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ABSTRACT 
 
This paper describes the results of the application of Uncertainty Quantification methods to a railway vehicle 
dynamical example. Uncertainty Quantification methods take the probability distribution of the system parameters 
that stems from the parameter tolerances into account in the result. In this paper the methods are applied to a low-
dimensional vehicle dynamical model composed by a two-axle bogie, which is connected to a car body by a lateral 
linear spring, a lateral damper and a torsional spring. 
Their characteristics are not deterministically defined, but they are defined by probability distributions. The model - 
but with deterministically defined parameters - was studied in [1], and this article will focus on the calculation of the 
critical speed of the model, when the distribution of the parameters is taken into account. 
Results of the application of the traditional Monte Carlo sampling method will be compared with the results of the 
application of advanced Uncertainty Quantification methods such as generalized Polynomial Chaos (gPC) [2]. We 
highlight the computational performance and fast convergence that result from the application of advanced 
Uncertainty Quantification methods. Generalized Polynomial Chaos will be presented in both the Galerkin and 
Collocation form with emphasis on the pros and cons of each of those approaches. 
 
Keywords: railway vehicle dynamics, nonlinear dynamics, uncertainty quantification, generalized polynomial chaos, 
high-order cubature rules. 
 

1. INTRODUCTION 

In the engineering field, deterministic models have been extensively exploited to 
describe dynamical systems and their behaviors. These have proven to be useful in the 
design phase of the engineering production, but they always fell short in providing 
indications of the reliability of certain designs over others. The results obtained by one 
deterministic experiment describe, in practice, a very rare case that likely will never 
happen. However, we are confident that this experiment will explain most of the 
experiments in the vicinity of it, i.e. for small variation of parameters. This assumption is 
wrong, in particular for realistic nonlinear dynamical systems, where small perturbations 
can cause dramatic changes in the dynamics. It is thus critical to find a measure for the 
level of our knowledge of a dynamical system, in order to be able to make reasonable risk 
analysis and design optimization. 

Risk analysis in the railway industry is critical for as well the increase of the safety as 
for targeting investments. Railway vehicle dynamics are hard to study even in the 
deterministic case, where strong nonlinearities appear in the system. A lot of phenomena 



develop within such dynamical systems and the interest of the study could be focused on 
different parameters, such as ride comfort or wear of the components. This work will 
instead focus on ride safety when high-speeds are reached and the hunting motion 
develops. The hunting motion is a well known phenomenon characterized by periodic as 
well as chaotic lateral oscillations, due to the wheel-rail contact forces, that can appear at 
different speeds depending on the vehicle design. This motion can be explained and 
studied with notions from nonlinear dynamics [3], as well as suitable numerical methods 
for non-smooth dynamical systems [4]. It is well known that the behavior of the hunting 
motion is parameter dependent, thus good vehicle designs can increase the critical speed 
where the hunting motion starts. This also means that suspension components need to be 
carefully manufactured in order to really match the constructor’s expectations. However, 
no manufactured component will ever match the simulated ones. Thus epistemic 
uncertainties, for which we have no evidence, and aleatoric uncertainties, for which we 
have a statistical description, appear in the system as a level of knowledge of the real 
parameters [5]. 

Uncertainty quantification (UQ) tries to address the question: “assuming my partial 
knowledge of the design parameters, how reliable are my results?”.  The UQ field can 
then be split in the study of rare events (e.g. breaking probability), that develop at the tails 
of probability distributions, and the study of parameter sensitivity, that focus on events 
with high probability. This work will focus on the sensitivity of the critical speed of a 
railway vehicle model to the suspension parameters. 

2. THE VEHICLE MODEL 

This work will investigate the dynamics of the well known Cooperrider model [1] 
shown in Fig. 1. The model is composed by two conical wheel sets rigidly connected to a 
bogie frame, that is in turn connected to a fixed car body by linear suspensions: a couple 
of lateral springs and dampers and one torsional spring.  

 
Fig. 1: Top view of the Cooperrider bogie model. 

We use the governing equations of this dynamical system as in [1]: 
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െ ଵݍሺ்ܨ െ  ,ଶሻݍ݄ܽ
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(1) 

where ܦଶ, ݇ସ and ݇଺ are the damping coefficient and the stiffness coefficients 
respectively, ܨ௫ and ܨ௬ are the lateral and longitudinal creep forces and ்ܨ is the flange 
force. 

The ideally stiff bogie runs on a perfect straight track where the constant wheel-rail 
friction enters the system through the lateral and longitudinal creep-forces: 
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The flange forces are approximated by a very stiff non-linear spring with a dead band: 

ሻݔሺ்ܨ ൌ ቐ
exp൫െߙ ൫ݔ െ ⁄௙൯ݔ ൯ െ ݔߚ െ ,	ߢ 							0 ൑ ݔ ൏ ܾ
݇଴ ⋅ ሺݔ െ ,	ሻߜ ܾ ൑ ݔ
െ்ܨሺെݔሻ	, ݔ ൏ 0

		, 

The parameters used for the analysis are listed in the following: 

݉ ൌ 4963	݇݃ ݄ ൌ 1.5 ݉ ܽ ൌ 0.7163	݉ 
ܫ ൌ 8135	݇݃ ⋅ ݉ଶ ܦଶ ൌ 29200 ܰ ⋅ ݉/ݏ ݇଴ ൌ 14.60 ⋅ 10଺	ܰ/݉
݇ସ ൌ 0.1823 ⋅ 10଺	ܰ/݉ ݇଺ ൌ 2.710 ⋅ 10଺ ܰ/݉ ߣ ൌ 0.05 
଴ݎ ൌ 0.4572	݉ ܾ ൌ 0.910685 ⋅ 10ିଶ ݉ ߶ ൌ 0.60252 
߰ ൌ ܾܽߨܩ 0.54219 ൌ 6.563 ⋅ 10଺ ܰ ܰߤ ൌ 10ସ	ܰ 
ߜ ൌ ߙ ݉	0.0091 ൌ 0,1474128791 ⋅ 10ିଷ ߚ ൌ 1,016261260 
ߢ ൌ ௙ݔ 1,793756792 ൌ 0.9138788366 ⋅ 10ିଶ  
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3. UNCERTAINTY QUANTIFICATION 

The stochastic solution of the system is now represented by ࢗሺݐ,  is a ࢆ ሻ, whereࢆ
vector of random variables distributed according to (3). We can think about it as a 
function that spans over a three dimensional random space. In this work we will restrict 
our interest in the first few moments of this solution, namely the mean ࡱሾࢗሺݐ,  ሻሿ andࢆ
variance ࢂሾࢗሺݐ,  ሻሿ, but the following is valid for higher moments too. Mean and varianceࢆ
are defined as 

ሻݐሺࢗࣆ ൌ ,ݐሺࢗሾࡱ ࢆሻሿఘࢆ ൌමࢗሺݐ, ࢠሻ݀ࢠሺࢆߩሻࢠ ,

ሻݐଶሺࢗ࣌ ൌ ,ݐሺࢗሾࢂ ࢆሻሿఘࢆ ൌමቀࢗሺݐ, ሻࢠ െ ሻቁݐሺࢗߤ
ଶ
		ࢠሻ݀ࢠሺࢆߩ ,

 (4)

where  ࢆߩሺࢠሻ is the probability density function of the random vector ࢆ and the integrals 
are computed over its domain. 

A straightforward way of computing the moments of the solution is to approximate the 
integrals as: 

ሻݐሺࢗࣆ ൎ ሻݐሺࢗഥࣆ ൌ
1
ܯ
෍ ,ݐ൫ࢗ ሺ௝ሻ൯ࢆ

ெ

௝ୀଵ
,

ሻݐଶሺࢗ࣌ ൎ ഥ࣌ࢗଶሺݐሻ ൌ
1

ܯ െ 1
෍ ቀࢗ൫ݐ, ሺ௝ሻ൯ࢆ െ ሻቁݐሺࢆߤ̅

ଶெ

௝ୀଵ
,
 (5)

where ൛ࢆሺ௝ሻൟ
௃ୀଵ

ெ
 are realizations sampled randomly from the probability distribution of ࢆ. 

This is the Monte-Carlo (MC) method and it has a probabilistic error of ࣩ൫1 ⁄ܯ√ ൯. 
Even if MC methods are really robust and versatile, such a slow convergence rate is 

problematic when the solution of a single realization of the system is computationally 
expensive. Alternative sampling methods are the Quasi Monte-Carlo methods (QMC). 
These can provide convergence rates of ࣩሺሺlogܯሻௗ/ܯሻ, where ݀ is the dimension of the 
random space. They use low discrepancy sequences in order to uniformly cover the 
sampling domain. Without presumption of completeness, in this work we will consider 
only the Sobol sequence as a measure of comparison with respect to other advanced UQ 
methods. QMC methods are known to work better than MC methods when the integrand 
is sufficiently smooth, whereas they can completely fail on an integrand of unbounded 
variation [6]. Furthermore, randomized versions of the QMC method are available in 
order to improve the variance estimation of the method. 

3.1 Generalized Polynomial Chaos (gPC) 

Polynomial Chaos was first used by Wiener studying the decomposition of Gaussian 
processes [7]. It has been recently extended by Xiu for generalized distribution functions 
[2]. The idea is to expand the input parameters with respect to a set of ܰ orthogonal 
polynomials that span ேܲ

ௗ and seek a solution such that its residue is orthogonal to ேܲ
ௗ. 

Depending on the knowledge of the analytical form of ࢆߩሺࢠሻ a strong convergence (e.g. in 
the ܮଶ-norm) or a weak convergence (in probability) can be achieved. Furthermore, given 



the projection operator ߨே: ఠଶܮ ሺ࣬ሻ → ேܲ
ௗ, with measure ߱, the following result holds for 

unbounded domains [8]: 

ࢗ‖ െ ሻ‖௅ഘమࢗேሺߨ ൑ ିܰܥ
௣
ଶ‖ࢗ‖ுഘ೛  (6)

where ቀܪఠ
௣, ‖∙‖ுഘ೛ቁ is the Sobolev space and ݌ is its order. 

For Gaussian random variables, strong convergence is guaranteed by the Hermite 
probabilists’ polynomials: 

࣢௡ାଵሺݔሻ ൌ ሻݔ࣢௡ሺݔ െ ݊࣢௡ିଵሺݔሻ, ݊ ൐ 0 , 

න ࣢௠ሺݔሻ࣢௡ሺݔሻ
1

ߨ2√
݁ି

௫మ
ଶ ݔ݀

ஶ

ିஶ
ൌ ௡௠ߜ௡ߛ ൌ ݊! ௡௠ߜ . 

(7)

Thus, let’s consider the set of basis ሼ࣢௞ሺࢆሻሽ|௞|ஸே, where ݇ is a multi-index, that span 
the 3-dimensional random space up to the polynomial order ܰ and let ࢻሺࢆሻ ൌ ࣆ ൅  be ࢆ࣌
the parameterization of the random space where ࣆ and ࣌ are the vectors of means and 
standard deviations of the input parameters. We can now rewrite the random input and the 
solution as: 

ሻࢆேሺࢻ ൌ ෍ ሻࢆ࣢௞ሺ	ෝ௞ࢻ
଴ஸ|௞|ஸே

, ෝ௞ࢻ ൌ
1
௞ߛ
මࢻሺࢠሻ ࣢௞ሺࢠሻࢆߩሺࢠሻ݀ࢠ			, 

,ݐேሺࢗ ሻࢆ ൌ ෍ ሻࢆ࣢௞ሺ	ሻݐෝ௞ሺࢗ
଴ஸ|௞|ஸே

, ሻݐෝ௞ሺࢗ ൌ
1
௞ߛ
මࢗሺݐ, ሻࢠ ࣢௞ሺࢠሻࢆߩሺࢠሻ݀ࢠ		. 

(8)

We then seek ࢗேሺݐ, |݇| ሻ that for allࢆ ൑ ܰ satisfies the Galerkin formulation 

ቊ
,ݐேሺࢗሾ߲௧ࡱ ࢆሻሿఘࢆ࣢௞ሺ	ሻࢆ ൌ ,ݐேሺࢗ൫ࣦൣࡱ ሻ൯ࢆ ࣢௞ሺࢆሻ൧ఘࢆ

, ሺ0, ܶሿ

ෝ௞ሺ0ሻࢗ ൌ ,ෝ଴,௞ࢗ ݐ ൌ 0
 (9) 

where the expectation operator is the projection with measure ࢆߩሺࢠሻ and ࣦ is the operator 
defined by the right hand side of the deterministic equation. This gives a system of 

ܭ ൌ ∑ ቀ݅ ൅ ሺ݀ െ 1ሻ
݀ െ 1

ቁே
௜ୀ଴  coupled equations that can be treated with standard ODE solvers. 

The moments of the solution can then be recovered by: 
ሻݐሺࢗࣆ ൎ ,ݐேሺࢗሾࡱ ࢆሻሿఘࢆ ൌ ሻݐෝ଴ሺࢗ , 

ሻݐଶሺࢗ࣌ ൎ ,ݐேሺࢗሾࢂ ࢆሻሿఘࢆ ൌ ෍ ௞ࢽ
ଵஸ|௞|ஸே

ෝ௞ࢗ
ଶሺݐሻ . (10)

3.2 Stochastic Collocation Method (SCM) 

Collocation methods require the residual of the governing equations to be zero at the 

collocation points ൛ࢆሺ௝ሻൟ
௝ୀଵ

ொ
, i.e. 

ቊ
߲௧ࢗ൫ݐ, ࢆ

ሺ௝ሻ൯ ൌ ࣦ ቀࢗ൫ݐ, ሺ௝ሻ൯ቁࢆ , ሺ0, ܶሿ

																						 ሺ0ሻࢗ ൌ ,଴ࢗ ݐ ൌ 0
 (11)

Then we can find ࢝ሺݐ, ,ݐሺࢗ ሻ that approximatesࢆሻ in the polynomial space Πሺࢆ  ሻ. Weࢆ
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5. CONCLUSIONS 

Two approaches to the stochastic treatment of a railway dynamical system have been 
presented. MC doesn’t make any assumption on the regularity of the stochastic solution, 
thus it is outperformed by QMC, gPC and SCM, when a certain level of smoothness is 
present. In particular gPC and SCM can be 100 times faster than MC for low-dimensional 
problems. For high-dimensional problems gPC/SCM methods suffer from the “curse of 
dimensionality”. Techniques, such as sparse grids [9], are available to reduce this effect, 
but these all rely on the smoothness of the solution and in most cases only work for 
standard distributions. 

We have shown how modern techniques for UQ can improve efficiency in the 
computation of statistics for models with a limited number of uncertainties. This 
represents a useful tool for engineers during the design phase, where potential risks due to 
uncertainties can be readily detected. 
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