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Abstract
In a watt balance, stray capacitances exist between the coil and the magnet. Since the electric
current flowing in the coil creates a difference in electric potentials between the coil and
magnet, their electrostatic interactions must be taken into account. This paper reports the
results of a finite element analysis of the forces acting on the coil.
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(Some figures may appear in colour only in the online journal)

1. Introduction

A watt balance virtually compares the mechanical and the
electric powers produced by the motion of a mass in the Earth’s
gravitational field and by the motion of the supporting coil
in a magnetic field [1, 2]. The vertical force acting on a coil
linking the magnetic flux� and carrying the electric current I is
F = I∂z�, where ∂z indicates the derivative along the vertical.
The electromotive force along the same coil moving vertically
with velocity uz is E = −uz∂z�. If F counterbalances
the weight −mg of a mass in the gravitational field, then
by combining these equations and eliminating the geometric
factor ∂z� we obtain mgu + EI = 0. This equation relates
mechanical and electric powers and allows either m to be
determined in terms of electric quantities or the Planck constant
to be determined in terms of mechanical quantities [3, 4].

An assumption in this analysis is that no additional force
acts on the coil. However, stray capacitances exist between
the coil and the magnet and, since the electric current flowing
in the coil creates a difference in electric potentials between
the coil and magnet, electrostatic forces act on the coil. To
support and to complement the watt-balance measurements of
the Planck constant, we extended previous investigations on
the coil–field interaction [5, 6] by quantifying these forces.

In the experiments so far completed, these forces have
been implicitly assumed not to be influential but, to our
knowledge, no detailed study has been carried out to support

this statement. Owing to the extreme accuracy of the Planck
constant measurements, to gain confidence in the uncertainty
of the no-effect statement, an equivalently accurate analysis
is necessary. We have also been motivated by the spread—
the order of magnitude of which is 100 nW W−1, to be
compared with a targeted uncertainty of 10 nW W−1—of the
Planck constant values reported by the International Avogadro
Coordination (IAC) [7, 8], the National Institute of Standards
and Technology (NIST-USA) [9, 10], the Swiss Federal
Office of Metrology (METAS-Switzerland) [11], the National
Physical Laboratory (NPL-UK) [12] and the National Research
Council (NRC-Canada) [13]. Our study demonstrates that an
accurate calculation of these minute forces is possible and that
their effect is actually irrelevant, thus confirming the no-effect
assumption.

2. Coil-magnet system

The analysis of a real watt balance system is hampered by
its complexity. Therefore, since we are not running any
real experiment and, consequently, we have no pretension to
completeness and to carrying out an analysis of the error budget
of a specific experiment, we cut the system design by limiting
the investigation to the coil-magnet system and by turning to
the model shown in figure 1. In particular, since incremental
refinements might be endless, we focused on investigating if
and how the electrostatic forces can be calculated accurately
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Figure 1. Model of the coil-magnet system. The coil is a metallic toroid having a rectangular cross section. It is supported by two dielectric
rings (green) and enclosed into a toroidal cavity (white). The electric potential of the cavity surfaces is null. Owing to the flow of the electric
current, the electric potential of the coil surfaces varies linearly as shown by the blue profiles (right).

enough to exclude with certainty an effect in the watt balance
operation.

We made reference to the coil-magnet system of the
METAS watt balance; dimensions were taken from [14].
The sources of the magnetic field are two permanent magnets
(blue in figure 1) placed on both sides of the kernel (grey in
figure 1) with the same poles facing each other. The adjustment
of the magnets to the kernel and the centring of the magnets–
kernel assembly to the yoke is ensured by two bronze centring
rings (yellow in figure 1).

A coil (brown in figures 1 and 2) of 1836 turns—having
mean diameter 200 mm, height 21 mm, wire diameter 250 µm,
electrical resistance 458 � and inductance 1.23 H—is pinched
between two ceramic rings (green in figure 1) and supported
by six ceramic legs mounted on a hexagonal plate below and
outside the magnetic circuit (not shown in figure 1).

3. Electrostatic forces

3.1. Lumped parameter model

Before carrying out a numerical analysis, we make an order-
of-magnitude estimate of electrostatic force acting on the coil
using the lumped parameter model shown in figure 3. The stray
capacitances between the coil and the magnet are modelled by
a couple of capacitors, whose armatures are the inner and the
outer coil layers and the magnetic circuit. An approximate
estimate of these capacitances is given by

C = 2πε0h

ln(b/a)
, (1)

where a and b are the inner and outer radii of the armatures
and h is height of their overlapping parts.

The current flowing in the coil creates a difference between
the electric potentials of the coil and the magnet; if a coil end
is earthed, the potential of the opposite end is V = RCI , where
RC is the resistance and I is the current. The electric potential
of the coil surfaces varies as shown in figure 1 but, to carry out
an order-of-magnitude calculation, we set the potentials of the
inner and outer layers to the constant values of zero and RCI ,
respectively.

Figure 2. Radial section of the upper half-domain of the Laplace
equation (13). The dashed box � is the section of the torus used to
calculate the forces acting on the coil (brown-coloured). The coil
dimensions are: inner radius 97 mm, outer radius 103 mm, height
21 mm. The height of the clamping rings (green-coloured) is 5 mm.
The boundary conditions on the coil surface are shown in figure 1
(right).

Figure 3. Lumped parameter model of the coil-magnet system. C1

and C2 are the stray capacitances between the inner and outer coil
layers and the magnet. RC is the coil resistance.
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The vertical coordinate z of the coil centre can be varied
without losing the validity of (1); therefore, the vertical force
component is

Fz = 1
2 (RCI )2 ∂zC. (2)

Since ∂zC = 0 if h does not vary with z, the inner capacitance
does not contribute to Fz. As regards as the outer capacitance,
we must consider the parallel of the capacitances of the coil
parts facing the pole shoe and yoke. Using RC = 458 �,
I = 7 mA, a = 103 mm and b = 104 mm (pole shoe) or
b = 119 mm (yoke), we obtain Fz ≈ ±30 nN, if the coil
is partially inside the magnetic gap, and Fz ≈ 0 nN, if it is
entirely outside or inside the magnetic gap. When the coil is
only slightly misplaced with respect to the central position,
the force predicted by (2) is zero; Fz is not null only if the
coil misplacement is so bad that it does not correspond to any
real set-up. In this case, since a current of 7 mA generates
a magnetic force of 5 N, the parasitic force would be about
6 nN N−1, in relative terms.

3.2. Homogeneous media

The electrostatic force acting on the volume � of a
homogeneous medium is

F =
∫

�

�E d3x =
∫

�

(∇TD)E d3x, (3)

where � = ∇TD is the distribution of the free charges, E
and D are the electric field and the electric displacement,
respectively, ε = const. is the dielectric constant, and ∇T =
[∂x, ∂y, ∂z]. Here and in the following we represent vectors by
column matrices, the superscript T indicates the transpose, and
the matrix product aTb substitutes for the scalar product.

Since numerical derivatives amplify the errors, in order
to avoid the calculation of ∇TD, it is convenient to represent
the interaction between the charge distribution and the electric
field using the Maxwell stress tensor [15, 16]. In the case of a
homogeneous and isotropic medium, D = εE, we can write
(∇TD)E = ε(∇TE)E, and

(∇TE)E = (∇TE)E − E × (∇ × E), (4a)

because ∇ × E = 0. Next, using the identity [15]

∇(ETE)/2 = (∇ET)E + E × (∇ × E), (4b)

we can rewrite (∇TE)E as

(∇TE)E = (∇TE)E + (∇ET)E − ∇(ETE)/2 (4c)

By transposing (4c),

(∇TE)ET = ∇T(EET) − ∇T(ETE)11/2. (4d)

Therefore,
�ET = ∇TTE, (5a)

where

TE = εEET − εE2

2
11 (5b)

is the Maxwell’s stress tensor and 11 is the 3×3 identity matrix.

Eventually, from the divergence theorem, the force and
torque acting on the volume bounded by the surface � are

F =
∮

�

TEn dσ (6a)

and

K =
∮

�

r × (TEn) dσ, (6b)

where r is the position vector with respect to the pivot point and
n is the external unit-vector normal to the integration surface.

Unfortunately, for the coil-magnet system, the ε

discontinuity at the interfaces jeopardises the derivation of
(5a), and the usage of (6a)–(6b) to find the force acting on
the coil cannot be justified. Therefore, in the next section, we
briefly recall the theoretical framework necessary to validate
the usage of (6a)–(6b).

3.3. Inhomogeneous media

To find the electrostatic forces in an inhomogeneous medium is
a quite complex problem. We refer to the solution given in [17],
which is here outlined for the reader’s convenience. Detailed
and comprehensive treatments of the volume and surface forces
and of the mechanical stresses in electrically polarized media
can also be found in [18, 19].

It is well known that the local forces per unit volume acting
on a continuous medium can be written in terms of the Cauchy
stress tensor T as ∇TT . Hence, the total force acting on a part
of the medium having volume �,

F =
∫

�

∇TT d3x =
∮

�

Tn dσ, (7a)

can be reduced to the integration of the forces acting on its
bounding surface �, where n is the unit outwards-vector
normal to the surface element dσ . Similarly, the total torque is

K =
∮

�

r × (Tn) dσ. (7b)

In order to calculate the Cauchy stress tensor, we consider
a deformation of the infinitesimal volume element d3x—where
the z-axis is chosen locally parallel to E—consisting of a
homogeneous isothermal virtual displacement of the top x–y

face by ξdz, with the electric potential unchanged. The
medium inside the deformed volume exerts the force −Tn dσ

on the displaced face and the work done by this force,

(ξTTn) dzdσ = (ξTFn + 	F) dzdσ, (8)

is opposite to the variation of Fdzdσ , where

F = F0(
, ρ) − εE2/2 (9)

is the Helmholtz free energy per unit volume, the
thermodynamic variables are the temperature 
, density ρ

and electric field E, F0 is the Helmholtz free energy per
unit volume when E = 0, ε is the dielectric constant of
the medium, and the constitutive relationship D = εE and
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isotropy are assumed. By carrying out the calculations of 	F ,
we obtain [17]

ξTTn = ξT
[
F − ρ(∂ρF) + εEET

]
n. (10)

For the sake of simplicity, when E = 0, we consider only the
scalar part of the stress tensor, which is associated with the
pressure P0 = ρ(∂ρF0) − F0 and corresponds to modelling
the medium as a fluid. Hence, using (9) in (10), we obtain

T = T0 + εEET − ε − ρ(∂ρε)

2
E211

= TE + T0 + 1
2ρE2(∂ρε)11, (11)

where TE is given by (5b) and T0 is the stress tensor in
the absence of the electric field. With the fluid-medium
approximation, T0 = −P011; but, if the ε anisotropy induced
by elastic deformations is neglected, (11) holds also in the
general case.

In the absence of free charges and of temperature and
density gradients, since ∇ε = 0 and, consequently, ∇TE = 0,
the condition of mechanical equilibrium is

∇TT = ∇T
[
T0 + 1

2ρE2(∂ρε)11
] = 0, (12)

where ∇TT is the force per unit volume, now represented by
a row matrix. Therefore, provided ∇ε = 0 and � = 0 on
the surface, the total force and torque acting on �, (7a) and
(7b), can be calculated using the Maxwell stress tensor (5b). In
fact, by virtue of (12), the term T0 + ρE2(∂ρε)11/2 in (11) is a
uniform pressure over the surface that makes no contributions.

Because of the ε discontinuity, when the integration
surface is the interface between two media, this simplification
is of no help and the Cauchy stress tensor (11) must be used
in (7a) and (7b). However, provided that the body of interest
is housed in a homogeneous medium, the calculation of (7a)
and (7b) can still be simplified by observing that, since Tn is
continuous through the surface, it does not matter if the Cauchy
stress tensor in the body (11) or the Maxwell stress tensor in
the medium (5b) is used. In addition, the integration surface
can be any, as long as it encloses the body, but not additional
free charges.

4. Finite element analysis

To calculate the Maxwell stress tensor, we used commercial
finite element analysis software [20] to solve numerically the
Laplace equation for an inhomogeneous medium,

∇T(ε∇φ) = 0, (13)

where φ is the field potential in the coil-magnet gap—the
cylindrical domain shown in figure 2. In (13), the dielectric
constant is 8.854 pF m−1 in the vacuum and 53.4 pF m−1 in the
ceramic rings. Eventually, the electric field and displacement
are

E = −∇φ, (14a)

D = εE. (14b)

Dirichlet boundary conditions were specified on the
domain boundaries. In particular, φ = 0 V on the surface

Figure 4. Radial section of the upper half of the cylindrical capacitor
used for the assessment of the finite element analysis. The gap
accommodates three tori—�1, �2 and �3—enclosing the movable
armature. The dimensions of the moving armature (brown-coloured)
are: inner radius 105 mm, outer radius 111 mm, height 20 mm.

of the magnetic circuit whereas, owing to the electrical current
and the relevant ohmic potential drops, the electric potential
of the coil surface is assigned, as shown in figure 1. In the
figure, the current gets into the coil from the top-outer winding,
which is set to the potential RI 2, and it gets out from the top-
inner winding, which is set to the zero potential. The current
reversal does not change the electrostatic interaction, but the
grounding reversal—that is, the setting of the potential of the
top-inner winding to RI 2 and of the top-outer winding to zero
potential—was also considered. The mesh, of about 7.9 × 106

tetrahedral elements, was the result of successive refinements;
the relative numerical tolerance was set to 10−12.

Once the electric field was calculated, the Maxwell stress
tensor was obtained by the application of (5b). To calculate
the force acting on the coil, we integrated TE over the torus
�—having rectangular cross-section and cutting midway the
magnetic gap—shown in figure 2; the E value on � was the
external one-sided limit of the electric field. The next section
motivates these choices.

4.1. Assessment of the finite element analysis

The concepts outlined in section 3 and the capabilities of
the finite element analysis were investigated by calculating
the vertical force, Fz, acting on the movable armature of the
cylindrical capacitor shown in figure 4. In order to test the
independence of Fz on the integration surface, the magnetic
gap was increased to 24 mm and three nested tori, enclosing
the movable armature, are accommodated in it. In figure 4,
they are shown by dashed lines. Dirichlet boundary conditions
were specified on the armature surfaces, where φ = 10 V, and
on the inner and outer surfaces of the field domain, where
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Figure 5. Vertical force acting on the movable armature of the
capacitor shown in figure 4 versus the positions zC of its centre;
zC = 0 mm is a centred armature. The force was calculated by
integrating TE over the three tori shown in figure 4. The stepped line
is the force calculated by the application of (2).

φ = 0 V. On the top and bottom surfaces a zero charge was
specified, to ensure a field domain having open ends. The
force was calculated by integrating TE over each torus. The
results are compared in figure 5; they do not show appreciable
differences. The finite element calculation smooths the sharp
steps created by the application of (2), as expected. It also
shows that (2) overestimates the maximum force. Tests were
also made to verify the influence of the sharpness of the domain
boundaries, which was found to be negligible.

The finite element software integrates TE using both the
(internal and external to the integration surface) one-sided
limits of the electric field. The relevant force values are given
in table 1: owing to the E continuity, they are expected to
be the same. The best match is found for the �2 surface.
In addition, the excellent agreement between the force values
relevant to �2+ (external one-sided limit) and �3− (internal
one-sided limit) suggests that the most accurate E values are
in the region between �2 and �3. Hence, in the finite element
model of the coil-magnet system, we located the integration
surface midway between the coil and magnet, as shown in
figure 2, and used the external one-sided limit.

4.2. Results

The two-dimensional map of the electric field in the magnetic
gap—for a coaxial and centred assembling of the coil-magnet
system—is shown in figure 6. The vertical force was calculated
by integrating the Maxwell stress tensor on the torus—having
a rectangular cross-section and embedding the whole coil—
shown in figure 2. The force was calculated with different
vertical positions of the coil centre and with both the inner
and outer top windings set to the zero potential; the results
are shown in figure 7 together with the force obtained by the
application of (2).

Figure 8 shows a zoom of Fz for small coil displacements;
the origin is a stable equilibrium point having an elastic
constant equal to −1.1 pN mm−1. Since the centring rings
eliminate—from the viewpoint of the electric field—the pole
shoe, the inner capacitance is independent of the vertical
coil-position and, when the outer coil windings get the null
potential, Fz is always nearly zero. The minuscule rises at the
coil entrance and exit from the magnetic gap are due to the
polarization of the coil supporting rings.

Owing to the system symmetry, the horizontal component
of the electrostatic force is null; the values obtained by the finite
element analysis are shown in figure 9. The standard deviation
of these data is ±20 pN. For the same symmetry reason, also
the torque about the coil centre is null; the values obtained by
the finite element analysis are shown in figure 9. The standard
deviation is ±0.4 pN m.

Eventually, we calculated the force acting on an off-
centre coil; the results are shown in figure 10. The coaxial
assembly is an unstable equilibrium position having an elastic
constant equal to 0.66 nN µm−1. The torque about the coil
centre is 0.11 pN m µm−1; this value indicates that the centre
of application of the force is 0.17 mm above the centre.

5. Conclusions

The watt balance operation requires that no external force acts
on the coil, apart from that due to the interaction between
the electric current and the magnetic field. However, since
the coil resistance raises the coil potential with respect to
that of the magnet, stray capacitances induce electrostatic
forces. The METAS watt balance having been taken as a
starting point for our simplified model, we reported about a
finite element analysis aimed at quantifying these electrostatic
interactions. Up to now, these forces were assumed to be
irrelevant. Our study shows that a finite element analysis has
adequate accuracy for investigating their effect and that the
no-effect assumption was indeed correct.

Stray capacitances affect also the moving-mode operation:
charge and discharge currents induced by the capacitance
variations influence the voltage measured between the coils
ends. Furthermore, the electrostatic forces acting on the
moving coil can induce unwanted velocity components.
These effects should be negligible, but they deserve future
investigations nevertheless.

The magnetic equivalent of the electrostatic forces is
related to the coil inductance and displays itself as a
dependence of the magnetic field on the coil current and
position. Since it is embedded in a detailed calculation of
the magnetic forces acting on the coil, the calculation of
the relevant parasitic forces requires a huge effort both from
the theoretical and numerical viewpoints. It is a complex
magnetostatic problem that includes the simulation of the
permanent magnet, of the magnetic circuit, and of their
response to the coil current. Once the field in the magnetic
gap is on hand, one can proceed by evaluating the relevant
Maxwell stress tensor and by integrating it over a closed surface
embedding the coil. This paper outlined, in a much simpler
framework, the general strategy to cope with this problem.

To help the metrologists performing watt-balance
experiments, we summarize here the main results of our
investigation. By symmetry reasons and by neglecting
the potential gradients on the coil surface, no electrostatic
force acts on a coaxial coil placed in the magnet centre.
From the electrostatic viewpoint, this is a stable equilibrium
point with respect to vertical displacements and an unstable
equilibrium point with respect to horizontal displacements.
When misplacements are considered one at a time, the elastic
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Table 1. Vertical force acting on the movable armature of the cylindrical capacitor shown in figure 4; zC is the vertical coordinate of the
armature centre and zC = 0 mm is a centred armature. The force is calculated by integrating TE over the three tori shown in figure 4, �1, �2,
and �3; both the one-sided limits are given—internal, �i−, and external, �i+, to the integration surface. The standard deviations, udiff , of the
force differences—which are expected to be null—are also given.

Fz/nN

zC/mm �1− �1+ �2− �2+ �3− �3+

−35.000 20.313 20.276 20.066 20.057 20.059 20.082
−30.625 21.057 21.164 21.100 21.096 21.095 21.113
−26.250 19.324 19.428 19.407 19.405 19.406 19.420
−21.875 15.830 15.843 15.830 15.828 15.829 15.839
−17.500 10.806 10.667 10.666 10.666 10.666 10.671
−13.125 5.409 5.337 5.347 5.346 5.349 5.349
−8.750 2.024 2.044 2.039 2.038 2.040 2.038
−4.375 0.571 0.627 0.626 0.626 0.626 0.626

0.000 −0.026 −0.010 0.000 0.001 −0.000 0.000
4.375 −0.632 −0.635 −0.627 −0.627 −0.627 −0.627
8.750 −2.014 −2.049 −2.038 −2.038 −2.039 −2.038

13.125 −5.371 −5.346 −5.346 −5.347 −5.348 −5.347
17.500 −10.814 −10.671 −10.665 −10.665 −10.665 −10.671
21.875 −15.910 −15.835 −15.830 −15.829 −15.829 −15.840
26.250 −19.263 −19.425 −19.406 −19.403 −19.403 −19.420
30.625 −20.942 −21.183 −21.100 −21.095 −21.094 −21.114
35.000 −20.256 −20.267 −20.066 −20.056 −20.058 −20.082

udiff /nN 0.101 0.078 0.004 0.001 0.013

Figure 6. Zoom of the radial section of the electric field in the
magnetic gap; only part of the upper domain is shown. The colours
indicate the field intensity, from 0 V m−1 (blue) to 2.5 kV m−1 (red).
The field streamlines are also shown. The coil is in the centred,
zC = 0 mm, position. The boundary conditions are given in figure 1.

constants are −1.1 pN mm−1 (vertical) and 0.66 nN µm−1

(radial). The potential gradients make the application point
of this elastic force misplacement about 0.17 mm above the
coil centre.

The vertical elastic constant is so small that, also in the
case of a millimetre misplacement, the relevant bias can be

neglected. The effect of the force and torque component in the
horizontal plane, Fh and Kh, can be examined as follows. As
long as the magnetic force and weight of the mass are coaxial
and pass through the coil’s centre of mass, there is no need for
the coil to be in a given position. Therefore, if the balance is so
aligned as to make it insensitive to the exchange of the weight
of the mass for the coil force, we can assume that Fh and Kh are
counteracted by opposite magnetic force and torque nullifying
them and making the total force vertical and passing through
the coil centre. In this case, the relevant measurement equation
is [21]

mguz = EI

(
1 +

Fh

mg

uh

uz

+
Kh

mg

ωh

uz

)
, (15)

where uh and ωh are the radial components of the velocity
and angular velocity, respectively, mg = 5 N and, in the case
of 1 mm offset between the field and coil axes, Fh/(mg) ≈
1.3 × 10−7 and Kh/(mg) ≈ 22 × 10−12 m. Therefore, the
relevant constraints on the coil motion are irrelevant.

In addition, it must be noted that the weighing is carried out
by offsetting the balance by 0.5 kg and by adding the magnetic
forces generated by equal and opposite currents in the coil
with the 1 kg mass on and off the pan. Therefore, provided
that the coil grounding is not changed in the current reversal,
the electrostatic contribution to the total force cancels in
the sum.

Design expedients to remove the electrostatic forces also
exist. The filling of the magnetic gap with a non-magnetic
metal to create a toroidal cavity of rectangular cross section
increases the system symmetry, thus reducing the vertical
force-component. A second solution is to add an electrostatic
shield around the coil, e.g., by winding additional single-layer
coils which are earthed at one point.
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Figure 7. Vertical force acting on the coaxial coil versus the vertical position zC of its centre; when zC = 0 mm the coil is centred. The
stepped lines are the forces calculated by the application of (2). Left: the inner top-winding is set to the zero potential. Right: the outer
top-winding is set to the zero potential.

Figure 8. Zoom of the vertical force for small coil displacements from the centred, zC = 0 mm, position. Left: the inner top-winding is set
to the zero potential. Right: the outer top-winding is set to the zero potential.

Figure 9. Left: horizontal components of the force acting on the coaxial coil versus the vertical position zC of its centre. Right: components
of the torque about the centre acting on the coaxial coil versus the vertical position zC of its centre. When zC = 0 mm the coil is centred. All
the values calculated—with both the inner and outer top-windings set to the zero potential and with both the inner- and outer-field
calculations of TE—are shown.

Figure 10. Horizontal components of the force (left) and torque about the centre (right) versus the radial offset xC of the coil. The coil centre
is in the horizontal symmetry-plane of the magnet; the offset is along the x-axis. The y force component and the x torque components are
null. Solid (blue) line: the inner top-winding is set to the zero potential; dashed (red) line: the outer top-winding is set to the zero potential.
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