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Abstract. River basin management can greatly benefit from
short-term river discharge predictions. In order to improve
model produced discharge forecasts, data assimilation allows
for the integration of current observations of the hydrological
system to produce improved forecasts and reduce prediction
uncertainty. Data assimilation is widely used in operational
applications to update hydrological models with in situ dis-
charge or level measurements. In areas where timely access
to in situ data is not possible, remote sensing data products
can be used in assimilation schemes.

While river discharge itself cannot be measured from
space, radar altimetry can track surface water level variations
at crossing locations between the satellite ground track and
the river system called virtual stations (VS). Use of radar al-
timetry versus traditional monitoring in operational settings
is complicated by the low temporal resolution of the data (be-
tween 10 and 35 days revisit time at a VS depending on the
satellite) as well as the fact that the location of the measure-
ments is not necessarily at the point of interest. However,
combining radar altimetry from multiple VS with hydrologi-
cal models can help overcome these limitations.

In this study, a rainfall runoff model of the Zambezi River
basin is built using remote sensing data sets and used to drive
a routing scheme coupled to a simple floodplain model. The
extended Kalman filter is used to update the states in the rout-
ing model with data from 9 Envisat VS. Model fit was im-
proved through assimilation with the Nash–Sutcliffe model
efficiencies increasing from 0.19 to 0.62 and from 0.82 to
0.88 at the outlets of two distinct watersheds, the initial NSE
(Nash–Sutcliffe efficiency) being low at one outlet due to
large errors in the precipitation data set. However, model re-
liability was poor in one watershed with only 58 and 44 %

of observations falling in the 90 % confidence bounds, for
the open loop and assimilation runs respectively, pointing to
problems with the simple approach used to represent model
error.

1 Introduction

Accurate short-term predictions of river flows are necessary
for optimal river basin management, in particular for river
systems with large reservoirs or in areas subject to flooding.
The hydrological models used to generate river flow predic-
tions are however subject to high uncertainties due to un-
certain model structure, inputs, parameterization and initial
conditions (e.g., Liu and Gupta, 2007).

In order to reduce prediction uncertainty, data assimilation
can be used to combine the information from models and
independent observations. Taking into account their respec-
tive uncertainties, models and data are combined to obtain
the best possible estimate of the current state of the hydro-
logical system. The improvements obtained from assimila-
tion of in situ data to hydrological models, in particular wa-
ter levels and discharge, have been successfully proven since
the 1980s and data assimilation is commonly used in oper-
ational flood forecasting models (e.g., Kitanidis and Bras,
1980; Refsgaard, 1997; Madsen and Skotner, 2005). How-
ever, such applications require the availability of timely in
situ data, which can be challenging in large remote river
basins or in situations where riparian countries are unwill-
ing to share their data. A solution to bypass such challenges
is the use of remote sensing data.
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Fig. 1. Study area and location of subbasins and VS (only gauging stations on modeled reaches with data during either the calibration or
validation are shown).

The direct measurement of river discharge from space is
not possible with current technology, but radar altimetry can
be used to track water level variations in surface water bod-
ies. While initially designed for ocean monitoring, radar al-
timetry has successfully been used to measure river level
variations in many areas of the globe (e.g., Koblinsky et al.,
1993; Birkett, 1998; Berry et al., 2005; Frappart et al., 2006).

The two main challenges in using radar altimetry for hy-
drological models are the conversion of river level variations
to discharge as well as the low temporal resolution, which has
been of between 10 and 35 days for radar altimetry missions
up to now.

Previous studies have focused on using radar altimetry in
combination with hydrological models in order to overcome
these limitations. Leon et al. (2006) and Getirana et al. (2009)
obtained rating curves from discharge estimates of cali-
brated hydrological models. Getirana (2010) and Getirana et
al. (2013) showed that altimetry could be used in the cali-
bration of hydrological models with similar results to those
obtained using in situ flow data.

Work preparing for the Surface Water Ocean Topography
(SWOT) mission has shown that virtual wide-swath altime-
try could be used to update hydrodynamic models and im-
prove modeled depths and discharge (Andreadis et al., 2007;
Biancamaria et al., 2011). The hydrodynamic models how-
ever rely on the availability of detailed bathymetric data that
are not globally available. In terms of assimilation using
nadir altimetry, Pereira-Cardenal et al. (2011) used altimetric
measurements of reservoir levels to improve modeled reser-
voir levels and Paiva et al. (2013) showed that streamflow
and water level forecasts in the Amazon could be improved
through the assimilation of river altimetry.

The objective of this study is the assimilation of river al-
timetry into a routing model of the Zambezi River basin in

order to improve inflow predictions for the Kariba and Itezhi-
Tezhi reservoirs. The assimilation is carried out using the ex-
tended Kalman filter and model states are updated using al-
timetry data from the Envisat mission.

2 Study area: the Zambezi River basin

The Zambezi River basin is the largest of southern Africa,
and the fourth largest in Africa. The basin covers over
1 390 000 km2 and eight countries have land areas within its
boundaries. Precipitation in the basin is highly seasonal with
almost all of the rainfall occurring in the rainy season be-
tween the months of October and March.

The study focuses on two distinct watersheds, both lo-
cated in the western part of the Zambezi River basin: (1) the
Zambezi River upstream of Lake Kariba (draining approx-
imately 5.2× 105 km2), and (2) the Kafue River upstream
of Lake Itezhi-Tezhi (draining approximately 9.5× 104 km2)
(Fig. 1). Both Lake Kariba and Lake Itezhi-Tezhi are used
for hydropower generation and their operation could benefit
from improved predictions of inflow.

The two watersheds were divided into subbasins based on
the availability of in situ data as well as altimetric virtual sta-
tions (VS), which are the locations where the satellite track
and river network intersect. The outlet of watershed 1 is lo-
cated approximately 160 km upstream of Lake Kariba and
the outlet of watershed 2 is located approximately 90 km up-
stream of Lake Itezhi-Tezhi in order to coincide with in situ
gauging stations.

The major feature located in the study area is the Barotse
floodplain, which is located in watershed 1 (see Fig. 1) and
has a storage capacity of 8.5 km3 and extends over 7700 km2.
The floodplain has a damping effect on flow through storage

Hydrol. Earth Syst. Sci., 18, 997–1007, 2014 www.hydrol-earth-syst-sci.net/18/997/2014/
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Table 1.Measurement uncertainty, numbers in parenthesis refer to the VS numbers in Michailovsky et al. (2012).

Subbasin 3 8 10 11 12 16 24 29 32

Id. (187) (222) (150) (126) (267) (250) (153) (338) (299)
Measured std[m] 0.47 0.37 0.34 0.5∗ 0.42 0.60 0.37 0.61 0.74

∗ No in situ data was available to analyze the VS at subbasin 11, it was classified as “good” based on good coherence with other
VS on the same reach.

and evaporation and was taken into account in the routing
scheme.

While the water resources in the Zambezi River basin are
not currently subject to major stress, there are large variations
in the temporal and spatial distribution of water availability
across the basin. Water demand is also expected to increase
rapidly with population and economic growth and there is a
large potential for further development including plans for
further hydropower installations and expansion of irrigated
areas.

In this context, recent studies have focused on water
management issues in the basin. Among these, Tilmant et
al. (2010) focused on the optimization of reservoir opera-
tion in order to take into account tradeoffs between eco-
logical conditions downstream and hydropower generation.
Beck and Bernauer (2011) studied the combined effects of
increased water demand and climate change. They predicted
that water shortages were likely to occur in the basin, stress-
ing the need to further develop water management strategies
in the basin.

In order to achieve the objectives of efficient water man-
agement, reservoir inflow predictions are highly valuable.
Assimilation of remotely sensed data to hydrological mod-
els can be used in order to improve discharge forecasts. One
example of such a study is the work by Meier et al. (2011),
who used remotely sensed soil moisture in a data assimilation
framework to improve discharge forecasts with the objective
of improving reservoir management. The aim of the current
study is similarly to use data assimilation to improve inflow
forecasts using radar altimetry.

3 Materials and methods

3.1 Altimetry data

The altimetry data used in this study was the River AlTimetry
(RAT) product developed at the Earth and Planetary Remote
Sensing Lab (E.A.P.R.S.) (Berry et al., 2005). The RAT data
product was obtained by retracking the 18 Hz Envisat wave-
forms. The data points have a 369 m along-track spacing and
the return period for one virtual station is of 35 days. The data
extraction procedure for the Zambezi River basin is detailed
in Michailovsky et al. (2012).

The location of the 9 VS – 6 in watershed 1 and 3 in wa-
tershed 2 – used in the study is shown in Fig. 1. The VS used

are classified as “good” with standard errors (std) of less than
40 cm or “moderate” with expected standard errors of less
than 70 cm. The values reported in Table 1 include ampli-
tude adjustments for VS which had to be evaluated against
in situ gauges at a different location along the same reach to
account for cross section variability (see Michailovsky et al.,
2012, for details on the uncertainty estimation and classifica-
tion procedure).

3.2 Modeling

The altimetry data was assimilated to a routing model of the
Upper Zambezi and Kafue rivers. The Barotse floodplain was
modeled as interacting with the adjacent reaches through a
first order exchange driven by head differences between the
reach and floodplain. Inflows to the routing model were gen-
erated using a rainfall–runoff (RR) model of the study area.

3.2.1 Rainfall–runoff model

The rainfall–runoff model was built using the Soil and Water
Assessment Tool (SWAT), which is a widely used semidis-
tributed, semiphysically based hydrological modeling tool
that operates on a daily time step (Neitsch et al., 2005). The
SWAT model was chosen because it is well suited for large-
scale applications and is easily applicable in data sparse areas
(Gassman et al., 2007).

The model was set up using remote sensing data only.
The general set up as well as soil and vegetation parameters
were taken from Schuol et al. (2008). Other data sets were
taken from freely available data sources: the digital elevation
model used was from the Shuttle Radar Topography Mis-
sion (SRTM, Farr et al., 2007), precipitation forcing was the
Famine Early Warning Systems Network (FEWS-Net) rain-
fall estimate product (RFE) and temperature forcing was the
European Centre for Medium Weather Forecast (ECMWF)
ERA-Interim product.

The SWAT model was run using the Hargreaves method
for the calculation of evapotranspiration, which requires only
temperature data as input. The calibration of the RR model
focused mostly on the groundwater parameters that were
found to be the most sensitive parameters not related to soil
and land cover data. Such parameters were not calibrated in
order to preserve the physical representation and reduce the
number of calibration parameters. Table 2 presents the main
calibration parameters and their values.

www.hydrol-earth-syst-sci.net/18/997/2014/ Hydrol. Earth Syst. Sci., 18, 997–1007, 2014
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Table 2.Main calibration parameter values in the SWAT model. For detailed description of the parameters see Neitsch et al. (2004).

Parameter Baseflow Groundwater Groundwater Surface Soil evaporation
alpha delay time “revap” coefficient runoff lag compensation
factor [days] [−] coefficient factor

[day−1
] (allows water to [days] [−]

move from shallow
aquifer to

unsaturated zone)

Range 0.003–0.025 5–80 0.2–0.45 3 0.1

3.2.2 Reach routing

Channel routing was modeled using a Muskingum routing
scheme expressed in terms of water storage. The propagation
model for stored water volume in theN th reach downstream
can be written as

sN,j+1 = AN

N−1∑
i=0

[(
MN−i,j+1 + MN−i,j

) N−1∏
k=N−i

C1,k

]

+4AN

N−1∑
i=1

[
sN−i,j

2 · KN−i · (1 − XN−i) + 1t

N−1∏
k=N−i+1

C1,k

]
+ C3,N sN,j , (1)

whereAN is defined as

AN =
1t · KN

1t + 2 · KN · (1 − XN )
, (2)

andC1N andC3N are defined as in Chow et al. (1988):

C1,N =
1t − 2 · KN · XN

2 · KN · (1 − XN ) + 1t
, (3)

C3,N =
2 · KN · (1 − XN ) − 1t

2 · KN · (1 − XN ) + 1t
, (4)

where sN,j is the storage in reachN at time stepj (m3)
and MN,j is the rainfall–runoff model generated inflow to
reachN at time stepj (m3 s−1) and1t is the model time
step (days). The two Muskingum parameters,XN a weigh-
ing factor andKN , the travel time of the flood wave through
the reach (days), were assumed constant for each reach seg-
ment (e.g., Chow et al., 1988, p. 258).

3.2.3 Floodplain model

Because storages in Eq. (1) are expressed only as a function
of the states of the previous time step, the routing through
the reaches and the floodplain processes can be carried out
sequentially. A simple floodplain model was built following
an approach similar to that used by Dincer et al. (1987) to
model the Okavango swamp. Two processes were modeled in
the floodplain: water transfers with the main reach and evap-
otranspiration from the floodplain. Direct rainfall onto the

floodplain was not considered here as it is already taken into
account in the rainfall–runoff model. The floodplain–reach
interaction was modeled as a first order exchange driven by
the difference in water levels between the floodplain and
reach. The open water evaporation rate was assumed equal
to the potential evaporation (PET) rate from the subbasin in
which the floodplain is located. The PET value was obtained
from the RR model.

The basic equations for the floodplain–reach interaction
for a floodplain located in a reach “rc” are

dVfp

dt
= coeff ·

(
hrc − hfp

)
− Afp · ET0, (5)

dsrc

dt
= msk(s, M) − coeff ·

(
hrc − hfp

)
, (6)

whereVfp is the floodplain volume (m3), coeff is the transfer
coefficient (m2 s−1), hrc andhfp are the water levels in the
reach and the floodplain,Afp is the floodplain area (m2), ET0
is the potential evaporation (ms−1), src is the water stored in
the reach (m3), msk is the Muskingum routing operator as
presented in Eq. (1),s is the state vector of volumes in all
reaches andM the inputs from the RR model (m3 s−1).

The one-day time step used for the modeling was assumed
small relative to the timescale of the floodplain processes
and the floodplain equations were therefore solved assum-
ing mean daily volume in the floodplain equal to the volume
at the end of the previous day, minus the evaporation that was
assumed to be removed before any transfers take place. The
explicit solution is then

Vfp,k = Vfp,k−1 + coeff ·
(
hrc,k∗ − hfp,k−1

)
− Afp,k−1 · ET0, (7)

src,k = msk(sk−1, Mk−1, Mk) − coeff ·
(
hrc,k∗ − hfp,k−1

)
, (8)

where hrc,k∗ is the level in the reach after the addi-
tion/subtraction of volume from the Muskingum routing but
before any transfers with the floodplain have taken place.

The geometry of the reach and floodplain need to be
known in order to obtain levels and floodplain areas from
the modeled water volumes. Figure 2 presents the geometry
that was assumed for the reach and floodplain on one side of
the reach. The floodplains extend on both sides of the reach,
and are assumed symmetrical with respect to the reach.

Hydrol. Earth Syst. Sci., 18, 997–1007, 2014 www.hydrol-earth-syst-sci.net/18/997/2014/
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Fig. 2. Cross section of reach and floodplain (a symmetrical floodplain is located to the left of the reach) and illustration of river network–
floodplain interaction.

The reaches were assumed to have trapezoidal cross sec-
tions with constant bank slope,αb, and the elevation of the
bottom of the floodplain was assumed to rise with distance
from the reach following

hfp = (β · x)m, (9)

where β and m are shape parameters andx is the dis-
tance from the side of the floodplain closest to the reach
(Fig. 1). The shape parameters were determined by extract-
ing SRTM heights along one representative cross section per
reach where the floodplain is located and fitting theβ andm

parameters.
Reach width and bank slope were determined based on

Landsat imagery. Bank slope was estimated by measuring
low and high flow widths as well as high and low flow alti-
metric heights from the same location. Bank slope was then
calculated as

αb = tan−1

(
altihigh − altilow(
whigh − wlow

)
/2

)
. (10)

In order to obtain bottom widths, a low flow depth was com-
puted based on historical measured low flows (or modeled
low flows where unavailable) using a method detailed in
Michailovsky et al. (2012).

The calibration of the RR model was carried out manually
using in situ discharge data. The MuskingumK parameter
as well as the floodplain exchange coefficient, coeff, were
calibrated using both in situ flows and altimetric levels.

3.3 Assimilation

3.3.1 The extended Kalman filter

The Kalman filter is a sequential data assimilation scheme
that can be split in a propagation and an analysis phase. When
the measurement and model operators are nonlinear, the Ex-
tended Kalman filter (EKf), which is the nonlinear extension
to the Kalman filter, can be used.

In the propagation phase of the standard Kalman filter, a
forecasted state and covariance are calculated using

sf
k+1 = Fk+1 · sf

k + Gk+1 · uk+1 + 0k+1 · wk, (11)

Pf
k+1 = FPf

k FT
+ 0k+1Qk 0T

k+1, (12)

wheresf andPf are the forecasted state vector and state co-
variance matrix,u is the model forcing,w is a sequence of
white Gaussian noise with covarianceQ, F is the state transi-
tion matrix,G the control input matrix and0 the noise input
matrix.

In the analysis phase, the analysis or updated state vector
and covariance at a timem when a measurement is acquired
are obtained through the following equations:

sa
m = sf

m + Pf
m · HT

m ·

(
Hm · Pf

m · HT
m + Rm

)−1 (
ym − Hm · sf

m

)
, (13)

Pa
m =

[
I − Pf

m · HT
m ·

(
Hm · Pf

m · HT
m + Rm

)−1
· Hm

]
· Pf

m, (14)

wheresa andPa are the analysis state vector and covariance
matrix, andH is the measurement operator, which is defined
as

ym = Hm · sf
m + vm, (15)

whereym is the measurement at timem andv is a sequence
of white Gaussian noise with covarianceRm. The quan-
tity (ym − Hm · sf

m) is called the innovation or measurement
residual.

In the EKf, the nonlinear model and measurement opera-
tors are used directly in Eqs. (10) and (14). TheH andF ma-
trices needed in Eqs. (11)–(13) are obtained by linearizing
the measurement and model operators around the forecasted
state. So ifh denotes the nonlinear model operator andf the
nonlinear model operator

H =
∂h

∂s

∣∣∣∣
s=sf

andF =
∂f

∂s

∣∣∣∣
s=sf

.

3.3.2 Measurement operator

The measurement operator,h, maps the model state in the
observed space; i.e., in this study,h is used to convert the
stored volume in a reach to an altimetry reading.

Reaches were assumed to have a trapezoidal cross section
with bottom widthw, bank slopeαb and lengthL. The stor-
age in the reach,s, can then be expressed as a function of the
water depthd as

s = L ·

(
w · d +

d2

tan(αb)

)
. (16)

www.hydrol-earth-syst-sci.net/18/997/2014/ Hydrol. Earth Syst. Sci., 18, 997–1007, 2014
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Solving for depth yields

d =
−wL +

√
(wL)2 + 4L/ tan(αb) · s

2L/ tan(αb)
. (17)

Finally, a common reference was needed between modeled
depth and measured altimetry. This was done by running
the routing model and shifting the altimetric heights by the
difference in mean between coincident modeled depths and
measurements over the calibration period leading to the def-
inition of h:

h(s) =
−wL +

√
(wL)2 + 4L/ tan(αb) · s

2L/ tan(αb)

+

∑t=tn
t=t1

(dmodel(t) − alti(t))

nt

, (18)

where (alti) are the altimetric height measurements.

3.3.3 Error model

The measurement error on the altimetry values was assumed
normally distributed with zero mean. Standard error esti-
mates were based on the values reported in Michailovsky et
al. (2012) (see Table 1).

Specification of model uncertainty is one of the ma-
jor tasks in data assimilation because of the many differ-
ent sources of error, which are poorly known and typically
extremely difficult to separate from one another (Liu and
Gupta, 2007).

The approach chosen for this study was to assume that the
rainfall–runoff forcing was the main source of model error.
As the magnitude of the error on model-generated runoff is
typically proportional to the magnitude of the runoff, the er-
ror was applied as a multiplicative term on the RR forcing
and the model error representation was therefore determined
by analyzing the normalized runoff residuals during the cali-
bration period.

In order to obtain in situ measurements of runoff, gauged
flow was assumed equal to runoff for upstream catchments.
For catchments located further downstream, gauged runoff
from a given area was assumed equal to the difference be-
tween downstream and upstream gauged runoff.

While model error is assumed white Gaussian (see Eq. 11),
the runoff residuals were found to be highly autocorrelated.
This was taken into account by assuming a first-order auto-
regressive (AR1) model:

wk = a · wk−1 + εk, (19)

where (w) are the runoff residuals,α is the AR1 parameter
and ε is a sequence of Gaussian white noise, which has a
covarianceQ′.

This type of AR1 error model can easily be implemented
in the EKf by augmenting the state vector with the correlated
noise term. By setting (e.g., Jazwinski, 1970)

S =

[
s

w

]
, F′

k+1 =

[
Fk+1 0k+1
0 a · I

]
, G′

k+1 =

[
Gk+1
0

]
,

and0′

k+1 =

[
0
I ,

]
(20)

whereI is the identity matrix and all other terms have been
defined previously, Eq. (10) can then be written as

Sk+1 = F′

k+1 · Sk + G′

k+1 · uk+1 + 0′

k+1 · εk, (21)

and all other equations for the EKf can then be directly ap-
plied using the matrices and vectors defined in Eq. (19).

Because of the low dimensionality of the problem, the
added states will not cause any significant computational bur-
den for the application: in this case study it will lead to hav-
ing two states per reach plus one state per floodplain, which
is a total of 32 state variables.

3.4 Model evaluation

In any model prediction, the performance can be evaluated
using a number of different criteria in order to characterize its
performance in terms of accuracy (i.e., how close the value
of the model estimate is to the observations) and precision
(i.e., how uncertain the model prediction is).

In order to fully assess the performance of the open loop
and assimilation model runs, the following measures were
used.

– Coverage: the percentage of observations that fall
within the predicted nominal confidence interval.

– Nash–Sutcliffe efficiency (NSE)

– Root mean square error (RMSE)

– Sharpness: the width of the predicted nominal confi-
dence interval.

Because a tradeoff must usually be made between sharpness
and coverage, a measure combining both criteria, the interval
skill score (ISS) was also used. The ISS is defined as follows
(Gneiting and Raftery, 2007):

ISSα =

∑
i

issα (l, u, xi) , (22)

where

issα(l, u, x) =

 (u − l) if l < x < u

(u − l) + 2/α · (l − x) if x < l

(u − l) + 2/α · (x − u) if x < u

, (23)

whereu and l are the upper and lower confidence bounds
at the significance levelα for the model estimate andx is
the observed value. The ISS should therefore be minimized
as a lower ISS value will indicate sharper confidence inter-
vals and fewer observations located outside of the confidence
bounds.
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Table 3.NSE values for calibration and validation.

Watershed 1 Watershed 2

Subbasin Id. 14 24 32 34 12 17

NSE
Calibration 0.80 0.88 0.69 0.55 0.90 0.82
Validation 0.42 0.59 0.07 0.19 0.72 0.82
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Fig. 3.Open loop (OL) and assimilation (Assim) results at the outlet of(a) watershed 1 and(b) of watershed 2.

4 Results and discussion

Model calibration was carried out over the years 2001–2004
(calibration of Muskingum’sK using altimetry levels could
only be carried out from October 2002, which is the date
from which Envisat data is available). The model was run up
to the end of 2008 as this was the most recent year for which
we were able to obtain in situ data for model validation.

Model calibration yielded NSE values between 0.55
and 0.90, which decreased to values between 0.07 and 0.82
over the validation period (Table 3). The low values at some
subbasin outlets can be explained by the large errors in the
precipitation data set. In particular, in 2005 large differences
were observed between the different remote sensing precip-
itation data sets available. By excluding the year 2005, the
NSE values over the validation period increased significantly
and were found to be between 0.46 and 0.87.

Analysis of the RR residuals yielded AR1 parameters be-
tween 0.9918 and 0.9978 and the standard deviations on
the white Gaussian error were found to be between 0.035
and 0.49. For some subbasins, this produced unrealistically
high estimates of model error. In particular for subbasin 17
as well as for subbasins located downstream of the Barotse
floodplain.

For subbasin 17, further investigation showed that apply-
ing the method detailed in Sect. 4.3.3 led to using only resid-
uals from the year 2004 because it is the only year for which
data was available upstream. However 2004 is a poor year in
terms of model performance for subbasin 17 (Fig. 3) and the

runoff residuals were therefore analyzed over the whole of
watershed 2 to obtain the error parameters at subbasin 17.

For the Barotse floodplain, the assumption that the error
is mainly attributable to the RR forcing breaks down as the
floodplain model uncertainty is not taken into account though
high uncertainties are expected on the volume–area relation-
ship, the transfer coefficient and the ET rate from the flood-
plain. This led to the attribution of unrealistically high er-
rors to the RR forcing in the residual analysis. For subbasins
downstream of the floodplain (24, 29, 32 and 34), the RR
error parameterization from the nearest upstream subbasin
(sub. 14) was therefore used.

Table 4 presents the results for all subbasins where in situ
data from the validation period (post-2005) was available and
Fig. 3 presents the results graphically at the outlets of the two
watersheds.

Major improvements in RMSE and NSE were observed in
all subbasins with the range of NSE values at the watershed
outlets going from 0.19 to 0.62 for watershed 1 and from 0.82
to 0.88 for watershed 2.

All subbasins showed improvements in all measures ex-
cept for coverage, which only improved for subbasin 12.
The loss of coverage was particularly significant for sub-
basin number 34 where approximately 14 % fewer observa-
tions fell within the confidence bounds after assimilation. As
a consequence, subbasin 34 showed an increase in the ISS
through assimilation meaning that the loss of coverage out-
weighed the gains in sharpness at this outlet.
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Table 4.OL and Assim results. Coverage, sharpness and ISS refer to a 0.1 significance level.

Id. Coverage RMSE NSE Sharpness ISS

OL Assim OL Assim diff OL Assim OL Assim diff OL Assim diff
% % m3 s−1 m3 s−1 % – – m3 s−1 m3 s−1 % m3 s−1 m3 s−1 %

14 85.0 78.4 596.8 340.5 −43 0.42 0.81 1419 838 −41 1944 1440 −26
24 77.0 71.4 501.0 300.5 −40 0.59 0.85 1115 513 −53 1601 1469 −8
32 57.7 48.9 834.7 469.4 −44 0.07 0.70 1538 630 −59 3017 2789 −8
34 58.2 44.4 906.2 624.1 −31 0.19 0.62 1288 572 −56 4079 4152 +2

12 74.1 78.9 76.7 55.1 −28 0.72 0.86 156 94 −40 372 303 −19
17 87.5 84.7 121.5 99.0 −19 0.82 0.88 230 177 −23 305 286 −6

Table 5.OL and Assim results with additional measurement error. Coverage, sharpness and ISS refer to a 0.1 significance level.

Id. Coverage RMSE NSE Sharpness ISS

OL Assim OL Assim diff OL Assim OL Assim diff OL Assim diff
% % m3 s−1 m3 s−1 % – – m3 s−1 m3 s−1 % m3 s−1 m3 s−1 %

14 85.0 80.9 596.8 323.6 −46 0.42 0.83 1419 871 −39 1944 1369 −30
24 77.0 75.1 501.0 295.4 −41 0.59 0.86 1115 546 −41 1601 1334 −17
32 57.7 54.4 834.7 462.9 −45 0.07 0.71 1538 670 −56 3017 2546 −16
34 58.2 51.7 906.2 622.0 −31 0.19 0.62 1288 606 −53 4079 3930 −4

12 74.1 78.9 76.7 55.0 −28 0.72 0.86 156 99 −36 372 306 −18
17 87.5 84.8 121.5 100.4 −17 0.82 0.88 230 182 −21 305 283 −7

The loss of coverage between open loop and assimilation
runs can indicate an underestimation of the measurement er-
ror that is to be expected in this case as only measurement er-
ror itself was taken into account while the error term should
also include measurement operator uncertainty. Inspection of
the residuals showed that 13 % of residuals fell outside of the
90 % confidence bounds predicted by the filter equations for
the calibration period, and 17 % for the validation period. The
assimilation was run again adding a constant to the estimated
standard deviation of the altimetry measurements. Adding
0.2 m led to a good match between the innovations and their
predicted statistics with 10.4 and 11 % of innovations falling
out of the 90 % confidence bounds for the calibration and
validation time periods respectively.

The results using the new measurement error are presented
in Table 5 and show an improvement in the coverage for the
assimilation run compared to the previous run. However, the
coverage was still slightly degraded at most outlets relative
to the open loop run. For outlets 12 and 17, where the cover-
age was already good, almost no change was observed in the
results suggesting that the initial measurement error was ad-
equate. Further improvements could potentially be obtained
by analyzing the virtual stations and measurement operators
at each location in order to adapt the measurement error term.

The results in both cases show that the main weakness in
the assimilation scheme is the representation of model er-
rors. This can be observed in the coverage values, in partic-
ular for reach 34 where in the open loop run only 58 % of

observations fall within the 90 % confidence bounds. This is-
sue particularly affects subbasins downstream of the Barotse
floodplain where the open loop model performance is poor,
which suggests both that the modeling in the area needs to be
improved, and that in complex river environments including
floodplains, a separate error term representing the floodplain
processes is needed.

A first step towards better error representation would be to
take evaporation uncertainty into account by adding, for ex-
ample, a multiplicative error term on the ET forcing. A sepa-
rate additive error term could also be added to floodplain sub-
basins. However, as the model error representation becomes
more complex, it may be necessary to use a different assim-
ilation scheme such as the ensemble Kalman filter in which
nonlinear processes can more easily be taken into account.

Figure 3a presents the results for the outlets of water-
shed 1 and shows that improvements from the assimilation
are not equally distributed over the simulation time period.
For example, in 2007 the assimilation performs poorly for
reach number 34. Figure 4b shows the timing of the altimet-
ric measurements between October 2006 and October 2007
and it can be observed that only one altimetric measurement
is available over a period of 67 days, between 9 February
and 17 April 2007, and that the update that is carried out in
this period degrades model performance. The satellite passes
occur on different days at the different VS over the 35 day re-
peat period and the maximum delay between satellite passes
at any VS within watershed 1 is of 16 days. However many
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Fig. 4. Timing of altimetry measurements in watershed 1 and assimilation performance at reach 34 from October 2004 to October 2005(a)
and October 2006 to October 2007(b).

of the VS are located on narrow rivers (< 200 m wide) and
this increases the risk of no data points being acquired or of
incorrect values/outliers because only one data point will be
available per satellite pass.

In contrast, Fig. 4a shows that when no such data gaps
exist the assimilation performs well; the use of multiple VS
over the watershed compensating the low temporal resolution
at each individual VS.

For watershed 2, the problem is magnified by the fact that
only 3 VS are used for the update and that these 3 VS are
all visited by the satellite within 6 days of the 35 day repeat
period. Therefore, while the benefits from assimilation are
clear in a year where the model consistently over- or under-
predicts discharge such as in 2005 (Fig. 3), the altimetry data
set will be unable to capture the shorter-term flow variability
as is shown in Fig. 5.

5 Conclusions

In this study, radar altimetry from the Envisat satellite was
used to update the reach storages in a Muskingum routing
scheme coupled to a simple floodplain model and driven
by the output of a rainfall–runoff model. Assimilation im-
proved Nash–Sutcliffe model efficiencies from 0.19 to 0.62
and from 0.82 to 0.88 at the outlets of two distinct wa-
tersheds located upstream of Lake Kariba and Lake Itezhi-
Tezhi. Model reliability was good for the outlet of water-
shed 2 but was found to be low at the outlet of watershed 1.
This was due to lower model quality and error representa-
tion in watershed 1, which is more complex hydrologically,
including the large Barotse floodplain. The study also high-
lighted the limitations of using the current altimetric data set
in areas where only few VS are available due to its low tem-
poral resolution. It was found that when the initial model run
is of high quality, the assimilation only marginally improves
the performance. However when the initial model does not
perform well, in particular due to large errors in input data,
it was shown that the assimilation or radar altimetry had the
potential to significantly improve results.
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Fig. 5.Timing of altimetry measurements in watershed 2 and assim-
ilation performance at reach 17 from October 2006 to October 2007.

While this study has only used altimetry over rivers, flood-
plain levels can also be tracked through altimetry and further
work including altimetric data over the floodplain could po-
tentially improve the results obtained in and downstream of
the Barotse floodplain.

Nonetheless, the high potential for the use of radar altime-
try in assimilation has been demonstrated as the use of mul-
tiple VS was able to compensate for the low repeat period of
the satellite where sufficient VS were available. These results
should be greatly improved in the future, with higher spa-
tial resolution altimeters or swath altimetry as planned in the
Surface Water Ocean Topography (SWOT) mission, which
will allow for more, narrower, rivers to be monitored through
altimetry.
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