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INTRODUCTION

Marine aggregates of biogenic origin, known as
marine snow, are considered to play a major role in
the ocean’s particle flux (Alldredge & Silver 1988,
Graham et al. 2000, Stemmann & Boss 2012) due to
their high abundance and rapid sinking rates (Fow -
ler & Knauer 1986, Alldredge & Silver 1988). This

sinking of marine snow is a major mechanism of
particulate carbon transport from the productive
surface waters to the seafloor. Hence, marine snow
represents an important contribution to carbon flux
and sequestration. However, marine snow can also
be a food resource for zooplankton, thereby con-
tributing to the production of higher trophic levels
(Dilling et al. 1998, Kiørboe 2011a,b). The link
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ABSTRACT: Marine aggregates of biogenic origin, known as marine snow, are considered to play
a major role in the ocean’s particle flux and may represent a concentrated food source for zoo-
plankton. However, observing the marine snow−zooplankton interaction in the field is difficult
since conventional net sampling does not collect marine snow quantitatively and cannot resolve
so-called thin layers in which this interaction occurs. Hence, field evidence for the importance of
the marine snow−zooplankton link is scarce. Here we employed a Video Plankton Recorder (VPR)
to quantify small-scale (metres) vertical distribution patterns of fragile marine snow aggregates
and zooplankton in the Baltic Sea during late spring 2002. By using this non-invasive optical sam-
pling technique we recorded a peak in copepod abundance (ca. 18 ind. l−1) associated with a pro-
nounced thin layer (50 to 55 m) of marine snow (maximum abundance of 28 particles l−1), a feature
rarely resolved. We provide indirect evidence of copepods feeding on marine snow by computing
a spatial overlap index that indicated a strong positively correlated distribution pattern within the
thin layer. Furthermore we recorded images of copepods attached to aggregates and demonstrat-
ing feeding behaviour, which also suggests a trophic interaction. Our observations highlight the
potential significance of marine snow in marine ecosystems and its potential as a food resource for
various trophic levels, from bacteria up to fish.
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between marine snow and planktonic organisms is
presently underappreciated due to their patchy dis-
tribution, which can occur even in a homogeneously
mixed water column (Folt & Burns 1999). The patchy
distribution of plankton is a well-studied phenome-
non and of great relevance for biological productiv-
ity, trophic interactions and food web dynamics in
marine ecosystems (Mackas et al. 1985, Pinel-Alloul
1995). However, conventional net sampling cannot
quantitatively sample marine snow and thus is
unable to define small-scale distribution patterns.
Recent advances in optical sampling methods, how-
ever, have allowed observations of plankton patches
from microscale (<1 m) to small scale (1 to 10 m)
(e.g. Davis et al. 1992, Ashjian et al. 2001, Jacobsen
& Norrbin 2009).

Typical planktonic features on small vertical scales
are thin layers, which are driven by physical and bio-
logical processes (McManus et al. 2003, Durham &
Stocker 2012). Physical processes identified to con-
tribute to thin layers include water column stratifica-
tion, vertical shear, and shearing by internal waves
(Franks 1995, McManus et al. 2005). Often these thin
layers are found in association with pycnoclines
where the density gradient causes the accumulation
of particles and plankton organisms (MacIntyre et al.
1995). Biological mechanisms bringing organisms to
thin layers include diel vertical migration, predator
avoidance, aggregation in food patches and mate
search (e.g. Folt & Burns 1999, Woodson & Mac-
Manus 2007). Daly & Smith (1993) suggested that
physical forces dominate the formation of large-scale
plankton patches while biotic processes become
more important at smaller spatial scales. These abi-
otic and biotic processes lead to high concentrations
of bacteria, phytoplankton, zooplankton and/or mar-
ine snow (Alldredge et al. 2002, McManus et al.
2003, 2008) that can exceed the concentration of the
surrounding environment by orders of magnitude.
Hence, these layers may be regions of enhanced bio-
logical productivity and interactions (Sullivan et al.
2010a) and have been detected in a variety of marine
systems including estuaries (Bochdansky & Bollens
2009), coastal shelves (McManus et al. 2005) and the
open ocean (Cowles et al. 1998). Conceivably thin
layers may have an extensive impact on marine eco-
system dynamics, and the magnitude of their impor-
tance is just now beginning to be quantified (All-
dredge et al. 2002, Durham & Stocker 2012, Lyons &
Dobbs 2012).

Laboratory feeding studies and gut content analy-
ses have provided evidence that marine snow is a
potential food source for zooplankton (Dilling et al.

1998), even if dispersed phytoplankton cells are
available (Dilling & Brzezinski 2004). This observa-
tion might be especially important since larger crus-
tacean zooplankton would be able to utilize nano-
and microzooplankton that are colonizing marine
snow aggregates and usually too small to be cap-
tured (Kiørboe 2001). However, little is known from
in situ studies if aggregates are commonly grazed by
zooplankton in the field (Kiørboe 2000, Jackson &
Checkley 2011).

Here we employed a Video Plankton Recorder
(VPR) to quantify fragile marine snow aggregates
and zooplankton and their relative small-scale verti-
cal distribution. Using this non-invasive optical sam-
pling technique we recorded a pronounced thin layer
of marine snow and copepods associated with a den-
sity gradient, an association in a feature rarely ob -
served. We provide indirect evidence of copepods
feeding on marine snow aggregates due to a strong
spatial overlap within the thin layer, which is sup-
ported by images of copepods being attached to
aggregates.

MATERIALS AND METHODS

Study area

High-resolution images were obtained using the
VPR during a spring bloom cruise in April 2002 on
RV ‘Alkor’ in the Bornholm Basin in the central Baltic
Sea (Fig. 1). The Baltic Sea is the largest brackish
water area in the world. During summer a pro-
nounced thermocline is established in the Bornholm
Basin between 20 and 30 m depth while a strong
halocline in 50 to 60 m depth separates the water col-
umn throughout the whole year (Matthäus & Franck
1992). This strong physical stratification makes the
central Baltic Sea an ideal area for investigations on
thin layers.

VPR

The VPR (Seascan) is a modern optical underwater
instrument, i.e. a digital underwater camera system
towed by a research vessel. The VPR employed was
equipped with a high-resolution digital camera (Pul-
nix TM-1040) that records 25 image frames s−1. We
used a camera setting with a field of view of 0.7 ×
0.7 cm, a focal depth of 3.00 cm and a calibrated
image volume of 1.45 ml. The camera was set to the
largest magnification (f-zoom) due to the small parti-
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cle and plankton sizes in the sampling area. This
magnification was deemed suitable for imaging small-
sized adult calanoid copepod species like Acartia
spp., Temora longicornis and Pseudocalanus acus-
pes, known to dominate the mesozooplankton in the
Baltic Sea (Möllmann et al. 2000). Illumination for the
camera was provided by a strobe (Seascan, 20 W
Hamamatsu xenon bulb) with a pulse duration of 1 μs
that was synchronized with the camera shutter. Addi-
tionally, the VPR was equipped with hydrographic
and environmental sensors to measure temperature
and salinity (CTD) (Falmouth Scientific) as well as
fluorescence (Seapoint, model SCF).

The VPR was mounted on an equipment rack with
a v-fin depressor and towed continuously from near
bottom to near surface in an undulating way, to
obtain data from the whole water column. In order to
exclude the influence of turbulence in the ship’s
wake and to maintain a safe distance from the bot-
tom, the sampled layer was limited to below ~7 m

from the surface and above ~8 m from the bottom.
We towed the VPR between 23:00 and 11:00 h cover-
ing the night/day transition. The gear was towed at
1.5 m s−1 (4 knots) and covered a distance of 115 km
in total along a star-shaped transect (Fig. 1) with an
hourly mean sampling volume of 130.4 l (1565 l in
total).

Analysis and classification of images

Recorded images and sensor data were sent in real
time to an onboard unit via a fibre optic cable. Plank-
ton and other particle images were extracted from
each image frame as regions of interest (ROIs) using
the Autodeck image analysis software (Seascan) and
saved to the computer hard drive as TIFF files. Each
ROI was tagged using a time stamp to allow merging
with the hydrographic parameters that were written
to a separate logfile.
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Fig. 1. The Baltic Sea with the study area in the Bornholm Basin marked by a red square; the black star indicates the net
 sampling location. Upper right panel: density profile (σ, color-coded) along the Video Plankton Recorder (VPR) tow track; the 

black line indicates the VPR tow-yos
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Image classification

All images were classified automatically following
a method by Hu & Davis (2006), an approach that
includes an automatic correction step. This auto-
matic correction step involves the computation of a
con fusion matrix from a set of training images in
order to determine the detection of false positive
rates. These rates are used to correct abundances
estimated from the automatic classification results
for each category. Aside from the manual sorting
required to generate the initial training set of
images, this dual-classification method is fully auto-
matic and does not require subsequent manual cor-
rection of automatically sorted images. However, all
images were also revised manually to avoid major
misclassifications. Visual Plankton (Woods Hole
Oceanographic Institution), an image processing
and visualization application written in MATLAB
(Mathworks), was used throughout the process of
automatic classification. Once the ROIs were gener-
ated a representative and randomly picked subset
of a sufficient number of Training ROIs (trROIs)
(approximately 200, see Hu & Davis 2006) was man-
ually sorted into separate taxa or categories that
were later used by the automatic classifier. The fol-
lowing step involved feature extraction algorithms
that are used in image processing to detect, isolate
and measure portions or shapes (features) of a digi-
tised image. These features from the training ROIs
were then used to create 2 classifiers in parallel.
The first one was built from shape-based features
and is called ‘learning vector quantization neural
network’ (LVQ-NN). The second classifier was a
‘support vector machine’ (SVM) based on texture-
based features of the same training samples.
Detailed information about the operating modes of
both is given elsewhere (Tang et al. 1998, Hu &
Davis 2006).

Data handling

Only those taxa and categories of the training
samples that had a relatively large number of
images and yielded high automatic classification
accuracies were selected for automatic classification.
Some portions of the extracted images were not in
focus and hence not within the imaged volume.
Those images were sor ted out and put into the cate-
gory ‘blurry’. All copepod species were combined
into the general ‘copepod’ category, as the present
classification method cannot distinguish between all

genera or species. Rare plankton taxa and those
with low automatic classi fication accuracies were
sorted into the ‘other’  category. This group was
composed of larval fish, crustacean larvae, poly-
chaetes, fish eggs, appendicularians, echinoderm
larvae and gelatinous zooplankton (e.g. hydrome-
dusae and ctenophores). Marine snow aggregates
formed a category varying in shape and size and
yielded a high classification accuracy due to their
amorphous shapes and distinct texture. Representa-
tive example images of marine snow and copepods
are given in Fig. 2.

Additional net sampling

Depth-resolved plankton net samples were collec -
ted in close proximity to the VPR transect (Fig. 1). We

60

Fig. 2. Examples of VPR-derived images of (a) marine snow
and (b) copepods. The copepod category comprises all spe-
cies (e.g. Pseudocalanus acuspes females with egg sacs and 

Acartia spp.)
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used a Hydrobios Multinet (150 μm mesh size) for
comparison and ground-truthing of the VPR data and
to obtain taxonomic information on the species level
for copepods. Samples were taken between the sur-
face and close to the bottom (~70 m) in stacked 10 m
intervals and were immediately fixed in a borax-
buffered formaldehyde-seawater solution (4% final
formaldehyde concentration) for later analysis. Due
to a lack of direct overlap between taxonomic cate-
gories (because of different taxonomic identification
levels and sensitivity to fragile organisms) of net
samples and VPR data, a quantitative comparison
was only possible for the VPR-derived copepod cate-
gory. Net samples were sorted manually to copepod
species and stage (nauplii, copepodite stages C1 to
C5 and adult males or females). Copepodites and
adult copepods of all species were grouped together
for comparison. Nauplii data were not used for the
analysis.

Spatial overlap index

To assess the vertical overlap between copepods
and marine snow aggregates in the water column we
employed the spatial overlap index (O) described by
Williamson & Stoeckel (1990):

where z represents the depth strata, m is number of
depth points sampled, Nz is the density of copepods
at a given depth and nz is the density of marine snow
aggregates at a given depth. An overlap index of
<1 indicates spatial separation between the copepod
and marine snow, an index = 1 indicates a homoge-
neous distribution, while values of >1 indicate an
aggregation of copepods and marine snow in certain
strata of the water column.

Overlap indices of cumulative abundances for
copepods and marine snow were determined for
every 2 h time step along the VPR tow track. There
is no statistical test to evaluate the deviation of ob -
served overlap from random expectation. Hence, in
order to assess and test for variations in the bi-
hourly spatial overlap along the VPR tow track we
computed the overlap index for each 10 min time
step, corresponding to one complete up and down
cast.

RESULTS

Hydrography

As background information for our investigations
on the small-scale distribution of marine snow and
mesozooplankton we recorded the hydrographic
environment along the VPR transect. We found the
vertical distribution of temperature, salinity and den-
sity to represent a typical spring situation in the cen-
tral Baltic Sea (Fig. 3), which included a surface
mixed layer with a mean temperature of 4.5°C that
was observed down to 50 m. No thermocline was
recorded in the upper layer, but slightly elevated
temperatures near the surface indicated the seasonal
warming of surface waters. However, a thermocline

O

N n m

N n

z z
z

m

z z
z

m

z

m

( )

( )

1

11

=
×

=

×
==

∑

∑∑( )

61

Fig. 3. Environmental data: vertical profiles of temperature
(bold black line), salinity (black dashed line), density (grey
line) and relative fluorescence (thin black line), averaged
over the whole VPR tow track for each 1 m depth interval
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separated the upper water layer from the winter
deep water where temperatures increased to 9°C.
The deep thermocline matched exactly with the
 permanent halocline, where salinity increased with
depth from 8 to a maximum of 18. Together the ther-
mocline and the halocline represented a strong
 density gradient, i.e. a pycnocline.

Phytoplankton

We recorded the chlorophyll a (chl a) concentration
as an index of the phytoplankton biomass by per-
forming fluorescence measurements (Fig. 3). Due to
our sampling scheme VPR measurements were not
performed close to the surface. However, we ob -
served phytoplankton primarily in the uppermost
sampling stratum closest to the surface and not
deeper than 20 m. Mean values of relative chl a
were generally low (max. 0.04 μg l−1) and peak
 abundances were patchy along the transect (max.
0.4 μg l−1).

Marine snow

Marine snow aggregates were the second most
abundant category recorded by the VPR next to
copepods. The particle size spectra ranged from

0.2 to 7 mm in diameter with the highest abundances
in the size class of ~0.5 mm. Fine-scale sampling with
the VPR revealed a dense thin layer of marine snow
aggregates at the pycnocline between 50 and 55 m
depth (Fig. 4a). This thin marine snow layer was
observed to occur over the whole transect with peak
abundances of marine snow aggregates of 28 parti-
cles l−1. Background aggregate concentrations in the
water column varied between 5 and 8 particles l−1

with a mean (±SD) abundance of 6.4 ± 0.5 particles
l−1. Less dense patches of marine snow not related to
the pycnocline were observed at some locations in
the upper mixed layer.

Visual examination of our marine snow images
identified the phytoplankton origin of most aggre-
gates, with many of the larger aggregates having the
characteristic rod shape of diatoms. Additionally,
appendicularians might have contributed to the mar-
ine snow production, since they produce houses that,
once discarded, look like diatom flocks. Smaller and
more abundant aggregates had a mucoid matrix
including senescent diatom cells, detrital material
and, due to the high abundance of copepods, proba-
bly also copepod exoskeletons as well as fecal pel-
lets. We assume the absence of a fluorescence signal
within the thin layer observed in our study to be due
to the decay of phytoplankton cells. This could also
explain the presence of an amorphous and flocculent
film visible on all images. Furthermore, we observed
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Fig. 4. Contour plots showing the average hourly depth distribution and abundance of (a) marine snow (particles l−1) and
(b) copepods (ind. l−1) recorded with the Video Plankton Recorder (VPR); the black arrow indicates the cumulative distance 

travelled by the ship along the tow track
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no major changes in marine snow abundance or par-
ticle size that could be attributed to diel influences
during night and day transition.

Mesozooplankton

Copepods were the dominant group comprising
60% of all mesozooplankton organisms classified.
Additionally we recorded approximately 30% ap -
pen dicularians and 10% gelatinous organisms (com-
prising small hydromedusa and ctenophores) in the
identified mesozooplankton category. We observed a
vertical maximum in abundance of copepods in the
upper surface layer (28.2 ind. l−1) and close to the
 bottom (23.4 ind. l−1), and a distinct peak within the
 pycnocline (18.2 ind. l−1) (Fig. 4b). Background cope-
pod concentrations between those peak abundances
in the water column varied between 5 and 9 ind. l−1

with a mean abundance of 7.9 ± 1.0 ind. l−1. The
abundance peak in the pycnocline was stable during
most of the transect, with high copepod abundances
overlapping with the marine snow thin layer. Dense
patches of copepods were also found close to the
 bottom as well as near the surface. In comparison
with the deep water aggregations these patches
were more heterogeneous in distribution and less
pronounced, while the surface aggregations ten -

ded to have a more widespread vertical distribution
and were more patchy horizontally. There was no
indication of diel changes in the vertical copepod
 distribution.

We used conventional net sampling and manual
sorting to evaluate the copepod species composition
not resolved by the VPR (Fig. 5a). The copepod
 community was dominated by Acartia spp., Temora
longi cornis, Pseudocalanus acuspes and Oithona
similis. Copepods displayed species-specific vertical
distributions, which allowed a mapping of species to
the different vertical peaks in the copepod category
sampled by the VPR. Acartia spp. and T. longicornis
dominated the upper layer <30 m depths, while
P. acuspes and O. similis were found in the pycno-
cline and in aggregations in the deep water above
the bottom.

A comparison of the 2 sampling techniques re -
vealed strong differences in abundance values re -
corded and in the ability to resolve vertical distri -
bution patterns (Fig. 5). For this purpose copepod
abundance values sampled with the VPR along the
tow track were averaged in 1 m depth bins. All cope-
pod species sampled with the Multinet were grouped
into one abundance category to match the VPR sam-
pling, but, due to the nature of the sampling gear, in
10 m depth bins only. Mean abundances sampled
with the VPR were generally higher (max. 13.5 ind.
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l−1) than with the Multinet (max. 5.8 ind. l−1). As
expected the vertical distribution pattern showed
clear differences as well. The fine-scale resolution of
the VPR profile allowed discrimination of the cope-
pod layer at 50 to 55 m, while this feature could not
be observed with the coarse vertical resolution of the
Multinet sampling.

Indications for marine snow−mesozooplankton
interaction

As an indication of the feeding interaction between
copepods and marine snow, we calculated an index
of their vertical overlap. Overlap indices for marine
snow and copepods ranged from 1.04 to 1.51 along
the whole tow track, indicating a permanent posi-
tively correlated distribution pattern (Fig. 6). Peak
concentrations of marine snow aggregates and high
abundances of copepods coincided within a vertical
narrow band along the pycnocline. Because there
was no indication of diel changes in the abundance
and distribution of copepods and marine snow, a sta-
ble overlap was observed. Only minor variations
were observed in the overlap index for single up and
down casts of the VPR between index values of 0.99
and 1.6.

A portion (approx. 5%) of the marine snow aggre-
gate images obtained with the VPR showed cope-
pods directly attached to the aggregates, suggesting
an active feeding behaviour. However, this estimate
may be low due to occlusion of copepods by aggre-

gates and the ROI extraction method. Furthermore,
many of those images that were in focus and of high
quality allowed species identification. Most of these
images showed Pseudocalanus acuspes with its
antennae in feeding position (Broughton & Lough
2006) suggesting active feeding by copepods on mar-
ine snow (Fig. 7). Feeding behaviour of Temora
longicornis could be identified on a few images as
well.

DISCUSSION

Marine snow occurrence

In this study we quantified the abundance of frag-
ile marine snow aggregates as well as their sizes. We
evaluated the results through a comprehensive liter-
ature review on studies quantifying marine snow
aggregates (Table 1). Our review revealed a large
range of particle abundance and sizes. Generally,
several factors influence the quantification of marine
snow metrics in the field and can explain the vari-
ability between studies. For example, variability in
particle concentrations can be the result of the sam-
pling location or sampling technique. Many previous
studies are based on quantitative observations by
divers, which are often limited to particles readily
visible (≥3 mm) and restricted to the upper surface
layer (Lampitt et al. 1993b). Technical advances
within the last 2 decades have led to an increased
number of data sets that have been assessed by opti-
cal sampling methods and generally tend to result in
decreasing aggregate sizes. Furthermore, size esti-
mates based on in situ measurements with camera
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Fig. 7. Example of VPR-derived images of copepods attached 

to marine snow, indicating a trophic interaction
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systems always depend on the
respective field of view, which
may explain differences be -
tween particular studies. Our
estimates of particle abundance
are in the upper range of studies
using the VPR, which all dis-
played similar particle size ran -
ges. Similar values were also re -
cor ded using Underwater Video
Profilers. Based on the literature
review, we consider our marine
snow abundance estimates as
reliable.

Mesozooplankton abundance 
and distribution

A comparison of copepod
abundances revealed estimates
derived by the VPR to be gener-
ally more than 2-fold higher than
those obtained with the Multi-
net. Similar results have been
re ported by Benfield et al. (1996)
and Broughton & Lough (2006)
when comparing zooplankton
abundances obtained with a
VPR and a MOCNESS (Multiple
Opening/ Closing Net and Envi-
ronmental Sam pling System)
sampler. Differences between
the 2 gear types are probably
due to different sampling effi-
ciencies for earlier copepodite
stages as well as smaller cope-
pod species such as Oithona
similis, which are typically
underrepresented in net sam-
ples due to net extrusion and/or
avoidance (Gal lienne & Robins
2001, Brough ton & Lough 2006).

The high spatial and temporal
resolution of sampling with the
VPR relative to the Multinet was
critical for resolving vertical thin
layers. Clearly our net sampling
was not able to resolve the pro-
nounced small-scale abundance
peak in the halocline, which was
only visible in the VPR data.
However, the strength of the
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Multinet data is in the provision of abundance in -
formation on the species level. Manual analysis of
Multinet samples allowed a clear attribution of the
dominant copepod species to the layers of high cope-
pod abundance observed by the VPR. Similar to ear-
lier studies (Hansen et al. 2006), we found Acartia
spp. and Temora longicornis inhabiting the upper
water column. Both species have a preference for
high water temperatures and low salinities (Holste &
Peck 2006, Holste et al. 2009), and hence may exploit
the chl a maximum in the upper water layer. Con-
versely, Pseudo  calanus acuspes and Oithona similis
are marine species with preferences for high salini-
ties and low temperatures (Hansen et al. 2004, Renz
& Hirche 2006), hence dominate the zooplankton
abundance in the deep and saline marine snow layer.
Due to its ontogenetic vertical distribution, the verti-
cal distribution of P. acuspes showed a minor abun-
dance peak at ~25 m depth, which can be  attributed
to younger copepodite stages (Renz & Hirche 2006).

Thin layers of marine snow and mesozooplankton

The formation of thin layers of passive particles is
controlled by physical and biological factors (Sulli-
van et al. 2010b). For example marine snow particles
have been identified to form thin layers at strong
density gradients due to reduced sinking rates (All-
dredge et al. 2002). Processes leading to aggrega-
tions of motile planktonic organisms in thin layers are
much more complex. They include active swimming,
sexual reproduction, predator avoidance, food avail-
ability and responses to chemical or physical cues
(Dekshenieks et al. 2001, McManus et al. 2003, 2005,
Gallager et al. 2004, Malkiel et al. 2006, Benoit-Bird
et al. 2010, Holliday et al. 2010).

Although the mechanisms described above have
substantial consequences for the ecological impor-
tance of thin layers, they have to a large extent
remained untested in the field (Benoit-Bird et al.
2009). Generally, the existence of thin vertical layers
has been rarely investigated, which is due to the low
sampling efficiency of traditional net sampling for
marine snow and the generally low ability of this
method to resolve small-scale distribution patterns
(Widder et al. 1999, Alldredge et al. 2002, Jacobsen &
Norrbin 2009). Studies using optical and acoustical
instruments have only recently started to quantita-
tively describe thin layers of marine snow at density
gradients (Alldredge et al. 2002, McManus et al.
2003). In the present study, we describe an intense
thin layer of marine snow aggregates associated with

a strong vertical density gradient in the permanent
halocline typical for a deep Baltic basin, using results
from small-scale sampling with a VPR. In contrast to
earlier studies (Cheriton et al. 2007, Sevadjian et al.
2010), we found this layer of marine snow aggregates
persisting throughout our whole sampling track,
most likely due to the stability of the halocline.

Furthermore, we observed a thin layer of cope-
pods directly attached to marine snow aggregates
that showed signs of typical feeding behaviour.
Hence, we suggest that copepods actively respond
to dense marine snow aggregations with the goal to
use them as a food source. A number of laboratory
experiments have shown that copepods are able to
detect and exploit food patches in thin layers
(Tiselius 1992). However, field observations of zoo-
plankton behaviour in relation to thin layers of mar-
ine snow, such as in the present study, are still rare.
Previous field studies mainly investigated zooplank-
ton thin layers acoustically (e.g. McManus et al.
2003, Benoit-Bird et al. 2009, Holliday et al. 2010).
However, these studies were not able to investigate
the species composition in these layers, which is an
important issue as behavioural responses are often
species-specific. Alldredge et al. (2002), using a
camera system, observed high densities of plank-
tonic organisms above and below a thin layer of
marine snow. They suggested that most macrozoo-
plankton taxa avoid the thin layer because of very
high marine snow abundances that potentially lead
to clogging of their delicate feeding appendages. In
agreement with our observations Malkiel et al.
(2006) reported elevated abundances of calanoid
copepods in water layers with maximum concentra-
tions of marine snow. However, they interpreted this
pattern as predator avoidance behaviour, since high
concentrations of large detritus particles may pro-
vide shelter from visual predators (Malkiel et al.
2006). Based on our high-resolution imaging study
using the VPR, we suggest that zooplanktonic cope-
pods aggregate in thin layers as a response to a con-
centrated food source of marine snow.

Trophic interactions between marine snow 
and zooplankton

The key finding of this study is a strong associa-
tion of copepods showing signs of typical feeding
behaviour with a thin layer of marine snow. Our
results support earlier laboratory and field studies
that provide direct evidence of feeding interactions
between marine snow and euphausiids (Dilling et
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al. 1998, Dilling & Brzezinski 2004), ostracods and
amphipods (Lampitt et al. 1993b), as well as cope-
pods (Steinberg 1995, Koski et al. 2007, Chen et al.
2010, Wilson & Steinberg 2010). A few studies pro-
vided, as we have here, indirect evidence of feed-
ing interactions through close spatial associations
between zooplankton and marine snow aggregates
(Shanks & Edmondson 1990, Bochdansky & Herndl
1992, Green & Dagg 1997, Shanks & del Carmen
1997, Malkiel et al. 2006). Despite these indications
of a trophic interaction, there still remains the
question whether marine snow is a viable food
source for zooplankton. There is still little informa-
tion on the trophodynamic importance of marine
snow in marine ecosystems since these aggregates
are difficult to quantify both in the lab and the
field. In our study, marine snow particles consisted
primarily of mucoid detritus derived from phyto-
plankton cells, which usually represents a viable
food source for copepods (Dilling et al. 1998). In the
Baltic Sea, feeding on marine snow in the halocline
may even be crucial for the survival of copepod
populations. In or below the halocline of the deep
Baltic basins no primary production occurs, and
copepod species such as Pseudocalanus acuspes
and Oithona similis, which need the elevated salin-
ities in deeper waters (Hansen et al. 2004, 2006,
Renz & Hirche 2006), experience comparable con-
ditions as zooplankton residing in the mesopelagic
zone of the open ocean. At this depth nutrition
must be obtained to a large degree via feeding on
sinking aggregates (e.g. Steinberg 1995). Lipid bio-
marker studies support this hypothesis and show
that Baltic P. acuspes is an opportunistic feeder,
feeding mainly on sinking algae, detritus and
microzooplankton (Peters et al. 2006). Furthermore,
these investigations suggest that ciliates, which
generally show elevated concentrations on marine
snow aggregates (Silver et al. 1984, Lombard et al.
2010), have a high relevance in the food spectrum
of P. acuspes (Peters et al. 2006).

Our observations support the hypothesis that ma -
rine snow aggregates are an important food source
for mesozooplankton, especially in stratified regions
such as the central Baltic Sea. Furthermore, marine
snow may have an important function in the ecosys-
tem as an additional food source for benthic suspen-
sion feeders (Newell et al. 2005) and possibly larval
and juvenile fish (Larson & Shanks 1996, Green &
Dagg 1997). Our observations highlight the signifi-
cance of marine snow in marine ecosystems and its
potential as a food source for various trophic levels,
from bacteria up to fish.
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