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Technical note
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A R T I C L E I N F O A B S T R A C T

Available online 3 February 2014 A major challenge in mass spectrometry and other large-scale applications is how to
handle, integrate, and model the data that is produced. Given the speed at which
technology advances and the need to keep pace with biological experiments, we designed
a computational platform, CoreFlow, which provides programmers with a framework to
manage data in real-time. It allows users to upload data into a relational database (MySQL),
and to create custom scripts in high-level languages such as R, Python, or Perl for
processing, correcting and modeling this data. CoreFlow organizes these scripts into
project-specific pipelines, tracks interdependencies between related tasks, and enables the
generation of summary reports as well as publication-quality images. As a result, the gap
between experimental and computational components of a typical large-scale biology
project is reduced, decreasing the time between data generation, analysis and manuscript
writing. CoreFlow is being released to the scientific community as an open-sourced
software package complete with proteomics-specific examples, which include corrections
for incomplete isotopic labeling of peptides (SILAC) or arginine-to-proline conversion, and
modeling of multiple/selected reaction monitoring (MRM/SRM) results.
Biological significance
CoreFlow was purposely designed as an environment for programmers to rapidly perform
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data analysis. These analyses are assembled into project-specific workflows that are readily
shared with biologists to guide the next stages of experimentation. Its simple yet powerful
interface provides a structure where scripts can be written and tested virtually
simultaneously to shorten the life cycle of code development for a particular task. The
scripts are exposed at every step so that a user can quickly see the relationships between
the data, the assumptions that have been made, and the manipulations that have been
performed. Since the scripts use commonly available programming languages, they can
easily be transferred to and from other computational environments for debugging or faster
processing. This focus on ‘on the fly’ analysis sets CoreFlow apart from other workflow
applications that require wrapping of scripts into particular formats and development of
specific user interfaces. Importantly, current and future releases of data analysis scripts in
CoreFlow format will be of widespread benefit to the proteomics community, not only for
uptake and use in individual labs, but to enable full scrutiny of all analysis steps, thus
increasing experimental reproducibility and decreasing errors.
This article is part of a Special Issue entitled: Can Proteomics Fill the Gap Between Genomics
and Phenotypes?

© 2014 Elsevier B.V. All rights reserved.

Mass spectrometry is a computationally intense experimental
procedure. A wide variety of software applications have been
developed to facilitate analysis, including search engines that
interpret the spectra [1–4], databases that hold raw and
processed results [5–7], and sophisticated algorithms that
calculate statistical significance [8–10]. Even with the avail-
ability of all these programs, the ever changing nature of
research often requires scientists to develop their own scripts
to handle a specific analysis and, to integrate mass spec-
trometry data with other experimental data. To address this
need, we have built a software application, CoreFlow, which
provides an organized framework for programmers to rapidly
perform, document and share data analysis steps.

CoreFlow is designed to manage all data manipulation
steps within a project (Fig. 1A). It is divided into two main
sections: database management and analysis (Fig. 1B). The
database management section is used for loading, storing and
handling of experimental data in a highly efficient yet flexible
manner (Supplementary Figs. 1–5). Here, one can perform
basic database operations such as creating new tables,
modifying existing ones, adding key indexes, and filtering,
joining or aggregating data. The analysis section assembles
and then tracks computational pipelines using a hierarchical
organization of owners, projects, threads and tasks (Sup-
plementary Fig. 6); a thread represents a particular analysis
(e.g. Multiple Reaction Monitoring) and, within each thread, a
task holds the code for a specific function (e.g., normalization
to bait). These pipelines provide a permanent record of all the
computational work performed inside each specific project.
The standardized format reveals the complete data analysis
pipeline to all users, thereby promoting sharing of data,
scripts, and results. Within a pipeline, newer tasks are often
built using information extracted from previous tasks via
application programming interface (API) calls. These calls
allow access to a library of data processing scripts for common
functions such as data quality checks and normalization,
enable re-use of code for data extraction from tables, and
provide the ability to obtain content from attachments linked
to tasks (Supplementary Fig. 7). To help track task interde-
pendencies, we created a built-in data provenance feature
that identifies these calls (Supplementary Fig. 8). Similarly,

data within a task is often extracted from multiple database
tables, and CoreFlow maps the relationships between the
original tables and the resulting temporary and final tables
(Supplementary Fig. 9). At task completion, a detailed analysis
report can be generated that includes the task description,
code, results and data provenance features (Supplementary
Text).

New tasks within a thread can easily be added using the
blank template provided or by duplicating and editing an
existing task. If an existing task is copied, the user only needs
to change the parameters of any API calls (in particular, the
unique task identifier) and update table names in the SQL
scripts. Each task includes administrative features for version
tracking, quality control, priority setting, and file attachment
(Supplementary Fig. 10). Icons can be added to the task label to
serve as visual cues to the task's purpose. Three integrated
playgrounds (similar to Google Code Playgrounds) accelerate
analysis by allowing for a rapid cycle of script development
and testing. The first playground with an embedded Wiki
page enables the addition of meta information about the
analysis and its purpose, assumptions and caveats (Supple-
mentary Fig. 11). It can also be used to indicate where and how
certain parameters can be changed in the code (e.g., cutoff
values, number of data points to be included). This is
important, as CoreFlow is designed for rapid analysis and
programming where developing user-specific interfaces for
each task to accommodate parameter entries is not desirable
as it would slow the pace of analysis. A second playground
allows for complex database queries that pre-process differ-
ent data types and sources. The final processing occurs in the
third playground where users write scripts in various pro-
gramming languages to handle the data. These scripts can be
readily transferred, without any changes, either to a local
programming environment for debugging or a high perfor-
mance system for speed. They may vary in terms of their
complexity and level of abstraction, from bioinformatic
analysis in Python or Perl to more detailed statistical analysis
in R. For each of these programming languages, CoreFlow
allows the import and use of their specific libraries and
packages as well as creation of new libraries. This permits,
for example, large string processing or manipulation and

168 J O U R N A L O F P R O T E O M I C S 1 0 0 ( 2 0 1 4 ) 1 6 7 – 1 7 3



transformation of sequences (e.g., in silico digestion of
proteins into peptides) using BioPython or BioPerl. Libraries
in R can also be employed for statistical analysis, data
visualization, and immediate rendering of images in SVG,
PDF or other graphic formats for inclusion in manuscripts.
Results can be exported in compatible formats for visualiza-
tion or modeling tools such as Cytoscape [11] or DataRail [12].

Due to its flexibility, CoreFlow can be applied to practically
any type of data analysis. Our labs have used it in over fifty
very diverse projects that include large-scale mass spectrom-
etry, RNAi, next-generation sequencing, imaging and animal
models [13–16]. We typically use it in conjunction with
complementary tools targeted to a particular experimental
application (e.g., MaxQuant [4] and Proteome Discoverer
(ThermoScientific) for mass spectrometry quantitation). We
quickly move data (in XML, flat or binary file formats) from
such applications to the CoreFlow database where we extract
relevant data and model it (Figs. 1a, 2, Supplementary Fig. 12).

In a recent paper involving MRM [16], CoreFlow was used to
normalize all samples within a time course to the bait,
examine reproducibility between samples, and cluster pro-
teins with similar profiles (Fig. 2). It has helped identify
systematic errors that are often introduced in experiments
and to correct them computationally, leading to cleaner data
and improving the accuracy of results. For example, we have
estimated and corrected labeling incorporation deficiencies
and arginine-to-proline conversions that affect mass spec-
trometry measurements when using Stable Isotope Labeling
by Amino acids in Cell culture (SILAC) (Fig. 3, Supplementary
Fig. 13, Supplementary Text).

CoreFlow implements a client–server architecture, sup-
ported by the Apache web server on the Linux operating
system, with a web interface written in PHP and Perl, and an
underlying MySQL database. This implementation provides
the advantages of centralized access, resource distribution,
back-up capabilities, and easy upgrading. It can be deployed

A B

Fig. 1 – The CoreFlow pipeline. (A) CoreFlow is designed to integrate different types of experimental input data as well as
computational scripts and database functionalities in order to correct and analyze data before publication-quality figures are
produced. (B) From the main menu, a user can read CoreFlow's documentation, deploy the different database functionalities
(create, browse or query database tables as well as import data from files using the ‘file to DB function’) or access analytical
pipelines. Within the Analysis module, a project-specific pipeline is created as data inputs and analytic output expand with
research progress.
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on a local computer, an application server, or even on
high-performance computing systems to improve speed. The
work-load can be distributed across larger computational
infrastructures through parallelization of R jobs and other
scripts. Any size limits on data are imposed only by the
operating environment (Linux, Apache, MySQL, PHP) and not

by CoreFlow itself. Issues of browser timeouts are avoided by
forking long tasks into child processes that maintain commu-
nication with the browser.

CoreFlow is now being released as an open-source applica-
tion to assist other research scientists in managing complex
data, correcting systematic errors, assessing the quality of

A

B

C
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measurements, finding hidden patterns in experimental data,
and ultimately, in modeling biological systems. The source
code, database archive, documentation and demonstration are
available at http://coreflow.mshri.on.ca, as is a link to a GitHub
repository for code sharing and to a Google group for online
discussions and assistance. The standard installation package
and the on-line public version include a number of small and
well-documented scripts (see Supplementary Table 1 for a list of
scripts) outlining theworkflow process. If desired, CoreFlow can
be downloaded to run in a VirtualBox Linux environment.

Weanticipate that CoreFlowwill becomea valuable resource
for researchers who require a streamlined, flexible framework
for analyzing and sharing biological data. Moving forward, we
plan to release all code related to our publications in this
format and we encourage other potential users to share their
workflows too. By promoting the public release of code,
CoreFlow can help eliminate the ‘black box’ issue [17–19] of
unpublished code and reduce the use of unsuitable software
[20] in publications. In this manner, we expect that the content
of CoreFlow will become as valuable as the software itself.
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Fig. 3 – Computational correction of SILAC inaccuracies using CoreFlow. (A) Incomplete labeling (center) and
arginine-to-proline conversion (right) are two phenomena that can make SILAC ratios inaccurate and far from their true ideal
values (left). (B) Incomplete labeling deviates the measured ratio from the true ratio in a manner that is non-linearly correlated
with the SILAC incorporation percentage. For severely unlabeled samples (e.g. 0.9 incorporation), it becomes impossible to
measure ratios that are above a threshold. (C) Arginine-to-proline conversion is, unsurprisingly, dependent on the number of
prolines in the MS peptide; peptides with more prolines are more prone to wrong measurements. (D) After assessing labeling
deficiency and arginine-to-proline conversion rates in the sample of interest (please refer to the Supplementary Text for further
details), the measured ratios can be corrected using the formula provided. (E) By using this formula, measured SILAC ratios
affected by both labeling and arginine-to-proline conversion inaccuracies can be converted to correct ratios that match
unaffected samples.
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