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Abstract. River basin management can greatly benefit fromof observations falling in the 90% confidence bounds, for
short-term river discharge predictions. In order to improvethe open loop and assimilation runs respectively, pointing to
model produced discharge forecasts, data assimilation allowproblems with the simple approach used to represent model
for the integration of current observations of the hydrological error.
system to produce improved forecasts and reduce prediction
uncertainty. Data assimilation is widely used in operational
applications to update hydrological models with in situ dis- 1 |ntroduction
charge or level measurements. In areas where timely access
to in situ data is not possible, remote sensing data productgccurate short-term predictions of river flows are necessary
can be used in assimilation schemes. for optimal river basin management, in particular for river
While river discharge itself cannot be measured fromsystems with large reservoirs or in areas subject to flooding.
space, radar altimetry can track surface water level variationghe hydrological models used to generate river flow predic-
at crossing locations between the satellite ground track angions are however subject to high uncertainties due to un-
the river system called virtual stations (VS). Use of radar al-certain model structure, inputs, parameterization and initial
timetry versus traditional monitoring in operational settings conditions (e.g., Liu and Gupta, 2007).
is complicated by the low temporal resolution of the data (be- In order to reduce prediction uncertainty, data assimilation
tween 10 and 35 days revisit time at a VS depending on thetan be used to combine the information from models and
satellite) as well as the fact that the location of the measureindependent observations. Taking into account their respec-
ments is not necessarily at the point of interest. Howevertive uncertainties, models and data are combined to obtain
combining radar altimetry from multiple VS with hydrologi- the best possible estimate of the current state of the hydro-
cal models can help overcome these limitations. logical system. The improvements obtained from assimila-
In this study, a rainfall runoff model of the Zambezi River tion of in situ data to hydrological models, in particular wa-
basin is built using remote sensing data sets and used to driver levels and discharge, have been successfully proven since
a routing scheme coupled to a simple floodplain model. Thethe 1980s and data assimilation is commonly used in oper-
extended Kalman filter is used to update the states in the routational flood forecasting models (e.g., Kitanidis and Bras,
ing model with data from 9 Envisat VS. Model fit was im- 1980; Refsgaard, 1997; Madsen and Skotner, 2005). How-
proved through assimilation with the Nash-Sutcliffe model ever, such applications require the availability of timely in
efficiencies increasing from 0.19 to 0.62 and from 0.82 tosjtu data, which can be challenging in large remote river
0.88 at the outlets of two distinct watersheds, the initial NSEpasins or in situations where riparian countries are unwill-
(Nash-Sutcliffe efficiency) being low at one outlet due to ing to share their data. A solution to bypass such challenges
large errors in the precipitation data set. However, model reis the use of remote sensing data.
liability was poor in one watershed with only 58 and 44 %
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Fig. 1. Study area and location of subbasins and VS (only gauging stations on modeled reaches with data during either the calibration or
validation are shown).

The direct measurement of river discharge from space iorder to improve inflow predictions for the Kariba and Itezhi-
not possible with current technology, but radar altimetry canTezhi reservoirs. The assimilation is carried out using the ex-
be used to track water level variations in surface water bodtended Kalman filter and model states are updated using al-
ies. While initially designed for ocean monitoring, radar al- timetry data from the Envisat mission.
timetry has successfully been used to measure river level
variations in many areas of the globe (e.g., Koblinsky et al.,

1993; Birkett, 1.998; Berry et ‘_al., 2(_)05; Frappart etal., 2006)., Study area: the Zambezi River basin

The two main challenges in using radar altimetry for hy-

drological models are the conversion of river level variationstne zampezi River basin is the largest of southern Africa
to discharge as well as the low temporal resolution, which has;ng the fourth largest in Africa. The basin covers over
been of between 10 and 35 days for radar altimetry missions 390000 kri and eight countries have land areas within its
up to now. _ _ . _boundaries. Precipitation in the basin is highly seasonal with
Previous studies have focused on using radar altimetry ingimost all of the rainfall occurring in the rainy season be-
combination with hydrological models in order to overcome tveen the months of October and March.
thes_e Iimitatipns. Leonetal. (20(_)6) and Getirgna etal. (2005_3) The study focuses on two distinct watersheds, both lo-
obtained rating curves from discharge estimates of cali-cated in the western part of the Zambezi River basin: (1) the
brated hydrological models. Getirana (2010) and Getirana €y 5 mbezi River upstream of Lake Kariba (draining approx-
al. (2013) showed that altimetry could be used in the Ca”'imately 5.2x 10° km?), and (2) the Kafue River upstream
bration of hydrological models with similar results to those ¢ | ake Itezhi-Tezhi (draining approximately 9&10% km?)
obtained using in situ flow data. (Fig. 1). Both Lake Kariba and Lake ltezhi-Tezhi are used
Work preparing for the Surface Water Ocean Topographysoy hydropower generation and their operation could benefit
(SWOQOT) mission has shown that virtual wide-swath altime- fqm, improved predictions of inflow.
try could be used to update hydrodynamic models and im- The two watersheds were divided into subbasins based on
prove modeled depths and discharge (Andreadis et al., 200%je ayailability of in situ data as well as altimetric virtual sta-
Biancamaria et al., 2011). The hydrodynamic models how-jong (vs), which are the locations where the satellite track
ever rely on the availability of detailed bathymetric data that ;g river network intersect. The outlet of watershed 1 is lo-
are not globally available. In terms of assimilation using -ated approximately 160 km upstream of Lake Kariba and

nadir altimetry, Pereira-qudenaI et a!. (2011) used altimetriche gutlet of watershed 2 is located approximately 90 km up-
measurements of reservoir levels to improve modeled reselsyream of Lake Itezhi-Tezhi in order to coincide with in situ

voir levels and Paiva et al. (2013) showed that streamflow, auging stations.

and water level forecasts in the Amazon could be improved” The major feature located in the study area is the Barotse

through the assimilation of river altimetry. _ floodplain, which is located in watershed 1 (see Fig. 1) and
The objective of this study is the assimilation of river al- p4q 4 storage capacity of 8.5 kand extends over 7700 Km

timetry into a routing model of the Zambezi River basin in The floodplain has a damping effect on flow through storage

Hydrol. Earth Syst. Sci., 18, 9974007, 2014 www.hydrol-earth-syst-sci.net/18/997/2014/
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Table 1. Measurement uncertainty, numbers in parenthesis refer to the VS numbers in Michailovsky et al. (2012).

Subbasin 3 8 10 11 12 16 24 29 32

Id. (187) (222) (150) (126) (267) (250) (153) (338) (299)
Measured st§m] 0.47 037 034 05 042 060 037 061 0.74

* No in situ data was available to analyze the VS at subbasin 11, it was classified as “good” based on good coherence with other
VS on the same reach.

and evaporation and was taken into account in the routingare classified as “good” with standard errors (std) of less than
scheme. 40cm or “moderate” with expected standard errors of less
While the water resources in the Zambezi River basin arghan 70cm. The values reported in Table 1 include ampli-
not currently subject to major stress, there are large variationtude adjustments for VS which had to be evaluated against
in the temporal and spatial distribution of water availability in situ gauges at a different location along the same reach to
across the basin. Water demand is also expected to increasecount for cross section variability (see Michailovsky et al.,
rapidly with population and economic growth and there is a2012, for details on the uncertainty estimation and classifica-
large potential for further development including plans for tion procedure).
further hydropower installations and expansion of irrigated
areas. 3.2 Modeling
In this context, recent studies have focused on water ) o )
management issues in the basin. Among these, Tilmant e‘[he altimetry d_ata was aSS|.m|Iated to a routing model .of the
al. (2010) focused on the optimization of reservoir opera-YPPer Zambeziand Kafue rivers. The Barotse floodplain was
tion in order to take into account tradeoffs between eco-Modeled as interacting with the adjacent reaches through a
logical conditions downstream and hydropower generation firSt order exchange driven by head differences between the
Beck and Bernauer (2011) studied the combined effects of€ach and floodplain. Inflows to the routing model were gen-
increased water demand and climate change. They predicteefated using a rainfall-runoff (RR) model of the study area.
.that water shortages were likely to occur in the basin, stregsé_z_l Rainfall—runoff model
ing the need to further develop water management strategies

in the basin. The rainfall-runoff model was built using the Soil and Water

In order to achieve the objectives of efficient water man- pgsessment Tool (SWAT), which is a widely used semidis-
agelmgnt,. reservoir inflow predictions are highly ,Valuable'tributed, semiphysically based hydrological modeling tool
Assimilation of remotely sensed data to hydrological mod-, o+ gperates on a daily time step (Neitsch et al., 2005). The
els can be used in order to improve discharge forecasts. ONgwaT model was chosen because it is well suited for large-

example of such a study is the work by Meier et al. (2011), s¢4je applications and is easily applicable in data sparse areas
who used remotely sensed soil moisture in a data ass'm'lat'o'@Gassman etal., 2007).

framework to improve discharge forecasts with the objective’ Tha model was set up using remote sensing data only.

of improving reservoir management. The aim of the currentrye general set up as well as soil and vegetation parameters

study is similarly to use data assimilation to improve inflow \\are taken from Schuol et al. (2008). Other data sets were

forecasts using radar altimetry. taken from freely available data sources: the digital elevation
model used was from the Shuttle Radar Topography Mis-
sion (SRTM, Farr et al., 2007), precipitation forcing was the

3 Materials and methods Famine Early Warning Systems Network (FEWS-Net) rain-

fall estimate product (RFE) and temperature forcing was the

European Centre for Medium Weather Forecast (ECMWF)

. S ) . ERA-Interim product.
The altimetry data used in this study was the River AlTimetry 1. s\wWAT model was run using the Hargreaves method

(RAT) product developed at the Earth and Planetary Remot%r the calculation of evapotranspiration, which requires only

Sensing Lab (E'A.'P'R'S') (Berry_et al., 2005). The_RAT data'temperature data as input. The calibration of the RR model
product was obtained by retracking the 18 Hz Envisat wave-,

: . focused mostly on the groundwater parameters that were
forms. The data points have a 369 m along-track spacing anfg

: ; O und to be the most sensitive parameters not related to soil
the return period for one virtual station is of 35 days. The dataand land cover data. Such parameters were not calibrated in

extraction procedure for the Zambezi River basin is detalledOroler to preserve the physical representation and reduce the

in _I:_/Irichlailov_sky eft ?]l' (5(3/182). 6i hed 1 and 3 i number of calibration parameters. Table 2 presents the main
e location of the — 6 n watershed 1 and 3 in Wa'galibration parameters and their values.

tershed 2 — used in the study is shown in Fig. 1. The VS use

3.1 Altimetry data

www.hydrol-earth-syst-sci.net/18/997/2014/ Hydrol. Earth Syst. Sci., 18, 9917807, 2014
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Table 2. Main calibration parameter values in the SWAT model. For detailed description of the parameters see Neitsch et al. (2004).

Parameter Baseflow Groundwater Groundwater Surface Soil evaporation
alpha delay time “revap” coefficient  runoff lag compensation
factor [dayg [—] coefficient factor
[day™ 1 (allows water to [dayg -]
move from shallow
aquifer to
unsaturated zone)
Range 0.003-0.025 5-80 0.2-0.45 3 0.1
3.2.2 Reach routing floodplain was not considered here as it is already taken into

account in the rainfall-runoff model. The floodplain—-reach

Channel routing was modeled using a Muskingum routinginteraction was modeled as a first order exchange driven by
scheme expressed in terms of water storage. The propagatiqie difference in water levels between the floodplain and
model for stored water volume in théth reach downstream reach. The open water evaporation rate was assumed equal
can be written as to the potential evaporation (PET) rate from the subbasin in

N—1 N-1 which the floodplain is located. The PET value was obtained
SN, j+1 = Apn Z |:(MN_,'7]'+1 + MN—i,j) 1_[ Cl,k:| from the RR model.

i=0 k=N—i The basic equations for the floodplain-reach interaction

N-1 SN_i i for a floodplain located in a reach “rc” are
+4AN Y [ L
— 2-Ky_i-(1—Xpn_i)+ At dep _ . (h h A ET 5
N1 ?—Coe'(rc—fp)— fp - Elo, (5)
. ds
k=11:[i+l Cl,ki| + C3nsn,j, (1) d_;c — msk(s, M) — coeff- (/’lrc _ hfp), (6)
whereA yis defined as whereVy, is the floodplain volume (), coeff is the transfer
At - Ky coefficient (nfs™1), hyc and i, are the water levels in the
AN = At +2 Ky -(1—Xpn) ) reach and the floodplaini, is the floodplain area (A, ETo
_ _ is the potential evaporation (m¥), s is the water stored in
andCyy andCsy are defined as in Chow et al. (1988): the reach (), msk is the Muskingum routing operator as
At —2-Ky - Xy presented in Eq. (1) is the state vector of volumes in all
Civ =77 Ky -(L— Xy) + At ) reaches and the inputs from the RR model (hs™?).
2. Ky-(1— Xy) — At The one-day time step used for the modeling was assumed
O3 = Ky (A= Xw) + A (4)  small relative to the timescale of the floodplain processes
and the floodplain equations were therefore solved assum-
wheresy ; is the storage in reaclv at time stepj (md) ing mean daily volume in the floodplain equal to the volume

and My _; is the rainfall-runoff model generated inflow to at the end of the previous day, minus the evaporation that was
reachN at time stepj (m®s~1) and Ar is the model time  assumed to be removed before any transfers take place. The
step (days). The two Muskingum parametets; a weigh-  explicit solution is then

ing factor andK y, the travel time of the flood wave through

the reach (days), were assumed constant for each reach selfe = Vipx—1 + COeff- (hucsr — hipr-1) — Apr-1 - ETo, (7)

ment (e.g., Chow et al., 1988, p. 258). srcx = MsK(sg—1, My—1, My) — coeff- (hrcps —hpi—1), (8)

3.2.3 Floodplain model where hcy+ is the level in the reach after the addi-
tion/subtraction of volume from the Muskingum routing but
Because storages in Eq. (1) are expressed only as a functidrefore any transfers with the floodplain have taken place.
of the states of the previous time step, the routing through The geometry of the reach and floodplain need to be
the reaches and the floodplain processes can be carried okbown in order to obtain levels and floodplain areas from
sequentially. A simple floodplain model was built following the modeled water volumes. Figure 2 presents the geometry
an approach similar to that used by Dincer et al. (1987) tothat was assumed for the reach and floodplain on one side of
model the Okavango swamp. Two processes were modeled ithe reach. The floodplains extend on both sides of the reach,
the floodplain: water transfers with the main reach and evapand are assumed symmetrical with respect to the reach.
otranspiration from the floodplain. Direct rainfall onto the

Hydrol. Earth Syst. Sci., 18, 9974007, 2014 www.hydrol-earth-syst-sci.net/18/997/2014/
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Reach

HET
"’;;oodplain

Exchange

X Floodplain

Fig. 2. Cross section of reach and floodplain (a symmetrical floodplain is located to the left of the reach) and illustration of river network—
floodplain interaction.

The reaches were assumed to have trapezoidal cross sewheres’ andP' are the forecasted state vector and state co-
tions with constant bank slopey, and the elevation of the variance matrixu is the model forcingw is a sequence of
bottom of the floodplain was assumed to rise with distancewhite Gaussian noise with covarian@eF is the state transi-
from the reach following tion matrix,G the control input matrix and' the noise input

matrix.
his = (8 - x)™, 9 . .
fp=(F-x) ©) In the analysis phase, the analysis or updated state vector
where g and m are shape parameters andis the dis-  and covariance at a time when a measurement is acquired
tance from the side of the floodplain closest to the reachare obtained through the following equations:
(Fig. 1). The shape parameters were determined by extract- P - 1 .
ing SRTM heights along one representative cross section pef = $n + P - Hu - (Hn - P -Ho + Ru) (9 = Hur-sl,). (13)
ini itti -1
reach where the floodplain is located and fitting ghendm pa _ [I P (Hm BT 4 Rm) . Hm] P (14)
parameters.
Reach width and bank slope were determined based oyheres? andP? are the analysis state vector and covariance

Landsat imagery. Bank slope was estimated by measuringnatrix, andH is the measurement operator, which is defined
low and high flow widths as well as high and low flow alti- zg

metric heights from the same location. Bank slope was then

f
calculated as Ym =Hp -5 + Vm, (15)
_q1 [ altihigh — altijow Where_ym is the measurement at tinwe gndv is a sequence
ap = tan (whigh — wom) /2 (10)  of white Gaussian noise with covarian€,. The quan-
high low tity (ym — Hm -sfn) is called the innovation or measurement

In order to obtain bottom widths, a low flow depth was com- residual.
puted based on historical measured low flows (or modeled In the EKf, the nonlinear model and measurement opera-
low flows where unavailable) using a method detailed intors are used directly in Egs. (10) and (14). FhandF ma-
Michailovsky et al. (2012). trices needed in Egs. (11)—(13) are obtained by linearizing
The calibration of the RR model was carried out manually the measurement and model operators around the forecasted
using in situ discharge data. The Muskingumparameter state. So if: denotes the nonlinear model operator ghnithe
as well as the floodplain exchange coefficient, coeff, werenonlinear model operator
calibrated using both in situ flows and altimetric levels.
dh af

o H= — andF = — .

3.3 Assimilation 08 [yt S |g—yf

3.2 M remen rator
3.3.1 The extended Kalman filter 33 easurement operato

The measurement operatar, maps the model state in the

The Kalman filter is a sequential data assimilation SChemeobserved space; i.e., in this studyjs used to convert the

that can be splitin a propagation and an analysis phase. Whe&ored volume in a reach to an altimetry reading.

thedmzaKsulreme?lt andEnlg;)delh(_)pherat(;]rs arelnonllnear, th_e Ex- Reaches were assumed to have a trapezoidal cross section
tended Kalman filter (EKT), which is the nonlinear extension with bottom widthw, bank slopex, and lengthL. The stor-

to the Kalman fllte_r, can be used. , age in the reach, can then be expressed as a function of the
In the propagation phase of the standard Kalman filter, dyater depthi as

forecasted state and covariance are calculated using )
d
Ste1 = Fret S + G - g + T - w, (11) s=1L- (w -d + an )). (16)
ap
Pir1 = FPLFT 4+ Ti1 Qe s, (12)

www.hydrol-earth-syst-sci.net/18/997/2014/ Hydrol. Earth Syst. Sci., 18, 9917807, 2014
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Solving for depth yields s , Fret Tiat , Gia1
s=[5] Fa= 6t et ] s = 9]
y_ —wL +/(wL)2+ 4L/tan(ap) - s a7 0
- 2L/ tan(ap) ' andI’ , = [l } (20)

Finally, a common reference was needed between modeledh | is the identit i d all other h b
depth and measured altimetry. This was done by running\(’jv f(?red IS the | eln IEy migx an ﬂ? ob er %rms ave been
the routing model and shifting the altimetric heights by the efined previously, Eq. (10) can then be written as
difference in mean between coincident modeled depths angq, - _ S / /

G ) i k1 = Sk + Gppqcukr + Tpyq - &k 21
measurements over the calibration period leading to the def- - krl kel m T kol D
inition of h: and all other equations for the EKf can then be directly ap-
—wL + JwL)? + 4L, tan(ap) - s plied using the matrices and vectors defined in Eq. (19).

h(s) = Because of the low dimensionality of the problem, the
2L/ tan(ap) added states will not cause any significant computational bur-

Y12t (dmodelt) — alti(r)) den for the application: in this case study it will lead to hav-
+ n, ’ (18) ing two states per reach plus one state per floodplain, which

: . . . is a total of 32 state variables.
where (alti) are the altimetric height measurements.

3.4 Model evaluation
3.3.3 Error model

In any model prediction, the performance can be evaluated

The m:alasc;{ren"tn)ent srro.rr?n the altimetry valt:jes(;/vas assuMegking a number of different criteria in order to characterize its
normally distributed with zero mean. Standard error esti- o tormance in terms of accuracy (i.e., how close the value

mates were based on the values reported in Michailovsky eb¢ the model estimate is to the observations) and precision

al. (2012) (see Table 1). o (i.e., how uncertain the model prediction is).
Specification of model uncertainty is one of the ma- = |, orqer 1o fully assess the performance of the open loop

jor tasks in data assimilation because of the many differ-;y ssimilation model runs, the following measures were
ent sources of error, which are poorly known and typically |,cqq

extremely difficult to separate from one another (Liu and

Gupta, 2007). — Coverage: the percentage of observations that fall
The approach chosen for this study was to assume that the within the predicted nominal confidence interval.

rainfall-runoff forcing was the main source of model error. . .

As the magnitude of the error on model-generated runoffis — Nash-Sutcliffe efficiency (NSE)

typically proportional to the magnitude of the runoff, the er-  _ Root mean square error (RMSE)

ror was applied as a multiplicative term on the RR forcing

and the model error representation was therefore determined — Sharpness: the width of the predicted nominal confi-

by analyzing the normalized runoff residuals during the cali- dence interval.

bration period, Because a tradeoff must usually be made between sharpness

In order to obtain in situ measurements of runoff, gauged - o .
flow was assumed equal to runoff for upstream catchmentsand coverage, a measure combining both criteria, the interval
Skill score (ISS) was also used. The ISS is defined as follows

For catchments located further downstream, ga}uged runo Gneiting and Raftery, 2007):

from a given area was assumed equal to the difference be*

tween downstream and upstream gauged runoff. 1SS, = Z iss, (I, u, x;), (22)
While model error is assumed white Gaussian (see Eqg. 11), :

the runoff residuals were found to be highly autocorrelated.

This was taken into account by assuming a first-order autoWhere

regressive (AR1) model: w—1 ifl<x<u
isse(,u,x) =3 (u—0D+2/a-(1—x) ifx < , (23)
W =a - Wi-1+ €, (19) w—0D+2/a - (x—uifx <u

where {v) are the runoff residuals; is the AR1 parameter \herey and/ are the upper and lower confidence bounds

ande is a sequence of Gaussian white noise, which has &t the significance levet for the model estimate and is

covarianceQ'. the observed value. The ISS should therefore be minimized
This type of AR1 error model can easily be implemented 35 a lower 1SS value will indicate sharper confidence inter-

in the EKf by augmenting the state vector with the correlatedya|s and fewer observations located outside of the confidence
noise term. By setting (e.g., Jazwinski, 1970) bounds.

Hydrol. Earth Syst. Sci., 18, 9974007, 2014 www.hydrol-earth-syst-sci.net/18/997/2014/
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Table 3.NSE values for calibration and validation.

Watershed 1 Watershed 2
Subbasin Id. 14 24 32 34 12 17

Calibration 0.80 0.88 0.69 0.5 0.90 0.82
Validation 042 059 0.07 0.19 0.72 0.82

NSE

Open Loop Run Calibration Period
Assimilation Run 90% Confidence Bounds (Open Loop)
In Situ Data 90% Confidence Bounds (Assimilation)

6000 |-
| a) Reach Number 34

— 5000
m& 4000 -
£ 3000 ]
% oo J\\f// \ M\J \ / X
0 1 1 1 1 | _— 1

2003 2004 2005 2006 2007 2008 2009
1500/ 0) Reach Number 17

1000 A
o N [\ \ \
o=t S/ ’/Nf—gvﬂl '/ —] |

2003 2004 2005 2006 2007 2008 2009

Q[m¥s]

o
o

Fig. 3.Open loop (OL) and assimilation (Assim) results at the outléapivatershed 1 an¢b) of watershed 2.

4 Results and discussion runoff residuals were therefore analyzed over the whole of
watershed 2 to obtain the error parameters at subbasin 17.
o . For the Barotse floodplain, the assumption that the error
Model calibration was carried out over the years 2001-20045 majnly attributable to the RR forcing breaks down as the
(calibration of Muskingum'sk” using altimetry levels could  f5odplain model uncertainty is not taken into account though
only be carried out from October 2002, which is the date high uncertainties are expected on the volume—area relation-
from which Envisat data is available). The model was run upghip the transfer coefficient and the ET rate from the flood-
to the end of 2008 as this was the most recent year for whichy|ain This led to the attribution of unrealistically high er-
we were able to obtain in situ data for model validation. o5 to the RR forcing in the residual analysis. For subbasins
Model calllbratlon yielded NSE values between 0.55 yownstream of the floodplain (24, 29, 32 and 34), the RR
and 0.90, which decreased to values between 0.07 and 0.84or parameterization from the nearest upstream subbasin
over the validation period (Table 3). The low values at SOMe(syb. 14) was therefore used.
subbasin outlets can be explained by the large errors in the Tap|e 4 presents the results for all subbasins where in situ
precipitation data set. In partic.ular, in 2005 large di.fferencgsdata from the validation period (post-2005) was available and
were observed between the different remote sensing preciprig. 3 presents the results graphically at the outlets of the two
itation data sets available. By excluding the year 2005, theyatersheds.
NSE values over the validation period increased significantly Major improvements in RMSE and NSE were observed in
and were found to be between 0.46 and 0.87. all subbasins with the range of NSE values at the watershed

Analysis of the RR residuals yielded AR1 parameters be-gytiets going from 0.19 to 0.62 for watershed 1 and from 0.82
tween 0.9918 and 0.9978 and the standard deviations o, g 88 for watershed 2.

the white Gaussian error were found to be between 0.035 A subbasins showed improvements in all measures ex-
and 0.49. For some subbasins, this produced unrealisticallgept for coverage, which only improved for subbasin 12.
high estimates of model error. In particular for subbasin 171he |0ss of coverage was particularly significant for sub-
as well as for subbasins located downstream of the Barotsgssin number 34 where approximately 14 % fewer observa-
floodplain. _ o tions fell within the confidence bounds after assimilation. As
~ For subbasin 17, further investigation showed that apply-5 consequence, subbasin 34 showed an increase in the 1SS
ing the method detailed in Sect. 4.3.3 led to using only res'd'through assimilation meaning that the loss of coverage out-

uals from the year 2004 because it is the only year for WhiChvveighed the gains in sharpness at this outlet.
data was available upstream. However 2004 is a poor year in

terms of model performance for subbasin 17 (Fig. 3) and the
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Table 4.0L and Assim results. Coverage, sharpness and ISS refer to a 0.1 significance level.

Id. Coverage RMSE NSE Sharpness ISS

OL Assim oL Assim  diff OL  Assim OL Assim  diff oL Assim diff

% % msl mdsl % - - ms!l mds!l % ms!l mds? %
14 850 784 596.8 340.5 —-43 042 0381 1419 838 —41 1944 1440 -26
24 770 714 501.0 300.5 —40 059 0.85 1115 513 -53 1601 1469 -8
32 57.7 489 834.7 469.4 —44 0.07 0.70 1538 630 —59 3017 2789 -8
34 582 444 906.2 624.1 -31 0.19 0.62 1288 572 —56 4079 4152 42
12 741 78.9 76.7 55.1 —-28 0.72 0.86 156 94 —40 372 303 -19
17 875 847 121.5 99.0 —-19 0.82 0.88 230 177 —-23 305 286 -6

Table 5.0L and Assim results with additional measurement error. Coverage, sharpness and ISS refer to a 0.1 significance level.

Id. Coverage RMSE NSE Sharpness ISS

OL Assim oL Assim  diff OL Assim OL Assim diff oL Assim diff

% % ms1 mdsl % - - ms! mdsl % mis1 mis? %
14 850 80.9 596.8 323.6 —46 0.42 0.83 1419 871 -39 1944 1369 -30
24 77.0 75.1 501.0 295.4 —41 0.59 0.86 1115 546 —41 1601 1334 -17
32 577 544 834.7 462.9 —45 0.07 0.71 1538 670 —56 3017 2546 -16
34 582 517 906.2 622.0 —-31 0.19 0.62 1288 606 —53 4079 3930 -4
12 741 78.9 76.7 55.0 —28 0.72 0.86 156 99 —36 372 306 —-18
17 875 84.8 121.5 100.4 —-17 0.82 0.88 230 182 -21 305 283 -7

The loss of coverage between open loop and assimilatiombservations fall within the 90 % confidence bounds. This is-
runs can indicate an underestimation of the measurement esue particularly affects subbasins downstream of the Barotse
ror that is to be expected in this case as only measurement eftoodplain where the open loop model performance is poor,
ror itself was taken into account while the error term shouldwhich suggests both that the modeling in the area needs to be
also include measurement operator uncertainty. Inspection afproved, and that in complex river environments including
the residuals showed that 13 % of residuals fell outside of theloodplains, a separate error term representing the floodplain
90 % confidence bounds predicted by the filter equations folprocesses is needed.
the calibration period, and 17 % for the validation period. The A first step towards better error representation would be to
assimilation was run again adding a constant to the estimatethke evaporation uncertainty into account by adding, for ex-
standard deviation of the altimetry measurements. Addingample, a multiplicative error term on the ET forcing. A sepa-
0.2m led to a good match between the innovations and theirate additive error term could also be added to floodplain sub-
predicted statistics with 10.4 and 11 % of innovations falling basins. However, as the model error representation becomes
out of the 90 % confidence bounds for the calibration andmore complex, it may be necessary to use a different assim-
validation time periods respectively. ilation scheme such as the ensemble Kalman filter in which

The results using the new measurement error are presentatnlinear processes can more easily be taken into account.
in Table 5 and show an improvement in the coverage for the Figure 3a presents the results for the outlets of water-
assimilation run compared to the previous run. However, theshed 1 and shows that improvements from the assimilation
coverage was still slightly degraded at most outlets relativeare not equally distributed over the simulation time period.
to the open loop run. For outlets 12 and 17, where the coverFor example, in 2007 the assimilation performs poorly for
age was already good, almost no change was observed in thheach number 34. Figure 4b shows the timing of the altimet-
results suggesting that the initial measurement error was adic measurements between October 2006 and October 2007
equate. Further improvements could potentially be obtainedand it can be observed that only one altimetric measurement
by analyzing the virtual stations and measurement operatoris available over a period of 67 days, between 9 February
at each location in order to adapt the measurement error termand 17 April 2007, and that the update that is carried out in

The results in both cases show that the main weakness ithis period degrades model performance. The satellite passes
the assimilation scheme is the representation of model ereccur on different days at the different VS over the 35 day re-
rors. This can be observed in the coverage values, in particpeat period and the maximum delay between satellite passes
ular for reach 34 where in the open loop run only 58 % of at any VS within watershed 1 is of 16 days. However many
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a) Oct 2004 - Oct 2005 b) Oct 2006 - Oct 2007
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Fig. 4. Timing of altimetry measurements in watershed 1 and assimilation performance at reach 34 from October 2004 to Oct@er 2005
and October 2006 to October 20(1).

of the VS are located on narrow rivers 200 m wide) and 18007
this increases the risk of no data points being acquired or of *"|
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For watershed 2, the problem is magnified by the fact thatF
only 3 VS are used for the update and that these 3 VS ar¢
all visited by the satellite within 6 days of the 35 day repeat
period. Therefore, while the benefits from assimilation are

clear in a year where the model consistently over- or under- yhile this study has only used altimetry over rivers, flood-
predicts discharge such as in 2005 (Fig. 3), the altimetry datgain levels can also be tracked through altimetry and further
set will be unable to capture the shorter-term flow variability york including altimetric data over the floodplain could po-
as is shown in Fig. 5. tentially improve the results obtained in and downstream of
the Barotse floodplain.

Nonetheless, the high potential for the use of radar altime-
try in assimilation has been demonstrated as the use of mul-
In this study, radar altimetry from the Envisat satellite was tiPle VS was able to compensate for the low repeat period of
used to update the reach storages in a Muskingum routinéhe satellite where _sufﬂment \(S were avallabl_e. These results
scheme coupled to a simple floodplain model and drivenshould be greatly improved in the future, with higher spa-
by the output of a rainfall-runoff model. Assimilation im- tial resolution altimeters or swath altimetry as p_Ianped in t.he
proved Nash-Sutcliffe model efficiencies from 0.19 to 0.62 Surface Water Ocean Topography (SWOT) mission, which
and from 0.82 to 0.88 at the outlets of two distinct wa- Will allow for more, narrower, rivers to be monitored through
tersheds located upstream of Lake Kariba and Lake Itezhi&ltimetry.

Tezhi. Model reliability was good for the outlet of water-
shed 2 but was found to be low at the outlet of watershed 1.
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5 Conclusions
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