

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

An Open-Source Data Storage and Visualization Back End for Experimental Data

Nielsen, Kenneth; Andersen, Thomas; Jensen, Robert Steen Raunsgaard; Nielsen, Jane Hvolbæk;
Chorkendorff, Ib
Published in:
Journal of Laboratory Automation

Link to article, DOI:
10.1177/2211068213503824

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Nielsen, K., Andersen, T., Jensen, R., Nielsen, J. H., & Chorkendorff, I. (2014). An Open-Source Data Storage
and Visualization Back End for Experimental Data. Journal of Laboratory Automation, 19(2), 183-190. DOI:
10.1177/2211068213503824

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/20274172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1177/2211068213503824
http://orbit.dtu.dk/en/publications/an-opensource-data-storage-and-visualization-back-end-for-experimental-data(7f5b18fa-97ac-4549-a829-e2fcc5feb7ad).html

 http://jla.sagepub.com/
Journal of Laboratory Automation

 http://jla.sagepub.com/content/19/2/183
The online version of this article can be found at:

DOI: 10.1177/2211068213503824

 2014 19: 183 originally published online 23 September 2013Journal of Laboratory Automation
Kenneth Nielsen, Thomas Andersen, Robert Jensen, Jane H. Nielsen and Ib Chorkendorff

An Open-Source Data Storage and Visualization Back End for Experimental Data

Published by:

 http://www.sagepublications.com

On behalf of:

 Society for Laboratory Automation and Screening

 can be found at:Journal of Laboratory AutomationAdditional services and information for

 http://jla.sagepub.com/cgi/alertsEmail Alerts:

 http://jla.sagepub.com/subscriptionsSubscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 What is This?

- Sep 23, 2013OnlineFirst Version of Record

- Mar 17, 2014Version of Record >>

 at DTU Library - Tech. inf. Center of Denmark on March 28, 2014jla.sagepub.comDownloaded from at DTU Library - Tech. inf. Center of Denmark on March 28, 2014jla.sagepub.comDownloaded from

http://jla.sagepub.com/
http://jla.sagepub.com/
http://jla.sagepub.com/content/19/2/183
http://jla.sagepub.com/content/19/2/183
http://www.sagepublications.com
http://www.sagepublications.com
http://slas.org
http://slas.org
http://jla.sagepub.com/cgi/alerts
http://jla.sagepub.com/cgi/alerts
http://jla.sagepub.com/subscriptions
http://jla.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://www.sagepub.com/journalsPermissions.nav
http://jla.sagepub.com/content/19/2/183.full.pdf
http://jla.sagepub.com/content/19/2/183.full.pdf
http://jla.sagepub.com/content/early/2013/09/20/2211068213503824.full.pdf
http://jla.sagepub.com/content/early/2013/09/20/2211068213503824.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://jla.sagepub.com/
http://jla.sagepub.com/
http://jla.sagepub.com/
http://jla.sagepub.com/

Journal of Laboratory Automation
2014, Vol. 19(2) 183 –190
© 2013 Society for Laboratory
Automation and Screening
DOI: 10.1177/2211068213503824
jala.sagepub.com

Original Report

Introduction

In every experimental laboratory, the need for acquisition
and subsequent logging of data is essential. The acquired
data from a given experiment is typically stored locally on
a laboratory computer and is often acquired in highly spe-
cialized proprietary software tightly integrated with the
experimental equipment by the manufacturer. These soft-
ware suites often save to closed proprietary formats, which
are difficult to exchange across several computers (e.g., a
laboratory computer and an office computer) as specialized
software is required both to read and export the data files.
The software furthermore typically also requires additional
licenses, increasing complexity and cost of the total system.
The exchange of acquired data between different comput-
ers, some even with different operating systems, is hence
cumbersome and difficult.

To avoid difficult data exchange and simplify data pro-
cessing, an open-source software platform is a much more
attractive solution.1–3 To accommodate these demands, we
have written an open-source platform for saving, logging,
treating, and visualizing experimental data.

In the present work, we describe a software system con-
sisting of data acquisition, storage in a centralized database,

and a comprehensive display module including simple data
treatment algorithms licensed under the GNU general pub-
lic License (GPL).4 Examples of the implementation of the
data-logging clients are located at https://github.com/CINF/
PyExpLabSys, and the code for the data presentation Web
site is located at https://github.com/CINF/DataPresenta
tionWebsite.

System Description

The system consists of three logically separate components,
as illustrated in Figure 1: (1) the acquisition component, in
which all communication with equipment and acquisition
of data is performed; (2) the server component, which con-
sists of a database server that stores the acquired data from

503824 JLAXXX10.1177/2211068213503824Journal of Laboratory AutomationNielsen et al.
research-article2013

1Center for Individual Nanoparticle Functionality (CINF), Department of
Physics, Technical University of Denmark, Kgs. Lyngby, Denmark

Received May 2, 2013.

Corresponding Author:
Ib Chorkendorff, Center for Individual Nanoparticle Functionality
(CINF), Department of Physics, Technical University of Denmark, 2800
Kgs. Lyngby, Denmark.
Email: ibchork@fysik.dtu.dk

An Open-Source Data Storage and
Visualization Back End for
Experimental Data

Kenneth Nielsen1, Thomas Andersen1, Robert Jensen1,
Jane H. Nielsen1, and Ib Chorkendorff1

Abstract
In this article, a flexible free and open-source software system for data logging and presentation will be described. The
system is highly modular and adaptable and can be used in any laboratory in which continuous and/or ad hoc measurements
require centralized storage. A presentation component for the data back end has furthermore been written that enables
live visualization of data on any device capable of displaying Web pages. The system consists of three parts: data-logging
clients, a data server, and a data presentation Web site. The logging of data from independent clients leads to high
resilience to equipment failure, whereas the central storage of data dramatically eases backup and data exchange. The
visualization front end allows direct monitoring of acquired data to see live progress of long-duration experiments. This
enables the user to alter experimental conditions based on these data and to interfere with the experiment if needed. The
data stored consist both of specific measurements and of continuously logged system parameters. The latter is crucial to a
variety of automation and surveillance features, and three cases of such features are described: monitoring system health,
getting status of long-duration experiments, and implementation of instant alarms in the event of failure.

Keywords
experimental data, logging, storage, visualization, database, collaboration, open source, Python, PHP

 at DTU Library - Tech. inf. Center of Denmark on March 28, 2014jla.sagepub.comDownloaded from

https://github.com/CINF/DataPresentationWebsite
http://jla.sagepub.com/
http://jla.sagepub.com/

184 Journal of Laboratory Automation 19(2)

experiments and the Apache web server, which interacts
and presents the retrieved data from the database to the
user; and (3) the user side, which consists of the clients
wishing to access the data.

The system is highly flexible and modular, meaning that
the servers can accept data from a range of different sources
and that each server function can be accessed individually.
The user can furthermore use programs written in a wide
variety of languages and is only limited by the chosen lan-
guage’s ability to interface to relational databases. As a tes-
timony to this, software written in both LabVIEW and
Python5 are currently used to save data to the database. How
the integration with the server and subsequent storage of
data in the database is performed is hence a user-determined
design decision. This has a number of advantages. The user
can integrate existing software with the databases quickly
and without the need to rewrite any previous interface soft-
ware written for experimental setups. Furthermore, because
of the flexibility of the system, if storage in the database
during acquisition is not possible because of software

limitations, the data can still be saved in the database by
subsequent parsing of data files. This, however, still requires
that the file format, which holds the data, is specified or that
the data can be exported to a specified file format from the
acquisition software. Presently, we have written parsers for
a number of these external formats ranging from XML-
based x-ray photoelectron spectroscopy data to text-based
temperature data.

The servers consist of a database server and a Web
server. In our specific implementation, a MySQL database
has been chosen. All experimental data acquired by the
user are stored in the MySQL database and are presented
to the user from the Web server. If needed, experimental
data from the MySQL server can be retrieved directly
from the database by user-written scripts for later analysis.
The Web server runs a LAMP (Linux, Apache, MySQL,
PHP/Python) stack. Python (version 2.6), PHP, and
HTML/CSS are used to extract data from the database and
present them to the end user in a simple interactive Web
interface for visualization and simple data treatment.
Python was primarily chosen because of its tight integra-
tion with scientific packages, such as SciPy6 and NumPy,7
which makes data analysis and treatment more conve-
nient.8 PHP and HTML/CSS are used to display data in
standardized formats suitable for Web browsers and pro-
cess input from the user. The combination of PHP and
HTML/CSS to process user input from Web pages is very
flexible and has proven successful in other parts of the
scientific community.9 To accommodate a range of users
and provide the largest flexibility, the Web server displays
both a standard HTML/CSS site for desktop PCs and a
mobile version suitable for tablet/smartphone users.

Data Acquisition

In research laboratories comprising several experimental
setups, decentralized data acquisition from independent cli-
ents to a central server is a very attractive solution. This is
due to the large flexibility of the system, low probability of
data loss, and the simplification of backup procedures of all
experimental data. To be able to save acquired data from a
range of different computer hardware and scientific instru-
ments, interfacing of many types of equipment is
necessary.

In practice, this is achieved by formulating a set of gen-
eral design goals that will serve as computer language and
hardware independent pseudo-code, which will help the
process of designing a new acquisition client to obtain con-
formity of the system. The design goals of our implementa-
tion are the following:

•• To minimize data loss and to provide live data access,
all clients must store data for as short amount of time
as possible before handing the data to a central

Figure 1. A schematic representation of the structure of the
data-handling system. Structurally, the system can be divided into
three subparts: the acquisition side where data are acquired, the
server side where data are stored, and retrieved and the user
side where users interact with the system.

 at DTU Library - Tech. inf. Center of Denmark on March 28, 2014jla.sagepub.comDownloaded from

http://jla.sagepub.com/
http://jla.sagepub.com/

Nielsen et al. 185

server. Preferably, the data should be stored on the
server as soon as it is acquired. For data being
recorded over longer time spans, this means that data
must be live streamed to the server.

•• To avoid data loss in the event of network failure or
maintenance of the central server, all clients collect-
ing critical data must implement a local queue that
will temporarily hold data until the central server can
again be accessed. The client must continuously
check if the server is available and as soon as possi-
ble deliver queued data to the server.

•• For continuous measurements (e.g., temperatures,
pressure in vacuum chambers, cooling water flow,
etc.), data logging must be implemented in a way
that ensures that all significant events are recorded
and at the same time does not use excessive amounts
of storage. This is typically implemented by sam-
pling data with a much higher rate than they are
recorded. The local client will then, based on rele-
vant heuristics, decide whether a new data point
should be stored on the server or not. In practice,
this is often implemented by waiting for either a
given relative change in the signal or a predefined
time since the last recording of a data point. An
example of such an implementation in Python is
shown below.

max_time_between_points = 600; deviation = 0.1

now = time.time(); current_measurement = get_ measurement()

time_trigged = (now - last_recorded_time) > max_ time_between_

points

value_trigged = not (last_recorded_value * (1-deviation)

 < current_measurement <

 last_recorded_value * (1+deviation))

if time_trigged or value_trigged:

 last_recorded_value = current_measurement

 last_recorded_time = now

 send_measurement_to_db(now, current_measurement)

•• For standalone offline measurements (e.g., spec-
trometry, electrical characterization, etc.), it is
important to measure as much metadata as possible
to ensure that all information connected to the
experiment is preserved. Along with accurate time
information, this will ensure that questions that
were not yet formulated at the time of the experi-
ment can in some cases be answered in retrospect
using the metadata along with the continuously
measured data.

Examples of data-logging clients can be viewed and
downloaded at the https://github.com/CINF/PyExpLabSys
webpage.

Data Storage

For storage of acquired data, a centralized server has been
implemented as opposed to noncentralized systems such as
a network-based distributed data system10 or a file-based
system. Storing all acquired experimental data in a database
on a centralized server has a number of attractive features.
First, by storing the data on a centralized server, backup of
all experimental data is enormously simplified compared
with backup of individual computers. Backup of experi-
mental data is, hence, from a user’s point of view, automatic
as soon as the data are handed off to the server. The backup
task itself is also easily accomplished by setting up routine
jobs on the server. Second, the data are stored in a standard-
ized and open format, which allows for easy export of the
data. This makes data exchange across different platforms
immensely more simple. For the reasons mentioned above,
this kind of solution is much superior to the traditional solu-
tion, in which data were stored, exchanged, and backed up
in ordinary files such as spreadsheet files or closed third-
party files. Third, by open sourcing all of the code used to
visualize and treat data from the database, collaboration
between several different groups is possible, thus increasing
the number of developers to optimize the code and further
increase functionality.

A centralized storage of data can be accomplished in
many ways. However, in experimental laboratories where
large amounts of data are recorded, a database is an obvious
choice. To keep the server back end simple, a relational
database has been chosen. As specific implementation
MySQL has been chosen. Other SQL-based servers could
also have served the purpose, but MySQL was chosen
because of its GPL license,4 simplicity, flexibility, scalabil-
ity, and experience with the software within the develop-
ment group.

A system design of many highly decentralized clients all
pushing data continuously to a central MySQL server
requires decent server performance, high uptimes, as well
as a flexible storage ensuring easy expansion of storage
space if needed. To ensure these properties of the system, it
has been implemented with as few modifications to the con-
figuration of the standard LAMP server installation as pos-
sible, which helps to ensure that this central component can
easily be managed by the professional IT staff at the depart-
ment. The storage expansion option is implemented by stor-
ing the data in a logical volume manager setup, which
allows for dynamic addition of storage space as needed.
Data safety is implemented both by locally mirroring the
drives that contain the data and by doing remote backups. It
is important to realize that although the clients can easily
have the “age diversity” of accumulated scientific equip-
ment, be exposed to harsh conditions in the laboratory, and
be managed by the scientific staff, the server needs to be

 at DTU Library - Tech. inf. Center of Denmark on March 28, 2014jla.sagepub.comDownloaded from

https://github.com/CINF/PyExpLabSyswebpage
http://jla.sagepub.com/
http://jla.sagepub.com/

186 Journal of Laboratory Automation 19(2)

managed and handled with all the care associated with a
production environment server.

To protect against pollution of the various setup tables in
the database, our system has implemented restricted access
rights to all the tables in the database. Each client has its
own username and password, and only this user has access
to store data in the tables of that setup, whereas all users
have read access to all the tables. The user credentials are
also always placed externally to the code (typically it will
be managed in the local ODBC settings of the client or sim-
ply in an external file, e.g., for direct access implementa-
tions). In this way, the interface code can flow back and
forth between different setups without the risk of one setup
accidentally logging data to another setup’s tables.

For each of the setups that are connected to this system,
the following table structure is implemented: Each of the
measurements that are continuously logged has its own
table where the values are logged as a function of date and
time. All the specific measurements, such as spectra, scans,
and values monitored over a well-defined time span, are
stored in two tables in the database, a metadata table and a
data table. In the metadata table, all metadata pertaining to
the measurement are saved in one row. In the data table,
xy values and a measurement ID are saved in one row per
xy-value entry. The metadata in the metadata table are then
connected to the data points in the data table by a unique ID
attached to each xy-value entry. This structure is a compro-
mise between space usage and simplicity as it leads to extra
space being used to store the measurement ID once for
every data point. This, on the other hand, makes it possible
and simple to store all the different kinds of xy data in just
two tables.

Data Extraction

The flexible nature of SQL allows one to extract data in many
ways. Complete data sets, data in a certain time interval for
continuous measurements, or data pertaining to a specific mea-
surement can be retrieved by simple statements.

These data can then be handled using the programming
or data treatment environment most comfortable for the
user and can be used to perform automatic reporting, data
treatment, or as input to scripts that will produce plots based
on the data. SQL also allows for very simple data treatment
directly from the SQL server, which can be very useful to
get a quick overview of the acquired data, as illustrated, for
example, in the “Monitoring System Health” section.

A further advantage of SQL servers is the standardization,
which makes it easy to change the choice of implementation,
if it is wanted for some reason. Several open-source imple-
mentations of SQL servers exist, including Firebird,
PostgreSQL, MariaDB, Oracle, and Mimer SQL, as well as
proprietary products such as Microsoft SQL.

Another way to extract the data from the system, for data
treatment or plotting, is to use the export function of the
data presentation Web site described in the following sec-
tion. This export function exports the data in a simple fixed
header length, tab separated, text-based format that can be
imported by most data import modules or functions.

Data Access

As mentioned in the “Data Extraction” section, it is both
possible and very easy to access data directly from the data-
base using either direct SQL statements or programming.
This is practical for the cases in which it is desired to per-
form data treatment on the data or to produce high-quality
graphs. However, typically it is sufficient to simply look at
the data and possibly perform light data treatment. For this
kind of data analysis, it would be highly impractical to write
small custom pieces of software for each kind of data that
the users wish to look at. For this reason, we have devel-
oped a framework for visualization of the stored data that
allows quick and easy access to all data. The framework
includes support for basic data treatment as well as the
option to plot several data sets at the same time for easy
comparison of results and to export the data to local files.
The data treatment options that are already implemented are
multiple user-defined linear transformations of both x and y
data, differentiation, and plotting of one set of y values as a
function of another set of y values through common range x
values. On the plot configuration side, there is support for
both ordinary data as well as dates on the x axis and of
course linear and log scales on the y axis. An example of the
Web interface used for plotting is shown in Figure 2.

The goal for the visualization module has not been to pro-
vide high-quality plots because this is a large task that is best
solved with either dedicated software suites or custom scripts.
Instead, the quality of the plots was targeted to be sufficient
for different kinds of everyday use, including presentations at
group meetings, as a starting point for a discussion of data,
quick data comparison, and so forth. The visualization mod-
ule consists of a set of Web pages for user interaction, code to
generate the plots, and plot preferences specific to each
experimental setup. The preferences XML file contains a set-
tings section for each different kind of plot. Below is shown
an example of a continuously logged pressure.

<!-- PRESSURE -->
<graph type=‘pressure’>
 <query>SELECT unix_timestamp(time), pressure
FROM pressure_SETUP where time between “ {from}”
and “{to}” order by time</query>
 <ylabel>Pressure / Torr</ylabel>
 <title>Pressure in {setup}</title>
 <default_yscale>log</default_yscale>
<default_xscale>dat</default_xscale>
</graph>

 at DTU Library - Tech. inf. Center of Denmark on March 28, 2014jla.sagepub.comDownloaded from

http://jla.sagepub.com/
http://jla.sagepub.com/

Nielsen et al. 187

Figure 2. Demonstration of the visualization interface. Data (here mass spectrometer data) can be plotted in a Web browser,
allowing easy comparison between data. Data can be selected and treated by the PHP/HTML interface provided beneath the graph.
This figure has been edited to show both of the plotting engine results in the same Web browser window, whereas normally only one
would be present at a time.

 at DTU Library - Tech. inf. Center of Denmark on March 28, 2014jla.sagepub.comDownloaded from

http://jla.sagepub.com/
http://jla.sagepub.com/

188 Journal of Laboratory Automation 19(2)

The system is flexible toward choice of plotting library,
which is a great advantage because different plotting librar-
ies are optimal for different tasks. At the moment, the
default plots are produced by JavaScript-based dygraphs,11
allowing real-time manipulation of the data, such as zoom-
ing and tracking the graph values closest to the mouse, sim-
ply by use of the mouse through an ordinary Web browser.
This type of plot is shown in the middle of Figure 2. As a
testimony to the flexibility of the setup, Matplotlib12 is also
implemented and can also be used for visualizing data if the
user wishes. Matplotlib produces more presentable graphs,
with a very strong and customizable plotting engine, a nice
layout with good default font sizes, and the option to pro-
duce special characters in the text, but all of this at the
expense of not allowing dynamic plot manipulation. An
example of a Matplotlib-produced plot is shown at the top
of Figure 2. JpGraph13 has previously been implemented as
a plotting library without significant changes to the backend
code, demonstrating the large flexibility of system. The
structure of the visualization module code will be discussed
in more detail in the next section.

Data Presentation Web Site Code Structure

The general structure of the data presentation Web site is
illustrated in Figure 3. The front consists of an index page,
which serves as the entry point for the different kinds of
plots for all the different setups. This index page links to
either “dateplot.php” or “graphplot.php,” with a “type”
argument that indicates which section of the preferences
XML file should be used to set up the plotting page. The
index page may also link to custom pages, which can be
used for special purposes such as surveillance. The front
pages are written mainly in HTML and PHP but also con-
tain some Javascript (Ajax) for dynamical updating of plot
lists, and are all script based. The user input to select plots
and change settings are retrieved with standard HTML
forms.

The front pages call one of two wrappers depending on
whether an export or a plot is requested and includes the
plot selection and settings in the call. These wrappers,
which are written in PHP, are responsible for setting the cor-
rect content type for the output, formatting the settings for
Python, and calling the core modules on the command line.

The “export_data.py” and “plot.py” core modules are
responsible for producing the requested output, which is
either text for an export, data for a Matplotlib figure, or Java
script code for the dygraphs plot. Both “export_data.py” and
“plot.py” makes use of “databasebackend.py” in a similar
manner to retrieve the data from the database and perform
the requested data treatment operations on it, such as dif-
ferentiation or linear transformations. After retrieving the
data, the “plot.py” module makes use of either the “ourdy-
graph.py” or “ourmatplotlib.py” module, depending on the

user selection of plotting engine, and produces the plot con-
tent. All of the code for the core modules is written in
Python.

The modular structure of the code makes it easy to mod-
ify and, for example, adding a plotting engine, requires only
minimal changes to the front files, wrapper, and “plot.py,”
and the addition of an extra plotting module.

Cases

The existence of this data system is paramount to several
automation and system health-monitoring tasks in our labo-
ratory. Below, a few examples are described of the use of
the data system for these purposes. The examples cover
how to create a system health development graph from the
continuously logged pressure data, how we use the continu-
ously logged data to monitor the health and status of long-
duration experiments remotely, and finally how it can be
used to create alarms if some of the system parameters fall
outside specified security ranges.

Monitoring System Health

As mentioned in the “Data Extraction” section, the flexibil-
ity of SQL provides the possibility to perform advanced
data selection and very efficient elementary data treatment
directly in the database by means of a query. This can be
used as in the example below, where the pressure in a vac-
uum chamber at 1 a.m. (when all the system parameters
have settled down) for the past month is extracted for
plotting;
SELECT DATE(time), AVG(pressure) FROM pressure_

{setup} WHERE hour(time) = 1 AND minute(time)

Figure 3. Code structure of the data presentation Web site. The
code is logically split up into three categories: the front, which
consists of all the user-facing Web pages; a set of wrappers for
the figures or exports; and the core, which produces the figure
or export content.

 at DTU Library - Tech. inf. Center of Denmark on March 28, 2014jla.sagepub.comDownloaded from

http://jla.sagepub.com/
http://jla.sagepub.com/

Nielsen et al. 189

BETWEEN 00 AND 20 AND time BETWEEN {from} AND {to}

GROUP BY date(time) ORDER BY time DESC LIMIT 30;

where {setup} should be replaced with the setup’s name and
{from} and {to} should be replaced with the relevant date
interval.

The output from a statement such as the one above is illus-
trated in Figure 4. Plots such as these can be a useful tool to
monitor the general health of the chamber (i.e., if leaks have
developed, a valve is failing, a roughing pump is malfunction-
ing, etc.). It should be mentioned that this is a function that has
been sought after for quite some time as an ultra-high vacuum
is required for surface science studies. Previously, this has sim-
ply not been possible before the automated logging and selec-
tive plotting, as it would have required a person to log the data
in the middle of the night and to periodically make new plots
manually of the latest time period.

Status of Experiments over Long Time Spans

Within surface science, it is not unusual to have experiments or
preparation procedures before an experiment running for
extended periods of time (i.e., overnight or over several days).
Obviously, for such procedures, the equipment is unmanned
during some periods. The software is responsible for the safety
of the system/equipment and for shutting it down if something
unintentional happens. With continuous logging, it is, how-
ever, a simple task to add surveillance to these procedures that
alerts the user by mail or text messages if the procedure has
been stopped. If this occurs, it is subsequently possible for the
operator to assess if it is safe to start the experiment again, even
remotely. This prevents loss of experimentation time if the
experiment has been stopped at an unmanned time.

An example in which this is used is for the cleaning of
metal single-crystal samples before experimentation. The

cleaning of the particular surface is achieved by running a
number (e.g., 5–20) of cleaning cycles. Each of these cycles
can take up to several hours. Before this task was automa-
tized, it typically required simple manual intervention two
to four times during a 30 to 120 min cycle. Obviously, this
was a suboptimal solution requiring periodical manual
work. After the total automation of the task and the imple-
mentation of the surveillance features mentioned above,
this procedure can now run for 10 to 16 h overnight, for
example, and produce a sample ready for experimentation
at the beginning of the workday.

Another use of the monitoring of extended procedures is in
the experiments on microreactor setups.14 For these devices, it
is very common to have quite long unmanned experimentation
times. They can be used to allow for sufficient system settle
time when parameters have been changed, to study long time
stability effects on the samples, or to thoroughly search the
parameter space for the experiment. For all of these purposes,
the more experimentation time, the better, and being able to
unproblematically and safely use nights and weekends is a
noticeable improvement.

Cooling Water Alarms

Several important pieces of equipment in our lab require cool-
ing. If the cooling fails, it can result in breakdown of this
equipment, which can be quite expensive in repair costs and
lost experiment time. Using the continuously logged data, crit-
ical system parameters can be monitored and used to trigger
alarms when these fall out of specified ranges. This feature is
used to monitor the temperature of all the equipment with criti-
cal cooling requirements. All temperatures are logged via the
data system, and alarms will trigger if cooling fails. This
approach has the desirable side effect that system health can be
monitored (to the extent it is given by the temperature) of each
piece of equipment individually to evaluate if the equipment is
getting old or requires maintenance. To implement the alarms,
a program has been written that retrieves the latest tempera-
tures from the database, compares them with values from a
previous time interval, and sends out an alarm via email if they
increased out of range. Appropriately coupled with email
alarms (e.g., on smartphones), this feature provides the user
with real-time notification of critical cooling loss.

Summary

In the present article, we have described our implementa-
tion of a system for acquiring, logging, treating, and visual-
izing experimental data. The system can be used to log both
continuous data and specific data sets. It is designed to be
modular and consist of three parts: the data-logging clients,
a data server, and a data presentation Web site.

For the data-logging clients, a set of general design goals
have been formulated. This was done to ensure conformity of
the system and to ensure the implementability in any

Figure 4. The morning pressure in a vacuum chamber at the
department as measured by a Bayard-Alpert ion gauge. Data
such as these can be used to identify equipment that requires
maintenance or is malfunctioning.

 at DTU Library - Tech. inf. Center of Denmark on March 28, 2014jla.sagepub.comDownloaded from

http://jla.sagepub.com/
http://jla.sagepub.com/

190 Journal of Laboratory Automation 19(2)

programming language and to enforce data safety principles.
For the data server, we have described the advantages in
terms of simplified backup of storing data in a central loca-
tion. Furthermore, a simple table layout that enables logging
of data of many different kinds has been discussed, as well as
how the availability of a central data server with a standard
interface can be used for easy data selection and export. As
the final part of the system, the data presentation Web site has
been described. This Web site has a modular structure with a
front-end user interface and a back-end plotting engine. This
modular design has been used to implement several different
plotting engines for different purposes, ranging from dynamic
plot manipulation to better-looking plots as a basis for discus-
sion and for use in internal presentations. The availability of
the data from a Web site means that it is easily available from
any location for evaluation, comparison, and sharing of data,
thus enhancing the possibilities for collaboration.

Besides the system itself, three different cases have been
discussed that describe how, in particular, the continuously
logged system data can be used for diverse and important pur-
poses that would be very difficult or impractical to implement
without the data-logging system. These cases include monitor-
ing of system health, surveillance of experiments running over
long durations of time, and cooling water alarms as an example
of instant notifications of the loss of a support system.

Finally, it has been described how this entire system is
programmed in Python, PHP, and HTML/CSS and is placed
online for download under a free software license to enhance
future collaboration around the system.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect
to the research, authorship, and/or publication of this article.

Funding

For funding of this work we gratefully acknowledge The Danish
National Research Foundation’s Center for Individual Nanoparticle
Functionality (DNRF54).

References

 1. Benn, N. D.; Liscouski, J. Discussion of Open-Source
Methodologies in Laboratory Automation. J. Lab. Automat.
2009, 14, 82–89.

 2. Murray, G. A.; Crocker, D. P. Applying Open-Source
Software to Laboratory Data Management. J. Lab. Automat.
2011, 16, 327–334.

 3. So, I.; Siddons, D. P.; Caliebe, W. A.; et al. Hard Real-
Time Quick EXAFS Data Acquisition with All Open
Source Software on a Commodity Personal Computer.
Nuclear Instruments & Methods in Physics Research Section
A-Accelerators Spectrometers Detectors and Associated
Equipment 2007, 582, 190–192.

 4. The GNU General Public License. http://www.gnu.org/
licenses/gpl.html (accessed July 4, 2013).

 5. Python Programming Language—Official Website. http://
www.python.org/ (accessed July 4, 2013).

 6. The Scipy Homepage. http://www.scipy.org/ (accessed July
4, 2013).

 7. The Numpy Homepage. http://www.numpy.org/ (accessed
July 4, 2013).

 8. Cahn, M. H.; Russo, M. F. Python and Automated Laboratory
System Control. J. Lab. Automat. 2007, 12, 46–55.

 9. Crane, M. K.; Storrie-Lombardi, L. J.; Silbermann, N. A.;
et al. MySQL/PHP Web Database Applications for IPAC
Proposal Submission (art. no. 701626). 2008.

 10. McIntosh, R. L.; Yau, A. A Flexible and Robust Peer-to-Peer
Architecture with XML-Based Open Communication for
Laboratory Automation. J. Lab. Automat. 2003, 8, 38–45.

 11. dygraphs JavaScript Visualization Library Homepage. http://
dygraphs.com/ (accessed July 4, 2013).

 12. The Matplotlib Homepage. http://matplotlib.sourceforge.net/
(accessed July 4, 2013).

 13. The JpGraph Homepage. http://jpgraph.net/ (accessed July 4,
2013).

 14. Henriksen, T. R.; Olsen, J. L.; Vesborg, P.; et al. Highly
Sensitive Silicon Microreactor for Catalyst Testing. Rev. Sci.
Instrum. 2009, 80, 124101.

 at DTU Library - Tech. inf. Center of Denmark on March 28, 2014jla.sagepub.comDownloaded from

http://www.gnu.org/licenses/gpl.html
http://jla.sagepub.com/
http://jla.sagepub.com/

