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Abstract: The premise of this study is that models of hearing, in gen-
eral, and of individual hearing impairment, in particular, can be
improved by using speech test results as an integral part of the modeling
process. A conceptual iterative procedure is presented which, for an
individual, considers measures of sensitivity, cochlear compression, and
phonetic confusions using the Diagnostic Rhyme Test (DRT) frame-
work. The suggested approach is exemplified by presenting data from
three hearing-impaired listeners and results obtained with models of the
hearing impairment of the individuals. The work reveals that the DRT
data provide valuable information of the damaged periphery and that
the non-speech and speech data are complementary in obtaining the
best model for an individual.
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1. Introduction

People with similar sensitivity loss can differ greatly in their ability to understand
speech, particularly in complex acoustic environments (e.g., Smoorenburg, 1992). Even
with amplification and signal processing techniques provided by hearing aids, their per-
formance can vary substantially (Plomp, 1978). It is, therefore, of great importance to
obtain a better understanding of how the auditory processing of speech sounds by an
individual is affected by hearing impairment. Aspects of hearing impairment which are
not accounted for by sensitivity loss are referred to as supra-threshold deficits and may
be associated with individual patterns of outer hair-cell (OHC) and inner hair-cell
(IHC) dysfunction (e.g., Lopez-Poveda et al, 2009; Jepsen and Dau, 2011; Poling
et al., 2012). OHC dysfunction is associated with threshold shifts due the lack of active
amplification of the vibrations on the basilar membrane (BM). This active mechanism
is also responsible for the compressive BM input/output function characterizing the
normal system. The supra-threshold deficits associated with OHC dysfunction are, e.g.,
loudness recruitment and reduced frequency selectivity. IHC dysfunction also leads to
a threshold shift, since the effective transformation from BM vibration to neural sig-
nals is reduced. An exemplary supra-threshold effect of THC dysfunction is reduced
temporal coding acuity. It is unclear how these deficits are reflected in psychoacoustic
tasks with speech stimuli (e.g., Dubno e al, 2007). Linking speech and non-speech
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psychophysics may provide a better understanding of the underlying reasons for the
observed performance of hearing-impaired (HI) listeners in speech perception tasks.

Numerous studies have been reported aiming at predicting the performance of
HI listeners in a speech perception task (e.g., Jirgens and Brand, 2009; Brown et al.,
2010), with a peripheral model used as a front end to a conventional automatic speech
recognition system, as a back end. A limiting property of such an approach is the
inability to decompose the origin of errors, especially front-end versus back-end errors.
Ghitza (1993a) proposed a framework based upon the Diagnostic Rhyme Test (DRT;
Voiers, 1983)—a two-alternative task that minimizes the influence of cognitive and
memory factors (Ghitza, 1993b).

The DRT method has been used particularly in the speech coding commu-
nity to measure the intelligibility of processed speech while providing diagnostic in-
formation in terms of error patterns on an acoustic-phonetic feature space (Voiers,
1983). In the present study, a procedure was employed to improve models of periph-
eral hearing impairment, using a machine that mimics the DRT paradigm (Messing
et al., 2009). As a baseline, the computational auditory model of Jepsen and Dau
(2011) was considered and adjusted to individual hearing loss based on non-speech
measures. This model was iteratively adjusted by serving as a front end to a 1-bit
recognizer, similar to Messing et al (2009). In each iteration, DRT error patterns
were obtained and the parameters of the model were adjusted by an ad hoc,
knowledge-based procedure. Separating front-end induced errors from back-end
induced errors, achieved by using the DRT methodology was of conceptual impor-
tance here, since this should allow the predicted errors to be associated mainly with
the front end, and should provide a measure of how well the peripheral model can
estimate the internal representation of speech. The hypothesis was that a peripheral
model of auditory processing can be refined by considering speech data provided by
the DRT framework.

2. Experimental methods

Temporal masking curves (TMC; Nelson et al., 2001) and speech discrimination data
(DRT) were obtained from three HI listeners. Following the methodology proposed by
Jepsen and Dau (2011), a “phase-1" peripheral model was derived for each individual
based on the TMC data and the audiogram. Next, DRT acoustic-phonetic error pat-
terns were derived for the phase-1 model, using the methodology proposed by Messing
et al. (2009). Finally, obeying biological constraints, parameters of the phase-1 model
were adjusted, resulting in a “phase-2” model, with error patterns closer to those meas-
ured behaviorally.

Three listeners with mild-to-moderate sensorineural hearing loss participated
in this study. Listeners S1, S2, and S3 were 21, 45, and 27 yr old, respectively. Only
one ear of each listener was measured in the speech and non-speech tasks. The audio-
grams of the measured ears are shown in Fig. 1 (open symbols). The listeners were
recruited based on the differences in their audiograms, to potentially produce different
results in the speech task.

TMCs have been suggested as a useful method for behaviorally estimating the
cochlear input-output function in humans (e.g., Nelson et al, 2001), even though sev-
eral limitations and drawbacks of the method have recently been reported (e.g.,
Wojtczak and Oxenham, 2009; Lopez-Poveda and Johannesen, 2012). Forward mask-
ing of a fixed-level brief tone was measured as a function of the signal-masker interval.
The signal was a pure tone with duration of 20ms, including a Hanning window
applied over its entire duration. The signal frequency (fs,) was either 1 or 4kHz. The
signal was presented at 10dB sensation level (SL). The masker was a pure tone with a
duration of 200 ms including 5-ms raised-cosine on- and off-ramps. The masker fre-
quency was equal to f, (on-frequency condition) or 0.6 f, (off-frequency condition).
The masker level was adjusted by the adaptive procedure to reach masked signal
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Fig. 1. Audiograms of the measured ears of the three HI listeners. Pure-tone thresholds are plotted in dB hear-
ing level (HL). Open symbols indicate measured thresholds, while filled symbols indicate simulated thresholds
by the corresponding models. Gray triangles show thresholds for the model after phase 1. Black symbols indi-
cate the thresholds of the individually fitted model after phase 2.

threshold. A three-interval three-alternative forced choice paradigm with a two-up
one-down rule was applied.

The DRT database consists of 96 minimal word pairs spoken in isolation.
Words in a pair differ only in their initial consonants. The feature classification follows
the binary system suggested by Jakobson et al (1952). The six dimensions, used by
Voiers, are Voicing, Nasality, Sustention, Sibilation, Graveness, and Compactness
(denoted VC, NS, ST, SB, GV, and CM, respectively). To minimize back-end induced
errors, synthetic DRT stimuli were used. The synthetic stimuli were generated using
HLSyn (Hanson and Stevens, 2002), a modification of the Klatt speech synthesizer.
The experimental paradigm was a one-interval two-alternative forced-choice experi-
ment (to assure a task with minimum cognitive load). The masker was an additive sta-
tionary speech-shaped noise. Data were obtained at a speech presentation level of
70 dB sound pressure level and signal-to-noise ratios (SNR) of 0 and 10dB.

3. Modeling approach
3.1 Peripheral model as front end

In the peripheral model, the computational auditory signal processing and perception
model (CASP; Jepsen et al., 2008; Jepsen and Dau, 2011), the acoustic stimuli are first
processed by the outer and middle ear filters, followed by the dual-resonance nonlinear
(DRNL) filterbank (Lopez-Poveda and Meddis, 2001) simulating BM processing. The
processing of the subsequent stages is carried out in parallel in the frequency channels.
Inner hair-cell transduction is modeled roughly by half-wave rectification followed by
a first-order lowpass filter with a cut-off frequency at 1 kHz. The expansion stage
transforms the output of the THC stage into an intensity-like representation by apply-
ing a squaring expansion. The adaptation stage simulates dynamic changes in the gain
of the system in response to changes in the input level. The output of the adaptation
stage is processed by a modulation filterbank, which is a bank of bandpass filters tuned
to different modulation frequencies. The output of the preprocessing stages, termed the
internal representation (denoted IR), was generated using DRNL filters in the range
from 0.1 to 8 kHz and six modulation filters with center frequencies logarithmically
spaced and ranging from 0 to 46 Hz.

3.2 The back end

The back end (Messing et al., 2009) is based on template-matching. A template-match
operation comprises measuring the “distance” of the unknown token to the templates
and labeling the unknown token as the template with the smaller distance. Hence, tem-
plate matching is defined by the distance measure and the choice of templates. Here,
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the distance measure was the Euclidean distance. The templates were the IRs of each
word, in quiet. New template IRs were obtained after each iteration, using the current
adjusted model. For a given test word, the corresponding IR (IRy) was calculated at
the prescribed SNR, and the Euclidean distance (i.e., the mean-squared-errors, MSE)
between IR, and the two templates were calculated across time, frequency and modu-
lation frequency. The Euclidean distance was considered here as representing the per-
ceptual distance between the test IR and the template. The detector chose the template
that produced the smallest MSE as representing the input word. In the present study, a
probabilistic decision criterion (a soft decision) was introduced which reflects internal
noise in the model.

3.3 Iterative procedure

Following Jepsen and Dau (2011), the parameters of the cochlear stages of the periph-
eral model were adjusted in order to estimate degraded processing due to hair-cell loss.
The input-output (I/O) behavior of the DRNL filterbank was adjusted to correspond
to the basilar-membrane (BM) I/O functions estimated behaviorally in the TMC
experiment for the three HI listeners, in terms of the compression exponent and the
knee point. After parameters were estimated at 1 and 4 kHz, linear interpolation and
extrapolation were used to obtain parameter-sets for a range of filter center frequencies
(0.1 to 8 kHz). The suggested procedure also provided estimates of the effects of OHC
and THC losses with respect to sensitivity. OHC loss was estimated from the fitted I/O
functions. The IHC loss was then considered as the difference between the total sensi-
tivity loss and the OHC loss. The loss of sensitivity due to ITHC loss was simulated as
a linear attenuation at the output of the hair-cell transduction stage. The baseline
model of normal hearing was denoted MNH, and the models fitted to listeners S1, S2,
and S3 were assigned subscript “pl” (for phase-1) and denoted M1,;, M2, and
M3, respectively. In order to evaluate the sensitivity of the pl models, the individual
audiograms were simulated (see gray triangles in Fig. 1). This simulation was done
using the “optimal detector” back-end framework and procedure presented in Jepsen
and Dau (2011).

Next, the DRT stimuli were processed by the phase-1 models. The responses
were analyzed by the 1-bit recognizer described above, generating error patterns along
the Jakobsonian acoustic-phonetic space (Jakobson ez al., 1952). The interpretation of
the error patterns steered the adjustment of the cochlear stage to better match the
human error patterns. This was done in an ad hoc procedure based on knowledge
about the acoustic correlates of the Jakobsonian dimensions. In the peripheral models,
simulated OHC dysfunction reduces the temporal and spectral resolution of the model
output, as well as its amplitude, while simulated THC loss reduces the amplitude of the
IR. A combined IHC/OHC dysfunction can lead to an attenuation of parts of the
speech representation below the (simulated) absolute threshold.

For example, the overestimated number of errors in the NS dimension is inter-
preted as the result of reduced energy at low-frequencies of the model output. This can
be compensated for by an increase in the simulated THC loss, while remaining inside
the uncertainty range of the measured audiogram. The models fitted to listeners S1,
S2, and S3 were denoted M1,,, M2,,,, and M3,,,, respectively.

4. Results

The results from the psychoacoustic data used to fit model parameters, i.e., the TMCs
and DRT data, are not shown explicitly here. Some general observations were that
BM compression was found for listener S2 at 1 and 4kHz, and for S3 at 4kHz, but
for all listeners the slopes of the BM I/O function were larger than for NH listeners,
i.e., above about 0.25dB/dB. In the DRT, listener S1 exhibited many more errors than
the NH listeners at both SNRs and had the worst overall performance among the HI
listeners of this study. S2 showed a high error rate (above 30%) at 0dB SNR in all
dimensions except NS. At an SNR of 10dB, there were substantially fewer errors for
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this listener. S3 had the best performance at an SNR of 0dB among the HI listeners
and, similar to the other listeners, benefitted from a better SNR.

The predicted error patterns are shown in Fig. 2 as error differences, in per-
cent, relative to the measured DRT data. The zero line reflects a perfect match to the
human data. Negative values indicate that the model produced fewer errors than the
corresponding listener. Bars show the error difference and boxes indicate one standard
deviation of the data. The “+” sign stands for the attribute that is present and the “—”
sign for the attribute that is absent. (For example, the pair meat-beat: “meat” is NS+,
“beat” is NS—.) Matches were considered good if they were within the boxes. The
results obtained with MNH,,; generally showed good matches. The model of normal
hearing could account reasonably well for the measured error patterns, suggesting that
the peripheral model is able to reflect aspects of auditory processing relevant for speech
discrimination.

The differences between predicted and measured error rates for the three HI
listeners are shown in the two left columns of Fig. 2, marked M1,,, M2, and M3,,.
Specifically, model M1, could account for the errors of listener S1 in the dimensions
NS, ST—, SB, GV+, and CM+, while errors were underestimated in VC, ST+, and
CM—. Model M2,,; accounted for the measured errors of listener S2 in the dimensions
ST—, GV, and CM at the SNR of 0dB, and VC, SB—, and CM at the SNR of 10dB.

SNR =0dB SNR =10dB
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10
0
-10

307 M2 M2 M2 M2
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Fig. 2. (Color online) Error patterns for a model of NH listeners and models of individual HI listeners.
Subscripts pl and p2 indicate phase-1 and phase-2 models, respectively. Errors are presented as error differences
between the predicted and the measured DRT data (model - human), in percent. The zero line reflects a perfect
match. The boxes represent the standard deviation of the data. When the predicted error rate was within 1
standard deviation, the bars are indicated by a green (gray) color.
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Model M3,,; provided good matches to listener S3 in the dimensions NS and GV+ at
both SNRs, while the error rates were substantially underestimated in the remaining
dimensions.

The DRT error differences between the human data and the phase-2 model
predictions are shown in the two right panels of Fig. 2, marked as M1, M2, and
M3,. The IHC loss parameter was adjusted ad hoc and was guided by the following
criteria. Too few model errors in the dimension VC indicates that the model might be
too sensitive in the mid-frequency range. This is, for example, the case for M1,;. Too
few model errors in the dimension ST also suggests that the model may be too sensi-
tive in the mid-frequency range. It was thus considered to reduce the sensitivity at mid
frequencies to improve the predictions of the DRT error patterns by increasing the
IHC loss component. M2, generally underestimated the error rates, except for the
dimensions NS and GV, and this suggests that the OHC gain was too large and the
model’s IR of the stimuli was too detailed. Too many model errors in the NS dimen-
sion (as in the case for M2,,) indicates that the sensitivity at low frequencies should be
slightly increased, since the primary cue for NS is at low frequencies. For model M3,,,,
a better match was obtained by slightly reducing the sensitivity at the mid- to high fre-
quencies. This was so since the M3,,; model had too few errors along the dimensions
ST, SB, and CM, which can be associated with the mid- and high-frequency informa-
tion. Reducing the sensitivity in phase 2 affected the errors differently along all six
dimensions. To summarize, for model M1, the matches were within 1 standard devia-
tion in 19 of 24 attributes. M2, produced closer matches to the data than M2,,. M3,
produces an error within 1 standard deviation in 16 of 24 attributes, which is an
improvement compared to M3, that only reached within 1 standard deviation in 7 of
24 attributes. For the evaluation of the sensitivity of the p2 models, associated audio-
grams were simulated (see the black squares in Fig. 1).

5. Discussion

It was shown that the DRT methodology resulted in a characterization of the hearing
impairment different from that which was obtained using the TMC data. This observa-
tion appears relevant since the ultimate goal of many models of the damaged auditory
periphery is to form a basis for speech intelligibility prediction.

For NH listeners, the phase-1 model produced fairly good predictions of the
measured DRT data. For the HI listeners, the individual phase-1 models produced
fewer DRT errors than their corresponding listeners. To obtain a closer match of the
behavioral DRT data, sensitivity needed to be reduced; this was achieved by increasing
the value of HLyc in individual frequency channels while keeping the estimated
amount of HLoyc. The resulting phase-2 models generated better matches of the
DRT error patterns, without affecting the predictions of the TMC data. Interestingly,
the adjusted values of HLjyc reflected a linear reduction of the effective gain at the
output of the cochlea but did not affect the amount of predicted compression or the
frequency tuning of the peripheral filters.

It should be noted that the hearing loss estimates were based on data collected
at only 1 and 4kHz (and the audiogram at frequencies between 0.25 and 8§kHz).
Similar data could be obtained at more frequencies to gain more confidence in the
used cochlear model parameters. The use of interpolation and extrapolation of the
parameters at other DRNL filterbank frequencies may prove to be a too crude
assumption. Furthermore, OHC and IHC losses have in the present study only been
considered in terms of associated sensitivity losses but not in terms of temporal coding
which was outside the scope.

Future research programs to extend and strengthen the approach presented
may address the following issues: (1) the usage of test data separate from the fitting/
training data (this should lead to a more rigorous evaluation of the predictive power
of the model) and (2) the development of an automated fitting/optimization procedure
for phase 2.
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Finally, the suggested framework may be applied to the development of signal
processing algorithms for hearing aids. It is suggested to use speech test results as an
integral part of the hearing aid design in an iterative procedure, with the goal of mini-
mizing the phonetic confusions produced by the hearing aid connected in tandem with
a model of the patient’s peripheral hearing impairment. The confusions should be
minimized across the acoustic-phonetic features and across different environmental
conditions.
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