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ABSTRACT

This paper describes the results of the application of Uncertainty Quantification methods to a railway vehicle
dynamical example. Uncertainty Quantification methods take the probability distribution of the system parameters
that stems from the parameter tolerances into account in the result. In this paper the methods are applied to a low-
dimensional vehicle dynamical model composed by a two-axle bogie, which is connected to a car body by a lateral
linear spring, a lateral damper and a torsional spring.

Their characteristics are not deterministically defined, but they are defined by probability distributions. The model -
but with deterministically defined parameters - was studied in [1], and this article will focus on the calculation of the
critical speed of the model, when the distribution of the parameters is taken into account.

Results of the application of the traditional Monte Carlo sampling method will be compared with the results of the
application of advanced Uncertainty Quantification methods such as generalized Polynomial Chaos (gPC) [2]. We
highlight the computational performance and fast convergence that result from the application of advanced
Uncertainty Quantification methods. Generalized Polynomial Chaos will be presented in both the Galerkin and
Collocation form with emphasis on the pros and cons of each of those approaches.

Keywords: railway vehicle dynamics, nonlinear dynamics, uncertainty quantification, generalized polynomial chaos,
high-order cubature rules.

1. INTRODUCTION

In the engineering field, deterministic models have been extensively exploited to
describe dynamical systems and their behaviors. These have proven to be useful in the
design phase of the engineering production, but they always fell short in providing
indications of the reliability of certain designs over others. The results obtained by one
deterministic experiment describe, in practice, a very rare case that likely will never
happen. However, we are confident that this experiment will explain most of the
experiments in the vicinity of it, i.e. for small variation of parameters. This assumption is
wrong, in particular for realistic nonlinear dynamical systems, where small perturbations
can cause dramatic changes in the dynamics. It is thus critical to find a measure for the
level of our knowledge of a dynamical system, in order to be able to make reasonable risk
analysis and design optimization.

Risk analysis in the railway industry is critical for as well the increase of the safety as
for targeting investments. Railway vehicle dynamics are hard to study even in the
deterministic case, where strong nonlinearities appear in the system. A lot of phenomena



develop within such dynamical systems and the interest of the study could be focused on
different parameters, such as ride comfort or wear of the components. This work will
instead focus on ride safety when high-speeds are reached and the hunting motion
develops. The hunting motion is a well known phenomenon characterized by periodic as
well as chaotic lateral oscillations, due to the wheel-rail contact forces, that can appear at
different speeds depending on the vehicle design. This motion can be explained and
studied with notions from nonlinear dynamics [3], as well as suitable numerical methods
for non-smooth dynamical systems [4]. It is well known that the behavior of the hunting
motion is parameter dependent, thus good vehicle designs can increase the critical speed
where the hunting motion starts. This also means that suspension components need to be
carefully manufactured in order to really match the constructor’s expectations. However,
no manufactured component will ever match the simulated ones. Thus epistemic
uncertainties, for which we have no evidence, and aleatoric uncertainties, for which we
have a statistical description, appear in the system as a level of knowledge of the real
parameters [5].

Uncertainty quantification (UQ) tries to address the question: “assuming my partial
knowledge of the design parameters, how reliable are my results?”. The UQ field can
then be split in the study of rare events (e.g. breaking probability), that develop at the tails
of probability distributions, and the study of parameter sensitivity, that focus on events
with high probability. This work will focus on the sensitivity of the critical speed of a
railway vehicle model to the suspension parameters.

2. THE VEHICLE MODEL

This work will investigate the dynamics of the well known Cooperrider model [1]
shown in Fig. 1. The model is composed by two conical wheel sets rigidly connected to a
bogie frame, that is in turn connected to a fixed car body by linear suspensions: a couple
of lateral springs and dampers and one torsional spring.
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Fig. 1: Top view of the Cooperrider bogie model.
We use the governing equations of this dynamical system as in [1]:



mgy = —2D,qy — 2kyq1 — Z[Fx(fxlyfyl) + Fx(fxzyfyz)] — Fr(qy + haqy)
— Fr(q1 — hagy), (1)

qu = _k6q2 - Zha[Fx(ExﬂEJﬁ) - Fx(fxz’gh)] - za[FJ/(ExﬂE)ﬁ) + FY(ExZ'EYZ)]
— ha[Fr(q, + haq,) — Fr(q: — hag,)],
where D,, k, and kg are the damping coefficient and the stiffness coefficients
respectively, F, and F, are the lateral and longitudinal creep forces and Fr is the flange
force.
The ideally stiff bogie runs on a perfect straight track where the constant wheel-rail
friction enters the system through the lateral and longitudinal creep-forces:
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where the creepages are given by:
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G =y Hhay =, &, =0+ (q+hag)
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The flange forces are approximated by a very stiff non-linear spring with a dead band:

exp(—a/(x—xf))—ﬁx—ic, 0<x<b

Fr(x) =4ky - (x—96), b<x ,
—Fr(—x), x<0
The parameters used for the analysis are listed in the following:
m = 4963 kg h=15m a=0.7163m
I = 8135 kg - m? D, = 29200 N - s/m k, = 14.60 - 10° N/m
k, = 0.1823-10° N/m k¢ = 2.710-10° N/m A =0.05
o = 0.4572m b=0.910685-10"2%m ¢ = 0.60252
Y = 0.54219 Grab = 6.563 - 10° N uN = 10* N
0 =0.0091m a =0,1474128791 - 1073 B =1,016261260

Kk = 1,793756792 x; = 0.9138788366 - 1072



2.1 Non linear dynamics of the deterministic model

The dynamics of the deterministic model at high speed have been illustrated in [1]. The
existence of a subcritical Hopf-bifurcation has been detected at v, = 66.6107 m/s. Fig. 2
shows the entire bifurcation diagram of the deterministic system. The linear critical speed
Is obtained by observation of the stability of the trivial solution using the eigenvalues of
the Jacobian of the system. The nonlinear critical speed, characteristic in subcritical Hopf-
bifurcations, is found at vy;, = 62.0206 m/s using a ramping method, where the speed is
quasi-statically decreased, according to
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Fig. 2: Non-linear dynamics of the deterministic system. The subcritical Hopf-bifurcation is

highlighted and the critical speed is determined exactly at v, = 66.6107 m/s. The ramping
method is then used in order to detect the non-linear critical speed at vy; = 62.0206 m/s.

2.2 The stochastic model

Let’s now consider that the suspensions are provided by the manufacturer with a
certain level of working accuracy. In this initial study we will use Gaussian distributions
to describe such uncertainties:

N N\?2
ke ~ N (pr, 0f) = N<2.71 .10 —,1.84 - 10'° (E) ) ,  (std. ~ 5%)

3

N N2
ko~ (g, 0f,) = N<9.12 -10* —,4.15- 107 (E) ) , (std. ~7%) (3

3

S 512
D,~N(up,, 0%,) = N<1.46-1O4N-E,1.07 - 10° (N 'E) ) . (std. ~ 7%)

where the symmetry of the model was considered in parameters k, and D,.

Now the deterministic model is turned into a stochastic model, where the single
solution represents a particular realization and probabilistic moments can be used to
describe the statistics of the stochastic solution.



3. UNCERTAINTY QUANTIFICATION

The stochastic solution of the system is now represented by q(t,Z), where Z is a
vector of random variables distributed according to (3). We can think about it as a
function that spans over a three dimensional random space. In this work we will restrict
our interest in the first few moments of this solution, namely the mean E[q(t,Z)] and
variance V[q(t, Z)], but the following is valid for higher moments too. Mean and variance
are defined as

ko(© = ElaCe. D), = [|[ att.2ps ez |
530 =Via@t. Dy, = [[[ (4.2 - 1) 0,1z ,

where pz(z) is the probability density function of the random vector Z and the integrals
are computed over its domain.

A straightforward way of computing the moments of the solution is to approximate the
integrals as:

(4)

1 M .
O ~ B = q(t29)
Jj=1
1 M _ 2
G0 ~750 =), (a2 -mO)

where {Z(f)}y=1 are realizations sampled randomly from the probability distribution of Z.

This is the Monte-Carlo (MC) method and it has a probabilistic error of 0(1/vVM).

Even if MC methods are really robust and versatile, such a slow convergence rate is
problematic when the solution of a single realization of the system is computationally
expensive. Alternative sampling methods are the Quasi Monte-Carlo methods (QMC).
These can provide convergence rates of O((log M)?/M), where d is the dimension of the
random space. They use low discrepancy sequences in order to uniformly cover the
sampling domain. Without presumption of completeness, in this work we will consider
only the Sobol sequence as a measure of comparison with respect to other advanced UQ
methods. QMC methods are known to work better than MC methods when the integrand
is sufficiently smooth, whereas they can completely fail on an integrand of unbounded
variation [6]. Furthermore, randomized versions of the QMC method are available in
order to improve the variance estimation of the method.

()

3.1 Generalized Polynomial Chaos (gPC)

Polynomial Chaos was first used by Wiener studying the decomposition of Gaussian
processes [7]. It has been recently extended by Xiu for generalized distribution functions
[2]. The idea is to expand the input parameters with respect to a set of N orthogonal
polynomials that span P and seek a solution such that its residue is orthogonal to Pg.
Depending on the knowledge of the analytical form of p,(z) a strong convergence (e.g. in
the L?-norm) or a weak convergence (in probability) can be achieved. Furthermore, given



the projection operator my: L2 (R) — P2, with measure w, the following result holds for
unbounded domains [8]:

D
llg —mn (@2, < CN"2lIqll,» (6)

where (Hf), ||-||H5)) is the Sobolev space and p is its order.

For Gaussian random variables, strong convergence is guaranteed by the Hermite
probabilists’ polynomials:
Hpi1(x) = xH,(x) —nH,,_;(x), n>0,
(7)

(9} 1 _ﬁ
f “H‘m(x)}[n(x)\/T—n_e 2dx = Yn5nm = nl 6nm '

Thus, let’s consider the set of basis {#} (Z)} <y, Where k is a multi-index, that span

the 3-dimensional random space up to the polynomial order N and let «(Z) = u + 6Z be
the parameterization of the random space where u and o are the vectors of means and
standard deviations of the input parameters. We can now rewrite the random input and the
solution as:

1
W@ =Y @@, a=- || a@ 1@
0<|k|sN Vi 1 (8)
weD= Y GOHR@D, 6® =[] a2 H@Dp@iz

0<|k|sN
We then seek q (t, Z) that for all |k| < N satisfies the Galerkin formulation

{E[atq,v(t, 2) 1 (D), = E[L(qn(t. D)) H,(D)] . (0, T] )
q,(0) = o, t=0

where the expectation operator is the projection with measure p,(z) and L is the operator

defined by the right hand side of the deterministic equation. This gives a system of

[+ (d-1

The moments of the solution can then be recovered by:

e = Elqy(t, 2)],, = Go(t) |
o;(t) = Viqn(t, 2)],, = z Ve Ga(t) . (10)

1<|k|sN
3.2 Stochastic Collocation Method (SCM)

Collocation methods require the residual of the governing equations to be zero at the
collocation points {Z()}° | i.e.
j=1

{atq(t, z0) = £(q(t,29)),  (0,T] 1)

q0) =¢qo, t=0
Then we can find w(t, Z) in the polynomial space I1(Z) that approximates q(t, Z). We

) coupled equations that can be treated with standard ODE solvers.



can for instance use projection rules over a set of Hermite polynomials, so that:

wy(t2) = ) W) H (@),

|k|sN

1 1 © (12)
4 = [[] a2 3 @ps @1z ~ B = = a(t,2) 54200
k k “
Jj=1

where we used a cubature rule with points and weights {z0, a(f)}le. Cubature rules with

different accuracy levels and sparsity exist. In this work we will use simple tensor product
structured Gauss cubature rules, that are the most accurate but scale with ©(m%), where
m is the number of points in one dimension and d is the dimension of the random space.
The fast growth of the number of collocation points with the dimensionality goes under
the name of “curse of dimensionality” and can be addressed using more advanced
cubature rules such as Smolyak sparse grids [9].

4. UNCERTAINTY QUANTIFICATION ON RAILWAY VEHICLE DYNAMICS

Uncertainty quantification is recently gaining much attention from many engineering
fields and in vehicle dynamics we can already find some contributions on the topic. In
[10] a railway vehicle dynamic problem with uncertainty on the suspension parameters
was investigated using MC method coupled with techniques from Design of Experiments.
In [11] gPC was first applied to a linearized model of a simple vehicle on uneven terrain.

Here gPC and SCM will be applied to the simple Cooperrider bogie frame in order to
study its behavior with uncertainties and the results will be compared to the one obtained
by the MC method. Fig. 3 shows the application of gPC of order 5 on the model running
at constant speed. The method solves a system of 140 coupled equations and is able to
approximate the first two moments of the solution.
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Fig. 3: (Right) Mean and Variance of the stochastic solution for the lateral displacement of the
model running at constant speed. (Left) Convergence of Monte Carlo variance to the gPC
solution. 100, 500 and 1K realizations has been used for Monte Carlo method.

Comparable results can be obtained using SCM where 216 collocation points are used.
Both the methods perform well as long as the solution is sufficiently smooth in the



random space. This is clearly not the case when bifurcations occur and different
realizations of random parameters determine different attractors for the solutions. In this
case the spectral convergence expected from gPC will drop to linear convergence.

The focus of this work is on the determination of the nonlinear critical speed with
uncertainties, so the investigation of the stochastic dynamics w.r.t. time will be
disregarded here. Fig. 4 shows the SCM method applied to the model with 1D uncertainty
on parameter k,, for the determination of the first two moments of the nonlinear critical
speed. The estimation done by the SCM is already satisfactory at low order and little is
gained by increasing it. This means that the few first terms of the expansion (12) are
sufficient in approximating the nonlinear critical speed distribution.
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> 3 4 5 5 7 8 9 10 Sampling - fEval = 2
=623 1.4} — MCmean
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Fig. 4: SCM on the model with 1D uncertainty on parameter k,. Left, estimation of mean and
variance of the nonlinear critical speed. Right, histograms of NL critical speeds obtained using
500 MC simulations of model (1)-(2) and 10> realizations using the approximated stochastic
solution (12) with only 2 function evaluations. The standard deviation is shown as a shaded
confidence interval, blue for SCM and red for MC.

Fig. 5 shows the SCM method applied to the same problem with 1D uncertainty on the
torsional spring stiffness k.. Again the first few terms in expansion (12) are sufficient in
order to give a good approximation of the nonlinear critical speed distribution. We can
also notice that the torsional spring stiffness k¢ has an higher influence on the critical
speed than k,.

Fig. 6 shows the SCM method on the problem with uncertainty on parameters kg, k,
and D,. Again we see that the a low-order SCM approximation is sufficient to get the
most accurate solution.

Table 1 shows the final results with maximum accuracy, obtained using the three
methods. We can observe that the variances in the multiple-dimensional cases are almost
equal to the sum of the single-dimensional cases. This means that there is no nonlinear
effect appearing due to the consideration of multiple uncertainties in this case.
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Fig. 6: SCM on 3D uncertainty. Left, estimation of the mean and variance of the non-linear
critical speed. Right, histograms of nonlinear critical speeds.

MC (500 eval.) QMC (250 eval) SCM (max. order)
L o’ I o’ L o?

ke 62,259304 | 1,6427635 | 62,244701 | 1,4731305 | 62,229081 | 1,5544725
k, 62,225047 | 0,1361424 | 62,251760 | 0,1359384 | 62,247742 | 0,1431684
D, 62,234186 | 0,0248543 | 62,251042 | 0,0238190 | 62,248916 | 0,0250455
ke, ky 62,222645 | 1,5339337 | 62,223559 | 1,6168049 | 62,281098 | 1,6861942
ke, D, 62,176463 | 1,7153238 | 62,244451 | 1,4967552 | 62,281913 | 1,5677285
k,, D, 62,247277 | 0,1739290 | 62,250638 | 0,1597684 | 62,301024 | 0,1690544
ke, k,, D,1 | 62,183424 | 1,6806237 | 62,233991 | 1,6287313 | 62,229247 | 1,7236020

Table 1: Estimated mean and variance of the nonlinear critical speed using MC, QMC and SCM.

! For the full 3D uncertainty problem, the number of evaluation used for MC has been increased to 103.




5. CONCLUSIONS

Two approaches to the stochastic treatment of a railway dynamical system have been
presented. MC doesn’t make any assumption on the regularity of the stochastic solution,
thus it is outperformed by QMC, gPC and SCM, when a certain level of smoothness is
present. In particular gPC and SCM can be 100 times faster than MC for low-dimensional
problems. For high-dimensional problems gPC/SCM methods suffer from the “curse of
dimensionality”. Techniques, such as sparse grids [9], are available to reduce this effect,
but these all rely on the smoothness of the solution and in most cases only work for
standard distributions.

We have shown how modern techniques for UQ can improve efficiency in the
computation of statistics for models with a limited number of uncertainties. This
represents a useful tool for engineers during the design phase, where potential risks due to
uncertainties can be readily detected.
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