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1. Abstract
Micro-patterning is an effective way to achieve surfaces with extreme liquid repellency. This technique
does not rely on chemical coatings and is therefore a promising concept for application in food processing
and bio-compatibile coatings. This super-repellent behaviour is obtained by suspending the liquid phase
on a brush of micro- and nano-posts. In this way the contact with the substrate is minimized, and so is
the adhesion force. While a lot of experimental work has been carried out in this field, relatively little has
been done from a theoretical point in rationalizing and optimizing the geometry of the posts that generate
the super-repellent effect. We here present two different approaches to obtain optimal liquid repellent
surfaces, addressing some fundamental aspects of the problem. First, we focus on the wetting aspect,
and we apply topology optimization to search for an optimal pattern to support the liquid phase in the
suspended state [1]. Second, we consider simpler geometries, but we account for both the wetting and
mechanical properties of the micro-posts, observing an interesting balance of conflicting design objectives
[2]. In conclusion, we present a wide perspective on how numeric optimization tools can be applied to
increase the understanding of this new, dynamic engineering field.

2. Keywords: Superhydrophobicity, Topology Optimization, Microfabrication, Multi-objective opti-
mization.

3. Introduction
Several surfaces with extreme liquid repellent properties are found in Nature. Examples include plants
[3], birds [4], insects [5] and arthropods [6]. In the last decades, several models [7, 8] have progressively
shed light on the origin of such properties. As a matter of fact, micro- and nanometric textures are
at the origin of the extreme liquid repellent properties observed on all these substrates. Recently, the
advances in microfabrication have made it possible to realize artificial coatings that mimic such properties
[9, 10, 11]. Artificial water- or oil-repellent surfaces have countless applications in medical, food and
chemical industry. It is therefore of wide interest to understand and optimize this super-repellent property.

4. Wetting and textured surfaces

Hydrophilic Hydrophobic

θY
θY

Figure 1: An hydrophilic surface (left side) favours the spreading of water and its adhesion to the sub-
strate, while a hydrophobic surface (right side) favours almost spherical drops with little or no adhesion.
The contact angle (shown in red lines) is a measure of these different behaviours.

The wetting behaviour of a liquid on a smooth solid surface can be described in terms of the contact
angle θY , i.e. the angle the liquid-air interface forms with the solid phase at the contact line (see Fig.
1). A small contact angle means it is energetically favourable for the liquid to wet the solid substrate,
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therefore the adhesion will be strong. On the other hand, surfaces showing a large contact angle repel
the liquid, which will form almost spherical droplets and easily detach from the surface. This parameter
therefore captures the relevant chemical properties of the surface related to wetting.
The topography of the substrate, however, also play a relevant role.

Metastable 

suspended 
Wenzel

θY

Dry solid substrate

Wet solid substrate

θ<θY

On a sharp corner, 

the contact line is 

pinned as long as 

θ<θY

On rounded posts, the 

local contact angle can 

match θY, leading to a 

metastable equilibrium

Figure 2: Sketch of the possible equilibrium positions for a droplet on a textured surface. The insertion
shows a magnification of the idealised liquid-gas interface for the metastable configuration. Hydrophilic
and slightly hydrophobic materials will favour the Wenzel configuration. However, the suspended config-
urations on the right side, which are associated with little adhesion to the substrate, can still be achieved
as metastable states.

As it is possible to see in Fig.2, a drop on a textured surface can find different equilibrium states,
depending on the interplay of geometrical and chemical properties. If the material is strongly hydrophilic,
the presence of grooves or roughness will act like a ”2D sponge”, capturing the liquid by capillary
imbibition (such a configuration is known as ”Wenzel state”, see Fig. 2). If, on the other hand, the
material is strongly hydrophobic, the liquid will avoid contact with the substrate and will be suspended
on the texture in a configuration called ”fakir” or Cassie-Baxter state. The measured contact angle in
this configuration is a weighted average involving the one with the solid substrate (θY ) and with air
(180o):

cos θCB = fsl cos θY − fgl, (1)

where fsl represent the fraction of the drop base in contact with the solid phase, and fgl is the fraction
of the drop base in contact with air (for a smooth solid surface, fsl = 1 , fgl = 0). Eq.1 shows how a
suspended drop will always show a higher contact angle than the one expected on a smooth surface of the
same material. This is qualitatively easy to understand, as the contact between the solid and liquid phase
is reduced by the air pockets. As a matter of fact, while the suspended configuration is the equilibrium
configuration only for highly hydrophobic materials, slightly hydrophobic and hydrophilic materials can
also exhibit the Cassie configuration as a metastable configuration. This can happen in different ways, as
sketched in the inserts of Fig.2. In one case, the contact line is pinned at the ridge of the posts, and unless
a pressure is applied to deform the interface, the liquid will not move. On smooth posts, the local contact
angle with the side wall can match θY , which corresponds to a local energy minimum that prevents the
interface from sliding further. If a pressure difference is applied across the liquid-air interface, it will
deform. This will change the local angle between the interface and the solid wall, and could make it
slide along the post sidewall, eventually losing the Cassie-Baxter configuration. If we want to assess the
robustness of the Cassie-Baxter configuration for a given texture, we therefore need to characterize it
with respect to deformations of the liquid-air interface. The mean curvature of the interface κ is related
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to the pressure difference ∆P across it through the Young-Laplace relation:

∆P = γκ, (2)

where γ is the surface tension of the fluid, i.e. the energy cost per unit area of an interface between liquid
and gas phases. Without going into mathematical details, Eq. 2 tells a lot about how much pressure a
drop in the Cassie state can support before the liquid wets the substrate. For example, we see that a high
surface tension γ means less interface deformation for the same applied pressure. Moreover, curvature
has units of inverse length: this means that, the smaller the spacing in the texture, the harder it is to
push the liquid among posts or grooves.

The concepts introduced in this section are all we need to understand the results presented in the
following. In section 5, we apply topology optimization to find an optimal post cross section, that
minimizes the interface deformation upon applied pressure, while keeping the solid fraction fsl (and thus
the apparent contact angle θCB) fixed. In section 6 we consider a similar problem (optimal support
with limited surface covering), for overhanging structures, which are suitable for achieving the Cassie-
Baxter state in hydrophilic materials. We therefore introduce the constraint of mechanical stability, which
becomes relevant for the geometry we address.

5. Topology optimization of superhydrophobic surfaces

D D

γ(x)

B) C)

A)

Figure 3: A) Sketch of the considered post array. B) Top view of a single post cell, for the basic circular
cross section. C) Same view of a single cell, with a variable cross section (white area) around a fixed
”nucleus” (red dot) . In the topology optimization procedure, the cross section is not fixed but varies
according to the field γ(~x). The dashed line in C) shows the reduced computation domain that exploits
the imposed symmetry of the cell. From [1].

As we described in the previous section, large displacements of the liquid-air interface could force a
transition from the Cassie-Baxter to the Wenzel state, and thus a loss of the superhydrophobic properties
of the pattern. The question we ask in this section is: for a given unit cell coverage fsl, which post
cross section provides the least interface displacement under a given applied pressure? As we will see,
Topology Optimization is effective in answering this question. Our setup is sketched in Fig. 3A). We
consider a typical square array of posts, which will provide the support to the interface. Instead of the
typical circular post of Fig. 3B), we allow the cross section to change around a ”solid” nucleus, according
to a continuous design variable γ(~x) (3C). During the optimization steps, the design variable field γ(~x)
is allowed to vary from 1 (completely solid region) to 0 (completely empty) through intermediate values,
to account for different post shapes. The relevant physical variable in our simulations is the interface
vertical displacement S(~x). If the interface bulges too much, the liquid will eventually touch the substrate
among posts. The curvature of the interface upon applied pressure ∆P is given by the Young-Laplace
equation 2, that can be formulated as a PDE (simulations units are used):

∇ ·
(
K(γ) ∇S(~x)

|∇S(~x)|

)
= ∆P on D

S(~x) = 0 on ∂D1

∇S(~x) · ~n = 0 on ∂D2.

(3)
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The boundary conditions on ∂D1 and ∂D2 account for the central support and the periodicity of the unit
cell, respectively. Eqs. 3 depend on the design variable γ(~x) through the function K(γ) defined as:

K(γ) = 1 +
(Kmax − 1) · q · γ

(q + 1− γ)
. (4)

This coupling was inspired by optimal heat conduction problems [12], and provides the desired interplay
between the interface and the material distribution. Where γ(~x) = 0, K(γ) is equal to 1, and we recover
the Young-Laplace equation in absence of material. If γ(~x) = 1, K(γ) is equal to Kmax (set to 105 in
our simulations). This corresponds to a huge local increase in the surface tension of the interface, which
as a consequence will almost not deform, and we therefore get γ(~x) = 1→ S(~x) ' 0 as the ”solid phase”
condition. The goal of the optimization procedure is to minimize the maximum interface deformation. A
suitable choice for our objective function Φ will then be the squared integral displacement of the interface
∗

Φ =

∫
D

S2(~x) dA. (5)

The specific coupling between γ(~x) and S(~x) we choose leads to connected binary solid/empty designs,
as K(γ) ”radiates” the support from ∂D1 to the rest of the domain. We therefore do not allow the post
to split into smaller isolated features. While the overall length scale of the texture is indeed a relevant
parameter, we are here interested in the optimal shape of a single feature, which can then be scaled up
or down according to the fabrication constraints.

At every optimization iteration, The Young-Laplace equation Eq. (2) is then solved to obtain S(~x).
The objective function Φ and sensitivity δΦ

δγ(~x) are then computed, and used to update γ(~x). Details on

the sensitivity analysis and the implementation of the code can be found in the paper by Olesen et al. [14].
Eq.2 shows that the displacement of the interface is reduced for small length scales. This suggest that
highly ramified design would probably be optimal, but difficult to fabricate on a micron or sub-micron
length. In order to impose a minimum length scale, our optimization involves also a filtering step on the
design variable γ(~x). At every iteration in the optimisation routine we calculate a smoothed version γ̃(~x)
of the design variable γ(~x), applying a PDE filter [15]:

L2
diff∇2γ̃(~x) = γ̃(~x)− γ(~x). (6)

γ̃(~x) is the quantity actually used in the objective function and sensitivity analysis. This process allows
to control the minimum size of the features appearing in the optimal design and avoids optimal designs
approaching the mesh length scale. The relevant PDEs are solved using the commercial software COM-
SOL, while the optimization relies on the method of moving asimptotes (MMA) [16].

Fig. 4 shows a typical sequence of steps in the topology optimization procedure. We start from an
initial homogeneous distribution of material over the whole domain, equal to the desired solid surface
coverage fsl, which is imposed as a constraint. We observe a swift transition to a binary design, with
the material accumulating along the diagonal of the unit cell. In later stages, further branching appears
in the transverse direction. The overall result is quasi-fractal, with the clear objective of minimizing the
gap between solid features. The optimal pattern is a planar analogue of several natural coatings, which
employ hierarchical patterns on micro- and nano-roughness to achieve superhydrophobicity. As shown
in Fig.5, the filter allows us to control the maximum resolution of the optimal design, in order to avoid
mesh dependent effects and obtain feasible geometries.

Eventually, in Fig.6, we compare the interface displacement for a typical cylindrical post and a topol-
ogy optimised one. As it is clear from Fig.6 B) and D), there is a significant reduction in the interface
displacement. Another convenient feature of topology optimization is the possibility to adjust the optimal
design to the symmetry of the unit cell. Similar results, for example, have been obtained for an hexagonal
pattern.

∗The most relevant quantity to determine the transition to the Wenzel state would actually be the angle between the
post and the interface, which directly relates to the maximum displacement. As in mechanical structures optimizations,
however, mean quantities are easier to evaluate and provide a smoother optimization. One could think of recovering the

maximum displacement formulation by considering other means with increasingly high powers, Φα = α
√∫

D |S(~x)|α dA.[13].
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Topology Optimisation, 

Figure 4: Snapshots of the topology optimization evolution, over a reduced domain that exploits the
symmetry of the unit cell.

Figure 5: Optimal design for fsl = 0.3 and Ldiff=0.5, 1, 3 times the meshsize hmesh. The radius of the
yellow dot in each column is equal to Ldiff . From [1].

A) B)

C) D)

Figure 6: A) Top view of a cylindrical post with solid fraction fsl = 0.25. B) Displacement plot for applied
pressure ∆P = P0. C) Optimized material distribution with solid fraction fsl = 0.25. D) Displacement
plot for the topology optimized design. From [1].

6. Parametric optimization of inverse trapezoid olephobic surfaces
We will continue our analysis with a full three dimensional problem, involving a different geometry. The

inverse trapezoid pattern presented by Im et al [11, 17] is an interesting example of how to obtain an
hydrophobic behaviour from a hydrophilic material. Such surfaces are also known as oleophobic, since
most materials are inherently oleophilic, and micro-patterning is almost the only way to make them
oil-repellent. The undercut of this structures is meant to be complementary to the contact angle of the
liquids, so that a local energy minimum is obtained and the drop remains suspended in a Cassie-Baxter
state (see inset in Fig.2). These posts can be fabricated with high precision at a characteristic size of
L0 = 5 µm in cross-linked PDMS, using backside diffuse lithography. In Fig.7a) we show the relevant
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Figure 7: (a):Relevant geometric parameters to characterize the inverse trapezoid array. (b): optimization
objectives for a robust oleophobic surface. c): optimization objectives in the b-θside parameter space
(h=2L0), cos θY = 0.3. d): optimization objectives in the a-h parameter space (b=1.8L0), cos θY = 0.3.
In c)-d), the color legend is as follows: warm color scale: Breakthrough pressure, Green: apparent contact
angle θCB , Blue: maximum percent strain. Each arrow represent an optimality direction, for mechanical
robustness (blue), apparent contact angle (green) and maximum breakthrough pressure (orange). In each
corner of the geometric space, the corresponding trapezoid is shown. Adapted from [2].
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Figure 8: (a): Relevant geometric parameters characterizing the inverse trapezoid geometry. (b): Opti-
mization objectives for a robust oleophobic surface.
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parameters that describe our geometry: the post height h, top radius b, base radius a and side angle
θside = b−a

h
†. In Fig. 7b) we show the relevant optimality criteria for a robust oleophobic surface:

A large contact angle θCB , a Cassie-Baxter state resistant to pressures up to PB and a mechanically
robust geometry. Combining mechanical and wetting properties is the main point of this analysis, since
an oleophobic surface is expected to be able to support different kind of wear and stresses in everyday
applications. We consider a simple load, i.e. a uniform shear stress on the top of the post. We then
use linear elasticity to evaluate the maximum principal strain in the structure, which gives a qualitative
measure of the robustness of the posts. As expected, the largest stresses and strains are found at the
neck of the pillar, and depend significantly on the post geometry. It is easy to see how these optimization
objectives will be conflicting. For example, if we increase the top radius a while keeping the unit cell
size and all the others parameters fixed, we effectively reduce the distance between posts. This increases
the stability of the Cassie-Baxter configuration, but reduces the apparent angle θCB , since the wetted
solid fraction fsl per unit cell also increases (as sketched in Fig.8a) ). Similarly, increasing the trapezoids
undercut will allow a more robust Cassie Baxter state, since a wider range of contact angles can be
accommodated on the post sidewalls. However, the narrow base of the posts will suffer high stresses
upon a shear load, which might result in a mechanical failure of the structure (as sketched in Fig.8b) ). If
we combine all these objectives together, we can then find a localized optimum in the design parameter
space, i.e. a reliable suspended state for a given contact angle and mechanical performance. In Figs.
7c) and 7d) we plot contour lines for the contact angle θCB (green dotted lines), the maximum strain
(blue dashed lines) and the maximum sustainable pressure PB (warm colour lines) in the b − θside and
a− h parameter spaces. Relevant post geometries are also shown in the corners. It is apparent how the
different optimization goals act against each other, so that a nontrivial optimum can be found according
to performance specifications. The breakthrough pressure in Fig.7c) and 7d) where obtained using the
interface simulator Surface Evolver [19]. The post strain was calculated with COMSOL.

8. Conclusions and outlook
In this paper we described two different aspects of optimal liquid repellency, considering different objective
functions. First we applied topology optimization to superhydrophobic surfaces, in order to maximise
the robustness of the non-wetting configuration. We then considered inverse trapezoid posts, which
are able to suspend low surface tension fluids, and looked for an optimal shape which accounted for
both wetting and mechanical properties. We conclude that wetting phenomena involve several physical
properties, which can easily increase the modelling and computational effort. It is therefore fundamental
to identify suitable parameters and objectives, which can provide a simple yet quantitative description
of the superhydrophobic behaviour. Ongoing work regards the fabrication and characterization of the
discussed patterns, as well as applying this approach to other wetting behaviours, such as directional
liquid motion or spreading.
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