles to help to prevent (or at least postpone) the degeneracy problem.

Fifth, focusing on the performance of the different filters in terms of the computational time, we

conclude that, as expected, the KF is the less expensive algorithm with mean CPU time values around

0.09[0.01] (average [SD] time in seconds in handling a data set containing T = 200 observations), fol-

lowed by the SIR (0.16 [0.02]), the SIRopt (0.19 [0.02]), the KPF (0.23 [0.02]) and the ASIR (0.30 [0.03])

filter. Thus, for Np = 200 particles, clearly the KPF and the ASIR show worse computational perfor-

mance. These CPU discrepancies among filters are greater when increasing the number of particles

(Np ) and the time series length (T).

Next, we perform a small complementary study to further investigate the effect of the increase

of the number of particles on the RMSE; we will also explore increasing the time series length from

T = 200 to T = 1000.

3.3.4 Complementary Study: Increasing the Number of Particles and/or the Time

Series Length

Herein, we study the impact of increasing the number of particles Np , from a lowest value Np = 200 to

a highest value Np = 5000, on the statistical performance of the filter. That is, for the local level model

with time-series-length T = 200, we analyze the impact of increasing Np on the R MSE yielded by the

different simulation based filters under study: the SIRopt, SIR, ASIR and KPF particle filter variants.
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Exploring the Increase of the Number of Particles

As stated above, we aim to study the impact of increasing the number of particles on the mean-RMSE.

To achieve that, we construct Figure 3.7 which shows the effect of increasing the number of particles,

Np ∈ {200,500,1000,2000,5000}, on the performance of the four particle filter variants under study.

Notice that we consider only 8 (8 out of 13) representative5 cases which, as known, are defined by the

signal-to-noise ratio settings q in Table 3.2. Thus, based on obtained results plotted in Figure 3.7 the

following conclusions arise:

In general, the statistical performance of all four particle filters are positively affected by the in-

crease of the number of particles. That is, for each particle filter the increment of Np leads to a decrease

of the mean-RMSE, though in many cases that effect is practically unnoticeable. We observe that as

Np increases, the mean-RMSE approaches Kalman Filter’s mean-RMSE benchmark value. However, it

becomes also clear from this plot that at extreme low and high signal-to-noise-ratio values this impact

is not that marked since some particle filters are still not able to reach KF’s statistical performance.

Following, we provide a detailed summary of our findings:

• For case 1 with small signal-to-noise-ratio value q = 0.0001, though all particle filter variants

are affected by the increase of the number of particles, the estimated mean-RMSE are always

(slightly) greater than the one yielded by the KF; as depicted in Figure 3.7. In this case, the KPF

variant shows worse performance, followed by the ASIR. Indeed, the ASIR is only able to reach the

statistical performance of the competing particle filter variants (SIR and SIRopt) with Np = 5000.

The KPF, however, with (and up to) 5000 particles (we even tried using Np = 20000), is still not

able to reach the statistical performance of the other particle filter variants nor the one of the KF

algorithm.

• For case 2 with signal-to-noise-ratio value q = 0.001, all particle filter variants, except the KPF,

show similar statistical performance as the gold standard KF starting with Np = 500 particles; the

KPF filter only achieves this when Np = 5000 is used.

5A similar pattern as the one one observed in the included Case 6 with q = 0.2 is also obtained in the excluded cases

with SNR values q ∈ {0.05,0.1,0.3,0.5, 2}. Notice that in such cases, the impact of the number of particles over the statistical

performance (mean-RMSE) is rather unnoticeable.
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Figure 3.7: Local level model: Effect of the number of particles over the mean-RMSE; fixed T = 200
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• For cases 3-12 with signal-to-noise-ratio values q ranging from 0.01 to 10, the increase of the

number of particles has practically no effect for all studied particle filter variants. We remark that

in these cases the mean-RMSE values obtained via the different particle filter variants practically

coincide with the one obtained via the gold standard KF already with Np = 500.

• For case 13 with high signal-to-noise-ratio value q = 100, the increase of the number of particles

affects markedly only the SIR and ASIR particle filters but in a distinct way; up to Np = 5000

particles, both filters accuse a decrease on their mean-RMSE but the ASIR never equates KF’s

performance. Specifically, for the ASIR, increasing the number of particles from Np = 200 to Np =
500 produces a decrease of the mean-RMSE but a further increase of the number of particles

(effect shown up to 5000 particles, but we even try Np = 20000) has practically no effect and never

reach a similar statistical performance to any other PF variant nor to the KF; also a higher number

of particles would obviously produce an increase in both, memory and CPU-time requirements.

The SIR PF variant, however, achieves similar statistical performance to the KF starting with Np =
500 and equates it with Np = 5000 particles. In contraposition, the other two filters, the SIRopt

and the KPF, show a similar performance to the gold standard KF with a low number of particles

Np = 200 and equates it with just Np = 500 particles. Thus, according to our simulation results,

in this case the ASIR PF variant shows worse statistical performance.

After finding the minimum number of particles needed to achieve a similar/equal statistical per-

formance to the gold standard KF when dealing with the local level model, another question remains:

Is the estimated posterior marginal density obtained with this minimum found number of particles a

reliable posterior? We think this is closely related to the degree of degeneracy observed in the particle

filters. Next, we will explore the effect of increasing the numbers of particles on degeneracy. Also, we

will assess the degree of degeneracy when using a higher time series length.

Exploring the Increase of both the Number of Particles and the Time Series Length

In a previous simulation study, with time series length T = 200 and Np = 200 particles, we found that in

general, the SIRopt less suffers the degeneracy problem, that the KPF suffers it more at low signal-to-

noise-ratio values (focus on first 3 cases in Table 3.2) and that both the SIR and the ASIR particle filter

variants are more affected by it at high signal-to-noise-ratio values (focus on last three cases; specially

in the last one with q = 100). Those simulation results suggested that the competing particle filter

variants show worse statistical performance when more degeneracy is present.

Following, we explore further the effect of increasing the time series length as well as the number

of particles on degeneracy. Our aim is twofold: to verify if the general findings obtained using T = 200

and Np = 200 are confirmed and also to prevent (or at least postpone) the degeneracy problem with

the hope of consequently improving the statistical performance of the filters. To achieve these goals,
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(a) Percentage number of unique particles under SIR
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(b) Percentage number of unique particles under SIRopt
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(c) Percentage number of unique particles under ASIR
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(d) Percentage number of unique particles under KPF

Figure 3.8: Local level model: Percentage of unique number of particles at time index t = T

(T=200, black/continuous; T = 1000, grey/dashed) in relation to the original number of particles

Np ∈ {200,5000} obtained by the four competing particle filter variants (Top left: SIR, Top right: SIRopt,

Bottom left: ASIR and Bottom right: KPF) at selected signal-to noise-ratio settings q ∈ {1e −4,1,5,100}.
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we construct Figure 3.8, which basically represents in the y-coordinate the percentage of unique num-

ber of particles (%uNp) and in the x-coordinate the chosen settings for the original number of particles

(Np ). For simplicity, we show results for only four signal-to-noise-ratio settings q ∈ {1e-4,1,5,100}, two

time series length settings T ∈ {200,1000} and two number of particles settings Np ∈ {200,5000}. Thus,

Figure 3.8 includes a total of 16 individual plots organized in four sub-figures; each sub-figure corre-

sponds to a type of filter (four). Each sub-figure itself contains four different plots representing for

each one of the four chosen signal-to-noise-ratio settings the 2 ·2 = 4 values of the mean-percentage

number of unique particles that are obtained at the combination of the two time series length settings

and two number of particles settings.

The sub-figures in Figure 3.8 allow us to confirm the previously stated results for T = 200 and

Np = 200. Further, we find out that this behavioral pattern holds regardless of the number of particles

and time series length. In other words, the SIRopt continues suffering in less degree the degeneracy

problem (top right sub-figure), the KPF suffers it more at low signal-to-noise-ratio values (focus on

bottom right sub-figure and case: q = 1e −4) and both the SIR and the ASIR particle filter variants are

more affected by it at high signal-to-noise-ratio values (focus on top left and bottom left sub-figures

and case: q = 100). Since we want to assess the effect increasing the number of particles and the time

series length using four signal-to-noise-ratio settings per filter, a detailed description of the degeneracy

related performance of the four competing particle filter variants is given below:

• First, both the SIR and ASIR show a rather similar pattern on their performance as a function

of the signal-to-noise-ratio setting: the number of unique particles decreases as the signal-to-

noise-ratio increases; the former filter has a worst case scenario at the high signal-to-noise-ratio

q = 100 where approximately a constant percentage of unique particles (about 15%) is obtained

for any value of T and Np ; see top left sub-figure in Figure 3.8. Something similar can be said

for the ASIR, but in this case the percentage of unique particles declines from about 14% to 10%

when increasing Np from 200 to 5000 particles. Both filters show best performance at the lowest

signal-to-noise-ratio q = 1e −4, where the percentage of unique particles is about 97% irrespec-

tive of the values of T and Np .

• On the contrary, the KPF has worst degeneracy related performance at low signal-to-noise-ratio

q = 1e −4 with about 18% of unique particles at Np = 200 that increases slightly to about 20% as

Np increases to 5000 particles; practically, no differences are observed for the two values of the

time-series length T . This filter best-case scenario occurs at high signal-to-noise-ratio q = 100

with approximately constant percentage of number of particles (about 97%) obtained for any T

and Np .

• Finally, the SIRopt, that shows in general less degree of degeneracy, exhibits a distinct behavioral

pattern for signal-to-noise-ratio values less than 1 and for signal-to-noise-ratio values greater

than one. Indeed, this filter best case scenario occurs at extremely low q = 1e−4 and high q = 100

signal-to-noise-ratio values where approximately a constant percentage of number of particles
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(about 97%) is obtained for any T and Np ; its worst case scenario occurs around q = 1 where

practically a constant percentage of number of particles (about 82%) is obtained for any T and

Np .

• We find these results very encouraging as they suggest that, for the local level model at hand and

the particle filters studied, the time series length barely affects the percentage of unique num-

ber of particles obtained at last time-index t = T , and that the used number of particles Np also

has only a slight effect on degeneracy given a signal-to-noise-ratio value; see bottom left sub-

figure showing that the ASIR displays a small decrease on the percentage of unique particles at

high SNR when Np increases from Np = 200 to Np = 5000. In general, however, these percent-

ages remain practically stable irrespective of the value of T and Np . Naturally, as the number of

particles used in the estimation procedure increases, the absolute number of unique number of

particles also increases.

• As a by-product, for the local level at hand, these results suggest that if we have prior information

about the relative variation present in our data, we could somehow decide a minimum number

of particles so as to avoid degeneracy. The pattern found on the behavior of the percentage

number of unique number of particles is a very nice result since we are aware of the importance

in dealing with the degeneracy problem within the particle filtering methodology.

To further illustrate the role played by the time series length T and the number of particles Np

used in the estimation procedure on the mean-RMSE and the computational cost (CPU-time in

seconds) of competing filters, we present Table 3.3 summarizing the simulation results corre-

sponding to a sub-study (Case 5 with signal-to-noise-ratio q = 0.1). This table reports measures

of the RMSE, the CPU-time, and the percentage of unique particles at last time-index t = T ,

where the used number of particles are Np ∈ {200,500,1000,5000}. The estimation results yielded

by the exact KF algorithm using T ∈ {200,500,1000,2000} are taken as a reference and they are

given by mean-RMSE = {0.165,0.165,0.165,0.164} and mean CPU-time = {0.09, 0.23, 0.49, 0.88},

respectively. Although this table provides the results for the particular case with q = 0.1, it per-

fectly illustrates the general pattern observed on the results yielded at other SNR settings. That

is, given a signal-to-noise-ratio value, it seems that for the local level model at hand and particle

filters studied, the mean-percentage of unique particles remains stable irrespective of the time

series length T and number of particles Np used in the estimation procedure.

• As known, all particle filters suffer the degeneracy problem and our results do not contradict that

fact. Our contribution herein is on describing in detail what happens in particular situations –

characterized by the chosen dynamic model and varied simulation settings– in order to provide

some guidelines for the practitioner interested in using the studied filters. Thus, for the local

level model, putting together the statistical performance in terms of RMSE and a measure of de-

generacy given by the percentage of unique number of particles %uNp, we recommend as a rule

of thumb to use Np = 5000 particles irrespective of the particle filter variant and the signal-to-
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noise-ratio; discarding from this generalization extremely low/high signal-to-noise-ratio values.

Notice that if we focus on the degeneracy related performance, the choice of Np = 5000 particles

would yield about 500 (that is, 10%) unique particles in the worst of the worse case scenarios,

what we think is a reasonable enough amount of particles to produce a reliable marginal poste-

rior representation of the states. When only interested in a particular particle filter variant, the

reader can refer to previously presented specific remarks indicating that even a smaller number

of particles could be appropriate for obtaining a reliable posterior.

Table 3.3: Summary of MC Sub-study (Case 5 with q = 0.1, representative of most cases): Il-

lustrating the role of the number of particles and/or the time series length on the mean-

RMSE and the computational cost (CPU-time in seconds) of competing filters. For parti-

cle filters, the degree of degeneracy is also reported where the used number of particles

are Np ∈ {200,500,1000,5000}. For reference, use the results yielded by the exact KF algo-

rithm at T ∈ {200,500,1000,2000}, which are given by: mean-RMSE = {0.165,0.165,0.165,0.164} and

mean-CPU-time(SD) = {0.091(0.011), 0.227(0.014), 0.489(0.020), 0.884(0.028)}.

Np = 200 Np = 500 Np = 1000 Np = 5000

Filter T Criterion Mean Var Mean Var Mean Var Mean Var

SIRopt 200 RMSE 0.166 2e-4 0.165 2e-4 0.165 2e-4 0.164 2e-4

%UNp 84.61 9.43 84.02 9.78 84.04 9.7 84.14 9.75

CPU 0.186 0.022 0.255 0.024 0.412 0.036 2.081 0.05

500 RMSE 0.165 1e-4 0.165 1e-4 0.165 1e-4 0.165 1e-4

%UNp 83.03 10.1 82.76 10.05 82.93 9.91 83.2 9.82

CPU 0.424 0.014 0.634 0.032 1.028 0.076 4.53 0.111

1000 RMSE 0.165 1e-4 0.165 1e-4 0.165 1e-4 0.165 1e-4

%UNp 83.44 10.23 83.88 9.91 83.91 9.92 83.44 10.18

CPU 0.954 0.041 1.261 0.054 1.994 0.093 8.938 0.083

2000 RMSE 0.164 1e-6 0.164 1e-6 0.164 1e-6 0.164 1e-6

%UNp 84.39 9.64 83.37 10.21 83.46 10.06 83.64 9.93

CPU 1.716 0.036 2.567 0.12 3.599 0.093 14.873 0.182

SIR 200 RMSE 0.166 2e-4 0.165 2e-4 0.165 2e-4 0.164 2e-4

%UNp 81.22 10.88 80.66 11.18 80.76 11.11 80.71 11.1

CPU 0.164 0.025 0.221 0.021 0.362 0.038 1.732 0.058

500 RMSE 0.165 1e-4 0.165 1e-4 0.165 1e-4 0.165 1e-4

%UNp 79.91 11.35 79.18 11.49 79.41 11.28 79.48 11.26

CPU 0.389 0.019 0.558 0.029 0.871 0.056 3.668 0.043
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Table 3.3: Summary of MC Sub-study (Case 5 with q = 0.1, representative of most cases): Illustrating

the role of the number of particles and/or the time series length on the mean-RMSE and the compu-

tational cost (CPU-time in seconds) of competing filters. For particle filters, the degree of degeneracy

is also reported where the used number of particles are Np ∈ {200,500,1000,5000} (continued).

Np = 200 Np = 500 Np = 1000 Np = 5000

Mean Var Mean Var Mean Var Mean Var

1000 RMSE 0.166 1e-4 0.165 1e-4 0.165 1e-4 0.165 1e-4

%UNp 79.61 11.73 79.04 11.73 80.05 11.57 80.03 11.54

CPU 0.873 0.036 1.103 0.034 1.674 0.036 7.291 0.098

2000 RMSE 0.164 1e-6 0.164 1e-6 0.164 1e-6 0.164 1e-6

%UNp 80.86 11.35 79.81 11.38 79.73 11.49 79.88 11.47

CPU 1.565 0.038 2.201 0.055 3.064 0.035 11.996 0.148

ASIR 200 RMSE 0.165 2e-4 0.165 2e-4 0.165 2e-4 0.164 2e-4

%UNp 89.95 5.32 89.78 5.25 89.97 5.3 89.9 5.35

CPU 0.296 0.03 0.384 0.028 0.664 0.039 3.999 0.156

500 RMSE 0.166 1e-4 0.165 1e-4 0.165 1e-4 0.165 1e-4

%UNp 88.64 5.98 90.06 5.41 89.31 5.59 89.55 5.39

CPU 0.644 0.043 0.991 0.036 1.513 0.045 8.204 0.241

1000 RMSE 0.165 1e-4 0.165 1e-4 0.165 1e-4 0.165 1e-4

%UNp 90.08 5.75 89.33 5.88 89.7 5.62 89.71 5.53

CPU 1.407 0.042 1.951 0.56 3.048 0.402 15.348 0.102

2000 RMSE 0.164 1e-6 0.164 1e-6 0.164 1e-6 0.164 1e-6

%UNp 88.28 6.28 88.84 5.97 89.9 5.37 89.61 5.55

CPU 2.539 0.039 3.722 0.058 5.438 0.052 22.88 0.167

KPF 200 RMSE 0.166 2e-4 0.165 2e-4 0.165 2e-4 0.164 2e-4

%UNp 66.46 8.79 65.25 8.07 65.14 7.93 65.38 8.01

CPU 0.232 0.02 0.325 0.134 0.52 0.035 3.184 1.06

500 RMSE 0.166 1e-4 0.165 1e-4 0.165 1e-4 0.165 1e-4

%UNp 64.56 8.21 66.02 9.09 64.87 8.39 65.01 8.17

CPU 0.524 0.027 0.785 0.057 1.231 0.061 5.617 0.087

1000 RMSE 0.166 1e-4 0.165 1e-4 0.165 1e-4 0.165 1e-4

%UNp 64.52 8.19 65.19 8.51 65.05 8.11 65.32 8.59

CPU 1.135 0.029 1.522 0.081 2.369 0.096 11.217 0.101

2000 RMSE 0.165 1e-6 0.164 1e-6 0.164 1e-6 0.164 1e-6

%UNp 63.78 9.25 65.54 9.13 65.28 8.67 65.13 8.55

CPU 2.045 0.031 2.979 0.101 4.314 0.103 17.491 0.07
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The simulation results portrayed in Table 3.3 are useful to further illustrate the impact of increasing

the number of particles and/or the time Series over the mean-RMSE and CPU-times. The impact of

increasing the number of particles on the RMSE is already described and illustrated in Figure 3.7, but

are also being confirmed by the results in the above-mentioned table: considering alone the impact of

increasing Np generally does not report relevant advantages over the yielded RMSE values, except at

extreme SNR settings. Likewise, the increase of the time series length is generally related to a decrease

on the mean-RMSE, but this decrease is rather unnoticeable for the local level model at hand and

all filters (including the KF) studied. Additionally, to illustrate how the CPU-times are affected by an

increase of the number of particles and the time series length we construct Figure 3.9, confirming that

overall the least expensive algorithm is the KF followed by the SIR, the SIRopt, the KPF and the ASIR;

naturally the obtained CPU-time discrepancies among filters are greater when increasing the number

of particles (Np ) and/or the time series length (T ).

To conclude this section, we provide some comments about the peculiar estimation behavior ob-

served at the two extreme signal-to-noise-ratio scenarios q = 0.0001 and q = 100:

As repeatedly commented on in the section, the two cases (case 1 with q = 0.0001 and case 13

with q = 100) always present a peculiar behavior, specially for certain filters like the ASIR and the KPF.

Following, we further discuss these two cases. That is, we aim to explain the apparently ill-behavior

attained at extremely low (q = 0.0001) and extremely high (q = 100) signal-to-noise-ratio values. To

achieve this, we remit ourselves to the theoretical result mt = Ayt + (1− A)mt−1 given in West and

Harrison (1989), which basically states that the estimated state value at current time, t , depends on the

weighted average of the current observation and the previous estimated state. Recall that the weight

attached to the observation, denoted by A, is the value of the adaptive coefficient that defines the rate of

adaptation to new data. In the sixth column of Table 3.1, we report the computed adaptive coefficients

corresponding to the 13 signal-to-noise-ratio simulation settings used for the local level model.

Referring to Case 1, with very small signal-to-noise-ratio value q = 0.0001, all previously presented

simulation results repeatedly suggest an apparently ill-behavior: for instance, it was found that all

filters –including the gold standard KF– might fail to adequately filter the level xt . In this particular

case, the adaptive coefficient takes the value A = 0.01 meaning that the observations have practically

null contribution to update the value of the level xt and that we are practically dealing with white noise;

indeed, in this case, the best level estimate mt will be given by the previous estimated level mt−1. On

the contrary, for Case 13 with very high signal-to-noise-ratio value q = 100, the corresponding adaptive

coefficient takes the value A = 0.99, meaning that the observations are very informative when updating

the level xt and that we are practically dealing with observations evolving as a random walk; in this

case the best level estimate mt will be given by the current observation yt and as stated by West and

Harrison (1989), the model is of little use for prediction.

According to West and Harrison (1989), the major number of applications of the local level model

with constant variances (called by them: constant model) are in short term forecasting and control

with typical signal-to-noise-ratios spanning from 0.001 to 0.2. Also, applications recently found in the
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Figure 3.9: Local level model (Case 5 with q = 0.1 but representative of all cases): Behavior of the

estimated mean-CPU-elapsed time (in seconds) for the SIR, SIRopt, KPF and the ASIR PF variants.

Assessment of both, the impact of the time series length (x-axis) and the number of particles. The CPU-

times yielded by the exact KF algorithm using various time series lengths T ∈ {200,500,1000,2000} are

given by CPU-time = {0.09, 0.23, 0.49, 0.88}.

literature deal with signal-to-noise-ratio values around 0.2, 0.3, 1 and 2; see for instance Stock and

Watson (2007) and Pellegrini (2009). In such cases, according to our Monte Carlo studies, any of the

particle filter variants with only Np = 500 particles could be used, except for the KPF with SN R =
0.001, as they all reach a similar statistical performance to the gold standard KF. In case of the KPF
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with SN R = 0.001, about Np = 5000 particles would be required to achieve such performance. Thus,

the previously given rule of thumb (use Np = 5000 particles) clearly holds in these typically found

scenarios irrespective of the particle filter used. For cases corresponding to other signal-to-noise-ratio

values, refer to the comments given in previous remarks.

The next section, deals with a second simulation study regarding the estimation of the states of the

stationary AR(1) plus noise model. Notice that the implementation of this is straightforward once we

have developed the R language program for the local level model, since we must only change the value

of the autoregressive parameter φ. Since our main interest is on studying non-standard state-space

dynamic models, only the non-stationary dynamic local level model will be revisited in the second

part of this PhD thesis when estimating simultaneously the states and parameters.

3.4 Simulation Study II: The Stationary AR(1) plus noise Model

This Monte Carlo study proceeds as simulation study I, but in this case the stationary linear and Gaus-

sian dynamic model called AR(1) plus noise is used as a benchmark. In other words, a comparison of

the performance of the studied particle filter variants with the gold standard filter KF is carried out.

Following, the state-space formulation for the so-called contaminated AR(1) model is given.

3.4.1 State Space Representation

Recall that the equations (3.1) and (3.2) with |φ| < 1, specify the state-space formulation of the linear,

Gaussian and stationary dynamic model known as AR(1) plus noise model. In that case, the parametric

state-space formulation for this dynamic model can be described and subsumed by the following two

equations; see, for instance, Gómez and Maravall (1994) and Shumway and Stoffer (2000):

xt =φxt−1 +ηt

yt = xt +νt

(3.10)

To complete the state-space formulation, we must assume a distribution for the initial state variable x0.

In this particular case, x0 ∼ N(µx0
,Σx0

), φ is the autoregressive parameter, and the noise disturbances

ηt and νt are assumed to follow a Gaussian distribution with fixed and known variance parameters σ2
ηt

and σ2
νt

; thus only the states xt are estimated.

Similarly to the local level, the reduced form of the AR(1) plus noise model is an ARIMA process.

Following, we explicitly describe the relationship between a traditional ARIMA process and the so-

called contaminated AR(1) model.

3.4.2 Reduced Form of the Local level model: an ARIMA(1,0,1) Model

The reduced form of the contaminated AR(1) model is an ARIMA(1,0,1) process; this means that the

AR(1) plus noise model can be represented as a stationary and invertible ARIMA(1,0,1) model. Fol-
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lowing, the explicit relationship between a traditional ARIMA process and the so-called contaminated

AR(1) model is described.

Departing from the state-space model of the contaminated AR(1) model specified in equation

(3.10), by substituting back the state equation into the measurement equation, simple algebra and

then using the definition of the measurement equation (3.10) we obtain

yt = xt +νt

= (φxt−1 +ηt−1)+νt

= (φxt−1 + (θ+φ)νt−1)+νt , with ηt−1 = (θ+φ)νt−1

= (φ(xt−1 +νt−1)+θνt−1)+νt

= (φyt−1 +θνt−1)+νt

which clearly corresponds to the expression of the ARIMA(1,0,1) process with ηt−1 = (θ+φ)νt−1 under

suitable values for the moving average parameter θ.

3.4.3 Results, Remarks and Conclusions for Simulation Study II

Specific Simulation settings

In this MC study we consider the same general settings used in simulation I which are provided on page

55 of Section 3.2.4, but as already stated there, this second simulation experiment assumes a diffuse

prior for the initial state x0; specifically the state initial variance is set to 100 times its true value, say

P0 = 100 ·σ2
η. Since the AR(1) plus noise model also includes the autoregressive parameter φ, two extra

simulation scenarios are defined depending on the two chosen settings for that parameter; in this case,

we consider the models with autoregressive parameters φ= 0.3 and φ= 0.8, respectively.

Experimental Results

Herein, in Table 3.4 we provide the numeric results which summarize and assess the performance of

the five different filters under study when handling the AR(1) plus noise model. This table is organized

in two different blocks that correspond to the two estimation settings used for the autoregressive pa-

rameter, say φ= 0.3 and φ= 0.8. Each one of these blocks is composed itself by two sub-blocks where

the first contains the measures: Mean(RMSE) and Var(RMSE); the second contains measures of the

variable uNp: Mean(SD). Recall that uNp means ‘unique number of particles at the end time period

t = T ’ and it was created to somehow quantify the potential degeneracy problem of particle filters.

Notice that we also report results for the non-simulation based KF, which is optimal and used as a

benchmark filter.

All the obtained simulation results are reported in Table 3.4 displayed below:
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Table 3.4: Summary of simulation study II under 13 different settings: σ2
ν = 0.1, T = 200, and Np = 200.

φ= 0.3 φ= 0.8

RMSE uNp RMSE uNp

Setting Filter Mean Var Mean(SD) Mean Var Mean(SD)

Case 1 σ2
η = 0.00001, SNR = 0.0001

KF 0.003 < 1e −06 — 0.005 < 1e −06 —

SIRopt 0.003 < 1e −06 159.85 (1.96) 0.005 < 1e −06 178.28 (1.89)

SIR 0.003 < 1e −06 199.25 (0.61) 0.005 < 1e −06 198.87 (0.90)

ASIR 0.003 < 1e −06 199.44 (0.67) 0.005 < 1e −06 199.38 (1.13)

KPF 0.003 < 1e −06 195.99 (0.10) 0.005 < 1e −06 152.69 (2.72)

Case 2 σ2
η = 0.0001, SNR= 0.001

KF 0.010 < 1e −06 — 0.017 < 1e −06 —

SIRopt 0.010 < 1e −06 160.45 (2.23) 0.017 < 1e −06 178.48 (2.00)

SIR 0.010 < 1e −06 197.91 (1.66) 0.017 < 1e −06 196.79 (2.52)

ASIR 0.010 < 1e −06 198.07 (1.82) 0.017 < 1e −06 198.08 (2.22)

KPF 0.010 < 1e −06 195.85 (0.39) 0.017 < 1e −06 152.65 (2.45)

Case 3 σ2
η = 0.001, SNR = 0.01

KF 0.033 < 1e −06 — 0.052 < 1e −06 —

SIRopt 0.033 < 1e −06 160.47 (1.90) 0.052 < 1e −06 177.03 (3.54)

SIR 0.033 < 1e −06 193.66 (4.95) 0.052 < 1e −06 190.10 (7.52)

ASIR 0.033 < 1e −06 193.78 (5.25) 0.052 < 1e −06 193.79 (5.08)

KPF 0.033 < 1e −06 195.33 (1.36) 0.052 < 1e −06 153.96 (3.05)

Case 4 σ2
η = 0.005, SNR = 0.05

KF 0.072 < 1e −06 — 0.104 1e-04 —

SIRopt 0.072 < 1e −06 160.20 (3.24) 0.104 1e-04 172.7 (9.01)

SIR 0.072 < 1e −06 185.87 (10.42) 0.104 1e-04 179.26 (14.19)

ASIR 0.072 < 1e −06 186.32 (10.31) 0.104 1e-04 185.68 (10.02)

KPF 0.072 < 1e −06 194.11 (3.58) 0.104 1e-04 157.74 (8.59)

Case 5 σ2
η = 0.01, SNR= 0.1

KF 0.099 < 1e −06 — 0.133 1e-04 —

SIRopt 0.099 < 1e −06 159.93 (4.42) 0.133 1e-04 170.8 (11.82)

SIR 0.099 < 1e −06 180.18 (14.04) 0.134 1e-04 172.11 (17.77)

ASIR 0.099 < 1e −06 180.56 (13.84) 0.133 1e-04 180.26 (12.02)

KPF 0.099 < 1e −06 193.40 (3.97) 0.134 1e-04 159.29 (11.44)



84 CHAPTER 3 BENCHMARK SIMULATION STUDY: FILTERING IN A LINEAR FRAMEWORK

Table 3.4: Summary of simulation study II under 13 different settings: σ2
ν = 0.1, T = 200, and Np = 200

(continued).

φ= 0.3 φ= 0.8

RMSE uNp RMSE uNp

Setting Filter Mean Var Mean(SD) Mean Var Mean(SD)

Case 6 σ2
η = 0.02, SNR= 0.2

KF 0.133 1e-04 — 0.165 1e-04 —

SIRopt 0.133 < 1e −06 160.78 (6.59) 0.165 1e-04 168.06 (14.03)

SIR 0.133 1e-04 172.01 (18.25) 0.166 1e-04 163.24 (21.61)

ASIR 0.133 1e-04 172.65 (17.90) 0.165 2e-04 172.01 (15.63)

KPF 0.133 1e-04 193.33 (4.54) 0.166 1e-04 162.34 (14.42)

Case 7 σ2
η = 0.03, SNR= 0.3

KF 0.155 1e-04 — 0.184 2e-04 —

SIRopt 0.156 1e-04 161.55 (7.92) 0.185 2e-04 167.05 (14.63)

SIR 0.156 1e-04 165.83 (20.78) 0.185 2e-04 157.01 (23.97)

ASIR 0.156 1e-04 166.61 (20.16) 0.185 2e-04 166.09 (17.11)

KPF 0.156 1e-04 191.64 (5.17) 0.185 2e-04 164.49 (15.79)

Case 8 σ2
η = 0.05, SNR= 0.5

KF 0.185 1e-04 — 0.208 2e-04 —

SIRopt 0.186 1e-04 163.03 (10.07) 0.209 2e-04 166.95 (14.89)

SIR 0.186 1e-04 156.35 (23.96) 0.209 2e-04 147.84 (26.69)

ASIR 0.186 1e-04 157.15 (22.77) 0.209 2e-04 155.93 (20.32)

KPF 0.186 1e-04 191.52 (6.33) 0.209 2e-04 167.73 (16.61)

Case 9 σ2
η = 0.1, SNR = 1

KF 0.224 1e-04 — 0.238 2e-04 —

SIRopt 0.225 1e-04 166.61 (12.86) 0.239 2e-04 168.11 (14.79)

SIR 0.225 1e-04 140.19 (27.17) 0.240 2e-04 132.94 (28.84)

ASIR 0.225 1e-04 140.93 (25.76) 0.240 2e-04 140.18 (22.53)

KPF 0.225 1e-04 191.05 (7.31) 0.239 2e-04 171.34 (16.81)

Case 10 σ2
η = 0.2, SNR= 2

KF 0.257 2e-04 — 0.264 2e-04 —

SIRopt 0.258 2e-04 172.05 (13.97) 0.265 2e-04 171.65 (13.33)

SIR 0.258 2e-04 120.92 (28.08) 0.266 2e-04 115.67 (28.59)

ASIR 0.258 2e-04 121.72 (26.12) 0.266 2e-04 119.65 (24.14)

KPF 0.258 2e-04 190.57 (6.91) 0.265 2e-04 175.64 (15.64)
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Table 3.4: Summary of simulation study II under 13 different settings: σ2
ν = 0.1, T = 200, and Np = 200

(continued).

φ= 0.3 φ= 0.8

RMSE uNp RMSE uNp

Setting Filter Mean Var Mean(SD) Mean Var Mean(SD)

Case 11 σ2
η = 0.5, SNR= 5

KF 0.286 2e-04 — 0.288 2e-04 —

SIRopt 0.287 2e-04 179.51 (12.55) 0.289 2e-04 178.29 (11.4)

SIR 0.289 2e-04 94.05 (25.32) 0.291 2e-04 91.14 (25.38)

ASIR 0.29 2e-04 93.26 (23.87) 0.296 2e-04 89.76 (22.55)

KPF 0.287 2e-04 190.99 (4.88) 0.289 2e-04 181.81 (12.92)

Case 12 σ2
η = 1, SNR = 10

KF 0.298 2e-04 — 0.299 2e-04 —

SIRopt 0.300 2e-04 184.43 (10.05) 0.300 2e-04 183.40 (8.91)

SIR 0.303 2e-04 74.90 (21.61) 0.304 2e-04 73.32 (21.70)

ASIR 0.308 2e-04 72.11 (20.88) 0.312 2e-04 67.56 (19.69)

KPF 0.300 2e-04 193.87 (2.70) 0.300 2e-04 184.16 (9.55)

Case 13 σ2
η = 10, SNR= 100

KF 0.312 2e-04 — 0.312 2e-04 —

SIRopt 0.313 2e-04 194.55 (3.67) 0.313 2e-04 194.26 (3.47)

SIR 0.349 0.002 30.96 (10.58) 0.350 0.002 30.36 (10.24)

ASIR 0.372 0.001 24.74 (10.13) 0.373 0.002 25.42 (9.19)

KPF 0.313 2e-04 194.37 (2.85) 0.313 2e-04 194.04 (2.69)

Similar to the analysis for the local level model, the simulation results obtained for the AR(1) plus

noise model are fully commented on. In this stationary context, we also illustrate the filtering per-

formance of the competing filters by displaying a graphical illustration for chosen exemplar runs and

three signal-to-noise-ratio values; the same settings considered for the non-stationary local level model,

say q ∈ {0,0001,1,100}. The resulting plots when the autoregressive parameter takes the value φ= 0.3

are displayed in Figures 3.10–3.12 on pages 87–89; similar plots for φ= 0.8 are shown in Figures 3.13–

3.15.

These plots confirm the general results reported in Table 3.4 which suggest that an increase in

the signal-to-noise-ratio value q is related to less precise estimation results. Indeed, we observe that

the evolution of the difference between estimated and true-state values shows more variability as q

increases; the same conclusion was obtained for the local level model.

On panel b) of the aforementioned figures, for each particle filter variant under study, the his-

togram (together with the estimated posterior density) of the state values xT |T is depicted. Particularly,
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for Np = 200 particles and a high signal to noise-ratio value q = 100, the histograms shown in Fig-

ures 3.12 and 3.15 suggest that both the SIR and the ASIR filters, specially the second, continue showing

worse statistical behavior at high signal to noise-ratio values.
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(a) First row: Generated states and observations. Second row: Difference between estimated and true-state

values x̂t |t −xt , t = 1,. . . ,T .
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(b) Histogram (together with the estimated posterior density; black/dashed) of state values x̂T |T for last data set. The exact

posterior density obtained via the KF (black/continuous) is overlaid to each histogram.

Figure 3.10: AR(1) plus noise model (φ= 0.3): Case 1 with SNR q = 1e −4 (σ2
η = 1e −5 and σ2

ν = 0.1).
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(a) First row: Generated states and observations. Second row: Difference between estimated and true-state

values x̂t |t −xt , t = 1,. . . ,T .
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(b) Histogram (together with the estimated posterior density; black/dashed) of state values x̂T |T for last data set. The exact

posterior density obtained via the KF (black/continuous) is overlaid to each histogram.

Figure 3.11: AR(1) plus noise model (φ= 0.3): Case 9 with SNR q = 1 (σ2
η = 0.1 and σ2

ν = 0.1).
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(a) First row: Generated states and observations. Second row: Difference between estimated and true-state

values x̂t |t −xt , t = 1,. . . ,T .
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(b) Histogram (together with the estimated posterior density; black/dashed) of state values x̂T |T for last data set. The exact

posterior density obtained via the KF (black/continuous) is overlaid to each histogram.

Figure 3.12: AR(1) plus noise model (φ= 0.3): Case 13 with SNR q = 100 (σ2
η = 10 and σ2

ν = 0.1).
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(a) First row: Generated states and observations. Second row: Difference between estimated and true-state

values x̂t |t −xt , t = 1,. . . ,T .
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(b) Histogram (together with the estimated posterior density; black/dashed) of state values x̂T |T for last data set. The exact

posterior density obtained via the KF (black/continuous) is overlaid to each histogram.

Figure 3.13: AR(1) plus noise model (φ= 0.8): Case 1 with SNR q = 1e −4 (σ2
η = 1e −5 and σ2

ν = 0.1).



3.4 SIMULATION STUDY II: THE STATIONARY AR(1) PLUS NOISE MODEL 91

0 50 100 150 200

−1

0

1

2

Time−index

 

0 50 100 150 200

−1

0

1

2

Time−index

 

0 50 100 150 200

−1

0

1

2

Time−index

 

Yt

Xt

0 50 100 150 200

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Time−index

 

0 50 100 150 200

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Time−index

 

0 50 100 150 200

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Time−index

 

KF 
SIR
SIRopt 
ASIR
KPF 

(4
)
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(b) Histogram (together with the estimated posterior density; black/dashed) of state values x̂T |T for last data set. The exact

posterior density obtained via the KF (black/continuous) is overlaid to each histogram.

Figure 3.14: AR(1) plus noise model (φ= 0.8): Case 9 with SNR q = 1 (σ2
η = 0.1 and σ2

ν = 0.1).
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(b) Histogram (together with the estimated posterior density; black/dashed) of state values x̂T |T for last data set. The exact

posterior density obtained via the KF (black/continuous) is overlaid to each histogram.

Figure 3.15: AR(1) plus noise model (φ= 0.8): Case 13 with SNR q = 100 (σ2
η = 10 and σ2

ν = 0.1).
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Following, all reported simulation results are discussed in detail, but first we create Figures 3.16 –

3.17. As in the previous section, for each setting of the autoregressive parameter (φ= 0.3 and φ= 0.8),

these figures are constructed to give a visual picture of the statistical performance of the competing

filters displayed already in Table 3.4.

Remarks and Conclusions for Np = 200 Particles

Based on simulation results reported in Table 3.4 and depicted in Figures 3.16–3.17, considering only

Np = 200 particles, we make the following remarks and conclusions regarding the performance of the

competing filters under study when handling the stationary AR(1) plus noise model:

First, focusing on the statistical performance of the different filters in relation to the 13 signal-to-

noise-ratio settings, we conclude that:

• For each filter, the mean-RMSE increases as the signal-to-noise-ratio value q increases irrespec-

tive of the value of the autoregressive parameter φ; see upper panels of Figures 3.16–3.17.

• As in the previous section, the model at hand is linear and Gaussian but in this case, stationary.

In such a scenario, theory dictates that the gold standard KF must display, and it does, the best

statistical performance in terms of RMSE. As done with the local level model, in what follows we

will not only compare the different simulation based particle filters among themselves, but also

take as a reference the filtering performance attained by the gold standard KF.

• For the stationary AR(1) plus noise model at hand, we find that, as expected, among the compet-

ing filters the analytical KF yields always the minimum RMSE; see Figures 3.16–3.17 where the

dark circle (representing the KF) is always below or coincides with the other symbols (represent-

ing the four particle filter variants).

• For signal-to-noise-ratio values q < 5 (Cases 1–10) all particle filters under study show a very

similar statistical performance to the KF, irrespective of the value φ; focus your attention on the

upper panels of the Figures 3.16–3.17.

• In the other three cases with 5 ≤ q ≤ 100 (Cases 11–13) both the SIR and the ASIR, specially

the second, show worse performance in relation to the KF and other two particle filter variants.

What the simulation results appear to confirm is that the ASIR particle filter variant continues

behaving the worst at high signal-to-noise-ratio values followed by the SIR and that this behavior

seems to be more notorious when the autoregressive parameter takes higher values, φ = 0.8 in

contraposition to φ = 0.3. Notice that, for these signal-to-noise-ratio settings, the best found

particle filters are the SIRopt and the KPF with mean-RMSE values very similar to the one taken

by the KF.
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Second, in order to compare the relative statistical performance of the different filters in relation to

the SIR particle filter variant at different signal-to-noise ratio settings, we focus on the bottom panel of

Figures 3.16–3.17. They represent, for each autoregressive parameter setting, the measure RMSE(f)
RMSE(SI R)

where f ∈ {KF, SIRopt, ASIR, KPF} denotes a competing filter, as done in the previous section for the

local level model. A visual inspection of the bottom panels of these two figures allows us to confirm

all the results commented above about the impact of the signal-to-noise ratio on the statistical perfor-

mance of the competing filters. Thus, the measure of the relative statistical performance of the filters

in relation to the SIR PF variant allows us to conclude that:

• As expected, the non-simulation based KF shows the best statistical performance, but all PF

variants are able to practically equate KF’s mean-RMSE at most signal-to-noise-ratio values, as

described below.

• For φ = 0.3 and lower signal-to-noise ratio values q ∈ {0.0001,0.001,0.01,0.05,0.1,0.2} (Case 1 -

Case 6) all particle filter variants, including the reference SIR particle filter, equate the statistical

performance of the gold standard KF. A similar conclusion can be reached for φ = 0.8, but only

for cases 1 - 4. This suggests that the value of φ plays a distinctive role in the estimation.

• For φ = 0.3 and middle signal-to-noise ratio values q ∈ {0.3,0.5,1,2} (Case 7 - Case 10) all com-

peting particle filter variants, including the reference SIR particle filter, behave the same among

themselves with mean-RMSE values slightly greater than the ones yielded by the KF. For φ= 0.8

and cases 5 - 10, however, mixed mean-RMSE results are obtained, but they are still very close

among themselves and to the KF.

• For cases 11-13 with higher signal-to-noise ratio values q ∈ {5,10,100}, irrespective of the value

of the autoregressive parameter φ, the competing PF variants SIRopt and the KPF equate KF’s

mean-RMSE outperforming the reference SIR PF variant, which itself outperforms the ASIR PF

variant. Thus, clearly, the SIR and ASIR show in these cases worse performance; specially the

second.

• After confirming that the KF yields the best possible filtering estimates of the states for the model

at hand, our experimental results also indicate that for a rather small number of particles Np =
200, the particle filtering methodology is able to perform (nearly) as good as the gold standard

KF at most (10 out of 13) signal-to-noise ratio values (q < 5).

• From the two aforementioned figures, it is thus concluded that all particle filter variants under

study practically equate KF’s mean-RMSE at lower signal-to-noise-ratio values. Depending on

the values of φ, mixed results (though very close to KF’s) are obtained at middle values of the

signal-to-noise-ratio. At higher signal-to-noise-ratio values, the SIR and the ASIR show worst

performance, specially the ASIR with q = 100. Focus your attention on bottom panels of Fig-

ures 3.16–3.17.
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Third, we focus on exploring the impact of the SNR on the degeneracy problem of particle filters.

As in the previous section, we analyze the reported mean (SD) of the unique number of particles (uNp)

at last time-index t = T and find the following degeneracy related patterns:

• For the KPF particle filter variant and φ= 0.8, the mean(uNp) shows the same pattern observed

in the non-stationary local level model (φ= 1). That is, the mean(uNp) increases from about 153

to 194 as the signal-to-noise-ratio q increases from q = 0.0001 to q = 100; focus on last column

of Table 3.4. When φ = 0.3, however, there is not a clear pattern, but the values stay between

192-196, which we consider a very satisfactory behavior; focus on third column of first block in

Table 3.4. It appears that degeneracy gets worse as the value of φ increases: recall that for φ= 1

we have that the mean(uNp) increases from 53 to 193, showing that degeneracy worsens as a

function of φ specially at lower signal-to-noise-ratios.

• For the SIR and ASIR particle filter variants, similarly to what happens in the local level model,

the mean(uNp) decreases as the signal-to-noise-ratio increases irrespective of the autoregressive

parameter value φ. Specifically, the mean(uNp) spans from about 199 to 30 for the SIR PF and

from about 199 to 25 for the ASIR PF.

• For the SIRopt particle filter variant, we observe the same general pattern of the unique number

of particles as in the local level model if φ= 0.8. In this situation, the mean(uNp) first decreases

from about 178 to 167 as the signal-to-noise-ratio q increases from q = 0.0001 to q = 0.5. Then,

the opposite happens, since we observe that the mean(uNp) increases from about 165 to 194 as

the signal-to-noise-ratio q increases from q = 0.5 to q = 100. For φ = 0.3, however, a general

increasing pattern is observed on the mean(uNp) going from a value around 160 to 194. As for

the local level model, we believe that an even more exhaustive study could be performed in the

future to confirm all the aforementioned suggested results. For example: will this behavior be

confirmed if one uses a higher number of particles or a greater time series length? Recall that the

previous MC experiments only consider T = 200 observations and Np = 200 particles.

• As a by-product, our results indicate that worse statistical performance is attained when the fil-

ters show extreme degeneracy; focus on yielded SIR and ASIR mean-RMSE values for case 13.

• Therefore, for the AR(1) plus noise model at hand, what the attained results confirm is that the

SIRopt and the KPF suffer the degeneracy problem to a lesser degree compared to the SIR and the

ASIR. That is, the SIRopt and the KPF end up with more unique particles than its counterparts

SIR and ASIR (which still show satisfying performance, except at very high signal-to-noise-ratio

values).

Fourth, focusing on the performance of the different filters in terms of the computational time

using a time series length T = 200 and Np = 200, we conclude that, as expected, about the same results

obtained for the local level model are gotten. That is, the KF is the computationally least expensive

algorithm (in terms of the mean-CPU time values in seconds in handling a data set containing T = 200
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observations), followed by the SIR, the SIRopt, the KPF and the ASIR filter. Thus, as happened for

the local level model, for the AR(1) plus noise model at hand also the KPF and the ASIR show worse

computational performance. The obtention of these similar CPU-times makes sense, since the only

change in the R-implementation is to substitute the value of φ= 1 for φ= 0.3 or φ= 0.8; the reader may

refer to Figure 3.9 in previous section.

Next, we perform a small complementary study to further investigate the effect of the increase of

the number of particles (from a lowest value Np = 200 to a highest value Np = 5000) on the RMSE

and degree of degeneracy of filters studied, also exploring the increase of the time series length from

T = 200 to T = 1000.

3.4.4 Complementary Study: Increasing the Number of Particles and/or the Time

Series Length

Herein, we study the impact of increasing the number of particles Np on the performance of the filters

under study. That is, for the AR(1) plus noise model at hand with time-series-length T = 200, we first

analyze the impact of increasing Np on the R MSE yielded by the different simulation based filters

under study: the SIRopt, SIR, ASIR and KPF particle filter variants. Later, we also present results of the

impact of increasing the number of particles and time-series length on the degree of degeneracy.

Exploring the Increase of the Number of Particles

As in the previous section, we aim to study the impact of increasing the number of particles on the

mean-RMSE. To achieve that, we construct Figures 3.18 and 3.19 which show the effect of increasing

the number of particles, Np ∈ {200,500,1000,2000,5000}, on the performance of the four particle filter

variants under study. We choose the same eight (8 out of 13) representative signal-to-noise ratio set-

tings used in the last section. Thus, based on results reported in Table 3.4 and plotted in Figures 3.18

and 3.19, the following conclusions arise, irrespective of the value of φ:

• Except for Case 13 with high signal-to-noise-ratio value q = 100, all studied particle filters are

practically not affected by the increase of the number of particles, but notice that they already

show a very similar statistical performance to the gold standard KF with a rather low number of

particles Np = 200.

• In the particular case with high signal-to-noise-ratio q = 100, our results show that the ASIR

has worse performance. The mean-RMSE yielded by the ASIR approaches the KF’s mean-RMSE,

but it always stays slightly above. The SIR PF variant also shows unsatisfactory behavior for 200

particles, but achieves a statistical performance close to the KF starting with Np = 500 and Np =
1000 for φ= 0.3 and φ= 0.8, respectively. Generally, it appears that as φ increases, larger RMSE

values are obtained.
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Figure 3.18: AR(1) plus noise model: Effect of the number of particles over the mean-RMSE; fixed T = 200 and φ= 0.3.
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Figure 3.19: AR(1) plus noise model: Effect of the number of particles over the mean-RMSE; fixed T = 200 and φ= 0.8.
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After finding the minimum number of particles needed to achieve a similar/equal statistical per-

formance to the gold standard KF when dealing with the AR(1) plus noise model, another question

remains: Is the estimated posterior marginal density obtained with the minimum found number of

particles a reliable posterior? Next, we explore the effect of increasing the numbers of particles on the

degree of degeneracy observed, since we think this is closely related to reliability of the estimated pos-

terior marginal densities. Also, we proceed to assess the degree of degeneracy when using a higher

time series length.

Exploring the Increase of both the Number of Particles and the Time Series Length

In a previous simulation study, with time series length T = 200 and Np = 200 particles, we found that

the SIRopt and KPF suffer the degeneracy problem, in general, to a lesser degree and that both the

SIR and the ASIR particle filter variants are more affected by it at high signal-to-noise-ratio values (in

Table 3.4, focus on last three cases, specially in the last one with q = 100). Those simulation results

suggested that the competing particle filter variants show worse statistical performance when more

degeneracy is present.

Following, we further explore the effect of increasing the time series length as well as the number

of particles on degeneracy. Our aim is twofold: to verify if the general findings obtained using T = 200

and Np = 200 are confirmed and also to prevent (or at least postpone) the degeneracy problem with

the hope of consequently improving the statistical performance of the particle filters. To achieve these

goals, we construct Figures 3.20 – 3.21, which basically represent in the y-coordinate the percentage

of the unique number of particles (%uNp) and in the x-coordinate the chosen settings for the original

number of particles (Np ). As done for the local level model, we show results for only four signal-to-

noise-ratio settings q ∈ {1e-4,1,5,100}, two time series length settings T ∈ {200,1000} and two number

of particles settings Np ∈ {200,5000}. Thus we have a total of 4 ·2 ·2 = 16 different settings resulting in

16 plots. As can be seen in the constructed figures, we organize these 16 plots (for each chosen value

of the autoregressive parameter, φ = 0.3 and φ = 0.8) in four sub-figures (per type of filter) with each

subfigure containing the four plots corresponding to the four signal-to-noise ratio settings used.

The sub-figures in the aforementioned figures allow us to confirm the previously stated results for

T = 200 and Np = 200. Further, we find out that this behavioral pattern seems to hold regardless of

the number of particles and time series length. In other words, the SIRopt (top right sub-figure) and

the KPF (bottom right sub-figure) continue suffering the degeneracy problem to a lesser degree. Both

the SIR and the ASIR particle filter variants are more affected by it at high signal-to-noise-ratio values

(focus on top left and bottom left sub-figures and case: q = 100). Since we want to assess the effect

increasing the number of particles and the time series length using four signal-to-noise-ratio settings

per filter, a detailed description of the degeneracy related performance of the four competing particle

filter variants is given below:

• First, both the SIR and ASIR show a rather general similar pattern on their performance as a

function of the signal-to-noise-ratio setting: the number of unique particles decreases as the
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(d) Percentage number of unique particles under KPF

Figure 3.20: AR(1) plus noise model with φ = 0.3: Percentage of unique number of particles at time

index t = T (T=200,black/continuous; T = 1000, grey/dashed) in relation to the original number of

particles Np ∈ {200,5000} obtained by the four competing particle filter variants (Top left: SIR, Top

right: SIRopt, Bottom left: ASIR and Bottom right: KPF) at selected signal-to noise-ratio settings q ∈
{1e −4,1,5,100}.



3.4 SIMULATION STUDY II: THE STATIONARY AR(1) PLUS NOISE MODEL 103

1000 2000 3000 4000 5000

0

20

40

60

80

100

Np

%
uN

p

SNR=1e−4

T=200
T=1000

1000 2000 3000 4000 5000

0

20

40

60

80

100

Np

%
uN

p
SNR=1

T=200
T=1000

1000 2000 3000 4000 5000

0

20

40

60

80

100

Np

%
uN

p

SNR=5

T=200
T=1000

1000 2000 3000 4000 5000

0

20

40

60

80

100

Np

%
uN

p

SNR=100

T=200
T=1000

(a) Percentage number of unique particles under SIR
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(c) Percentage number of unique particles under ASIR
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(d) Percentage number of unique particles under KPF

Figure 3.21: AR(1) plus noise model with φ = 0.8: Percentage of unique number of particles at time

index t = T (T=200, black/continuous; T = 1000, grey/dashed) in relation to the original number of

particles Np ∈ {200,5000} obtained by the four competing particle filter variants (Top left: SIR, Top

right: SIRopt, Bottom left: ASIR and Bottom right: KPF) at selected signal-to noise-ratio settings q ∈
{1e −4,1,5,100}.
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signal-to-noise-ratio increases, irrespective of the autoregressive parameter value φ. However,

small discrepancies are observed. For φ = 0.8 the former filter has a worst-case scenario at

high signal-to-noise-ratio q = 100 where approximately a constant percentage of unique par-

ticles (about 15%) is obtained for any value of T and Np ; see top left sub-figure in Figure 3.8.

Something similar can be said for the ASIR, but in this case, the percentage of unique particles

declines from about 13% to 10% when increasing Np from 200 to 5000 particles. Both filters show

best performance at the lowest signal-to-noise-ratio q = 1e −4 where the percentage of unique

particles is slightly above 99% irrespective of the values of T and Np .

• The KPF shows a very satisfactory degeneracy related performance at all signal-to-noise-ratio

settings irrespective of the value of the autoregressive parameter φ. This filter best case scenario

occurs at high signal-to-noise-ratio q = 100 with approximately constant percentage of number

of particles (about 97%) obtained for any T and Np .

• Finally, the SIRopt that shows in general a lesser degree of degeneracy, exhibits a distinct be-

havioral pattern for signal-to-noise-ratio values less than 1 and for signal-to-noise-ratio values

greater than one. Indeed, this filter best-case scenario occurs at extremely high q = 100 signal-

to-noise-ratio values, where approximately a constant percentage of number of particles (about

97%) is obtained for any T and Np ; its worst-case scenario occurs around q = 1 where practically

a constant percentage of number of particles (about 83%) is obtained for any T and Np .

• We find these results very encouraging, as they suggest that also for the AR(1) plus noise model

the increase of the time-series length (up to T = 1000) practically does not affect the obtained

percentage of unique number of particles, and that the used number of particles Np has only a

slight effect for the ASIR, a small decrease.

• As a by-product, also for the AR(1) plus noise model at hand, these results suggest that if we had

prior information about the relative variation present in our data, we could somehow decide a

minimum number of particles so as to avoid degeneracy. The pattern found on the behavior of

the percentage number of unique number of particles (it seems stable irrespective of the time

series length T and number of particles Np used in the estimation procedure), is a very nice

result since we are aware of the importance in dealing with the degeneracy problem within the

particle filtering methodology.

• As known, all particle filters suffer the degeneracy problem and our results do not contradict that

fact. Our contribution herein is on describing in detail what happens in particular situations

–characterized by the chosen dynamic model and varied simulation settings– in order to pro-

vide some guidelines for the practitioner interested in using the filters which have been studied.

Thus, for AR(1) plus noise model, putting together the statistical performance in terms of RMSE

and a measure of degeneracy given by the percentage of unique number of particles %uNp, we

also recommend as a rule of thumb to use Np = 5000 particles, irrespective of the particle filter
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variant and the signal-to-noise-ratio, but discarding from this generalization extremely low/high

signal-to-noise-ratio values. Notice that if we focus on the degeneracy related performance, the

choice of Np = 5000 particles would yield about 500 (that is, 10% unique particles in the worst of

the worse-case scenarios, what we think is a reasonable enough amount of particles to produce

a reliable marginal posterior representation of the states. If the reader is only interested in a par-

ticular particle filter variant, previously presented specific remarks can be referred to indicating

that even a smaller number of particles could be used.

3.5 Final Remarks and Conclusions

Following, we provide a summary of the findings obtained through the two Monte Carlo experiments

carried out in the context of two linear and Gaussian dynamic state-space models with known param-

eters: the non-stationary local level model and the stationary AR(1) plus noise models.

• Best non-simulation based filtering solution: It is confirmed that when dealing with a linear

and Gaussian dynamic state-space model with known model parameters the exact Kalman filter

provides the best filtering solution.

• Best found PF variant in terms of RMSE and degeneracy: Based on the simulation results,

among the particle filter variants studied in this chapter (SIRopt, SIR, ASIR and KPF), the best

choice would be the SIRopt as it reaches the Kalman filter’s RMSE with only 200 particles at all

13 signal-to-noise-ratios case-scenarios for the stationary type-of-model (φ ∈ {0.3,0.8}). For the

non-stationary type-of-model (φ = 1), in most SNR case-scenarios (12 out of 13) only 500 par-

ticles are needed to reach a RMSE value similar or equal to the KF’s RMSE. For very low signal-

to-noise-ratio value (Case 1 with q = 1e −4), increasing the number of particles from 200 to 500

produces a noticeable decrease of the RMSE, but thereafter it decreases slowly so that with 5000

particles it still remains slightly above the KF’s RMSE.

• Regarding degeneracy6, the SIRopt suffers less the degeneracy problem yielding worst and best

(percentage mean number of unique particles at last time index t = T ) %uNpT results of %80

and %97, respectively. Additionally, among all four competing particle filters, the SIRopt has

relatively a low computational cost, since overall simulations the SIR is found to be the less ex-

pensive particle filter variant followed by the SIRopt, the KPF and the ASIR; being the latter the

most costly. Thus, the recommendation in favor of the SIRopt holds irrespective of the number

of particles used in the estimation procedure, of the setting of the autoregressive parameter φ7

and also irrespective of the signal-to-noise ratio value (13 settings).

6Be reminded that the degree of degeneracy is measured by us as the percentage mean number of unique particles at

last time index %uNpT ; the larger the better.
7Be reminded that three values of φ are considered, φ ∈ {0.3,0.8,1}
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• In the ideal linear and Gaussian context, the simulation results have shown that the particle fil-

tering methodology adopted in this thesis is also operational8. Indeed, all four particle filter

variants studied in this chapter prove to be able to reach the KF’s RMSE, although in most cases

this can only be attained by using a larger number of particles in the estimation procedure. Nat-

urally, an increase of the number of particles leads to more computational cost and to a increase

in memory requirements, but we consider that this higher cost does not represent a major prob-

lem for the problems at hand with today’s computer resources.

• For the two linear dynamic models at hand, although among the four studied particle filter vari-

ants (SIRopt, SIR, ASIR, KPF) the SIRopt PF would be the first choice, most practical problems

deviate from the linear and Gaussian ideal context treated in this chapter. In such cases, it can

be either not possible or not straightforward to use a fully adapted proposal PDF (as explained

in Chapter 2) as required by the SIRopt, being then mandatory to adopt alternative particle filter

variants such as the other three algorithms studied in this chapter. Notice that the simulation

results indicate that generally, any of these other three studied particle filter variants (SIR, ASIR,

KPF) are also able to reach the KF’s statistical performance if more particles are used in the es-

timation procedure. The needed number of particles for these three particle filters to reach the

KF’s RMSE varies according to the adopted filter, the signal-to-noise-ratio and also according to

the value of the autoregressive parameter φ.

• In the stationary context (φ = 0.3 and φ = 0.8), at most signal to noise ratio settings (10/13) all

particle filters are able to reach a RMSE value similar or equal to the KF’s RMSE with only 200

particles, except for the SIR and ASIR at higher signal-to-noise-ratio settings (q ∈ {5,10,100})

where about 500 and 1000 particles would be required when φ= 0.3 and φ= 0.8, respectively.

On the other hand, in the non-stationarity context (φ = 1) results are more varied depending

on the filter and signal-to-noise-ratio. However, at most signal-to-noise-ratio settings all three

particle filters are able to reach a RMSE value similar or equal to the KF’s RMSE with already

500 particles, except for the SIR at very low signal-to-noise-ratio (q = 1e − 4), the ASIR at very

low (q = 1e −4) and very high (q = 100) signal-to-noise-ratio settings, and for the KPF at lower

signal-to-noise-ratio values (q ∈ {1e−4,1e−3}). Indeed, the SIR and the ASIR require about 5000

particles to get RMSE values slightly larger than the benchmark KF’s at very low SNR q = 1e −4.

At very high SNR q = 100, the ASIR with 20000 particles is still not able to equate the KF’s RMSE,

but it remains slightly above KF’s RMSE. Similarly, at very low SNR q = 1e − 4 even with 20000

particles the KPF is not able to equate the KF’s RMSE, whereas at q = 1e −3 about 5000 particles

will be enough.

The above findings indicate that the value of the autoregressive parameter also has a certain im-

pact on the statistical performance of the competing particle filters. Specifically, as φ increases,

the attained RMSE values get larger; see upper panel of Figure 3.22.These results also suggest

8Herein, by operational we mean a filter that is able to reach a similar or equal statistical performance as the exact KF.



3.5 FINAL REMARKS AND CONCLUSIONS 107

that irrespective of the value of the φ parameter, generally about 5000 particles are enough to

reach the benchmark RMSE value yielded by the Kalman filter.

• Focusing on the impact of the signal-to-noise-ratio on degeneracy, the simulation results in-

dicate that as the signal-to-noise-ratio values get larger the degree of degeneracy worsens (get

smaller) for the SIR and the ASIR particle filters, improves for the KPF, and shows relatively stable

and very good values for the SIRopt. Indeed, over all 13 signal-to-noise-ratio settings and the

three autoregressive parameters settings, the worse/best degree of degeneracy results obtained

are %80/%97 for the SIRopt, %18/%98 for the KPF, %15/%99 for the SIR and %12/%99 for the

ASIR. These results again suggest that the value of the autoregressive parameter φ also plays a

certain role on the degree of degeneracy attained over the 13 signal-to-noise-ratio settings, but

in a different manner. For the SIR and the KPF particle filter variants when φ increases (going

from stationarity to non-stationarity), the degree of degeneracy %uNp gets smaller (worse); the

ASIR shows an identical but decreasing behavior irrespective of the φ setting. For the SIRopt,

irrespective of the φ setting, the %uNp first tends to decrease a bit until around SNR q = 0.5 to

later increases again but overall remains at higher values; see bottom panel of Figure 3.22. Thus,

in general, the SIRopt suffers less the degeneracy problem, the SIR and the ASIR suffer it less

at lower signal-to-noise-ratio values and the KPF suffers it less at higher signal-to-noise-ratio

values.
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• With respect to the used number of particles and the time series length, the simulation results

also indicate that for the two linear models at hand with a fixed time-series length, an increase

in the number of particles leads to 1) a reduction of the RMSE, but not in a relevant manner, 2)

an increase of the CPU times and to 3) a higher absolute number of unique particles (though

the attained percentages remain rather stable as mentioned before). Additionally, when more

observations are taken into account, as expected the RMSE tends to decrease, but this decrease

is not found relevant. We believe that this is due to the simple structure of the two dynamic linear

models at hand.

• An interesting and positive result is observed as a by-product of carried out simulations, since

given a fixed value ofφ and within each combination of particle filter variant and signal-to-noise-

ratio setting, the percentage mean of unique particles %uNp seems to remain rather stable; the

reader may look back to Figures 3.8, 3.20 and 3.21. And what we consider even more relevant

is that this behavior seems to hold irrespective of the time series length and the number of par-

ticles used in the estimation procedure; the reader may look back to Table 3.3 illustrating the

combined impact of increasing both, the time series length and the number of particles on the

degree of degeneracy for Case 5 with SNR q = 0.1 (the impact on the RMSE and the CPU-time is

also reported therein). Again, our results suggest that worse statistical performance is attained

when the filters show more degeneracy, but also that the corresponding RMSE values get smaller

(improving filtering performance) when increasing the number of particles and thus it helps to

prevent (or at least postpone) the degeneracy problem.

• In practice, we cannot control the signal-to-noise-ratio since it is data dependent, but as a result

of the extensive MC experiments carried out, we have been able to characterize the behavior of

the different particle filters studied at different low-to-high signal-to-noise-ratios and at three

chosen autoregressive parameter values.

That is, the Monte Carlo results all-together suggest that if we had prior information about the

relative variation present in our data, we could somehow decide a minimum number of parti-

cles so as to avoid degeneracy. The pattern found on the behavior of the percentage number of

unique number of particles (it seems stable irrespective of the time series length T and number

of particles Np used in the estimation procedure), is a very nice result since we are aware of the

importance in dealing with the degeneracy problem within the particle filtering methodology.

We consider this result as an important contribution that can serve as a guideline for practition-

ers when choosing the number of particles having in mind to avoid degeneracy problem.

• As known, all particle filters suffer the degeneracy problem and our results do not contradict that

fact. Our contribution herein is on describing in detail what happens in particular situations –

characterized by the chosen dynamic model and varied simulation settings– in order to provide

some guidelines for the practitioner interested in using the filters which have been studied. Thus,

analyzing and putting together all the aforementioned simulation results and findings, for the
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two studied dynamic linear state-space models –irrespective of the particle filter in question, the

signal-to-noise-ratio setting9 and of the autoregressive φ parameter setting– as rule of thumb we

recommend the use of Np = 5000 particles not only to get a similar statistical performance to

the benchmark KF, but also to avoid the inherent degeneracy drawback. Notice that if we focus

on the degeneracy related performance, the choice of Np = 5000 particles would yield about

500 (that is, 10% unique particles in the worst of the worse-case scenarios, what we think is a

reasonable enough amount of particles to produce a reliable marginal posterior representation

of the states. When only interested in a particular particle filter variant, the reader can refer to

previously presented specific remarks indicating that even a smaller number of particles could

be appropriate for obtaining a reliable posterior.

• As shown (empirically) for the linear and Gaussian model in question, the choice of a specific

particle filter over another depends on the practitioner’s expertise (expert knowledge of the struc-

ture of the dynamic model at hand and/or the available particle filter variants) or preference to

a specific filter combined with available computer memory and CPU time resources.

To close this chapter dealing with two dynamic linear state-space-models, one stationary and the

other non-stationary, we state that although the KF provides the best filtering solution, the particle

filtering methodology is also capable of reaching such performance at the expense of more computa-

tional and memory requirements. We consider that the required CPU cost (time and memory) does

not represent a major problem with today’s available computer resources. Naturally, the carried out

simulation studies regarding the use of the particle filtering methodology in a linear and Gaussian

context as the one treated in this chapter responds more to an academic or methodological objec-

tive that we consider fulfilled: to characterize the behavior of particle filters in an ideal context where

the exact solution exists, additionally to (re-)assess the impact of key factors within the particle filter-

ing methodology, such as: the signal-to-noise-ratio value, the number of particles and the time-series

length, and from there to get some deeper knowledge of the inner features (conceptual and imple-

mentation) of each competing particle filter variants. This acquired better understanding proves to be

useful in future simulation studies dealing with non-standard dynamic state-space models having a

more complex structure as the one considered in this chapter.

Indeed, based on these carried out simulation studies and on literature review, we have confirmed

that among the simulation-based algorithms, the particle filtering methodology is a good alternative.

We must say, however, that this methodology shows its superior performance when dealing with dy-

namic models with a not so simple structure as the linear models considered in this chapter.

Next chapter not only aims to illustrate and to empirically show the superior performance of par-

ticle filters over Kalman based approaches when dealing with complex state-space models, but also

how some particle filter variants outperform others. We remark that the Monte Carlo study presented

9We exclude from this generalization the following two cases for φ = 1: Case 1 with lowest SNR (q = 1e −4) and Case 13

with highest SNR (q = 100); in such cases the reader may refer back to corresponding results and remarks within this chapter.
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in next chapter is based on a short time series length. The reason for it is that the nonlinear model

taken as a benchmark is a synthetic one with no further interest than to highlight that particle filters

do outperform traditional Kalman based filters in the presence of complex dynamic models as the one

at hand in Chapter 4, which was artificially constructed by the authors of the UPF.
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BENCHMARK SIMULATION STUDY: FILTERING IN A

NONLINEAR FRAMEWORK

This chapter aims to illustrate the filtering performance (state-estimation) ability of six competing

algorithms (two non-simulation based and four particle filters) in a nonlinear context. That is, we

conduct two Monte Carlo studies confronting some existing particle filter variants already described

in Chapter 2 (pseudocodes are therein also presented) named the sampling importance resampling

(SIR), the extended particle filter (EPF), the unscented particle filter (UPF) and the adapted auxiliary

sampling importance resampling (ASIR). The EPF and UPF are also examples of adapted filters as they

both use a Kalman-based proposal distribution that incorporates the latest observation.

Notice that all particle filters considered are variant of the generic SISR particle filter, but are mainly

distinguished by the use of different proposal PDF or the adopted resampling scheme; see Table 2.2.

Thus, the two entertained benchmark simulation studies focus mainly on assessing the filtering perfor-

mance of the four mentioned simulation based nonlinear filters. For completion, the non-simulation

based filters, EKF and UKF, are also included in the MC experiments. In the second simulation study,

two commonly implemented (because of their efficiency) resampling strategies are also used for com-

parison among filters: the stratified and residual resampling schemes.

To achieve our goals, we design and implement the two mentioned Monte Carlo studies using as

a benchmark model a synthetic nonlinear model taken from the literature. Specifically, the chosen

model is not only nonlinear and non-Gaussian, but also a non-stationary threshold model, which up to

our knowledge was created by the authors of the UPF particle filter variant mainly to show its potential

superior performance in contraposition to the SIR and the EPF particle filters; considering also the

non-simulation based EKF and UKF filters, see Van der Merwe et al. (2001). This model is presented in

Section 4.1.

113
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The first simulation study basically reproduces some of the results presented by Van der Merwe

et al. (2001). These authors compare the performance of all the aforementioned nonlinear filters ex-

cept the ASIR. However, they assess the filtering performance of five nonlinear filters considering solely

a statistical measure of performance based on the RMSE. Additionally, they only use a small number

of particles Np = 200, and implement only the residual resampling strategy to carry out the selection

step of the particle filters.

In a second Monte Carlo study, we make an extension of the first simulation study. This is done by:

1. incorporating an extra particle filter variant we have worked with: the ASIR PF,

2. including the resampling strategy we have always worked with: the stratified one,

3. providing not only a statistical measure of performance of the studied filters, but also a computa-

tional measure of performance, and

4. by specifically assessing the effect of incrementing the number of particles.

Hence, the second simulation design includes as a particular case a subset of the Monte Carlo study

considered by Van der Merwe et al. (2000, 2001).

This chapter is organized as follows: In Section 4.1, the state-space formulation for the chosen

benchmark synthetic nonlinear dynamic model is specified. In addition, some motivating issues re-

garding the choice of this nonlinear model are presented. Section 4.2 presents the general procedure

used in the design of the two simulation studies, which is the same provided in the previous chapter,

but adapted to the nonlinear model in question. Then, Section 4.3 considers the specific filter’s set-

tings, experimental results, remarks and conclusions for both simulation studies. Finally, Section 4.4

reports some final remarks.

4.1 Synthetic Nonlinear Model Under Study

To illustrate how the filters described in Chapter 2 perform in a nonlinear context, we use as a bench-

mark nonlinear model the synthetic model used by Van der Merwe et al. (2001). This model has a state

transition equation given by

xt = 1+sin(ωπ(t −1))+φ1 xt−1 +ηt (4.1)

where the state noise ηt follows a Gamma distribution with shape and scale parameters given by a = 3

and b = 1/2, respectively. That is, ηt ∼ G (3,1/2), and thus its mean and variance are 3/2 and 3/4,

respectively.

On the other hand, the measurement equation is specified by

yt =




φ2x2

t +νt t ≤ Th ,

φ3xt −2+νt t > Th ,
(4.2)
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where the measurement noise νt follows a Gaussian distribution with mean zero and variance σ2
νt

.

Notice that the measurement equation has a different specification depending on a threshold value

defined in terms of the time index t .

The above equations (4.1) and (4.2) clearly specify a nonlinear, non-Gaussian and non-stationary

dynamic model state-space formulation. An exemplar graphical representation of the generated uni-

variate data yt and state values xt , is displayed in Figure 4.1. The same exemplar run will be considered

throughout this chapter.
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Simulated observations and states

observations: yt 
true states: xt

Figure 4.1: An example of the generated data y t (black/continuous), and simulated states x t

(red/dashed) for the synthetic nonlinear model specified in equations (4.1) and (4.2).

The authors Van der Merwe et al. (2001) choose this particular synthetic nonlinear dynamic model

to show the potential superior performance of the UPF algorithm. We choose it mainly to get ac-

quainted with the implementation issues of the UKF, EPF and UPF algorithms and to assess their be-

havior in contrast to more known approaches, say the EKF, SIR PF, and ASIR PF.

Notice that the four competing particle filter variants (and the two Kalman-based algorithms) usu-

ally appear scattered in the literature, and we aim to confront them under exactly the same experi-

mental conditions in order to test first their filtering (only the states) performance, to get some further

insight on their functioning and consequently have a better understanding of the inner features of

filters studied. This acquired better understanding proves to be useful in future simulation studies

dealing not only with states-estimation (plain filtering) of non-standard dynamic state-space models,

but also with the simultaneous estimation of states and parameters.
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4.2 General Procedure for Simulation Design

The two simulation studies carried out in this chapter follow the same general simulation procedure

presented in Section 3.2 of Chapter 3, which undertakes the following three steps:

• STEP I: Data and state generation

• STEP II: Filtering estimation

• STEP III: Filtering performance criteria computation

Following, we provide a detailed description of the aforementioned general simulation steps. No-

tice that within every simulation step, we further specify the instructions needed to carry out the MC

experiments with the nonlinear benchmark model at hand.

STEP I: Data and State Generation

Generate S = 100 realizations of the chosen synthetic nonlinear dynamic model. That is,

(Ia) Specify the variance σ2
νt

= 0.00001, the parameters a = 3 and b = 1/2 for the Gamma error terms,

the time series data length T = 60, a threshold value Th = T /2 = 30 and the other known model

parameter values ω= 0.04, φ1 = 0.5, φ2 = 0.2, and φ3 = 0.5.

(Ib) Generate the random numbers ηt and νt . In this case, ηt is generated from a univariate gamma

distribution ηt ∼G (a,b), and the random numbers νt from a univariate normal distribution νt ∼
N (0,σ2

νt
).

(Ic) Simulate the state-values x t and data y t , t = 1, . . . ,T , from the transition equation (4.1) and the

measurement equation (4.2), respectively.

(Id) Repeat (Ia)–(Ic) S = 100 times.

STEP II: Filtering Estimation

For each nonlinear filter f , obtain both the statistical and computational measure of performance

of the studied nonlinear filter f . These are based on the root mean square (RMSE) and on the CPU

time. That is, assuming all model parameters are known and given the simulated data y 1:T = y1, . . . , yT

obtained in step (I), for replication set i , i = 1, . . . ,S, proceed to

(IIa) Compute the filtering estimates x̂ f
t ,[i ], t = 1, . . . ,T using the nonlinear filter in question, say f .

Recall that f ∈ {EKF, UKF, SIR PF, ASIR PF, EPF, UPF}.

(IIb) Compute R MSE f
[i ]

: the RMSE over time index t = 1, . . . ,T with equation (3.4).

(IIc) Compute C PU f
[i ]

: the total elapsed time for a total of T observations with equation (3.5).

(IId) Repeat steps (IIa)–(IIc) S = 100 times.
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STEP III: Filtering Performance Criteria Computation

(IIIa) In step (IIb), we end up with S = 100 estimates of the RMSE: R MSE f
[i ]

. Based on these, obtain the

mean and the variance of the root mean square (RMSE) computed over time and over replication

sets using equations (3.6) and (3.7), respectively.

(IIIb) In step (IIc), we end up with S = 100 CPU elapsed-time estimates: C PU f
[i ]

. Based on these, obtain

the mean CPU elapsed-time computed over replication sets using (3.8).

For completion, the reader may refer to two sketches created in Chapter 3 for a better illustration

of the simulation design and performance criteria used. Specifically, the sketch in Figure 3.2 illustrates

the criteria for comparing the non-simulation based filters. The corresponding sketch for the different

PF variants under study is found in Figure A.1 of Appendix A.

4.3 Simulation Results, Remarks and Conclusions

As aforementioned, we perform two simulation studies. In fact, the first can be considered a subset

of the second. Herein, we explicitly provide the simulation settings and results for each of the two

simulation studies.

4.3.1 Simulation Study I: Mimic an Existing Study

In a first simulation study, we mimic the UPF authors, who conduct a Monte Carlo experiment in

order to assess the potential superior performance of the UPF filter over other PF variants as well as

over two non-simulation based filters; see Van der Merwe et al. (2001). Our aim is two-fold: 1) To get

acquainted with the implementation issues of the EPF and UPF filters, and 2) to confirm the results of

Van der Merwe et al. (2001).

To achieve our purpose, we use exactly the same settings and procedure as the authors Van der Merwe,

Doucet, de Freitas, and Wan (2001). These general settings are:

• Competing filters:

– Non-simulation based: EKF, UKF

– Simulation based: SIR, EPF and UPF

• Comparison criterion: RMSE

• Resampling scheme: Residual resampling

• Number of replications: S = 100

• Number of particles: Np = 200
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• Time series length: T = 60

For the UKF-based filters, the specific settings α = 1, β = 0, and κ = 2 are used; see main-programm

R-code on page 261, Appendix A. According to literature, these values are optimal for the scalar case,

like the one consider here; see Van der Merwe (2004).

The results for simulation study I, are presented in Table 4.1. Therein we report the statistical per-

formance of the different nonlinear filters under study, provided by the mean and the variance of the

estimated RMSE computed over time and over replications. Additionally, in square brackets, we report

the estimated results published in Van der Merwe et al. (2001).

Table 4.1: Summary of simulation study I with

Np = 200

RMSEa (RESc)

Filter Mean Var

SIR 0.415 [0.424] 0.056 [0.053]

EPF 0.312 [0.310] 0.016 [0.016]

UPF 0.073 [0.070] 0.007 [0.006]

EKFd 0.399 [0.374] 0.017 [0.015]

UKFd 0.298 [0.280] 0.012 [0.012]

a Root mean square error
b Results in square brackets are from Van der Merwe

et al. (2001)
c Residual resampling
d Clearly, the EKF and UKF do not need resampling

To illustrate the filtering performance of the five competing filters, for the same exemplar run used

before, a graphical comparison of the simulated state values and its filtering estimates is displayed.

In other words, for a particular set of data, the true state values xt and the estimated states evolution

x̂t |t , t = 1, . . . ,T are plotted together. Figure 4.2 shows the evolution of the estimated states for the non-

simulation based filters EKF and UKF together with the true states values. Likewise, Figure 4.3 displays

the estimated states evolution for the simulation-based filters, using in this case residual resampling.

Notice that at any time-index t = 1, . . . ,T , the EKF and UKF filters yield directly the estimates of the

states x̂t |t . The particle filters, however, yield an estimation of the whole posterior PDF of the states

P
(
x t |y 1:s

)
and based on it, the states posterior mean estimate x̂t |t is computed.

Remarks and Conclusions for Simulation Study I

Based on simulation I results displayed in Table 4.1, considering T = 60 and only Np = 200 particles, we

make the following remarks and conclusions regarding the performance of the five filters under study

when handling the chosen synthetic nonlinear dynamic model:
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Figure 4.2: Evolution of simulated states xt and estimated states x̂t |t for synthetic nonlinear model

specified in equations (4.1) and (4.2). Results shown for the EKF and UKF non-simulation based filters.
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Figure 4.3: Evolution of simulated states xt and estimated states x̂t |t for the synthetic nonlinear model

specified in equations (4.1) and (4.2). Results shown for three simulation based filters (SIR, EPF and

UPF) with Np = 200 particles.

• First, focusing on the mean and variances of the RMSE in Table 4.1, we conclude that our es-

timated results show great concordance with the literature results. Although small differences
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are observed in the statistical performance of all filters, we consider this natural since we are

not only dealing with generated data sets that are distinct from the ones used by Van der Merwe

et al. (2001), but also applying three filters based on simulations. Thus, the observed behavior is

characteristic of MC experiments.

• Second, we are able to confirm the findings of the authors Van der Merwe et al. (2001) who con-

clude that the UPF variant can be able to outperform other nonlinear algorithms. Indeed, for a

rather small number of particles Np = 200, the UPF shows a clearly superior statistical perfor-

mance, in terms of the RMSE, over the other nonlinear algorithms under study.

• Thus, in a complex context like the one defined by the nonlinear model at hand, the results

confirm that the non-simulation based filters (EKF and UKF) are not really able to provide an

optimal filtering solution. The particle filtering methodology, however, is able to provide supe-

rior statistical performance as indicated by the mean-RMSE of the UPF variant. In this case the

SIR PF variant shows worse performance (mean-RMSE slightly above the EKF’s RMSE), followed

by the EPF, with mean-RMSE values slightly above the UKF’s RMSE.

• Therefore, based on the above results with Np = 200 and using a residual resampling strategy,

we confirm that the UPF is able to outperform all four competing filters: the EKF, the UKF, the

SIR and the EPF. Recall that the model at hand is very complex, being nonlinear, non-stationary

and non-Gaussian, where the measurement equation has a different specification depending on

a threshold value defined in terms of the time-index t .

Next, a second simulation study is carried out, which basically is an extension of the Monte Carlo

study presented above.

4.3.2 Simulation Study II : Extension of First Simulation Study

This simulation study extends the former Monte Carlo experiment by incorporating the following new

elements: 1) a very popular particle filter variant: the ASIR; 2) another resampling scheme: stratified

resampling; 3) another measure of performance of the filters: CPU time; and 4) the effect of increasing

the number of particles on the performance of the different particle filters which are chosen.

Summary of Simulation Settings

In this case, the simulation settings of the first Monte Carlo study are also extended (new ones in bold-

face) and summarized by:

• Competing filters:

– Non-simulation based: EKF, UKF

– Simulation based: SIR, EPF, UPF, and ASIR
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• Comparison criteria: RMSE and CPU time

• Effect of the resampling strategy: Residual vs Stratified

• Explicit effect of the increase of the number of particles

• Number of replications: REP = 100

• Number of particles: Np = 200, 1000, 2000, 5000 and 10000

• Time series length: T = 60

With this second simulation study, we aim to asses the filtering performance of the four particle

filter variants listed above, using the nonlinear model at hand as a benchmark. Also, for completion,

we include the two aforementioned analytical filters: the EKF and the UKF algorithms.

To achieve our purpose, we conduct a Monte Carlo study following the same general simulation de-

sign as in simulation study I, but incorporating the new elements that are mentioned and highlighted

above.

In the sequel, we present the simulation results, remarks and conclusions regarding the extension

of the first MC study. This we consider to be the main contribution of this chapter.

Experimental Results

In Table 4.2, the simulation results corresponding to the same number of particles used in simulation

I, say Np = 200 particles, are reported. Later, however, we present results which reflect the effect of in-

creasing the number of particles on the quality of the estimations for the simulation based filters which

we studied. This table is organized in three different blocks, where the first two correspond to the RMSE

values obtained using the residual and stratified resampling schemes, respectively. Each one of these

blocks is composed of two columns containing the two measures: Mean(RMSE) and Var(RMSE). No-

tice that, for completion, the non-simulation based EKF and UKF filters are included in the simulation

study; results shown at the bottom of the Table 4.2. The third block contains the mean CPU elapsed-

time (in seconds) computed over replications using formula (3.8) for both resampling schemes.

Recall that the newly introduced measure of performance of the filters is based on the mean CPU

elapsed-time computed over replications, and it represents the time a filter takes for estimating the

states of a time series of length T .

All the reported simulation results are later commented on, and, for the sake of a better under-

standing of them, some illustrative plots are constructed.

Remarks and Conclusions for Simulation Study II

Based on the results of simulation II displayed in Table 4.2, considering T = 60 and only Np = 200

particles, we make the following remarks and conclusions regarding the performance of the six filters

under study when handling the chosen synthetic nonlinear dynamic model:
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Table 4.2: Summary of simulation study II with Np = 200

RMSEa (RESb) RMSE (STRc) Mean CPU Timed

Filter Mean Var Mean Var RES STR

SIR 0.415 0.056 0.407 0.058 0.201 0.117

ASIR 0.423 0.056 0.439 0.059 0.262 0.264

EPF 0.312 0.016 0.315 0.017 0.233 0.148

UPF 0.073 0.007 0.071 0.008 5.784 5.566

EKFe 0.399 0.017 0.082

UKFe 0.298 0.012 0.058

a Root mean square error
b Residual resampling
c Stratified resampling
d Mean CPU elapsed-time over replications in seconds
e EKF and UKF do not need resampling

First, we refer to the inclusion of the ASIR particle filter variant into the second simulation study,

and find that it does not alter the last conclusion pointed out in simulation study I. That is, using a

rather small number of particles Np = 200, the UPF particle filter variant still has the best statistical

performance. Indeed, the UPF shows a very small mean-RMSE (around 0.07) in contraposition to

the other three competing particle filter variants and to the two analytical filters; focus on Table 4.2.

As seen, the EPF is the second-best particle filter variant, followed by the SIR and the ASIR. Thus in

this case, the latter two particle filter variants show worse statistical performance. Additionally, as

seen already in Simulation I, between the two analytical filters under study, the UKF displays best

performance.

Notice that, the mean-RMSE yielded by the EPF particle filter variant and the analytical UKF filter

are very close. Likewise, the mean-RMSE of the SIR and the ASIR particle filter variants are close to the

mean-RMSE value yielded by the EKF.

Second, we assess the effect of the inclusion of the stratified resampling scheme, and find that

it does not change the general conclusions stated in the previous remark: that the UPF outperforms

the other three competing particle filter variants (EPF, SIR and ASIR). Focusing our attention on the

statistical performance within each particle filter variant, we find that the mean-RMSE values obtained

through the two chosen resampling schemes practically coincide; focus on the mean-RMSE per rows

in Table 4.2.

To illustrate the filtering performance of the four simulation-based filters in question, a graphical

comparison of the true state-values and its filtering estimates is provided. Specifically, Figure 4.4(a)

shows the evolution of the estimated states under residual resampling. Likewise, Figure 4.4(b) displays

the evolution of estimated states using the stratified resampling scheme. Although these plots are



4.3 SIMULATION RESULTS, REMARKS AND CONCLUSIONS 123

based on a single exemplar run, they perfectly illustrate the conclusions stated above.

0 10 20 30 40 50 60

0
2

4
6

8
10

12

Time−index

 

Filter estimates vs True states, Np= 200

True x
x_sirpf
x_asirpf
x_epf
x_upf

(a) Simulated vs estimated states; Residual Case.
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(b) Simulated vs estimated states; stratified Case.

Figure 4.4: An example of a synthetic nonlinear non-Gaussian and non-stationary dynamic model

specified in equations (4.1) and (4.2); fixed known parameters.

Third, focusing on the performance of the four competing particle filter variants in terms of the

computational time, we conclude that among the simulation-based filters, the SIR is computationally

the least-expensive algorithm with mean CPU time values around 0.20 [0.11] (average under residual

[stratified] resampling) seconds, followed by the EPF (0.23 [0.15]), the ASIR (0.26 [0.26]) and the UPF

(5.78 [5.57]) filter. Thus, for Np = 200 particles, clearly the UPF and the ASIR show worse computa-

tional performance; focus on the last two columns of Table 4.2. Clearly, the non-simulation based

filters UKF and EKF are the most computationally efficient algorithms with about 0.06 and 0.08 mean

CPU times values, respectively. Therefore, the above simulation results suggest that for the nonlinear

model at hand, the stratified resampling scheme is, in general, computationally more efficient than

its counterpart residual resampling. Notice, however, that the discrepancy in the computational ef-

ficiency between resampling schemes is present in a less degree in both: the ASIR PF and the UPF

particle filter variants. By contrast, as can be seen on the first four columns of Table 4.2, the statistical

efficiency is practically not affected by the resampling strategy; see also the illustration on Figure 4.4.

As mentioned in Section 2.4, our first incursion into the sequential Monte Carlo methodology be-

gan with Kitagawa’s 1996 paper. In that paper, a comparative study of different resampling strategies

(residual resampling not included) is carried out, and the systematic stratified scheme was shown to

have a superior performance. Based on Kitagawa’s comparison of resampling strategies and also on the

conclusions arising from our simulation study II, in the remainder of this work, we restrict ourselves to

solely using the stratified resampling scheme, just as is done in the previous chapter. We remark that
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we have always worked with the stratified resampling algorithm, and that we have explicitly aimed and

hopefully fulfilled its efficient implementation in R language.

Next, considering only the stratified resampling scheme, we explore the impact of increasing the

number of particles on both the mean-RMSE and the mean-CPU time of the competing particle filters.

Effect of Increasing the Number of Particles

Herein, for the complex nonlinear model at hand with time-series-length T = 60, we assess the impact

of increasing the number of particles on the statistical (mean-RMSE) and computational (mean-CPU

time) performance of the four competing particle filter variants: the SIR, ASIR, EPF and UPF.

The simulation results for a number of particles in the set Np ∈ {200,1000,2000,5000,10000} are

reported in Table 4.3. For the sake of clarity, we also construct Figure 4.5 (on page 126) which allows to

see at a glance how increasing the number of particles affect the statistical and computational perfor-

mance of the four particle filter variants under consideration.

Based on results reported in Table 4.3 and plotted in Figure 4.5 the following conclusions arise:

• For the UPF variant, we find that a greater number of particles only slightly effects its statisti-

cal performance. In this case, the estimated mean[variance] of the RMSE decreases from about

0.07[0.01] to 0.05[0.01] as the number of particles Np increase from 200 to 2000; a higher in-

crease of the number of particles has practically no further effect. Notice, however, that for a

rather small number of particles, one obtains reasonably good statistical performance, though

this filter has the most expensive computational cost.

• The statistical performance of the EPF particle filter variant is practically not influenced by in-

creasing the number of particles. Actually, for this filter, the estimated mean[variance] of the

RMSE decreases from about 0.32[0.02] to 0.30[0.02] as the number of particles Np increases from

200 to 1000, but then remain more or less constant, with mean-RMSE values close to but below

to the UKF estimated values 0.30[0.01]. Computationally speaking, we find that the EPF is the

second-least expensive particle filter.

• The statistical performance of both the SIR and the ASIR particle filter variants are greatly af-

fected by the increase of the number of particles. Additionally, both nonlinear filters show very

close mean-RMSE values for the model at hand, with ASIR values slightly higher up to Np = 5000

particles. However, in this case, the SIR PF has a smaller computational cost. Indeed, we find

that the SIR is the least-expensive particle filter variant and the ASIR the second most-expensive

one, being the UPF the most expensive.

We remark that both the SIR and the ASIR particle filter variants are able to equate the UPF’s

mean-RMSE value (0.05[0.01]; Np = 2000) with 5000 particles. Notice also that the lowest mean-

RMSE value is yielded by the SIR/ASIR with Np = 10000 particles. This suggests that simpler

(mainly, in terms of implementation issues) particle filter variants like the SIR and the ASIR are
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Table 4.3: Summary of Monte Carlo sub-study: Effect of increas-

ing Np

RMSEa (STRb)

Filter Np
c Mean Var Mean CPU Timed

SIR PF 200 0.407 0.058 0.117

1000 0.183 0.062 0.295

2000 0.105 0.040 0.484

5000 0.054 0.036 1.174

10000 0.028 0.014 2.684

EPF 200 0.315 0.017 0.148

1000 0.289 0.016 0.373

2000 0.283 0.017 0.631

5000 0.270 0.016 1.919

10000 0.262 0.016 3.847

UPF 200 0.071 0.008 5.566

1000 0.058 0.007 27.539

2000 0.049 0.006 56.374

5000 0.046 0.006 137.928

10000 0.044 0.006 280.954

ASIR PF 200 0.439 0.059 0.264

1000 0.168 0.059 0.754

2000 0.123 0.048 1.338

5000 0.040 0.020 3.049

10000 0.028 0.014 6.634

a Root Mean Square Error
b Stratified Resampling
c Number of particles
d Mean CPU elapsed-time over replications in seconds

able to reach the performance of more recent and complex filters like the UPF (already efficient

enough with a rather small number of particles) at the expense of memory cost, but not neces-

sarily of more computational cost.

• Therefore, computationally, in general, the most expensive nonlinear filter is the UPF, followed

by the ASIR, the EPF and the SIR particle filter variant; focus on last column of Table 4.3 and

bottom panel of Figure 4.5. From the statistical point of view, we get mixed results as described

above.
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in Table 4.3.

Figure 4.5: Synthetic Nonlinear Model: Impact of increasing the number of particles on the statistical

and computational estimation performance of the four competing particle filters indicated in panel a)

by the mean(RMSE) and in panel b) by the CPU time in seconds; T = 60 and Np = 200 are used. Results

for the UPF are not shown, but are reported in Table 4.3
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4.4 Final Remarks and Conclusions

In summary, this chapter considers a Monte Carlo benchmark study of four competing particle filter

variants and two Kalman-based filters to assess their performance in a complex nonlinear framework.

Recall that the benchmark state-space model – specified in equations (4.1) – (4.2) and taken from the

literature – is not only nonlinear, but also non-stationary and non-Gaussian. Additionally, notice that

the nonlinearity appears in the measurement equation and is specified via a threshold value defined

in terms of the time index t . Therefore, in a complex nonlinear context like this with T = 60, our

simulation results indicate that:

• According to simulation I with Np = 200 particles:

For the nonlinear model at hand, the results of our simulation study I allow us to confirm the

findings of the authors Van der Merwe et al. (2001), who state that the UPF variant can be able

to outperform other nonlinear algorithms; all simulation I results are based on Np = 200 parti-

cles and residual resampling. Recall that this first simulation study considers only a statistical

comparison criterion, which is known to be based on the RMSE.

Thus, based on results reported in Table 4.1, we conclude that with Np = 200 and under residual

resampling, the UPF variant is found to be the best filter, followed by the EPF (with mean-RMSE

close, but below, to the UKF estimated values) and the SIR PF variant (showing a statistical per-

formance close to the one yielded by the EKF).

• According to simulation II with Np = 200 particles:

With respect to the inclusion of the ASIR particle filter variant into the Monte Carlo experimenta-

tion, we find that it shows a very similar statistical performance to the SIR particle filter variant.

The ASIR has, though, a higher computational cost; see Table 4.2.

The inclusion of the stratified resampling scheme does not change the general conclusions stated

in simulation study I: that the UPF statistically outperforms all competing particle filter variants

(EPF, SIR and ASIR) and the two Kalman-based approaches (EKF and UKF); focus on the first

four columns of Table 4.2 and for completion on Figure 4.4.

Focusing on the statistical performance within each particle filter variant, we find that the mean-

RMSE values obtained through the two chosen resampling schemes practically coincide; focus

on the mean-RMSE per rows in Table 4.2 and on Figure 4.4. These results suggest that the choice

between residual and stratified resampling does not play a distinctive role in the statistical per-

formance of the competing sequential Monte Carlo filters for the model at hand.

Focusing on the computational performance within each particle filter variant, we find that the

mean CPU time values obtained under residual resampling are generally greater than those un-

der stratified resampling; focus on the mean-CPU times in the last two columns of Table 4.2.

Thus, these results suggest that the choice between residual and stratified resampling does play
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a distinctive role in the computational performance of the competing sequential Monte Carlo

filters for the model at hand.

Therefore, the above simulation results suggest that for the nonlinear model at hand, the strati-

fied resampling scheme is, in general, computationally more efficient than its counterpart resid-

ual resampling. In case of the ASIR and the UPF particle filter variants, however, the mean-CPU

times are very similar. In contrast, all above findings suggest that, in general, the stratified resam-

pling scheme is computationally more efficient. As aforementioned and justified, in the sequel

we solely use the stratified resampling scheme.

• According to simulation II considering the impact of increasing the number of particles used in

the estimation procedure, Np ∈ {200,1000,2000,5000,10000}:

Although for Np = 200 particles the UPF is found to be the best nonlinear filter, we stress that

both the SIR and the ASIR particle filter variants are able to reach the UPF statistical performance

at the cost of increasing the number of particles (consequently more memory costly), but with

a lower computational burden. To illustrate this situation, refer to Table 4.2 and Figure 4.5(b);

the UPF CPU times are not shown on the plot because they are too high, but they are reported

in the mentioned table. Both the SIR and the ASIR reach similar mean-RMSE values to the UPF

particle filter variant with Np = 5000; when Np = 10000, they equate or even slightly improve its

statistical performance. We thus consider that Np = 5000 is a good enough number of particles

for the SIR and ASIR filters as a trade-off between computational and statistical performance.

When increasing the number of particles from 200 to 2000, we find that both the UPF and the EPF

show a rather slight decrease of the mean-RMSE, afterwards their values remain practically the

same. In contrast, both the SIR and the ASIR are highly affected by the increase of the number

of particles, though the impact is stronger at lower settings values of Np . We observe that an

increase of the number of particles from Np = 200 to Np = 5000 produces a reduction of the

mean-RMSE from 0.41 to 0.05 for the SIR, and from 0.44 to 0.04 for the ASIR, with the ASIR being

computationally more costly.

As depicted on Figure 4.5(b), the effect of increasing the number of particles on the computa-

tional performance of the four competing particle filter variants is very noticeable. Clearly, the

UPF shows in this case a worse performance, followed by the ASIR, the EPF and the SIR when

considering Np = 200 particles or more.

With the aim to provide fair comparisons among the particle filter variants under scrutiny, we

decide to undergo an additional experimental study to assess the computational performance

of three out of four competing particle filters for a fixed mean-CPU time; see results shown in

Table 4.4. Notice that we do not include the EPF particle filter variant in this sub-study because,

as shown before, it hardly gets affected by the increase of the number of particles (in terms of

RMSE). Thus, for a fixed mean CPU elapsed-time of about 7 seconds, we find that:
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The SIR particle filter variant outperforms the UPF, if Np = 25000 particles are used. Specifi-

cally, the SIR with (RMSE[mean,var]=[0.02,0.01],Np = 25000) improves the respective UPF val-

ues ([mean,var]=[0.07,0.01], Np = 250). We stress that the SIR already gets a mean-RMSE value

of about 0.03 with 10000 particles and a mean CPU-time of about three seconds. Notice also

that the SIR yields a mean-RMSE value of about 0.05 with 5000 particles and a mean CPU-time

slightly larger than one second.

Likewise, the ASIR particle filter variant statistically outperforms the UPF, if Np = 10000 parti-

cles are used. Specifically, the ASIR with (RMSE[mean,var]=[0.03,0.01],Np = 10000) improves

the respective UPF values ([mean,var]=[0.07,0.01], Np = 250). Notice also that the ASIR yields a

mean-RMSE value of about 0.04 with 5000 particles but with a mean CPU-time of about three

seconds; when 10000 particles the ASIR takes about 7 seconds.

Therefore, for a fixed mean CPU time, the SIR proves (empirically) to be an alternative option to

the UPF when filtering the states of the nonlinear model in question, at the expense of higher

memory requirements. As a second alternative, we have the ASIR; refer to results in Table 4.4.

We stress, however, that the UPF already shows a satisfactory computational performance with

a very low number of particles.

Table 4.4: Statistical Performance for fixed CPU-time of 7 seconds

Filter Mean Var Np

SIR PF 0.02 0.01 25000

ASIR PF 0.03 0.01 10000

UPF 0.07 0.01 250

Based on the Monte Carlo experiments, our results clearly highlight that when dealing with non-

standard time series models, the particle filtering methodology is a useful and efficient alternative

approach. The superior performance of the particle filtering methodology does not take us by surprise,

since it was precisely created to tackle the estimation of nonlinear models, where previous approaches

had difficulties.

The simulation results also indicate that an increase in the number of particles improves the pre-

cision of the filtering estimates. However, we should keep in mind that more particles increase the

computational burden. As shown (empirically) for the nonlinear model in question, the choice of a

specific filter over another depends not only on the type of model at hand but also on the practitioner’s

knowledge of the specific filters available, having in mind the memory and CPU time requirements.

We consider thus, that the particle filters prove their superior performance when dealing with non-

standard dynamic models with a more complex structure as covered in the previous chapter. Herein,

we have illustrated and (empirically) shown that when departing from an ideal context with relevant

non-linearities the particle filtering methodology studied in this work is a valid alternative, being able
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to outperform Kalman-based nonlinear algorithms such us the Extended Kalman filter or the Un-

scented Kalman filter. We remark that the main goal of our research strives in obtaining the simul-

taneous estimation of states and possibly-fixed unknown model parameters. In such a context, the

plain use of the KF is not longer a suitable solution 1. Therefore, our interest is in studying the behavior

of a simulation based approach known as particle filtering methodology having in mind its possible

later use for estimating simultaneously the state and parameters. The results of the MC experiments

help us to get some useful insight for later simulation studies and for the suitability of the particle

filtering methodology for filtering/learning more complex models.

The next Chapter describes how the particle filtering methodology can be used to estimate simul-

taneously the states and fixed model parameters of a dynamic state-space model. Consequently, in

later chapters, some of the filters already presented in Chapters 2–4 are modified (and used when fea-

sible) to deal with the simultaneous estimation of state and fixed model parameters. Additionally, let us

remark that since we are particularly interested in non-standard dynamic models, the non-stationary

local level model studied in the first part of this thesis will be revisited (specifically, in Chapter 5) later

on in the second part of this thesis dealing with the simultaneous estimation of states and involved

fixed model parameters.

1A possible and commonly used solution is the combination of two non-simulation based methods: the KF and the

Maximum Likelihood approach; see for instance (Ruiz 1994)
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SIMULTANEOUS ESTIMATION OF STATES AND

PARAMETERS VIA THE PARTICLE FILTERING

METHODOLOGY

Generally speaking, there exists a wide range of methods to solve the parameter estimation problem

in state-space models. The adoption of a particular type greatly depends on the characteristics of

the problem at hand. When confronted with the parameter estimation problem in a nonlinear non-

Gaussian framework, several filters based on the underlying density functions have been developed;

see for instance, Muñoz, Pagès, and Martí-Recober (1988), Clapp and Godsill (1998), Kitagawa (1998),

Kitagawa and Sato (2001), Tanizaki (2001), Doucet et. al (2001), Liu and West (2001), Storvik (2002),

Doucet and Tadic (2003), Muñoz, Márquez, and Acosta (2007), Flury and Shephard (2008), Andrieu,

Doucet, and Holenstein (2010) and Lopes and Tsay (2011).

According to the literature, particle filters have become a popular approach for online estimation

of nonlinear and possibly non-Gaussian state-space models. Indeed, the ideas of Chapter 2 and the re-

sults of the Monte Carlo experiments carried out in Chapters 3 and 4 clearly confirm that when dealing

with non-standard time series models, the particle filtering methodology is a useful and efficient al-

ternative approach. Remind that by ‘non-standard’, we mean series that exhibit non-linearities and/or

non-Gaussian distributions and/or non-stationarity.

The present chapter takes up the ideas of Chapter 2 – 4 in order to estimate simultaneously the

states and fixed parameters for non-standard dynamic models cast in state-space form. More specifi-

cally, we also resort to the particle filtering methodology to simultaneously estimate the original state

vector x t and the fixed and unknown model parameters. The sequential Monte Carlo methods –

particle filter variants– adopted herein arrive as extensions of some of the nonlinear filters described

133
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in Chapter 2.

Since the appearance of the first operational particle filter in 1993 (Gordon, Salmond, and Smith

1993), many variants of particle filters have been proposed either to estimate solely the states (as cov-

ered in previous chapters) or both the states and model parameters. The latter case is of interest in

the present chapter. For instance, to estimate simultaneously the states and parameters, some authors

like Storvik (2002), Carvalho, Johannes, Lopes, and Polson (2010) and Lopes and Tsay (2011) propose

particle filter variants based on sufficient statistics.

In this work, we first focus on two existing classic particle filter variants which appeared in the lit-

erature (not based on sufficient statistics) that were proposed as an attempt to tackle the still difficult1

problem of estimating simultaneously the states and fixed model parameters of a dynamic state-space

model. These filters are Kitagawa’s self organizing filter (SO; see Kitagawa (1998) and Kitagawa and

Sato (2001)) and the approach of Liu and West (Liu and West 2001). Second, inspired by the ideas of

these authors, we propose three particle filter variants called sampling importance resampling plus

jittering (SIRJ), the extended particle filter plus jittering (EPFJ) and the unscented particle filter plus

jittering (UPFJ). A particle filter variant, called by us optimal sampling importance resampling plus jit-

tering (SIRoptJ), is also included in the undergone MC experiments. The SIRoptJ particle filter variant

is basically a special case of the SIRJ algorithm, distinguished by the use of a different proposal PDF.

This chapter is organized as follows: Section 5.1 provides some preliminary remarks regarding the

need for alternative parameter estimation procedures and about the reasons for the adoption of the

particle filtering methodology. In Section 5.2, some general concepts needed in the context of pa-

rameter estimation are presented. For instance, the so-called augmented state vector, l t , is defined.

Therein also the specific state-space formulation as well as the corresponding theoretic and approxi-

mative predictive and filtering expressions are presented. Following, Section 5.3 and Sections 5.5 – 5.7

describe the four particle filter variants chosen for filtering the augmented state vector l t , including

our proposed variant called sampling importance resampling with jittering. Therein, pseudocodes for

all filters are provided. Section 5.4 presents two alternative approaches to define an artificial evolution

of the fixed model parameters.

Section 5.8 revisits the non-stationary local level model to estimate simultaneously the states and

fixed model parameters. The augmented state-space formulation for the model at hand is specified

where the unknown model parameters are assumed to be random variables and thus have a prior

distribution. Therein, a Monte Carlo simulation study is performed using as a criteria the RMSE and

CPU time. Notice that the same general procedure for the simulation design used in previous chapters

is adapted to the problem at hand. This general procedure undertakes three steps: Data and State

Generation, Filtering Estimation and Filtering Performance Criteria Computation. Specifically, only

the last two steps need to be slightly modified to be able to compute the RMSE related to the two

1The interest on this still-difficult topic within the framework of the particle filtering methodology is evidenced by the

active research done in this area aiming to bring some additional improvement over existing particle filter variants; see

among others (Niemi 2009), (Carvalho, Johannes, Lopes, and Polson 2010), Lopes and Tsay (2011) and Doucet and Johansen

(2011).
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unknown parameters of the local level model. Also, this section assesses the impact of the signal-to-

noise-ratio on the statistical performance of the competing particle filter variants and ends up with

a summary of the general simulation settings for the Monte Carlo (MC) experiments. Additionally, to

somehow measure the degree of degeneracy of the competing filters, the average number of unique

particles (in %) at last time-index t = T is reported. Experimental results are presented on page 158,

Section 5.8. Finally, the potential impact of the so-called discount factor δ is explored.

5.1 Preliminary Remarks about Parameter Estimation

It is well known that when dealing with time series data, it is crucial for the researcher to find a model

that adequately represents the problem at hand. In those cases, non-standard time series models are

the rule rather than the exception.

In few real-world problems, one is faced with linear and Gaussian dynamic models that allow the

use of standard statistical packages and/or analytical algorithms for estimating the model parameters.

For instance, under the hypothesis of linearity and Gaussian errors, the recursive estimation of states

and model parameters can be carried out based on the combined use of Kalman filtering and maxi-

mum likelihood; see for instance Ruiz (1994) and Pollock (2003).

As aforementioned, the data most commonly found is adequately represented by nonlinear mo-

dels. Additionally, in most cases, the researcher has only the information contained in the data itself

and possibly partial knowledge about model parameter values. Therefore, procedures that achieve

the estimation of the unknown model parameters are desirable. By doing so, the fitted mathematical

model is completely specified and, if required, forecasting could be performed2.

The well-known seminal paper of Gordon et al. (1993) represented a time break-through for the

operational use of the particle filtering methodology. We consider that Kitagawa’s article (1996), who

to our knowledge worked independently of Gordon et al. (1993), also makes an excellent coverage of

the first operational particle filter variant, which we call sampling importance resampling (SIR) (see

Algorithm 6 in Chapter 2). Indeed, both papers introduce the resampling step in order to overcome

the inherent degeneracy problem of particle filters that use solely a sequential sampling importance

sampling (SIS) approach. As already stated in Subsection 2.4.3, the SIR particle filter variant is widely

used in different fields to estimate the states of a time series model cast in state-space form, a fact

which is also shown by the extensive literature; see, for instance, Doucet et al. (2001) and references

therein. An updated tutorial has been published by (Doucet and Johansen 2011), which covers classic

as well as more recent particle filter variants.

Various PF variants arrive with the desire and/or the need to improve upon the SIR particle filter

variant. For instance, the auxiliary sampling importance resampling (ASIR) PF described in Chapter

2 aims to reduce the variance of the particle filter weights by using a 2-stage sampling procedure. Be

2Forecasting is usually a matter of interest for the researcher.
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reminded that in 1999 the ASIR particle filter was introduced to estimate only the state, not the para-

meters of various time series models.

Thus, based on historical particle filtering literature, the material covered in Chapter 2 and our

simulation studies of Chapters 3 and 4, it becomes clear that the particle filtering methodology is a

flexible and efficient approach to handle the state estimation of non-standard dynamic models. All

these results motivate us to extend the use of the particle filtering methodology to tackle the estimation

of unknown fixed model parameters in a possibly nonlinear and/or non-stationary context.

Various authors have used and adapted the particle filtering approach to perform recursive para-

meter estimation. In other words, particle filters originally designed only to estimate the states are

modified to also perform the estimation of model parameters. For instance, Kitagawa (1998) makes an

extension of the SIR particle filter presented in Kitagawa (1996) by first defining the augmented state

vector and then estimating simultaneously the original state variables and the model parameters; his

filter is called ‘self organizing filter’. Additionally, Liu and West (2001) suggest to apply Kernel smooth-

ing and shrinkage ideas, originally used by West (1993) in another context, in order to tackle the im-

poverishment problem that we know is inherent to particle filters.

In Acosta et al. (2003), we adapt the SIR particle filter variant presented in Kitagawa (1998) to

estimate the parameters of an AR(1) time series model, under the restriction of no measurement noise

in the corresponding state-space formulation. It is after this work that we first propose a modified

version of the SIR particle filter variant, called by us SIRJ, being actually an extension of Kitagawa’s 1998

self organizing filter (SOF); see Acosta et al. (2004) and Muñoz et al. (2004). In Muñoz, Márquez, and

Acosta (2007), we apply the SIRJ approach to estimate the states and parameters of threshold volatility

models.

In this thesis, we further explore (when feasible) how the jittering step affects the performance of

the EPF and UPF variants; these filters are called by us extended PF with jittering (EPFJ) and unscented

PF with jittering (UPFJ), respectively. Notice that when the KF is used instead of the EKF, the EPFJ

variant is then called Kalman PF with jittering (KPFJ). We consider the proposed SIRJ, SIRJopt, EPFJ

(or KPFJ) and UPFJ PF variants as the main methodological contributions of this chapter; especially

the first three. Specifically, we revisit the non-stationary local level model to perform the simultane-

ous estimation of states and parameters via four PF variants whose use is considered appropriate in

this context. The performance of the filters studied is assessed through MC simulations considering

also the impact of the signal-to-noise ratio and two settings of the discount factor; details are further

presented in Section 5.8.

5.2 General Concepts

In order to estimate simultaneously the state and parameters, it has become a common practice to

augment the original state vector x t by appending the parameter vector Θ, see e.g. Muñoz (1988) and
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Kitagawa (1998). In such cases, the so-called augmented state vector is defined as:

l t =
[

x t

Θ

]
.

5.2.1 Augmented State-Space Model Formulation

Herein, the general state-space formulation provided by equations (2.1) and (2.2) is adapted for the

augmented state-space vector l t = (x t ,Θ)′. That is, the parametric state-space formulation for a dy-

namic model dealing with an augmented state vector can be described by the following two equations

(Muñoz 1988; Kitagawa 1998):

l t = f̃ (l t−1,ηt ), (Transition equation) (5.1)

y t = h̃(l t ,νt ), (Measurement equation) (5.2)

where

f̃ (l t ,ηt ) =
[

f (x t ,ηt )

Θ

]
, (5.3)

h̃(l t ,νt ) =h(x t ,νt ), (5.4)

and Θ is a vector containing the unknown model parameters which in some cases are specified, but

in many others are unknown. To complete the formulation, it is assumed that a prior distribution is

placed on the initial augmented state vector, say l 0. Notice that when the parameters are incorporated

into the state vector, we have a nonlinear filtering problem. In the sequel, unless stated otherwise, all

filters use the so-called augmented state vector.

Following, general prediction and filtering expressions for the augmented state vector l t are pre-

sented.

5.2.2 Prediction and Filtering Expressions

The corresponding prediction, filtering and recursive-filtering expressions for the augmented state

vector are obtained in a similar fashion to equations (2.4), (2.5) and (2.6) in Section 2.2. In other words,

the general prediction and filtering expressions for l t = (x t ,Θ)′ are derived as a combined result of the

basic assumptions of the state-space formulation and the use of the Bayes Rule.

Predictive PDF

At time t−1, assume that the prior PDF p(x t−1,Θt−1|y 1:t−1) at time t−1 is available, where x t is a latent

state vector and Θ is a fixed unknown parameter vector. Then, the general predictive expression, the

one step-ahead prediction, is given by:

p(l t |y 1:t−1) = p(x t ,Θt |y 1:t−1)=
∫

p(x t |x t−1,Θt )p(x t−1,Θt |y 1:t−1)d x t−1 (5.5)

where p(x t |x t−1,Θt ) is the state evolution density obtained using equation (5.1).
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Filtering PDF

Using the Bayes Rule, the knowledge of the augmented state vector can be updated once a new obser-

vation y t becomes available. That is, the filtering PDF is derived as follows:

p(l t |y 1:t )= p(x t ,Θt |y 1:t ) =
p(y 1:t |x t ,Θt )p(x t ,Θt )

p(y 1:t )

=
p(y t , y1:t−1|x t ,Θt )p(x t ,Θt )

p(y t , y1:t−1)

=
p(y t |y1:t−1, x t ,Θt )p(y1:t−1|x t ,Θt )p(x t ,Θt )

p(y t |y 1:t−1)p(y 1:t−1)

=
p(y t |y1:t−1, x t ,Θt )p(x t ,Θt |y 1:t−1)p(y1:t−1)p(x t ,Θt )

p(y t |y 1:t−1)p(y 1:t−1)p(x t ,Θt )

=
p(y t |x t ,Θt )p(x t ,Θt |y 1:t−1)

p(y t |y 1:t−1)

∝ p(y t |x t ,Θt )p(x t ,Θt |y 1:t−1). (5.6)

where p(y t |x t ,Θt ) is the likelihood of y t obtained from the measurement evolution density specified

in equation (5.2) and p(x t ,Θt |y 1:t−1) stands for the predictive expression in (5.5). Likewise, the term

in the denominator p
(

y t |y 1:t−1

)
=

∫
p(y t |x t ,Θt )p(x t ,Θt |y 1:t−1)d x t is the normalizing constant which

usually is not easy to compute. Additionally, developing (5.6) one step further, one obtains an alterna-

tive filtering PDF expression

p(l t |y 1:t ) = p(x t ,Θt |y 1:t )∝ p(y t |x t ,Θt )p(x t |Θt , y 1:t−1)p(Θt |y 1:t−1) (5.7)

which explicitly indicates the contribution of the prior PDF of the model parameters vector p(Θt |y1:t−1)

to update the knowledge about the augmented state vector l t .

It can be verified that in case Θ is known, equation (5.7) is reduced to the expression in the numer-

ator of (2.5) since the entry p(Θt |y 1:t−1) degenerates and the known model parameters can be dropped

from the conditioning statements.

It is well known that the solution to the optimal filtering problem, stated and fully described in

Chapter 2, is to obtain the posterior PDF p(x t |y1:t ). In a similar manner, all the relevant information

about the general model described in equations (5.1) and (5.2) is embodied in the augmented-state

vector l t = (x t ,Θt ). This implies that any specific characteristic of one of the marginals, the state or

parameter variables, can be easily obtained once p(l t |y 1:t ) = p(x t ,Θt |y 1:t ) is available in an exact or

approximative manner. For simplicity, in the remainder of this chapter we shall refer to the state esti-

mation or simultaneous estimation of state and model parameters by just the word filtering. In subse-

quent chapters, it will be clear from the context to which case one refers to.

In the following section, we present a description of the chosen PF variants adopted for parameter

estimation. Therein, a review of two main historical approaches used to adapt the particle filtering

methodology for the simultaneous estimation of the original state and the fixed model parameters is

also provided.
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Parameter Estimation via Particle Filtering

For the simultaneous estimation of states and model parameters via particle filtering, one assumes

that at fixed time t , the filtering PDF p(x t ,Θt |y 1:t ) is approximated by a sufficiently large set of ‘parti-

cles’ {(x (1)
t ,Θ(1)

t ), . . . , (x (M)
t ,Θ(M)

t )} with discrete probability masses of ω̃(1)
t , . . . ,ω̃(M)

t . Let us recall that the

particles {(x
( j )
t ,Θ

( j )
t )}M

j=1
are obtained from an alternative proposal PDF, q(x t ,Θt |y 1:t ), which is easier

to sample from, but very similar to the target filtering PDF p(x t ,Θt )|y 1:t . Moreover, note that if the

model parameters are assumed fixed, the t suffix on Θ
j
t particles only indicates that they are from the

time t posterior, not that Θ
j
t is time-varying.

Hence, under the particle filtering methodology, the theoretic predictive and filtering expressions

given by equations (5.5) and (5.6) are approximated by corresponding ‘empirical densities’. That is, at

time t −1, assume that a sample {(x
( j )
t−1,Θ

( j )
t−1)}M

j=1
from the prior p(l t−1|y 1:t−1) is available. Addition-

ally, assume a fixed and unknown parameter vector Θ. Then, the predictive PDF approximation to

p(l t |y 1:t−1) in equation (5.5) is given by the following expression:

Predictive PDF approximation:

p(l t |y 1:t−1) = p(xt ,Θ|y 1:t−1) ≈
M∑

j=1

p(xt |x
( j )
t−1,Θ( j ))w̃

( j )
t−1, (5.8)

where w̃
( j )
t−1 are the normalized importance weights at previous time t −1. Combining both, the like-

lihood p(y t |x t ,Θt ) and the previous predictive PDF approximation, an expression for the approxima-

tion to the filtering PDF p(l t |y 1:t ) in equation (5.6) is obtained as

Filtering PDF approximation:

p(l t |y 1:t ) = p(xt ,Θ|y1:t ) ≈ p(yt |xt ,Θ)
M∑

j=1

p(xt |x
( j )
t−1,Θ( j ))w̃

( j )
t−1 (5.9)

Hence, the filtering PDF of the augmented state vector l t is obtained by and is approximated (via par-

ticle filtering) by means of an empirical distribution

p(l t |y 1:t ) = p(x t ,Θ|y 1:t ) ≈
M∑

j=1

w̃
( j )
t δ(l t − l

( j )
t ),

where
∑M

j=1 w̃
( j )
t = 1, w̃

( j )
t = w

( j )
t∑M

j=1 w
( j )
t

and

w
( j )
t ∝

p(y t |x
( j )
t ,Θ( j ))p(x

( j )
t |x ( j )

t−1,Θ( j ))

q(x
( j )
t |x ( j )

t−1,Θ( j ), y t )
· w̃

( j )
t−1. (5.10)

Recall that according to theory, an optimal proposal PDF takes into account the information provided

by the last observation, and that in practice however, it is very common to choose the transition prior

q(xt |x
( j )
t−1,Θ

( j )
t , yt ) = p(xt |x

( j )
t−1,Θ

( j )
t ) (5.11)
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as a proposal. In that case the expression for the importance weights given in (5.10) reduces to the

simpler expression

w
( j )
t ∝ p(y t |x

( j )
t ,Θ( j )) · w̃

( j )
t−1. (5.12)

Further, if resampling is made at every time step, the weights have the simplest form

w
( j )
t ∝ p(y t |x

( j )
t ,Θ( j )). (5.13)

As seen, the adoption of the particle filtering methodology to estimate simultaneously the original

state and the unknown parameter vector gives rise to different particle filter variants for parameter

estimation. Kitagawa (1998) introduces the self organizing filter, denoted in this work by SO particle

filter, which uses and extends the basic SIR particle filter algorithm in Chapter 2 in order to filter the

augmented state vector (x
( j )
t ,Θ( j )) . Following, a brief and concise description of the SO particle filter

variant as well as the corresponding pseudocode is presented. Therein, the estimation of a simple but

illustrative dynamic model is provided.

5.3 The Self Organizing Particle Filter

Both Gordon et al (1993) and Kitagawa (1996) use their respective SIR particle filter variant to estimate

solely time–varying states; they assume all fixed model parameters to be known. Recall that the SIR

particle filter variant is fully described in Chapter 2 and subject to Monte Carlo experiments in Chapter

4. Kitagawa (1998) departs from the augmented state vector and uses his SIR particle filter variant to

perform the simultaneous estimation of state and unknown fixed model parameters.

Thus, the main feature of the SO particle filter variant is to apply the SIR particle filter approach

to the augmented state vector by using the transition prior given by equation (5.11) as a proposal PDF

and by resampling at every time step. Thus, modifying Kitagawa’s (1996) SIR particle filter to include

the parameters gives rise to the pseudocode for the self-organizing particle filter variant presented in

Algorithm 11 (on page 141). Notice that Kitagawa uses stratified resampling.

We used the Algorithm 11 in an attempt to estimate the parameters of an AR(1) plus noise process.

Following, we present illustrative results concerning the estimation of the autoregressive parameter φ.

An illustrative example: AR(1) plus Noise Model

A time series of length T = 1000 is generated according to the AR(1) plus noise process, with state-space

formulation

xt =φxt−1 +σηηt

yt = xt +σννt

(5.14)

where both ηt and νt follow a standard normal distribution and ση and σν are scale parameters. In

this particular case, the autoregressive parameter φ is assumed to be fixed and unknown. On the other
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Algorithm 11 Self Organizing Particle Filter (SO PF)

Initialization t = 0

for j = 1 to M do

Sample x
( j )
0 ∼ p(x0),

Sample Θ
( j )
0 ∼ p(Θ0)

end for

for t = 1 to N do

Step 1 Importance sampling step

for j = 1 to M do

Prediction: Sample x
( j )
t ∼ q(xt |x

( j )
t−1,Θ

( j )
t−1, yt )= p(x

( j )
t |x( j )

t−1,Θ
( j )
t−1).

In this case we need to

– generate a random number η
( j )
t according to the noise density associated to the state in equa-

tion (5.1),

– calculate l t = f̃ (l t−1,ηt ) using (5.1) and (5.3).

Filtering: Assign to each combined particle l
( j )
t = (x

( j )
t ,Θ

( j )
t ) the weight w

( j )
t according to (5.13)

Normalize the importance weights:

w̃
( j )
t =

w
( j )
t∑M

i=1 w (i )
t

end for

Step 2 Resampling step (Stratified)

Resample with replacement the particles
{

l
( j )
t

}M

j=1
=

{
(x(1)

t ,Θ(1)
t ), . . . , (x(M)

t ,Θ(M)
t )

}
according to im-

portance weights
{

w̃ (1)
t , . . . , w̃ (M)

t

}
.

end for

hand, the scale parameters are assumed to be known. The true model parameters values are φ = 0.8

and ση =σν = 1.

The corresponding state-space model formulation for the augmented-state is thus defined by the

vector

l t =
[

x t

Θt

]
=

[
xt

φ

]
,

where in this particular case, Θt = Θ = φ is the unknown fixed autoregressive parameter to be esti-

mated.

The SO particle filter variant with Np = 20000 particles is applied to the linear and gaussian model

specified in (5.14). Figure 5.1 shows the posterior distribution of the autoregressive parameter φ of the

contaminated AR(1) process. The true value of the autoregressive parameter φ is indicated by a thick

black vertical line; in this case φ= 0.8

Our experimental results show that when one applies the SO particle filter, the estimated parameter

is close to the true one, but the particles do not adequately regenerate. For this particular model, we
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Figure 5.1: SO: Posterior distribution for parameter φ of the AR(1) plus noise model specified in equa-

tion (5.14). In this case, T = 1000, Np = 20000, ση =σν = 1 and φ= 0.8.

even observe that the particles collapse to a unique distinct value despite the large number of particles

used, which results in an inadequate posterior distribution.

The SO particle filter variant is revisited in Kitagawa and Sato (2001) where Kitagawa points out

that the self-organizing filter originally introduced in Kitagawa (1998) was not really able to cope with

the fixed parameter estimation problem unless an artificial noise is added to the parameters evolution

model.

We remark that this potential drawback is not exclusive to the SO particle filter; the same problem

would occur if one applies the ASIR particle filter variant, described in Chapter 2, to the above model.

Thus, in that case, the addition of an artificial noise to the model parameters is also a target.

All this, of course, is in line with the idea presented in Chapter 2, which stated that the introduction

of a resampling step is crucial but could lead to a potential drawback called sample impoverishment3.

Indeed, this problem becomes more acute when dealing with the simultaneous estimation of the ori-

ginal state vector and fixed model parameters, because in this situation the particles associated with

the parameters do not adequately regenerate and may end up stacked in a small and possibly wrong

subregion of the parameters state-space support.

The next section describes two main historical approaches used to specify the artificial noise addi-

tion for model parameters.

3The particles collapse to a few or in some cases to a unique distinct value, also known as attrition problem.
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5.4 Parameters Artificial Evolution

The problem herein consists of how to define an artificial evolution of the fixed model parameters.

Gordon et al. (1993) proposed to add an additional random noise, also-called roughening penalties, to

sampled state vectors in an attempt to deal with the inherent particle filters degeneracy drawback. This

idea of adding a random noise, in the sequel referred as artificial evolution approach, is also applied to

specify an artificial evolution model for fixed and unknown parameters.

5.4.1 Parameter Vector Evolution Step via the Artificial Evolution Approach

Kitagawa and Sato (2001) suggest to modify the SO particle filter variant by extrapolating to fixed model

parameters the artificial evolution approach. That is, to tackle the sample impoverishment problem,

an artificial noise is added to the fixed and unknown parameters aiming to produce a diversification of

the model parameters particles. In this manner, the parameter vector artificial evolution, assumed to

vary slowly in time, would be described by

Θt =Θt−1 +ηt ,

ηt ∼N (0,Wt ),
(5.15)

where ηt represents the independent, zero-mean normal increment added to the parameters for some

specified variance matrix Wt . It is also assumed that Θt−1 and ηt are conditionally independent given

y1:t−1. The addition of the specified artificial noise step after the resampling step of Algorithm 11 gives

rise to an improved version of the original SO particle filter variant introduced by Kitagawa (1998).

As can be seen in Kitagawa et al. (2002), the original SO particle filter works adequately if the model

parameters are truly time–varying.

We remark that although the addition of this artificial noise, ηt , certainly prevents the parameters

particles to collapse to a few unique or even to a single particle, it remains not very clear how this can

be undertaken without significantly changing the model at hand. Questions arise like how small the

variances of the added artificial noise must be or whether they should also be estimated as part of the

already augmented state vector. Moreover, the addition of any extra parameters into the estimation

problem would necessarily imply extra execution time and memory requirements; one would have

to decide then if the extra time is compensated by the quality of the estimation results. In practice,

how this is entertained will depend on factors like the model at hand, the researcher’s decision and, of

course, on its expertise. Certainly, a fact about the artificial evolution method is what, for instance, Liu

and West (2001) address:

“This neat, ad-hoc idea is easily implementable, but suffers the obvious drawback that it

“throws away” information about parameters in assuming them to be time-varying when

they are, in fact, fixed. The same drawback arises in using the idea in its original form for

dynamic states.”
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Summing up, all previous remarks highlight the need to encounter an alternative approach to tackle

the sample impoverishment drawback. However, this alternative approach should be able to avoid the

loss of information problem occurred over time when using the aforementioned artificial evolution

approach. A possible and already identified solution to the sample impoverishment drawback consists

of regenerating fixed model parameters particles by diversifying the old ones appealing to modified

kernel density estimation methods.

5.4.2 Parameter Vector Evolution Step via the Jittering Approach

Liu and West (2001) review both the kernel and artificial evolution methods in West (1993) and Gor-

don et al. (1993) respectively, finding inherent structural similarities between them. This implies that

through the combined use of artificial evolution ideas with kernel smoothing ideas via shrinkage, the

model parameters can be adequately jittered, meaning that the parameters particles are diversified but

without the loss of information implied by solely using the artificial evolution approach. Thus, as a re-

sult of including a jittering step, the sample impoverishment problem and the possible prior-to-data

conflict which might be present can be tackled. In this case, the jittering step is specified by

Θt =Θt−1 +ηt (5.16)

ηt ∼N (0,Wt )

Wt =Vt−1

( 1

δ
−1

)
. (5.17)

Notice that the above formulation differs from expression (5.15) in the last entry (5.17) which explicitly

specifies how to compute the variance matrix of the added model parameters random disturbance.

Herein and in the sequel, Vt−1 denotes the variance matrix of the marginal PDF p(Θt−1|y 1:t−1) and δ is

a discount factor usually taken between 0.95 and 0.995. Additionally, the finite mean of p(Θt−1|y 1:t−1)

is denoted by Θt−1.

In the sequel, a concise motivating discussion about using the artificial evolution or the jittering

approach in order to add an artificial noise to fixed model parameters particles is presented. This aims

to clarify how both approaches are related and how they differ.

5.4.3 Artificial Evolution vs Jittering for Artificial Noise Addition

To begin with, departing from expression (5.15), one obtains the general form for the variance matrix

of the prior PDF p(Θt |y 1:t−1) as

Var(Θt |y 1:t−1)=Vt−1 +Wt +2Cov(Θt−1,ηt |y 1:t−1). (5.18)

Since the artificial evolution approach specified in (5.15) assumes that Cov(Θt−1,ηt |y 1:t−1) = 0, the last

expression is simplified to

Var(Θt |y 1:t−1) =Vt−1 +Wt . (5.19)
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where Wt accounts for the loss of information inherent under the artificial evolution method. Suppose

that at fixed time t−1, a sufficiently large set of weighted model parameter particles from p(Θ t−1|y 1:t−1)

is given by
{
Θ

( j )
t−1, w̃

( j )
t−1

}M

j=1
. Then, the artificial evolution approach, described in equation (5.15), im-

plicitly assumes that the approximated PDF p(Θt |y 1:t−1) has a kernel form specified by

p(Θt |y 1:t−1)≈
M∑

j=1

w̃
( j )
t−1N (Θt ; Θt−1

( j ),Wt ), (5.20)

which is defined as a mixture of normal distributions weighted by the sample weights w̃
( j )
t−1. Notice that

this approximation is over–dispersed relative to the target variance Vt−1, with over-dispersion quan-

tified by Wt . Notice also that the normal kernels are located around existing sample values, which is

a typical situation when dealing with conventional kernel density methods. From (5.15) and (5.20),

one can notice that there exists a close tie between the artificial evolution approach and the kernel

smoothing methodology. Moreover, since the estimation procedure is performed sequentially in time,

the over-dispersion problem persists over time and thus the loss of information builds up. Therefore,

we need a method that is able to add an artificial noise to the fixed model parameters but capable to

overcome the historical loss of information drawback. This can be achieved by the jittering approach,

which consists in modifying the artificial evolution approach so that the following condition holds:

Var(Θt |y 1:t−1) = Var(Θt−1|y 1:t−1) =Vt−1. (5.21)

This condition can be fulfilled by introducing correlations between Θt−1 and the random noise ηt ,

which obviously implies the existence of a non-zero covariance matrix Cov(Θt−1,ηt |y1:t−1). From the

general variance matrix expression in equation (5.18), taking into account the condition assumed in

equation (5.21), the following expression for the covariance matrix is obtained:

Cov(Θt−1,ηt |y 1:t−1) =−Wt /2. (5.22)

This means that a structure of negative correlations must be introduced in order to correct the histor-

ical loss of information drawback. Further, if it is assumed that (Θt−1,ηt |y1:t−1) has an approximate

jointly normal distribution, then the conditional evolution for the model parameters will be normal

and specified by

p(Θt |Θt−1)∼N (Θt ; AtΘt−1 + (I − At )Θt−1, (I − A2
t )Vt−1), (5.23)

where At = (I −Wt V −1
t−1)/2 is a shrinkage matrix, being I an identity matrix.

The above discussion, departing from West (1993) and Liu and West (2001), motivates the rela-

tionship between the artificial evolution approach and kernel smoothing methods via shrinkage. It

also implies that the Monte Carlo approximation to p(Θt |y 1:t−1) has a generalized kernel form with

complicated shrinkage patterns as seen in equation (5.23).

Similarly to Liu and West (2001), in this work we restrict our attention to the special case when

the specification of the variance Wt is the result of assuming a shrinkage matrix At = aI with a =
(3δ− 1)/2δ, and a discount factor δ in (0,1]; as stated by these authors the usually taken values for
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the discount parameter δ are around 0.95-0.99. That is, Wt has the form given by equation (5.17).

Moreover, in that particular case, equation (5.23) is simplified to

p(Θt |Θt−1) ∼N (Θt ;mt−1,h2Vt−1) (5.24)

mt−1 = aΘt−1+(1−a)Θt−1 denotes the kernel location parameter. The kernel variance is h2Vt−1, being

h > 0 a controlling smoothing parameter explicitly defined in terms of a discount factor δ. From the

following expressions, the relationship between the smoothing parameter h and the discount factor

δ can be obtained. Notice that h2 = 1− a2, consequently a =
p

(1−h2) and as previously stated a =
(3δ−1)/2δ. Therefore, according to the novel shrinkage idea introduced originally by West (1993) and

later revisited by Liu and West (2001), the particles Θ
( j )
t−1 are first pushed towards their sample mean

Θt−1 before a small degree of noise is added to them.

The use of the jittering approach in the ASIR particle filter context gives rise to a novel PF variant.

Following, a description of this filter as well as the corresponding pseudocode is presented.

5.5 The Liu and West Particle Filter

As known, Pitt and Shephard (1999) introduce the ASIR particle filter variant in order to achieve an op-

timal state estimation, but they assume all model parameters to be known. Liu and West (2001) extend

the ASIR particle filter variant to obtain a combined estimation of time varying states and unknown

fixed model parameters. These authors combine old ideas of kernel smoothing via shrinkage for mod-

elling fixed model parameters with newer ideas of auxiliary particle filtering for the dynamic states; we

denote this new algorithm by LW particle filter. These authors also claim that the computational cost

under the LW particle filter variant is meaningfully reduced from earlier kernel smoothing algorithms

used for Bayesian posterior simulation.

Following, the most important features under the LW particle filter are presented:

Assume that, at time t −1, Θ
( j )
t−1 are the model parameters particles from p(Θt−1|y 1:t−1) and that

proper kernel location parameters can be defined and computed by

m
( j )
t−1 = aΘ

( j )
t−1 + (1−a)Θt−1. (5.25)

This would imply that the corresponding kernel form approximation to p(Θt |y 1:t−1) is given by

p(Θt |y 1:t−1) ≈
M∑

j=1

w̃
( j )
t−1N (Θt ; m

( j )
t−1,h2 Vt−1). (5.26)

Substituting (5.26) in the alternative filtering PDF in equation (5.7), a final expression for filtering si-
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multaneously the original state vector and the fixed unknown parameters is obtained as follows:

p(l t |y 1:t ) = p(x t ,Θt |y 1:t ) (5.27)

= p(y t |x t ,Θt )p(xt ,Θ|y 1:t−1)

∝ p(y t |x t ,Θt )p(x t |Θt , y 1:t−1)p(Θt |y 1:t−1) (5.28)

≈ p(y t |x t ,Θt )p(x t |Θt , y 1:t−1)
M∑

j=1

w̃
( j )
t−1N (Θt ; m

( j )
t−1,h2 Vt−1). (5.29)

From the above, it becomes clear that the jittering ideas are used in order to model the fixed para-

meters, and that any filtering method could be used to model the dynamic states; Liu and West (2001)

resort to the ASIR particle filter variant. This PF variant is summarized in the pseudocode given in

Algorithm 12 (page 148).

As Liu and West (2001) point out, at time t one has a combined sample {(x
j
t ,Θ j ), j = 1, . . . , M } rep-

resenting an importance sampling approximation to the time t posterior p(x t ,Θt |y 1:t ) for both para-

meter and state. These authors also state that the final resampling step is optional.

The LW particle filter variant with Np = 20000 is applied to the model specified in (5.14). Figure 5.2

shows the posterior distribution of the autoregressive parameter φ of the contaminated AR(1) process.

The true value of the autoregressive parameter φ is indicated by a thick black vertical line; in this case

φ= 0.8

Figure 5.2: LW: Posterior distribution for parameter φ of the AR(1) plus noise model specified in equa-

tion (5.14). In this case, T = 1000, Np = 20000, ση =σν = 1 and φ= 0.8.

Notice that the LW particle filter variant has two main features: First, it applies the jittering ap-

proach at every time step in order to smooth and regenerate the fixed model parameters particles

without the loss of the historical information problem inherent to the aforementioned artificial evolu-

tion approach. Second, it uses the ASIR particle filter variant to model the time-varying states.
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Algorithm 12 Liu and West Particle Filter (LW PF)

Initialization t = 0

for k = 1 to M do

Sample x (k)
0 ∼ p(x0)

Sample Θ
(k)
0 ∼ p(Θ0)

end for

Choose discount factor δ in (0,1]

Compute the tuning parameter a = (3δ−1)/2δ based on the chosen discount factor δ.

Compute the controlling smoothing parameter h > 0: h2 = 1−a2

for t = 1 to N do

Step 1 Get prior point estimates of (x t ,Θt ), given by (µ(k)
t ,m(k)

t−1)

for k = 1 to M do

Calculate µ(k)
t associated to the conditional PDF of (x t |x (k)

t−1,Θ(k)
t−1); in this case µ(k)

t =
E(x t |x (k)

t−1,Θ(k)
t−1)

Calculate the mean Θ̄t−1 and the variance Vt−1 of the Monte Carlo approximation to

p(Θt |y 1:t−1)

Calculate the kth kernel location m(k)
t−1 = aΘ(k)

t−1 + (1−a)Θ̄t−1 (from equation (5.25))

end for

Step 2 First Resampling step: Auxiliary variable resampling

for k = 1 to M do

Calculate the first stage weights λ(k)
t = q(k |y1:t )∝ωk

t−1p(y t |µk
t ,m(k)

t−1)

end for

for k = 1 to M do

Normalize the first stage weights λ̃
(k)
t = λ(k)

t∑M
i=1 λ

(k)
t

end for

Sample with replacement the index k M
j=1

according to the computed first stage weights.

Step 3 Jittering step

for j = 1 to M do

Sample a new parameter vector: Θ
k( j )
t ∼N (•|mk( j )

t−1 ,h2Vt−1),

end for

Step 4 Importance sampling step

for j = 1 to M do

Sample x
k( j )
t ∼ q(x t |k ( j ), y 1:t )= p(x t |xk ( j )

t−1,Θ
k( j )
t ) as in the SIR filter; that is particles are sampled

from the transition equation.

Calculate the second stage weights ω
( j )
t as: ω

( j )
t ∝ p(y t |xk( j )

t ,Θ
k( j )
t )

p(y t |µk( j )

t ,m
k( j )

t−1 )

end for

for k = 1 to M do

Normalize the second stage weights ω̃(k)
t = ω(k)

t∑M
k=1 ω

(k)
t

end for

Up to this point we would have a final posterior approximation (x
k( j )
t ,Θ

k( j )
t ) with weights ω̃(k)

t

Step 5 Second Resampling step (OPTIONAL): when equally weighted sample is required

Resample with replacement the particles (x
k( j )
t ,Θ

k( j )
t ), j = 1, . . . , M with importance

weights
{
ω̃(1)

t , . . . ,ω̃(M)
t

}

end for
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5.6 The Sampling Importance Resampling plus Jittering Particle Filter

Variant

Herein, we propose a particle filter variant that combines the SIR particle filter to model the dynamic

states and the jittering approach used by Liu and West (2001) to model the fixed parameters.

5.6.1 Justification/Motivating Remarks

It is already known that Kitagawa (1998) uses the particle filtering approach, specifically the self or-

ganizing PF variant, to simultaneously estimate the state-variables and some unknown time-varying

model parameters. The main feature of this filter is to append the unknown time-varying model pa-

rameters to the original state vector, and then just apply the SIR particle filter variant to such aug-

mented state vector. Notice that in case the parameters evolve dynamically in time, the simultaneous

estimation of states and parameters is in practice reduced to a states (augmented one) filtering prob-

lem; thus, theoretically, any Chapter 2 filter could be applied.

In a later publication, Kitagawa and Sato (2001), the authors point out that in its original form, the

self-organizing PF is not able to cope with the fixed parameter estimation problem, unless an artifi-

cial noise is added to them. In that publication these authors suggest to use the described artificial

evolution approach as done beforehand by Gordon, Salmond, and Smith (1993) in the context of state

estimation.

The usual criticism to this approach is that one is artificially changing the model at hand, when in

reality the model parameters are fixed, not time-varying. Additionally one is faced with a new dilemma:

how to choose the variances of the added artificial noises or to be able to also estimate them, increasing

the size of the augmented state vector. Further, if this is done via the artificial evolution approach, the

problem of historical loss of information arises.

As aforementioned, our incursion into the simulation-based methodology called particle filtering

began with the papers of Kitagawa (1996) and Kitagawa (1998). We adopted Kitagawa’s (1998) SO PF

variant in an attempt to estimate the parameters of an autoregressive process, which state-space model

representation had no measurement noise. Our simulation results show that the estimated parame-

ters converged to the true parameters values, but the particles degenerate and even collapse to a few

distinct ones (Acosta et al. 2003). At that moment, to find a method which is able to regenerate the

sample paths became a target. Initially, we tried –rendering mixed results– to diversify the fixed model

parameters particles by adding an artificial noise as suggested by Kitagawa and Sato (2001); that is,

by fixing the variances to very small values. However, the jittering approach of Liu and West (2001)

to define an artificial dynamic model for the fixed model parameters proved to be a better solution

to our problem; we then named this particle filter variant SIRJ and it has applied in the framework of

stochastic first order autoregressive volatility models and also in threshold volatilty models; see Acosta,

Martí-Recober, and Muñoz (2004), Muñoz, Márquez, Martí-Recober, Villazón, and Acosta (2004) and

Muñoz et al. (2007), respectively.
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5.6.2 Some Details of the Sampling Importance Resampling plus Jittering

Particle Filter Variant

In few words, the sampling importance resampling plus jittering (SIRJ) particle filter consists in modi-

fying the SO particle filter by adding the jittering step suggested by Liu and West (2001). That is, this

algorithm uses the particle filtering methodology, but also extends upon it by creating an artificial noise

for the unknown fixed model parameters via the jittering approach described in Section 5.4. Specifi-

cally, by using a modified kernel smoothing method via shrinkage, the fixed parameters particles are

jittered so that the problem of the historical loss of information, still present when using the previously

suggested artificial evolution approach, is overcome.

Thus, under the SIRJ filter, the particle filtering methodology is used for filtering the dynamic states,

whereas the jittering approach based on kernel smoothing via shrinkage is used for modeling and es-

timating the fixed model parameters, Θ. Specifically, the SO particle filter is combined with the jit-

tering step to ensure that the particles “move” adequately and thus cover the whole parameters space

support. Remind that the jittering step avoids the loss of information that is present in previously

suggested versions of the artificial evolution approach.

Next, in Algorithm 13 (page 151), we present a pseudocode of the SIRJ particle filter variant.

The SIRJ particle filter variant with Np = 20000 is applied to the model specified in (5.14). Figure 5.3

shows the posterior distribution of the autoregressive parameter φ of the contaminated AR(1) process.

The true value of the autoregressive parameter φ is indicated by a thick black vertical line; in this case

φ= 0.8

Figure 5.3: SIRJ: Posterior distribution for parameterφ of the AR(1) plus noise model specified in equa-

tion (5.14). In this case, T = 1000, Np = 20000, ση =σν = 1 and φ= 0.8.

In the following section we also explore how the jittering step performs under the context of the

EPF and UPF variants and parameters estimation.
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Algorithm 13 Sampling Importance Resampling plus Jittering Particle Filter (SIRJ PF)

Initialization t = 0

for j = 1 to M do

Sample x
( j )
0 ∼ p(x0)

Sample Θ
( j )
0 ∼ p(Θ0)

end for

for t = 1 to N do

Step 1 Importance sampling step

for j = 1 to M do

Prediction Sample x
( j )
t ∼ q(x t |x

( j )
t−1, y t ) = p(x t |x

( j )
t−1) by

• generating η
( j )
t according to the state-noise density in equation (5.1)

• setting x
( j )
t = f (x

( j )
t−1,η

( j )
t )

Filtering: Assign to each particle x
( j )
t the weight ω

( j )
t according to expression in (5.12)

Normalize the importance weights:

w̃
( j )
t =

w
( j )
t∑M

i=1 w (i )
t

end for

Step 2 Resampling step

Resampling with replacement the particles
{

(x
( j )
t ,Θ

( j )
t ), j = 1, . . . , M

}
, according to a resampling

algorithm (residual or stratified) with importance weights ω̃
( j )
t

Step 3 Jittering step

Choose discount factor δ in (0,1]

Compute the tuning parameter a = (3δ−1)/2δ based on the chosen discount factor δ.

Compute the controlling smoothing parameter h > 0: h2 = 1−a2

for j = 1 to M do

Compute the mean Θ̄t−1, and the variance Vt−1 of the Monte Carlo approximation to

p(Θ|y1:t−1).

Sample a new parameter vector: Θ
( j )
t ∼N (•|m( j )

t ,Vt ),

where m
( j )
t = aΘ

( j )
t−1 + (1−a)Θ̄t−1,

Vt = h2Vt−1

end for

end for

5.7 The EPFJ and UPFJ: Exploring the Effect of the Jittering Step in the

Extended and Unscented Particle Filter Variants

Herein, the EPF or the UPF particle filter variant is used to model the time-varying states and the jitter-

ing approach to model the unknown fixed model parameters. As a result, two PF variants, named by us

EPFJ and UPFJ, arrive as an attempt to tackle the sample impoverishment problem when handling the

simultaneous estimation of states and parameters. Notice that the EPFJ is also denoted by KPFJ when
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the model at hand is linear and the KF is used instead of the EKF. The following pseudocodes outline

how the original EPF and UPF filters are modified to tackle the simultaneous estimation of states and

fixed model parameters. Thus, the pseudocodes for the EPFJ and UPFJ PF variants are presented in

algorithms 14 (page 153) and 15 (page 154), respectively.

In the next section, a Monte Carlo study is carried out to assess the performance of the particle

filtering methodology when dealing with the simultaneous estimation of states and parameters. The

non-stationary local level process, covered in Chapter 3 and specified in equation (3.9), is used as a

benchmark model and Liu and West (2001) particle filter variant as a benchmark filter.

5.8 The Non-Stationary Local Level Model Revisited: Monte Carlo Study

for the Simultaneous Estimation of States and Parameters

In Chapter 3, we illustrated, via a Monte Carlo study, the filtering performance of the particle filter

variants named: SIR, SIRopt, ASIR and KPFJ, using as a benchmark the non-stationary but linear and

Gaussian local level model. Therein, the simulation based filters mentioned were used to estimate the

state level and confronted with the analytical Kalman filter, which is optimal for the model at hand.

In contraposition to Chapter 3, which deals solely with state estimation, the present chapter deals

with the simultaneous estimation of states and fixed model parameters. In this new scenario, the KF

by itself is no longer an alternative and thus we place our effort in studying a couple of existing particle

filter variants already used for parameter estimation as well as in adapting (when feasible) some of the

particle filter variants described in Chapter 2 and later used in Chapters 3 and 4 for state estimation.

In other words, we start by studying the self organizing particle filter variant proposed by the authors:

Kitagawa (1998) and Kitagawa and Sato (2001); which is outlined in Algorithm 11. We also study the

widely used Liu and West (2001) particle filter variant outlined in Algorithm 12, which basically is con-

structed by combining the ASIR particle filter variant and kernel smoothing ideas. We provide further

details on these filters later on.

As already mentioned, our contribution in this chapter is the definition and implementation in R

language of the following three particle filter variants: SIRJ, SIRoptJ and KPFJ, which arise as extensions

of existing ones. These are confronted with the widely used LW approach, also implemented by us in

R language. In the sequel, all details regarding the undergone Monte Carlo study are presented. We

remark that, although in the previous section we propose to explore the combined use of the EPF (or

the UPF) with the jittering approach, say to apply the EPFJ and the UPFJ, their use in this simulation

study is not needed as the non-stationary and Gaussian local level model at hand has a linear structure.

Be reminded, however, that in Chapter 4 we implemented the nonlinear EPF and UPF filters, but in that

case we were dealing with estimating the states of a highly complex nonlinear state-space model.
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Algorithm 14 Extended Particle Filter plus Jittering (EPFJ)

Initialization t = 0

for j = 1 to M do

Sample x
( j )
0 ∼ p(x0)

Sample Θ
( j )
0 ∼ p(Θ0)

end for

for t = 1 to N do

Step 1 Importance sampling step

for j = 1 to M do

Step 2 Prediction step

Compute Jx t−1
, and Jηt

as in equation (2.19).

Compute the predictive expectation x̄
( j )

t |t−1 and covariance Σ
( j )
x t |t−1

using

x̄
( j )

t |t−1
= f (x

( j )
t−1,0) and

Σ
( j )
x t |t−1

= J
( j )
x t−1

Σ
( j )
x t−1|t−1

J
′( j )
x t−1

+ J
( j )
ηt

Qt J
′( j )
ηt

, respectively.

Step 3 Kalman Gain step

Compute Jx t
, and Jνt

as in equation (2.20).

Compute the prediction estimate y
( j )

t |t−1
and covariance Σ

( j )
y t |t−1

using equations (2.26) and (2.27),

respectively.

y
( j )

t |t−1
= h

( j )

t |t−1
= h(x̄

( j )

t |t−1
,0)

Σy t |t−1
= J

( j )
x t

Σ
( j )
x t |t−1

J
′( j )
x t

+ J
( j )
νt

Rt J
′( j )
νt

Compute the Kalman Gain Kt with equation (2.28).

Kt =Σ
( j )
x t |t−1

J
′( j )
x t

Σ
−1( j )
y t |t−1

Step 4 Filtering step

Compute the filtering expectation x̄ t |t and covariance Σx t |t using (2.29) and (2.30), respectively.

x̄
( j )EK F

t = x̄
( j )

t |t−1 +Kt (y t − y
( j )

t |t−1)

Σ
( j )EK F

t
=Σ

( j )
x t |t−1

−Kt J
( j )
x t

Σ
( j )
x t |t−1

Sample x
( j )
t ∼ q(x

( j )
t |x ( j )

t−1, y 1:t )⊜N (x̄
( j )EK F

t ,Σ( j )EK F

t
)

end for

for j = 1 to M do

Evaluate the importance weights up to a normalizing constant.

ω
( j )
t ∝ p(y t |x

( j )EK F

t ) p(x
( j )EK F

t |x ( j )
t−1)

q(x
( j )
t |x ( j )

t−1,y t )

end for

for j = 1 to M do

Normalize the importance weights ω̃
( j )
t = ω

( j )
t∑M

i=1ω
(i )
t

.

end for

Step 5 Resample the discrete PDF to obtain a sample of size M .

Multiply/Supress particles x
( j )
t according to high/low importance weights, ω̃

( j )
t

end for

Step 6 Jittering step

Choose discount factor δ in (0,1]

Compute the tuning parameter a = (3δ−1)/2δ based on the chosen discount factor δ.

Compute the controlling smoothing parameter h > 0: h2 = 1−a2

for j = 1 to M do

Compute the mean Θ̄t−1, and the variance Vt−1 of the Monte Carlo approximation to p(Θ|y1:t−1).

Sample a new parameter vector: Θ
( j )
t ∼N (•|m( j )

t ,Vt ), where m
( j )
t = aΘ

( j )
t−1 + (1−a)Θ̄t−1,

Vt = h2Vt−1

end for
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Algorithm 15 Unscented Particle Filter plus Jittering (UPFJ)

Initialization t = 0

for j = 1 to M do

Sample x
( j )
0

∼ p(x0) and set:

x̄
( j )
0 = E(x0

( j )) Σ
( j )
0 = E

(
(x0

( j ) − x̄
( j )
0 )(x0

( j ) − x̄
( j )
0 )′

)

x̄
( j )a
0

= E(x
( j )a
0

) = ((x̄
( j )
0

)′,0,0)′ Σ
( j )a
0

= E
(
(x

( j )a
0

− x̄
( j )a
0

)(x
( j )a
0

− x̄
( j )a
0

)′
)

Sample fixed unknown parameters: Θ
( j )
0 ∼ p(Θ0).

end for

for t = 1 to N do

Step 1 Importance sampling step

for j = 1 to M do

Step 2 Update the particles with the UKF

Compute the sigma points

χ
( j )a
t−1 = [x̄

( j )a
t−1 , x̄

( j )a
t−1 ±

(√
(na +λ)Σ

( j )a
t−1

)
)]

Time update (propagate particles into the future)

χ
( j )x
t |t−1

= f (χ
( j )x
t−1

,χ
( j )η
t−1

) x̄
( j )
t |t−1

=
2na∑

i=0

ω(m)
i

χ
( j )x

i ,t |t−1

Σ
( j )
t |t−1

=
2na∑

i=0

ω(c)
i

(χ
( j )x

i ,t |t−1
− x̄

( j )
t |t−1

)(χ
( j )x

i ,t |t−1
− x̄

( j )
t |t−1

)′

y
( j )
t |t−1

= h(χ
( j )x
t |t−1

,χ
( j )v
t−1 ) ȳ

( j )
t |t−1

=
2na∑

i=0

ω(m)
i

y
( j )

i ,t |t−1

Measurement update (incorporate new observation)

Σỹ t , ỹ t
=

2na∑

i=0

ω(c)
i

(y
( j )

i ,t |t−1
− ȳ

( j )
t |t−1

)(y
( j )

i ,t |t−1
− ȳ

( j )
t |t−1

)
′

Σx t , ỹ t
=

2na∑

i=0

ω(c)
i

(χ
( j )x

i ,t |t−1
− x̄

( j )
t |t−1

)(y
( j )

i ,t |t−1
− ȳ

( j )
t |t−1

)′ Kt =Σx t , ỹ t
Σ
−1
ỹ t , ỹ t

x̄
( j )UK F

t = x̄
( j )
t |t−1

+Kt (y t − ȳ
( j )
t |t−1

) Σ
( j )UK F

t =Σ
( j )
t |t−1

−KtΣỹ t , ỹ t
K

′
t

Sample x
( j )
t ∼ q(x

( j )
t |x ( j )

t−1, y1:t )⊜N (x̄
( j )UK F

t ,Σ
( j )UK F

t )

end for

for j = 1 to M do

Evaluate the importance weights up to a normalizing constant.

ω
( j )
t ∝ p(y t |x

( j )UK F

t ) p(x
( j )UK F

t |x ( j )
t−1)

q(x
( j )
t |x ( j )

t−1 ,y t )

end for

for j = 1 to M do

Normalize the importance weights ω̃
( j )
t = ω

( j )
t∑M

i=1
ω(i )

t

.

end for

Step 3 Resample the discrete PDF to obtain a sample of size M .

Multiply/Supress particles x
( j )
t according to high/low importance weights, ω̃

( j )
t

end for

Step 4 Jittering step

Choose discount factor δ in (0,1]

Compute the tuning parameter a = (3δ−1)/2δ based on the chosen discount factor δ.

Compute the controlling smoothing parameter h > 0: h2 = 1−a2

for j = 1 to M do

Compute the mean Θ̄t−1, and the variance Vt−1 of the Monte Carlo approximation to p(Θ|y 1:t−1).

Sample a new parameter vector: Θ
( j )
t ∼N (•|m( j )

t ,Vt ), where m
( j )
t = aΘ

( j )
t−1

+ (1−a)Θ̄t−1, Vt = h2Vt−1;

end for
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5.8.1 The Augmented State Space Representation

For the non stationary local level model, the state-space formulation for the augmented state-space

vector l t = (x t ,Θ)′ = (xt ,Θ= (ση,σν))′; with general formulation presented in equations (5.1) and (5.2),

take the specific form:

l t =
[

x t

Θ

]
= f̃ (l t−1,ηt )=

[
f (xt−1,ηt )

Θ

]
=




xt−1 +ηt[
ση

σν

]

 , (Transition equation) (5.30)

y t = h̃(l t ,νt ) =h(xt ,νt ) = xt +νt , (Measurement equation) (5.31)

where x t is the latent local level, the uncorrelated sequences ηt and νt follow a Gaussian distribution

and Θ= (ση,σν))′ is the parameter vector containing the unknown scale parameters ση and σν. Notice

that when the parameters are incorporated into the state vector, we have a nonlinear filtering problem.

To complete this state-space formulation, a prior distribution on the initial augmented state vector l 0,

must be assumed. Following, we present the prior distributions used in this particular case.

5.8.2 A Note About the Priors Used

The priors used for the local level model are the ones usually found in the literature, a normal prior

for the original state variable xt (the level) and an inverse gamma prior for the variance parameters σ2
η

and σ2
ν; see for instance Congdon (2007) and Lopes and Tsay (2011). For our simulations, we choose

a normal prior for xt of the form x0 ∼ N (µx0
,Σx0

) with hyper parameters µx0
and Σx0

. The assumed

priors for the variance parameters are inverse gamma distributions formulated as σ2
η,0 ∼ IG( n0

2 , n0
2 ·

S2
ηt=0

) and σ2
ν,0 ∼ IG( n0

2
, n0

2
·S2

νt=0
). The chosen hyper parameters values for these variance priors are

n0 = 10, S2
ηt=0

= σ2
η and S2

νt=0
= σ2

ν; the last two equated to the true transition and measurement noise

variance values, respectively. Notice that we use diffuse priors non-centered in the true values with

prior means given by n0
n0−2σ

2
η and n0

n0−2σ
2
ν, respectively.

Following, we carry out a Monte Carlo study to assess the statistical and computational perfor-

mance of the four competing particle filter variants when handling the simultaneous estimation of

states and parameters of the non-stationary local level model; the LW particle filter variant is taken as

a benchmark filter.

5.8.3 General Procedure for the Simulation Design and Summary of Simulation Settings

The simulation study carried out in this chapter uses the same general simulation procedure followed

in previous chapters to estimate solely the states, but is adapted to the new situation of estimating

simultaneously the states and fixed model parameters. This procedure undertakes the following three

steps:

• STEP I: Data and state generation
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• STEP II: Filtering: simultaneous estimation of states and parameters

• STEP III: Filtering performance criteria computation

Following, we provide a detailed description of the aforementioned general simulation steps. No-

tice that within every simulation step, we further specify, when needed, the instructions to carry out

the MC experiment.

STEP I: Data and State Generation

Generate S = 100 realizations of the chosen non-stationary local level dynamic model. This is done in

exactly the same way as explained on page 51 of Chapter 3.

STEP II: Filtering Estimation

For each nonlinear filter f , obtain both the statistical and computational measure of performance of

the studied nonlinear filter f . These are based on the root mean square (RMSE) and on the CPU time.

That is, assuming all model parameters are unknown and given the simulated data y 1:T = y1, . . . , yT

obtained in step (I), for replication set i , i = 1, . . . ,S, proceed to

(IIa) In this case, the variance parameters are unknown and thus are also assigned a prior distribution.

(IIb) Compute the filtering estimates x̂ f
t ,[i ], t = 1, . . . ,T using the nonlinear filter in question, say f .

Recall that f ∈ {LW, SIRJ, SIRoptJ, KPFJ}. In this case, also obtain the estimates of the two variance

parameters of the local level model.

(IIc) Compute R MSE f
[i ]

: the RMSE over time index t = 1, . . . ,T with equation (3.4) of Chapter 3. How-

ever, in this case also compute the corresponding RMSE values for the the two unknown fixed

model parameters.

(IId) Compute C PU f
[i ]

: the total elapsed time for a total of T observations with equation (3.5).

(IIe) Repeat steps (IIa)–(IIc) S = 100 times.

STEP III: Filtering Performance Criteria Computation

(IIIa) In step (IIb), we end up with S = 100 estimates of the RMSE: R MSE f
[i ]

. Based on these, ob-

tain the mean and the variance of the root mean square (RMSE) computed over time and over

replication sets using equations (3.6) and (3.7), respectively. Likewise, compute the same values

corresponding to the the two unknown fixed model parameters.

(IIIb) In step (IIc), we end up with S = 100 CPU elapsed-time estimates: C PU f
[i ]

. Based on these, obtain

the mean CPU elapsed-time computed over replication sets using (3.8).
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For completion, the reader may refer to Figure A.1 in Appendix A, which is a sketch illustrating the

comparison criteria for the simulation based filters under study.

Following, we provide a summary list of the simulation settings used for the conducted Monte

Carlo experiment:

Simulation Settings

• Filters: LW, SIRJ, SIRoptJ, and KPFJ.

• Measurement noise variance: Fixed to σ2
ν = 0.1.

• State noise variance σ2
η: Six scenarios typically found in real data applications, defined in terms

of the SNR q ∈ {0.001,0.1,0.5,1,2,5}; being q = σ2
η

σ2
ν

. Notice that these signal-to-noise values are

a subset of the settings presented in Table 3.1, Chapter 3. Also have in mind that both variance

parameters are assumed to be fixed and unknown.

• Resampling scheme: Stratified resampling.

• Number of replications: S = 100.

• Number of particles: Np = 5000. In Chapter 3 dealing solely with estimating the states of the

same local level model, this number of particles is found to provide satisfactory estimation per-

formance for most particle filter variants.

• Time series length: T = 200. In In Chapter 3 larger values of the time series length T are enter-

tained for this model.

• Discount parameter: δ ∈ {0.95, 0.83}. The first discount parameter value lies within the range of

values usually taken for this parameter, say between 0.95 and 0.99. The second, lying outside the

range of values recommended by (Liu and West 2001), is used to explore its potential distinctive

impact on the quality of the estimations.

• Comparison criteria: RMSE and CPU time. Additionally, as done in previous chapters, we also

report %uNp as a measure of the degree of degeneracy.

Recall that, as defined in Chapter 3 the statistical performance of the filters is defined in terms of the

mean and variance of the RMSE, computed with (3.6) and (3.7), respectively. Likewise, the computa-

tional performance is measured by the mean elapsed CPU time, computed with (3.8).

In the sequel, we present the simulation results, remarks and conclusions regarding the undergone

MC study.



158 CHAPTER 5 SIMULTANEOUS ESTIMATION OF STATES AND PARAMETERS VIA PARTICLE FILTERING

5.8.4 Simulation Results

In Table 5.1, we provide the numeric results which summarize the performance of the different par-

ticle filters in handling the simultaneous estimation of states and parameters for the local level model.

This table is organized in two different blocks corresponding to the two values used for the discount

parameter: δ= 0.83 and δ= 0.95. Each block itself consists of three columns containing the measures:

Mean(RMSE), Var(RMSE) and the average number (%) of distinct particles at time-index t = T . Have

in mind that, except for Case 1, all estimated RMSE values are rounded up to three decimal points; for

that reason, many simulation results may appear –at first sight– the same.

Table 5.1: Summary of simulation results: Simultaneous estimation of states and parameters for the

local level model; Np = 5000, T = 200

δ= 0.83 δ= 0.95

RMSE RMSE

Setting Filter Θ Mean Var uNp (%uNp) Mean Var uNp (%uNp)

Case 1: σ2
η = 0.0001, SNR = 0.001

LW xt 0.065 2e-04 4576 (91) 0.065 2e-04 4586 (92)

ση 3e-05 1e-06 3e-05 1e-06

σν 0.015 4e-05 0.014 4e-05

SIRJ xt 0.065 2e-04 4586 (92) 0.065 2e-04 4588 (92)

ση 3e-05 1e-06 3e-05 1e-06

σν 0.015 1e-06 0.014 5e-05

SIRoptJ xt 0.065 2e-04 4590 (92) 0.065 2e-04 4593 (92)

ση 3e-05 1e-06 3e-05 1e-06

σν 0.015 5e-05 0.015 5e-05

KPFJ xt 0.069 3e-04 1559 (31) 0.069 3e-04 1592 (32)

ση 3e-05 1e-06 5e-05 1e-06

σν 0.014 8e-05 0.015 2e-04

Case 2: σ2
η = 0.01, SNR = 0.1

LW xt 0.165 2e-04 3964 (79) 0.165 2e-04 3969 (79)

ση 0.002 1e-06 0.002 1e-06

σν 0.015 4e-05 0.015 5e-05

SIRJ xt 0.165 2e-04 3969 (79) 0.165 2e-04 3971 (79)

ση 0.002 1e-06 0.002 1e-06

σν 0.015 5e-05 0.015 5e-05

SIRoptJ xt 0.165 2e-04 4156 (83) 0.165 2e-04 4158 (83)

ση 0.002 1e-06 0.002 1e-06

σν 0.015 5e-05 0.015 5e-05

KPFJ xt 0.165 2e-04 3255 (65) 0.166 2e-04 3253 (65)

ση 0.002 1e-06 0.002 1e-06

σν 0.015 5e-05 0.015 5e-05
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Table 5.1: Summary of simulation results: Simultaneous estimation of states and parameters for the

local level model; Np = 5000, T = 200 (continued)

δ= 0.83 δ= 0.95

RMSE RMSE

Setting Filter Θ Mean Var uNp (%uNp) Mean Var uNp (%uNp)

Case 3: σ2
η = 0.05, SNR = 0.5

LW xt 0.223 2e-04 3432 (69) 0.223 2e-04 3437 (69)

ση 0.010 2e-05 0.010 2e-05

σν 0.016 5e-05 0.016 6e-05

SIRJ xt 0.223 2e-04 3436 (69) 0.223 2e-04 3436 (69)

ση 0.010 2e-05 0.010 2e-05

σν 0.016 5e-05 0.016 5e-05

SIRoptJ xt 0.223 2e-04 4053 (81) 0.223 2e-04 4055 (81)

ση 0.010 2e-05 0.010 2e-05

σν 0.016 5e-05 0.016 6e-05

KPFJ xt 0.223 2e-04 3755 (75) 0.223 2e-04 3756 (75)

ση 0.010 2e-05 0.010 2e-05

σν 0.017 6e-05 0.017 6e-05

Case 4: σ2
η = 0.1, SNR= 1

LW xt 0.247 2e-04 3116 (62) 0.247 2e-04 3118 (62)

ση 0.018 5e-05 0.019 6e-05

σν 0.017 6e-05 0.018 7e-05

SIRJ xt 0.247 3e-04 3115 (62) 0.247 2e-04 3118 (62)

ση 0.019 6e-05 0.019 7e-05

σν 0.017 7e-05 0.018 7e-05

SIRoptJ xt 0.247 2e-04 4086 (82) 0.247 2e-04 4088 (82)

ση 0.018 6e-05 0.018 6e-05

σν 0.018 6e-05 0.017 6e-05

KPFJ xt 0.247 2e-04 3942 (79) 0.247 2e-04 3943 (79)

ση 0.018 6e-05 0.019 6e-05

σν 0.018 7e-05 0.018 7e-05
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Table 5.1: Summary of simulation results: Simultaneous estimation of states and parameters for the

local level model; Np = 5000, T = 200 (continued)

δ= 0.83 δ= 0.95

RMSE RMSE

Setting Filter Θ Mean Var uNp (%uNp) Mean Var uNp (%uNp)

Case 5: σ2
η = 0.2, SNR= 2

LW xt 0.269 2e-04 2749 (55) 0.269 2e-04 2757 (55)

ση 0.034 2e-04 0.033 2e-04

σν 0.019 9e-05 0.020 1e-04

SIRJ xt 0.269 2e-04 2753 (55) 0.269 2e-04 2752 (55)

ση 0.034 2e-04 0.035 2e-04

σν 0.018 8e-05 0.019 9e-05

SIRoptJ xt 0.268 2e-04 4175 (84) 0.269 2e-04 4176 (84)

ση 0.033 2e-04 0.034 2e-04

σν 0.019 8e-05 0.019 9e-05

KPFJ xt 0.268 2e-04 4118 (82) 0.269 2e-04 4118 (82)

ση 0.033 2e-04 0.033 2e-04

σν 0.019 7e-05 0.019 1e-04

Case 6: σ2
η = 0.5, SNR= 5

LW xt 0.29 2e-04 2208 (44) 0.29 2e-04 2226 (44)

ση 0.082 0.001 0.081 0.001

σν 0.021 1e-04 0.022 2e-04

SIRJ xt 0.29 2e-04 2213 (44) 0.29 2e-04 2213 (44)

ση 0.081 0.001 0.081 0.001

σν 0.022 1e-04 0.022 2e-04

SIRoptJ xt 0.29 2e-04 4339 (87) 0.29 2e-04 4337 (87)

ση 0.077 0.001 0.077 0.001

σν 0.020 1e-04 0.022 1e-04

KPFJ xt 0.29 2e-04 4327 (87) 0.29 2e-04 4331 (87)

ση 0.076 0.001 0.076 0.001

σν 0.020 1e-04 0.021 1e-04

To aid in the discussion of simulation results, we create a pictorial representation that allows us to

have, at a glance, a very good idea of the main statistical findings contained in Table 5.1. Specifically, for

the discount parameter δ= 0.83, lying outside the range of values suggested by Liu and West (2001), we

construct Figure 5.4 that depicts on the left panel the mean-RMSE4 attained at the six chosen signal-

4Mean-RMSE and Mean(RMSE) used interchangeably
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to-noise-ratio settings, and in the right panel the relative statistical performance of the competing

filters in relation to the SIRJ particle filter variant. Thus, in this particular plot to represent the relative

statistical performance, our proposed particle filter variant named SIRJ (Acosta, Martí-Recober, and

Muñoz (2004), Muñoz, Márquez, and Acosta (2007)) is used as a reference algorithm when compared

with the competing particle filters f ∈ {LW, SIRoptJ, KPFJ}. The Figure 5.5 is a similar plot corresponding

to the discount factor δ= 0.95, which lies inside the range of values suggested by Liu and West (2001).

Have in mind, though, that the LW is our benchmark particle filter variant.

5.8.5 Remarks and Conclusions

Based on simulation results reported in Table 5.1 and depicted on Figures 5.4–5.5, considering Np =
5000 particles, we make the following remarks and conclusions regarding the performance of the com-

peting filters when handling the simultaneous estimation of the states (the level) and parameters (tran-

sition and measurement noise variance) of the non-stationary local level model:

First, we refer to the effect of the discount factor δ, used in the estimation procedure, on the sta-

tistical performance of the filters. By choosing the two values of the discount factor δ, we aim to test

the potential impact of it on the estimations of the states and the two variance parameters. To achieve

that, we focus on the comparison of the respective mean-RMSE estimates obtained at the two chosen

discount factors, δ = 0.83 and δ = 0.95. Have in mind, that comparisons among filters is an impor-

tant target. Taking a look at the two aforementioned figures, we find that they are pretty much alike.

Specifically:

• As expected, the statistical efficiency indicated by the mean-RMSE shows an increasing pattern

as a function of the signal-to-noise-ratio values; this result holds irrespective of the value that is

being estimated and of the discount factor δ; focus on the left panels of Figures 5.4–5.5.

• The RMSE values corresponding to the states are hardly affected by the choice of the discount

factor δ; focus on first rows of aforementioned figures. This makes sense, since they are not

directly affected by the choice of the discount factor δ.

• As known, the fixed transition and measurement noise variances have been jittered and thus are

directly affected by the choice of the discount factor δ. The question is whether this choice has

an impact on the estimations of those two variance parameters. We find that some discrepan-

cies are observed in the mean-RMSE of the transition and measurement variance parameters,

specially in the latter; focus on last two rows of Figures 5.4–5.5. We consider, however, that the

observed differences are too small and that the choice of δ does not seem to have a clear effect

on the variance estimations. Notice that differences are observed in the third decimal place; for

completion see Table 5.1.

• Therefore, we consider that for the model at hand, any of these two discount values could be

used. However, we prefer to use the discount factor δ= 0.95 as we have typically done and also

because it belongs to the range of values suggested by Liu and West (2001). We remark, though,

that a further Monte Carlo study must be undergone to completely rule out the potential impact

of the discount factor choice.
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Second, we assess the impact of the signal-to-noise-ratio values q on the statistical performance

of the competing filters:

• When estimating the states, all four particle filter variants display an equal statistical perfor-

mance, except for the KPFJ at low signal-to-noise ratio value q = 0.001.

• When estimating the transition noise variance, all four particle filter variants display an equal

statistical performance for signal-to-noise ratio values less than one; q ∈ {0.001,0.1,0.5}. How-

ever, for signal-to-noise ratio values greater or equal to one, q ∈ {1,2,5}, the results are mixed,

but the LW and SIRJ yield practically equal mean-RMSE values. The other two filters: the SIRoptJ

and the KPFJ are in the latter cases slightly more efficient than the SIRJ/LW particle filters. These

results are in concordance with the ones obtained in Chapter 3 that showed that both the SIRopt

and the KPF had better statistical performance at higher signal-to-noise-ratio values, and as fully

described in the present chapter, these two filters conform the base for the SIRoptJ and the KPFJ

particle filter variants, respectively.

• When estimating the measurement noise variance, the results are varied but we confirm that

the LW and the SIRJ particle filters equate their statistical performance at most signal-to-noise-

ratio values, showing only slight discrepancies at higher values. This is in concordance with the

results obtained in Chapter 3 that showed that both the SIR and the ASIR had more difficulties

at higher signal-to-noise-ratio values, and as fully described in the present chapter, these two

filters conform the base for the SIRJ and the LW particle filter variants, respectively.

• As stated before, the observed differences are too small to indicate a clear preference of one filter

over another; differences are observed in the third decimal place.

• To better illustrate that the observed discrepancies among filters are practically unnoticeable,

regardless even of the choice of the discount factor δ, we go one step further and create for a

signal-to-noise ratio q = 0.1 the Figures 5.6 – 5.7 and related Tables 5.2 – 5.3. These figures rep-

resent the evolution of the estimated noise variance (black/continuous) for all 100 Monte Carlo

replications, Np = 5000 and the four particle filter variants under study. Corresponding 2.5th and

97.5th percentiles are represented by gray/dashed lines and the true noise variance is depicted

by a horizontal (black/dashed) line; the first plot corresponds to the transition noise variance

parameter and the second to the measurement noise variance parameter. Below each figure, a

related table is attached representing the evolution of the corresponding estimated noise vari-

ance obtained via the four PF variants under study for all 100 Monte Carlo replications. This

evolution is shown for time-indexes t ∈ {50,100,150,200} and the data shown are in the format:

Mean (2.5th, 97.5th percentiles) of the posterior mean estimates.

Based on these figures and related tables, we confirm that for the local level model and the signal-

to-noise-ratio value q = 0.1, all three competing particle filter variants are valid since they all are

able to equate the LW filter statistical performance.
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(a) Discount parameter δ= 0.83: Evolution of σ̂2
η,t , t = 1,. . . ,T }.
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(b) Discount parameter δ= 0.95: Evolution of {σ̂2
η,t , t = 1,. . . ,T }.

Figure 5.6: Local level model with SN R = 0.1: Evolution of estimated transition noise variance σ̂2
η,t

(black/continuous) for all 100 MC replications, Np = 5000 and the four particle filter variants under study. Cor-

responding 2.5th and 97.5th percentiles are represented by gray/dashed lines and the true state noise variance:

σ2
η = 0.01 is depicted by a horizontal (black/dashed) line. Each left/right panel contains for each chosen discount

parameter four sub figures: top-left: LW, top-right: SIRJ, bottom-left: SIRoptJ, bottom-right: KPFJ.

Table 5.2: Evolution of estimated transition noise variance σ̂2
η for all 100 MC replications and the four

PF variants under study with SN R = 0.1 and time series length T ∈ {50,100,150,200}. True state noise

variance: σ2
η = 0.01.

δ Filter T=50 T=100 T=150 T=200

0.83 LW 0.012 (0.010, 0.015) 0.012 (0.009, 0.016) 0.011 (0.008, 0.016) 0.011 (0.008, 0.015)

SIRJ 0.012 (0.009, 0.015) 0.012 (0.008, 0.016) 0.011 (0.008, 0.017) 0.011 (0.007, 0.016)

SIRoptJ 0.012 (0.009, 0.016) 0.011 (0.008, 0.016) 0.011 (0.008, 0.016) 0.011 (0.007, 0.016)

KPFJ 0.012 (0.009, 0.016) 0.012 (0.008, 0.017) 0.011 (0.007, 0.016) 0.011 (0.007, 0.016)

0.95 LW 0.012 (0.009, 0.017) 0.011 (0.008, 0.017) 0.011 (0.008, 0.016) 0.011 (0.007, 0.015)

SIRJ 0.012 (0.009, 0.016) 0.011 (0.008, 0.016) 0.011 (0.007, 0.016) 0.011 (0.008, 0.016)

SIRoptJ 0.012 (0.009, 0.017) 0.011 (0.008, 0.017) 0.011 (0.007, 0.016) 0.011 (0.007, 0.016)

KPFJ 0.012 (0.009, 0.018) 0.011 (0.008, 0.017) 0.011 (0.007, 0.016) 0.011 (0.007, 0.015)

Data shown are in the format: Mean (2.5th, 97.5th percentiles) of the posterior mean estimates.
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(a) Discount parameter δ= 0.83: Evolution of σ̂2
ν,t , t = 1,. . . ,T }.
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ν,t , t = 1,. . . ,T }.

Figure 5.7: Local level model with SN R = 0.1: Evolution of estimated measurement noise variance σ̂2
ν,t

(black/continuous) for all 100 MC replications, Np = 5000 and the four particle filter variants under study. Cor-

responding 2.5th and 97.5th percentiles are represented by gray/dashed lines and the true state noise variance:

σ2
ν = 0.1 is depicted by a horizontal (black/dashed) line. Each left/right panel contains for each chosen discount

parameter four sub figures: top-left: LW, top-right: SIRJ, bottom-left: SIRoptJ, bottom-right: KPFJ.

Table 5.3: Evolution of estimated measurement noise variance σ̂2
ν for all 100 MC replications and the

four PF variants under study with SN R = 0.1 and time series length T ∈ {50,100,150,200}. True mea-

surement noise variance: σ2
ν = 0.1.

δ Filter T=50 T=100 T=150 T=200

0.83 LW 0.105 (0.076, 0.147) 0.104 (0.081, 0.132) 0.102 (0.085, 0.124) 0.101 (0.084, 0.123)

SIRJ 0.105 (0.075, 0.149) 0.104 (0.082, 0.131) 0.102 (0.084, 0.125) 0.102 (0.082, 0.122)

SIRoptJ 0.105 (0.075, 0.152) 0.104 (0.081, 0.131) 0.102 (0.084, 0.124) 0.102 (0.084, 0.121)

KPFJ 0.105 (0.075, 0.147) 0.105 (0.082, 0.136) 0.103 (0.086, 0.124) 0.102 (0.084, 0.123)

0.95 LW 0.105 (0.076, 0.146) 0.104 (0.080, 0.132) 0.102 (0.083, 0.123) 0.101 (0.082, 0.119)

SIRJ 0.105 (0.075, 0.148) 0.104 (0.082, 0.132) 0.102 (0.085, 0.121) 0.101 (0.084, 0.119)

SIRoptJ 0.105 (0.076, 0.151) 0.104 (0.082, 0.131) 0.102 (0.084, 0.123) 0.101 (0.083, 0.119)

KPFJ 0.105 (0.076, 0.152) 0.104 (0.082, 0.132) 0.102 (0.084, 0.123) 0.101 (0.083, 0.121)

Data shown are in the format: Mean (2.5th, 97.5th percentiles) of the posterior mean estimates.
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Third, we focus on exploring the impact of the signal-to-noise-ratio on the degeneracy problem

which is known to be a major drawback of the particle filters. That is, analyzing the reported mean of

the unique number of particles uNp (% uNp) at last time-index t = T , we end up with similar general

conclusions to the ones arrived in Chapter 3. We consider this natural since we are using the same

benchmark model (the non-stationary local level model) and also a subset of the simulation settings

considered in that chapter. These findings are summarized below and hold irrespective of the discount

parameter δ used:

• For the KPFJ particle filter variant, the percentage mean number of unique particles % uNp in-

creases from about 32 to 87% as the signal-to-noise-ratio q increases from q = 0.001 to q = 5;

focus on last column of Table 5.1. Of course, the higher the number of unique particles, the

better; the original number of particles is Np = 5000.

• For the SIRJ and LW particle filter variants, contrary to what happens with the KPF, the %uNp

decreases as the signal-to-noise-ratio q increases from q = 0.001 to q = 5. Specifically, in our

simulation study, the %uNp spans from about 91 down to 44% for both filters.

• For the SIRoptJ particle filter variant, a rather distinct pattern in the behavior of the unique num-

ber of particles is observed. In this situation, the %uNp first decreases from about 92 to 81% as

the signal-to-noise-ratio q increases from q = 0.001 to q = 0.5. Then, the opposite happens,

since we observe that the %uNp increases from about 81 to 87% as the signal-to-noise-ratio q

increases from q = 0.5 to q = 5. That is, a decreasing pattern is observed on %uNp for signal-to-

noise-ratio values q less than 1 and an increasing pattern for q greater than 1.

• Therefore, the simulation results confirm the degeneracy related performance already observed

in Chapter 3 for the KPF, SIR, ASIR and SIRopt particle filter variants used for state estimation.

We consider this a natural behavior since the KPFJ, SIRJ, LW and KPFJ are just extensions of those

filters in order to tackle the simultaneous estimation of states and parameters.

• As concluded already in Chapter 3, the SIRoptJ suffers the degeneracy problem, in general, to a

lesser degree, the KPFJ suffers it more at low signal-to-noise-ratio values and that both the SIR

and the ASIR particle filter variants are more affected by it at high signal-to-noise-ratio values.

For instance, with Np = 5000 particles, even in the worst-case scenario for the SIRJ/LW particle

filters that occurs at a high signal-to-noise ratio q = 5, we end up with about 2226 (44% of 5000)

particles, which we consider big enough to produce a reliable marginal posterior distribution.

To better illustrate the non-degeneracy of the studied particle filters, see the Figures 5.8 (page 170)

and 5.9 (page 171) that were created for an exemplar run using a signal-to-noise-ratio q = 0.1.

The first one depicts the evolution of the estimated state values xt (black/continuous) and the

95% confidence intervals (grey/dashed) for the local level model specified by the variance pa-

rameters σ2
η = 0.01 and σ2

ν = 0.1, respectively; each panel refers to a different particle filter vari-

ant.
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The second plot (Figure 5.9) shows the histograms (together with the estimated posterior den-

sities; black/ dashed) of the estimated state values and fixed variance parameters at last time-

index T = 200. In this case, each row refers to a different particle filter variant (LW, SIRJ, SIRoptJ

and KPFJ) and each column to a different estimated variable: the states (in the first column),

the transition noise variance (in the second column) and the measurement noise variance (in

the third column). Based on these two particular illustrations, we state that there is not a no-

ticeable difference among the particle filters in question, as is shown (empirically) in Table 5.1

and related figures. What we confirm is that using Np = 5000, we protected ourselves against the

degeneracy problem, but keep in mind that for some filters, even a smaller number of particles

could be used; the specific results and conclusions drawn in Chapter 3 could also be used as a

guide.

Fourth, focusing on the performance of the four competing particle filter variants in terms of the

computational time, we conclude that the SIRJ is the least-expensive algorithm with mean CPU time

values around 3.97 seconds (average time in seconds in handling a data set containing T = 200 ob-

servations using Np = 5000 particles), followed by the LW (4.33), the SIRoptJ (4.72) and the KPFJ with

around 5.41 seconds. Of course, these results hold irrespective of the value of the discount parameter δ.

Following, a summarized acccount of obatined results is provided.

5.8.6 Final Remarks and Conclusions

Putting together all above findings we conclude that:

• The choice of the discount factor does not seem to play an important role on the estimation

of the non-stationary local level model at hand. In the sequel, when dealing with this model,

we use always a discount factor inside the range of values suggested by Liu and West (2001);

specifically δ= 0.95 as used herein. We remark, though that the use of δ= 0.83 lying outside the

range of values suggested in Liu and West (2001) produces similar estimation results. Therefore,

as previously stated, a further Monte Carlo study must be undergone to completely rule out the

potential impact of the discount factor choice.

• All three competing particle filter variants proposed have shown to a be a valid alternative to the

benchmark LW particle filter variant, since they all are able to reach its statistical performance.

Additionally, using a big enough number of particles, all four particle filter variants avoid the

degeneracy problem.

• When we face the situation of choosing one filter over another, we recommend to also consider

the computational efficiency of the filters. In such case, as stated before, the SIRJ shows the best

computational performance, followed by the LW, the SIRoptJ and the KPFJ, respectively. Thus,

to achieve a similar statistical performance, the SIRJ proves to be a good alternative to the well-

established and widely used LW approach.
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• We remark, however, that the approaches used in this work, which are based on diversifying the

particles by jittering them, suffer a common criticism that can be summarized as follows: the

particles are originally fixed and by jittering them, one is artificially assuming that they vary. We

consider valuable, however, the trade-off between assuming an artificial noise for the parameters

and the obtained quality of the estimations, since by jittering the originally fixed particles, we are

able to avoid the degeneracy of the fixed parameters and at the same time to obtain a satisfactory

statistical performance.

As done in Chapter 2, we end this section by providing a summary of the main features related

to the historical evolution of the particle filter variants that take part in the undergone Monte Carlo

studies; see Table 5.4. Notice that throughout this work we have implemented the EPFJ and UPFJ

particle filter variants. For that reason, we include them in the list, regardless of the fact that they are

not used in this chapter, because the model at hand, though not stationary, is linear and Gaussian. As

described in Chapter 2 and shown (empirically) in Chapter 4, when filtering a nonlinear, non-Gaussian

and non-stationary synthetic model, these two filters show their potentiality in case of non-standard

models. As seen in case of a linear and Gaussian model, we propose to use the KPFJ particle filter

variant as a particular case of the EPFJ particle filter; recall that the KPFJ combines Kalman filtering

with particle filtering plus jittering.

We remark that we are aware of the existence of more recent particle filters like the particle Markov

chain Monte Carlo approach introduced by Andrieu, Doucet, and Holenstein (2010). These authors

combine two approaches, powerful by themselves: the SMC and the MCMC methods, whereby the for-

mer is used to construct an efficient proposal distribution which is used by the latter. For an overview of

recent particle filter variants used for parameter estimation, the reader may refer to references therein.

The next chapter deals with a nonlinear dynamic model commonly used in the financial commu-

nity, the so-called stochastic autoregressive volatility model of order one, SARV(1). Therein, we carry

out a Monte Carlo study for the simultaneous estimation of the states and fixed model parameters, but

also an application to two real data sets showing high volatility is a target: the IBEX 35 returns index

and the Brent spot prices series.
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Figure 5.8: Illustration for last exemplar run: Evolution of true (black/dots) and estimated state values xt (black/continuous) together with

95% CI (grey/dashed) for the LL model specified by σ2
η and σ2

ν, respectively. Notice that each panel refers to a different PF variant. Results

shown for SN R = 0.1.
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Figure 5.9: Illustration for last exemplar run and last time index T = 200: Histograms representing the estimated posterior distributions of:

the states (first column), the system noise variance (second column) and the measurement noise variance (third columnd) for the LL model

specified by σ2
η and σ2

ν, respectively. Notice that each row refers to a different PF variant. Results shown for SN R = 0.1.
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Table 5.4: Historical evolution of the studied particle filters that tackle the simultaneous estimation of

state and parameters. All these filters use an augmented state vector by appending the model param-

eters. The stratified resampling scheme is adopted, except the LW PF, which uses residual resampling.

Particle filter Authors (year) Stylized features

SO Version of:

Kitagawa (1998)

Performs estimation via the SIR PF variant

of Kitagawa (1996), which was originally created

for states estimation.

Version of:

Kitagawa and Sato (2001)

Incorporates to the SO PF of Kitagawa (1998), the

artificial evolution ideas to diversify the parameters

of Gordon et al. (1993).

LW Liu and West (2001) Combines the ASIR PF and the artificial evolution ideas

to diversify the parameters of Liu and West (2001).

SIRJ Acosta et al. (2004),

Muñoz et al. (2007)

Combines the SO PF of Kitagawa (1998) and the artificial

evolution ideas to diversify the parameters

of Liu and West (2001).

SIRoptJ Present work The same as SIRJ, but it uses a fully

adapted importance PDF.

EPFJ (KPFJ) Present work Combines the EPF(KF) and the artificial evolution ideas

to diversify the parameters of Liu and West (2001).

The KPFJ is a special case of EPFJ; the former uses

an importance PDF based on the KF, whereas the latter

is based on the EKF. The EPF remains as

a theoretical proposal, whereas the KPFJ is applied

in Chapter 5.

UPFJ Present work Combines the UPF and the artificial evolution ideas to

diversify the parameters of Liu and West (2001).

It remains as a theoretical proposal.
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6
ESTIMATION OF A STOCHASTIC VOLATILITY MODEL

VIA PARTICLE FILTERING

Within Finance, one is usually interested in modeling volatile data. Particularly, filtering the volatility

of financial data is crucial in financial markets (option pricing, risk management and portfolio man-

agement) to facilitate the decision–making–process (Bollerslev, Chou, and Kroner 1992).

When confronted with the analysis of financial data, the need to use non-classic time series ana-

lysis is certainly important. For instance, return time series are known to embody an added element

of uncertainty due to the presence of an underlying and unobserved component called volatility; the

same can be said about stock prices and exchange rates. Classic time series analysis would treat the

variance for this kind of data to be constant. However, in practice –when dealing with financial data–

this assumption, rarely attained, would be improper, leading to the search of alternative time series

approaches.

Several stochastic volatility (SV) models have been proposed in mathematical finance and financial

econometrics arriving from research made looking at different issues, see Ghysels, Harvey, and Renault

(1996). For instance, the popular generalized autoregressive conditional heteroscedastic (GARCH) type

models proposed by Bollerslev (1986) use an exact function to –in a deterministic way– describe the

evolution of volatility. Taylor’s 1986 SV models use a stochastic function to describe such evolution, see

also Taylor (1994). Herein, the first type of models are solely introduced to highlight the distinguishing

features of the type of models we aim to tackle: the stochastic autoregressive volatility (SARV) type

models.

Herein the focus is on modeling the underlying volatility or uncertainty present in economic and

financial data by the nonlinear SARV model and on estimating –via particle filtering– both the states

and parameters embedded in the specified model, see Liu and West (2001) and Muñoz, Márquez, and

173
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Acosta (2007). Knowledge of the filtered states and estimated model parameters will allow us to fully

specify the dynamic nature of the process and when required, would also facilitate volatility forecast-

ing.

This chapter is organized as follows: in Section 6.1, we present a summary of some empirical sty-

lized facts about volatility. These stylized facts or features commonly observed in financial data such

as returns time series are illustrated, via two examples, in Section 6.2. Therein, we describe the main

features of two data sets containing financial time series. In Section 6.3, the general formulae and de-

tails of (G)ARCH models are outlined as introduction to SV models. Following, Sections 6.4 – 6.7 focus

on the models we are more interested in: the SARV models. Specifically, Section 6.4 introduces the

SARV(1) model state-space representation and alternative parameterizations. In Sections 6.5 and 6.6,

we report results corresponding to two Monte Carlo studies: the first simulation undergoes volatility

estimation and the second performs the simultaneous estimation of the states (volatility) and the fixed

model parameters of the nonlinear SARV(1) model at hand. In both cases, we consider four different

commonly found scenarios in the financial literature. As aforementioned, the estimation is achieved

via the particle filtering methodology, using (when feasible) the filters already described in Chapter 2

and already applied in Chapter 5. Among those particle filters, two of them are suitable for the nonlin-

ear model at hand: the so-called LW particle filter variant and the SIRJ; the first taken as a benchmark

and the second proposed by us. The chapter concludes with an application to two real data sets –IBEX

35 return index and the price (in dollars) of Brent time series– containing highly volatile data, see Sec-

tion 6.7. The aim of such applications, using the two mentioned return time series, is to evaluate and

illustrate the performance of the competing particle filter variants (LW PF and SIRJ with real data sets.

6.1 Stylized Facts of Financial Returns Series

Although volatility is not directly observable, it has some characteristics that are commonly observed

in financial data such as returns. These stylized facts about volatility have been well documented in the

financial literature, see, for instance, Bollerslev, Engle, and Nelson (1994), Engle and Patton (2001), and

Tsay (2002). Following, we summarize some of those frequently observed characteristics in financial

returns:

1. Heavy or thick tails

Since the early sixties, it is well established that asset returns have leptokurtic distributions and

this feature should be presented in any volatility model, see, for instance, Mandelbrot (1963) and

Fama (1965). Many models aim to capture the leptokurtic behavior by using fat-tailed distribu-

tions. Recall that the thickness of the tails of the distribution is measured by the kurtosis coeffi-

cient and that a Gaussian distribution has a kurtosis of 3. Typically very extreme non-normality

is indicated by kurtosis estimates spanning from 4 to 50.
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2. Asymmetric pattern of volatility

Volatility seems to react differently to a large price increase than to a price drop of the same size.

This type of behavior could be evidenced by the presence of an asymmetric effect of positive or

negative shocks; refer, for instance, to Andersen et al. (2001).

3. Volatility clustering

This is one of the first documented features of volatility (Mandelbrot 1963). Financial time series

exhibit a time-varying volatility behavior reflected by high and low volatility episodes. In fact,

empirical evidence suggests that large returns tend to be followed by large returns and small

returns by small returns (Fama 1965). For instance, this could be evidenced by the presence of

an asymmetric effect of positive or negative shocks. This asymmetric pattern can be observed by

periods with large movements in prices followed by periods during which prices hardly change.

Franses and Van Dijk (2000) point out that though the varying nature of volatility has been long

time recognized, it is only fairly recently that explicit models reflecting the properties of volatility

have been put into practice. At the moment, many models such as ARCH type (Engle 1982) and

extensions, as well as SV models are designed to mimic volatility clustering. Further, Ghysels,

Harvey, and Renault (1996) mention that volatility clustering and thick tails of asset returns are

intimately related and that the latter is a static explanation of the former.

4. Leverage effects

According to Ghysels, Harvey, and Renault (1996), this term was coined by Black (1976) and it

suggests that in some cases stock price movements are negatively correlated with volatility. This

feature, observed in financial time series such as stock prices and exchange rates, quantifies the

asymmetric effect of positive or negative shocks (or news) on volatility. Indeed, since 1976 it is

believed that negative shocks or news affect volatility quite differently than positive shocks of

equal size. These authors point out that an increased leverage would imply more uncertainty

and thus more volatility and that various empirical studies suggest that leverage alone is too

small to explain the empirical asymmetries one observes in stock prices.

5. High persistence

Volatility is highly persistent. This can be evidenced by a near to unit root behavior of the condi-

tional variance process. In fact, when estimating stochastic volatility models, empirical evidence

shows a similar pattern of high persistence; see, for instance, Jacquier, Polson, and Rossi (1994).

Other relevant features observed in squared returns are: the relatively small lower order autocor-

relations and the slow decay towards zero of their autocorrelation coefficients. This would indicate a

substantial dependence present in the volatility of return time series, even though serial correlation

may not be present.

Another common feature present in financial data is the so-called Taylor effect first observed by

Taylor (1986) and later on studied in the context of SARV models by Mora-Galan, Perez, and Ruiz (2004).
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This empirical property consists in that autocorrelations of absolute returns are commonly larger than

the autocorrelations of squared returns.

6.2 Illustrative Examples

To illustrate the aforementioned features, we consider two sets of real data containing daily data. The

first data set consists of the Spanish financial index named IBEX 35 and the second data set of the

European Brent spot prices (in Dollars per barrel). Have in mind that if Pt denotes the price of an

asset at time t , the return (between time t and t − 1) is defined as the relative variation of the index

and is computed as rt = log(Pt )− log(Pt−1) and then multiplied by 100%. Following, we provide a brief

description of the two data sets chosen that also are used further on to validate the filters implemented

in this chapter.

• The IBEX 35 is the official index of the Spanish Stock Exchange market. It is officially established

back on 19921, though historical values exist since 1989, and it comprises the 35 most liquid

Spanish stocks which are reviewed twice annually. We consider the daily IBEX 35 return index

(now for illustrative reasons and later on for estimation) and take 2670 observations spanning

from January 2, 2002 through July 12, 2012; see Figure 6.1. Notice that closing values of the index

and only the days when the market was open are considered.

• The Europe Brent Spot Price is the market spot price (in US Dollars per barrel) of the so-called

Brent crude oil2. The price of this light crude oil is used as a reference-price for other crude

oils. Actually, the Brent crude oil is a blend of other crude oils produced in 15 different oil fields

located in the North Sea region. In this work, we consider the returns of this daily Brent crude oil

spot price and take 2669 observations spanning from January 2, 2002 through July 10, 2012; see

Figure 6.2.

The evolution of the time series of prices and returns is depicted in panels (a) and (b) of Figures 6.1 and

6.2 for the IBEX 35 and Brent data, respectively. Additionally, a statistical description of the IBEX 35 and

Brent returns is provided in Table 6.1 (on page 181), together with results of some statistical tests that

when found significant at a significance level α= 0.05, is indicated by the symbol ‘*’. Following, based

on these plots and the entries of this table, we describe the main features found to be present in the

two time series studied.

1http://es.finance.yahoo.com/q/hp?s=^IBEX [last visited: September 2013]
2http://www.eia.gov [last visited: September 2013]
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Figure 6.1: Spanish financial index IBEX 35 (daily): (a–b) Evolution of original time series and return

time series, respectively; (c–d) Histogram and Normal Q-Q plot, respectively.
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(d) Brent: Normal Q-Q plot of returns.

Figure 6.2: Europe Brent (daily, in US Dollars per barrel): (a–b) Evolution of price time series and return

time series, respectively; (c–d) Histogram and Normal Q-Q plot, respectively.
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For the IBEX 35 and Brent data, focusing on panel (a) of Figures 6.1 and 6.2 apparently a non-

stationary (in level) behavior is present in the time evolution of daily prices. For both daily prices at

hand, the presence of a unit root can be confirmed by a stationarity test like the Augmented Dickey-

Fuller (ADF) test or the Phillips-Perron test, both implemented in the R package tseries (Trapletti

and Hornik 2012); see Dickey and Fuller (1979) and Perron (1988), respectively. Indeed, the ADF test

confirms the presence of a unit root (non-stationarity in level) for both mentioned daily price-series.

Similarly, it is also confirmed that the two corresponding return series –though very volatile– do not

have a unit root, which means that they show a stationary (in level) behavior; see panel (b) in Fig-

ures 6.1 and 6.2.

During the considered period, the computed returns range from a minimum value of -9.586%

reached in October 10, 2008 and a maximum value of 13.484% corresponding to May 10, 2010. The

mean value for the period reported is -0.009% with a standard deviation of 1.549%. Similarly, the com-

puted Brent returns range from a minimum value of -16.832% reached in December 05, 2008 and a

maximum value of 18.130% corresponding to January 02, 2009. The mean value for the period reported

is 0.060% with a standard deviation of 2.268%; see Table 6.1.

Observe that both returns series show some of the characteristics of financial time series:

• There is a clear presence of volatility clusters in the two return series; see panel (b) in Figures 6.1

and 6.2. Notice how large returns tend to be followed by large returns and small returns by small

returns. As aforementioned, this behavior can be evidenced by an asymmetric effect of positive

or negative news. Observe, for instance, that in the period between 2008 to 2010, coinciding with

the roots of the European debt crisis, a drastic change in prices (in the negative direction) occurs

and is accompanied by a period of high volatility values of returns.

• Both IBEX 35 and Brent return series exhibit high kurtosis values that depart from the Gaussian

case (Kurtosis = 3), giving rise to the phenomenon known as thick tails. Be reminded that Ghy-

sels, Harvey, and Renault (1996) mention that volatility clustering and thick tails of asset returns

are intimately related and that the latter is a static explanation of the former. The leptokurtic

behavior is evidenced by large kurtosis values of 9.04 (significant) and 7.474 (significant) for the

IBEX 35 and Brent spot return series, respectively. Additionally, the two return time series stud-

ied show pronounced peaks, which suggests the presence of observations not proper of Gaus-

sian distributions; see corresponding histograms (panel c) and Normal Q-Q plots (panel d) in

Figures 6.1 and 6.2.

• With respect to the asymmetry (focus on the histograms portrayed in panel (c) of Figures 6.1 and

6.2), only the returns of IBEX 35 exhibit a skewness value that clearly deviates from normality

(Skewness = 0), whereas the returns of Brent show a very small negative value of skewness. In-

deed, for the series of returns of the IBEX 35 and Brent, the Fisher skewness coefficient takes

values of 0.151 (significant) and -0.029 (non-significant), respectively.
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• The above results suggest that neither the IBEX 35 returns nor the Brent returns are normally

distributed, which can be confirmed by the tests results reported in Table 6.1 and Normal Q-Q

plots (panel d) in Figures 6.1 and 6.2.

• As typically observed in return time series, the autocorrelation function of the original obser-

vations do not show significant values (not shown), but the squared return values do exhibit

significant autocorrelations; see first column of Figure 6.3 (on page 182). Observe how lower or-

der autocorrelations are significant but also considerably small (here, below 0.3), and how the

correlation coefficients decay slowly towards zero; specially in the IBEX 35. All together, that

indicates that autocorrelation exists up to an extended Lag = k in both return series in consid-

eration, which can be confirmed by the Box-Ljung test (Ljung and Box 1978). Indeed, this test

allows us to reject (in both examples when applied to original returns, their squared values and

their absolute values) the null hypothesis of no autocorrelation present (H0: autocorrelations

up to Lag = k are equal to zero) in studied time series: the computed Box-Ljung statistics are

denoted by Q(df); in this case, df = 20 and the critical value at level α= 0.05 is 31.4; see Table 6.1.

• According to the Taylor effect property (Taylor (1986) and Mora-Galan et al. (2004)), the autocor-

relations of absolute returns are commonly larger than the autocorrelations of squared returns.

Notice that the empirical property called Taylor effect is present in both illustrative examples, but

specially evident in the IBEX 35; see Figure 6.3. These plots display the autocorrelation values of

the squared returns (in first column) and of the absolute value of returns (in second column) for

the IBEX 35 and Brent return series. In the case of the Brent return series, this property is not as

evident as in the IBEX 35 return series.
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Table 6.1: Summary statistics of daily returns of the Spanish

IBEX 35 financial index and the Europe Brent spot price

Statistics IBEX 35 (n = 2670) Brent (n = 2699)

Mean −0.009 0.06

Stdev 1.549 2.268

Median 0.066 0.094

Minimum −9.586 −16.832

Maximum 13.484 18.13

Skewness 0.151* −0.029

Kurtosis 9.04* 7.474*

Autocorrelations rt

r(1)a −0.001 −0.008

r(20)a −0.021 −0.014

Q(20)b 56.407* 47.053*

Autocorrelations |rt |

r2(1)c 0.216* 0.075*

r2(2)c 0.279* 0.116*

r2(5)c 0.279* 0.121*

r2(10)c 0.234* 0.099*

r2(20)c 0.2* 0.103*

QA(20)b 3161.392* 703.807*

Autocorrelations r 2
t

r2(1)c 0.179* 0.119*

r2(2)c 0.191* 0.099*

r2(5)c 0.209* 0.083*

r2(10)c 0.157* 0.097*

r2(20)c 0.099* 0.113*

Q2(20)b 1529.925* 922.903*

a r(k): Order k autocorrelation of return series rt
b Q(20), QA(20) and Q2(20): Ljung-Box statistics (Lag = 20) to test the

autocorrelation of the original, absolute value and squared series:

rt , |rt | and r 2
t , respectively (critical value = 31.41)

c r2(k): Order k autocorrelation of squared observations r 2
t

* Significant at 5% level
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(a) Squared values of IBEX 35 returns.
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(b) Absolute values of IBEX 35 returns.
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(c) Squared values of Brent returns.
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(d) Absolute values of Brent returns.

Figure 6.3: Autocorrelation functions of: (a–b) Spanish financial index: IBEX 35 (in euros); (c–d) Eu-

rope Brent spot returns (in US dollars per barrel).
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The previous examples illustrate the features commonly present in time series which have an

underlying and unknown component called volatility. With such type of data, an aim for the re-

searcher/practitioner is to find a ‘good’ volatility model: one that is able to capture and reflect all or

most of the aforementioned stylized facts of volatile data. Indeed, a variety of models have appeared

in the literature with the aim to explain the time-evolution of volatility present in financial data such

as return time series. Further, many volatility models emerge as a response to the need of improving

upon existing models that are unable to reflect some of the stylized features of volatility. Following,

we consider the two most popular approaches for modeling time-varying volatilities: (G)ARCH type

models (Bollerslev (1986); extensive review in Bollerslev, Engle, and Nelson (1994)) and SV type models

(detailed reviews in Taylor (1994); Ghysels, Harvey, and Renault (1996)).

6.3 Modeling Volatility

In this section we state the main facts about (G)ARCH type models and readily focus on the SV type

models that we aim to further study.

6.3.1 (G)ARCH Type Models

In mathematical finance and financial econometrics, the most popular nonlinear models to study the

behavior of return time series and its volatility are the nonlinear GARCH type models; see Bollerslev

(1986). These models emerge as an extension of the ARCH type models introduced by Engle (1982).

For a deeper insight into ARCH type models refer to Bollerslev, Engle, and Nelson (1994), Diebold and

Lopez (1995), and Bera and Higgins (1995), among others.

The distinguishing feature of GARCH type models is that they provide a simple parametric func-

tion to deterministically describe the evolution of volatility. For instance, a GARCH(1,1) state-space

formulation is given by:

rt =σtνt , (6.1)

σ2
t =κ+αr 2

t−1 +βσ2
t−1, (6.2)

where κ> 0, α> 0 and β ≥ 0 are the model parameters and where the restriction α+β < 1 guarantees

covariance stationarity. The positive restrictions on the parameters guarantee the positiveness of the

conditional variance and the observed variable rt is in general the return of an asset. Additionally, the

measurement noise νt is a sequence of uncorrelated random variables with zero mean and unit vari-

ance. A common assumption for the PDF of νt is the standard normal one although not obligated. If

normality is assumed for νt , it follows from (6.1) and the properties of νt that the conditional distribu-

tion of rt given information up to time t −1 is also normal with zero mean and variance of σ2
t . That is,

the conditional expectation and variance of the variable rt are in this case given by:

rt |t−1 = E(rt |r1:t−1) =E(νtσt |r1:t−1) =σt E(νt |r1:t−1) = 0,

Σrt |t−1
= Cov(rt |r1:t−1) = E(r 2

t |r1:t−1) = E(ν2
t σ

2
t |r1:t−1) =σ2

t E(ν2
t |r1:t−1) =σ2

t .



184 CHAPTER 6 ESTIMATION OF A STOCHASTIC VOLATILITY MODEL VIA PARTICLE FILTERING

Clearly, the set of two equations (6.1) and (6.2) describes the volatility as a nonlinear function of

past returns. Specifically, the variance in (6.2) is a function of squared returns and the variance in the

previous time period. This would imply that the (conditional) variance of rt , given by σ2
t , must be

nonnegative and further that there is no randomness specific to the volatility process.

As previously mentioned, standard GARCH models like the GARCH(1,1) are very popular. One

reason for such popularity is that they are rather easily estimated via the Maximum Likelihood ap-

proach once one has specified a distribution for the innovations; with the Gaussian distribution being

a commonly used distributional assumption. Indeed, the fact that no randomness is assumed in (6.2)

simplifies the estimation procedure, since then an analytical closed form of the likelihood function can

first be obtained and then directly estimated via Maximum Likelihood.

Another important reason for the popularity of GARCH type models is their capability to reflect

most of the main stylized facts of asset returns such as volatility clustering, pronounced excess kur-

tosis, or fat tails. However, these models are not able to capture other empirically relevant features of

volatility such as the leverage effect (Anderson, Nam, and Vahid 1999). One possible explanation is

that in these models the conditional variance depends only on the square of the returns being the sign

of the returns irrelevant, thereby producing bias in volatility forecasts (Loudon, Watt, and Yadav 2000).

Notice that the so-called leverage effect is related to the asymmetric pattern of volatility, evidenced by

a market that reacts differently (in terms of volatility) to a large price increase than to a drop price of

the same size.

Most nonlinear extensions of the GARCH model are designed to allow asymmetric patterns; see,

for instance, Ding, Granger, and Engle (1993), Hamilton and Susmel (1994), Zakoian (1994), and Li

and Lam (1995). An alternative to a GARCH model would be, for instance, to use a threshold model

with conditional heteroscedasticity (TAR-GARCH model). In this type of models, the GARCH part of

the model can describe volatility clustering and excess kurtosis (although not entirely), whereas the

TAR variance formulation captures the asymmetric patterns of volatility. Moreover, volatility models

that extend upon (G)ARCH aiming to capture mis-reflected features are also covered by Franses and

Van Dijk (2000).

A distinct approach arises from the work of Taylor (1986, 1994), who proposed another commonly

used discrete time volatility model to study the behavior of the returns and its volatility: the SV models.

6.3.2 SV Type Models

These models, like the GARCH, describe the volatility as a random process and are able to capture

most of the stylized facts of asset returns, but they mainly differ due to the fact that SV models assume

that there is randomness specific to the volatility process. In other words, the variance of the returns,

defined as a latent variable, is a function of its past values plus a noise (Congdon 2007). The stochastic

autoregressive (of order p) volatility model, SARV(p), belongs to this class of models.

Our work focuses on the univariate SARV(1) model, and not on its counterpart GARCH(1,1) model.

This choice is mostly motivated by literature findings which suggest that the former shows better over-
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all performance than the latter. Also, we consider that the SARV(1) model has a more appealing state-

space formulation (more realistic and complex) than its alternative, the GARCH(1,1) model, due to the

inclusion of randomness in the volatility process. Following, some literature findings regarding the

comparison of GARCH and SV type models are presented.

SV models vs GARCH models

• The SV models are more flexible than GARCH to capture excess-kurtosis, which is a stylized fact

of financial returns series; see Muñoz et al. (2004) and Carnero, Peña, and Ruiz (2001). The latter

authors further point out that the additional noise process in the variance equation of a SV type

model makes it much more flexible but, as a result, the likelihood function of the SV model has

no closed form, making the direct maximum likelihood estimation difficult; see also Poon and

Granger (2003).

• Carnero, Peña, and Ruiz (2004) also point out that both GARCH and SV models generate series

with excess kurtosis and autocorrelated squares, but that the latter are better to capture such

features. That is, the SV type models better reflect the empirical properties often observed in

real financial time series such as returns.

• The estimation issue, though, is harder for SV type models compared to GARCH type models.

As mentioned above, this is mainly due to the inclusion of the extra source of randomness in

the volatility equation of the SV model. The estimation of a SV model becomes more com-

plicated if a non-Gaussian distribution is assumed for the measure noise. Indeed, contrary to

GARCH, one cannot find an analytical form for the one-step ahead forecast density for SV type

models, which makes it mandatory to adopt approximative approaches, say numerical or sim-

ulation based ones. Notice however that, as previously mentioned, this extra randomness also

allows us to have a model whose properties are closer to the properties of real financial time

series data.

The preceding ideas make the SV type models a good alternative to reflect stylized facts commonly

present in volatile data such as return time series. Let us remark, however, that this chapter does not

provide a thorough coverage of possible volatility modeling approaches. We rather focus on assess-

ing the performance of the particle filtering methodology on a commonly used univariate stochastic

volatility model named stochastic first order autoregressive volatility model, SARV(1). In other words,

the SARV(1) model, which is a discrete time stochastic nonlinear volatility model is taken as a bench-

mark model within the particle filtering ‘framework’. For a deeper insight into other SV type models,

the reader may refer, for instance, to Ghysels, Harvey, and Renault (1996) and references therein.

Following, we provide the state-space formulation of the SARV(1) model and alternative parame-

terizations.
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6.4 The SARV(1) Model: State-Space Model Formulation

The parametric state-space formulation for general state-space models is specified by the transition

and measurement equations (see equations (2.1) and (2.2) of Chapter 2) of the form

x t = f (x t−1,ηt ), (Transition equation)

y t = h(x t ,νt ), (Measurement equation)

together with the PDF of the initial-state vector x0. This general state-space model can be also formu-

lated in terms of the conditional distributions involved. In such case, the transition and measurement

equations are specified by x t |x t−1 ∼ p(•|x t−1) and y t |x t ∼ p(•|x t ), respectively.

Place yourself in the following situation: Assume that rt (like the return of an asset) is the only

observed variable at time t , but that our real interest is on the latent volatility of rt . We adopt the basic

nonlinear SARV(1) model for this kind of data and estimate the unobserved volatility and/or model

parameters via particle filtering. Thus, the state-space representation of the chosen nonlinear SARV(1)

model is given by the following state-transition and measurement equations:

xt =µ+φ (xt−1 −µ)+σηηt , (Transition equation) (6.3)

rt =σtνt = exp(xt /2)νt , (Measurement equation) (6.4)

where rt is the observed variable and xt = ln(σ2
t ) is a measure for the unobserved volatility of rt , mean-

ing that the logarithm of the conditional variance (volatility) follows an autoregressive model of order

one. The noise ηt is supposed to be a sequence of uncorrelated standard normal random variables.

Likewise, the measurement noise νt is supposed to be a sequence of uncorrelated random variables,

also Gaussian. Thus, in this case, the parameter vector is Θ= (µ,φ,σ2
η)′, the unconditional mean level,

the degree of persistence and the uncertainty of the volatility process, respectively. Throughout this

work, the state vector x t is univariate.

Based on conditional distributions, the transition and measurement equations of the above state-

space model can also be formulated as:

x t |x t−1 ∼N (•; µ+φ (x t−1 −µ), σ2
η),

or

p(x t |x t−1)=
1√

2πσ2
η

exp

{
−

(xt −µ−φ (xt−1 −µ))2

2σ2
η

}

and

y t |x t ∼N (•; 0, exp(x t ))
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or

p(y t |x t )=
1

√
2πexp(xt )

exp

{
−

y2
t

2exp(xt )

}
=

1
p

2π
exp

{
−

xt + y2
t exp(xt )

2

}
.

The main feature of the SARV(1) state-space formulation is that it describes a discrete-time, non-

linear dynamic system, which evolves as a first-order Markov process. Notice that in this case, the dy-

namic model defined by the transition equation is linear and Gaussian, but the measurement model

is nonlinear. This makes unfeasible an exact inference of filtered posteriors, p(x t |y1:t ), which will be

discussed later on.

6.4.1 Alternative Parameterizations

An alternative parameterization of the transition equation (6.3) arises by defining ̺= µ(1−φ). In that

case, (6.3) can be rewritten as

xt =µ+φ (xt−1 −µ)+σηηt

=µ(1−φ)+φxt−1 +σηηt

= ̺+φxt−1 +σηηt (6.5)

Likewise, another parameterization of the measurement equation (6.4) can be obtained by taking

the logarithm of the squared observations. In that case, equation (6.4) can be expressed as:

yt = log(r 2
t ) = log(σ2

t )+ log(ν2
t )

= xt +ǫt . (6.6)

Notice that under the Gaussian distribution assumption for νt , the new measurement noise variable

ǫt = log(ν2
t ) has a logχ2

1 distribution with nonzero mean and variance given by E(log(ν2
t )) =−1.27 and

Var(log(ν2
t )) = π2/2, respectively. Thus, the state-space formulation provided by equations (6.5) and

(6.6) is now linear, but non-Gaussian. Specifically, the distribution of ǫt = log(ν2
t ) is given by:

p(ǫt ) =
1

p
2π

exp

{
ǫt −exp(ǫt )

2

}
(6.7)

which highly departs from a normal distribution since it has a high degree of skewness with a long

left tail. Notice that ǫt can be forced to be zero mean by adding and subtracting the nonzero expected

value of ǫt = log(ν2
t ), E(log(ν2

t )) =−1.27.

In the remainder of the chapter, unless stated otherwise, we work with the nonlinear state-space

model representation specified in equations (6.3) and (6.4). Next section tackles the problem of es-

timating only the states of the nonlinear SARV(1) model using (whenever feasible) all particle filters

already described in this work. Therein, all existing model parameters are assumed to be fixed and

known and the stratified resampling scheme is adopted. Additionally, all of our findings are shown in

an empirical fashion using Monte Carlo experiments, where apart from putting special effort in the
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statistical and computational performance of filters, we also assess the impact of the increase of the

number of particles and/or the time series length. As a way to somehow measure the degree of degen-

eracy present in the particle filters under study, we also report the percentage of unique particles at last

time index t = T . We want to stress that in a paper of Andrieu, Doucet, and Holenstein (2010), in the

context of particle Markov chain Monte Carlo methods, the authors suggest that the idea of defining

a measure like this to account for particles’ degeneracy is correct. Indeed, these authors point out the

following:

“Assessing path degeneracy is certainly essential to evaluate the credibility of the re-

sults. A simple proxy to measure degeneracy consists of monitoring the number of distinct

particles representing p(xk |y 1:T ) for various values k ∈ {1, . . . ,T } (preferably low values). If

this number is below a reasonable number, say 500, then the particle approximation of

p(θ, x1:T |y 1:T ) is most probably unreliable.”

6.5 Simulation Study I: Estimation of the states of the Nonlinear SARV(1)

Model

In contraposition to Chapters 3 and 4 dealing with dynamic linear models as a benchmark, the present

section deals with a non-standard benchmark model: the SARV(1) model which is nonlinear and non-

stationary as specified in equations (6.3) and (6.4).

In this nonlinear context, the traditional Kalman filter does not provide an optimal solution to fil-

ter the states as it does in case of linear-Gaussian state-space models. Indeed, this nonlinearity makes

unfeasible the computation of exact posteriors in the SARV(1) model. Further, the use of any Kalman

based approximation presented in this work (EKF and UKF) to linearize a dynamic model is not suit-

able. The un-suitability of the mentioned approximative Kalman based approaches relies on the fact

that the resulting Kalman Gain is null, meaning that the states are never really updated and the infor-

mation contained in new observations is discarded. This finding (empirical results not shown here) is

in line with Zoeter, Ypma, and Heskes (2004) who state that “in stochastic stock volatility models the

traditional unscented Kalman filter is ill suited and it can be proven that the traditional filter effectively

never updates prior beliefs”.

The un-suitability of the Kalman based approaches presented in this work implies, unfortunately,

a natural consequence: A direct implementation of Kalman based filters is not always feasible and/or

adequate. That is, with the nonlinear model at hand, none of the Kalman based particle filters studied

(in the form presented here) are of real use. Thus, in the present section, we only assess, via a Monte

Carlo study, the filtering performance of three of the studied classic particle filter variants: SIS, SIR and

ASIR. Notice that the SIS algorithm is known to be non-operational but is included in the benchmark

study merely for illustrative reasons; the ASIR PF variant is taken as a benchmark filter.

Before continuing, we want to remark that though equations (6.5) and (6.6) specify a linear model,

it is clearly non-Gaussian. For this log-linearized non-Gaussian SARV(1) model, the traditional Kalman
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filter does not yield an optimal solution (results not shown). As stated in Chapter 2, Kalman filters

based on the normality assumption are known to be non–robust, which implies that the posterior

density may become unrealistic (Meinhold and Singpurwalla 1989).

Following, we carry out a Monte Carlo study to assess the statistical and computational perfor-

mance of three competing particle filter variants (SIS, SIR and ASIR) when estimating solely the states

of the nonlinear Gaussian SARV(1) model specified in equations (6.3) and (6.4).

6.5.1 Simulation Study I: Design and Simulation Settings

In this first simulation study, our aim is to obtain the marginal posterior probability density function

of the states, p(x t |y 1:t ) via particle filtering. We remark that under the assumption of normality of the

measurement disturbance νt in the nonlinear state-space model specified in equations (6.3) and (6.4),

the adoption of the particle filtering approach would lead to the same filtering estimates as the ones

obtained with the alternative linear (log-linearized) state-space model specified in equations (6.5) and

(6.6) that uses the truly non-Gaussian distribution of the corresponding measurement disturbance ǫt

defined in equation (6.7)3.

As aforementioned, in this work we use the SARV(1) nonlinear state-space formulation given by

equations (6.3) and (6.4) with latent states xt = log(σ2
t ) and where both random disturbances νt and ηt

follow a normal distribution. Specifically, it is assumed that νt ∼N (0,1) and ηt ∼N (0,1). Thus, herein

the aim is to estimate only the states (volatility) assuming that the fixed parameter vector Θ= (µ,φ,σ2
η)′

is known.

Simulation Design

Herein, we adopt the same simulation procedure for filtering the states as described in Section 3.2 of

Chapter 3 (also used in Chapter 4), but adapted to the nonlinear model at hand. Be reminded that this

procedure involves three general steps: STEP I: Data and state generation; STEP II: Filtering the states;

and STEP III: Filtering performance criteria computation. As known, the statistical performance of the

filters is based on the root mean square error (RMSE) criterion and their computational performance

on the elapsed CPU time, respectively. As specified in Chapter 3 the statistical performance of the filters

is explicitly defined in terms of the mean and variance of the RMSE, computed with equations (3.6) and

(3.7), respectively. Likewise, the computational performance is measured by the mean elapsed CPU

time, computed with equation (3.8). Additionally, the degree of degeneracy is assessed by providing

the average (%) number of unique particles at last time-index t =T , %uNp.

Next, we provide the specific filter settings, experimental results, remarks, and conclusions for this

first simulation study.

3Some authors adopt the alternative parametrization of the state-space model using a Gaussian approximation of the

noise measurement ǫt , using N (−1.27,π2 /2); see Ruiz (1994). Also, a mixture of Gaussian distributions has been proposed

to approximate the truly non-Gaussian distribution of ǫt ; see, for instance, Chib, Nardari, and Shephard (2002) who use a

mixture of seven Gaussian distributions.
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Simulation Settings

A summary list of the simulation settings used for the conducted Monte Carlo experiment is presented

below:

• Filters: SIS, SIR and ASIR (Kalman based filters not feasible in this case). The SIS algorithm is

included for the sake of illustration only.

• Parameters settings: The parameter µ is fixed to -0.632, the persistence parameter takes two

possible values (φ ∈ {0.9,0.981}) and the uncertainty (volatility) of the volatility parameter takes

also two possible values (σ2
η ∈ {0.1942,0.3632} = {0.038,0.132}); the chosen values respond to

those typically found in literature. Thus, four different scenarios are defined by the two cho-

sen φ and σ2 settings giving raise to the four cases listed below. Keep in mind that in this first

MC study, all parameters are assumed to be fixed and known.

• Cases: The four simulation cases defined by the chosen values of parameters Θ= (µ,φ,σ2
η)′ are:

– Case 1: Θ= (µ,φ,σ2
η)′ = (−0.632,0.981,0.1942 ); 0.1942 = 0.038.

– Case 2: Θ= (µ,φ,σ2
η)′ = (−0.632,0.9, 0.1942); 0.1942 = 0.038.

– Case 3: Θ= (µ,φ,σ2
η)′ = (−0.632,0.981,0.3632 ); 0.3632 = 0.132.

– Case 4: Θ= (µ,φ,σ2
η)′ = (−0.632,0.9, 0.3632); 0.3632 = 0.132.

• Resampling scheme: Stratified resampling

• Number of replications: S = 100

• Number of particles: Np ∈ {200,500,1000,5000}. Notice that in previous chapters Np = 5000

particles is found to provide satisfactory estimation performance for most particle filter variants.

However, we consider some intermediate values to illustrate and empirically assess the impact

of increasing the number of particles when dealing with the nonlinear SARV(1) model.

• Time series length: T ∈ {500,1000,2000}. Herein, we aim to assess the impact of the time series

length on the performance of the PF variants under study.

• Comparison criteria: RMSE and CPU time. Additionally, the average number (%uNp) of distinct

particles at time-index t =T are computed for the SIR and ASIR PF variants that use a resampling

scheme. For the SIS PF variant, that does not include a resampling step, the computation of this

measure does not make sense. As expected, if this measure (percentage) is computed it would be

equal to 100%, but in such case most of the particles though distinct will have negligible weights.

For illustrative purposes, a graphical representation of the generated univariate data yt and corre-

sponding state values xt is displayed in Figure 6.4.
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(a) Case 1: Θ= (µ,φ,σ2
η)′ = (−0.632,0.981,0.1942 ); 0.1942 = 0.038
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(b) Case 2: Θ= (µ,φ,σ2
η)′ = (−0.632,0.9, 0.1942); 0.1942 = 0.038
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(c) Case 3: Θ= (µ,φ,σ2
η)′ = (−0.632,0.981,0.3632 ); 0.3632 = 0.132
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(d) Case 4: Θ= (µ,φ,σ2
η)′ = (−0.632,0.9,0.3632 ); 0.3632 = 0.132

Figure 6.4: SARV(1) model: Two exemplary runs of the generated data y t (grey/continuous) and sim-

ulated states x t (black/dashed) for each of the four cases under study.
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The plots in Figure 6.4 (each row corresponding to each one of the four case-scenarios; two ex-

emplary runs per case) illustrate the non-stationary character of the nonlinear SARV(1) model. The

generated states (volatility) xt show a time varying behavior but, as expected, revert to a mean level

according to a specific degree of persistence given by the parameter φ. Observe that, in panels (a) and

(c), corresponding to a near non-stationary behavior, the volatility process reverts to the mean in a

slower manner than when φ= 0.9 (panels (b) and (d)). Also, there is a clear presence of volatility clus-

ters (small changes and large changes are clustered together) in all of the displayed time series; this

is specially portrayed in panels (a) and (c). The general pattern observed in returns and latent states

seems to be mostly driven by the persistence parameter φ, whereas the degree of dispersion observed

seems to be mostly driven by the value of the state noise variance σ2
η.

Following, simulation results, remarks, and conclusions regarding Simulation Study I are presented.

6.5.2 Simulation Study I: Experimental Results

In Table 6.2 (complemented with Tables C.1–C.3 in Appendix C), we provide the numeric results which

summarize the performance of the three filters studied in handling the estimation of the states (volatil-

ity) for the nonlinear SARV(1) model with known model parameters. Each table is organized in four

vertical blocks corresponding to each of the four settings for the number of particles. Horizontally, we

find three blocks corresponding to each of the filters under study. For each filter and three time series

length settings, we report average and variability measures of the estimated RMSE and the percentage

of the unique number of particles (%uNp) at last time-index t = T ; for the unique number of particles,

the standard deviation and not the variance is reported 4. Notice that for the SIS filter we do not report

%uNp, because its computation only makes sense for filters that adopt the resampling step: in this case

the SIR and ASIR PF variants for which such percentage measures somehow the degree of degeneracy.

Additionally, in Table 6.2 corresponding to Case 1, we report the mean and standard deviation of

estimated CPU times (in seconds); these numeric values are about the same in the other three case-

scenarios and are thus not reported in complementary Tables C.1–C.3 in Appendix C. Be reminded

that the estimated mean-CPU-elapsed time is defined as the average time (in seconds) in handling a

data set containing T observations, using Np particles.

To aid in the discussion of simulation results reported in the previously mentioned tables (Table 6.2

and Tables C.1–C.3 in Appendix C), we create pictorial representations that allow us to have, at a glance,

a very good idea of the main findings under this first Monte Carlo study. Specifically, in order to as-

sess the statistical performance (in terms of the RMSE) of the three filters under study, we construct

Figure 6.5 that depicts the mean-RMSE attained at the three chosen time series length settings and at

the four settings used for the number of particles. The attained mean-RMSE estimates are displayed

for each of the four case scenarios under scrutiny, which are defined by the chosen model parame-

ters’ values. Have in mind that in simulation study I, the ASIR is our benchmark particle filter variant.

4Although all displayed simulation results are rounded up to three decimal points, the reported %uNp values are

rounded up to two decimal points.
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Table 6.2: Summary of simulation I results for case 1: Estimation of the states (volatility) for the

SARV(1) model; Θ= (µ,φ,σ2
η)′ = (−0.632,0.981,0.1942 ); 0.1942 = 0.038.

Np = 200 Np = 500 Np = 1000 Np = 5000

Filter T Criterion Mean Var Mean Var Mean Var Mean Var

SIS 500 RMSE 0.848 0.023 0.806 0.013 0.786 0.014 0.713 0.010

CPU 0.200 0.014 0.311 0.018 0.503 0.026 2.179 0.075

1000 RMSE 0.986 0.014 0.955 0.012 0.906 0.010 0.853 0.008

CPU 0.407 0.036 0.619 0.026 1.016 0.033 4.385 0.119

2000 RMSE 1.087 0.008 1.069 0.012 1.043 0.008 0.983 0.007

CPU 0.809 0.025 1.249 0.035 2.033 0.133 8.911 0.151

SIR 500 RMSE 0.498 0.002 0.496 0.002 0.496 0.002 0.495 0.002

%uNp 89.42 8.32 89.55 8.23 89.47 8.37 89.43 8.36

CPU 0.407 0.021 0.581 0.026 0.875 0.031 3.637 0.687

1000 RMSE 0.492 0.001 0.492 0.001 0.491 0.001 0.490 0.001

%uNp 91.38 6.67 91.42 6.66 91.41 6.53 91.42 6.51

CPU 0.806 0.025 1.158 0.034 1.775 0.034 7.592 0.830

2000 RMSE 0.491 5e-04 0.489 5e-04 0.489 5e-04 0.489 5e-04

%uNp 91.27 5.75 91.19 5.74 91.16 5.70 91.15 5.72

CPU 1.629 0.039 2.323 0.043 3.457 0.031 14.011 0.148

ASIR 500 RMSE 0.498 0.002 0.497 0.002 0.496 0.002 0.496 0.002

%uNp 95.93 3.09 96.11 3.14 96.12 30.03 96.07 2.84

CPU 0.680 0.030 1.009 0.034 1.580 0.031 7.783 0.06

1000 RMSE 0.494 0.001 0.492 0.001 0.490 0.001 0.490 0.001

%uNp 96.73 2.47 96.78 2.22 96.83 2.26 96.82 2.11

CPU 1.346 0.038 2.019 0.032 3.277 0.111 15.772 0.14

2000 RMSE 0.491 5e-04 0.490 5e-04 0.489 5e-04 0.489 5e-04

%uNp 96.64 2.36 96.68 2.10 96.73 2.00 96.70 2.09

CPU 2.689 0.041 4.067 0.820 6.396 0.103 27.289 0.460

Likewise, Figure 6.8 (on page 200) accounts for the computational performance of the filters in consid-

eration; we report values for one case (Case 1 in Table 6.2) since similar numeric values were obtained

in the other three scenarios. Additionally, we construct Figure 6.7 (page 197) to reflect the degree of

degeneracy present in each particle filter under study and at the same time to assess the combined

impact of the number of particles and the time series length on degeneracy.
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Figure 6.5: SARV(1) model: Behavior of estimated mean-RMSE for the SIR and ASIR PF vari-

ants. Assessment of the impact of the time series length (x-axis) and the number of particles

(Np = 200: grey/dashed; Np = 500: grey/continuous; Np = 1000: black/dashed, and Np = 5000:

black/continuous). Results shown for Cases 1–4 (SIS results are –as expected– worse and, therefore,

not shown here).
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6.5.3 Simulation Study I: Remarks and Conclusions

Based on simulation results reported in the above-mentioned tables and depicted on Figures 6.5–6.7,

we make the following remarks and conclusions regarding the performance of the SIS, SIR and ASIR fil-

ters when handling the estimation of the states (volatility) of the nonlinear SARV(1) model with known

model parameters:

First, for the nonlinear SARV(1) model at hand, we refer to the statistical performance, indicated

by the mean-RMSE5, of the three studied PF variants.

• The SIS filter, as expected, shows the worst statistical performance with respect to the competing

SIR and ASIR particle filters; this holds in all four cases (results shown in Table 6.2 and Tables C.1–

C.3 in Appendix C) under study irrespective of the number of particles and time series lengths

used in the estimation procedure; refer to the above mentioned tables to visualize SIS RMSE val-

ues (we only graphically represent SIR and ASIR results). Indeed, in all cases, the SIS particle

filter diverges showing mean-RMSE values that increase over time. This confirms, once again,

that this filter is not operational since it produces a non-reliable posterior where almost all par-

ticles have negligible weights. Next, we comment on the results found for the SIR and ASIR PF

variants that use a resampling scheme and are known to be operational.

• Given a fixed T and Np , the SIR PF variant attains (practically) the same statistical performance

of the benchmark ASIR PF variant; focus on Figure 6.5. Notice that the differences observed

between filters is rather minimal, with ASIR’s RMSE values slightly above the corresponding SIR’s

RMSE.

• To study the impact of increasing the number of particle Np or the time series length T on the

statistical performance of the filters, we consider four settings for Np ∈ {200,500,1000,5000} and

three settings for T ∈ {500,1000,2000}. We find that, in all case scenarios:

– For a fixed number of particles Np , the mean-RMSE of the SIR and ASIR particle filters

decreases (though slightly) with the increase of the time series length.

– For a fixed time series length T , the mean-RMSE of the SIR and ASIR particle filters tend to

attain smaller values when using a larger number of particles; the differences observed are

rather minimal (generally in the third decimal place).

• To better illustrate how the SIR and the ASIR PF variants yield similar statistical performance, see

Figure 6.6 that was created for an exemplary run with time series length T = 1000, using Np =
5000 particles. This figure, for each case scenario, represents the differences between estimated

and true-state values x̂t |t−xt , t = 1, . . . ,T , which are found to be indistinguishable between filters;

focus on second row of each subfigure. Clearly, the difference between estimated and true-state

values, x̂t |t −xt , becomes larger in those scenarios with higher system noise variance.

5Remind that Mean-RMSE and Mean(RMSE) are used interchangeably
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η)′ = (−0.632,0.9, 0.1942); 0.1942 = 0.038
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(c) Case 3: Θ= (µ,φ,σ2
η)′ = (−0.632,0.981,0.3632 ); 0.3632 = 0.132
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(d) Case 4: Θ= (µ,φ,σ2
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Figure 6.6: SARV(1) model: For each case (a)–(d), the first row represents the generated observations

and states. The second row, the difference between estimated and true-state values x̂t |t−xt , t = 1, . . . ,T .

Results shown for T = 1000 and Np = 5000.
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• Thus, in all four scenarios under scrutiny, when estimating the states of the nonlinear SARV(1)

model, the SIR achieves the same (sometimes slightly better) statistical performance than the

benchmark ASIR PF. Additionally, larger mean-RMSE values are attained in those scenarios com-

bining higher state noise variance values with higher persistence values, seemingly in that order.

The non operational SIS PF, included here for illustrative reasons, is not considered in the next

section and thereafter.

Second, for the nonlinear SARV(1) model at hand, focusing on the performance of the different

filters in terms of the computational time, we conclude that:

• The non operational SIS filter is the least expensive algorithm with mean CPU time values around

4.39[0.12] (average[SD] time in seconds in handling a data set containing T = 1000 observations

using Np = 5000 particles), followed by the SIR (7.59[0.83]) and the ASIR (15.77[0.14]) filter. Sim-

ilar results hold, as expected, in the other three case scenarios (observed slight variations in CPU

times are characteristic of the simulation character of the MC studies). Further, given a fixed T

and Np , we find that the SIR computationally outperforms the ASIR, especially at larger values of

the number of particles (Np ) and the time series length (T ); see Figure 6.7 and refer to Table 6.2

to visualize results.
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(a) Case 1: Θ= (µ,φ,σ2
η)′ = (−0.632,0.981,0.1942 ); 0.1942 = 0.038

Figure 6.7: SARV(1) model: Behavior of the estimated mean-CPU-elapsed time in seconds for the SIS,

SIR, and ASIR PF variants. Assessment of the impact of the time series length (x-axis) and the num-

ber of particles (Np = 200: grey/dashed; Np = 500: grey/continuous; Np = 1000: black/dashed and

Np = 5000: black/continuous). Results shown for Case 1 but representative of all cases 1–4.

• With the aim of answering the question of how the increase of the number of particles and/or

how the use of a larger size of the time series influences the computational performance of the

filters, we consider the introduction of four settings for the number of particles and three settings

for the time series length into the MC experiments; see values listed on page 193. We find that,

in all four case scenarios:

– For fixed number of particles Np , the computational cost given by the CPU-elapsed times

increases over time in a seemingly linear fashion.
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– For fixed time series length T , the computational cost given by the CPU-elapsed times also

increases when increasing the number of particles Np , but in a larger manner in case of the

ASIR.

• Thus, in all four scenarios under scrutiny, when estimating the states of the nonlinear SARV(1)

model, the SIR outperforms the computational performance of the benchmark ASIR PF. Addi-

tionally, it seems that the CPU discrepancies found among filters are greater at larger values of

the number of particles (Np ) and time series length (T ); especially when using a larger number

of particles. The non-operational SIS PF, shown here for illustrative reasons, is not considered in

the next section and thereafter.

Finally, we refer to the complementary study (found to be relevant) to investigate and somehow quan-

tify the degree of degeneracy present in the SIR and ASIR PF variants when handling the state estima-

tion of the nonlinear SARV(1) model; focus on Figure 6.8. We also analyze the impact of increasing

Np and T on degeneracy. That is, analyzing the reported percentage mean of the unique number of

particles uNp (%uNp) at last time-index t = T , we conclude the following:

• As aforementioned, the non-operational SIS algorithm would always yield %uNp= 100%, but the

computation of this percentage only makes sense for filters that include a resampling step. As

theory indicates and confirmed in the simulation studies, under the non-operational SIS filter

negligible weights are carried out from time to time. Consequently, we may end up with few or

even only one particle with non-negligible weights, which beside many times are located in the

wrong region of the state-space. Next, we comment on the results found which correspond to

the operational SIR and ASIR PF variants.

• In general, compared to the SIR PF variant, the percentage of distinct number of particles, %uNp,

is higher for the benchmark ASIR algorithm. Overall the simulation settings, irrespective of the

case scenario, the percentage mean number of unique particles for the SIR spans from around

84%–94%, and the benchmark ASIR from around 92%–97%.

• For fixed time series length T , regardless of the number of particles used in the estimation pro-

cedure, the percentage mean of unique particle seemingly remains stable, but the “absolute”

number of unique particles is clearly larger. Of course, the higher the number of unique parti-

cles, the better, since it means that the degeneracy problem is less present.

• Therefore, what the attained results confirm is that in general, the ASIR benchmark filter suffers

less the degeneracy problem and that both the SIR and the ASIR particle filter variants are more

affected by it at low time series length values (T = 500), but contrary to expected, after time series

length greater than 1000 up to 2000, the percentage mean of unique particle seemingly remains

stable. We find this a surprising but positive result. For instance, with Np = 5000 particles, even

in the worst-case scenario for the SIR/ASIR particle filters that occurs when using only T = 500,
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we end up with about 4221 (84% of 5000)/4600 (92% of 5000) particles, which we consider big

enough to produce a reliable marginal posterior distribution.

• The analyzed results also indicate that none of the filters suffer greatly the degeneracy problem,

at least up to 2000 as shown. To better illustrate the non-degeneracy of the studied particle fil-

ters, see Figure 6.9 that is created for the same exemplary run considered above using Np = 5000

particles. The displayed plots depict the histograms (together with the estimated posterior den-

sities; black/ dashed) of the estimated state values at last time-index T = 1000: x̂T |T . In this case,

each row refers to a different scenario (Cases 1–4) and each column to a different particle filter

variant (SIR and ASIR). Based on this particular illustration, we can say that there is not a notice-

able difference among the particle filters in question, as is shown (empirically) in the tables and

related figures which have already been presented. What is confirmed is that using Np = 5000

protects ourselves against the degeneracy problem, but keep in mind that sometimes even a

smaller number of particles could be used.
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Figure 6.8: SARV(1) model: Behavior of estimated mean percentage of unique number of particles

%uNp at last time-index t = T for the SIR and ASIR PF variants. Assessment of the impact of the time

series length (x-axis) and the number of particles (Np = 200: grey/dashed; Np = 500: grey/continuous;

Np = 1000: black/dashed and Np = 5000: black/continuous). Results shown for Cases 1–4.
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Figure 6.9: SARV(1) model: Histogram (together with the estimated posterior density; black/dashed)

of estimated state values x̂T |T via the SIR and ASIR PF variants (At time T, the true value of the generated

state, xT , is represented by a black dotted vertical line). Results shown for last data set with T = 1000

and Np = 5000.
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Thus, all results of the Monte Carlo study I, dealing solely with filtering the states of the nonlinear

SARV(1) model, can be subsumed by the following summarizing points indicating the general conclu-

sions of this study:

RMSE: The SIR PF variant attains a similar statistical performance to the benchmark ASIR PF. The SIS

filter was confirmed to be a non-operational algorithm due to the inherent degeneracy drawback

and potential divergence. The use of a larger number of particle Np or a larger time series length,

lead to a decrease (though slight sometimes) of the RMSE.

CPU: The SIR PF computationally outperforms the benchmark ASIR PF. For instance, with T = 1000

and Np = 5000, the ASIR takes about twice the mean-CPU time of the SIR PF (16 vs 8 seconds).

%UnP: The mean percentage of unique particle at last time index t = T is higher for the ASIR PF.

Overall, %uNp spans from around 84%–94% for the SIR, and from around 92%–97% for the ASIR.

These results indicate that the ASIR suffers less the degeneracy problem, but we consider that the

SIR behaves reasonably well, too. Notice that, within each scenario and filter, for a time series

length T larger than 1000, %uNp remains rather stable. In the same fashion, increasing Np does

not produce changes in the the value of %uNp, it remains rather stable.

Sign of degeneracy? Observe that there is no sign of degeneracy present in the estimated posterior

PDF of the states (volatility), at least up to T=2000 for the model at hand.

Number of particles: Irrespective of the PF variant studied and specific case-scenarios, we recom-

mend to use at least Np = 1000 to have a reliable posterior. In previous chapters, dealing with

linear and possibly non-stationary state-space models, Np = 5000 particles is found to provide

satisfactory estimation performance for most particle filter variants studied and simulation set-

tings in consideration. Thus, as a rule of thumb we continue recommending the use of Np = 5000

particles in the estimation procedure, regardless the filter, case-scenarios, and type of model. In-

deed, simulation results confirm that using Np = 5000 protects ourselves against the degeneracy

problem, but also that sometimes, even a smaller number of particles could be used; in such

cases, specific results and conclusions drawn listed above could be used as a guide.

Non-suitable filters: As mentioned previously, for the nonlinear SARV(1) state-space model at hand,

none of the nonlinear Kalman-based filters studied (EKF, UKF, EPF, UPF) are suitable; see Acosta

and Muñoz (2007). Additionally, the SIS filter is confirmed to be non-operational as it quickly

leads to degeneracy and divergence. In fact, the SIS algorithm was included here only for illus-

trative reasons and will not be considered hereafter.
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6.6 Simulation Study II: Simultaneous Estimation of States and

Parameters of the Nonlinear SARV(1) Model

In contraposition to the last section, which deals solely with state estimation, the present section aims

to estimate simultaneously the states and fixed parameters of the nonlinear SARV(1) model, whose

original state-space representation is specified in the previous section (equations (6.3) and (6.4)). In

this more realistic scenario, we place our effort in applying our SIRJ PF variant (fully explained in Chap-

ter 5 and outlined in Algorithm 13 (on page 151) in contraposition with the widely used LW PF variant

outlined in Algorithm 12 (page 148); the latter taken as a benchmark. As commented in previous sec-

tions, for the nonlinear SARV(1) model at hand, all studied Kalman-based particle filters are unsuitable.

To achieve our goal, we first specify the augmented state-space formulation for the nonlinear

model at hand, where the initial state as well as the unknown model parameters are assumed to be ran-

dom variables and thus are assigned a prior distribution. Then, a second Monte Carlo study is carried

out to assess the statistical and computational performance of the competing (and model-suitable) PF

variants: SIRJ and LW.

6.6.1 The Augmented State Space Representation

The state-space formulation of the augmented state-space vector l t = (x t ,Θ)′ = (µ,φ,ση)′, correspond-

ing to the stochastic autoregressive volatility model at hand, take the specific form (see equations (5.1)

and (5.2) for the general formulation):

l t =
[

x t

Θ

]
= f̃ (l t−1,ηt ) =

[
f (xt−1,ηt )

Θ

]
=




µ+φ (xt−1 −µ)+σηηt


µ

φ

σ2
η







, (Transition equation)

(6.8)

rt = h̃(l t ,νt ) = h(xt ,νt ) = exp(xt /2)νt , (Measurement equation)

(6.9)

where, as before, x t is the latent volatility and the uncorrelated sequences ηt and νt follow a Gaus-

sian N (0,1) distribution. Thus, in the above nonlinear dynamic state-space model, the unknown pa-

rameter vector is conformed by Θ = (µ,φ,σ2
η)′, with stationarity restriction φ ∈ (−1,1). To complete

this state-space formulation, a prior distribution on the initial augmented state vector l 0, must be as-

sumed.

Following, we present the prior distributions used in this particular case.

6.6.2 A Note About the Priors Used

The prior distributions adopted for the nonlinear SARV(1) model are the ones usually found in the

literature when estimating this type of models. Specifically, as many authors do, we choose a normal
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prior for the original state variable x0 and the parameter µ, a Beta prior for the persistence parameter

φ and an Inverse Gamma prior for the transition noise variance parameter σ2
η; see, for instance, the

priors used in Chib, Nardari, and Shephard (2002), Congdon (2007), and Lopes and Tsay (2011).

In this section, for the initial state variable, a normal prior of the form x0 ∼ N(µx0
,Σx0

) with hyper

parameters µx0
and Σx0

is adopted.

Referring to the unknown model parameters:

• Since no prior information about the parameter µ is available, a diffuse Gaussian prior with

mean value of -8 and variance of 25 is used: µ0 ∼ N(−8,52).

• As previously mentioned, return series tend to have high persistence parameters (values of φ

around or above 0.9) and it is for this reason that for this parameter an informative Beta prior

distribution is adopted: φ∼ 2Be(20,1.5)−1. In this case, the persistence parameter φ takes a

prior mean and variance of about 0.86 ad 0.012, respectively.

• Since a variance parameter cannot take on negative values, a prior from the inverted Gamma

family is taken. Specifically, the assumed diffuse prior for the transition noise variance param-

eter is an Inverse Gamma distribution formulated as σ2
η0

∼ IG(
n0

2 ,
n0

2 · S2
η0

). The chosen hyper

parameters’ values for this variance prior are n0 = 10 and S2
η0

= σ2
η; the last equated to the true

transition noise variance value. Notice that we use a diffuse prior non-centered in the true value

with prior mean value given by n0

n0−2
σ2
η.

Thus, the specification of the aforementioned parameter’s prior distributions with used hyper-

parameters and corresponding basic statistics (prior’s mean and variance) is summarized in the

following Table 6.3.

Table 6.3: Summary of prior distributions specification with used hyperparameters and corresponding

prior’s mean and variance.

Prior

θ Prior distribution Hyperparameters Mean Variance

µ0 N (a0,b2
0) a0=−8 b0=5 -8 25

φ0 2Beta(c0,d0)−1 c0=20.5 d0=1.5 0.86 0.012

σ2
η0

IG( n0

2
, n0

2
·S2

η0
) n0=10 S2

η0
=σ2

η 1.25 ·σ2
η 0.052 · (σ2

η)2

With respect to possible transformations of the parameters, Liu and West (2001) point out that

the adoption of the normal-kernel approach with real-valued parameters is generally more appropri-

ate. Following their recommendation, we also routinely work with the logarithmic transformation of

variance parameters and with the logit transformation of any parameter restricted to a finite range.

Specifically, in the case of the SARV(1) model at hand, we work with the log-transform of the transition
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noise variance and the logit-transform of the persistence parameter φ restricted to lie in the stationary

region: |φ| < 1.

In the sequel, all details regarding the undergone Monte Carlo study are presented. We remark that

in this thesis, as seen and applied in Chapter 4, we have also implemented the EPF and UPF filters,

which are relatively more complex to implement than the SIRJ and LW particle filter variants. However,

as explained in the previous section, none of the Kalman-based filters are suitable for the nonlinear

SARV(1) model at hand.

6.6.3 Simulation Study II: Design and Simulation Settings

As already mentioned, in this second simulation study, we revisit the nonlinear SARV(1) model to es-

timate simultaneously the states and the fixed and unknown model parameters via particle filtering.

In other words, using our proposed SIRJ particle filter and the benchmark LW particle filter variant,

we aim to estimate not only the latent states (volatility) but also the unknown fixed-parameter vector,

(x t ,Θ)′ = (µ,φ,σ2
η)′. Thus, departing from the SARV(1) nonlinear augmented state-space formulation

given by equations (6.8) and (6.9) and adopting the prior distributions outlined previously, we proceed

to carry out a second simulation study.

Simulation Design

Herein, we adopt the same general simulation design used in previous chapters. Specifically, we slightly

modify the simulation procedure of Chapter 5 (dealing with the simultaneous estimation of states and

parameters of the Local Level model) to tackle such estimations for the nonlinear SARV(1) model at

hand. Be reminded that the statistical performance of the filters is based on the root mean square er-

ror (RMSE) criterion and that the computational performance is based on the elapsed CPU time. Also,

to somehow measure the degree of degeneracy of the competing filters, the average number of unique

particles (in %) at the last time-index t = T is computed. Additionally, this section assesses the impact

of the time series length and of increasing the number of particles on the statistical and computational

performance of the two competing particle filter variants.

Next, we provide the specific simulation’s settings, experimental results, remarks, and conclusions

for the second simulation study.

Simulation Settings

Herein, we provide a summary list of the simulation settings used for the conducted Monte Carlo ex-

periment:

• Filters: LW and SIRJ particle filter variants outlined in Algorithms 12 and 13, respectively (Kalman-

based filters not suitable in this case).

• Cases: The four simulation scenarios are the same as defined in the last section, chosen accord-

ing to typically found values in literature:
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– Case 1: Θ= (µ,φ,σ2
η)′ = (−0.632,0.981,0.1942 ); 0.1942 = 0.038.

– Case 2: Θ= (µ,φ,σ2
η)′ = (−0.632,0.9, 0.1942); 0.1942 = 0.038.

– Case 3: Θ= (µ,φ,σ2
η)′ = (−0.632,0.981,0.3632 ); 0.3632 = 0.132.

– Case 4: Θ= (µ,φ,σ2
η)′ = (−0.632,0.9, 0.3632); 0.3632 = 0.132.

• Resampling scheme: Stratified resampling

• Number of replications: S = 100

• Time series length: A reasonably large time series length, T = 1000, is used. However, we also

consider some intermediate values T ∈ {250,500,750} to illustrate and empirically assess the im-

pact of the time series length on the performance of the PF variants under study when estimating

together the states and the parameters of the nonlinear SARV(1) model.

• Number of particles: Np = 5000 and Np = 10000. Herein, we aim to assess the impact of increas-

ing the number of particles on the performance of the PF variants under study. As listed, we

consider two settings for the number of particles: Np equal to the value 5000 previously found

to provide an overall satisfactory estimation performance, and a larger value Np = 10000.

• Discount parameter: To somehow explore the impact of discount values not only inside the

mentioned range on the particle filtering performance, we consider three settings of the discount

factor: δ ∈ {0.83,0.95,0.99}.

• Comparison criteria: RMSE and CPU time. Additionally, the average number (%) of distinct

particles %uNp at last time-index t = T is computed.

Following, we present the simulation results, remarks, and conclusions regarding the undergone MC

study.

6.6.4 Simulation Study II: Experimental Results

In Table 6.4, we provide the numeric results which summarize the performance of the two particle

filters, SIRJ and LW, used in handling the simultaneous estimation of states and parameters for the

nonlinear SARV(1) model; results for T = 1000 reported. This table is organized in two vertical blocks

distinguished by two values of the discount parameter δ: δ ∈ {0.83,0.95}. Each block itself contains two

settings for the number of particles Np : Np ∈ {5000,10000}. For each setting of the number of particles,

the measures Mean(RMSE) and Var(RMSE) for the estimated states and three estimated parameters

are reported. Horizontally, for each filter we also report the estimated percentage of unique number of

particles (%uNp) at last time-index t = T ; for this measure, the standard deviation and not the variance

is reported. Notice that the estimated values corresponding to the discount value δ = 0.99 are not

reported in the table, since generally worse statistical performance (higher RMSE values) is attained at

that setting.
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Table 6.4: Summary of simulation II results: Estimation of the states (volatility) and parameters for

the SARV(1) model with T=1000. For the states and model parameters Θ = (µ,φ,σ2
η)′, Mean and VAR

denote the Mean(RMSE) and Var(RMSE). For the percentage of unique number of particles (%uNp) at

last time-index t = T , Var denotes the standard deviation, SD(%uNp).

δ= 0.83 δ= 0.95

Np = 5000 Np = 10000 Np = 5000 Np = 10000

Mean Var Mean Var Mean Var Mean Var

Case 1: Θ= (µ,φ,σ2
η)′ = (−0.632,0.981,0.1942 )

LW xt 0.509 0.001 0.509 0.001 0.511 0.001 0.51 0.001

µ 0.819 0.034 0.792 0.036 0.858 0.042 0.828 0.048

φ 0.022 1e-04 0.022 1e-04 0.028 3e-04 0.031 3e-04

σ2
η 0.009 1e-06 0.009 1e-06 0.009 1e-06 0.009 1e-06

%uNp 96.61 2.30 96.59 2.27 96.63 2.33 96.59 2.32

SIRJ xt 0.509 0.001 0.509 0.001 0.511 0.001 0.510 0.001

µ 0.815 0.036 0.798 0.036 0.846 0.040 0.828 0.043

φ 0.02 1e-04 0.022 2e-04 0.028 3e-04 0.03 3e-04

σ2
η 0.008 1e-06 0.009 1e-06 0.009 1e-06 0.009 1e-06

%uNp 91.5 6.45 91.04 6.98 91.34 6.62 91.01 7.22

Case 2: Θ= (µ,φ,σ2
η)′ = (−0.632,0.90,0.1942 )

LW xt 0.429 7e-04 0.429 7e-04 0.429 6e-04 0.428 7e-04

µ 0.606 0.004 0.596 0.004 0.661 0.004 0.634 0.004

φ 0.043 1e-04 0.043 1e-04 0.048 4e-04 0.046 2e-04

σ2
η 0.006 1e-06 0.007 1e-06 0.008 1e-06 0.008 1e-06

%uNp 97.2 1.98 97.13 2.02 97.18 2.01 97.14 2.1

SIRJ xt 0.431 6e-04 0.429 7e-04 0.431 7e-04 0.428 7e-04

µ 0.609 0.004 0.593 0.004 0.663 0.004 0.635 0.004

φ 0.047 2e-04 0.044 1e-04 0.049 2e-04 0.046 3e-04

σ2
η 0.007 1e-06 0.006 1e-06 0.008 1e-06 0.007 1e-06

%uNp 93.68 4.63 93.41 5.04 93.78 4.88 93.65 4.88

Case 3: Θ= (µ,φ,σ2
η)′ = (−0.632,0.981,0.3632 )

LW xt 0.705 0.001 0.704 0.001 0.707 0.001 0.706 0.002

µ 1.154 0.184 1.137 0.181 1.206 0.212 1.211 0.250

φ 0.023 2e-04 0.024 2e-04 0.034 3e-04 0.034 4e-04

σ2
η 0.029 3e-04 0.03 3e-04 0.03 4e-04 0.031 5e-04

%uNp 93.2 4.41 93.15 4.25 93.23 4.42 93.06 4.37

SIRJ xt 0.705 0.001 0.705 0.001 0.707 0.002 0.707 0.002

µ 1.137 0.181 1.146 0.202 1.228 0.249 1.205 0.246

φ 0.023 2e-04 0.024 2e-04 0.033 3e-04 0.034 3e-04

σ2
η 0.028 3e-04 0.029 3e-04 0.031 5e-04 0.032 4e-04

%uNp 86.18 10.5 85.74 10.93 86.04 10.46 85.7 10.89
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Table 6.4: Summary of simulation II results: Estimation of the states (volatility) and parameters for the

SARV(1) model with T=1000 (continued).

δ= 0.83 δ= 0.95

Np = 5000 Np = 10000 Np = 5000 Np = 10000

Mean Var Mean Var Mean Var Mean Var

Case 4: Θ= (µ,φ,σ2
η)′ = (−0.632,0.90,0.3632 )

LW xt 0.628 9e-04 0.627 9e-04 0.628 9e-04 0.628 9e-04

µ 0.674 0.008 0.659 0.008 0.722 0.007 0.702 0.007

φ 0.037 1e-04 0.036 1e-04 0.038 2e-04 0.037 2e-04

σ2
η 0.024 1e-04 0.025 1e-04 0.026 1e-04 0.025 1e-04

%uNp 94.14 4.09 94 4.2 94.05 4.11 93.86 4.39

SIRJ xt 0.629 8e-04 0.628 9e-04 0.629 9e-04 0.627 9e-04

µ 0.68 0.008 0.654 0.008 0.741 0.007 0.703 0.008

φ 0.04 1e-04 0.036 1e-04 0.039 2e-04 0.037 2e-04

σ2
η 0.026 1e-04 0.025 1e-04 0.026 1e-04 0.025 1e-04

%uNp 88.97 8.43 88.62 8.71 88.85 8.49 88.51 8.89

6.6.5 Simulation Study II: Remarks and Conclusions

Based on the simulation results reported in Table 6.4, we make the following remarks and conclusions

regarding the performance of the two competing particle filters (SIRJ and LW) when handling the si-

multaneous estimation of the states (the volatility) and parameters (level, persistence, and transition

noise variance) of the nonlinear SARV(1) model:

First, we refer to the effect of the discount factor δ on the statistical performance of the two com-

peting particle filter variants: the SIRJ and the LW. That is, to test the potential impact of the discount

factor on the estimations of the states and the three model parameters of the nonlinear model at hand,

focus on the comparison of the mean-RMSE estimates obtained at the three chosen discount factors,

δ ∈ {0.83,0.95,0.99}; RMSE-results for the latter are generally the worst (higher RMSE values) irrespec-

tive of the case scenario and are thus not displayed in the above mentioned table. Therefore, taking a

look at the reported results we find that:

• Within each case scenario, the statistical performance of the filters, indicated by the mean-RMSE

values, shows a seemingly increasing pattern as a function of the discount factor δ; conclusion

valid among the three δ settings included in this second MC study. That is, for the nonlinear

SARV(1) model under study, best statistical efficiency, i.e., lowest RMSE, is generally attained

at lowest values of the discount factor: in this case at δ = 0.83. Recall that when handling the

linear and non-stationary Local Level model, considering in that case discount factor values

δ ∈ {0.83,0.95}, no distinguishable influence of δ is found. This suggests that the impact of the

discount factor may differ with the type of model at hand. We remark, though, that a further
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Monte Carlo study must be undergone to exhaustively study the impact of the discount factor

choice. Next, some more specific remarks regarding the impact of the discount factor are made:

xt Notice that, within each case scenario, the estimated mean-RMSE values corresponding to

the states are hardly affected by the choice of the discount factor δ. This makes sense, since

they are not directly affected by the choice of the discount factor δ.

• As known, the three originally fixed and unknown model parameters µ, φ and σ2
η (level, per-

sistence, and transition noise variance6, respectively) have been jittered and thus are directly

affected by the choice of the discount factor δ. The question is whether and how this choice has

an impact on the quality of the estimations of those three model parameters. We find that some

discrepancies are observed in the mean-RMSE of the level, persistence, and volatility of volatility

parameters, especially in the first two, as further detailed below:

µ The estimated mean-RMSE is always less for δ = 0.83 (as compared to both δ = 0.95 and

δ= 0.99).

φ Likewise, the estimated mean-RMSE for the persistence parameter is always less for δ =
0.83 (as compared to both δ= 0.95 and δ= 0.99).

σ2
η Hardly any effect of the discount factor is observed on the estimated transition noise vari-

ance. Indeed, within each case scenario, these values seem to stay around the same value

regardless of the choice of the discount factor, δ, used in the estimation procedure.

• Therefore, for the model at hand and within the range of values of δ suggested by Liu and West

(2001), we recommend to use the discount factor δ= 0.95 . However, as aforementioned, outside

such range generally best statistical performance is attained and thus we prefer to use a discount

factor of δ = 0.83. Notice that these results hold irrespective of the number of particles used in

the estimation procedure.

Second, for a fixed discount factor δ, we focus on the comparison between the SIRJ and the bench-

mark LW particle filters. Take, for instance, δ = 0.83 where best statistical efficiency (smallest RMSE

values) is attained (similar results hold if δ is fixed at 0.95 or 0.99):

• In general, irrespective of the case scenario and number of particles used in the estimation pro-

cedure, our SIRJ PF variant attains practically the same statistical performance of the benchmark

LW PF variant; refer to Table 6.4. Thus, both competing filters show similar statistical perfor-

mance as indicated by the corresponding mean-RMSE values.

• To somehow study the impact of increasing the number of particles Np on the statistical perfor-

mance of the filters, we consider two settings for Np ∈ {5000,10000}. We find that, irrespective of

6The transition noise variance is also called volatility of volatility.
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the case scenario, for fixed time series length T = 1000, the mean-RMSE of the SIRJ and LW parti-

cle filters tend to attain smaller values when using a larger number of particles. Notice, however,

that increasing the number of particles beyond Np = 5000, does not generally improve the sta-

tistical performance of the competing particle filters. According to simulation results reported

in the Table 6.4, a noticeable decrease of the mean-RMSE is only observed in case of the mean-

level parameter µ; in case of the states and two other parameters, differences are observed only

in the third decimal place. These findings suggest that for the simultaneous estimation of the

states and the parameters of the SARV(1) model, at least Np = 5000 particles should be used, and

also that to achieve a better overall statistical efficiency it would be more appropriate to use up

to Np = 10000 particles.

• Among cases, as expected, differences are observed concerning the statistical performance. No-

tice that mean-RMSE values differ between cases showing smaller values for φ = 0.9 (as com-

pared to φ = 0.981) and σ2
η = 0.1942 (as compared to σ2

η = 0.3632). Further, the discrepancies

observed in the estimated mean-RMSE values of the states and model parameters are detailed

below:

xt As observed in the last section when only estimating the states, larger mean-RMSE values

are attained in those case scenarios combining higher state noise variance with higher per-

sistence parameter values, seemingly in that order: mean-RMSE values are higher in case

three, followed by cases four, one and two, respectively.

µ For this parameter, the estimated mean-RMSE shows higher values in those case scenarios

combining higher persistence parameter values φ with higher state noise variance, seem-

ingly in that order: mean-RMSE values are higher in case three, followed by cases one, four

and two, respectively.

φ For this parameter, mean-RMSE values show higher values (around 0.04-0.05) for φ= 0.90

(as compared to φ = 0.98 with values around 0.02-0.03). This suggests that lower mean-

RMSE values are attained in those scenarios with higher persistence parameter values:

cases one and three yield smaller RMSE values than cases two and four.

σ2
η Similarly, for this parameter, mean-RMSE values show higher values (around 0.02-0.03) for

σ2
η = 0.3632 (as compared to σ2

η = 0.1942; values around 0.01). More specifically, likewise for

the states, larger mean-RMSE are attained in those particular scenarios combining higher

state noise variance values with higher persistence values, seemingly in that order: mean-

RMSE values are higher in case three, followed by cases four, one and two, respectively.

• To better illustrate the discrepancies and similarities of the two competing filters, we go one step

further and create an additional table for each case scenario representing the evolution of the

posterior mean estimates of the parameters (µ, φ, σ2) for time-indexes T ∈ {250,500,750,1000}

and for all 100 Monte Carlo replications ; see Tables 6.5 – 6.8. In each table, for each parameter,

the simulation results shown are in the format: Mean (2.5th, 97.5th percentiles) of the posterior



6.6 SIMULATION STUDY II: STATE & PARAMETER ESTIMATION IN THE NONLINEAR SARV(1) MODEL211

mean estimates at time T along 100 replications. Results are displayed for discount factor values

δ ∈ {0.83,0.95} and number of particles Np ∈ {5000,10000}. These complementary tables allow

us to confirm, once again, that our SIRJ particle filter variant is valid since it is able to equate the

LW filter statistical performance, as shown already in Table 6.4.

• Thus, in all four scenarios under scrutiny, when estimating the states of the nonlinear SARV(1)

model, the SIRJ achieves the same statistical performance as the benchmark LW PF. In general,

lower RMSE values are attained at the lowest value of the discount parameter value under con-

sideration, say δ= 0.83 (vs 0.95 and 0.99).

Before continuing, we refer the reader to Section C.2 of Appendix C where we revisit the issue of

the potential impact on estimation of the choice of the discount factor δ by including a broader

range of values, including two that were prompted by an external referee. There, we consider dis-

count factor values δ ∈ {0.5,0.75,0.83,0.90,0.95,0.99}. Naturally, if one focuses only on previously

studied δ values conclusions are confirmed exactly regardless of some observed discrepancies

concerning the RMSE values among cases and parameters as described beforehand. However,

when considering the whole new range of δ values, not only some discrepancies are observed as

before, but different conclusions might emerge. For instance the minimum mean-RMSE is not

always generally attained at δ = 0.83 anymore, but sometimes even at δ = 0.5. Despite discrep-

ancies, we still believe that for the model at hand δ= 0.83 is generally a reasonably good choice;

see Appendix C for complete reasoning.

Third, for the nonlinear SARV(1) model at hand, focusing on the performance of the different filters

in terms of the computational time, we conclude that:

• Our SIRJ particle filter is the least expensive algorithm with mean CPU time values around 16.68

seconds [SD: 0.13 seconds] in handling a data set containing T = 1000 observations using Np =
5000 particles) in comparison with the benchmark LW filter (24.93[0.08]). As expected, similar

results hold in the other three case scenarios (CPU time variations proper of the simulation char-

acter of the MC studies) irrespective of the value of the discount parameter δ.

• As also expected, the attained CPU times are larger when using a higher number of particles. For

instance, when handling a data set of size T = 1000 using Np = 10000 particles, the mean-CPU

times take values around 31.14[0.15] and 47.75[0.15] for the SIRJ and LW, respectively. Naturally,

these results also hold in the other three case scenarios.

• For fixed time series length and number of particles, there is practically no effect of the discount

factor δ on the computational performance of the filters, as expected.

• Thus, in all four scenarios under scrutiny, when simultaneously estimating the states and pa-

rameters of the nonlinear SARV(1) model, the SIRJ particle filter always outperforms the compu-

tational performance of the benchmark LW PF.
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Table 6.5: Evolution of estimated parameters for all 100 MC replications and the two competing PF variants under study with t ∈
{250,500,750,1000}. Results shown for discount factor values δ ∈ {0.83,0.95} and Np ∈ {5000,10000}. True parameters values correspond

to Case 1: Θ= (µ,φ,σ2
η)′ = (−0.632,0.981,0.1942 ); 0.1942 = 0.038.

T=250 T=500 T=750 T=1000

δ Filter θ Np Mean Prob. Int.∗ Mean Prob. Int. Mean Prob. Int. Mean Prob. Int.

0.83 LW µ 5000 −0.709 (-2.180, 0.532) −0.676 (-1.754, 0.307) −0.652 (-1.436, 0.160) −0.671 (-1.341, -0.008)

10000 −0.721 (-2.105, 0.445) −0.671 (-1.821, 0.274) −0.695 (-1.436, 0.034) −0.707 (-1.444, -0.130)

φ 5000 0.959 (0.911, 0.982) 0.967 (0.923, 0.984) 0.970 (0.931, 0.987) 0.975 (0.951, 0.987)

10000 0.961 (0.925, 0.981) 0.969 (0.925, 0.985) 0.972 (0.938, 0.988) 0.974 (0.948, 0.987)

σ2
η 5000 0.044 (0.032, 0.065) 0.045 (0.031, 0.064) 0.044 (0.031, 0.063) 0.043 (0.031, 0.059)

10000 0.046 (0.034, 0.066) 0.045 (0.030, 0.066) 0.044 (0.031, 0.064) 0.042 (0.029, 0.063)

SIRJ µ 5000 −0.826 (-2.316, 0.372) −0.707 (-1.793, 0.125) −0.748 (-1.443, -0.104) −0.712 (-1.412, -0.10 )

10000 −0.697 (-2.125, 0.666) −0.678 (-1.751, 0.218) −0.703 (-1.506, 0.103) −0.691 (-1.435, -0.07 )

φ 5000 0.962 (0.915, 0.985) 0.972 (0.936, 0.986) 0.974 (0.937, 0.989) 0.977 (0.950, 0.985 )

10000 0.962 (0.919, 0.981) 0.970 (0.919, 0.987) 0.972 (0.929, 0.989) 0.976 (0.945, 0.98 )

σ2
η 5000 0.044 (0.033, 0.065) 0.044 (0.031, 0.064) 0.041 (0.029, 0.063) 0.039 (0.027, 0.05 )

10000 0.044 (0.034, 0.064) 0.044 (0.032, 0.062) 0.044 (0.031, 0.061) 0.043 (0.031, 0.06 )

0.95 LW µ 5000 −0.728 (-2.123, 0.485) −0.699 (-1.735, 0.359) −0.697 (-1.498, 0.204 ) −0.693 (-1.394, 0.111)

10000 −0.744 (-2.131, 0.514) −0.702 (-1.774, 0.423) −0.726 (-1.434, 0.189 ) −0.725 (-1.408, 0.088)

φ 5000 0.957 (0.890, 0.986) 0.968 (0.911, 0.988) 0.973 (0.922, 0.989 ) 0.977 (0.950, 0.991)

10000 0.955 (0.903, 0.984) 0.968 (0.905, 0.990) 0.973 (0.921, 0.99 ) 0.977 (0.949, 0.989)

σ2
η 5000 0.044 (0.029, 0.070) 0.044 (0.029, 0.065) 0.043 (0.028, 0.064 ) 0.042 (0.029, 0.064)

10000 0.046 (0.032, 0.066) 0.044 (0.030, 0.064) 0.043 (0.029, 0.06 ) 0.042 (0.028, 0.058)

SIRJ µ 5000 −0.822 (-2.190, 0.421) −0.761 (-1.775, 0.127) −0.767 (-1.601, -0.067) −0.751 (-1.617, -0.114)

10000 −0.737 (-1.982, 0.435) −0.719 (-1.768, 0.347) −0.738 (-1.481, 0.215) −0.733 (-1.449, -0.001)

φ 5000 0.956 (0.878, 0.985) 0.970 (0.905, 0.989) 0.974 (0.927, 0.991) 0.977 (0.953, 0.990)

10000 0.956 (0.902, 0.985) 0.969 (0.910, 0.988) 0.973 (0.931, 0.99 ) 0.977 (0.951, 0.990)

σ2
η 5000 0.045 (0.031, 0.075) 0.044 (0.029, 0.068) 0.042 (0.029, 0.064) 0.041 (0.028, 0.063)

10000 0.045 (0.032, 0.068) 0.044 (0.029, 0.065) 0.043 (0.029, 0.06 ) 0.042 (0.030, 0.060)

∗ Probability interval: (2.5t h, 97.5t h percentiles).
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Table 6.6: Evolution of estimated parameters for all 100 MC replications and the two competing PF variants under study with t ∈
{250,500,750,1000}. Results shown for discount factor values δ ∈ {0.83,0.95} and Np ∈ {5000,10000}. True parameters values correspond

to Case 2: Θ= (µ,φ,σ2
η)′ = (−0.632,0.90,0.1942 ); 0.1942 = 0.038.

T=250 T=500 T=750 T=1000

δ Filter θ Np Mean Prob. Int.∗ Mean Prob. Int. Mean Prob. Int. Mean Prob. Int.

0.83 LW µ 5000 −0.663 (-1.105, -0.210) −0.612 (-0.934, -0.341) −0.618 (-0.850, -0.378) −0.629 (-0.838, -0.473)

10000 −0.676 (-1.094, -0.244) −0.619 (-0.92 , -0.358) −0.639 (-0.888, -0.383) −0.642 (-0.864, -0.459)

φ 5000 0.946 (0.887, 0.973) 0.924 (0.848, 0.965) 0.913 (0.825, 0.962) 0.910 (0.834, 0.953)

10000 0.949 (0.877, 0.973) 0.931 (0.855, 0.964) 0.918 (0.849, 0.961) 0.903 (0.840, 0.949)

σ2
η 5000 0.038 (0.03 , 0.050) 0.035 (0.024, 0.045) 0.033 (0.024, 0.044) 0.032 (0.023, 0.046)

10000 0.039 (0.031, 0.051) 0.034 (0.026, 0.047) 0.032 (0.024, 0.046) 0.031 (0.022, 0.044)

SIRJ µ 5000 −0.766 (-1.216, -0.356) −0.641 (-0.981, -0.361) −0.658 (-0.921, -0.395) −0.642 (-0.846, -0.481)

10000 −0.686 (-1.149, -0.248) −0.636 (-0.96 , -0.358) −0.651 (-0.895, -0.378) −0.643 (-0.842, -0.478)

φ 5000 0.948 (0.861, 0.976) 0.933 (0.854, 0.973) 0.917 (0.822, 0.967) 0.911 (0.836, 0.959)

10000 0.951 (0.890, 0.975) 0.930 (0.855, 0.968) 0.913 (0.837, 0.966) 0.907 (0.823, 0.959)

σ2
η 5000 0.038 (0.03 , 0.053) 0.034 (0.024, 0.047) 0.031 (0.022, 0.042) 0.030 (0.021, 0.042)

10000 0.038 (0.031, 0.050) 0.034 (0.027, 0.048) 0.033 (0.026, 0.046) 0.032 (0.024, 0.045)

0.95 LW µ 5000 −0.706 (-1.144, -0.355) −0.635 (-1.007, -0.357) −0.637 (-0.881, -0.378) −0.640 (-0.853, -0.475)

10000 −0.704 (-1.148, -0.301) −0.633 (-0.933, -0.375) −0.641 (-0.873, -0.405) −0.643 (-0.819, -0.479)

φ 5000 0.937 (0.825, 0.982) 0.907 (0.774, 0.975) 0.899 (0.802, 0.966) 0.898 (0.779, 0.956)

10000 0.932 (0.820, 0.979) 0.906 (0.794, 0.967) 0.899 (0.816, 0.965) 0.895 (0.802, 0.950)

σ2
η 5000 0.036 (0.028, 0.052) 0.033 (0.024, 0.055) 0.031 (0.021, 0.054) 0.031 (0.019, 0.049)

10000 0.037 (0.028, 0.053) 0.033 (0.022, 0.049) 0.032 (0.022, 0.05 ) 0.031 (0.021, 0.046)

SIRJ µ 5000 −0.752 (-1.211, -0.391) −0.650 (-0.958, -0.393) −0.658 (-0.889, -0.438) −0.644 (-0.844, -0.497)

10000 −0.704 (-1.112, -0.319) −0.642 (-0.958, -0.398) −0.649 (-0.885, -0.435) −0.646 (-0.834, -0.474)

φ 5000 0.939 (0.790, 0.982) 0.916 (0.804, 0.978) 0.905 (0.809, 0.971) 0.902 (0.812, 0.961)

10000 0.933 (0.804, 0.978) 0.906 (0.779, 0.969) 0.896 (0.791, 0.964) 0.895 (0.785, 0.952)

σ2
η 5000 0.037 (0.027, 0.053) 0.032 (0.022, 0.049) 0.030 (0.021, 0.046) 0.030 (0.020, 0.046)

10000 0.037 (0.029, 0.050) 0.033 (0.024, 0.050) 0.032 (0.022, 0.05 ) 0.031 (0.021, 0.046)

∗ Probability interval: (2.5t h, 97.5t h percentiles).
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Table 6.7: Evolution of estimated parameters for all 100 MC replications and the two competing PF variants under study with t ∈
{250,500,750,1000}. Results shown for discount factor values δ ∈ {0.83,0.95} and Np ∈ {5000,10000}. True parameters values correspond

to Case 3: Θ= (µ,φ,σ2
η)′ = (−0.632,0.981,0.3632 ); 0.3632 = 0.132.

T=250 T=500 T=750 T=1000

δ Filter θ Np Mean Prob. Int.∗ Mean Prob. Int. Mean Prob. Int. Mean Prob. Int.

0.83 LW µ 5000 −0.737 (-2.905, 1.387) −0.727 (-2.637, 0.642) −0.684 (-2.126, 0.506) −0.691 (-2.068, 0.50)

10000 −0.795 (-2.896, 1.295) −0.761 (-2.490, 0.795) −0.779 (-2.232, 0.399) −0.78 (-2.027, 0.440)

φ 5000 0.963 (0.922, 0.985) 0.973 (0.927, 0.987) 0.974 (0.948, 0.989) 0.977 (0.958, 0.989)

10000 0.964 (0.925, 0.985) 0.972 (0.939, 0.987) 0.975 (0.942, 0.988) 0.977 (0.960, 0.988)

σ2
η 5000 0.153 (0.104, 0.217) 0.151 (0.110, 0.221) 0.148 (0.113, 0.198) 0.144 (0.109, 0.204)

10000 0.156 (0.107, 0.223) 0.151 (0.102, 0.211) 0.148 (0.112, 0.203) 0.144 (0.11 , 0.208)

SIRJ µ 5000 −0.948 (-3.195, 0.981) −0.826 (-2.679, 0.730) −0.903 (-2.389, 0.428) −0.818 (-2.212, 0.21 )

10000 −0.821 (-3.081, 1.358) −0.772 (-2.544, 0.793) −0.807 (-2.265, 0.750) −0.78 (-2.012, 0.692)

φ 5000 0.963 (0.923, 0.986) 0.973 (0.929, 0.987) 0.975 (0.944, 0.989) 0.978 (0.959, 0.990)

10000 0.964 (0.919, 0.985) 0.973 (0.939, 0.988) 0.975 (0.939, 0.989) 0.978 (0.958, 0.989)

σ2
η 5000 0.152 (0.099, 0.208) 0.150 (0.108, 0.200) 0.143 (0.109, 0.205) 0.139 (0.105, 0.204)

10000 0.154 (0.108, 0.209) 0.152 (0.105, 0.204) 0.149 (0.112, 0.200) 0.144 (0.11 , 0.200)

0.95 LW µ 5000 −0.915 (-3.333, 1.228) −0.829 (-2.891, 0.832) −0.821 (-2.671, 0.585) −0.795 (-2.447, 0.515)

10000 −0.956 (-3.434, 1.488) −0.857 (-2.950, 1.171) −0.869 (-2.531, 0.939) −0.846 (-2.513, 0.694)

φ 5000 0.958 (0.892, 0.987) 0.972 (0.923, 0.990) 0.976 (0.941, 0.991) 0.978 (0.959, 0.989)

10000 0.959 (0.898, 0.989) 0.972 (0.921, 0.990) 0.975 (0.933, 0.991) 0.978 (0.957, 0.99 )

σ2
η 5000 0.155 (0.099, 0.219) 0.153 (0.105, 0.218) 0.148 (0.112, 0.209) 0.145 (0.110, 0.205)

10000 0.158 (0.110, 0.229) 0.153 (0.108, 0.211) 0.149 (0.110, 0.223) 0.146 (0.109, 0.204)

SIRJ µ 5000 −0.999 (-3.699, 1.156) −0.896 (-3.040, 1.123) −0.921 (-2.631, 0.822) −0.897 (-2.582, 0.566)

10000 −0.949 (-3.561, 1.338) −0.885 (-3.042, 1.043) −0.925 (-2.660, 0.553) −0.898 (-2.624, 0.537)

φ 5000 0.958 (0.893, 0.989) 0.973 (0.925, 0.991) 0.975 (0.947, 0.991) 0.978 (0.956, 0.991)

10000 0.960 (0.891, 0.988) 0.973 (0.929, 0.989) 0.974 (0.929, 0.991) 0.978 (0.957, 0.99 )

σ2
η 5000 0.153 (0.101, 0.226) 0.152 (0.099, 0.228) 0.146 (0.103, 0.216) 0.144 (0.106, 0.224)

10000 0.157 (0.107, 0.217) 0.155 (0.107, 0.220) 0.150 (0.112, 0.217) 0.146 (0.110, 0.209)

∗ Probability interval: (2.5t h, 97.5t h percentiles).
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Table 6.8: Evolution of estimated parameters for all 100 MC replications and the two competing PF variants under study with t ∈
{250,500,750,1000}. Results shown for discount factor values δ ∈ {0.83,0.95} and Np ∈ {5000,10000}. True parameters values correspond

to Case 4: Θ= (µ,φ,σ2
η)′ = (−0.632,0.90,0.3632 ); 0.3632 = 0.132.

T=250 T=500 T=750 T=1000

δ Filter θ Np Mean Prob. Int.∗ Mean Prob. Int. Mean Prob. Int. Mean Prob. Int.

0.83 LW µ 5000 −0.671 (-1.336, -0.057) −0.608 (-1.105, -0.179) −0.617 (-1.039, -0.245) −0.623 (-0.943, -0.323)

10000 −0.709 (-1.315, -0.097) −0.620 (-1.107, -0.189) −0.639 (-1.046, -0.311) −0.645 (-0.941, -0.352)

φ 5000 0.930 (0.857, 0.968) 0.911 (0.821, 0.955) 0.909 (0.843, 0.952) 0.912 (0.842, 0.949)

10000 0.932 (0.861, 0.968) 0.915 (0.825, 0.957) 0.911 (0.838, 0.955) 0.908 (0.839, 0.947)

σ2
η 5000 0.119 (0.092, 0.164) 0.115 (0.083, 0.160) 0.113 (0.085, 0.152) 0.114 (0.083, 0.149)

10000 0.124 (0.094, 0.167) 0.115 (0.079, 0.160) 0.113 (0.086, 0.156) 0.111 (0.081, 0.150)

SIRJ µ 5000 −0.807 (-1.512, -0.229) −0.659 (-1.119, -0.215) −0.683 (-1.063, -0.261) −0.648 (-0.979, -0.354)

10000 −0.689 (-1.257, -0.018) −0.631 (-1.104, -0.235) −0.658 (-1.027, -0.318) −0.644 (-0.943, -0.364)

φ 5000 0.935 (0.871, 0.973) 0.921 (0.835, 0.968) 0.915 (0.849, 0.961) 0.917 (0.857, 0.958)

10000 0.931 (0.866, 0.969) 0.914 (0.837, 0.961) 0.909 (0.839, 0.958) 0.910 (0.840, 0.951)

σ2
η 5000 0.121 (0.089, 0.171) 0.114 (0.078, 0.165) 0.109 (0.079, 0.161) 0.107 (0.078, 0.147)

10000 0.121 (0.089, 0.167) 0.115 (0.082, 0.161) 0.114 (0.080, 0.153) 0.113 (0.081, 0.152)

0.95 LW µ 5000 −0.703 (-1.319, -0.101) −0.620 (-1.097, -0.204) −0.639 (-1.000, -0.295) −0.644 (-0.942, -0.376)

10000 −0.720 (-1.366, -0.234) −0.645 (-1.118, -0.250) −0.664 (-1.031, -0.333) −0.658 (-0.957, -0.435)

φ 5000 0.916 (0.793, 0.970) 0.903 (0.782, 0.956) 0.906 (0.812, 0.952) 0.909 (0.841, 0.947)

10000 0.915 (0.809, 0.968) 0.903 (0.818, 0.959) 0.902 (0.806, 0.957) 0.905 (0.840, 0.951)

σ2
η 5000 0.119 (0.084, 0.174) 0.116 (0.079, 0.171) 0.116 (0.078, 0.169) 0.117 (0.080, 0.176)

10000 0.123 (0.086, 0.186) 0.117 (0.077, 0.184) 0.117 (0.080, 0.169) 0.117 (0.083, 0.161)

SIRJ µ 5000 −0.774 (-1.473, -0.233) −0.654 (-1.172, -0.245) −0.671 (-1.106, -0.302) −0.654 (-0.950, -0.393)

10000 −0.712 (-1.344, -0.169) −0.647 (-1.131, -0.236) −0.663 (-1.024, -0.349) −0.657 (-0.945, -0.415)

φ 5000 0.918 (0.818, 0.972) 0.909 (0.810, 0.964) 0.908 (0.830, 0.967) 0.910 (0.846, 0.955)

10000 0.913 (0.810, 0.968) 0.902 (0.792, 0.957) 0.903 (0.819, 0.958) 0.907 (0.846, 0.946)

σ2
η 5000 0.121 (0.083, 0.172) 0.115 (0.075, 0.166) 0.112 (0.076, 0.152) 0.113 (0.073, 0.157)

10000 0.122 (0.089, 0.172) 0.118 (0.079, 0.171) 0.118 (0.082, 0.167) 0.118 (0.083, 0.169)

∗ Probability interval: (2.5t h, 97.5t h percentiles).
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Finally, we refer to the complementary study (already found to be relevant) to investigate and

somehow quantify the degree of degeneracy present in the LW and SIRJ PF variants when handling

the simultaneous estimation of states and parameters of the nonlinear SARV(1) model; focus on last

horizontal entry within each case scenario of Table 6.4. Additionally, we also analyze the impact of

increasing number of particles on degeneracy above Np = 5000 considering also Np = 10000. Thus,

based on the analysis of the reported percentage mean of the unique number of particles uNp (%uNp)

at last time-index t = T ending up with the following conclusions:

• In general, compared to the SIRJ PF variant, the percentage of distinct number of particles,

%uNp, is higher for the benchmark LW algorithm. Overall the simulation settings, irrespec-

tive of the case scenario, the percentage mean number of unique particles for the SIRJ spans

from around 86%–94% and the benchmark LW from around 93%–97%. Thus, this percentage

varies depending on the filter and the case scenario, but seemingly remain stable regardless of

the number of particles as detailed below.

• For fixed time series length T = 1000, regardless the number of particles used in the estimation

procedure, the percentage mean of unique particle seemingly remains stable, but naturally the

“absolute” number of unique particles are clearly larger when using a higher number of parti-

cles. Of course, the higher the number of unique particles, the better, since it means that the

degeneracy problem is less present.

• Therefore, what the attained results indicate is that, in general, the LW PF suffers the degeneracy

problem to a lesser degree than the SIRJ. Observe that for a reasonably large time series length

T = 1000 using Np = 5000 particles, even in the worst-case scenario for the SIRJ/LW particle

filters that occurs in Case 3 (combining high persistence φ = 0.98 and transition noise variance

σ2 = 0.3632 = 0.132), we end up with about 4300 (86% of 5000) and 4650 (93% of 5000) particles

for the SIRJ and LW particle filters, respectively. We consider that the found discrepancies in

terms of degree of degeneracy are not relevant, since in both cases the final number of unique

particles is big enough to produce a reliable marginal posterior distribution.

• The analyzed results thus indicate that none of the filters greatly suffer the degeneracy problem,

at least up to 1000 as shown. To better illustrate that no signs of degeneracy are present in the

two studied particle filters, see the Figures 6.10–6.13 that are created for one exemplary run us-

ing Np = 5000 particles and discount factor δ= 0.83. The displayed plots, one per case scenario,

show the histograms (together with the estimated posterior densities) of the estimated state val-

ues x̂T |T and fixed parameters Θ̂= (µ̂, φ̂, σ̂2)′T |T at last time-index T = 1000. In this case, each row

refers to a different particle filter variant (SIRJ and LW) and each column to a different estimated

variable: the states (in the first column), the mean level (in the second column), the persistence

(in the third column) and the transition noise variance (in the fourth column). Based on this

particular illustration, we can say that there is not a noticeable difference between the particle

filters in question, as is shown (empirically) in Table 6.4 and complementary tables and figures

already presented. Again, we confirm that using Np = 5000 particles or more, protect ourselves

against the degeneracy problem; the specific results and conclusions drawn listed above could

be used as a guide.
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Figure 6.10: Illustration for last exemplar run and last time index T = 1000: Histograms representing the estimated posterior distributions

of: the states (first column), the level parameter µ (second column), the persistence parameter φ (third column) and the transition noise

variance σ2
η (fourth column) for the SARV(1) model. Notice that each row refers to a different PF variant. Results shown for Case 1, Np = 5000

and δ= 0.83.
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Figure 6.11: Illustration for last exemplar run and last time index T = 1000: Histograms representing the estimated posterior distributions

of: the states (first column), the level parameter µ (second column), the persistence parameter φ (third column) and the transition noise

variance σ2
η (fourth column) for the SARV(1) model. Notice that each row refers to a different PF variant. Results shown for Case 2, Np = 5000

and δ= 0.83.
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Figure 6.12: Illustration for last exemplar run and last time index T = 1000: Histograms representing the estimated posterior distributions

of: the states (first column), the level parameter µ (second column), the persistence parameter φ (third column) and the transition noise

variance σ2
η (fourth column) for the SARV(1) model. Notice that each row refers to a different PF variant. Results shown for Case 3, Np = 5000

and δ= 0.83.



2
2

0
C

H
A

P
T

E
R

6
E

S
T

IM
A

T
IO

N
O

F
A

S
T

O
C

H
A

S
T

IC
V

O
L

A
T

IL
IT

Y
M

O
D

E
L

V
IA

P
A

R
T

IC
L

E
F

IL
T

E
R

IN
G

SIR−xt

−2 −1 0 1 2

0.0

0.2

0.4

0.6

SIR−mu

−1.0 −0.5 0.0

0.0

0.5

1.0

1.5

2.0

SIR−phi

0.80 0.85 0.90 0.95

0

5

10

15

20

SIR−sig2

0.05 0.10 0.15 0.20

0

5

10

15

20

LW−xt

−2 −1 0 1 2

0.0

0.2

0.4

0.6

LW−mu

−1.0 −0.5 0.0

0.0

0.5

1.0

1.5

2.0

LW−phi

0.80 0.85 0.90 0.95

0

5

10

15

20

LW−sig2

0.05 0.10 0.15 0.20

0

5

10

15

20

Figure 6.13: Illustration for last exemplar run and last time index T = 1000: Histograms representing the estimated posterior distributions

of: the states (first column), the level parameter µ (second column), the persistence parameter φ (third column) and the transition noise

variance σ2
η (fourth column) for the SARV(1) model. Notice that each row refers to a different PF variant. Results shown for Case 4, Np = 5000

and δ= 0.83.
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• For the model at hand, to be on the safe side, we recommend using at least Np = 5000 particles

to end up with a reliable posterior. However, as a rule of thumb, when estimating simultaneously

the states and parameters of the nonlinear SARV(1) model, Np = 10000 will provide better mean-

RMSE results irrespective of all simulation settings in consideration. As done in previous section,

dealing solely with filtering the states, we continue recommending to use at least Np = 5000

particles to protect ourselves against degeneracy. Simulation results also suggest to use 10000

particles in the estimation procedure regardless of the filter type and case scenarios.

Thus, all results of the Monte Carlo study II, dealing with the simultaneous estimation of states and

parameters of the nonlinear SARV(1) model, can be subsumed by the following summarizing points

indicating the general conclusions of this second study:

RMSE: Our SIRJ PF variant attains a similar statistical performance to the benchmark LW PF. The

Kalman-based particle filters explored in this work are confirmed to be non-suitable as they yield

null Kalman-Gain values, indicating that estimates are not really updated over time. The use of

a larger number of particle Np or a larger time series length generally lead to a decrease (though

slight sometimes) of the RMSE. An increase of the number of particles beyond Np = 5000 does

not necessarily improve the statistical performance for all the parameters, but in general using

Np = 10000 provides better statistical efficiency in all case-scenarios.

CPU: The SIRJ PF computationally outperforms the benchmark LW PF variant. For instance, with

T = 1000 and Np = 5000, the LW PF takes about 1.5 times the mean-CPU time of the SIRJ PF (25

vs 17 seconds).

%UnP: The mean percentage of unique particle at last time index t = T is higher for the LW PF. Overall,

%uNp spans from around 86%–94% for the SIRJ PF, and from around 94%–97% for the LW PF.

These results indicate that the LW PF suffers less the degeneracy problem, but we consider that

the SIRJ behaves reasonably well too. Notice that, within each scenario and filter, for a time series

length of size T = 1000, %uNp remains rather stable when increasing the number of particles

used in the estimation procedure.

Sign of degeneracy? Observe that neither the estimated posterior PDF of the states (volatility), nor

the posterior PDF of the model parameters show signs of degeneracy; at least up to T = 1000 for

the model at hand. Be reminded that when filtering solely the states of this nonlinear SARV(1)

model, no signs of degeneracy were observed up to T = 2000.

Number of particles: For the model at hand, to be on the safe side, we recommend using at least

Np = 5000 particles to end up with a reliable posterior. However, as a rule of thumb, when esti-

mating simultaneously the states and parameters of the nonlinear SARV(1) model, Np = 10000

will provide better mean-RMSE results irrespective of all simulation settings in consideration.
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Impact of discount factor δ: In general, lower RMSE values are attained at the lowest setting of the

discount factor, say at δ = 0.83 (vs 0.95,0.99). Hereafter, unless stated otherwise, only δ = 0.83

will be used.

Non-suitable filters: As mentioned, for the nonlinear SARV(1) state-space model at hand none of

the two nonlinear Kalman-based PF variants (EPFJ, UPFJ) explored in this work are suitable;

see Acosta and Muñoz (2007).

Following, we present the results, remarks, and conclusions regarding the application – to volatile

financial data – of our proposed SIRJ particle filter variant and the widely used LW particle filter variant;

the latter is taken as a benchmark. We remind that the stratified resampling scheme is adopted and a

discount parameter of value δ= 0.83 is chosen.

6.7 Application to Volatility in Financial Data

This section deals with the application of the SIRJ and LW particle filter variants to two real data sets

from the financial area, where the nonlinear SARV(1) model is adopted. In other words, the present

section aims to apply these two filters to simultaneously estimate the latent states (volatility) and un-

known parametersΘ= (µ,φ,σ2
η)′ of the nonlinear SARV(1) model, specified in equations (6.3) and (6.4),

under the assumption of Gaussian measurement and transition noises.

Be reminded that our empirical work is based on weekday daily returns of the Spanish financial

index IBEX 35 and the Europe Brent spot prices. Both time series were taken in the period from January

2002 to July 2012 comprising 2670 and 2669 observations, respectively. These two real data sets are

already presented in Section 6.2 to illustrate the stylized features of volatile financial returns series.

The reader may refer to Table 6.1 for summary statistics and to Figures 6.1 and 6.2 for corresponding

graphical displays.

Next, we present the filtering estimation results and main findings, first for the IBEX 35 data set and

later on for the Brent data set. Before continuing, we remark that the choice of the nonlinear SARV(1)

model is based on its known importance to model stochastic volatility within the financial markets.

That is, the undergone applications represent a set of application examples to illustrate the estimation

ability of the particle filters studied, but it is not our aim in this work to provide a procedure for model

selection nor to exploit in depth the economical aspects of the two return series studied. We, however

attempt to provide –apart from the statistical estimation results– some economical explanation of the

results found.

6.7.1 Application to the IBEX 35 Data: Results and Remarks

Herein, we report the estimation results and related remarks regarding the implementation of the two

particle filter variants studied to estimate the latent states (volatility) and the unknown parameters

(mean level, persistence, volatility of volatility) that underlie in the daily returns of the IBEX 35 data.
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The SIRJ particle filter variant was shown (via MC studies) to be able to equate the statistical perfor-

mance of the benchmark and widely used LW PF variant, and with a lower computational cost. Thus,

our aim is twofold: to verify previously found results and to illustrate the estimation ability of both

particle filter variants when using real data from the financial area.

To better portray the estimated filtering results obtained for the IBEX 35 returns series, a table and

a series of plots are constructed. Figure 6.14 depicts in the top panel, the evolution of the posterior

states’ estimates (measure of volatility expressed as σ̂ν = exp(x̂t /2)) yield by the SIRJ (grey/continuos)

and the benchmark LW (black/continuous) filter. The bottom panel shows the evolution of the IBEX

35 returns during the period under study. Focusing on the top panel of this figure, we verify that both

particle filters under study show practically the same behavior when estimating the states (volatility).

In fact, we can barely distinguish one color from the other, meaning that there is close agreement in

the statistical performance of our SIRJ particle filter and the LW particle filter when filtering the states

(volatility).

Taking a global look at Figure 6.14, we find evidence that the estimated measure of volatility values

σ̂t reasonably captures the dynamic behavior of variability present in the IBEX 35 returns. Notice that

periods where the returns (bottom panel) show higher volatility are reflected (in top panel) by the

higher spikes in the estimates of volatility of returns σ̂t . In the same fashion, periods in which the

returns show lower volatility do not have such large spikes in the estimates of volatility of returns σ̂t .

Additionally, observe how larger negative values are present in the IBEX 35 returns within the years

2008-2010 and notice that this period includes the origin of the world economic crisis and the official

onset of the Spanish financial crisis which is still going on. Specifically, the IBEX 35 shows in January

2008 a negative return in excess of about 8%, in October a negative return in excess of about 10% (black

Friday), and in May 2010 a negative return in excess of about 7%.

To assess how the unknown parameters estimates behave, we construct Table 6.9 and Figure 6.15.

The table displays estimation results related to the posterior estimates of the unknown parameters µ,

φ and σ2
η at chosen time-indexes (first available date at the start of the chosen year). For each filter

and each parameter, we report the corresponding posterior mean estimate together with the credible

interval (2.5th and 97.5th percentiles) and the length of the credible interval. As expected, these results

are a subset of those graphically displayed in Figure 6.15 (on page 227), representing the evolution

of estimated values (posterior mean) for the parameters Θ = (µ,φ,σ2
η)′ and corresponding sequential

credible intervals. Specifically, the top, middle and bottom panels represent the paths of the estimated

parameters µ, φ and σ2
η, respectively. Notice that SIRJ and LW estimates are represented by grey and

black colors, respectively. More specifically, the sequential posterior mean estimate of a parameter

is depicted by a continuous line while the corresponding credible interval is represented by a dashed

line. As discussed before, both particle filters under study show similar performance when estimating

sequentially the states (volatility) of the SARV(1) model. A different picture emerges, however, when

looking at the sequential estimates of the unknown parametersΘ= (µ,φ,σ2
η)′ for this nonlinear model.

Following, we present an analysis of the estimation results for the parameters.
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Figure 6.14: Nonlinear SARV(1) model fitted to the IBEX 35 returns. Top panel: Evolution of esti-

mated posterior values of the states (measure of volatility expressed as σ̂t = exp(x̂t /2)) yield by the

SIRJ (grey/continuos) and the benchmark LW (black/continuous) particle filters; results shown for

Np = 10000 and discount factor δ = 0.83. The bottom panel shows the IBEX 35 returns in the period

under study.
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Table 6.9: Evolution of estimated parameters Θ = (µ,φ,σ2
η)′ for IBEX 35 data and the two PF variants

under study with t ∈ {250,500,1008,1515,2022,2536,2668,2670}.

LW SIRJ

Date (Day/Month/Year) θ Mean Cred. Int.∗ ∆
∗∗
CI

Mean Cred. Int. ∆CI

January 2, 2003 µ 1.408 (-0.609, 3.466) 4.075 1.411 (-0.543, 3.339) 3.882

φ 0.984 (0.954, 0.997) 0.043 0.982 (0.947, 0.997) 0.05

σ2
η 0.019 (0.006, 0.049) 0.043 0.019 (0.005, 0.047) 0.042

January 2, 2004 µ 0.444 (-1.039, 1.929) 2.968 0.426 (-0.783, 1.655) 2.438

φ 0.987 (0.964, 0.997) 0.033 0.987 (0.963, 0.997) 0.034

σ2
η 0.016 (0.006, 0.034) 0.028 0.015 (0.004, 0.039) 0.035

January 3, 2006 µ −0.448 (-1.737, 0.839) 2.576 −0.33 (-1.412, 0.746) 2.158

φ 0.989 (0.972, 0.997) 0.025 0.989 (0.974, 0.997) 0.023

σ2
η 0.017 (0.007, 0.034) 0.027 0.016 (0.005, 0.037) 0.032

January 2, 2008 µ −0.32 (-1.124, 0.494) 1.618 −0.346 (-1.378, 0.676) 2.054

φ 0.984 (0.954, 0.997) 0.043 0.987 (0.971, 0.996) 0.025

σ2
η 0.028 (0.01, 0.066) 0.056 0.032 (0.012, 0.07) 0.058

January 4, 2010 µ −0.012 (-0.716, 0.702) 1.418 −0.098 (-1.131, 0.942) 2.073

φ 0.989 (0.977, 0.996) 0.019 0.99 (0.982, 0.996) 0.014

σ2
η 0.03 (0.017, 0.05) 0.033 0.031 (0.016, 0.054) 0.038

January 3, 2012 µ 0.163 (-0.472, 0.781) 1.253 0.005 (-0.993, 1.02) 2.013

φ 0.989 (0.977, 0.995) 0.018 0.989 (0.981, 0.995) 0.014

σ2
η 0.031 (0.019, 0.047) 0.028 0.034 (0.02, 0.054) 0.034

July 10, 2012 µ 0.194 (-0.379, 0.778) 1.157 0.086 (-0.885, 0.998) 1.883

φ 0.989 (0.977, 0.996) 0.019 0.99 (0.982, 0.995) 0.013

σ2
η 0.029 (0.017, 0.044) 0.027 0.031 (0.019, 0.05) 0.031

July 12, 2012 µ 0.19 (-0.383, 0.751) 1.134 0.083 (-0.853, 1.005) 1.858

φ 0.989 (0.977, 0.996) 0.019 0.99 (0.982, 0.995) 0.013

σ2
η 0.029 (0.017, 0.044) 0.027 0.031 (0.019, 0.05) 0.031

∗ Credible interval: (2.5th, 97.5th percentiles); ∗∗ Interval length of credible interval.

For the IBEX 35 returns data, the SIRJ and LW sequential posterior mean-estimates are very similar

for the mean level (µ) and transition noise σ2
η parameters, but differ more in some periods for the per-

sistence parameter φ. Specifically, both filters show some disagreement in estimating the persistence

parameter from the beginning of the study period until around year 2004, closely agree within the pe-

riod from 2004 until 2006, differ again from 2006 until around the end of 2008, but agree again towards

the end of the study period (July, 2012). We observe that the disagreement between filtering estimates

–yielded by both, the SIRJ and the benchmark LW particle filter– becomes more obvious when focusing

on the estimated credible intervals.

These results go in parallel with what is stated in Stroud, Polson, and Müller (2004) in the sense that

large negative returns “. . . can lead to filtered parameters estimates changing abruptly and provides a

useful testing ground for particle filters”. Based on results portrayed in top panel of Figure 6.14 and

in Figure 6.15, we consider that the two implemented particle filters are able to react to large negative
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returns by producing abrupt changes in the estimated values of some model parameters, but recover

afterwards without suffering the sometimes unavoidable degeneracy problem; focus on bottom panel

of last figure depicting the estimation of the state noise volatility σ2
η. The general pattern observed

in the evolution of the estimated parameters resembles the one shown in Stroud, Polson, and Müller

(2004) that propose another particle filter variant called ‘Practical filter’, but contrary to them we find

no signs of degeneracy as they report for the S&P500 data. Next, as done throughout this work, we

somehow quantify the degree of degeneracy present in the particle filters studied.

Thus, for the SARV(1) model fitted to the IBEX 35 returns, we provide (in percentages) a measure

of the unique number of particles uNp (%uNp) at last time-index T = 2670. For the SIRJ and LW PF

variants, using Np = 10000 particles, the yielded percentages are about 91% and 97%, respectively.

Notice that the values obtained in this particular case for the unique number of particles lie within

the range of values obtained through simulations in previous Section 6.6, refer to page 216. These

results together with the graphical displays in Figure 6.16 empirically show that both particle filters

studied –SIRJ and LW– avoid the inherent potential degeneracy drawback present in the particle filter-

ing methodology. Hence, we consider that both competing particle filters lead to reliable estimated

posterior distributions for the parameters. We find these results very encouraging, since –as nowadays

is very well-known– the estimation of fixed parameters has posed (and still does) great difficulties, be-

cause many times the estimated filtering distributions either degenerate to a few or a single particle or

suffer another kind of degeneracy called sample-impoverishment. The undergone application empir-

ically shows that the Liu and West (2001) jittering strategy helps to avoid the degeneracy drawback.

Finally, for both particle filters we quantify the computational cost by reporting the elapsed CPU

time to handle the sequential simultaneous estimation of states (volatility) and parameters for the

SARV(1) model fitted to the IBEX 35 data set of length T = 2670. Hence, for the SIRJ and LW PF variants,

using Np = 10000 particles and T = 2670 observations, the obtained elapsed CPU-times (in seconds)

are about 125.2 and 196.89, respectively. This means that in this particular case, the LW PF is about 1.6

times slower than the SIRJ.

Next, on page 229, we present the estimation results, remarks and conclusions regarding the appli-

cation of the competing SIRJ and LW particle filters to the Europe Brent returns series.
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Figure 6.15: Nonlinear SARV(1) model fitted to the IBEX 35 returns. Evolution of estimated val-

ues (posterior mean) of the model parameters: µ (level parameter/top panel), φ (persistence

parameter/middle panel) and volatility variance parameter σ2
η (bottom panel) yield by the SIRJ

(grey/continuos) and the benchmark LW (black/continuous) particle filters. Corresponding 95% cred-

ible intervals (2.5th and 97.5th percentiles) for the parameters are represented by grey/dashed lines for

the SIRJ (black/dashed for LW). Results are shown for Np = 10000 and discount factor δ= 0.83.
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Figure 6.16: Illustration of non degeneracy in SIRJ and LW PF variants at last time index T = 2670: Histograms (together with overlaid esti-

mated density curves) representing the estimated posterior distributions of: the states (first column), the level parameter µ (second column),

the persistence parameter φ (third column) and the transition noise variance σ2
η (fourth column) for the SARV(1) model fitted to the IBEX 35

returns. Notice that each row refers to a different PF variant. Results shown for Np = 10000 and discount factor δ= 0.83.
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6.7.2 Application to the Brent Data: Results and Remarks

Herein, likewise for the IBEX 35 returns data, we report the estimation results and related remarks

regarding the implementation of the two particle filter variants studied to estimate the latent states

and the three unknown parameters that underlie in the daily returns of the Brent data. Thus, the same

type of table/figures presented before for the IBEX 35 estimation results are constructed for the Brent

data at hand.

For the Brent return series, Figure 6.17 displays in the top panel, the evolution of the posterior

states’ estimates (measure of volatility expressed as σ̂ν = exp(x̂t /2)) yield by the SIRJ (denoted by a

grey/continuos line as said before) and the benchmark LW (black/continuous) filter. The bottom panel

shows the evolution of the Europe Brent returns during the period under study. Focusing on the top

panel of this figure, it is also verified that both particle filters under study show practically the same

behavior when estimating the states (volatility) for the fitted nonlinear SARV(1) model. In fact, we can

barely distinguish one color from the other, meaning that there is close agreement in the statistical

performance of our SIRJ particle filter and the widely used LW particle filter when filtering the states

(volatility).

Taking a global look at Figure 6.17, we also find evidence that the estimated volatility of returns σ̂ν

(top panel) reasonably reflects the periods of higher volatility present in Brent returns (bottom panel);

we observe how periods where Brent returns are more volatile coincide with higher spikes on the esti-

mated volatility returns σ̂ν. Notice that for the Brent data, the three largest negative returns (in excess

of about 12-17%) are produced within years from 2008 to 2010, which coincide with the onset and first

years of the still present economic crisis. Another period where large negative returns (in excess of

about 8-9%) are present is within years from 2003 through 2007. With the aim of providing an eco-

nomic explanation, we look for some key events occurring in these years and that maybe responsible

for the high spikes of volatility observed; such key events are framed within two major theories: the

market law of supply and demand and the speculation. Next, we provide a description of those related

market-key-events occurred during the years from 2003 to 2012.

2003 – 2008 The oil price starts rising in 2003 (Iraq invasion takes place), reaches the psychological

barrier of 60 $ in 2005, continues to rise up to around 70 $ in 2006 (Israel-Lebanon war takes

place), and it is in 2007 that the oil price begins to escalate until reaching a historic maximum

value of about 144 $ in 2008. The reasons for this escalation are naturally multifactorial, but as

aforementioned are believed to be related to the law of supply and demand on the one hand,

and speculation on the other. It is said that in this period, countries like China and India began

to demand more oil, but there was less supply. Besides, it is also believed that the so-called "fear

of peak oil" made speculation to flourish, raising the spot price of oil.

2008 – 2012 The collapse of oil prices seems to be related to the onset of the economic crisis in 2008.

This drop in oil prices after the crisis is believed to be related to the so-called credit crunch and

the entry of many countries into a recession, resulting in a reduction in oil demand.
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To assess how the unknown parameters estimates behave, we construct Table 6.10 and Figure 6.18.

The table displays estimation results related to the posterior estimates of the unknown parameters µ,

φ and σ2
η at chosen time-indexes (first available date at the start of the chosen year). For each filter

and each parameter, we report the corresponding posterior mean estimate together with the credible

interval (2.5th and 97.5th percentiles) and the length of the credible interval. As expected, these re-

sults are a subset of those graphically displayed in Figure 6.18, representing the evolution of estimated

values (posterior mean) for the parameters Θ= (µ,φ,σ2
η)′ and corresponding sequential credible inter-

vals. Specifically, the top, middle and bottom panels represent the paths of the estimated parameter

µ, φ and σ2
η, respectively. Notice that SIRJ and LW estimates are represented by grey and black colors,

respectively. More specifically, the sequential posterior mean estimate of a parameter is depicted by a

continuous line while the corresponding credible interval is represented by a dashed line.

Table 6.10: Evolution of estimated parameters Θ = (µ,φ,σ2
η)′ for Brent data and the two PF variants

under study with t ∈ {255,513,1031,1536,2041,2541,2669}.

LW SIRJ

Date (Day/Month/Year) θ Mean Cred. Int.∗ ∆
∗∗
CI

Mean Cred. Int. ∆CI

January 2, 2003 µ 1.374 (0.165, 2.574) 2.409 1.4 (0.109, 2.689) 2.58

φ 0.96 (0.855, 0.994) 0.139 0.961 (0.867, 0.994) 0.127

σ2
η 0.028 (0.007, 0.076) 0.069 0.028 (0.005, 0.087) 0.082

January 2, 2004 µ 1.502 (0.771, 2.231) 1.46 1.465 (0.793, 2.15) 1.357

φ 0.943 (0.796, 0.992) 0.196 0.953 (0.856, 0.991) 0.135

σ2
η 0.023 (0.007, 0.057) 0.05 0.027 (0.009, 0.062) 0.053

January 3, 2006 µ 1.393 (1.023, 1.754) 0.731 1.455 (1.109, 1.809) 0.7

φ 0.884 (0.621, 0.982) 0.361 0.918 (0.795, 0.976) 0.181

σ2
η 0.02 (0.007, 0.044) 0.037 0.023 (0.009, 0.047) 0.038

January 2, 2008 µ 1.232 (1.013, 1.45) 0.437 1.282 (1.076, 1.5) 0.424

φ 0.846 (0.563, 0.967) 0.404 0.908 (0.799, 0.967) 0.168

σ2
η 0.017 (0.007, 0.034) 0.027 0.018 (0.008, 0.036) 0.028

January 4, 2010 µ 1.433 (1.219, 1.647) 0.428 1.4 (1.198, 1.599) 0.401

φ 0.969 (0.948, 0.983) 0.035 0.969 (0.945, 0.984) 0.039

σ2
η 0.03 (0.016, 0.051) 0.035 0.03 (0.016, 0.052) 0.036

January 3, 2012 µ 1.371 (1.168, 1.577) 0.409 1.353 (1.153, 1.551) 0.398

φ 0.967 (0.943, 0.982) 0.039 0.965 (0.935, 0.983) 0.048

σ2
η 0.031 (0.019, 0.05) 0.031 0.029 (0.015, 0.052) 0.037

July 10, 2012 µ 1.352 (1.144, 1.557) 0.413 1.344 (1.141, 1.544) 0.403

φ 0.969 (0.945, 0.984) 0.039 0.967 (0.942, 0.983) 0.041

σ2
η 0.031 (0.019, 0.047) 0.028 0.028 (0.014, 0.049) 0.035

∗ Credible interval: (2.5th, 97.5th percentiles); ∗∗ Interval length of credible interval.
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Figure 6.17: Nonlinear SARV(1) model fitted to the Brent returns. Top panel: Evolution of esti-

mated posterior values of the states (measure of volatility expressed as σ̂t = exp(x̂t /2)) yield by the

SIRJ (grey/continuos) and the benchmark LW (black/continuous) particle filters; results shown for

Np=10000 and discount factor δ= 0.83. The bottom panel shows the Brent returns in the period under

study.
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Although both particle filters under study –the SIRJ and the LW PF– show similar statistical per-

formance when estimating the states (volatility) of the nonlinear SARV(1) model, some differences

emerge when looking at the sequential parameters estimates; being more obvious for the persistence

parameter φ. Following, we present an analysis of the estimation results for the parameters.

For the Brent returns data, the SIRJ and LW posterior mean estimates are very similar for the pa-

rametersµ and σ2
η, but differ clearly in some periods for the persistence parameterφ. Specifically, both

filters show close agreement in estimating the persistence parameter at the beginning of the period of

study, start to differ in year 2003 until the end of 2008, and since then agree again until the end of the

study period (July, 2012). We observe that the disagreement between these filtering estimates –yielded

by both, the SIRJ and the benchmark LW particle filter– becomes even more obvious when focusing on

the estimated credible intervals.

Based on results portrayed in top panel of Figure 6.17 and in Figure 6.18, we consider that both im-

plemented particle filters are able to react to large negative returns by producing high spikes on the es-

timated states (volatility) and also abrupt changes in the estimated values of some model parameters,

but recover afterwards without suffering the sometimes unavoidable degeneracy problem; focus on

bottom panel of last figure depicting the estimation of the state noise volatility σ2
η. The general pattern

observed in the evolution of the estimated parameters resembles the one shown in Stroud, Polson, and

Müller (2004) that propose another particle filter variant called ‘Practical filter’, but contrary to them

we find no signs of degeneracy as they report for the S&P500 data. We remark that contrary to the IBEX

35 returns data, the differences observed between the SIRJ and the LW particle filters when estimating

the persistence parameter are more pronounced for the Brent returns data. Next, as done throughout

this work, we somehow quantify the degree of degeneracy present in the particle filters studied.

Thus, for the SARV(1) model fitted to the Brent returns, we provide (in percentages) a measure of

the unique number of particles uNp (%uNp) at last time-index T = 2669. For the SIRJ and LW PF vari-

ants, using Np = 10000 particles, the yielded percentages are about 93% and 97%, respectively. Notice

that the values obtained in this particular case for the unique number of particles lie within the range of

values obtained through simulations in previous Section 6.6, refer to page 216. These results together

with the graphical displays in Figure 6.19 empirically show that both particle filters studied –SIRJ and

LW– avoid the inherent potential degeneracy drawback present in the particle filtering methodology.

Hence, we consider that both competing particle filters lead to reliable estimated posterior distribu-

tions for the parameters. Once again, it is empirically shown that the Liu and West (2001) jittering

strategy within the context of particle filtering can be able to avoid the degeneracy drawback.

Finally, for both particle filters we quantify the computational cost by reporting the elapsed CPU

time to handle the sequential simultaneous estimation of states (volatility) and parameters for the

SARV(1) model fitted to the Europe Brent data set of length T = 2669. For the SIRJ and LW PF variants,

using Np = 10000 and T = 2669, the obtained elapsed CPU times in seconds are about 124.9 and 192.7,

respectively. This means that in this particular case, the LW PF is about 1.5 times slower than the SIRJ.
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Figure 6.18: Nonlinear SARV(1) model fitted to the Brent returns. Evolution of estimated values (poste-

rior mean) of the model parameters: µ (level parameter/top panel), φ (persistence parameter/middle

panel) and volatility variance parameter σ2
η (bottom panel) yield by the SIRJ (grey/continuos) and the

benchmark LW (black/continuous) particle filters. Corresponding 95% credible intervals (2.5th and

97.5th percentiles) for the parameters are represented by grey/dashed lines for the SIRJ (black/dashed

for LW). Results are shown for Np = 10000 and discount factor δ= 0.83.
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Figure 6.19: Illustration of non degeneracy in SIRJ and LW PF variants at last time index T = 2670: Histograms (together with overlaid esti-

mated density curves) representing the estimated posterior distributions of: the states (first column), the level parameter µ (second column),

the persistence parameter φ (third column) and the transition noise variance σ2
η (fourth column) for the SARV(1) model fitted to the Brent

returns. Notice that each row refers to a different PF variant. Results shown for Np = 10000 and discount factor δ= 0.83.
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6.7.3 SARV(1) Model Validation

For model diagnostics we can use simple and easy-to-use statistical tools to check model adequacy.

The model diagnostics are based on the standardized observations, denoted as et = yt /σt , where σt is

the estimated volatility measure. Notice that the return volatility estimates σt , are themselves based

on the estimates of the parameters Θ = (µ,φ,σ2
η)′ in the system equation for the nonlinear SARV(1)

model.

First, for both data sets (IBEX 35 and Brent), Table 6.11 displays a summary statistics of correspond-

ing residuals, including skewness and kurtosis. Second, Normal quantile-to-quantile plots (Q-Q plots)

for the residuals et are depicted in Figure 6.20. These Q-Q plots together with measures of skewness

and kurtosis are used to check the validity of the distributional assumptions made. Third, to comple-

ment the valuable information provided by Normal Q-Q plots and measures of skewness and kurtosis,

some statistical tests are entertained on the residuals. Finally, to check whether residuals are auto-

correlated or not, the Ljung-Box Q-statistic (at the twentieth lag) is computed for the residuals and

squared residuals. A result of an statistical test when found significant at a significance level α= 0.05,

is indicated by the symbol ‘*’.

The validation of the fitted SARV(1) model to both data sets (IBEX 35 and Brent) is based on the

analysis of residuals obtained via the SIRJ and LW PF variants. The main results are:

Skewness: The IBEX 35 residuals show significant skewness values for both particle filters in consid-

eration. The skewness for Brent residuals, however, is found to be non-significant.

Kurtosis: The IBEX 35 residuals show significant kurtosis values for both particle filters. The kurtosis

for Brent residuals, however, is found to be non-significant.

Q(20) and Q2(20): The test results lead to the non-rejection of the null hypothesis of serially uncor-

related residuals (Lag= 20), for the two data sets and two particle filters.

Extreme residuals: In both cases, the model seems to be robust from extreme values. Observe that

only one (0.04%) of the Brent residuals obtained via the LW PF variant is greater than 3.5 standard

deviations; this value is about 3.6.

Based on the above results of skewness and kurtosis, the IBEX 35 residuals do not meet the assump-

tion of normality for the measurement noise; see also the Normal Q-Q plots. The Brent residuals are

reasonably normally distributed as indicated by results of skewness and kurtosis; see also the Normal

Q-Q plots. We conclude that the SARV(1) model provides a good fit for the Brent data set. In contrast,

for the IBEX 35, the fitted SARV(1) model with Gaussian measurement noise confirms to be non ap-

propriate to capture completely the kurtosis. Notice, however, that the kurtosis decreases more than

two thirds from 9.04. In none of the cases, a significant serial correlation is found.
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Table 6.11: Summary statistics of daily returns residuals of the Spanish IBEX 35 financial in-

dex and the Europe Brent spot price

IBEX 35 (n = 2670) Brent (n = 2669)

Residuals Residuals

Statistics rt LW SIRJ rt LW SIRJ

Mean −0.009 0.01 0.01 0.06 0.038 0.038

Stdev 1.549 0.957 0.952 2.268 0.964 0.958

Minimum −9.586 −3.153 −3.134 −16.832 −3.044 −3.16

Maximum 13.484 2.991 2.948 18.13 3.608 3.401

Skewness 0.151* −0.141* −0.139* −0.029 −0.104 −0.108

Kurtosis 9.04* 2.644* 2.628* 7.474* 2.916 2.88

Autocorrelations rt

Q(20)b 56.407* 24.933 24.791 47.053* 19.467 19.397

Autocorrelations r 2
t

Q2(20)b 1529.925* 20.198 21.018 922.903* 27.078 26.559

N. obs (%) > |3.5| 0 (0%) 0 (0%) 1 (0.04%) 0 (0%)

a rt : denotes the return series at time t
b Q(20) and Q2(20): Ljung-Box statistics (Lag= 20) to test the autocorrelation of the original and squared

returns series: rt and r 2
t , respectively (critical value = 31.41)

c r2(k): Order k autocorrelation of squared observations r 2
t

* Significant at %5 level

Next chapter presents the final discussion and future lines of research.
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(a) IBEX 35 residual analysis
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(b) Europe Brent residual analysis

Figure 6.20: Q-Q plots and histograms of the residuals for a SARV(1) model estimated via the SIRJ and

LW particle filters: Europe Brent data (top) and IBEX 35 data (bottom).
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7
DISCUSSION, CONTRIBUTIONS, AND FUTURE LINES

OF RESEARCH

The present chapter deals with the discussion, summary of contributions and future lines of research.

We not only highlight the strengths of the particle filtering methodology, but also pinpoint its limita-

tions.

7.1 Discussion

This work considers the adoption of the particle filtering methodology to tackle the estimation of

the states as well as of states and parameters simultaneously for linear/nonlinear, Gaussian/non-

Gaussian, stationary/non-stationary dynamic state-space models. The latter, the simultaneous esti-

mation of states and fixed model parameters, is a more challenging problem and still a very active area

of research; see, for instance, Niemi (2009), Carvalho, Johannes, Lopes, and Polson (2010), Andrieu,

Doucet, and Holenstein (2010), Lopes and Tsay (2011), and Doucet and Johansen (2011). The present

work deals with univariate latent states and a multivariate vector (order up to three) of fixed model

parameters.

Following, one finds a discussion of how the jittering ideas arrive as a possible solution to the so-

called sample impoverishment drawback.

7.1.1 How Do the Jittering Ideas Arrive?

The particle filtering methodology is proven to be –since around 1993– a very reliable approach for fil-

tering solely the states; see references in Table 2.2 of this dissertation and also Doucet (1998), Hürzeler

and Künsch (1998), Fearnhead (1998), Doucet, Godsill, and Andrieu (2000), Doucet, de Freitas, and

239
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Gordon (2001), and Arulampalam, Maskell, Gordon, and Clapp (2002). Up to our knowledge, one of

the first attempts to use a particle filter for the simultaneous estimation of states and model parame-

ters is due to Kitagawa (1998) that proposes the so-called Self Organizing filter (SO); see Algorithm 11

in Chapter 5 (on page 141). We believe that this filter represents an important step towards attempt-

ing to solve the still difficult problem of estimating simultaneously the states and fixed parameters of

a dynamic state-space model, but though the method might yield good results it usually suffers de-

generacy in a very high degree due to the presence of fixed parameters. Indeed, degeneracy becomes

more acute when dealing with the simultaneous estimation of the original state vector and fixed model

parameters, because in this situation the particles associated with the parameters do not adequately

regenerate and may end up stacked in a small and possibly wrong subregion of the parameters state-

space support. For instance, when attempting to estimate the autoregressive parameter φ of the AR(1)

plus noise model (as illustrated in Chapter 5), experimental results confirm that when one applies the

SO particle filter, the estimated parameter collapses to a unique value despite the large number (20000)

of particles used, resulting in an inadequate posterior distribution. This drawback is even pointed out

in Kitagawa and Sato (2001) where the SO particle filter variant is revisited and where the authors state

that the SO particle filter variant originally introduced in Kitagawa (1998) was not really able to cope

with the fixed parameter estimation problem unless an artificial noise is added to the parameters evo-

lution model. As a possible solution, they propose to add such an artificial noise in the form suggested

already by Gordon, Salmond, and Smith (1993) in the context of states estimation only.

The proposed solution does give rise to an improved version of the original SO particle filter variant

introduced by Kitagawa (1998), but it also presents some limitations. When assuming a dynamic evo-

lution for the fixed parameters, the researcher must choose the magnitude of the variance to impose

in the added noise term, but how exactly this should be achieved without introducing the so-called

loss of information did not remain clear at that time. Questions arise like how small the variance of the

added artificial noise must be or whether it should also be estimated as part of the already augmented

state vector, not to mention that its election asks for more researcher expertise. We remark that: (1) the

potential degeneracy drawback is not exclusive to the SO particle filter; the same problem would occur

if one uses the augmented state vector and applies the ASIR particle filter variant for the simultane-

ous estimation of states and parameters (described in Chapter 2), and (2) the original SO particle filter

works adequately if the model parameters are truly time–varying, as shown in Kitagawa et al. (2002).

The addition of this artificial noise certainly prevents the parameters’ particles to collapse to a few

unique or even to a single particle. However, a criticism of combining the SO PF variant with the arti-

ficial evolution of the parameters in the form suggested in Gordon, Salmond, and Smith (1993), is that

parameters are fixed but are imposed to be time varying. Additionally, how this can be undertaken

without significantly changing the model at hand poses a problem, because by imposing fixed para-

meters to be time varying makes the variability to increase over time, and thus the loss of information

problem arises. This is the main critic of some authors like Liu and West (2001) that do agree to add

an artificial noise, but it should be done so as to avoid the loss of information. The solution to the

sample impoverishment drawback proposed by these authors appeals to modified Kernel density es-
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timation methods (originally used by West (1993) in another context) in order to diversify old particles

and produce regenerated fixed model parameters particles. Specifically, they propose their particle

filter variant named LW PF in this work.

The basic feature of the LW PF variant is the combination of the ASIR PF (proposed in 1999 by

Pitt and Shephard to estimate solely latent states) with the addition of an artificial noise for the fixed

parameters using Kernel smoothing via shrinkage, as detailed in Section 5.5 of Chapter 5. Thus, the

addition of the diversification step using Kernel smoothing and shrinkage ideas –the jittering step–

makes it possible to efficiently extend the use of existing particle filter variants for filtering only latent

states to also estimate both latent states and fixed parameters. This PhD thesis takes this widely used

classic PF variant as a benchmark.

Our incursion into the simulation-based methodology called particle filtering began with the pa-

pers of Kitagawa (1996) (which deals solely with filtering latent states) and Kitagawa (1998), the author

of aforementioned SO PF variant, and this somehow justifies the origin of our proposed Sampling Im-

portance Resampling plus Jittering (SIRJ) PF variant to estimate simultaneously latent states and fixed

parameters of a previously specified dynamic state-space model. The SIRJ PF variant that we propose

combines the SO PF of Kitagawa (1998) with the Kernel smoothing and shrinkage ideas in Liu and

West (2001); see Section 5.6 of Chapter 5. The SIRJ is proven in this work to reach the same statistical

performance of the widely used LW PF taken as a benchmark; the reader may refer to the MC studies

and related results in Chapters 5 and 6, dealing with the linear but non-stationary Local Level model

and the nonlinear SARV(1) model. We consider this our most relevant contribution. Additionally, in

Chapter 5, we explore and study the combination of a Kalman-based PF variant, called by us KPFJ, in

the context of a linear and Gaussian but non-stationary Local Level model obtaining reasonably good

results as detailed there.

The jittering step thus aims to provide general efficiency and specifically attempts to avoid any of

the two forms of degeneracy inherently present in particle filters: (1) the collapse of the particles to a

single one, or (2) the collapse to a very few unique number of particles. As known, the degeneracy is

more prone to occur when estimating simultaneously the states and fixed parameters, because being

fixed they do not evolve dynamically and may be trapped in a small and possibly wrong part of their

support region. Naturally, when a filter suffers greatly any form of degeneracy, it precludes obtaining

good estimators of any interesting feature of the posterior distribution. In other words, the estimated

posterior PDF (the main job of PFs) of the variable of interest (states and/or parameters) is not reliable

and the filter is thus inefficient.

All together, the results obtained along this work prove that the ideas of Kernel smoothing via

shrinkage render good results for diversifying fixed parameters particles and thus avoid (or at least

postpone) the sample impoverishment drawback. At the same time, MC results suggest that these

ideas could work well under particle filter variants apart from the ASIR; this lead us to propose the

EPFJ (being the KPFJ a special case) and the UPFJ particle filter variants, though the latter one was

not entertained in the present work and remains as a theoretical proposal for future work. We remark,
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however, that a detailed pseudo-code of this filter and all other studied algorithms are provided and

implemented; if a filter is later on not applied (or reported), it is because of its unsuitability due to the

type of model at hand.

The various MC studies undertaken, which we consider exhaustive enough, yield the following

general findings with regard to the key factors under investigation within the particle filtering method-

ology.

7.1.2 General Findings

This work also assesses the impact that key factors –such as the signal-to-noise ratio, the resampling

scheme, the number particles, and the length of the time series data (T), the discount factor δ– may

have in the filtering performance of the algorithms. Extensive MC studies are run to test the filtering

performance of all (whenever suitable) filters under study in both a linear and in a nonlinear context.

The comparison criteria is based mainly on the typically used RMSE criterion, but also on the elapsed

CPU time, and on a measure specially defined to somehow quantify the degree of degeneracy (which

is a measure of the unique number of particles at last time-step, denoted by %uNp) present in the

particle filters. As known, efficient particle filter variants must have a reasonably large effective sam-

ple size (ESS) to produce a reliable posterior PDF, but is also important to quantify how distinct the

(ending) number of particles are; our degree of degeneracy measure accounts for both cases. Thus, we

consider that the need of a measure of degeneracy is justified per se, but also go in line with the sugges-

tions presented in the discussion of paper Andrieu, Doucet, and Holenstein (2010). We find relevant to

complement the RMSE results with such (or other) measure of degeneracy because sometimes filters

show similar RMSE, but differ on the quality of the estimated posterior in terms of degeneracy, lead-

ing again to unreliable results. Particle filters estimate posterior PDFs and these must be first reliable

enough to carry out any further computations. We find, however, that generally particle filter variants

show worse performance since they suffer greatly the degeneracy with very few unique number of par-

ticles observed at the end of the time series. In principle, an increase of the number of particles used

in the estimation procedure helps to fight the degeneracy issue, but we also found that some filters

benefit of this strategy more than others. That is, the reaction of filters to an increase of the number of

particles seem to be filter-dependent, and we even suggest that also the complexity of the model plays

a role.

With regard to the resampling scheme, either the stratified or residual resampling implementation

schemes are found to be a valid methodological option, since both are variance reduction techniques,

which becomes even more desirable when the resampling step is performed more often or at every

point of time. Notice that the use of resampling strategies that induce a reduction of the MC variation

of the particles somehow compensates for the fact that the addition of a resampling scheme always

increases the variance of the particles. Nowadays, particle filter variants based on multinomial resam-

pling are known to be not as efficient as the residual and stratified resampling, because they are more

subject to MC variation; see, for instance, Kitagawa (1996), Bolic (2004), and the discussion of Andrieu,
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Doucet, and Holenstein (2010). Some authors still adopt a multinomial resampling scheme, but we be-

lieve (confirmed by our simulations and literature) that the choice of a variance reduction resampling

strategy does not play a minor role in the efficiency of the filters.

As mentioned throughout this work, we choose to use the stratified resampling scheme –found to

be the best when compared to the multinomial one by Kitagawa (1996)– for two reasons: (1) our incur-

sion to the particle filtering methodology began with that paper and (2) it is generally computationally

less costly than its counterpart residual resampling. Both, residual and stratified resampling are widely

accepted and used schemes.

Referring to the impact of the time series length, we find that though more observations natu-

rally bring more information, the use of the added information is both problem and type of filter-

dependent. In general, as expected, an increase of the time-series length is related to a decrease of

the RMSE, though sometimes the reduction is not so relevant. Likewise, an increase of the number of

particles, as intuition suggests, generally produces more accurate estimations, but in some cases the

impact is not that relevant. The simulation results show that the improvement yielded is also affected

by other factors such as the complexity of the model (linear or not, Gaussian or not, stationary or not;

type of nonlinearity), the chosen particle filter variant (fully adapted or not), and the specific simula-

tion settings of the model at hand (signal-to-noise-ratio (SNR) values and specific values of involved

parameters, for instance).

Be reminded that, within the non-simulation framework, the famous Kalman Filterprovides the

best filtering solution in the presence of a linear and Gaussian state-space model with known model

parameters. In the same framework and under nonlinearity, the EKF and the UKF could provide op-

timal solutions; the former when nonlinearity is not so high and the latter when higher nonlinear-

ity is present. Notice, however, that both non-simulation based nonlinear filters might struggle with

large departures of normality. Regardless of the fact that we conducted MC studies (Chapter 3 deal-

ing solely with the state estimation of linear and Gaussian state-space models) using particle filters in

cases where the Kalman filter is known to be optimal, we naturally recommend only to resort to the

computationally more demanding particle filters when the Kalman-based filters prove to be unsuit-

able. The main reason for choosing to adopt the particle filtering methodology in such a linear and

Gaussian context is that we aimed to closely study special issues related to particle filters in a context

where we “knew” the filtering answer in exact form. That allowed us to characterize how different PF

variants behave under case-scenarios defined, for instance, by different SNR settings, or when using

a certain number of particles and/or time series length. We consider that those extensive simulations

shed some light about how competing particle filters behave in terms of statistical performance and

degree of degeneracy, which is at the end what determines the quality of the estimated posterior PDF.

Additionally, it allowed us to envision the potential performance and use of the competing PF variants

to estimate not only the states but also the involved model parameters.

When estimating solely the states (Chapters 3 and 4) via the adopted particle filtering methodology,

the Monte Carlo results suggest that using Np = 5000 works well (in terms of RMSE and degree of
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degeneracy) irrespective of the SNR for all filters, except for the KPF and ASIR at extremely low and high

SNR settings, respectively. The reader may refer to specific results/remarks in corresponding chapters,

when interested in a particular PF variant; in some cases even a smaller number of particles could be

used.

When the simultaneous estimation of states and parameters is a target (Chapters 5 and 6), either

Np = 5000 or Np = 10000 is recommended, specially the latter value to guarantee a reliable enough

estimation of the posterior PDF of the states and fixed parameters. Again, this number of particles

could be less when using a particular particle filter variant or type of model at hand. Since this work

deals with a univariate state vector and a multivariate vector of parameters (order up to three), we con-

sider that the particle filters studied using the recommended number of particles are not too costly (in

terms of CPU time and memory requirements). Naturally, there is a trade-off between more accuracy

and computer requirements as Np increases, which will surely get worse as the dimension of the state

and/or the parameter vector increases.

A nice byproduct of the performed MC studies regarding the degeneracy issue is that we found

that generally irrespective of the time series length and number of particles used in the simulation

procedure the percentage of unique number of particles at last time-index t maintains rather stable

within a specific particle filter variant and case scenario; clearly, as Np increases the absolute number

of unique particles also increases.

The study of the potential impact on estimation of the chosen value for the discount parameter

δ applies only in Chapters 5 and 6, dealing with the estimation of fixed model parameters. The sim-

ulation results in Chapter 5 –dealing with the estimation of the latent state (level) and two unknown

variance parameters for the linear and non-stationary local level model– indicate that there is prac-

tically no difference in the quality of the estimations if one uses a δ value of 0.83 or 0.95. Likewise,

in Chapter 6 –dealing with the estimation of the states (volatility) and the three parameters (µ, φ, σ2
η)

of the nonlinear SARV(1) model– we consider δ values of 0.83, 0.95, and 0.99 and find that generally

(irrespective of the case-scenario and filter-type) lower mean-RMSE values are attained for a discount

factor δ= 0.83.

Under the referral procedure we were asked to assess the impact of much lower, say 0.5, or larger,

say 0.999, discount factor values. To respond to such request we focused on the SARV(1) were some

discrepancies on the estimation was already detected as a function of the chosen discount factor.

Specifically, we revisit the estimation of states and fixed parameters of the nonlinear SARV(1) model

using discount factor values of δ ∈ {0.5,0.75,0.83,0.9,0.95,0.99} and represent the observed results in

Figures C.1 and C.2; notice that we consider a larger set of requested δ values. The findings obtained

through this complementary MC study are thoroughly explained in Appendix C and allow us to state

that in general δ= 0.83 yields very good statistical performance; see details in Section C.2.

After the above discussion of the obtained results, we provide a list with the most important con-

tributions of this thesis.
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7.2 Contributions

The main contributions (mostly in order of importance) of this thesis are:

• The most relevant contribution of this work is the proposed hybrid approach named by us SIRJ,

which combines the self organizing (SO) filter of Kitagawa (1998) with the Kernel smoothing and

shrinkage ideas presented in Liu and West (2001). We consider that this PF variant is a competing

alternative to the well-established and widely used particle filter variant of Liu and West (2001),

named LW PF in this work.

• Implementation of all filters under study (pseudo-codes with a unified notation are provided)

using the R language (R Development Core Team 2013) and including the implementation of the

residual and stratified resampling schemes. The specific code for the different filters are going to

be available upon request to the PhD author.

• An overview of the most classic existing sequential Monte Carlo methods, named particle filters,

for estimating solely the states (in Chapter 2) and for the simultaneous estimation of states and

fixed parameters (Chapter 5). Additionally, in Chapter 2, we provide a complete coverage of the

non-simulation based Kalman filter, the extended and the unscented Kalman filter. All these

methods used for state estimation are scattered in the literature and we have put our effort into

unifying notation for the sake of consistency, readability and comparability. This work provides,

in Chapter 2, corresponding pseudo-codes for all filters studied for state estimation only: the

SIR, ASIR, EPF and UPF. Likewise, in Chapter 5 we provide pseudo-codes for all three proposed

filters to tackle the simultaneous estimation of states and fixed parameters: the SIRJ, EPFJ (being

the KPFJ a special case) and the UPFJ. The corresponding pseudo-code for the existing LW PF

variant, taken as a benchmark, is also given.

• Exhaustive MC studies to test the filtering performance of the competing PF variants in a linear

and nonlinear context are designed and carried out. Other key aspects, within the particle filter-

ing methodology, like the choice of a resampling scheme and the degeneracy problem are also

addressed.

• For state estimation in a linear and Gaussian context, we explore the use of the so-called KPF and

SIRopt PF variants as special cases of existing PF variants; the former is a special case of the EPF

and the latter of the SISR approach. The distinguished feature of the KPF is that it uses as a pro-

posal PDF the normal distribution obtained via the KF. Likewise, the SIRopt uses a fully adapted

proposal; the reader may refer to Chapters 2 and 3. In this part, dealing with a linear and Gaus-

sian context, we compare in total five filters: four are simulation-based (SIR, ASIR, SIRopt and

KPF) and one is non-simulation based (the optimal KF). The originality herein is on designing

exhaustive MC experiments to place under the same “umbrella” filters scattered in the litera-

ture and using many times different settings that avoid a direct comparison. As a byproduct, we
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were able to assess the impact on estimation of key factors such as the signal-to-noise-ratio, the

resampling scheme, the number of particles, and the time series length.

• For state estimation in a nonlinear context (Chapter 4), we assess the competing performance

of the SIR, ASIR, EPF, UPF in contraposition with the EKF and UKF. This MC exercise allowed

us to confirm that when dealing with a SSM with a complex structure (being not only nonlinear

but non-Gaussian and non-stationary), the particle filtering methodology is a better estimation

alternative to the non-simulation based EKF and UKF approaches. Additionally, we confirm that

indeed the UPF is able to outperform other PF variants using a small number of particles. Our

contribution herein is on extending the MC experiment carried out by the authors of the UPF,

so to also include in the comparison the ASIR filter, to consider the stratified resampling scheme

apart from the residual, and by adding the elapsed CPU time as a measure of computational

efficiency apart from the statistical criterion based on the RMSE. We remark that the nonlinear

model was artificially created by the authors of the UPF filter to assess its statistical performance

in contraposition with other existing algorithms, but had not further practical interest. That is

the reason why we do not consider this model afterwards and do not place further effort on

studying, for instance, how it might behave if more observations are used. We do explore how-

ever the impact that an increase of the number of particles can have on the statistical and com-

putational performance of the competing filters. We found, for instance, that the SIR and ASIR

show similar statistical performance for a small number of particles (Np = 200), but that both

react –as expected, the RMSE become smaller, but at different rates– to increasing the number of

particles, being both able to equate the UPF performance at the expense of using more particles.

We found also that although similar statistical performance was generally attained when using

either residual or stratified resampling, the former yielded higher computational cost.

• Extension (and later implementation) of existing particle filter variants previously used for state

estimation only, to be able to handle the simultaneous estimation of states and fixed model pa-

rameters. As possible extensions we propose the aforementioned SIRJ PF variant, but also the

so-called EPFJ (being the KPFJ a special case) or UPFJ filters; the latter remaining as a theoretical

proposal. The well-established and widely used Liu West particle filter is used as a benchmark.

We address key aspects like the time series length, the increase of the number of particles, the

sample impoverishment problem, and the impact of choice of a jittering parameter on the qual-

ity of the estimations. We found that the proposed SIRJ PF performs on par with the benchmark

LW filter. Another relevant result in this part is the rather stable behavior observed in the degree

of degeneracy of studied filters regardless of the number of particles used in the estimation pro-

cedure. This allowed us to provide a rule of thumb for the number of particles to be used: in a

linear and Gaussian context (LLM and AR(1) plus noise), 5000 particles seemed to be a reason-

able value irrespective of the 13 case scenarios in consideration and type of filters compared. For

the nonlinear case (SARV(1) model), at least 5000 should be used. Specifically, if only estimating

the states, we recommend to use 5000 particles and when estimating together states and param-
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eters at least 5000, but preferably 10000 to be in the safe side; this irrespective of the type of filter

and four case-scenarios in consideration.

• Application of the two PF methods already compared to two real data sets containing high volatil-

ity data: The IBEX 35 returns index and the Brent spot price series (Chapter 6). This allowed us to

assess how studied filters, found to have equivalent performance in simulations, behave in real

world environments. Therein, evaluation of the goodness of fit of the nonlinear SARV(1) model

used for the two financial time series is included. We consider that the application highlights the

potentiality of PFs to be used in realistic situations.

• As aforementioned, the study of the impact on estimation of the discount factor suggests that

the value of δ = 0.83 leads to reasonably good results when compared with other values listed

before. Indeed, for the SARV(1) model, as a rule of thumb, we recommend to use δ values in the

range δ ∈ [0.75,0.90], for which lower values of the mean-RMSE are obtained, irrespective of the

case-scenarios. For the local level model, the simulation results suggest that there is practically

no difference in the quality of the estimations when using discount factors δ= 0.83, δ= 0.95, or

even δ= 0.99. Further research is needed, however, to confirm the role that the discount factor

has on estimation.

Since we consider the SIRJ PF to be our most important contribution, we want to state the follow-

ing:

The SIRJ PF shows (via MC studies) to have a good performance in comparison to the well-known

LW PF variant, both computationally and statistically for the models considered in this work. The LW

PF was found to suffer in lesser degree the degeneracy drawback than the SIRJ, though we consider that

the discrepancies found are not relevant. With respect to the computational performance, the LW was

found to take approximately twice the time of the SIRJ PF. As concluded before, we have shown that

our proposed SIRJ PF variant is able to equate the performance of the benchmark LW PF with a lower

computational cost, and, if needed, more particles could be used for the SIRJ to improve efficiency.

Additionally, in general, due to the ease of computation and portability, the particle filters be-

ing sequential methods do not impose the storage of all data, feature that makes them more attrac-

tive/desirable. Naturally, particle filters –like any MC sampling method– are subject to both statistical

and computational errors. We do not want to suggest that PFs do not have limitations. Thus, we want

to pinpoint the limitations found in the present work and suggest possible further lines of research.

7.3 Limitations and Future Lines of Research

Possibly the three main limitations of the present work are:

1. Particle filters, like other approaches, suffer the so-called “curse of dimensionality”. An already

detected partial solution consists of adopting a Rao-Blackwellized approach when feasible; that
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is, the state-space vector can be decomposed in a linear and nonlinear part and then, for in-

stance, one can use the KF for the linear part and particle filtering for the nonlinear. This helps

to reduce the dimension of the state-space vector that is estimated via the more computationally

costly particle filtering methodology. It seems that the new approach of Andrieu et al. (2010) can

help in this respect also.

2. We found that particle filters require having prior knowledge about the possible region contain-

ing the true parameters in order to specify a proper prior distribution for the fixed parameters. A

particle filter is not able to adequately converge to the true value if it is not contained in the sup-

port of the prior PDF. In practice, this rarely poses a huge problem, since usually the practitioner

has some expert knowledge about the data and/or model at hand.

3. Throughout this work, extensive and systematic Monte Carlo studies have been carried out, but

sometimes even more simulation scenarios could have been used. For instance, in part I of the

thesis, sometimes we consider not so large values of the time series length T . We want to remark,

however, that generally a great variety of settings is chosen for the performed simulation studies,

and that this is done with the aim to be exhaustive enough having the specific simulation goal in

mind.

As future lines of research, we envision the following:

1. The assessment of the behavior of the UPFJ in practice. In other words, look for a model that is

complex enough that not only makes feasible the implementation of most studied particle filters,

but also that has an impact from the application point of view. Try to improve the efficiency of

the implementation of the UPFJ, which is actually too costly, is also in mind. We consider the

EPFJ and UPFJ worth further study.

2. The extension of the current MC studies comparing the SIRJ and the LW PF variants, by also

incorporating the so-called Particle Learning particle filter variant, which is based on sufficient

statistics; see, for instance, Lopes and Tsay (2011), Lopes et al. (2011), and Prado and Lopes

(2013).

3. The performance of an even more exhaustive study of the potential impact of the discount factor

considering, for instance, other types of models. The results obtained, for the non-stationary

local level model and the nonlinear SARV(1) models, suggest that better statistical performance

is generally attained at δ values outside the range recommended and/or typically used in the

literature. However, further study is needed in this direction.

4. The application suggests the presence of fat tails on the residuals of the IBEX 35 data set. In

that case, the use of a more heavy tailed distribution for the measurement noise is desirable as

done, for instance, in Muñoz, Márquez, and Acosta (2007), where a Student-t distribution was

entertained.
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5. The development of an R package including all filters studied is also a target, once some filters

efficiency is further tackled (on-going work).

To close this work, we want to express the following.

The adopted particle filtering methodology though proves to be very efficient, it suffers an inher-

ent drawback: the so-called degeneracy problem. Luckily, a lot of effort (also ours) has been placed

to surmount (or at least postpone) this drawback that could be problem specific. Thus, the use of any

variant of the particle filters implies the need to invest certain amount of time to carry out “tunning”

tasks. For instance, it is relevant to somehow monitor the degree of degeneracy present within each

particle filter variant, to choose the best importance PDF as possible, or to choose the best resampling

strategy. Our experience with the application of this approach indicates that to achieve good perfor-

mance, the determination of the number of enough particles is important, but also problem and type

of filter specific. Although sometimes we provide a rule of thumb for the number of particles to be used

in the estimation procedure, this determination requires the performance of exhaustive Monte Carlo

studies. Naturally, this “tunning” tasks only become necessary when we are dealing with problems that

have been not previously exhaustively studied.

From a pedagogical perspective, our intention is that this work serves as a point of reference for

practitioner researchers interested in getting to know the particle filtering methodology, since all fil-

ters are first described in detail, then corresponding pseudo-codes are written and finally they all are

implemented in the R language. Moreover, key classic and more recent references within the particle

filtering methodology are pointed out. Detailed explanations of important issues within this method-

ology are addressed, like the choice of the proposal distribution, the resampling scheme and its differ-

ent implementation procedures, and how to undertake the potential degeneracy drawback of PFs.
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COMPLEMENTARY SIMULATION STUDY ISSUES

In this thesis, two sketches are provided for a better illustration of the simulation design and for a

better understanding of the defined performance criteria. The first sketch illustrates the criteria for

comparing the non-simulation based filters; see Figure 3.2 of Chapter 3. Similarly, Section A.1 includes

a sketch of the comparison criteria used for the simulation based filters; see Figure A.1.

Section A.2 displays the main programm code in R language for estimating the states of the syn-

thetic nonlinear model considered in Chapter 5. In all MC studies carried out throughout this research,

the same general skeleton is used for the main program. Its choice is based on and inspired by the au-

thors of the unscented particle filter (Van derMerwe et al. 2001) and on the technical report of van

der Merwe et al. (2000) that develop a program-Demo, which is the base for the results presented in

van der Merwe et al. (2001). We remark, however, that the full implementation of every specific fil-

ter under study is performed by the author of this PhD thesis. In this part, additionally, the original

MATLAB instructions for implementing the residual resampling algorithm are reported, which were

taken from the website http://vismod.media.mit.edu/pub/yuanqi/mcep/residualR.m [last vis-

ited: September 2013]. These instructions are later on written in R language by the author of this thesis.
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A.1 Sketch of Performance Criteria for Particle Filter Variants

Time index (t)
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Table A.1: Sketch II: Comparison criteria of simulation based filters
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A.2 Main programm code for estimating the states of a synthetic

nonlinear model: Benchmark Implementation

# PURPOSE : Benchmark study to assess the performance (advantages and possible drawbacks) in state

# estimation of the following nonlinear filters:

# I EKF: Extended Kalman Filter

# II UKF: Unscented Kalman Filter

# III SIR: Sampling Importance Resampling Particle Filter variant, using transition prior as proposal

# IV EPF: Extended Particle Filter variant, using the EKF as proposal

# V UPF: Unscented Particle Filter variant,using the UKF as proposal

# Extra for Simulation II

# VI ASIR: Auxiliary Sampling Importance Resampling Particle Filter variant

# Used Model: Synthetic nonlinear non-Gaussian dynamic model taken from literature (used by UPF authors).

# Some ideas taken from program-Demo which is the base of UPF authors.

# We remark that the whole implementation of the filters is the student’s full responsibility and are going

# to conform an R-Package.

# PhD Student: Lesly Acosta (lesly.acosta@upc.edu)

# DATE: 2004-today

# Get ready to start:

################################################################

# Charge needed libraries

# Charge all needed functions corresponding to the above filters, the function for generating the data plus

# the two functions for the deterministic and residual resampling.

set.seed(seed) # set seed so results are reproducible

# Data generation Step

################################################################

Sets <- 100 # Number of realizations of the synthetic nonlinear model

T <- 60 # Time series maximum length

obswnv <- 1e-5 # True Gaussian measurement noise variance

a<- 3 # True Gamma state noise shape parameter

b<- 1/2 # True Gamma state noise scale parameter; mean=3/2, variance=3/4

w <- 4e-2 # Constant and fixed known parameter used in Transition equation

phi1 <- 0.5

phi2 <- 0.2 # Constant and fixed known parameters used in Measurement equation

phi3 <- 0.5

thr <- T/2

for (nset in 1:Sets){

SIN <- genera.SIN(T)

write(SIN$yt, paste(path, "DATASINxt/ytSIN.", nset, sep=""))

write(SIN$xt, paste(path, "DATASINxt/xtSIN.", nset, sep=""))

}

# Filtering Step

################################################################

ini <- date()

Np <- 200 # Number of particles

# Note: We check later how its increase affects performance

resStrat <- 2 # Residual resampling= 1; Deterministic resampling =2

P0 <- 3/4 # Initial system state variance
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# Values used by EKF/UKF

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

R <- obswnv #R denotes measurement noise variance

Q <- 3/4 #Q denotes state noise variance

# Values used by SIR PF

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Rpf <- obswnv

Qpf <- 2*3/4

# Values used by EPF

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Rpfekf <- 1e-1

Qpfekf <- 10*3/4

# Values used by UPF

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Rpfukf <- 1e-1

Qpfukf <- 2*3/4

alpha <- 1 # Scale parameter

beta <- 0 # Non-negative parameter that incorporates prior knowledge of the distribution

kappa <- 2 # Secondary scaling parameter, usually set to $0$.

# To guarantee a positive definite cov-matrix, a non-negative value must be chosen.

# Values used by ASIR PF

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Rpfasir <- obswnv

Qpfasir <- 2*3/4

K <- Np

# Memory allocation for process and output variables

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# EKF

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

muXt_ekfSet <- matrix(NA, Sets, T)

VXt_ekfSet <- matrix(NA, Sets, T)

rmsError_ekf <- rep(NA, Sets)

time_ekf <- rep(NA, Sets)

# UKF

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

muXt_ukfSet <- matrix(NA, Sets, T)

VXt_ukfSet <- matrix(NA, Sets, T)

rmsError_ukf <- rep(NA, Sets)

time_ukf <- time_ekf

# SIR

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

muXt_pfSet <- matrix(NA, Sets, T)

rmsError_pf <- rep(NA, Sets)

time_pf <- rep(NA, Sets)
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# EPF

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

muXt_pfekfSet <- matrix(NA, Sets, T)

rmsError_pfekf <- rep(NA, Sets)

time_pfekf <- rep(NA, Sets)

# UPF

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

muXt_pfukfSet <- matrix(NA, Sets, T)

rmsError_pfukf <- rep(NA, Sets)

time_pfukf <- rep(NA, Sets)

## Extra Simulation II

# ASIR

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

muXt_pfasirSet <- matrix(NA, Sets, T)

rmsError_pfasir <- rep(NA, Sets)

time_pfasir <- rep(NA, Sets)

iniekf <- date()

# MAIN LOOP for EKF

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

for (nset in 1:Sets){

SIN$yt <- scan(paste(path, "DATASINxt/ytSIN.", nset, sep=""))

SIN$xt <- scan(paste(path, "DATASINxt/xtSIN.", nset, sep=""))

#EKF calling

out.EKF<-SIN.EKF(T, SIN$yt)

##############################

##-- CALCULATE PERFORMANCE --#

##############################

muXt_ekfSet[nset,] <- out.EKF$muEKF

rmsError_ekf[nset] <- sqrt(sum((SIN$xt-muXt_ekfSet[nset, ])^2)/T)

time_ekf[nset] <- out.EKF$timeEKF

VXt_ekfSet[nset, ] <- out.EKF$PEKF

}

finekf<-date()

# Calculate mean of RMSE errors for EKF

mean_RMSE_ekf <- round(mean(rmsError_ekf), 4)

# Calculate variance of RMSE errors

var_RMSE_ekf <- round(var(rmsError_ekf), 4)

# Calculate mean of execution time

mean_time_EKF <- round(mean(time_ekf), 4)

# MAIN LOOP for UKF

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

for (nset in 1:Sets){

SIN$yt <- scan(paste(path, "DATASINxt/ytSIN.", nset, sep=""))

SIN$xt <- scan(paste(path, "DATASINxt/xtSIN.", nset, sep=""))

#UKF calling

out.UKF <- SIN.UKF(T, SIN$yt)
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##############################

##-- CALCULATE PERFORMANCE --#

##############################

muXt_ukfSet[nset,] <- out.UKF$muUKF

rmsError_ukf[nset] <- sqrt(sum((SIN$xt-muXt_ukfSet[nset, ])^2)/T)

time_ukf[nset] <- out.UKF$timeUKF

VXt_ukfSet[nset, ] <- out.UKF$PUKF

}

# Calculate mean of RMSE errors for UKF

mean_RMSE_ukf <- round(mean(rmsError_ukf), 4)

# Calculate variance of RMSE errors

var_RMSE_ukf <- round(var(rmsError_ukf), 4)

# Calculate mean of execution time

mean_time_UKF <- round(mean(time_ukf), 4)

# MAIN LOOP for SIR PF

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

for (nset in 1:Sets){

SIN$yt <- scan(paste(path, "DATASINxt/ytSIN.", nset, sep=""))

SIN$xt <- scan(paste(path, "DATASINxt/xtSIN.", nset, sep=""))

out.PF <- SIN.PF(SIN$yt, Np, Rpf) #PF function call

muXt_pfSet[nset,] <- out.PF$muPF

rmsError_pf[nset] <- sqrt(sum((SIN$xt-muXt_pfSet[nset, ])^2)/T)

time_pf[nset] <- out.PF$timePF

}

##############################

##-- CALCULATE PERFORMANCE --#

##############################

# Calculate mean of RMSE errors for PF

mean_RMSE_pf <- round(mean(rmsError_pf), 4)

# Calculate variance of RMSE errors

var_RMSE_pf <- round(var(rmsError_pf), 4)

# Calculate mean of execution time

mean_time_PF <- round(mean(time_pf), 4)

# MAIN LOOP for EPF

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

for (nset in 1:Sets){

SIN$yt <- scan(paste(path, "DATASINxt/ytSIN.", nset, sep=""))

SIN$xt <- scan(paste(path, "DATASINxt/xtSIN.", nset, sep=""))

out.PFEKF <- SIN.PFmitEKFprop(SIN$yt, Np, obswnv) #EPF function call

muXt_pfekfSet[nset,] <- out.PFEKF$muPFEKF

rmsError_pfekf[nset] <- sqrt(sum((SIN$xt-muXt_pfekfSet[nset, ])^2)/T)

time_pfekf[nset] <- out.PFEKF$timePFEKF

}

##############################

##-- CALCULATE PERFORMANCE --#

##############################

# Calculate mean of RMSE errors for PFEKF

mean_RMSE_pfekf <- round(mean(rmsError_pfekf), 4)

# Calculate variance of RMSE errors

var_RMSE_pfekf <- round(var(rmsError_pfekf), 4)

# Calculate mean of execution time

mean_time_PFEKF <- round(mean(time_pfekf), 4)
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# MAIN LOOP for UPF

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

for (nset in 1:Sets){

SIN$yt <- scan(paste(path,"DATASINxt/ytSIN.", nset, sep=""))

SIN$xt <- scan(paste(path,"DATASINxt/xtSIN.", nset, sep=""))

out.PFUKF <- SIN.PFmitUKFprop(SIN$yt, Np, obswnv) #UPF function call

muXt_pfukfSet[nset,] <- out.PFUKF$muPFUKF

rmsError_pfukf[nset] <- sqrt(sum((SIN$xt-muXt_pfukfSet[nset, ])^2)/T)

time_pfukf[nset] <- out.PFUKF$timePFUKF

}

##############################

##-- CALCULATE PERFORMANCE --#

##############################

# Calculate mean of RMSE errors for PFUKF

mean_RMSE_pfukf <- round(mean(rmsError_pfukf), 4)

# Calculate variance of RMSE errors

var_RMSE_pfukf <- round(var(rmsError_pfukf), 4)

# Calculate mean of execution time

mean_time_PFUKF <- round(mean(time_pfukf), 4)

# MAIN LOOP for ASIR

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

for (nset in 1:Sets){

SIN$yt <- scan(paste(path, "DATASINxt/ytSIN.", nset, sep=""))

SIN$xt <- scan(paste(path, "DATASINxt/xtSIN.", nset, sep=""))

out.PFASIR <- SIN.PFmitASIRprop(SIN$yt,Np,K,Rpfasir,nset) #ASIR PF function call

muXt_pfasirSet[nset,] <- out.PFASIR$muPFASIR

rmsError_pfasir[nset] <- sqrt(sum((SIN$xt-muXt_pfasirSet[nset, ])^2)/T)

time_pfasir[nset] <- out.PFASIR$timePFASIR

}

##############################

##-- CALCULATE PERFORMANCE --#

##############################

# Calculate mean of RMSE errors for PFASIR

mean_RMSE_pfasir <- round(mean(rmsError_pfasir), 4)

# Calculate variance of RMSE errors

var_RMSE_pfasir <- round(var(rmsError_pfasir), 4)

# Calculate mean of execution time

mean_time_PFASIR <- round(mean(time_pfasir), 4)

#Print out simulation results

################################################################

print(paste("(seed, REsScheme, NRuns) = ", seed, resStrat, Runs))

print(paste("Method ", "mean_RMSE", "var_RMSE", "mean_time"))

print(paste("EKF ", mean_RMSE_ekf, var_RMSE_ekf, mean_time_EKF))

print(paste("UKF ", mean_RMSE_ukf, var_RMSE_ukf, mean_time_UKF))

print(paste("PF ", mean_RMSE_pf, var_RMSE_pf, mean_time_PF))

print(paste("PF_EKF ", mean_RMSE_pfekf, var_RMSE_pfekf, mean_time_PFEKF))

print(paste("PF_UKF ", mean_RMSE_pfukf, var_RMSE_pfukf, mean_time_PFUKF))

print(paste("PF_ASIR ", mean_RMSE_pfasir, var_RMSE_pfasir, mean_time_PFASIR))

fin<-date()# End of Main R language programm code
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The original MATLAB instructions for implementing the residual resampling algorithm can be
found in http://vismod.media.mit.edu/pub/yuanqi/mcep/residualR.m [last visited: September
2013]. These instructions were written in R language by the author of this thesis.

function outIndex = residualR(inIndex,q);

% PURPOSE : Performs the resampling stage of the SIR

% in order(number of samples) steps. It uses Liu’s

% residual resampling algorithm and Niclas’ magic line.

% INPUTS : - inIndex = Input particle indices.

% - q = Normalised importance ratios.

% OUTPUTS : - outIndex = Resampled indices.

% AUTHORS : Arnaud Doucet and Nando de Freitas - Thanks for the acknowledgement.

% DATE : 08-09-98

if nargin < 2, error(’Not enough input arguments.’); end

[S,arb] = size(q); % S = Number of particles.

% RESIDUAL RESAMPLING:

% ====================

N_babies= zeros(1,S);

% first integer part

q_res = S.*q’; %’ %multiply all normalized weights q’ by No. of particles S

N_babies = fix(q_res); % integer part of q_res

% residual number of particles to sample

N_res=S-sum(N_babies);

if (N_res~=0)

q_res=(q_res-N_babies)/N_res;

cumDist= cumsum(q_res);

% generate N_res ordered random variables uniformly distributed in [0,1]

u = fliplr(cumprod(rand(1,N_res).^(1./(N_res:-1:1))));

j=1;

for i=1:N_res

while (u(1,i)>cumDist(1,j))

j=j+1;

end

N_babies(1,j)=N_babies(1,j)+1;

end;

end;

% COPY RESAMPLED TRAJECTORIES:

% ============================

index=1;

for i=1:S

if (N_babies(1,i)>0)

for j=index:index+N_babies(1,i)-1

outIndex(j) = inIndex(i);

end;

end;

index= index+N_babies(1,i);

end
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B
COMPLEMENTARY GRAPHICAL DISPLAYS

The plots in Sections B.1 and B.2 aim to better illustrate the results reported in Tables 3.2 (on page 58)

and 3.4 (page 83), for the local level model (Simulation study I with φ = 1) and the AR(1) plus noise

model (Simulation II with φ ∈ {0.3,0.8}), respectively. These plots are defined by the 13 values of of the

signal-to-noise ratio, and the three values of φ chosen; making a total of 39 figures.

Recall that in each figure, for each signal-to-noise ratio setting, we show a graphical illustration

of the generating process (observations and states) as well as of the filtering performance. For three

particular sets of data, in the first row of the upper panel of these 13 figures we plot together the evo-

lution of the generated observations yt and states xt |t , t = 1, . . . ,T . In the second row of this panel,

the evolution of the difference between the estimated state values and corresponding true state values

(x̂t |t −xt , t = 1, . . . ,T ) obtained via the studied filters, is displayed. In the bottom panel, only for the last

exemplar run and last time-index T , we present the marginal posterior densities obtained via the four

PF variants under study in contraposition with the exact Gaussian posterior density yielded by the gold

standard KF.

The 13 plots for the local level model are presented in Section B.1 and the 26 plots for the AR(1)

plusnoise model in Section B.2. All these plots are shown on the website http://www-eio.upc.edu/

~lacosta/AppendixB.pdf [last visited: September 2013].
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C
COMPLEMENTARY MATERIAL FOR SARV(1) MODEL

This Appendix contains additional material for Chapter 6. Section C.1 complements the numeric re-

sults in Section 6.5.2 of Chapter 6 by summarizing the performance of three studied filters (SIS, SIR,

and ASIR) in handling the estimation of the states for the SARV(1) model; the model parameters are

assumed to be known. Section C.2 contains a complementary MC study of the potential impact on

estimation of the chosen value for the discount factor δ needed in the jittering step.
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C.1 Simulation Results for Cases 2–4.

The following three Tables C.1–C.3 complement the numeric results reported/plotted in Section 6.5.2

of Chapter 6 summarizing the performance of the three studied filters (SIS, SIR and ASIR) in handling

the estimation of the states (volatility) for the SARV(1) model when the model parameters are known.

Notice that these three tables do not report the CPU-times as they take about the same values as the

ones reported in Table 6.2 corresponding to Case 1.

Table C.1: Summary of simulation I results for Case 2: Estimation of the states (volatility) for the

SARV(1) model; Θ= (µ,φ,σ2
η)′ = (−0.632,0.90,0.1942 ); 0.1942 = 0.038

N p = 200 N p = 500 N p = 1000 N p = 5000

Filter T Criterion Mean Var Mean Var Mean Var Mean Var

SIS 500 RMSE 0.481 0.002 0.473 0.002 0.462 0.002 0.440 0.002

1000 RMSE 0.517 0.001 0.503 0.001 0.498 0.001 0.483 0.001

2000 RMSE 0.545 0.001 0.535 0.001 0.533 5e-04 0.517 0.001

SIR 500 RMSE 0.384 0.001 0.383 0.001 0.383 0.001 0.382 0.001

%uNp 91.85 7.01 91.98 6.84 91.90 6.97 91.89 6.95

1000 RMSE 0.380 5e-04 0.379 4e-04 0.379 4e-04 0.379 4e-04

%uNp 93.55 4.90 93.60 4.94 93.61 4.81 93.61 4.84

2000 RMSE 0.380 2e-04 0.379 2e-04 0.379 2e-04 0.378 2e-04

%uNp 93.41 5.05 93.42 4.91 93.37 4.95 93.37 4.97

ASIR 500 RMSE 0.384 0.001 0.383 0.001 0.383 0.001 0.382 0.001

%uNp 95.97 3.69 96.03 3.50 96.12 3.39 96.06 3.30

1000 RMSE 0.380 4e-04 0.379 4e-04 0.379 4e-04 0.379 4e-04

%uNp 96.61 2.53 96.94 2.28 96.89 2.18 96.86 2.25

2000 RMSE 0.380 2e-04 0.379 2e-04 0.379 2e-04 0.378 2e-04

%uNp 96.77 2.41 96.73 2.49 96.73 2.41 96.74 2.37
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Table C.2: Summary of simulation I results for Case 3: Estimation of the states (volatility) for the

SARV(1) model; Θ= (µ,φ,σ2
η)′ = (−0.632,0.981,0.3632 ); 0.3632 = 0.132

N p = 200 N p = 500 N p = 1000 N p = 5000

Filter T Criterion Mean Var Mean Var Mean Var Mean Var

SIS 500 RMSE 1.662 0.138 1.559 0.076 1.498 0.094 1.362 0.054

1000 RMSE 1.918 0.067 1.878 0.084 1.819 0.072 1.723 0.054

2000 RMSE 2.176 0.067 2.131 0.072 2.071 0.055 1.969 0.061

SIR 500 RMSE 0.703 0.003 0.701 0.002 0.700 0.002 0.700 0.002

%uNp 84.42 11.44 84.50 11.45 84.42 11.84 84.40 11.72

1000 RMSE 0.697 0.001 0.695 0.001 0.694 0.001 0.694 0.001

%uNp 86.21 10.69 86.22 10.51 86.19 10.39 86.20 10.35

2000 RMSE 0.692 0.001 0.690 0.001 0.690 0.001 0.689 0.001

%uNp 86.76 7.50 86.72 7.82 86.62 7.95 86.59 8.00

ASIR 500 RMSE 0.704 0.003 0.702 0.003 0.700 0.003 0.700 0.002

%uNp 92.83 5.03 92.54 5.06 92.64 4.93 92.73 4.72

1000 RMSE 0.698 0.001 0.695 0.001 0.694 0.001 0.693 0.001

%uNp 93.45 4.03 93.54 4.01 93.53 3.95 93.44 4.02

2000 RMSE 0.692 0.001 0.690 0.001 0.690 0.001 0.689 0.001

%uNp 93.42 3.89 93.54 3.39 93.66 3.47 93.58 3.33

Table C.3: Summary of simulation I results for Case 4: Estimation of the states (volatility) for the

SARV(1) model; Θ= (µ,φ,σ2
η)′ = (−0.632,0.90,0.3632 ); 0.3632 = 0.132

N p = 200 N p = 500 N p = 1000 N p = 5000

Filter T Criterion Mean Var Mean Var Mean Var Mean Var

SIS 500 RMSE 0.922 0.007 0.914 0.006 0.909 0.008 0.860 0.007

1000 RMSE 1.002 0.004 0.978 0.003 0.980 0.004 0.945 0.004

2000 RMSE 1.052 0.002 1.032 0.001 1.033 0.002 1.004 0.002

SIR 500 RMSE 0.606 0.002 0.605 0.001 0.604 0.001 0.604 0.001

%uNp 86.48 10.68 86.60 10.57 86.50 10.95 86.49 10.86

1000 RMSE 0.601 0.001 0.600 0.001 0.599 0.001 0.599 0.001

%uNp 88.47 8.81 88.45 8.66 88.48 8.52 88.48 8.45

2000 RMSE 0.600 4e-04 0.599 4e-04 0.598 4e-04 0.598 4e-04

%uNp 88.88 6.97 88.86 7.00 88.78 7.13 88.77 7.16

ASIR 500 RMSE 0.606 0.002 0.605 0.002 0.604 0.002 0.604 0.001

%uNp 92.38 5.84 92.39 5.59 92.61 5.60 92.58 5.44

1000 RMSE 0.602 0.001 0.600 0.001 0.599 0.001 0.599 0.001

%uNp 93.47 4.47 93.56 4.10 93.55 4.17 93.60 4.21

2000 RMSE 0.600 4e-04 0.599 4e-04 0.599 4e-04 0.598 4e-04

%uNp 93.56 4.46 93.72 3.76 93.72 3.76 93.70 3.73
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Next, we address the issue of the potential impact on estimation of the chosen value for the dis-

count factor δ needed in the jittering step.

C.2 Revisiting the Impact of the Discount Factor δ

Under the referral procedure, we were suggested to carry out a further study of some aspects already

presented along our research work and to include “a discussion of such aspects in the dissertation”.

One of such aspects is the following:

“(3) Revisit the discount factor effect in the simulation studies presented in Chapter 5. Only

two discount factors were considered (0.83 and 0.95, why such values?) and based on the

results presented there seems to be none or little effect of the discount factor value. What

happens if much lower, say 0.5, or larger, say 0.999, discount factors are considered?”

In order to answer the stated question and to place ourselves in the right context, first, we remark

that at the moment of the revision the contents of Chapter 5 were complete but those of Chapter 6 were

not, and thus the results regarding the estimation of states and parameters for the SARV(1) model were

not available for the referees. Be reminded that the discount factor issue only applies to Chapters 5 and

6 were the jittering step is needed. In those chapters, we already partially address the issue about the

potential impact on estimation of the chosen value for the discount factor δ. Most of the publications

consulted about the use of the LW PF variant and consequently using a discount factor δ, refer back to

the authors of the LW PF variant, Liu and West (2001). Therein, it is stated not only that the discount

factor δ must lie in the (0,1] interval with typically used values in the range 0.95-0.995, but also that

a higher discount factor –around 0.99– will be relevant. Since our proposed SIRJ PF also relies on the

choice of a discount factor, we proceed to justify why to use specific values for the discount factor δ. At

the start of our research, we closely followed the recommendation given by the authors in Liu and West

(2001) (and in many other related publications), and that is the reason for initially choosing a discount

factor with value δ= 0.95 or even 0.99; we focus at that time on diversifying parameter particles using

values lying within the range of values recommended by the literature consulted.

When looking more closely at the formula for the diversification and obtained estimation results,

we began to wonder if values different from the typically chosen could be used in order to diversify a bit

more the fixed parameters particles, and then we tried different values for δ suggesting that δ = 0.83

was a reasonable good choice to do diversify the particles as targeted but controlling not to smooth

them to much. However, it was not until recently that we found a publication confirming that the

choice of a discount factor outside the typically recommended range (0,1] was a sound possibility for

other authors also; see the article of Carvalho and Lopes (2007). On page 4536, the authors report the

use of a discount factor δ = 0.851, and somehow justify their choice by referring back to an argument

presented in the book of West and Harrison (1997) stating that

1They report the use of δ= 0.85, but I believe there is a typo error; they also mention the use of values of δ ∈ (0.50,0.99).
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“(. . . ) δ should be chosen between 0.8 and 0.99 as a function of the amount of information

that the modeller is willing to preserve in the filtering process.”

This argument theoretically justifies the use of δ= 0.83 in our work, but our choices are also well justi-

fied by the MC studies carry out in Chapters 5 and 6.

Second, the simulation results in Chapter 5 –dealing with the estimation of the latent state (level)

and two unknown variance parameters for the linear and non-stationary local level model– indicate

that there is practically no difference in the quality of the estimations if one uses a δ value of 0.83

or 0.95. Likewise, in Chapter 6 –dealing with the estimation of the states (volatility) and the three

parameters (µ, φ, σ2
η) of the nonlinear SARV(1) model– we consider δ values of 0.83, 0.95 and 0.99

and find that generally (irrespective of the case-scenarios and filter-type) lower mean-RMSE values

are attained for a discount factor δ= 0.83; for that reason, in that chapter we chose to represent in the

shown figures only the results corresponding to δ= 0.83.

Third, to answer the last part of the question we will focus on the SARV(1) were some discrepan-

cies on the estimation was already detected as a function of the chosen discount factor. Specifically,

we revisit the estimation of states and fixed parameters of the nonlinear SARV(1) model using discount

factor values of δ ∈ {0.5,0.75,0.83,0.9,0.95,0.99} and represent the observed results in Figures C.1–C.2;

notice that we consider a larger set of requested δ values. The shown plots basically confirm previ-

ously mentioned findings. Following, we list the findings suggested by these figures (results shown for

T = 1000 and Np = 5000) representing the attained mean-RMSE values when handling the nonlinear

SARV(1) model at specified values of the discount factor for the SIRJ and LW PF variants:

xt Within each case, the statistical quality of the estimated states (mean-RMSE) is practically not af-

fected by the chosen discount factor δ. Notice that both competing filters show equal perfor-

mance. Across case scenarios, it is observed that larger mean-RMSE values are obtained in case

three, followed by cases four, one and two, respectively. These results confirm those reported

already in Chapter 6 when considering only three values for δ.

µ For this parameter, within each case, an effect on the mean-RMSE is observed as a function of the

chosen discount factor. Notice that both competing filters show practically equal performance.

Across cases, larger mean-RMSE values are obtained in case three, followed by cases one, four,

and two, respectively; confirming again Chapter 6 findings.

φ For this parameter, within each case, an effect on the mean-RMSE is observed as a function of the

chosen discount factor. Notice that differences between the SIRJ and LW are more clearly seen

(sometimes SIRJ-RMSE greater than LW-RMSE or viceversa), but they are practically not relevant

since when they occur they are rather small; in the third decimal place. Across cases, there is not

an overall clear pattern, but Chapter 6 findings still hold. We observe that for cases 1 and 3, a

minimum mean-RMSE is attained at δ= 0.83. For cases 2 and 4, however, one observes that the

mean-RMSE increases with δ.
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σ2
η For this parameter, within each case, obtained mean-RMSE is practically not affected by the choice

of the discount factor. Notice also that both competing filters show practically equal perfor-

mance; differences between filters when occur are rather small; in the third decimal place. Across

case scenarios, it is observed that larger mean-RMSE values are obtained in case 3, followed by

cases 4, 1 and 2, respectively. Again, these results confirm those reported already in Chapter 6.

All the above indicate that there is not a unified pattern across both parameters and cases; focus on

the varied shapes of the figures. If one focuses again on comparing the two filters, they tend to behave

very similarly at most δ values; specially at larger values. Next, we go one step further and detail the

situations when differences are observed, being them relevant or not, in order to provide a rule of

thumb for chosing δ.

• For δ > 0.90, both competing filters show closer agreement, but the attained mean-RMSE are

generally the highest (for model parameters); in this small range of values it seems that gener-

ally, the larger the discount factor δ, the higher the RMSE. On the contrary, some discrepancies

between filters begin to be observed for lower discount factors, say δ≤ 0.90, but in general lower

mean-RMSE are obtained.

• Based on plotted results, if we had to provide a recommendation, for the model at hand we would

recommend as a rule of thumb to use δ values in the range δ ∈ [0.75,0.90], were irrespective of

the case-scenarios lower values of the mean-RMSE are obtained. We consider that our choice of

δ= 0.83 is reasonably justified.

Finally, from a theoretical point of view, the lower the discount factor δ, the greater the degree of

smoothness imposed to the fixed particles. Likewise, the larger the δ value, the lower the degree of

smoothness; if, for instance, δ = 1 was used, then no jittering would be performed. We consider that

the choice of δ = 0.83 allows us to properly diversify the fixed parameters particles and at the same

time to obtain very good statistical performance.
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(a) Latent state (volatility): xt
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(b) Mean level parameter: µ

Figure C.1: SARV(1) model: Impact of discount factor δ on the estimation of the states x (volatility in

upper panel) and the mean-level parameter µ comparing the SIRJ and LW PF variants. Results shown

for T = 1000 and Np = 5000.
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(a) Autoregressive parameter φ
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(b) Transition variance parameter: σ2
η

Figure C.2: SARV(1) model: Impact of discount factor δ on the estimation of the persistence and the

volatility of volatility parameters φ (upper panel) and σ2
η comparing the SIRJ and LW PF variants. Re-

sults shown for T = 1000 and Np = 5000.
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The above stated findings, seem to indicate that δ = 0.83 can be a good choice for the discount

factor δ; at least for the models entertained in this work. Thus, we must admit that though we consider

this a very positive and promising result, we cannot and do not want to extrapolate this to any model.

The MC results suggest that the right choice for the discount factor seemingly depends on the type of

model at hand. Thus, our suggestion is that the practitioner must entertain different values using as a

guide previously found results. Said that, an in-deep study of the effect of the discount factor on the

quality of the estimation is a matter of further study.


