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Abstract. In this article we present a short survey of frame theory in Hilbert spaces. We discuss
Gabor frames and wavelet frames, and a recent transform that allows to move results from one
setting into the other and vice versa.
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1. Introduction

Frames provide us with a convenient tool to obtain expansions in Hilbert spaces of a
similar type as the one that arise via orthonormal bases. However, the frame conditions are
significantly weaker, which makes frames much more flexible. For this reason frame theory
has attracted much attention in recent years, especially in connection with its concrete
manifestations within Gabor analysis and wavelet analysis.

In this article we give a short overview of the general theory for frames in Hilbert spaces,
as well as its applications in Gabor analysis and wavelet analysis. Finally, we present a
method that allows to construct wavelet frames based on certain Gabor frames, and vice
versa. Applying this to Gabor frames generated by exponential B-splines produces a class
of attractive dual wavelet frame pairs generated by functions whose Fourier transforms
are compactly supported splines with geometrically distributed knots.

2. A survey on frame theory

General frames were introduced already in the paper [17] by Duffin and Schaeffer in
1952. Apparently it did not find much use at that time, until it got re-introduced by
Young in his book [30] from 1982. After that, Daubechies, Grossmann and Morlet took
the key step of connecting frames with wavelets and Gabor systems in the paper [15].

http://www.azjm.org 25 c© 2010 AZJM All rights reserved.
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2.1. General frame theory

Let H be a separable Hilbert space with the inner product 〈·, ·〉 linear in the first entry.
A countable family of elements {fk}k∈I in H is a

(i) Bessel sequence if there exists a constant B > 0 such that∑
k∈I
|〈f, fk〉|2 ≤ B||f ||2, ∀f ∈ H;

(ii) frame for H if there exist constants A,B > 0 such that

A||f ||2 ≤
∑
k∈I
|〈f, fk〉|2 ≤ B||f ||2, ∀f ∈ H; (2.1)

The numbers A,B in (2.1) are called frame bounds.

(iii) Riesz basis for H if span{fk}k∈I = H and there exist constants A,B > 0 such that

A
∑
|ck|2 ≤

∣∣∣∣∣∣∑ ckfk

∣∣∣∣∣∣2 ≤ B∑ |ck|2. (2.2)

for all finite sequences {ck}.

Every orthonormal basis is a Riesz basis, and every Riesz basis is a frame (the bounds
A,B in (2.2) are frame bounds). That is, Riesz bases and frames are natural tools to gain
more flexibility than possible with an orthonormal basis. For an overview of the general
theory for frames and Riesz bases we refer to [1] and [6]; a deeper treatment is given in the
books [2], [4]. Here, we just mention that the difference between a Riesz basis and a frame
is that the elements in a frame might be dependent. More precisely, a frame {fk}k∈I is a
Riesz basis if and only if∑

k∈I
ckfk = 0, {ck} ∈ `2(I)⇒ ck = 0, ∀k ∈ I.

Given a frame {fk}k∈I , the associated frame operator is a bounded, self-adjoint, and
invertible operator on H, defined by

Sf =
∑
k∈I
〈f, fk〉fk.

The series defining the frame operator converges unconditionally for all f ∈ H. Via
the frame operator we obtain the frame decomposition, representing each f ∈ H as an
infinite linear combination of the frame elements:

f = SS−1f =
∑
k∈I
〈f, S−1fk〉fk. (2.3)
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The family {S−1fk}k∈I is itself a frame, called the canonical dual frame. In case
{fk}k∈I is a frame but not a Riesz basis, there exist other frames {gk}k∈I which satisfy

f =
∑
k∈I
〈f, gk〉fk, ∀f ∈ H; (2.4)

each family {gk}k∈I with this property is called a dual frame.
The formulas (2.3) and (2.4) are the main reason for considering frames, but they also

immediately reveal one of the fundamental problems with frames. In fact, in order for
(2.3) to be practically useful, one has to invert the frame operator, which is difficult when
H is infinite-dimensional. One way to avoid this difficulty is to consider tight frames, i.e.,
frames {fk}k∈I for which ∑

k∈I
|〈f, fk〉|2 = A||f ||2, ∀f ∈ H (2.5)

for some A > 0. For a tight frame, 〈Sf, f〉 = A||f ||2, which implies that S = AI, and
therefore

f =
1

A

∑
k∈I
〈f, fk〉fk, ∀f ∈ H. (2.6)

2.2. Operators on L2(R)

In order to construct concrete frames in the Hilbert space L2(R), we need to consider
some important classes of operators.

Definition 2.1. (Translation, modulation, dilation) Consider the following classes
of linear operators on L2(R) :

(i) For a ∈ R, the operator Ta, called translation by a, is defined by

(Taf)(x) := f(x− a), x ∈ R. (2.7)

(ii) For b ∈ R, the operator Eb, called modulation by b, is defined by

(Ebf)(x) := e2πibxf(x), x ∈ R. (2.8)

(iii) For c > 0, the operator Dc, called dilation by c, is defined by

(Dcf)(x) :=
1√
c
f(
x

c
), x ∈ R. (2.9)

All the above operators are linear, bounded, and unitary. We will also need the Fourier
transform, for f ∈ L1(R) defined by

f̂(γ) :=

∫ ∞
−∞

f(x)e−2πiγxdx.

The Fourier transform is extended to a unitary operator on L2(R) in the usual way.
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2.3. Gabor systems in L2(R)

A Gabor system in L2(R) has the form {e2πimbxg(x − na)}m,n∈Z for some parame-
ters a, b > 0 and a given function g ∈ L2(R). Using the translation operators and the
modulation operators we can denote a Gabor system by {EmbTnag}m,n∈Z.

It is easy to show that the Gabor system {e2πimxχ[0,1](x−n)}m,n∈Z is an orthonormal
basis for L2(R). However, the function χ[0,1] is discontinuous and has very slow decay
in the Fourier domain. Thus, the function is not suitable for time-frequency analysis.
For the sake of time-frequency analysis, we want the Gabor frame {EmbTnag}m,n∈Z to be
generated by a continuous function g with compact support. This forces us to consider
Gabor frames rather than bases:

Lemma 1. If g is be a continuous function with compact support, then

• {EmbTnag}m,n∈Z can not be an ONB.

• {EmbTnag}m,n∈Z can not be a Riesz basis.

• {EmbTnag}m,n∈Z can be a frame if 0 < ab < 1;

• For each a, b > 0 with ab < 1, there exists function g ∈ Cc(R) such that {EmbTnag}m,n∈Z
is a frame.

In order for a frame to be useful, we need a dual frame. The duality conditions for a
pair of Gabor systems were obtained by Ron & Shen [25], [26]. We state the formulation
due to Janssen [21]:

Theorem 2.2. Given b, α > 0, two Bessel sequences {EmbTnαg}m,n∈Z and {EmbTnαg̃}m,n∈Z,
where g, g̃ ∈ L2(R), form dual Gabor frames for L2(R) if and only if for all n ∈ Z,∑

j∈Z
g(x+ jα)g̃(x+ jα+ n/b) = bδn,0, a.e. x ∈ R.

Theorem 2.2 characterizes pairs of dual Gabor frames, but it does not show how to
construct convenient pairs of Gabor frames. A class of convenient dual pairs of frames are
constructed in [5] and [9]:

Theorem 2.3. Let N ∈ N. Let g ∈ L2(R) be a real-valued bounded function for which
supp g ⊆ [0, N ] and ∑

n∈Z
g(x− n) = 1. (2.10)

Let b ∈]0, 1
2N−1 ]. Define g̃ ∈ L2(R) by

h(x) =

N−1∑
n=−N+1

ang(x+ n),
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Figure 1: The generators B2 and B3 and some dual generators.

where
a0 = b, an + a−n = 2b, n = 1, 2, · · · , N − 1.

Then g and h generate dual frames {EmbTng}m,n∈Z and {EmbTng̃}m,n∈Z for L2(R).

Example 2.4. The conditions in Theorem 2.3 are satisfied for any B-spline BN , N ∈ N.
Some choices of the coefficients an are the following:

1) Take

a0 = b, an = 0 for n = −N + 1, . . . ,−1, an = 2b, n = 1, . . . N − 1.

This choice gives the dual frame generated by the function with shortest support.

2) Take

a−N+1 = a−N+2 = · · · = aN−1 = b :

if g is symmetric, this leads to a symmetric dual generator

g̃(x) = b
N−1∑

n=−N+1

g(x+ n).

�

2.4. Wavelet systems in L2(R)

A wavelet system in L2(R) has the form {aj/2ψ(ajx − kb)}j,k∈Z for some parameters
a > 1, b > 0 and a given function ψ ∈ L2(R). Introducing the scaling operators and the
translation operators, the wavelet system can be written as {DajTkbψ}j,k∈Z.
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There are also characterizing equations for dual wavelet frames; see [11]. They are
formulated in terms of the Fourier transform:

Theorem 2.5. Given a > 1, b > 0, two Bessel sequences {DajTkbψ}j,k∈Z and {DajTkbψ̃}j,k∈Z,

where ψ, ψ̃ ∈ L2(R), form dual wavelet frames for L2(R) if and only if the following two
conditions hold:

(i)
∑

j∈Z ψ̂(ajγ)
̂̃
ψ(ajγ) = b for a.e. γ ∈ R.

(ii) For any number α 6= 0 of the form α = m/aj, m, j ∈ Z,∑
(j,m)∈Iα

ψ̂(ajγ)
̂̃
ψ(ajγ +m/b) = 0, a.e. γ ∈ R,

where Iα := {(j,m) ∈ Z2 | α = m/aj}.

We will present a few aspects of wavelet theory, beginning with the classical multire-
solution analysis

2.5. Classical multiresolution analysis

Multiresolution analysis is a tool to construct orthonormal bases for L2(R) of the
form {DjTkψ}j,k∈Z for a suitably chosen function ψ ∈ L2(R). Such a function ψ is called
a wavelet. Its original definition of a multiresolution analysis was given by Mallat and
Meyer [22, 23], is as follows:

Definition 2.6. A multiresolution analysis for L2(R) consists of a sequence of closed
subspaces {Vj}j∈Z of L2(R) and a function φ ∈ V0 such that

(i) · · ·V−1 ⊂ V0 ⊂ V1 · · ·

(ii) ∩jVj = {0} and ∪jVj = L2(R)

(iii) f ∈ Vj ⇔ Df ∈ Vj+1.

(iv) f ∈ V0 ⇒ Tkf ∈ V0, ∀k ∈ Z.

(v) {Tkφ}k∈Z is an orthonormal basis for V0.

A multiresolution analysis is in fact generated just by a suitable choice of the function
φ : if the conditions in Definition 2.6 are satisfied, then necessarily

Vj = span{DjTkφ}k∈Z, ∀j ∈ Z.

The following result, due to Mallat and Meyer [22, 23], shows how to construct a
wavelet based on a multiresolution analysis. Other proofs can be found in [14], [31], and
[3].
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Theorem 2.7. Assume that the function φ ∈ L2(R) generates a multiresolution analysis.
Then the following holds:

(i) There exists a 1-periodic function H0 ∈ L2(0, 1) such that

φ̂(2γ) = H0(γ)φ̂(γ), γ ∈ R. (2.11)

(ii) Define the 1-periodic function H1 by

H1(γ) := H0(γ +
1

2
) e−2πiγ . (2.12)

Also, define the function ψ via

ψ̂(2γ) := H1(γ)φ̂(γ). (2.13)

Then ψ is a wavelet:

The definition in (2.13) is quite indirect: it defines the function ψ in terms of its
Fourier transform, so we have to apply the inverse Fourier transform in order to obtain an
expression for ψ. This actually leads to an explicit expression of the function ψ in terms
of the given function φ:

Proposition 2.8. Assume that (2.13) holds for a 1-periodic function H1 ∈ L2(0, 1),

H1(γ) =
∑
k∈Z

dke
2πikγ . (2.14)

Then

ψ(x) =
√

2
∑
k∈Z

dkDT−kφ(x) = 2
∑
k∈Z

dkφ(2x+ k), x ∈ R. (2.15)

The classical example of a wavelet generated by a multiresolution analysis is the Haar
wavelet,

ψ(x) =


1 if x ∈ [0, 12 [
−1 if x ∈ [12 , 1[
0 otherwise

It is generated by the function φ = χ[0,1]. In 1989 Daubechies managed to construct an
important class of compactly supported wavelets with very good approximation properties.
We will not go into a detailed discussion of these, but just refer to, e.g., [14] and [31].
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2.6. The unitary extension principle

In this section we present results by Ron and Shen, which enables us to construct tight
wavelet frames generated by a collection of functions ψ1, . . . , ψn. Our presentation is based
on the papers [27], [28], and [29]. Note also that a more flexible tool, the oblique extension
principle, has later been introduced by two groups of researchers, see [12] and [16].

The generators ψ1, . . . , ψn will be constructed on the basis of a function which satisfy
a refinement equation, and since we will work with all those functions simultaneously it is
convenient to change our previous notation slightly and denote the refinable function by
ψ0.

General setup: Let ψ0 ∈ L2(R). Assume that limγ→0 ψ̂0(γ) = 1 and that there exists a
function H0 ∈ L∞(T) such that

ψ̂0(2γ) = H0(γ)ψ̂0(γ). (2.16)

Let H1, . . . ,Hn ∈ L∞(T), and define ψ1, . . . , ψn ∈ L2(R) by

ψ̂`(2γ) = H`(γ)ψ̂0(γ), ` = 1, . . . , n. (2.17)

Finally, let H denote the (n+ 1)× 2 matrix-valued function defined by

H(γ) =


H0(γ) T1/2H0(γ)

H1(γ) T1/2H1(γ)

· ·
· ·

Hn(γ) T1/2Hn(γ)

 . (2.18)

We will frequently suppress the dependence on γ and simply speak about the matrix H.
The purpose is to find H1, . . . ,Hn such that

{DjTkψ1}j,k∈Z ∪ {DjTkψ2}j,k∈Z ∪ · · · ∪ {DjTkψn}j,k∈Z (2.19)

constitute a tight frame. The unitary extension principle by Ron and Shen shows that a
condition on the matrix H will imply this:

Theorem 2.9. Let {ψ`, H`}`=0,...,n be as in the general setup, and assume that the 2 × 2
matrix H(γ)∗H(γ) is the identity for a.e. γ. Then the multi-wavelet system {DjTkψ`}j,k∈Z,`=1,...,n

constitutes a tight frame for L2(R) with frame bound equal to one.

As an application, we show how one can construct compactly supported tight spline
frames.

Example 2.10. Fix any m = 1, 2, . . . , and consider the function ψ0 := B2m, i.e., the
B-spline of order m. It is defined by

ψ0 = χ[− 1
2
, 1
2
] ∗ χ[− 1

2
, 1
2
] ∗ · · · ∗ χ[− 1

2
, 1
2
] (2m factors).
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Note that

ψ̂0(γ) =
sin2m(πγ)

(πγ)2m
.

ψ0 is known as the B-spline of order 2m It is clear that limγ→0 ψ̂0(γ) = 1, and by direct
calculation,

ψ̂0(2πγ) = cos2m(πγ)ψ̂0(γ).

Thus ψ0 satisfies the refinement equation with

H0(γ) = cos2m(πγ).

Let

(
2m
`

)
denote the binomial coefficients (2m)!

(2m−`)!`! and define the 1-periodic bounded

functions H1, H2, . . . ,H2m by

H`(γ) =

√(
2m
`

)
sin`(πγ) cos2m−`(πγ).

Then

H(γ) =


H0(γ) T1/2H0(γ)

H1(γ) T1/2H1(γ)

· ·
· ·

Hn(γ) T1/2Hn(γ)



=



cos2m(πγ) sin2m(πγ)√(
2m
1

)
sin(πγ) cos2m−1(πγ) −

√(
2m
1

)
cos(πγ) sin2m−1(πγ)√(

2m
2

)
sin2(πγ) cos2m−2(πγ)

√(
2m
2

)
cos2(πγ) sin2m−2(πγ)

· ·
· ·√(

2m
2m

)
sin2m(πγ)

√(
2m
2m

)
cos2m(πγ)


.

Now consider the 2× 2 matrix M := H(γ)∗H(γ). Using the binomial formula

(x+ y)2m =
2m∑
`=0

(
2m
`

)
x`y2m−`
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we see that the first entry in the first row of M is

M1,1 =

2m∑
`=0

(
2m
`

)
sin2`(πγ) cos2(2m−`)(πγ) = 1.

A similar argument gives that M2,2 = 1. Also,

M1,2 = sin2m(πγ) cos2m(πγ)

(
1−

(
2m
1

)
+

(
2m
2

)
− · · ·+

(
2m
2m

))
= sin2m(πγ) cos2m(πγ)(1− 1)2m = 0.

Thus M is the identity on C2 for all γ; by Theorem 2.9 this implies that the 2m functions
ψ1, . . . , ψ2m defined by

ψ̂`(γ) = H`(γ/2)ψ̂0(γ/2)

=

√(
2m
`

)
sin2m+`(πγ/2) cos2m−`(πγ/2)

(πγ/2)2m

generate a multiwavelet frame for L2(R).

Frequently one takes a slightly different choice of H`, namely,

H`(γ) = i`

√(
2m
`

)
sin`(πγ) cos2m−`(πγ).

Inserting this expression in ψ̂`(γ) = H`(γ/2)ψ̂`(γ/2) and using the commutator relations
for the operators F , D, Tk shows that ψ` is a finite linear combination with real coefficients
of the functions

DTkψ0, k = −m, . . . ,m.

It follows that ψ` is a real-valued spline with support in [−m,m], degree 2m−1, smoothness
class C2m−2, and knots at Z/2. Note in particular that we obtain smoother generators by
starting with higher order splines, but that the price to pay is that the number of generators
increases as well. �

3. From Gabor frames to wavelet frames

The goal of this section is to show how we can construct dual wavelet frame pairs
based on certain dual Gabor frame pairs. The presented results form a survey of results
by Christensen and Goh, and are taken from [7] and [8]. The key is the following transform
that allows us to move the Gabor structure into the wavelet structure. We note that the
first idea of such a transform appears in the paper [15] by Daubechies, Grossmann, and
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Morlet; recently it has also been used by Feichtinger, Holighaus and Wiesmayr in their
preprent [18].

Let θ > 1 be given. Associated with a function g ∈ L2(R) for which g(logθ |·|) ∈ L2(R),
we define a function ψ ∈ L2(R) by

ψ̂(γ) =

{
g(logθ(|γ|)), if γ 6= 0,

0, if γ = 0.
(3.1)

Note that by (3.1), for any a > 0, j ∈ Z and γ ∈ R \ {0},

ψ̂(ajγ) = g(j logθ(a) + logθ(|γ|)). (3.2)

For fixed parameters b, α > 0 we will consider two bounded compactly supported func-
tions g, g̃ ∈ L2(R) and the associated Gabor systems {EmbTnαg}m,n∈Z and {EmbTnαg̃}m,n∈Z.
For a fixed θ > 1, define the functions ψ, ψ̃ ∈ L2(R) by (3.1) for g, g̃ respectively. The
following result shows how certain support conditions allow us to construct a pair of dual
wavelet frames based on two dual Gabor frames. For the proof we refer to [7].

Theorem 3.1. Let b > 0, α > 0, and θ > 1 be given. Assume that g, g̃ ∈ L2(R)
are bounded functions with support in the interval [M,N ] for some M,N ∈ R and that
{EmbTnαg}m,n∈Z and {EmbTnαg̃}m,n∈Z form dual frames for L2(R). With a := θα, if

b ≤ 1
2θN

, then {DajTkbψ}j,k∈Z and {DajTkbψ̃}j,k∈Z are dual frames for L2(R).

We can now use Theorem 2.2 to obtain explicit constructions of dual wavelet frame
pairs. We again refer to [7] for the proof.

Proposition 3.2. Let g ∈ L2(R) be a bounded real-valued function with support in the
interval [M,N ] for some M,N ∈ Z. Suppose that g satisfies the partition of unity condition
(2.10). Let a > 1 and b ∈ (0,min( 1

2(N−M)−1 , 2
−1a−N )] be given, and take any real sequence

{cn}N−M−1n=−N+M+1 such that

c0 = b, cn + c−n = 2b, n = 1, . . . , N −M − 1.

Then the functions ψ, ψ̃ ∈ L2(R) defined by (3.1) and

̂̃
ψ(γ) =

N−M−1∑
n=−N+M+1

cng(loga(|γ|) + n), γ 6= 0, (3.3)

generate dual wavelet frames {DajTkbψ}j,k∈Z and {DajTkbψ̃}j,k∈Z for L2(R).

Proposition 3.2 can of course be applied to B-splines. However, much more elegant
constructions are obtained using exponential B-splines which yield pairs of wavelet frames
for which the Fourier transform of the generators are compactly supported splines with
geometrically distributed knots and desired smoothness. Exponential splines are of the
form

EN (·) := eβ1(·)χ[0,1](·) ∗ · · · ∗ eβN (·)χ[0,1](·),
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where βk = (k − 1)β, k = 1, . . . , N , for some β > 0.
Exponential B-splines are well studied in the literature, see, e.g., [13], [24], [20], [10]

(note that there is a typo in the expression for EN (x) for x ∈ [k− 1, k] on page 304 of [10]:
the expression eaj1 + · · ·+ eajk−1 should be eaj1+···+ajk−1 ). Without going into details (for
which we refer to [8]), we state the following explicit construction.

Example 3.3. Consider the exponential B-spline E3 with N = 3 and β = 1. Then

E3(x) =


1−2ex+e2x

2 , x ∈ [0, 1],
−(e+e2)+2(e−1+e)ex−(e−2+e−1)e2x

2 , x ∈ [1, 2],
e3−2ex+e−3e2x

2 , x ∈ [2, 3],

0, x /∈ [0, 3].

Let a := eβ = e, and define the function ψ by

ψ̂(γ) =



1−2|γ|+γ2
(e−1)(e2−1) , |γ| ∈ [1, e],
−(e+e2)+2(e−1+e)|γ|−(e−2+e−1)γ2

(e−1)(e2−1) , |γ| ∈ [e, e2],
e3−2|γ|+e−3γ2

(e−1)(e2−1) , |γ| ∈ [e2, e3],

0, |γ| /∈ [1, e3].

The function ψ̂ is a geometric spline with knots at the points ±1,±e,±e2,±e3.
The construction in Proposition 3.2 works for b ≤ 2−1e−3. Taking b = 41−1 and

cn = 41−1 for n = −2, . . . , 2, it follows from (3.2) and (3.3) that the resulting dual frame
generator ψ̃ satisfies ̂̃

ψ(γ) =
1

41

2∑
n=−2

ψ̂(enγ), γ ∈ R.
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Figure 2: Plot of the geometric spline ψ̂ in Example 3.3.

Figure 3: Plot of the geometric spline
̂̃
ψ in Example 3.3.

The function
̂̃
ψ is a geometric spline with knots at the points ±e−2,±e−1,±1,

± e3,±e4,±e5. Figures 2–3 show the graphs of the functions ψ̂ and
̂̃
ψ. �

It is possible to reverse the process discussed so far, and obtain a way to obtain
Gabor frames based on certain wavelet frames. The result can, e.g., be applied to the
Meyer wavelet, which yields a construction of a tight Gabor frame generated by a C∞(R),
compactly supported function. Details of this are provided in [7].
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Ole Christensen
Department of Applied Mathematics and Computer Science, Technical University of Denmark
Building 303, 2800 Lyngby, Denmark
E-mail: ochr@dtu.dk

Received 31 May 2013
Accepted 2 November 2013


