
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Dynamics of Rigid Bodies and Flexible Beam Structures

Nielsen, Martin Bjerre; Krenk, Steen

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Nielsen, M. B., & Krenk, S. (2013). Dynamics of Rigid Bodies and Flexible Beam Structures. DTU Mechanical
Engineering.  (DCAMM Special Report; No. S156).

http://orbit.dtu.dk/en/publications/dynamics-of-rigid-bodies-and-flexible-beam-structures(cf140d9e-0218-4399-8469-e74c3813af48).html


P
h

D
 T

h
e

s
is

Dynamics of Rigid Bodies and Flexible Beam Structures

Martin Bjerre Nielsen
DCAMM Special Report No. S156
September 2013



 



Dynamics of Rigid Bodies and Flexible

Beam Structures

Martin Bjerre Nielsen

Technical University of Denmark

Department of Mechanical Engineering

Section of Solid Mechanics

September 2013



Published in Denmark by

Technical University of Denmark

Copyright c© M. B. Nielsen 2013

All rights reserved

Section of Solid Mechanics

Department of Mechanical Engineering

Technical University of Denmark

Nils Koppels Alle, Building 404, DK-2800 Kgs. Lyngby, Denmark

Phone +45 4525 4250, Telefax +45 4593 1475

E-mail: info@mek.dtu.dk

WWW: http://www.mek.dtu.dk/

Publication Reference Data

Nielsen, M. B.

Dynamics of Rigid Bodies and

Flexible Beam Structures

PhD Thesis

Technical University of Denmark,

Section of Solid Mechanics.

September, 2013

ISBN 978-87-7475-373-5

Keywords: Finite rotations, conservative time integration,

structural dynamics, constrained mechanics, beam

elements, quaternions, cosine directors, wind tur-

bines

info@mek.dtu.dk
http://www.mek.dtu.dk/


Preface

This thesis is submitted in partial fulfillment of the Danish Ph.D. degree from the
Technical University of Denmark. The work has primarily been performed at the
Department of Mechanical Engineering at the Technical University of Denmark, in
the period September 2010 to August 2013 under the supervision of Professor, Dr.
Techn. Steen Krenk, to whom I owe my deepest gratitude for his excellent guidance
and support throughout the entire project.

The part of the work on multi-level optimization of wind turbine blades has been
carried out at the Department of Aerospace Engineering at Politecnico di Milano in
the period October to December 2011. I am grateful to Professor Carlo L. Bottasso
for making the stay possible and for his supervision during the stay.

Furthermore, I would like to thank my colleagues at the department for fruitful
discussions and a pleasant and inspiring working environment.

Finally I would like to express my most sincere thanks to my family for their patience
and support during the process. Especially Marie for always being encouraging and
understanding.

Kgs. Lyngby, September 2013

Martin Bjerre Nielsen

i



Resumé

Roterende bevægelse er et ofte forekommende fænomen indenfor mange ingeniør-
mæssige anvendelser s̊asom biler, roterende maskineri og vindmøllerotorer. Denne
afhandling best̊ar af fire dele, der alle omhandler udvikling af effektive beregn-
ingsmetoder til modellering af den dynamiske opførsel af stive legemer og fleksible
bjælkekonstruktioner med hovedvægt p̊a den roterende bevægelse.

Den første del vedrører bevægelse i en roterende referenceramme. En ny frem-
gangsm̊ade, hvor bevægelsesligningerne er formuleret i et hybridt tilstandsformat, er
præsenteret. Det er vist, at betragtelige simplificeringer kan opn̊as, hvis de samme
interpolationsfunktioner anvendes for begge tilstandsvariable, hvorved alle inerti-
effekter kan repræsenteres via den klassiske konstante massematrix. Det hybride
tilstandsformat danner grundlaget for udviklingen af et konservativt tidsintegra-
tionsskema samt en tilhørende algoritmisk dæmpning, der kun p̊avirker den lokale
bevægelse.

I den anden del præsenteres et konservativt integrationsskema for stiftlegemebevæ-
gelse i en global referenceramme. En fuldtud algebraisk repræsentation af den
roterende bevægelse er opn̊aet ved anvendelse af enten fire quaternion parame-
tre eller ni konvekterede basisvektor komponenter. I begge tilfælde er bevægelses-
ligningerne udledt via Hamilton’s ligninger, hvori de kinematiske bindinger, der
følger af den redundante rotationsbeskrivelse, er inkluderet ved brug af Lagrange
multiplikatorer. En særlig egenskab ved formuleringen er, at disse kan erstattes af
en projektionsoperator anvendt p̊a gradienterne af det ydre potential og eventuelle
ydre bindinger.

Den tredje del præsenterer et nyt to-knude bjælkeelement, der er i stand til at
underg̊a vilk̊arligt store flytninger og endelige rotationer. Elementet er udtrykt
eksplicit ved brug af globale komponenter af positionsvektorer og tilhørende kon-
vekterede basisvektorer for elementets knuder. Kinematikken er beskrevet i en
homogen kvadratisk form, og den konstitutive stivhed er udledt ved brug af kom-
plementær energi for et sæt af ligevægtsformer, der hver repræsenterer en tilstand
svarende til konstant indre kraft eller moment. Denne fremgangsm̊ade undg̊ar lokal
interpolation af kinematiske størrelser, hvilker leder til en formulering, der b̊ade er
fri for l̊asningsmekanismer og invariant i forhold til valg af referenceramme.

I den sidste del af afhandlingen præsenteres en multi-level optimeringsprocedure
for vindmøllevinger. Beregningsprocedurer svarende til dem, der er præsenteret
i denne afhandling, udgør grundlaget for en foreløbig optimering ved brug af en
multilegeme-baseret bjælkemodel af den fulde vindmølle. De nye aspekter, der her
betragtes, vedrører automatisk generering af en 3D FE-model af en enkelt vinge til
brug for detaljerede spændings og stabilitetsberegninger, der ikke kan udføres p̊a
bjælkemodellern samt anvendelse af resultaterne til opdatering af bjælkemodellen
for et efterfølgende iterationsskridt. Det er demonstreret, at konvergens mellem de
to modeller kan opn̊as ved ganske f̊a iterationer.
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Abstract

Rotational motion is a frequently occurring aspect in many engineering applica-
tions such as automobiles, rotating machinery or wind turbine rotors. The present
thesis is organized in four parts - all concerning development of efficient computa-
tional methods for modeling the dynamic behavior of rigid bodies and flexible beam
structures with emphasis on the rotational motion.

The first part deals with motion in a rotating frame of reference. A novel approach
where the equations of motion are formulated in a hybrid state-space in terms of
local displacements and global velocities is presented. It is shown that particular
simplifications are obtained when the same interpolation functions are used for both
state-space variables, whereby all inertia effects can be represented via the classic
constant mass matrix. The hybrid state-space constitutes the basis for developing
a conservative time integration scheme and an associated algorithmic dissipation,
that affects only the local motion.

In the second part a conservative integration scheme for rigid body motion in a
global frame of reference is presented. A fully algebraic representation of the rota-
tional motion is obtained by using either four quaternion parameters or nine con-
vected base vector components. In both cases, the equations of motion are obtained
via Hamilton’s equations by including the kinematic constraints associated with the
redundant rotation description by means of Lagrange multipliers. A special feature
of the formulation is that these can be replaced by a projection operator applied to
the external potential gradient and possible external constraint gradients.

The third part presents a novel two-node beam element capable of undergoing ar-
bitrary large displacements and finite rotations. The element is expressed explicitly
in terms of the global components of the position vectors and associated convected
base vectors for the element nodes. The kinematics is expressed in a homogeneous
quadratic form and the constitutive stiffness is derived from complementary energy
of a set of equilibrium modes, each representing a state of constant internal force
or moment. This approach avoids local interpolation of kinematic variables, which
makes the formulation inherently locking-free and frame-invariant.

In the final part of the thesis a multi-level optimization procedure for wind turbine
blades is presented. Computational procedures similar to the ones presented in
this thesis constitute the basis for a preliminary optimization using a multibody
beam model of the full wind turbine. The novel aspects considered here consist of
automatic generation of a 3D FE-model of a single blade for detailed stress and
buckling analysis which cannot be performed on the beam model, and utilization
of the results for updating the beam model for a subsequent iteration step. It is
demonstrated that convergence between the two models is obtained in very few
iterations.
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1. Introduction

Rotating parts occur within many engineering fields such as automobiles, aeroplanes
and helicopters, space structures, robotics and wind turbines. Common for all of
them is the need for efficient and reliable computational procedures for dynamic
analysis of the rotational motion as this is often an important aspect in determining
the optimal design.

This has led to remarkable developments within the fields of structural and multi-
body dynamics in the last two decades. In particular conservative time inte-
gration schemes for integrating the equations of motion have been developed in
terms of the so-called energy-momentum methods [41, 93, 98]. Contrary to clas-
sic collocation-based methods such as the Newmark scheme [81] and its various
α-modifications [28,43,105], these methods can be designed such that they exactly
represent the energy and momentum balance equations over a finite time step.

The key point in conservative schemes is to base the time integration on an inte-
grated form of the equations of motion. It was demonstrated in [98] for rigid bodies
and in [93] for linear elastic materials with non-linear kinematics that energy con-
servation can be obtained by a suitable discretization. Extensions to more general
elastic materials are given in [41] via the notion of finite derivatives, while inclusion
of constraints has been considered in e.g. [12, 70]. Traditionally, the conservative
properties rely on evaluation of internal forces via combinations of mean values of
stresses and strains on element level. However, as demonstrated for translation
based solid elements with a quadratic strain representation, the representative in-
ternal force can be expressed in a particularly attractive form where the model
non-linearity enters via a global term formed by the increment of the geometric
stiffness [58].

For some applications such as wind turbines and rotating machinery where the
overall rotational motion is rather well-described and the local deformations can be
assumed moderate, it may be convenient to consider the motion in a rotating frame
of reference. Hereby the gross overall motion can be accounted for by the rotating
frame, while the local deformations within this frame can be modeled using simpli-
fied models [9, 34, 90]. However, a fundamental aspect of such analysis is the effect
of inertial forces generated by the rotation; notably coriolis and centrifugal forces.
In classic methods the inertial effects are expressed via local velocities obtained
by time differentiation of interpolated displacements at a generic point [36, 77, 78].

1



2 Introduction

This leads to a representation where the angular velocities appear inside the inte-
grals defining the inertia contributions for the individual elements, and thus such
methods require recalculation on element level at each time step. Alternatively a
rearrangement in auxiliary sub-matrices can be performed [90]. However, this is
associated with increased complexity and furthermore complicates the development
of a conservative integration scheme in a rotating frame.

In other cases where the local deformations cannot be assumed small, it may be
desirable instead to formulate the equations of motion with respect to an inertial
frame of reference. However, this introduces a number of difficulties, mainly asso-
ciated with proper handling of finite rotations. In particular the combination of
finite rotations in three-dimensional space requires special measures that account
for their non-commutative properties. Several suggestions for proper parameteriza-
tions can be found in the literature. These can be classified as either trigonometric
representations based on e.g. three successive angles about different axis [39] or ro-
tation pseudo vectors representing a rotation about a fixed axis [5, 14] or algebraic
representations such as the use of quaternions (Euler parameters) [18,80,91,102] or
convected base vectors (directors) [19]. In particular the algebraic representations
provide simple relations for the rotation increments, thus facilitating the develop-
ment of conservative integration schemes.

Furthermore, the development of flexible elements accommodating finite rotations
usually results in rather complex formulations. In particular numerous formula-
tions for flexible beams can be found in the literature. A special role is taken by the
so-called geometrically exact formulations, see e.g. [21,27,45,46,86,87,92,95]. How-
ever, while the underlying kinematic description is well-defined according to Euler’s
elastica theory the spatial discretization may introduce a number of problems such
as locking-related phenomena or lead to frame invariant strain descriptions. Addi-
tionally, the strain description commonly used in these formulations seems unable
to be expressed within a homogeneous quadratic format that permits development
of a conservative time scheme in attractive global format [58].

The objective of the present work is to formulate efficient computational meth-
ods for rigid body dynamics and flexible beam structures. Both rotating frame of
reference approaches as well as inertial frame approaches are considered with the
common aim of developing associated energy and momentum conserving integra-
tion schemes. The key to the attractive format described in [58] is the use of a
quadratic deformation description, and thus a recurrent goal of all the formulations
considered in the present project is to extend this property to models including
finite rotations. For an elastic system with quadratic kinematics, the elastic poten-
tial is a quadratic form in strain variables, that in themselves are quadratic in the
generalized displacements. This bi-quadratic form permits explicit relations for the
finite potential increment via end-point based mean values and differences. Fur-
thermore, a quadratic kinematic description is the minimum order of non-linearity
capable of handling finite deformation, see e.g. [61]. Models where the kinematic
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description can be represented in a homogeneous quadratic form is thus the scope
of the present thesis.

The thesis consists of an extensive summary covering the main aspects of the theory
and representative numerical simulations, followed by six journal papers, denoted
[P1] to [P6], which cover the presented material in greater detail. The papers [P1]-
[P2] present a novel procedure for conservative time integration in a rotating frame
of reference. The equations of motion are formulated in a hybrid state-space, formed
by local displacements and global components of the velocity. It is demonstrated
that particular simplifications are obtained for the inertia effects associated with ro-
tational motion when the same interpolation functions are used for both state-space
variables. This facilitates the development of an energy and momentum conserving
integration algorithm and a consistent algorithmic damping scheme. The basic
procedure is developed for translation-based isoparametric elements in [P1] and ex-
tended to beam elements accommodating translations and rotations of moderate
magnitude in [P2]. Motion with respect to an inertial frame is the scope of the
papers [P3] and [P4], where conservative time integration schemes for constrained
rigid body rotations are presented based on the four component quaternion descrip-
tion and the nine component director representation, respectively. In both cases
kinematic constraints associated with the redundant parameterization are enforced
initially via Lagrange multipliers. However, a common feature, demonstrated in
[P3] for a single scalar constraint and in [P4] for a set of multiple constraints, is
that the Lagrange multipliers can be embedded in the discrete equations of motion
via an explicit projection operator applied to the external potential gradient. The
paper [P5] presents an explicit free-floating beam element via global components of
nodal position and attached convected base vectors similar to the ones presented
in [P4]. These serve to define six generalized strain components in a homogeneous
quadratic form, each associated with a local equilibrium mode. The constitutive
stiffness is derived via complementary energy of the equilibrium modes, which leads
to an inherently locking-free formulation. Finally the paper [P6] presents a typical
application for computational tools similar to the ones developed in this thesis in
terms of a multi-level optimization procedure for wind turbines. The procedure
combines ‘coarse’-level analysis of multibody beam models with ‘fine’-level analy-
sis of detailed three-dimensional FE-models, and it is demonstrated that a simple
heuristic approach can be used for integrating both models in a unified multi-level
optimization framework for wind turbine blades.

The extended summary is organized as follows: First the theoretical framework for
hybrid state-space time integration in a rotating frame of reference presented in
[P1]-[P2] is summarized in Section 2. Next the procedures for modeling of general
rigid body motion with implicit constraints from [P3]-[P4] are presented in a com-
mon notation in Section 3, while the explicit flexible beam element developed in
[P5] is the scope of Section 4. Finally the multi-level optimization procedure for
wind turbine blades presented in [P6] is summarized in Section 5, while concluding
remarks on the main results and suggestions for possible future extensions of the
work are given in Section 6.



2. Time integration in a rotating frame of reference

The dynamics of rotating bodies, such as machine parts or wind turbine blades
is often modeled in a rotating frame of reference. This may be considered as a
special case of the floating frame approach widely used in multibody dynamics, see
e.g. Shabana [89]. Floating frame formulations are particularly attractive as the
gross overall motion can be described by a rigid body motion of the local frame
while the deformations within this frame for many applications may be assumed
small or moderate, [9, 34, 90]. Despite these simple kinematic simplifications an
accurate representation of the geometric stiffening is crucial for balancing the effect
from centrifugal forces, Kane et al. [50]. Geometric stiffness may be included to
various level of sophistication ranging from initial stress-based formulations with
respect to initial geometry [103, 104] to the use of fully non-linear strain measures
[74,96]. Comparative studies of the effect of geometric stiffness are presented in e.g.
Meijaard [76], Mayo et. al. [75] or Maqueda et. al. [72].

The classic state-space representation of dynamics in a rotating frame follows the
format given by Meirovitch [77, 78] in terms of local displacements and local ve-
locities. However, this does not provide a direct representation of the momentum
equation, and thus the equations are typically supplemented by a stiffness relation in
order to satisfy suitable symmetry properties, [36,79]. Additionally the presence of
centrifugal and Coriolis effects in a discretized model leads to time dependent inertia
matrices as the angular velocities representing the convected velocity contribution,
appear inside the integrals representing the contributions from the individual ele-
ments. Thus, the system matrices must be reassembled when the angular velocity
changes or reorganized into several auxiliary matrices, Shabana [90].

In contrast, it is demonstrated in the papers [P1] and [P2] that all inertial terms
associated with the dynamics in a rotating frame of reference can be expressed solely
via the classic constant mass matrix, when stating from a hybrid state-space, in
which the local displacements and global velocities are interpolated using the same
shape functions. The resulting equations of motion then take a symmetric form
and provide the basis for development of a conservative time integration scheme
including possibly algorithmic dissipation that only affects the local motion. The
main points are summarized in the following.

4



Kinematics and independent interpolation 5

2.1. Kinematics and independent interpolation

Analysis of a rotating structure is commonly based on a discretized model where
the body is represented by N nodes. The nodal positions can be expressed in
local components x1, . . . ,xN with respect to a local frame of reference that rotates
with angular velocity Ω about a fixed origin. The situation is illustrated in Fig.
2.1 where the origin of the rotating frame for simplicity of notation is selected to
coincide with the global frame.

x1

x2

x3

Ω

Figure 2.1. Body in a local frame {x1,x2,x3} rotating with angular velocity Ω.

The positions of the nodes in the local frame serve to define the elastic energy,
while the kinetic energy is a function of the corresponding global velocities, ex-
pressed via their local components v1, . . . ,vN . The transformation between the
local components of the position of a node j given by xj and its corresponding
global components xj can be expressed by a rotation in the form

xj = Rxj , (2.1)

where the matrix R defining the current rotation of the local frame is a proper
orthonormal rotation tensor, i.e. RTR = I. The local components of the absolute
velocity v can be obtained by absolute time differentiation of (2.1) followed by
pre-multiplication with RT . The result combines the contribution from the local
velocity with the convective velocity from rotation of the frame and can be expressed
in the generic form

vj = Dtxj = (∂t + Ω̃)xj , (2.2)

where Ω̃ = Ω× is the skew-symmetric matrix representing the cross product with
the angular velocity vector Ω = [Ω1,Ω2,Ω3]

T .

The choice of interpolation scheme for the motion of an internal point with material
coordinates ξ constitutes a crucial step in obtaining a discretized form of the equa-
tions of motion. The assembled position vector, containing the local position of all
the N nodes of the structure, is conveniently introduced as xT = [xT

1 , . . . ,x
T
N ]. By

using this notation, the position of a generic point with internal coordinate ξ can
be expressed in the classic format via a suitable interpolation matrix N(ξ),

xξ = N(ξ)x . (2.3)



6 Time integration in a rotating frame of reference

The main issue here is the representation of the corresponding velocity vξ. Tradi-
tionally a Lagrangian approach has been used in the sense that the local components
of the velocity vξ are obtained by absolute time differentiation of the interpolated
values xξ according to (2.2). This will in general lead to a format where the convec-
tive terms accounting for rotation of the local frame are represented via the prod-
uct Ω̃N(ξ), and thus the angular velocity Ω appears inside the integral expression
when forming the kinetic energy. In the particular case of isotropic interpolation,
i.e. when the same interpolation functions apply to all displacement components
associated with a node, the factors can be interchanged, i.e. N(ξ)Ω̃, which allows
the angular velocity to be extracted from the integral expression. In this way all
inertia effects can be expressed solely via external matrix operations on the clas-
sic constant mass matrix [51]. However, in the general case of non-isoparametric
interpolation, the attractive property of moving the angular velocity outside the
integral requires a substantial substructuring of the mass matrix, [90]. Therefore,
in cases with time-dependent angular velocity, the formulation involves reassembly
of all matrices containing Ω or its derivatives.

In the papers [P1] and [P2] a fundamentally different approach along the lines
of Hamiltonian mechanics is adopted, see e.g. [39]. In Hamilton mechanics the
equations of motions are represented by a symmetric set of first order differential
equations in terms of a set of generalized displacements and their conjugate mo-
mentum variables. These are treated as independent variables, which suggests use
of identical interpolation schemes for both variables. This approach is illustrated
for translation-based elements in [P1]. When the mass matrix is constant, the mo-
mentum vector can be replaced by the nodal velocity vector, hence an interpolation
scheme similar to (2.3) can be adopted for the velocity. The absolute velocity at a
generic point ξ then takes the form

vξ = N(ξ)v = N(ξ)(∂t + Ω̃D)x . (2.4)

In this format the velocity is interpolated from the nodal values obtained via the
convected differentiation operator defined in (2.2). This is here extended to global
form by introduction of the block diagonal matrix Ω̃D = ⌈Ω̃, . . . , Ω̃⌋.

In [P2] it is illustrated that extension to three-dimensional beam elements accom-
modating both translations and rotations of moderate magnitude is straight forward
by inclusion of an additive term in the kinematic relation. The local configuration
vector xj is conveniently organized in a 2N block format where each nodal contribu-
tion includes three translational components xj = [x1, x2, x3 ]

T and three rotational
components ϕj = [ϕ1, ϕ2, ϕ3 ]

T expressed in the three-component rotation vector
format, see e.g. [35]. Similarly an extended form of the absolute velocity vector vj

is introduced, whereby

xj =

[

xj

ϕj

]

, vj =

[

ẋj + Ω̃xj

ϕ̇j +Ω

]

. (2.5)
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It is seen that the convective velocity contribution from rotating the frame of ref-
erence affects the translational velocity components according to (2.2), while the
convective angular velocity enters as an additive contribution to the local angular
velocity, which for moderate rotations is represented as ϕ̇j . The interpolation of
the velocity can therefore be expressed in a form similar to (2.4), by including an
additive contribution to the rotational degrees of freedom:

vξ = N(ξ)v = N(ξ)
[

(∂t + Ω̃D)x + ΩC

]

. (2.6)

The block-diagonal matrix Ω̃D and the vector ΩC are here expressed via ⌈Ω̃, 0⌋
and [0T ,ΩT ]T , respectively, which are repeated for each node of the structure. It is
seen that the shape-function matrix N(ξ) appears to the left of the combined time
differentiation and convection terms in both (2.4) and (2.6), thereby permitting the
simple representation of inertia forces as discussed above.

2.2. Equations of motion

The equations of motion can be obtained in several different ways using e.g. the
variational principles of Lagrange or Hamilton, [39]. While the particular form may
be of minor importance when considering the exact continuous case, the choice of
format is a central issue in the development of discrete time integration schemes.
For the current use Lagrange equations constitute a convenient means for obtaining
the equations of motion from the derivatives of the kinetic energy T and the elastic
energy G. These are expressed in terms of the displacements, here introduced as
the difference between the current and the initial position u = x − x0, and their
time derivatives u̇, in the form

d

dt

(

∂T

∂u̇T

)

−
∂T

∂uT
+

∂G

∂uT
= f , (2.7)

where f represents the external generalized forces. The kinetic energy associated
with the global motion follows from integrating the specific kinetic energy expressed
via (2.4) or (2.6) over the volume of the body and yields the quadratic expression

T = 1
2
vTMv . (2.8)

It is seen that the mass matrix is constant, since the interpolation refers to initial
geometry. Furthermore, it is noted that the effect of rotating the local frame of
reference is included implicitly via the absolute velocity vector. The internal forces
g(u) are defined as the displacement derivatives of a potential function G(u), hence
the use of Lagrange’s equations with the kinetic energy T expressed via the absolute
velocity v then identifies the equations of motion in the well-known form, - as a set
of second order differential equations in time. However, the effect of rotating the
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local frame of reference is accounted for by replacing the partial time derivative ∂t
with the convected derivative Dt = (∂t + Ω̃), whereby

(∂t + Ω̃D)Mv + g(u) = f . (2.9)

This second-order differential equation typically constitutes the starting point for
the development of collocation-based integration schemes such as Newmark [81] or
generalized α-methods [28]. These methods are commonly based on matching the
equations of motion at discrete points in time using approximate expressions for the
local displacement and velocity increments, and thus they do not in general lead
to exact conservation of energy and momentum as discussed in [56]. In contrast
conservative integration schemes are typically developed from an integrated form of
two first order state-space differential equations defining the momentum in terms
of the displacement variables and the equations of motion via the momentum vari-
ables, respectively. In this context the application of a hybrid state-space format
combining local displacements u and local components of the global velocities v ap-
pear as an obvious choice when observing that the momentum variables are given
as Mv. Following the procedure in [P1]-[P2], the hybrid state-space equations are
obtained by combining the system format of the kinematic relation (2.2) and the
equations of motion (2.9),

[

0 M

−M 0

][

u̇

v̇

]

+

[

g(u) + Ω̃DMv

MΩ̃T
Dx+Mv

]

=

[

f

0

]

. (2.10)

The equations appear as a simple generalization of the classic state-space equations,
see e.g. [61], where the effect of rotating the local frame are accounted for by two
linear terms in the angular velocity. In the limit of vanishing angular velocity the
classic state-space format is recovered, however with a sign change in the second
equation in order to provide a symmetric set of equations. The change of sign
is a trade-off, as symmetry is obtained by sacrificing the positive definite form
of the second matrix. A main feature of the present format is that all convective
contributions are represented solely via the matrix Ω̃DM and its transpose, and thus
neither the angular acceleration of the rotating frame nor the square of the angular
frequency, associated with the centrifugal force, appear explicitly. In the classic
format based on local displacements u and local velocities u̇ a similar anti-symmetric
and symmetric structure is obtained by expressing the kinematic equation in a
stiffness format and neglecting the angular acceleration, [36,79]. The use of hybrid
state-space variables therefore leads to a more general format, while preserving the
interpretation of the kinematic equation as a momentum relation. Furthermore,
as the angular velocity only enters linearly, the format lends itself easily to the
development of a conservative integration scheme and the possible introduction of
monotone algorithmic damping.
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2.3. Conservative time integration algorithm

Conservative time integration algorithms are typically developed by considering an
incremental form of the equations of motion, - in the present case (2.10). For a
constant mass matrix the increments of the state-space variables ∆u and ∆v are
obtained directly by integration over a time interval h = tn+1 − tn. The striking
point is therefore associated with representation of the remaining terms which now
represent equivalent mean values over the considered time interval. It is well-known
that use of the implicit mid-point rule leads to a conservative format in the case of
non-rotating systems, [93,98]. It has been demonstrated in [P1]-[P2] via the discrete
energy balance that conservative properties are achieved in a rotating frame when
also the angular velocity is represented by the algebraic mean of its initial and final
value in the interval Ω̄. The internal forces g and external forces f can in general
be represented via discrete derivatives [41], as denoted by an asterisk. In terms of
this notation the discretized state-space equations take the form

[

0 M

−M 0

] [

∆u

∆v

]

+ h

[

g(u)∗ +
¯̃
ΩDMv̄

M
¯̃
ΩT

Dx̄+Mv̄

]

= h

[

f∗

0

]

. (2.11)

This result is simple in the sense that all products are discretized by representing
each factor by its mean value. This is a neat consequence of using the hybrid
state-space format, where angular velocities only enter linearly, without explicit
occurrence of either angular accelerations or centrifugal forces.

An important aspect when modeling rotating structures is a proper representation
of the stress stiffening effect as this plays a central role in balancing the centrifugal
forces which introduce a negative stiffness term of the form −Ω̃T

DMΩ̃D. However,
this requires a non-linear internal force relation, for which the conservative dis-
cretizations traditionally rely on evaluation of stresses and strains in mean states
within the current time interval. When using a quadratic format for the generalized
strains, which is the case for the solid elements based on Green strains in [P1] and
beam elements with quadratic kinematics in [P2], the internal force term can be
represented by a global term formed by its mean value at tn and tn+1 plus an extra
term involving the increment of the global geometric stiffness matrix ∆Kg over the
current step, [58],

g(u)∗ = 1
2
[ gn+1 + gn ]−

1
4
∆Kg∆u . (2.12)

This format is particularly attractive since the global increment of the geometric
stiffness usually is directly available in standard finite element codes, hence special
procedures for evaluating internal mean states - typically on element level - are
avoided. Furthermore, the additional term permits a rather intuitive interpretation
as a viscous damping term that ensures exact conservation of energy. Similarly, if
a potential representation of the external force f is known, the discrete derivative
f∗ in (2.11) can often be expressed within a global difference/mean value format.
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The local form of the energy balance can be obtained by pre-multiplication of the
state-space equations (2.11) and expressing the absolute velocity v in terms of the
local velocity u̇ via the kinematic relation (2.11b). The discrete energy balance
equation hereby takes the form

[

1
2
u̇TMu̇− 1

2
Ω̃Dx

TMΩ̃Dx+G(u)
]n+1

n
+ vTM(∆Ω̃Dx) = ∆uT f∗ . (2.13)

It is seen that the overall rotation of the local frame is accounted for by a mod-
ification of the local energy potential by a term that is quadratic in the angular
velocity Ω and a term containing the angular acceleration, - here expressed via its
increment ∆Ω = hΩ̇. The contribution to the local energy potential is associated
with the work performed by the centrifugal forces, and thus it leads to a negative
contribution to the local stiffness, even in the case of stationary rotation.

2.4. Algorithmic damping

Discretized structures often include high-frequency components that are not repre-
sentative for the underlying continuous system. Therefore it may be desirable to
introduce a so-called algorithmic damping that monotonically increases the rate of
dissipation with increasing frequency, while leaving the low-frequency range virtu-
ally unaffected. In [P1] a consistent algorithmic damping scheme is identified by
applying the conservative algorithm to a decaying response, which is rendered sta-
tionary by an increasing exponential factor that compensates the decay. A more
direct approach is used in [P2], where a suitable format for algorithmic damping
is identified by selecting a desirable form of the dissipative contribution D to the
energy balance. It has been demonstrated for a non-rotating system that a suitable
dissipation is a quadratic form of the local state-space variables ∆u and ∆u̇ [7,60].
In the present context it is similarly desirable to formulate the dissipation in terms
of the local velocity u̇ in order only to affect the local motion in the rotating frame
of reference. Thus the dissipation is introduced as a suitable fraction of the local
energy represented by the dissipation parameter α, in the form

D = 1
2
α
{

∆u̇TM∆u̇+∆uT (K− ¯̃
ΩT

DM
¯̃
ΩD)∆u

}

. (2.14)

It is important to realize that the centrifugal potential gives a negative contribution
to the local stiffness, here expressed by a representative value K, as discussed in
relation to the energy balance. As illustrated in [P2] this can be expressed via the
increments of the state-space variables and the discrete state-space equations can
then be recast into the following form:

[

1
2
αhK (I+ 1

2
αh ¯̃ΩD)M

M(−I+ 1
2
αh ¯̃ΩT

D)
1
2
αhM

][

∆u

∆v

]

+ h

[

g(u)∗ +
¯̃
ΩDMv̄

M
¯̃
ΩT

Dx̄+Mv̄

]

= h

[

f∗

0

]

. (2.15)
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It is seen that the algorithmic dissipation is introduced via symmetric terms with
the common factor 1

2
αh in the first matrix. Alternatively these could have been

embedded in the second matrix by introduction of α-weighted mean values [P1].
The scheme may be generalized to high-frequency dissipation by using auxiliary
variables representing the state-space variables via a first order filter relation [60].
Furthermore a higher order accuracy can be obtained by introducing off-diagonal
block-matrices − 1

12
h2K in the first matrix of (2.15) along with additional damping

block matrixes −αhK in the second term [57]. For frequencies well below the
aliasing limit, the damping parameter α can be related to the modal damping ratio
ζk [60]. This can be formulated as the asymptotic relation ζk ≃ 1

2
(ωkh), i.e. a

modal damping ratio proportional to the associated modal frequency ωk.

The state-space format (2.15) provide a convenient means for illustrating the struc-
ture of the algorithm as well as a clear interpretation of the term needed for ensuring
energy conservation. However, from a numerical point of view it is advantageous
to recast the equations into a displacement format by eliminating the explicit oc-
currence of the velocity v. This is accomplished by using the second equation in
(2.15), which after solving for the displacement increment ∆u also serves as the
recovery relation for obtaining the associated velocity increment ∆v. The details
of the algorithm and explicit pseudo-codes are given in [P1] and [P2].

2.5. Numerical examples

The accuracy and performance of the present algorithm has been illustrated by
several examples for isoparametric elements as well as beam elements with quadratic
kinematics in [P1] and [P2]. Furthermore simulations based on a linearized beam
theory are considered in [A1].

Kane’s driver

A classic benchmark problem originally introduced by Kane et. al. [50] consists
of a spin-up sequence of a beam rotating about a fixed axis. A crucial aspect in
this example is the need for inclusion of a representative geometric stiffness. The
parameters in common use were defined in [94,96] and have been adopted here. The
angular velocity is increased over a period Ts = 15 s to its final value Ωs = 6 rad/s.
Results for the transverse and axial tip displacements are shown in Fig. 2.2(a)
and 2.2(b), respectively. The response is characterized in terms of the maximum
magnitude of the displacement components occurring at approx t = 7 s and the
behavior in the stationary state, i.e. t ≥ Ts. Numerical results for these values are
given in [P2] for elements based on a beam theory with quadratic kinematics, a
linearized beam theory with initial stress-based geometric stiffness and a fully non-
linear isoparametric formulation with quadratic interpolation. In general a good
agreement is found among the three formulations as well as with respect to results
in Simo and Vu-Quoc [94], Downer et. al [31] and Meijaard [76]. However, a slight
deviation is found for the quadratically interpolated isoparametric elements.
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Figure 2.2. Kanes driver: (a) Transverse tip displacement. (b) Axial tip displacement.
(—) 10 Beam elements with quadratic kinematics, (- -) 10 Isoparametric elements.

Vibration analysis in rotating frame

This example serves to illustrate how a frequency analysis can be performed within
the hybrid state-space format. The details are given in [P1] and concerns a rotating
U-frame discretized using 20-node isoparametric elements with quadratic interpo-
lation. The natural vibration modes and the corresponding eigenfrequencies of the
undamped frame can be determined from the eigenvalue problem

(

[

Kc +Kg Ω̃DM

MΩ̃T
D M

]

+ iωj

[

0 M

−M 0

]

)

[

u

v

]

j

=

[

0

0

]

, (2.16)

which follows directly from the hybrid format (2.10) of the equations of motion,
when the internal force is linearized. These equations are somewhat simpler than
the traditional format proposed in [36,79]. The first six natural vibration modes of
the U-frame in a stationary frame of reference are shown in Fig. 2.3. It should be

ω1 = 0.00 rad/s ω2 = 15.28 rad/s ω3 = 15.33 rad/s

ω4 = 15.44 rad/s ω5 = 41.61 rad/s ω6 = 47.13 rad/s

Figure 2.3. Solid U-frame: Vibration modes in stationary frame.
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noted that the mode-shapes and frequencies change slightly with increasing rotation
frequency, but these changes are negligible for the relatively low angular velocities
used in the associated example in [P1]. On the other hand, an example considering
a rotating blade where the centrifugal stiffening is more pronounced is presented in
[P2] and excellent agreement has been found with the reference solution, based on
geometrically exact beams presented in Maqueda et. al. [72].

Three-blade rotor

The effect of introducing algorithmic damping is illustrated on a three-blade rotor
system. The blades are modeled as tapered pre-twisted beams connected to the end
of a flexible shaft. The flexibility of the shaft is an important structural feature.
In a three-bladed rotor with identical blades the vibration modes occur in sets
of three. For a fully rigid connection the vibration modes for the three blades
decouple and the eigenfrequencies and associated modes occur in sets of three -
each corresponding to those of a single blade. On the other hand when flexibility is
introduced a coupling occurs and the three rotor modes realize themselves in terms
of one collective mode and two ‘whirling’ modes. In the collective mode all blades
oscillate in phase, while the blades exhibit a mutual phase difference of 2

3
π in the

whirling modes, which may be characterized as a forward and a backward whirling
mode, respectively, see e.g. Krenk et. al. [63] or Hansen [42].

The blade is considered in a state of steady rotation with an angular velocity rep-
resenting a realistic operation speed. Local vibrations are initiated by the two load
cases illustrated in Fig. 2.4. These are deliberately designed to excite the first
collective mode and the first two whirling modes with frequencies ωk of 7.84 rad/s
and 12.6 rad/s, respectively. The development of the local mechanical energy ∆E
is illustrated in Fig. 2.5(a) and 2.5(b) along with the asymptotic approximation
∆E ≃ ∆E0e

−2ζk(ωkh) for h = 0.02 and α = 0.05. This corresponds to the modal
damping ratios ζk of approximately 0.4% and 0.6%, respectively. It is seen that
the present algorithm including numerical dissipation is capable of distinguishing
between the different modes even for a non-pure mode excitation, and provide the
highest amount of dissipation to the highest frequency mode.

x1x2

x3

P

P

P

x1x2

x3

P P

Figure 2.4. Rotor configuration with initial load cases.
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Figure 2.5. Three-blade rotor: (a) Energy decay for the load case at Fig. 2.4(a). (b)
Energy decay for the load case at Fig. 2.4(b). h = 0.02, α = 0.05 (×), e−2ζjωjt (–).



3. Conservative integration of implicitly constrained

rigid body motion

The basis for describing general motion in three-dimensional space and also the
overall motion of the floating frame presented in the preceding chapter is closely
related to the kinematics of rigid body motion. In particular the handling of finite
rotations requires special features that account for their non-vectorial nature. In
essence a rotation is fully described by the nine components of a proper orthogonal
tensor, yet only three of them are independent.

In classic dynamics and in connection with robotics, mechanisms and aerospace it
may be desirable to express a rotation by three consecutive rotations about different
axis in terms of Euler angles, Bryant angles etc. This provides a straightforward
geometrical interpretation and represents a minimum set of parameters. However,
as pointed out by Stuelpnagel [99] any global three component representation will
exhibit singularity, and thus it may be desirable rather to represent rotations by a
pseudo-vector defining a rotation angle and the corresponding axis of rotation. The
magnitude can be expressed in several ways leading to various representations as
described in e.g. Argyris [5] or Bauchau and Trainelli [14]. A non-singular and fully
algebraic representation of the rotation tensor can be obtained by using the four-
component quaternion description [18,80,91,102] or by using a direct representation
via the nine components of the cosine directors, Betsch and Steinmann [19]. Both
cases result in a redundant formulation, and thus a number of constraint relations
enforcing unit length and orthogonality have to be introduced - typically by means
of Lagrange multipliers. Besides further increasing the number of unknowns, the
resulting equations of motion now yield a set of algebraic differential equations
(DAEs) of index three.

Numerous methods exist for handling constrained mechanical systems. In particu-
lar, a comprehensive review is given in Bauchau et. al. [13,68]. A common approach
is based on direct algebraic elimination of the Lagrange multipliers from the original
continuous equations either by using an instantaneous null-space matrix [71, 83] or
via a Moore-Penrose generalized inverse, Udwadia and Kabala [101]. This reduces
the number of unknowns along with the index of the DAEs from three to two [22],
but at the expense of increased complexity. Consequently such formulations are not
easily discretized within the framework of a conservative integration scheme such
as the ones presented in [12, 20, 40, 70, 98].

15
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Additionally it is common to further lower the index by introducing the constraints
in differentiated form, - typically at acceleration level. However, when discretized
using standard collocation-based schemes such as the implicit Newmark [81] or
Runge-kutta based methods [64, 88], constraint violations - also known as drift
from the constraint manifold - are commonly observed. To alleviate this drift,
stabilization methods of Baumgarte type [15] or projection onto the constraint
manifold [23, 100, 106] can be applied.

In contrast to the direct elimination methods the original index three DAEs are
well-suited for direct development of a conservative scheme [12, 20, 40, 70]. This
approach has been applied by Betsch et. al. [16, 17] combined with a subsequent
elimination of the Lagrange multipliers using the discrete equivalent of the null-
space matrix. The basic idea of conservative methods is to apply a discretization
that exactly reproduces the correct incremental change of energy and momentum
over a finite time increment. This may be accomplished by suitable combinations of
mean values and increments or via the notion of discrete derivatives, Gonzalez [40].
Similarly, when considering a constrained system it is crucial for exact conservation
of energy that vanishing of the work done by the constraint forces are implemented
at algorithmic level [12, 70]. This is conveniently accomplished by enforcing the
constraints in incremental form, whereby the associated Lagrange multipliers are
represented by their mid-point value.

In the papers [P3] and [P4] conservative integration schemes for rigid body motion
are presented in terms of the four-component quaternion parameterization and the
nine component base vector representation, respectively. As mentioned above both
representations are redundant and require introduction of additional kinematic con-
straints. However, a main feature of these formulations is that the constraints can
be enforced implicitly as a part of the discrete equations of motion without recourse
to Lagrange multipliers. Here, the basic procedure will be presented in a common
notation covering both parameterizations, while the details and their individual
characteristics are given in [P3] and [P4].

3.1. Kinematics and kinetic energy

The configuration of a rigid body can be described in terms of a local coordinate
system centered at a point O defined by the position vector r0 as illustrated in
Fig. 3.1. The orientation of the coordinate system is specified by a rotation matrix
R, and thus a point located inside the rigid body with coordinates x0 has the global
components

x(t) = r0(t) + R(t)x0, (3.1)

where R is a proper orthogonal rotation tensor. For simplicity of notation it is here
assumed that the origins of the local and the global frames coincide, i.e. r0 = 0.
However, as illustrated in [P4] and the proceedings paper [A5] the extension to also
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O

Figure 3.1. Rigid body described by position vector r0 and rotation matrix R.

include translations is straightforward.

Though the rotation matrix R in principle is uniquely defined by three independent
scalar parameters it is often convenient to use a larger number or parameters in order
to avoid singularities and obtain a purely algebraic form. This can be obtained
by using a redundant set of N generalized displacements q submitted to N − 3
homogeneous algebraic constraints of the form

e(q) = 0 . (3.2)

For the four component quaternion parametrization considered in [P3] the con-
straint equation (3.2) reduces to a single quadratic scalar relation, while six quadratic
relations are required for enforcing the redundant director format in [P4]. The con-
straint derivative (or constraint Jacobian) then follow by differentiation with respect
to the independent coordinates and yields the (N − 3)×N matrix C(q) = ∂e/∂q.

The kinematic relation defining a set of M ≤ N associated velocity components
can be expressed as a bi-linear form of the generalized displacements q and their
derivatives, see e.g. [35]. In particular, the local or material components of the
angular velocity Ω may be expressed as

Ω = G(q)q̇ , (3.3)

where the motion gradient G(q) is a M × N matrix. It should be noted that for
the quaternion parametrization used in [P3], it is convenient to express kinematic
relation (3.3) in the extended format [0,ΩT ]T - i.e. with the same number of com-
ponents as the generalized variables. Providing that the generalized displacements
q satisfy the constraint relations (3.2), the columns of G(q) span the null-space of
the constraint gradient matrix C(q). This is an important property that can be
stated as an orthogonality relation in the form

C(q)G(q)T = 0 . (3.4)

The kinetic energy is conveniently expressed with respect to the local frame in terms
of the local angular velocity Ω and the constant M ×M inertia tensor J. Upon
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substitution of the bi-linear relation (3.3), the kinetic energy assumes a bi-quadratic
form in the generalized displacements and their derivatives

T = 1
2
ΩTJΩ = 1

2
q̇TG(q)TJG(q)q̇ . (3.5)

When using a quaternion parametrization it is common to introduce an extended
form of the inertia tensor given by ⌈J0,J⌋ where the auxiliary parameter J0 is a
scalar parameter. The kinetic energy is independent of this parameter, hence it is
merely an artefact of expanding the number of independent velocity parameters.
Nonetheless several proposals for specific values based on physical reasoning has
been given in e.g. [18,80]. However, as demonstrated in [P3] the parameter J0 serves
the role as a multiplier on the kinematic constraint (3.2) rather than a physical
parameter, and thus an optimal choice for J0 seems to be a mainly numerical issue.

3.2. Equations of motion

The equations of motion governing the dynamics of a constrained rigid body sys-
tem can be identified via the variational principles of Lagrange and Hamilton, see
e.g [39]. Here, the equations of motion are conveniently derived via Hamilton’s
equations, which yields a set of first order evolution equations for the generalized
displacements q and the conjugate momentum components p.

The generalized momentum components conjugate to q are defined as the partial
derivatives of the kinetic energy T from (3.5) with respect to q̇, whereby

p =
∂T

∂q̇T
= G(q)TJG(q) q̇ . (3.6)

A central point in the present formulation is the establishment of an orthogonality
condition between the generalized displacements q and the conjugate momentum
vector p. This can readily be obtained by pre-multiplication of the relation (3.6)
defining p with the constraint gradient matrix C(q). According to the orthogo-
nality condition (3.4) the product between C(q) and G(q) vanish, whereby the
displacement-momentum orthogonality condition takes the bi-linear form

C(q)p = 0 . (3.7)

It is important to realize that these relations constitute a dynamic complement to
the kinematic constraints (3.2) rather than a simple reformulation. Furthermore
they play a central role in obtaining the equations of motion in an implicitly con-
strained format.

In a Hamiltonian formulation the kinetic energy must be recast into a displacement-
momentum form, hence the velocities q̇ must be eliminated from the relation (3.5).
The matrix G in both cases satisfies a product relation of the form GGT = βI,



Equations of motion 19

where the factor β depends on the specific parameterization, see [P3] and [P4] for
explicit relations based on quaternions and directors, respectively. This enables the
angular velocity relation (3.3) to be expressed in terms of p by pre-multiplication
of (3.6) with β−1J−1G(q), and thus the desired form of the kinetic energy follows
by substitution into (3.5). The final result can then be expressed in either of the
forms

T = 1
2
pTG(q)TJ−1G(q)p = 1

2
qTG(p)TJ−1G(p)q , (3.8)

where the factor β is embedded in the modified inertia matrix J = β−2J. The latter
expression is valid, since the structure of G ensures that simultaneous interchange
of q and p in the two factors on each side of J does not change the value of the
product.

In the present context it is advantageous to use an extended form of the Hamiltonian
in which the sum of the kinetic energy from (3.8) and the potential energy function
V (q) are augmented by the kinematic constraints given by (3.2),

H = T (q,p) + V (q) + e(q)Tλ . (3.9)

The latter are initially enforced via N − 3 Lagrange multipliers λ. However as
illustrated next a particular feature of the present formulation is that these can be
eliminated by using the orthogonality condition (3.7), - a task that will be performed
first in the continuous format via the time derivative of (3.7), and subsequently
repeated for the discretized equations by using the discrete analogous incremental
form. The system may be extended to account for translations [P4], or external
constraints associated with linking several bodies together [A5].

The equations of motion are obtained from the augmented Hamiltonian (3.9) by
differentiation. The kinetic energy is a bi-quadratic form in both q and p, hence
the equations of motion yields the following set of evolution equations

q̇ =
∂H

∂pT
= G(q)TJ−1G(q)p , (3.10)

ṗ = −
∂H

∂qT
= −G(p)TJ−1G(p)q −

∂V

∂qT
− C(q)Tλ . (3.11)

The constraint gradient C(q)T in the last term of the second equation is the deriva-
tive of the kinematic constraints (3.2). The first equation (3.10) is the kinematic
equation for the evolution of the generalized displacement vector, while the second
equation (3.11) gives the development of the conjugate momentum vector. Addi-
tionally differentiation of (3.9) with respect to λ yields the kinematic constraint
relations (3.2), which along with (3.10) and (3.11) constitute a set of differential
algebraic equations. This is the starting point in e.g. [19] and [18].

The main feature of this particular formulation is that the Lagrange multipliers
associated with the kinematic constraint equations (3.2) can be eliminated explic-
itly via the time derivative of the homogeneous orthogonality relation (3.7). The
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derivative of this relation yield a sum of two bi-linear terms in q and p (and their
derivatives), that can be expressed via the evolution equations (3.10) and (3.11).
The first two terms, i.e. the terms associated with the homogeneous equations, can-
cel due to the orthogonality relation (3.7), and leaves a much simplified equation for
the Lagrange multiplier vector λ. Upon solving for λ and substitution into (3.11),
the modified dynamic equation is obtained

ṗ = −G(p)TJ−1G(p)q −
(

I − C(q)T
[

C(q)C(q)T
]

−1
C(q)

)∂V

∂qT
. (3.12)

It is seen that explicit elimination of the Lagrange multiplier amounts to intro-
ducing an orthogonal projection operator on the external potential gradient, which
subtract the projection of the gradient via C(q) from the unconstrained gradient.
In particular, in the absence of external loads the last term vanish identically, hence
the corresponding homogeneous Hamilton equations can be solved directly without
introducing the Lagrange multipliers in the first place. An overview of the explicit
matrix expressions used in the two formulations [P3] and [P4], respectively, is given
in Table 3.1.

3.3. State-space time integration

In essence, conservative integration amounts to ensuring that the discrete form of
the evolution equations (3.10) and (3.11) reproduces the correct incremental changes
of energy and momentum over a finite time increment. Similarly, when it comes to
enforcements of constraints in conservative schemes via Lagrange multipliers, the
role of the multipliers is to ensure that the work performed by the constraints over
each time interval vanishes, see e.g. Lanczos [66]. Hence rather than enforcing
constraints explicitly at the interval boundaries, they are expressed via their incre-
ment over the current time interval. The Lagrange multipliers therefore represent a
set of generalized reaction forces needed to uphold the constraints over the current
interval, and thus it seems natural to represent these as constant effective mean
values over each interval. Thus, by initiating a numerical integration from a state
that satisfies constraints, the correct representation of the incremental changes over
each interval, will ensure continued satisfaction.

A conservative discretization can be obtained directly by equating a finite increment
of the Hamiltonian (3.9) over a time step h = tn+1 − tn to zero. The kinetic energy
is bi-quadratic in q and p, and thus its incremental form can be expressed as twice
the product of the increment of the first factor and the algebraic mean value of
the second factor, see Krenk [61]. The external potential V (q) can in general be
represented by its finite derivative ∂V∗/∂q

T , [41]. However, potentials are often
given in terms of powers of the generalized displacements and the finite derivatives
can then be expressed in explicit form as well. The discrete form of the constraint
term is similar to the kinetic energy obtained as a product of increments and mean



State-space time integration 21

Table 3.1. Explicit relations.
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Projection operator

I−C(q)T [C(q)C(q)T ]−1C(q) I− qqT /(qTq)

values due to its homogeneous quadratic form, while the Lagrange multipliers are
introduced as constant values representing effective reaction forces over the interval.
This identifies the discrete equations of motion as

∆q =
∂H∗

∂pT
= hG(q)TJ−1G(q)p , (3.13)

∆p = −
∂H∗

∂qT
= −hG(p)TJ−1G(p)q − h

[

∂V∗
∂qT

+ C(q)Tλ

]

. (3.14)

It is seen that these constitute a clear discrete equivalent to the continuous equations
(3.10) and (3.11). These discrete equations inherently obey conservation of energy,
as these are derived via the condition ∆H = 0, while conservation of momentum is
demonstrated in [P3] and [P4], respectively.
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As in the continuous case it is convenient to eliminate the explicit dependence on the
Lagrange multipliers. This is performed by repeating the steps from the continuous
format, via the incremental form of the bi-linear constraint relation (3.7) given by

C(p)∆q + C(q)∆p = 0 . (3.15)

When substituting the increments from (3.13) and (3.14) a relation for the discrete
Lagrange multipliers is obtained. This can then be used to eliminate the Lagrange
multipliers λ from the discrete dynamic equation (3.14), which then takes the form

∆p = −hG(p)TJ−1G(p)q− h
(

I−C(q)T
[

C(q)C(q)T
]

−1
C(q)

)∂V∗
∂qT

. (3.16)

This constitutes the discrete equivalent to (3.12). It is important to realize that
the particular format, where each factor in the projection operator is represented
by its mean value C(q̄), is a direct consequence of the consistent discretization,
and thus it does not introduce any approximations to the conservation properties.
The canceling of the homogenous contributions on the other hand may rely on the
orthogonality condition (3.7), hence it may be necessary to include an additional
term of order h2 in order to realize exact conservation of discretized equations. This
is the case in [P4], while the canceling follow from the very format of the matrix
representing the motion gradient G in [P3].

3.4. Numerical examples

Several examples have been used to demonstrate the accuracy and conservation
properties of the presented time integration algorithm for rigid body rotation. In
[P3] and [P4] classic examples concerning free rotation of a rigid body and a spinning
top in a gravitational field are considered, while the formulation is generalized to a
multibody system representing a falling chain in [A5].

Free rigid body rotation

The properties of the homogeneous form of the algorithm, i.e. with V (q) = 0, are
considered by application to free rotation of a rigid body. The rigid body is repre-
sented as box with parameters given in [59], and the motion is initiated as unstable
rotation around its intermediate axis of inertia with a small perturbation. The
configurations of the box at specific points in time are illustrated in Fig. 3.2. The
associated components of the local angular velocity are shown in Fig. 3.3(a) where
the sign change in Ω3 corresponds to the case where the box is turned upside down.
Algorithmic conservation of the mechanical energy and the magnitude of the local
angular momentum to well within the iteration tolerance have been demonstrated
in [P3] and [A4] for the algorithms based on quaternions and directors, respectively.
Furthermore numerical satisfaction of the kinematic constraints (3.2) and the or-
thogonality relation (3.7) have been verified. Both algorithms exhibit second order
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Figure 3.2. Motion of box at selected time steps, h = 0.01.
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Figure 3.3. Free rotation of box: (a) Local angular velocity components. Ω1 (—),
Ω2 (- -), Ω3 (- · -). (b) Relative period error. (ωh)2/12 (- -), (ωh)2/100 (- · -).

accuracy. This is illustrated in Fig. 3.3(b) in terms of the relative period error
∆T/T for Ω3 along with comparable results obtained by the energy-momentum
scheme ALGO C1 presented in Simo and Wong [98] and the algorithm based on
the Cayley representation of the rotation tensor from Krenk [59]. It is seen that the
algorithm presented in [P4] based on directors performs particularly well, while the
accuracy of the others roughly correspond to the well-known asymptotic result for
a single linear load component ∆T/T = (ωh)2/12, see e.g. Krenk [61].

Constrained rigid body motion

The classic example of a heavy symmetrical top in a gravitational field constitutes
a convenient means for illustrating the performance of the presented algorithms
for implicitly constrained rigid body rotation including an external potential. The
dimensions are equivalent to the ones used in [17,18] and the special case of steady
precession is considered, see e.g. Goldstein [39]. The motion of the top is character-
ized in terms of the angle of nutation θ, the angle of precession ϕ and the spin angle
ψ as illustrated in Fig. 3.4(a). It has been demonstrated in [P3] and [P4] that the
mechanical energy as well as the spatial component l3 of angular momentum are
conserved well within the iteration tolerance when projection operators of the form
(3.16) are included in front of the potential gradient. The second order convergence
for the period error ∆T/T is illustrated in Fig. 3.4(b) for the quaternion and the
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Figure 3.4. Spinning top: (a) Initial configuration. (b) Relative period error.
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director formulation for finite rotations, respectively. This has been measured as
the relative period error for the periodic x1-component of the center of mass.

Alternatively, the top motion can be represented by a combination of translations
and rotations by introducing a spherical joint at the tip as shown in [P4]. By
fixing the local convected coordinate system at the center of mass, the motion is
mainly governed by translational components. In that context it should be noted
that while the equations associated with rotational motion include a representation
of the rotating moment of inertia tensor J via the G-matrices, the inertia effects
associated with translation of the center of mass only contain the mass of the body
m as a scalar factor. Therefore a higher accuracy is obtained when translations are
included as illustrated in Fig. 3.4(b).

Multibody motion

The final example illustrates the application of the director based formulation from
[P4] to a simple multibody system. The details can be found in [A5]. A hanging
chain represented by four rigid bodies linked together by spherical joins is consid-
ered. Each spherical joint is described via three algebraic constraints of the form

Φ(S)(q) = qJ
0 + xS,Jj qJ

j − (qI
0 + xS,Ij qI

j ) = 0 , (3.17)

where xS,Ij and xS,Jj denote the local coordinates of the connection points S in the
bodies I and J , respectively. The motion of the chain is initiated by releasing it
from the position illustrated in Fig. 3.5(a) where the four bodies form a v-shape in
an inclined plane with respect to vertical, thereby introducing out-of-plane motion.
It is illustrated in [A5] that the mechanical energy and the vertical component
of the spatial angular momentum are conserved quantities - even when multiple
bodies are considered. The algorithmic conservation of the internal constraints -
i.e. the kinematic constraint (3.2) and the momentum constraints (3.7) - as well as
the external constraints associated with the spherical joints (3.17) are illustrated
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Figure 3.5. Multibody system: (a) Initial configuration. (b) Algorithmic conservation
of constraints. (•) Kinematic constraints given by (3.7), (×) Dynamic constraints given
by (3.7), (+) External constraints given by (3.17).

in Fig. 3.5(b). It is seen that the homogeneous constraints in all three cases are
satisfied to within the iteration tolerance of εr = 10−8.



4. Explicit elastic three-dimensional beam element

Flexible beams are slender structural members and have found applications in civil
engineering, mechanical engineering and aerospace engineering. Beam elements are
traditionally developed using a kinematic description of the translations and rota-
tions of each cross-section. While the hypothesis of small to moderate displacements
and rotations within a rotating frame of reference may be advantageous for some
applications as described in Section 2, such approaches are not very well suited for
modeling of highly flexible members. Indeed, a fully non-linear formulation would
defy the purpose of introducing a rotating frame in the first place.

Instead, it might be desirable to develop a fully non-linear theory accounting for
large displacements and finite rotations with respect to an inertial reference frame.
Common approaches for modeling flexible beams in an inertial frame of reference are
the so-called ‘geometrically exact’ beam formulations, which are based on Euler’s
elastica, and thus in principle are capable of representing arbitrary large defor-
mations and finite rotations. A finite deformation beam theory was presented by
Reissner [85, 86] and used as basis for the development of computational proce-
dures for non-linear static and dynamic analysis by Simo and Vu-Quoc [92, 95, 97].
However, while the underlying continuous theoretical basis is well-established, the
spatial discretization introduces a number of difficulties, which may be in contra-
diction to the exact geometric description. In particular, the direct interpolation
of kinematic variables requires special measures in order to avoid the various lock-
ing phenomena such as shear or membrane locking. Furthermore, an inconsistent
representation of the non-commutative rotations may lead to non-objective strain
descriptions that lack in frame-invariance and even result in a path-dependent for-
mulation [29]. These numerical issues have introduced a significant increase in com-
plexity, which has led to the development of a wide variety of different formulations,
see e.g. [21, 27, 45, 46, 87].

Here a brief description of the beam element developed in [P5] is given. The con-
figuration of the element in a global frame is fully represented in terms of the global
components of the position of two end nodes and an associated set of convected base
vectors (directors) as described in [P4]. The local constitutive stiffness is derived
from the complementary energy of six equilibrium modes, each characterized as a
mode of constant internal force [55,61]. These are closely related to the concept of
‘natural modes’ described by Argyris [6], yet they are identified from statics alone.

26
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This approach avoids explicit interpolation of kinematic variables, which leads to
a locking-free and intrinsic objective and frame-invariant formulation. The present
element takes a particularly simple and explicit form that permits easy and direct
implementation.

4.1. Element configuration

In the present formulation a beam element in three-dimensional space is uniquely
defined by the position and orientation of the cross-sections at its end-points as
illustrated in Fig. 4.1. The deformation in the plane of the cross-section is neglected,
which implies that the vectors spanning the cross-section planes, here denoted q1

and q2, must remain orthonormal. A third unit vector orthogonal to the cross-
section plane is then defined by q3 = q1 × q2. The global positions of the beam
end-points A and B with respect to the global frame of reference {x1,x2,x3} are
described by the vectors qA

0 and qB
0 , respectively, while the orientations of the

associated cross-sections are represented via [qT
1 ,q

T
2 ]

T
A and [qT

1 ,q
T
2 ]

T
B.

x1

x2
x3

qB
0

qA
0

RA

RB

Figure 4.1. Configuration of a beam element in the global frame of reference.

In this representation each of the two element nodes are described by nine vector
components, and thus three orthonormality constraints for the cross-section vectors
q1 and q2 are introduced for each node, thereby reducing the number of free com-
ponents to six. This is in principle equivalent to enforcing vanishing of all in-plane
Green strain components, and thus the constraint relation can be expressed in the
form,

e(q) =
1

2





qT
1 q1 − 1

qT
2 q2 − 1

qT
1 q2 + qT

2 q1



 = 0. (4.1)

The 2×9 vector components representing the nodal configurations are conveniently
collected in a vector q, which then holds the full set of generalized displacements
associated with a single element. Similarly the 18 conjugate force components are
collected in a vector g. These are identified as the derivative of an elastic energy
potential G, as

g =
∂G

∂qT
. (4.2)
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It is noted that the differentiation is performed with respect to the unconstrained
components of q, while constraints of the form (4.1) are imposed subsequently as a
part of the global system equations.

4.2. Kinematic relations

The internal elastic energy G associated with a single beam element can be solely
defined by a set of generalized strain components v, each defining a mode of de-
formation. Rigid body motion does not contribute to the elastic energy, and thus
the number of generalized strains is smaller than the number of generalized dis-
placements. However, the stiffness matrix associated with the full set of generalized
displacements can be readily obtained by a transformation between the generalized
strains v and generalized displacements q.

It is convenient to choose the deformation modes such that they each correspond
to a set of end loads in equilibrium; i.e. three modes corresponding to constant
internal force and three modes corresponding to constant internal moment. The
original idea was presented in Krenk [55]. The constant force modes represent
constant internal shear forces Qα and constant normal force N , while the three
constant moment modes represent two symmetric bending modes with constant
moments Ms

α and a pure torsion mode with torsional moment M . It should be
noted that the shear forces are accompanied by a linear anti-symmetric moment
variation. The components of the generalized stresses and conjugate strains for the
six equilibrium modes are conveniently collected in the vectors

t = [Q1, Q2, N,M
s
1 ,M

s
2 ,M ]T , v = [u1, u2, u, ϕ

s
1, ϕ

s
2, ϕ]

T . (4.3)

A similar approach is used in [61] for co-rotating beam elements. However, a cen-
tral point of the present formulation is that the deformation modes are expressed in
terms of the global components of the generalized displacements q, which circum-
vents the need for introducing intermediate coordinate systems. This has two main
advantages compared to co-rotating formulations: No special features are needed
for combining overall rigid body rotations with local rotations of the displacement
modes, and a symmetric stiffness matrix is obtained directly due to its reference to
global frame.

In the present formulation the generalized displacements q associated with the el-
ement nodes account for arbitrary large displacements and finite rotations in the
global frame of reference. While a large displacement analysis in principle is as-
sociated with large deformations, the accumulated effect within a single element
of a suitable discretized structure is often moderate. Therefore a set of non-linear
kinematic relations defining the generalized strains v in terms of the generalized
displacements q are sought in a homogeneous quadratic form. This is the mini-
mum order of non-linearity that preserves the effect of geometric stiffness, and thus
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such formulations are often used for stability analysis [52]. Furthermore the use
of linear elastic internal element properties leads to a bi-quadratic internal energy,
which particularly facilitates the development of a conservative integration scheme
in global form [58].

It is illustrated in [P5] that a quadratic strain definition can be obtained by assuming
that the local rotations of the cross-sections at the beam end nodes with respect
to the beam reference axis ∆q0 = qB

0 − qA
0 are small. This enables the local

nodal rotations to be computed by simple projections of the vectors q1 and q2

spanning the cross-section plane on the beam axis ∆q. In the present formulation
the projections are performed with respect to initial element length, i.e. without
accounting for local geometric changes. This may put certain restrictions on what
can be represented by a single element. However, as demonstrated in the examples
in [P5], non-linear geometric effects can be accurately captured by slightly increasing
the number of elements, whereby the effect is accounted for via the external rotation
of the element nodal forces.

The kinematic components uα and ϕs
α associated with constant shear force Qα and

symmetric bending moments Ms
α are expressed via the difference and the mean of

the rotation angles at A and B, the angle of twist ϕ associated with pure torsion is
approximated by in-plane projections of the cross-section vectors, while the Green
strain measure is introduced for the axial extension u. It is noted that the quadratic
form of the local strain components v is obtained solely via scalar products of the
global components of the generalized displacements q, and thus they are inherently
invariant to rigid body motion and satisfy the notion of objectivity described in [29].

4.3. Beam element stiffness

The constitutive stiffness properties representing the elastic deformation of the ele-
ment are conveniently identified via the complementary energy of the local deforma-
tion modes. This provides a simple procedure for obtaining the stiffness matrix for
fairly general beam elements [54] and circumvents the locking related phenomena
often encountered in low order beam formulations due to inconsistent interpolation
of displacements and rotations. For a linear elastic material model, the internal
energy is a quadratic function of the generalized strain components v, and can be
expressed in the form

G(v) = 1
2
vTAv , (4.4)

where A represents the local stiffness associated with the deformation modes. The
particular form of A can be obtained from complementary energy following the
procedure presented in [55]. A detailed derivation is given in [P5], and illustrates a
number of advantages: The stiffness matrix is obtained by a minimum set of com-
ponents; no special measures are needed for including shear deformation; extension
to pre-twisted and curved beams is straightforward [53, 54].
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The conjugate internal forces t are defined as the partial derivatives of the internal
energy with respect to the internal strains v from (4.3) as,

t =
∂G

∂vT
= Av . (4.5)

The relation between the global generalized forces g and the local internal stresses
t from (4.3) is obtained by differentiation of the internal energy (4.4), as

g =

(

∂v

∂q

)T
∂G

∂vT
=

(

∂v

∂q

)T

t = FT t . (4.6)

This identifies the transformation matrix as the derivatives of their conjugate kine-
matic counterparts via the relation,

F =
∂v

∂q
. (4.7)

The role of the transformation matrix is to expand the reduced set of internal
stresses to the full number of generalized forces. This is similar to the transformation
matrix used in [61] Chapter 5 in relation to a co-rotating formulation.

The tangent stiffness matrix can be derived by considering the incremental form of
the generalized internal force relation (4.6). The changes in the internal force vector
are related to the changes in the deformation state, and thus it can be represented
by a relation of the form,

dg = K dq , (4.8)

which serves to identify the tangent stiffness matrix K associated with the beam
element. This can be expressed in the following symmetric form

K = FTAF +
∂2vk
∂qT∂q

tk , (4.9)

in terms of the equilibrium mode stiffness matrix A, the transformation matrix F

from (4.7) and the second derivatives of the generalized strains vk. It is noted that
the very format is a characteristic of Lagrange type finite element formulations.
The first term is the constitutive stiffness associated with changes of the internal
stress state, transformed from local to global representation via the matrix F, while
the second term is the geometric stiffness Kg representing the effect of rotating the
current internal stresses, see e.g. [61]. Explicit and compact forms for the matrices
A, F and Kg are given in [P5], which enables a straightforward implementation.

4.4. Numerical examples

The numerical performance of the present explicit beam element is illustrated by a
number of representative examples in [P5]. Here, the main results are summarized
based on two selected examples. In particular, the capability of representing large
overall displacements and finite rotations and the accurate representation of the
geometric stiffness effect via external element contributions are considered.
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Large deformation of cantilever

The first example is associated with large deformation of the cantilever beam illus-
trated in Fig. 4.2(a). The example is particularly useful for illustrating the effect
of geometric stiffness, and has been considered by a number of authors for veri-
fying various beam formulations, see e.g. [37, 47, 61]. The cantilever is described
in terms of its length L and subjected to a transverse force P , specified via the
non-dimensional parameter PL2/EI at its free end. The force is assumed to retain
its direction while following the position of the tip. Results for the non-dimensional
axial and transverse displacements u1/L and u2/L are illustrated in Fig 4.2(b) us-
ing 4 and 8 straight beam elements, respectively. Furthermore, an accurate elliptic
integral solution based on in-extendable elastica theory given by Mattiasson [73] is
shown. The load has been applied in 10 equal load steps using standard Newton-
Raphson iterations. With a relative tolerance εr = 10−6, the average number of
iterations was around 6.2. An excellent agreement has been found between the
reference solution and the results obtained by the present formulation, even at the
final highly deformed state where the horizontal tip displacement exceeds half the
initial length. It is furthermore demonstrated in [P5] that the present formulation
exhibits second order convergence.
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Figure 4.2. Cantilever with conservative end force. (×) 4 elements, (+) 8 elements.

Clamped-hinged circular arch

This example considers a non-linear pre- and post-buckling analysis of the clamped-
hinged circular arch illustrated in Fig. 4.3(a). The arch has served to illustrate the
performance of a number of different beam formulations presented in e.g. Simo and
Vu-Qouc [95], Géradin and Cardona [35], Ibrahimbegovic [45] and Gerstmayr and
Irschik [37]. Furthermore numerical results for the buckling load have been provided
by da Deppo and Schmidt [30] according to in-extendable elastica theory. Parame-
ters similar to [45] have been used. However, the shear and axial stiffness are defined
as 102EI in order to approximate the in-extendable elastica solution. Results for
the normalized horizontal displacements u1/R and the vertical displacements u2/R
for varying normalized load PR2/EI are shown in Fig 4.3(b) for discretizations
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Figure 4.3. Buckling of clamped-hinged circular arch. (—) 40 elements, (- - -) 20 ele-
ments.

corresponding to 20 and 40 elements, respectively. The results are obtained via the
arc-length solver with a hyperplane constraint for mutual control of the current load
and displacement increments presented in Krenk [61]. The overall behavior as well
as the buckling load predicted by the 40 element discretization agree well with the
reference solution in [30] and the numerical results in [95] and [35] where 40 linearly
interpolated elements have been used. The results predicted by the 20-element dis-
cretization gives a slightly lower buckling load. However, it should be noted that
the performance of the present explicit beam formulation is fully competitive with
significantly more complex beam formulations from the literature, when the same
number of nodes is used.



5. Multi-level analysis of wind turbine blades

A typical application of the procedures presented in the preceding sections is con-
cerned with modeling and design of wind turbine blades. Proper design of wind
turbine blades is a multi-disciplinary optimization problem that requires efficient
and accurate computational tools. A full design process of a wind turbine involves
many different aspects such as aerodynamic performance, weight, manufacturing
costs, transportability etc. within the overall aim of minimizing the cost of the
produced energy.

The scope of the present section is limited to considering the structural design for a
given aerodynamic shape of the airfoil. However, this is still a highly complex task
involving multiple disciplines and considerations at several levels of detail. A partic-
ular challenge is the need for combining efficient computational models - typically
used for analysis of the overall dynamic behavior of the full wind turbine structure
subjected to a large number of transient loadings - with the need for capturing
local effects such as stress concentrations and local stability behavior. The common
approach is to perform the analysis in two stages: First a preliminary design op-
timization is conducted based on beam-like models associated with representative
aerodynamic models and control laws that enables simulation of realistic operating
conditions, determination of extreme loads and fatigue analysis. Next a detailed
verification of local stress and strain states as well as a local buckling analysis is
performed with detailed 3D static FE-models subjected to loading conditions repre-
senting the ones from the beam-like models. The process of generating the detailed
3D model as well as the dynamic interaction among the two design levels are typi-
cally performed ”by hand”, which besides being a very time consuming process may
lead to sub-optimal design solutions, since there is no consistent way to reflect the
results from the detailed analysis into modification of the original design.

For preliminary analysis a ‘coarse’ beam model is often sufficient as this is ca-
pable of providing fast results for primary parameters such as important natural
frequencies, maximum deflections, and the overall dynamic behavior for wide range
of parameters. At this stage multibody procedures, as described in the preceding
sections, have been widely adopted. This may be in terms of geometrically exact
beams as in [69] and in the non-linear finite element based multibody code Cp-

Lambda (Code for Performance, Loads, Aero-Elasticity by Multi-Body Dynamic
Analysis) [10, 26] used here, or with Timoshenko beam elements as in [67]. Modal
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representations are also widely used as in the aero-elastic codes Fast [49] and
Flex5 [82]. Due to their relatively low computational cost, beam models are par-
ticularly suitable for implementation in integrated design environments for rotor
blades. As examples can be mentioned RotorOpt [2, 33], Focus [32] and the
design tools used at Nrel [48]. Recently a suite of integrated design procedures for
multi-disciplinary constrained optimization of wind turbine blades Cp-Max (Code
for Performance Maximization) has been developed [24]. The wind turbine is in this
context represented by a high-fidelity aero-servo-elastic beam-model that accurately
accounts for a wide range of important aspects such as structural and aerodynamic
behavior, relevant load cases, synthesis and control laws as well as their interac-
tions. Simulations are performed with the multibody code Cp-Lambda [26], while
the desirable design properties are enforced as constraints within an optimization
problem aiming at minimizing the cost; here represented as the total mass of the
blade. This provides the framework for performing an efficient preliminary design
that accounts for a number design considerations including placement of rotor nat-
ural frequencies, structural sizing of the various blade components by constraining
maximum tip deflection, fatigue damage and limits on span-wise ply tapering rates.

At the later stages detailed 3D finite element models are required in order to con-
duct a ‘fine’-level verification of the design constraints accounting for the various
effects that cannot be represented by the ‘coarse’-level beam models. These include
identification of possible stress-concentrations, analysis of the local buckling behav-
ior as well as a detailed representation of the complex geometry including rapid
span-wise variations, which provides an improved estimate of the blade mass and
thereby its dynamic properties.

The generation of a detailed 3D model, execution of relevant analysis and post-
processing procedures are associated with a large amount of work, especially when
the model is subject to continuous changes during the design process. Several tools
have been developed directly for detailed structural analysis of wind turbine blades,
see e.g. Numad [65] and nse-blade-mesher [44]. However, these are typically
developed in the form of pre- and post-processing tools for commercial FE-solvers
with the aim of performing stand-alone analysis of a single blade, and thus they are
not integrated in a automatic multi-level design framework that reflects the complex
interaction between fine-level modifications and the impact on the full wind turbine
model.

5.1. Multi-level design of wind turbine blades

The work presented in [P6] constitutes an extension of the multi-disciplinary design
tool Cp-Max [24] and provides facilities for automatic generation and analysis of a
detailed 3D FE structural blade model. This enables a detailed ‘fine’-level verifica-
tion of the stress, strain and fatigue constraints. Additionally, by incorporating the
effects from the 3D model back into the coarse-level model, the present extension
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Figure 5.1. Multi-level structural blade optimization for given aerodynamic shape

provides the framework for a multi-level optimization procedure for determining
cost-minimizing solutions that satisfy the design constraints at the finest level of
detail within a reasonable computational cost.

The overall procedure is described in Fig. 5.1. The first step in the present multi-
level optimization procedure is to define the initial structural configuration of the
blade as well as the associated material properties. The primary design variables,
such as the thicknesses of the skin, shear webs and spar caps as well as the area of the
leading and trailing edge reinforcements, are then defined at selected sections along
the blade span, while intermediate values are interpolated using shape functions.

Based on these and other relevant input parameters a comprehensive aero-servo-
elastic model is generated by using the wind turbine simulation code Cp-Lambda

[26]. The model is defined with respect to an inertial frame and constraints associ-
ated with linking the various bodies together are enforced using Lagrange mul-
tipliers. Each blade is represented by a geometrically exact shear and torsion
deformable beam model, [10] accounting for arbitrary large displacements and fi-
nite rotations. The associated cross-sectional analysis is performed using the code
anba (ANisotropic Beam Analysis) [38] based on either 2D finite element meshes
or equivalent panels. This includes evaluation of the possibly fully-populated six
by six stiffness matrices accounting for all possible structural couplings according
to anisotropic beam theory. In addition the code provides the recovery relations
for evaluation of the local sectional stresses and strains based on internal stress
resultants from the beam model.
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The code supports static and transient dynamic analysis as well as computation
of frequencies and mode shapes in deformed equilibrium configurations. Transient
design load cases (DLC’s) are simulated according to relevant design codes [1, 3]
using the energy-decaying scheme [11], while automatic procedures handle the post-
processing. The latter include computation of the relevant design quantities such
as maximum tip deflection, stress and strain states at selected verification points
along the blade span via recovery relations provided by the sectional analysis in
anba, and the level of fatigue-induced damage evaluated at the same verification
spots. These quantities are then enforced as inequality constraint conditions for
the coarse constrained multi-disciplinary optimization problem which is run until
convergence using the sequential quadratic programming (SQP) algorithm. The
coarse-level optimization process is not a part of the present thesis, but details can
be found in [24].

When a converged solution has been obtained for the coarse-level optimization
problem, the corresponding computed blade geometry/airfoil data are used for au-
tomatic generation of a detailed 3D CAD model, which precisely accounts for all
components of the blade as well as their laminate characteristics. First a chord-wise
spline interpolation of the airfoil data points is performed. The data points are ob-
tained from the coarse-level optimization at a number of span-wise cross-sections
(typically in the order of one hundred). The extension of the internal blade com-
ponents is then identified via their projection on the blade surface as illustrated in
Fig. 5.2(a). From the chordwise interpolations collocation data points are deter-
mined with a sufficiently high sampling resolution to allow for an accurate NURBS-
parametrization of the various blade components [84]. The NURBS-representation
of the various blade components is shown in Fig. 5.2(b), while a partitioning into
simple sub-surfaces as illustrated in 5.2(c) facilitates the subsequent automatic mesh
generation. The information associated with the NURBS parameterization is then
exported in a data format suitable for digital exchange of information with standard
CAD-systems. It should be noted that this approach is fundamentally different from
the procedure described in e.g. [8] based on lofting from pre-defined cross-sectional
meshes, and enables a precise definition of the internal blade components including
span-wise transition zones with rapidly varying thicknesses.

Automatic generation of equivalent loading conditions is performed based on the
distribution of internal stresses from the multibody model. In particular, the rbe3-
interpolation elements provided by the commercial FE-software Nastran [4] are
used to distribute the sectional loads to the 3D blade model. This allows for apply-
ing the aerodynamic loads acting on the blade surface to the skin nodes only, while
inertial forces are applied to all sectional nodes.

Finally the meshing procedure is conducted in a fully automatic way by using
the commercial pre-processing software HyperMesh, as this provides macro-based
facilities for mesh generation and subsequent export of the model data in the form
of an input file compatible with various commercial FE-solvers.
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Figure 5.2. Selected steps in the generation of the CAD model of a wind turbine
blade: (a) Airfoil discretization. (b) NURBS representation. (c) Partitioning in simple
sub-surfaces.

The 3D FE-model provides the framework for performing a fine-level analysis of the
blade model and subsequent verification of the constraint inequalities associated
with admissible stresses, strains, deflections and fatigue damage. In particular,
the enhanced geometric description may reveal effects, that are not represented
by the quasi 3D beam model, at certain sections such as the beginning and end
of the spar caps or at regions with rapidly changing geometry in the span-wise
direction. In the cases where analysis conducted for the fine-level model reveal that
some design inequalities are not satisfied, a heuristic approach is applied in which
the constraints are modified proportionally to their amount of violation. Consider a
case where a condition for the maximum stress σmax,2D is satisfied at a given section
σmax,2D < σadm at the end of the ith coarse-level optimization, but violated when
the fine-level 3D analysis are performed, i.e. σmax,3D > σadm. Then the admissible
stress for the (i+ 1)th iteration is modified as

σ
(i+1)
adm = sσ σ

(i)
adm, (5.1)

by means of the tightening parameter sσ = σmax,3D/σmax,2D. This leads to a more
stringent constraint condition for the next coarse-level iteration, which in an au-
tomatic and consistent way accounts for the effects highlighted by the detailed 3D
model.

In addition the 3D model can be used for designing the secondary structural pa-
rameters such as the thickness of the skin core via a linearized buckling analysis.
Despite its secondary role seen from a structural point of view, this in turn affects
the non-structural mass of the blade model, and provides an improved estimate for
the cost function. This along with the heuristic tightening of constraints described
above closes the loop between the fine- and coarse-level analysis in a fully automatic
way. The combined multi-level optimization procedure iterating between the two
levels is repeated until the design constraints are satisfied at both levels. The pro-
cedure has been demonstrated on a 2 MW horizontal wind turbine in [P6], which
shows that convergence is accomplished in a few iterations.



6. Conclusions

The main topic of the present thesis is modeling of rotating structures. Both struc-
tures consisting of rigid bodies and flexible beams have been considered. A common
aim in all theoretical developments in this thesis is the development of energy con-
serving time integration algorithms - possibly with controlled dissipation, as these
provide efficient and unconditionally stable schemes for dynamic analysis of rotat-
ing structures. It has been demonstrated in [58] for translation based elements that
the use of quadratic kinematics allows the conservative form of the algorithm to
be expressed in a particularly attractive format, where the conservation of energy
is ensured by a global term expressed via the increment of the geometric stiffness.
Thus the scope of the thesis is to extend this property to models where rotations
play an important role.

It was first demonstrated in [P1] and [P2] that a particularly simple formulation
for motion in a rotating frame of reference is obtained when starting from a hybrid
state-space in terms of local displacements and global velocities. In particular, it
was shown that use of the same interpolation functions for both state-space vari-
ables permits all inertia effects associated with the rotation of the local frame to
be represented via external matrix operations on the classic constant mass matrix.
Neither centrifugal forces nor angular acceleration appear explicitly in the hybrid
state-space format, but are contained implicitly via the use of global velocity. The
hybrid state-space lends itself easily for discretization within a conservative integra-
tion scheme and enables introduction of algorithmic dissipation on the local motion
without affecting the convective motion from rotation of the frame. The formu-
lation has been developed for translation-based elements in [P1] and extended to
beam elements with quadratic kinematics accommodating both translations and
moderate rotations in [P2].

Irrespective of whether rotational motion is considered in a rotating frame of refer-
ence or with respect to an inertial frame the non-commutative properties of finite
rotations need to be accounted for. In the papers [P3] and [P4] conservative integra-
tion schemes for general rigid body motion are developed based on a four-component
quaternion representation or a nine-component convected base vector description
of rotations, respectively. Discretized forms of the equations of motion, obeying
conservation of energy and momentum, are identified by forming a finite increment
of an augmented Hamiltonian that includes the kinematic constraints associated

38
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with the redundant rotation representations. These are introduced in incremental
form, while the associated Lagrange multipliers are represented by effective mean
values over the interval, thereby providing a clear physical interpretation as effec-
tive reaction forces needed for maintaining the constraints. A key feature of both
formulations is that the Lagrange multipliers can be replaced by a projection op-
erator applied to the external load potential gradient and the gradients of possible
external constraints.

Modeling of flexible structures in an inertial frame is considered in [P5], where
a two-node free-floating beam element is presented. It is demonstrated that a
homogeneous quadratic form can be achieved by deriving the constitutive stiffness
from the complementary energy of a set of equilibrium modes expressed via the
global components of the position of the beam nodes and an associated set of
convected base vectors [P4]. This approach circumvents interpolation of kinematic
variables and leads to an inherently locking-free and frame-independent formulation.
The tangent stiffness matrix is derived in explicit form and resembles the format
for a co-rotating formulation, but without the need for introducing local element
coordinate systems. The quadratic form is obtained by sacrificing the geometric
stiffness effects from the local equilibrium modes. However, as demonstrated by a
number of static benchmark examples these effects are often sufficiently accounted
for by the external rotation of the element nodal forces. If desired, local geometric
effects such as shorting due to bending can be included as described in [61], but the
present simple homogenous quadratic form provides a promising starting point for
extension to dynamics within the global format [58].

In the final part of the thesis covered in [P6], a multi-level optimization method for
wind turbine rotor blades that operates at different description levels is presented.
It is demonstrated that an effective procedure ensuring satisfaction of relevant de-
sign criteria at the finest level of detail follows by coupling a coarse-level analysis of
a beam-based multibody model of the full wind turbine with detailed analysis based
on a three-dimensional FE-blade model using a simple heuristic approach. All neces-
sary steps are performed in a fully automatic way, and it has been demonstrated on
a 2 MW wind turbine that convergence between the two levels are obtained very
rapidly. The proposed method provides an automated design tool for streamlining
the design process of a complex engineering system such as a wind turbine blade.

6.1. Recommendations for future work

The following recommendations are suggested for directing future research towards
extending, improving or applying the current work:

• At the current state the hybrid state-space formulation for dynamics in a
rotating frame of reference has only been considered in relation to a single
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structure in a local frame with prescribed angular velocity. Therefore, it could
be interesting to extend the formulation to account for full multibody systems.
In particular the description of connections between different reference frames
via the hybrid state-space variables is of interest.

• The implicitly constrained formulations for rigid body dynamics in a global
frame are formulated via a set of generalized displacements and conjugate
momentum variables. However, when it comes to modeling of flexible struc-
tures - in particular within the framework of the finite element method - the
use of momentum variables is not well-suited, hence it is of particular inter-
est to recast the present format for finite rigid body motion into the classic
state-space form in terms of displacements and velocities.

• The explicit free-floating beam element has only been developed for static
analysis. Efficient extension to dynamics along with the development of a
conservative time integration scheme may rely on the formulation of a classic
state-space format for finite rotations as mentioned above. Furthermore the
local beam representation could be enhanced by including pre-curvature [54],
warping effects [62] or local geometric stiffness e.g. accounting for shortening
due to bending [61].

• The multi-level optimization procedure for wind turbine blades has been de-
veloped for structural optimization of a single blade for a given aerodynamic
shape. Possible extensions include detailed aerodynamic optimization, op-
timization of the tower structure and utilization of the anisotropic compos-
ite material properties for inducing load mitigating couplings between blade
bending and twisting [25].
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SUMMARY

A time integration algorithm is developed for the equations of motion of a flexible body in a rotating
frame of reference. The equations are formulated in a hybrid state-space, formed by the local displacement
components and the global velocity components. In the spatial discretization the local displacements and
the global velocities are represented by the same shape functions. This leads to a simple generalization of
the corresponding equations of motion in a stationary frame in which all inertial effects are represented
via the classic global mass matrix. The formulation introduces two gyroscopic terms, while the centrifugal
forces are represented implicitly via the hybrid state-space format. An angular momentum and energy
conserving algorithm is developed, in which the angular velocity of the frame is represented by its mean
value. A consistent algorithmic damping scheme is identified by applying the conservative algorithm to a
decaying response, which is rendered stationary by an increasing exponential factor that compensates the
decay. The algorithmic damping is implemented by introducing forward weighting of the mean values
appearing in the algorithm. Numerical examples illustrate the simplicity and accuracy of the algorithm.
Copyright � 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Conservative time-integration algorithms for the equations of dynamics have received an increasing
interest over the last two decades. The basic idea is to develop the algorithm to reproduce the
integrated equations of motion in such a way that exact conservation properties are obtained for
the invariants of the problem, such as momentum and energy [1]. The discretization of time in
the equations leads to lack of ability to resolve phenomena at frequencies exceeding the Nyquist
frequency, and the conservative algorithms are, therefore, often extended to include algorithmic
dissipation terms, aiming at attenuating the part of the response at the higher frequencies. The
basic idea of energy conserving algorithms for kinematically non-linear solids and structures was
introduced by Simo et al. [2–4]. A central idea is that a representative value over a time increment
should integrate to the correct momentum or energy increment over the interval. This can be
formalized in the notion of a ‘finite time derivative’ [5]. In particular, linear elastic models in which
the energy is quadratic in the strains, which are quadratic in the displacements, lead to a simple
hierarchy of mean values, where the representative internal force can be expressed in explicit form
as a standard mean plus a correction in terms of the global geometric stiffness [6]. Conservative
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time integration algorithms have also been developed specifically for multi-body dynamics by
weighted Galerkin procedures [7], by representative mean values [8], and with augmented variables
constrained by Lagrange multipliers [9]. Recently a conservative algorithm has been developed,
in which the energy is discretized in step-function format [10]. An important aspect of a time
integration algorithm is the possibility of introducing an algorithmic dissipation—primarily of the
high-frequency components of the response. It was demonstrated by Armero and Romero [11]
that algorithmic damping can be obtained in an otherwise energy conserving algorithm by forward
weighting in the mean value representing the internal forces. A simplified global approach was
given in [12] and extended to high-frequency form by introducing local auxiliary variables to
represent the dissipation terms [13].

The present paper extends the concept of conservative time integration to a rotating frame of
reference, commonly used for rotating mechanical parts. The classic approach to dynamics in
a rotating frame of reference follows the formulation of Meirovitch [14, 15]. The formulation
is based on local displacements and local velocities, and the equations of motion are typically
obtained by use of Lagrange’s equations. In the context of numerical computations the equations
of motion are expressed in state-space format, using the local displacements and local velocities.
The use of local variables does not lead to a direct representation of the momentum equations,
and the stiffness matrix is then introduced to obtain an equation system with suitable symmetry
properties [16, 17]. In Sections 2 and 3 it is demonstrated that the use of a hybrid state-space,
formed by the local displacements together with the local components of the global velocities,
leads to a compact and convenient format that lends itself easily to conservative discretization.
A side effect of the hybrid state-space format is that it permits the use of the same spatial shape
functions for the local displacements and the global velocities. This has the important consequence
that all inertial effects are expressed in terms of the classic mass matrix, and convection effects
like the gyroscopic terms are obtained by external operations on the assembled mass matrix. This
simplifies the formulation and the computations, and leads to a very close correspondence between
the discretized equations and the original differential equations. In the classic formulation in terms
of local displacements and velocities the angular velocity appears inside the integrals for the mass
matrix, leading to either a need for re-assembly of the rotating mass matrix at each time step,
or alternatively a reorganization into several auxiliary matrices [18]. A conservative algorithm for
rotating elastic bodies defined in terms of Green strain is derived in Section 4. The context of a
rotating frame and the use of hybrid state-space variables leads to a need for reconsidering the
concept of algorithmic damping such that it applies to the local motion. This is accomplished in
Section 5 by applying the conservative algorithm to a damped response, that is made non-dissipative
by applying an increasing exponential factor. The effect of the exponential is then re-interpreted
in terms of weighted averages, giving a consistent dissipation as a balanced quadratic form in
velocity increments and displacement increments. The algorithm is summarized in Section 6, and
numerical examples in Section 7 demonstrate the properties of the algorithm, including a simple
interpretation of the algorithmic damping parameter.

2. REPRESENTATION OF MOTION

The solid bodies to be considered here are represented via N nodes x1, . . . ,xN given in terms of
their components x j = [x1, x2, x3]T

j in a local frame of reference {x1, x2, x3} illustrated in Figure 1.
The position of the nodes in the local frame serves to define the elastic energy. The frame of
reference {x1, x2, x3} rotates about its origin with angular velocity X= [�1,�2,�3]T, illustrated
as a rotation about the local x3-axis in the figure. The kinetic energy of the body is described in
terms of the global velocities v1, . . . ,vN of the nodes, expressed in terms of their local components
v j = [v1,v2,v3]T

j . This section establishes the kinematic relation between the local position x j of
a node and its absolute velocity v j , and sets up expressions for the kinetic energy and the elastic
potential.

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:1301–1324
DOI: 10.1002/nme
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Figure 1. Solid body in frame {x1, x2, x3} rotating with angular velocity X.

2.1. Kinematics of a point

Let x j denote the components of the position of node j in a fixed global frame of reference with
the same origin as the local rotating frame. The global components are then given in terms of the
local components by the relation

x j =Rx j , (1)

where the matrix R describes the current rotation of the local frame. The global velocity of the
node follows from time differentiation as

v j =Rẋ j +Ṙx j . (2)

As rotation matrices are orthogonal, the local components of the global velocity are obtained by
pre-multiplication with RT,

v j =RTv j = ẋ j +RTṘx j . (3)

The matrix product in the last term is skew-symmetric and represents a cross product with the
angular velocity vector X. This skew-symmetric matrix is denoted by

X̃=X×=RTṘ. (4)

This corresponds to arranging the local components of the angular velocity X= [�1,�2,�3]T in
the matrix format

X̃=X×=

⎡
⎢⎣

0 −�3 �2

�3 0 −�1

−�2 �1 0

⎤
⎥⎦ . (5)

With this definition of the angular velocity of the local frame the absolute time derivative takes
the generic form

v j = Dt x j = (�t +X̃)x j , (6)

where the convective contribution from the rotation is included in the absolute derivative Dt .

2.2. Consistent interpolation

In the following it is convenient to collect the local position vectors for the N nodes of the model
in a system vector of the form

xT = [xT
1 ,xT

2 , . . . ,xT
N ], (7)

and similarly for the global system velocity vector

vT = [vT
1 ,vT

2 , . . . ,vT
N ]. (8)

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:1301–1324
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The definition (6) of the global velocity vector is generalized to system form as

v= Dt x= (�t +X̃D)x (9)

by introducing the angular velocity matrix X̃D of the system in the form

X̃D =

⎡
⎢⎣
X̃ · · · 0
...

. . .
...

0 · · · X̃

⎤
⎥⎦ , (10)

where the 3×3 angular velocity matrix X̃ from (5) appears as a block diagonal.
The shape function representation of the motion of an arbitrary point n constitutes a crucial step

in the formulation of discretized equations of motion in terms of the motion of the nodes. Let x�
denote the position of a generic point with internal coordinates n. A representation of the position
of this point x� in terms of the position of the nodes x then takes the form

x� =N(n)x, (11)

where N(n) is the 3×3N shape function matrix. Similarly, v� denotes the local components of
the global velocity. The global velocity may be obtained in two different ways: either by using
the same interpolation of the velocity as the one used for the displacements or by applying the
absolute time differentiation (6) to the local point n. The first method corresponds to independent
and identical representation of position and velocity in the spirit of Hamiltonian mechanics and is
the procedure adopted here. It leads to the velocity representation

v� =N(n)v=N(n)(�t +X̃D)x. (12)

In the alternative method, based on direct total time differentiation, the combined time differen-
tiation and convection via the angular velocity would appear to the left of the shape function
matrix.

In the case of isotropic interpolation—i.e. equal shape functions for all components associated
with a node—the shape function matrix has the form

N(n)= [N1(n)I, . . . , NN (n)I], (13)

where the same scalar shape function N j (n) applies to all three components associated with node j .
In this particular case

(�t +X̃D)N(n)x=N(n)(�t +X̃D)x, (14)

and the direct time integration method reproduces the equal interpolation representation. This
equivalence for isoparametric elements was used in [19]. However, for non-isotropic interpolation
or models including rotation degrees of freedom there will in general be a difference between the
resulting equations of motion, and the direct differentiation approach will lead to additional mass
matrices [18]. As demonstrated in the following the simplicity of the resulting equations of motion
relies on identical spatial interpolation of local position and global velocity.

3. EQUATIONS OF MOTION IN HYBRID STATE-SPACE FORMAT

It is most convenient to obtain the equations of motion from Lagrange’s equations in terms of
the kinetic and potential energies. This section defines the kinetic and elastic energies in terms of
global velocity v and local displacement u, respectively. The equations of motion are then derived
and set up in a hybrid state-space format, and the energy balance equation corresponding to this
format is identified.

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:1301–1324
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3.1. Kinetic energy and elastic properties

The kinetic energy with respect to the global motion follows from integrating the local kinetic
energy in terms of the global velocities (12) over the mass of the body. The result is in the classic
mass matrix form

T = 1
2 vTMv, (15)

where the mass matrix M is constant, because the description refers to initial local geometry.
The elastic energy G(u) is expressed in terms of the displacement u relative to the initial

position x0. This corresponds to the current position of the nodes in the form

x=x0 +u. (16)

The material is assumed to be elastic, and the corresponding energy is defined in terms of the
Green strain, defined via the deformation gradient F=�x/�x0 as

E= 1
2 (FTF−I). (17)

This leads to the elastic energy G(u) of the body,

G(u)=
∫

V0

�(E)dV0. (18)

The generalized internal forces g(u) are defined by the displacement gradient of the elastic energy

g(u)= dG(u)

duT =
∫

V0

(
�ET

�u

)
��

�ET
dV0 =

∫
V0

(�E/�u)TSdV0, (19)

where the chain rule has been used to differentiate via the strain E. The last factor S=��/�ET is
the Piola–Kirchhoff stresses of the second kind, conjugate to the Green strains.

In the following the work of the internal forces through a displacement du from the current
state will be needed. According to (19) this work is

duTg(u)=dG(u)=
∫

V0

dETSdV0. (20)

If the displacement u represents a rigid body motion the strain increment vanishes, dE=0, and
the work of the internal forces will be zero.

The increments of the internal force vector are defined in terms of the tangent stiffness matrix,
defined via further differentiation as

K(u)= �g(u)

�u
= �2G(u)

�uT�u
. (21)

The differentiation of g(u) consists in differentiating each of the two factors in the integrand. This
gives the tangent stiffness as the sum of the geometric stiffness Kg and the constitutive stiffness Kc.
The specific form is

K=Kg +Kc =
∫

V0

�2ET

�uT�u
SdV0 +

∫
V0

�ET

�uT

�S
�u

dV0. (22)

In the integrands the internal product is on ETS, while the components are defined via the compo-
nents in the displacement vector u. It is notable that the geometric stiffness is expressed as the
product of the current stress S and a factor, which due to the double differentiation does not
depend on the current displacement vector. This property is very convenient, when evaluating the
algorithmic stiffness for finite displacement increments.

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:1301–1324
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3.2. Lagrange’s equations

Lagrange’s equation constitutes a convenient means for setting up the equations of motion from
the derivatives of the kinetic energy T and the elastic energy G. It is expressed in terms of the
variable u and its time derivative u̇ in the form [17]

d

dt

(
�T

�u̇T

)
− �T

�uT
+ �G

�uT
= f, (23)

where f is the external force that is conjugate to the displacements u. The kinetic energy T was
given as a quadratic form in the global velocity v in (15). When using the expression (9) for the
global velocity the two derivatives of the kinetic energy are found to be

�T

�u̇T
=Mv (24)

and

�T

�uT
=X̃T

Mv. (25)

The first of these relations defines the momentum

p= �T

�u̇T
=Mv=MDt x, (26)

while the combination of the derivatives in Lagrange’s equation (23) gives

d

dt

(
�T

�u̇T

)
− �T

�uT
= Dt p. (27)

It is observed that the effect of the rotation of the frame of reference is accounted for by replacing
the partial time derivative �t with the convected time derivative Dt = (�t +X̃D). The internal forces
have already been identified as the partial derivative of the elastic energy G(u), and the equations
of motion can then be written as

Dt (MDt x)+g(u)= f. (28)

This second-order differential equation in time would be the typical starting point for a collocation-
type algorithm like Newmark, Generalized alpha, or similar. These algorithms are based on asymp-
totic arguments in which the time increment is assumed ‘small’ relative to relevant vibration
periods. These algorithms typically do not lead to exact conservation equations for momentum
and energy due to the asymptotic nature of the approximations introduced in their derivation.
In contrast, conservative time integration methods are typically based on an integrated form of
two first-order state-space differential equations: the first defining the momentum in terms of the
displacement variables and the second expressing the equation of motion in terms of the momentum
variable. In the present case it is convenient to consider this issue in a hybrid state-space formed
by the local displacement u and the global velocity v.

3.3. Angular momentum

The local components of the global linear momentum p are arranged in a vector containing the
contributions p j from the individual nodes, pT = [pT

1 , . . . ,pT
N ]. Each of these vectors p j contribute

to the angular momentum L of the body by their moment about the origin of the frame of reference,

L=∑
j

x j ×p j =
∑

j
x̃ j p j , (29)

where the summation is over all nodes. The equation of motion (28) is now expressed in terms of
the momentum vector and written in blocks corresponding to each node,

Dt p j +g j (u)= f j , j =1, . . . , N . (30)

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:1301–1324
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This equation is multiplied by a virtual rigid body rotation represented in terms of the infinitesimal
rotation vector a as

�x j = ãx j =−x̃ ja, j =1, . . . , N . (31)

Forming the total virtual work of the equations of motion (30) through the virtual displacement
field (31) gives

aT

{∑
j

x̃ j (Dt p j )−
∑

j
x̃ j f j

}
=0. (32)

In this equation the internal forces g j (u) do not contribute, because the virtual displacement field
represents a rigid body motion. It can be demonstrated by using the properties of the mass matrix,
that the first factor x̃ j of the first term can be put inside the differential operator, and thus the virtual
work equation (32) corresponds to the following differential equation for the angular momentum
vector L:

Dt L= Dt

(∑
j

L j

)
= Dt

(∑
j

x̃ j p j

)
=∑

j
x̃ j f j . (33)

This is the well-known differential equation for the angular momentum of a body, here expressed
in a local rotating frame of reference represented via the total time differentiation operator Dt . It
is important to note that in order for the contribution from the internal forces to vanish all nodes
representing the body must be included. Thus, the force vectors f also include contributions from
reaction forces at supports.

3.4. Hybrid state-space equations

The equations of motion in a rotating frame can be formulated in a direct state-space format as
first-order differential equations in terms of u and u̇ following directly from Lagrange’s equations,
see [15–17] for application to small vibrations of rotating structures. However, in order to obtain
the symmetric/skew-symmetric structure of the equations, the kinematic equation in that case must
be expressed as a stiffness relation, and angular acceleration of the rotating frame will break the
symmetry properties. Thus, the hybrid state-space format using the local displacement vector u
together with the local components of the global velocity v appears to be of a more general nature.

In the hybrid state-space format the kinematic relation (9) is expressed in terms of u and v by
introduction of the initial position vector x0 from (16):

v= (�t +X̃D)u+X̃Dx0. (34)

The dynamic equation then follows from (27) in the form:

(�t +X̃D)Mv+g(u)= f. (35)

In the present formulation the mass matrix is assumed to be independent of time as demonstrated
for iso-parametric elements, and the two equations of motion (34) and (35) can then be written in
the convenient state-space format[

0 M

−M 0

][
u̇

v̇

]
+
⎡
⎣g(u)+X̃DMv

MX̃
T
Du+Mv

⎤
⎦=

[
f

−MX̃
T
Dx0

]
. (36)

This state-space format is of hybrid form in the sense that u is the local displacement in the
rotating frame, whereas v is the global velocity in a fixed frame of reference. In this format the
first block matrix is skew-symmetric, whereas the gyroscopic terms in the second block matrix
are symmetric. The internal elastic force g(u) is in the form of a derivative of the elastic potential,
and thus the corresponding differential form is also symmetric. It is observed that in this hybrid
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format the inertial terms arising from the rotation are represented solely via the matrix X̃DM and
its transpose, and thus neither the angular acceleration of the rotating frame nor the square of the
angular frequency, associated with the centrifugal force, appears explicitly.

In the limit of vanishing angular velocity the state-space format typically used in a stationary
frame of reference is recovered, however with the sign of the second equation changed to provide
a symmetric set of equations [6, 17]. The change of sign is a trade-off, as symmetry is obtained
by sacrificing the positive-definite form of the second matrix in the classic state-space format.

The energy balance equation takes a particularly simple form when expressed in terms of the
hybrid state-space variables. The hybrid energy balance equation is obtained by pre-multiplication
of the equation of motion (35) by the local components of the absolute velocity vT, whereby

vTMv̇+(u̇+X̃Dx)Tg(u)+vTX̃DMv=vTf. (37)

The first two terms in this equation are the time derivative of the mechanical energy. The factor
X̃Dx multiplying the internal force g(u) constitutes an infinitesimal rigid body rotation, and thus
the work of the internal forces through this displacement vanishes as explained in connection with
the angular momentum equation (19). For isoparametric models the mass matrix consists of 3×3
blocks in the form Mi j =mi j I, where mi j is the mass coefficient and I is the unit matrix. When
the mass matrix is in this format X̃DM is formed by replacing I by the skew-symmetric matrix X̃,
and thus the last term in (37) vanishes. The result is the intuitively obvious hybrid energy balance
equation

d

dt

{
1

2
vTMv+G(u)

}
=vTf, (38)

where the rate of change of the sum of absolute kinetic energy and locally defined internal energy is
equal to the rate of work of the external forces through the global velocity. Note, that in this format
centrifugal and gyroscopic effects do not appear explicitly, but only indirectly via the relation (34)
between the local displacement u and the global velocity v.

4. CONSERVATIVE TIME INTEGRATION

The first step in the development of the discrete conservative formulation consists in integration
of the hybrid state-space equations of motion (36) over the time interval h = tn+1 − tn , whereby[

0 M

−M 0

][
�u

�v

]
+
∫

h

⎡
⎣g(u)+X̃DMv

MX̃
T
Dx+Mv

⎤
⎦dt =

∫
h

[
f

0

]
dt, (39)

where the initial position x0 has been absorbed into the current position x to facilitate the following
manipulations. In order to develop the algorithm in energy conserving form an asterisk will initially
be used to denote the equivalent mean value representing the integral. With this notation the
equations are [

0 M

−M 0

][
�u

�v

]
+h

⎡
⎣ g(u)∗+(X̃DMv)∗

(MX̃
T
Dx)∗+(Mv)∗

⎤
⎦=

[
hf∗
0

]
. (40)

The equivalent values defined by the asterisk symbol are now determined such that the discrete
algorithm satisfies an energy balance equation corresponding to (38) and an angular momentum
balance equation constituting a discrete equivalent of (33).

4.1. Incremental equations of motion with energy balance

A discrete energy balance hybrid format can be obtained from the discrete equations of motion
(40). The procedure follows that leading to (38), and the individual steps identify the mean values
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denoted by asterisks in (40). First the dynamic equation (40a) is pre-multiplied by the mean velocity
v̄T, whereby

v̄TM�v+hv̄Tg(u)∗+hv̄T(X̃DMv)∗ =hv̄Tf∗. (41)

In the continuous formulation the last term on the left side vanishes. This property is obtained
in the discrete formulation by representing the product (X̃DMv)∗ by the midpoint rule. A similar
representation is made for the other gyroscopic term, and thus

(X̃DMv)∗ = ¯̃XDMv̄, (MX̃T
Dx)∗ =M ¯̃XT

D x̄. (42)

With the mid-point representation (42b) and the direct mean value representation

(Mv)∗ =Mv̄, (43)

the kinematic equation (40b) takes the simple form

hv̄=�u+h ¯̃XD x̄. (44)

This expression is now substituted into the second term of (41) to get

�vTMv̄+�uTg(u)∗+h( ¯̃XD x̄)Tg(u)∗ =hv̄Tf∗. (45)

The first term represents the increment of the absolute kinetic energy, given by

�vTMv̄=
[

1
2 vTMv

]n+1

n
. (46)

The second term is the increment of the elastic energy, and thus g(u)∗ is defined by the relation

�uTg(u)∗ = [G(u)]n+1
n . (47)

This is the definition of the so-called finite derivative [5]. In this case the last term on the left side
in (45) represents the work of the internal forces through an infinitesimal rigid body rotation from
the mid-point state x̄, and therefore vanishes. Thus, the discrete hybrid energy equation takes the
form [

1
2 vTMv+G(u)

]n+1

n
=hv̄Tf∗. (48)

This is the discrete equivalent of the hybrid energy balance equation (38).
The derivation of the energy balance equation has identified that the gyroscopic terms must be

evaluated by the mid-point rule, and that the internal force is represented by its discrete derivative
interpretation. When this is introduced, the discretized equations of motion (40) take the form[

0 M

−M 0

][
�u

�v

]
+h

⎡
⎣g(u)∗+ ¯̃XDMv̄

M ¯̃XT
Dū+Mv̄

⎤
⎦=h

[
f∗

−M ¯̃XT
Dx0

]
. (49)

This result is simple in the sense that all explicit terms involving mean values are obtained by using
the mean values of the factors. It is notable that neither accelerations, angular accelerations, or the
centrifugal force appear explicitly in these equations. If a potential representation of the external
force f is known, the effective mean value f∗ can often be expressed within the difference/mean
value format.

4.2. Linear elastic properties

If the material is linear elastic in terms of the quadratic Green strain (17), the algorithmic internal
force g(u)∗ can be expressed in terms of a simple mean value product format. The elastic energy
has the quadratic form

G(u)=
∫

V0

1

2
ETDEdV0, (50)
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where the matrix D contains elastic constants. The energy is a quadratic form in the Green strain
E, and the Green strain is a quadratic form in the deformation gradient F and thereby in the
displacement u. Thus, the increment of the elastic energy takes the form

[G(u)]n+1
n =

∫
V0

�ETDEdV0 =�uT
∫

V0

(�E/�u)TS̄dV0. (51)

The algorithmic internal force for the linear elastic body now follows directly from the definition
(47) as the last factor,

g(u)∗ =
∫

V0

(�E/�u)TS̄dV0. (52)

This is the mean value product format originally derived by Simo and Tarnow [3]. It is noted that
the strain gradient �E/�u is linear in u, and thus its mean value is equal to its value at the mean
displacement ū. This makes the internal forces g(u)∗ orthogonal to a rigid body displacement from
the mean displacement state x. It also enable calculation of the strain gradient from the mean
state x̄.

There is a convenient alternative way of evaluating the algorithmic internal force vector directly
from properties at the states at tn and tn+1 [6]. The idea is to rewrite the integral (52) in terms of
the product of the values at the end point plus a product of increments,

g(u)∗ =
∫

V0

{
1

2
[(�E/�u)T

n+1Sn+1 +(�E/�u)T
n Sn]− 1

4
�(�E/�u)T�S

}
dV0. (53)

The first two terms are the internal force at times tn+1 and tn , respectively, and the last term can
be expressed in terms of the geometric stiffness matrix. The strain gradient �E/�u is linear in the
displacement u, and the finite increment can therefore be expressed in terms of its derivative in
the form

�(�E/�u)=�u
�E

�uT�u
. (54)

When this is used, the last term can be identified in terms of the increment of the geometric
stiffness matrix defined in (22). As a result the algorithmic internal force takes the form

g(u)∗ =g(u)− 1
4�Kg�u. (55)

This expression of the algorithmic internal force in terms of the mean value of the internal force
at the ends of the interval minus a term with the increment of the geometric stiffness is convenient
for the actual calculation in a computer implementation and also plays an important role when
generalizing the algorithm to include algorithmic damping in Section 5.

4.3. Angular momentum balance

In addition to the energy balance equation (48) the discrete incremental equations (49) also provide
a balance equation for the angular momentum vector L. While the energy balance equation is
exact, when the effective load vector f∗ is correctly represented, and provides energy conservation
in the absence of external loads, the equation for the angular momentum vector L is a consistent
approximation, and in general conservation only applies to the magnitude |L|.

The first of the incremental equations (49) is a balance of forces. The terms containing the
mass matrix M are converted to vector form by introducing the linear momentum vector p=Mv,
whereby

�p+hg(u)∗+h ¯̃XDp̄=hf∗. (56)
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This equation is converted to angular momentum by forming the moment of the vector components
at each node j via pre-multiplication with x̄ j×= ¯̃x j . These products are conveniently expressed
by use of the diagonal block matrix

x̃D =

⎡
⎢⎣

x̃1 · · · 0
...

. . .
...

0 · · · x̃n

⎤
⎥⎦ , (57)

a notation already introduced for the angular velocity in (10). The contribution from the internal
forces g(u)∗ vanishes, because the factor corresponds to a scaled form of an infinitesimal rigid
body rotation. This leaves

¯̃xD�p+h ¯̃xD
¯̃XDp̄=h ¯̃xDf∗. (58)

This equation can be expressed in terms of vector products at each node j ,

x̄ j ×�p j +hx̄ j ×(X̄×p̄ j )=hx̄ j ×f∗j . (59)

This equation needs to be combined with the similar result from the kinematic equation in (49).
When written out in detail the kinematic equation from (49) is

−M�u+hM ¯̃XT
D x̄+hMv̄=0. (60)

In this equation the contribution from each node j is pre-multiplied with v̄ j×= ¯̃v j . When arranged
in block diagonal form corresponding to (57) the equation takes the form

−( ¯̃vDM)�u−h( ¯̃vDM) ¯̃XD x̄+·· ·=0. (61)

The contributions from the last term have the form ¯̃vDMv̄ and cancel each other in the final
result due to the isotropic block matrix structure of the isoparametric mass matrix. The parenthesis
including the mass matrix is expressed by using the following property of the linear momentum
vector:

p̄=Mv̄ ⇒ ¯̃p=M ¯̃v ⇒ ¯̃p=−¯̃pT = ¯̃vM. (62)

When using this relation to express the factors containing the mass matrix, the kinematic relation
(61) takes the form

−¯̃pD�u−h ¯̃pD( ¯̃XD x̄)+·· ·=0. (63)

This equation is written in terms of vector products of the individual nodal contributions, and the
order of the factors in the second term is rearranged to give

�u j ×p̄ j −h(x̄ j ×X̄)×p̄ j +·· ·=0. (64)

This is the kinematic equivalent to the dynamic equation (59).
When the two equations (59) and (64) are added, the result takes the form

[x̄ j ×�p j +�u j ×p̄ j ]+h[x̄ j ×(X̄×p̄ j )−(x̄ j ×X̄)×p̄ j ]+·· ·=hx̄ j ×f∗j . (65)

The first term is recognized as the finite increment of the product x j ×p j . The two triple vector
products in the second term combine into a single triple vector product. Finally, summation over all
nodes cancels the third term, which is indicated by dots. The final angular momentum balance is

�

(∑
j

x j ×p j

)
+hX̄×

(∑
j

x̄ j ×p̄ j

)
=h

(∑
j

x̄ j ×f∗j

)
. (66)

This is the discrete analogue to the continuous angular momentum balance equation (33). It is
seen that the discretized convection term is formed as a triple vector product in which each
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factor is represented by its mean value. For a body rotating freely around a fixed axis the
motion in any transverse plane will conserve the angular momentum, because the convection term
vanishes.

5. ALGORITHMIC DAMPING

A linear viscous damping can be represented by including the corresponding damping matrix
C in the upper left position of the first block matrix [6, 12]. However, a frequency analysis of
the linearized problem demonstrates that the time discretization of a mode with natural angular
frequency �n leads to increasing damping up to �nh =2, while decreasing again for larger frequen-
cies [20]. Thus, direct representation of viscous damping will lead to decreasing damping for
components with frequencies above the aliasing limit, �nh =�. These components are undesir-
able as they will appear as aliased extra contributions to the low-frequency components of the
response, and furthermore may lead to iteration problems in non-linear problems. Thus, it is often
desirable to introduce an algorithmic damping that increases monotonically with the frequency of
the response.

5.1. Damped equations of motion

A suitable form of the algorithmic damping is identified by a simple qualitative argument, and the
actual damping properties are subsequently demonstrated rigorously via an exact energy balance
for the modified algorithm. Algorithmic damping via weighted mean values was introduced in non-
rotating systems in [11, 12] via somewhat different procedures that do not immediately generalize
to the present problem.

A damped oscillation will typically attenuate exponentially like exp(−�t), thereby introducing
a bias between the response at tn and tn+1. This effect can be countered by applying the undamped
equations to a hypothetical amplified solution of the form exp(�tn)un . A first-order approximation
to this problem consists in introducing the response via biased mean values in the second matrix
of the discretized equations (49). The �-weighted mean value of the velocity v is introduced as

v̄� = 1
2 (1+�)vn+1 + 1

2 (1−�)vn = 1
2��v+ v̄. (67)

The similar formula for the position x=x0 +u is

x̄� = 1
2 (1+�)xn+1 + 1

2 (1−�)xn = 1
2��u+ x̄. (68)

It is seen that in accordance with the underlying assumption the �-modification only concerns the
displacement u, and not the initial position x0.

It is important to introduce an appropriate definition of the �-modified form g(u)∗� of the internal
force to be used in the algorithm. There are two conditions that must be met: the modification
must introduce energy dissipation also in the small-displacement limit and the modified internal
force must satisfy orthogonality to a rigid body rotation. These two conditions imply that both the
mean values in the original definition (51) of the algorithmic internal force must be represented
via �-weighted mean values. Thus, the internal force in the damped algorithm is defined as

g(u)∗� =
∫

V0

(�E/�u)T
� S̄� dV0. (69)

The �-weighting of the second factor represents the amplification of the stress S which is part of
the response. The first factor represents the effect of finite deformation on the strain. As in the
case of the position x the �-weighting of this factor only concerns the displacement part, which
will be small for moderate displacements. Thus, the �-weighting of this factor is introduced for
consistency and has only modest damping effect.
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When the �-weighted mean values (67) and (68) together with the �-modified form (69) of
the internal force are introduced into the discrete equations (49) the following set of equations is
obtained: [

0 M

−M 0

][
�u

�v

]
+h

⎡
⎣g(u)∗�+ ¯̃XDMv̄�

M ¯̃XT
D x̄�+Mv̄�

⎤
⎦=h

[
f∗
0

]
. (70)

In the following the algorithmic internal force g(u)∗� is rewritten in a form that simplifies compu-
tation and identifies the contribution to damping. The energy balance with dissipation is presented
in the next subsection, and a full algorithm for both damped and undamped dynamics is presented
in Section 6.

The expression (69) for the �-modified form of the internal force must be reformulated in order
to identify its contribution to energy dissipation. The first step is to rewrite the factors in the
integrand in terms of increments and classic mean values

g(u)∗� =
∫

V0

[
(�E/�u)+ 1

2��(�E/�u)
]T [

S̄+ 1
2��S

]
dV0. (71)

When forming the product, the integral takes the form

g(u)∗� =
∫

V0

{
(�E/�u)TS̄+ �

2

[
�(�E/�u)TS̄+(�E/�u)T�S

]
+
(�

2

)2
�(�E/�u)T�S

}
dV0. (72)

The first term gives the undamped algorithmic internal force g(u)∗ defined in (52). In the second
term the square brackets define the increment �[(�E/�u)TS], and thereby the increment of the
internal force �g(u). Finally, the last term can be expressed via the increment of the geometric
stiffness by use of (54). Altogether this implies that the algorithmic internal force, defined by a
product of �-weighted mean values in (69), can be expressed in the following form:

g(u)∗� =g(u)∗+ �

2
�g(u)+

(�

2

)2
�Kg�u. (73)

The final step in the expression of the damped algorithmic internal force is to introduce the
expression (55) for the undamped algorithmic internal force g(u)∗ in terms of the mean value and
the geometric stiffness. The final result is then obtained as

g(u)∗� =g(u)�− 1
4 (1−�2)�Kg�u. (74)

It is seen that the �-weighted product format (69) used to define the damped internal algorithmic
force results in �-weighting of the internal force at the interval end points, plus a small modification
of order �2 of the geometric stiffness term.

5.2. Energy balance with dissipation

It remains to demonstrate that the equations developed above actually lead to damping, and to
estimate the magnitude of the damping associated with a particular value of the parameter �. The
procedure follows that used for the undamped case in Section 4.1. The first step is to express the
velocity in terms of the displacements by the kinematic equation (70b),

hv̄� =�u+h ¯̃XD x̄�. (75)

This equation is combined with the dynamic equation (70a),

M�v+h ¯̃XDMv̄�+hg(u)∗� =hf∗. (76)

Pre-multiplication of the terms of this equation with either the left- or right-hand side of (75)
leads to

v̄T
�M�v+(�u+h ¯̃XD x̄�)Tg(u)∗�+ v̄T

�
¯̃XDMv̄� =hv̄T

� f∗. (77)
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The last term on the left side vanishes due to antisymmetry. The term ¯̃XD x̄� in the parenthesis
represents a rigid body motion from the state x̄�. The first factor in the �-weighted definition (69) of
the internal force g(u)∗� ensures orthogonality to this motion, and thus this product vanishes. When
the �-weighted velocity in the first term is expressed via (67) the energy balance then takes the form[

1
2 vTMv

]n+1

n
+�uTg(u)∗� =hv̄T

� f∗− 1
2��vTM�v. (78)

In this equation the �-weighted algorithmic internal force g(u)∗� is substituted from (73). By its
definition (47) the algorithmic internal force g(u)∗ represents the finite increment of the internal
energy, and the energy balance is[

1
2 vTMv+G(u)

]n+1

n
=hv̄T

� f∗− 1
2�
{
�vTM�v+�uT(�g+ 1

2��Kg�u)
}
. (79)

When the internal force increment is represented by a secant stiffness in the form �g=Ks�u the
dissipative energy balance takes the final form[

1
2 vTMv+G(u)

]n+1

n
=hv̄T

� f∗− 1
2�
{
�vTM�v+�uT(Ks + 1

2��Kg)�u
}
. (80)

For bodies with positive stiffness this gives a dissipation that is locally quadratic in the velocity
and displacement increments and proportional with the damping parameter �. The formula is a
rigorous generalization to rotating bodies of the similar but somewhat more loosely established
result for stationary bodies given in [12]. It should be noted that the dissipative energy balance
illustrates the dissipation mechanism but is not used directly in the computational algorithm, and
thus computation of the secant stiffness Ks is not needed.

A general analysis of the effect of algorithmic damping in the case of non-linear deformation
is difficult, but as demonstrated in the following the main features of algorithmic damping and a
direct interpretation of the non-dimensional damping parameter � can be obtained from a linearized
analysis. A detailed frequency analysis of the similar algorithm for a linear non-rotating system
has been given in [13]. This analysis demonstrates that the damping increases monotonically with
vibration frequency over the full frequency range. The low-frequency regime can be represented by
the non-dimensional frequency interval �kh�1, where �k is the natural frequency of the considered
mode. This corresponds to time integration with at least six points per period. In this interval the
damping ratio is well represented by the asymptotic relation

	k � 1
2�(�kh), (81)

which follows directly from the asymptotic form of the energy balance (79). Thus, the effect of the
parameter � depends on the the number of integration points, determined by the non-dimensional
parameter �kh, increasing for higher modes.

As seen from the energy balance equation (79) the relevant energy is a combination of the global
kinetic energy and the local elastic potential

E = 1
2 vTMv+G(u). (82)

Consider free damped vibrations of a system with constant angular velocity X. In the absence
of external loads and angular acceleration the local motion will gradually approach a stationary
equilibrium state x∞ =x0 +u∞, determined from (70) as the deformation under the centrifugal force

g(u∞)=X̃T
DMX̃D(x0 +u∞). (83)

The corresponding limiting energy follows from (82) as

E∞ = 1
2 xT

∞X̃
T
DMX̃Dx∞+G(u∞). (84)

In a linearized analysis the excess energy of a particular mode with angular frequency �k attenuates
exponentially,

�E = E − E∞ =�E0 e−2	k�k t . (85)
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It is demonstrated in the following examples that this result from a linearized analysis applies with
good accuracy also to vibrations in a rotating frame where the final energy E∞ may constitute a
substantial part of the initial energy.

5.3. Angular momentum balance with algorithmic damping

The angular momentum balance corresponding to the damped equations of motion (70) can be
derived by the same procedure as for the undamped system in Section 4.3. The only difference
is the introduction of the �-weighted mean values defined by (67) and (68). The internal force is
represented by g(u)∗� and the definition by (69) implies orthogonality to a rotation from the state
x̄�. The derivation is, therefore, unchanged up to (65), when mean values are replaced by their
�-weighted equivalents. Thus the algorithmic damping leads to the slightly modified result

�

(∑
j

x j ×p j

)
+�

(∑
j

�u j ×�p j

)
+hX̄×

(∑
j

x̄ j,�×p̄ j,�

)
=h

(∑
j

x̄ j,�×f∗j

)
. (86)

It is seen that the algorithmic damping introduces a new term containing products of the displace-
ment and momentum increments, �u j ×�p j . The first term contains similar contributions, but
with the position instead of the displacement increment, x̄ j ×�p j , and thus the effect of the new
term is expected to be small as confirmed in the examples in Section 7.

6. TIME INTEGRATION ALGORITHM

The time integration algorithm is simply a computationally convenient rearrangement of the equa-
tions of motion in the general form (70). In the formulation of the time integration algorithm it is
convenient to formulate the problem in terms of known current values and unknown increments.
The �-weighted mean values of the velocity and the position then take the form

v̄� = 1
2 (1+�)vn+1 + 1

2 (1−�)vn = 1
2
�v+vn (87)

and

x̄� = 1
2 (1+�)xn+1 + 1

2 (1−�)xn = 1
2
�u+xn, (88)

where the parameter 
 is defined as


=1+��1. (89)

It is seen that where the previous split in increment and mean value generated the factor � on the
increment, the present split in increment and previous value leads to similar formulas, but with �
replaced by the parameter 
. The undamped form corresponds to 
=1. When using these relations
the velocity increment �v follows from the kinematic equation (75) as

�v=
(

2


h
+ ¯̃XD

)
�u− 2




(
vn − ¯̃XDxn

)
. (90)

In this and the following equations the factor (2/
h)I+ ¯̃XD appears repeatedly. It represents the
usual normalization of increments over a time increment h, but here modified by the angular
velocity of the frame of reference. This factor always appears as part of a product, and the unit
matrix I is, therefore, not included explicitly.

The kinematic equation must be combined with the dynamic equation (76),

M�v+h ¯̃XDMv̄�+hg(u)∗� =hf∗. (91)
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In this equation the dependence on the current velocity is eliminated by use of (87) and (90). After
rearranging the terms the dynamic equation takes the form

2g(u)∗�+


(
2


h
+ ¯̃XD

)
M
(

2


h
+ ¯̃XD

)
�u= f∗+ 4


h
M(vn − ¯̃XDxn)+2 ¯̃XT

DM ¯̃XDxn. (92)

The terms in this equation are easily interpreted. The first term is the internal force, here represented
via the �-weighted form defined by (69). When carrying out the products in the second term it is
seen to consist of the classic inertial effect in a stationary frame, the Coriolis force that is linear
in X, and a quadratic term in X that combines with the last term of the equation to form an
�-weighted mean value of the centrifugal force.

The solution within a time step starts with a predicted displacement increment. The displacement
increment is obtained from a modified form of the discretized kinematic equation (90) in which
the global velocity increment �v is omitted and the last term representing the local velocity is
given by its current value at tn . Thus, the displacement increment is predicted from the relation(

2


h
+ ¯̃XD

)
�u= 2




(
v−X̃Dx

)
n
. (93)

The matrix on the left side consists of the 3×3 matrix ((2/
h)+ ¯̃X) repeated N times along
the diagonal of the larger system matrix. This simple structure implies that the inverse is also a

diagonal block matrix formed by repetition of the 3×3 matrix ((2/
h)+ ¯̃X)−1 along the diagonal.
Thus, the inverse system matrix is defined in terms of the 3×3 inverse

(
2


h
+ ¯̃X

)−1

= 1

(2/
h)2 +XTX

[
2


h
+ ¯̃XT + 
h

2
¯̃X ¯̃XT

]
. (94)

This result is easily verified and can be established by determining the scalar coefficients in a linear
combination of the three terms, forming a basis. With this explicit inversion repeated along the
diagonal of the inverse system matrix the initial displacement predictor (93) is available in explicit
form. From this initial estimate the non-linear dynamic equation (92) is solved by iteration. When
the increment �u has been determined, the velocity increment �v is determined from the explicit
expression (90).

The iterative solution of the non-linear dynamic equation (92) requires determination of the
incremental stiffness, based on the current state. The specific form follows from the variation of
the �-weighted algorithmic internal force (69),

�[2g(u)∗�]=

∫

V0

�(�E/�u)TS̄� dV0 +

∫

V0

(�E/�u)T
��SdV0. (95)

The factor 
 is generated by the �-weighting of the current value in the strain gradient and the
stress, respectively. The first integral represents the algorithmic form of the geometric stiffness
matrix,

Kg
∗ =
∫

V0

�2ET

�uT�u
S̄� dV0 =K̄g

� . (96)

Thus, the first integral is the �-weighted mean value of the geometric stiffness matrix at tn and
tn+1. The result follows from the fact that the double gradient of the strain is independent of the
current state of displacement. The algorithmic form of the constitutive stiffness matrix is defined
by the second integral,

Kc
∗ =
∫

V0

(
�E
�u

)T

�

�S
�u

dV0 =
∫

V0

(
�E
�u

)T

�

D
(

�E

�u

)
dV0. (97)
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Table I. Conservative algorithm with algorithmic damping.

(1) Initial conditions:
u0, v0

(2) Prediction step:

�u= (2/
)(2/
h+ ¯̃XD)−1(v−X̃Dx)n

(3) Residual calculation:
u=un +�u

r=2f∗−2g∗
� −
(2/
h+ ¯̃XD)M(2/
h+ ¯̃XD)�u

+(4/
h)M(vn − ¯̃XDxn)+2 ¯̃XT
DM ¯̃XDxn

(4) Displacement sub-increment:

K∗ =
(Kg
∗ +Kc∗)+
(2/
h+ ¯̃XD)M(2/
h+ ¯̃XD)

�u=K−1∗ r
�u=�u+�u

If r>εr or �u>εu repeat from (3).

(5) State vector update:

�v= (2/
h+ ¯̃XD)�u−(2/
)(vn − ¯̃XDxn)
un+1 =un +�u
vn+1 =vn +�v

(6) Return to (2) for new time step, or stop.

In this formula the last factor refers to the current state, and thus the algorithmic equivalent of the
constitutive stiffness matrix is

Kc
∗ =
∫

V0

{
1+�

2

(
�E
�u

)T
n+1

D
(

�E
�u

)
n+1

+ 1−�

2

(
�E
�u

)T
n

D
(

�E
�u

)
n+1

}
dV0. (98)

In the last term the two factors refer to the states at tn and tn+1, respectively. A formulation in
which both the last factors refer to the state at tn would correspond to a direct �-mean of the
constitutive stiffness matrix,

Kc
∗ �K̄c

�. (99)

This approximation for the algorithmic constitutive stiffness matrix corresponds in form to the exact
result (96) for the geometric stiffness matrix. The approximation of the algorithmic constitutive
stiffness has the advantage of avoiding any calculations with reference to combined or intermediate
states, and numerical calculations, e.g. in [6], indicate the near optimal convergence when using
this approximation.

The algorithm is summarized in pseudo-code format in Table I. In the examples presented in
the following section both of the algorithmic stiffness matrices Kg

∗ and Kc∗ have been represented
as �-mean values as indicated in (96) and (99).

7. EXAMPLES

The following three examples illustrate the properties and accuracy of the hybrid state-space time
integration algorithm. The first two examples illustrate accelerated rotation and damping properties
using the rotating beam, originally introduced by Kane et al. [21] and later used in numerous
studies, typically in the form defined by Simo and Vu-Quoc [22, 23]. The third example deals
with vibrations and damping of a rotating U-shaped frame with multiple closely spaced vibration
modes.
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Figure 2. Kane’s driver.
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Figure 3. Kane’s driver: (a) transverse displacement u2 and (b) axial displacement u1.

7.1. Transient acceleration of Kane’s driver

The beam problem originally introduced by Kane et al. [21] is illustrated in Figure 2. It consists
of a slender beam of square cross section with beam axis x1, rotating around the x3-axis with
angular velocity �3. The beam properties in common use were defined by Simo and Vu-Quoc
[22, 23] in terms of beam section parameters. They are equivalent to a beam of length L =10m,
with a square cross section with side length b=0.0775m. The beam material is homogeneous and
isotropic elastic with E =4.67GPa and G =2.00GPa, and the mass density is �=200kg/m3. It is
noted that this is a very slender beam.

The beam is rigidly fixed at the axis and is analyzed for a spin-up in which the angular velocity
increases over a period of Ts =15s to its final stationary value �s =6rad/s according to

�3(t)=

⎧⎪⎨
⎪⎩

�s

Ts

[
t −
(

Ts

2�

)
sin

2�t

Ts

]
, 0�t�Ts,

�s, t>Ts .

(100)

The beam is modeled using 10 3D 20-node iso-parametric elements with quadratic shape functions.
The time step is h =0.05s, and the iteration convergence criteria are εr =10−3 and εu =10−12.

Results are illustrated in Figure 3 showing the transverse displacement u2 and the axial displace-
ment u1 as functions of time. The transverse components shows the backward bending of the
beam in the angular acceleration phase, and the axial displacement shows an apparent shortening
from bending in the acceleration phase, changing into a small elongation due to the centrifugal
force in the final near-stationary phase. The results correspond closely to those of Simo and
Vu-Quoc [22, 23], although the present time step is 10 times larger. Actually the critical aspect
when selecting the time step in the present problem is the period error that accumulates in the
vibrations generating the small ripples in the response after reaching stationary rotation speed �s
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Figure 4. Kane’s driver: (a) normalized energy and (b) normalized angular
momentum components L1 (+), L2 (×), L3 (�).
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Figure 5. Local vibration shapes (×50).

at Ts . The present algorithm, like most time integration algorithms with quadratic convergence, has
the same quadratic vibration period error as the Newmark algorithm, as discussed in [12]. Thus,
the period offset grows linearly with time, and care must be exercised to limit the accumulated
effect by selecting a sufficiently small time step.

The development of the mechanical energy and the components of the angular momentum are
shown in Figures 4(a) and (b), respectively. The curves are normalized with respect to E0 and
L0 corresponding to stationary rotation at the final angular velocity. The energy E and the axial
component of the angular momentum L3 follow the development of angular velocity with a slight
delay, and the near-stationary final phase exhibits small oscillations, due to the moment arising
from the fixed connection at the axis. This moment is calculated from the algorithm, and the present
problem is therefore not well suited for a precise illustration of the conservation and damping
properties of the algorithm. These aspects are illustrated in the following examples in connection
with free vibration problems.

7.2. Vibrations of hinged rotating beam

In this example the beam from the previous example is hinged at the axis, whereby the energy is
either conserved or dissipated by algorithmic damping. The frame rotates with the angular velocity
�3 =0.1rad/s, and the beam performs local vibrations within the rotating frame. The vibrations
are initiated from a state in which the beam is extended by the centrifugal force and given an
initial transverse velocity component

u̇2(x1)= (x1/L)[4(x1/L)−3]u̇max

that does not contribute to the angular momentum (see Figure 5). Axial initial velocity components
u̇1 are determined corresponding to the cross sections remaining orthogonal to the beam axis. The
amplitude of the vibrations is determined by setting the ratio between local kinetic energy and the
global kinetic energy before imposing the local velocity,

1
2 u̇T

0 Mu̇0 =0.15 1
2 vT

0 Mv0.

This balance leads to the local tip velocity u̇max =0.5m/s, corresponding to half of the global tip
velocity contribution from the rotation of the frame, �3L =1.0m/s.
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Figure 6. Hinged beam: �3 =0.1rad/s: (a) mechanical energy E (−) and kinetic energy
T (−) and (b) energy decay �E (−), e−2	3�3t (×).
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Figure 7. Hinged beam: �3 =0.1 rad/s: (a) angular momentum components L1 (+), L2 (×), L3 (�) and
(b) relative change of angular momentum component L3.

The beam is modeled with 10 3D 20-node iso-parametric elements as in the previous example,
but using the time step h =0.01s. With an angular vibration frequency of �3 =16.82rad/s, corre-
sponding to �3h =0.17, this gives 37 time steps per vibration period. The convergence criteria are
εr =10−3 and εu =10−12. With these parameters and �=0 the energy and the angular momentum
are conserved to within a relative accuracy of 10−12.

Algorithmic damping is now introduced via the parameter �=0.05, corresponding to a damping
ratio of 	3 � 1

2�(�3h)=0.0043. The development of the mechanical energy is illustrated in Figure 6.
Figure 6(a) shows the total energy as the slowly decreasing curve and the kinetic energy by the
oscillating curve below. It is seen that the minima of the kinetic energy corresponds closely to the
value 1/1.15=0.87, which is the fraction of the kinetic energy associated with the global rotation.
The attenuation of the local vibration energy is illustrated in Figure 6(b). It is seen to be well
represented by the exponential decay (85) predicted by the linearized theory.

The components Li of the angular momentum vector are shown in Figure 7(a). In the undamped
case these components were conserved to within an accuracy of 10−12L0. In the present case with
algorithmic damping there is a small but systematic change in the component L3 along the rotation
axis, illustrated in Figure 7. The relative change of the L3-component is due to the higher order
additional second term in the damped momentum balance equation (86). In the present case, where
a fairly fine time discretization is used, the relative decrease in L3 grows to around 10−6.

7.3. Rotating U-frame

This last example deals with a rotating frame with interior length L =2.0m, interior height H =
0.5m, and quadratic cross section b=0.1 m. The material is linear elastic in Green strains with
E =100MPa, �=0.3, and �=103 kg/m2. The frame is modeled by 14 20-node iso-parametric
elements with quadratic shape functions. The time step is h =0.01s, and the convergence criteria
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are εr =10−3 and εu =10−12. The example illustrates the effect of damping on structures with
closely spaced modes and the influence of rotation speed.

The natural vibration modes and the corresponding eigenfrequencies of the undamped frame
are determined from the eigenvalue problem⎛

⎝
⎡
⎣Kc +Kg X̃DM

MX̃
T
D M

⎤
⎦+ix j

[
0 M

−M 0

]⎞
⎠
[

u

v

]
j

=
[

0

0

]
(101)

following directly from the hybrid format (36) of the equations of motion, when the internal
force is linearized. These equations are somewhat simpler than the traditional format proposed in
[14, 15, 17]. The first six natural vibration modes of the U-frame in a stationary frame of reference
are shown in Figure 8. Mode shapes and frequencies change slightly with increasing rotation
frequency, but these changes are negligible up to �3 �1rad/s used in the present illustrations.

In this example the vibrations are excited by combining an initial displacement field corre-
sponding to rotation at constant angular velocity �3 with an in-plane initial velocity, targeting the
in-plane modes 3 and 4. The displacement field for rotation at constant angular velocity is shown
in Figure 9(a). The initial velocity field is proportional to the displacement field, Figure 9(c),
generated by the force couple shown in Figure 9(b), with the maximum initial velocity component
u̇max =0.5m/s. The initial velocity field primarily excites modes 3 and 4, and leads to interference
of these modes.

Figure 10 shows the development in the mechanical energy for a rotation with angular velocity
�3 =0.2rad/s. Algorithmic damping is included with �=0.05, corresponding to a damping ratio
of 	i = 1

2�(�i h)�0.004. It is seen that the local part of the energy amounts to about 70 pct. of
the total initial energy, and that the dissipation of this part of the energy is dissipated as predicted
by the exponential relation (85). Figure 11 shows the similar results when the angular velocity
is increased to �3 =1.0rad/s. In this case the local part of the energy initially constitutes only
10 pct. of the total energy. However, the dissipation of the local energy follows the same exponential
curve, when expressed in terms of relative energy.

Figure 8. Solid U-frame: natural modes.

Figure 9. Solid U-frame: (a) stationary displacement field (×2000); (b) static load case;
and (c) initial velocity field (u̇max =0.5m/s).
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Figure 10. Solid U-frame, �3 =0.2rad/s: (a) mechanical energy E (−) and kinetic energy T (−)
and (b) energy decay �E (−), e−2	3�3t (×).
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Figure 11. Solid U-frame, �3 =1.0rad/s: (a) mechanical energy E (−) and kinetic energy T (−)
and (b) energy decay �E (−), e−2	3�3t (×).
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Figure 12. Solid U-frame, angular momentum components L1 (—), L2 (—), L3 (- -):
(a) �3 =0.2rad/s and (b) �3 =1.0rad/s.

Finally, the components Li of the angular momentum vector are shown in Figure 12. At the
angular velocity �3 =0.2rad/s, shown in Figure 12(a) the initial value of the component L2,
generated by the in-plane vibration, is comparable to L3 from the global rotation of the frame.
However, while the largely global L3 is constant without attenuation, the L2 component oscillates
and is attenuated as part of the local vibration. At the higher rotation speed �3 =1.0rad/s, illustrated
in Figure 12(b), the relative magnitude of the local L2 component is reduced to 20 pct. and ‘beats’
start to become visible because the frequency difference �4 −�3 has increased from 0.13 rad/s in
the previous case to 0.31 rad/s in the present case, leading to a reduction of the beat period by a
factor of 0.42.
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8. DISCUSSION

A hybrid state-space consisting of local displacements and global velocities has been developed
for dynamic analysis of structures in a rotating frame of reference. An important feature is that the
local displacement and the global velocity are represented in terms of the same family of shape
functions. As a consequence of this discretization, all inertial effects are expressed directly in
terms of the classic mass matrix. In the hybrid state-space the equations of motion correspond to
the dynamic equation of motion and a momentum equation defining the absolute velocity in terms
of local components. This formulation gives a very simple structure of the equations of motion,
consisting of time derivatives with a skew-symmetric coefficient matrix, and current values of local
displacement and global velocity combined via a symmetric coefficient matrix. It is remarkable that
neither the centrifugal force nor the angular acceleration appears directly in the hybrid state-space
equations of motion, but is represented indirectly via use of the global velocity.

An energy conserving time discretization is obtained by using the mean value of the angular
velocity together with internal forces expressed in terms of the finite derivative of the elastic
potential. Algorithmic damping is introduced via an argument by which a damped response is
restored to undamped form by an increasing exponential factor. This argument can be represented
in algorithmic form via forward weighting of mean values of the hybrid state-space variables. For
linear elastic materials represented in terms of Green strain the effect of forward weighting of the
displacements on the internal forces is expressed in explicit form in terms of forward weighting
of the internal forces plus an additional term formed by the increment of the geometric stiffness.
Thus, no intermediate state is needed within the time step. The effect of algorithmic damping
corresponds closely to exponential decay of the local response, and the damping parameter is
simply related to an algorithmic damping ratio.
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a b s t r a c t

An efficient time integration algorithm for the dynamic equations of flexible beams in a rotating frame of
reference is presented. The equations of motion are formulated in a hybrid state-space format in terms of
local displacements and local components of the absolute velocity. With inspiration from Hamiltonian
mechanics, where displacement and momentum have similar roles, both sets of state-space variables
are interpolated between nodes by the same shape functions, leading to a general format where all inertia
effects are represented via the classic constant mass matrix, while effects of the system rotation enter via
global operations with the angular velocity vector. The algorithm is based on an integrated form of the
equations of motion with energy and momentum conserving properties, if a kinematically consistent
non-linear formulation is used. A consistent monotonic scheme for algorithmic energy dissipation in
terms of local displacements and velocities, typical of structural vibrations, is developed and imple-
mented in the form of forward weighting of appropriate mean value terms in the algorithm. The algo-
rithm is implemented for a beam theory with consistent quadratic non-linear kinematics, valid for
moderate finite rotations. The equations of this non-linear beam theory are generated in explicit form
by extension of the constitutive stiffness and the geometric stiffness of a linear beam theory at the ele-
ment level. The performance of the algorithm is illustrated by numerical examples.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The use of beammodels to represent rotating structures such as
wind turbine rotors or propellers has attracted considerable inter-
est for several decades. The various formulations may be divided
into two fundamentally different approaches where either one or
several intermediate reference frames are introduced for the body
or its substructures, allowing deformations to be considered
relative to the reference frames, or geometrically fully non-linear
formulations in a global frame accounting for large displacements
and finite rotations. Floating frame formulations are widely used
and computationally attractive, as the large overall motion can be
described by themotion of the local frame, while the local deforma-
tions in many applications may be assumed small or moderate
[1–3]. In spite of this kinematic simplification an accurate represen-
tation of the geometric stiffness is needed to correctly balance the
effect of centrifugal forces, see e.g. [3]. The geometric stiffness
may be included either with reference to a reference stress with
respect to the initial configuration [4], or using the current
geometry [5]. The moving frame of reference introduces additional

inertia terms associated with Coriolis and centrifugal effects. In the
traditional formulations the local velocities are obtained from time
differentiation of the local displacements inside the element. This
leads to terms representing the convected velocities, in which the
angular velocity appears inside the defining integrals over the
element volume. In the case of iso-parametric elements, where
the coordinate components are represented by use of identical
interpolation functions, the dependence of the angular velocity
can be moved outside the volume integrals, but for typical beam
elements the different components are represented by different
interpolation functions, leaving the angular velocity inside the
integrals on the element level. Therefore, such formulations require
recalculation and reassembly of the global matrices accounting for
the inertia effects for each time step, or alternatively, reorganiza-
tion in terms of several auxiliary mass matrices [1].

For large-deformation problems the co-rotating formulation,
originally proposed by Belytschko and co-workers [6,7], is often
applied. This introduces a reference system that closely follows
the rigid body motion of each finite element as opposed to the
floating reference frame formulation, where a single reference
frame is used for all or a group of elements in the structure. This
allows for incremental procedures using non-isoparametric
elements in terms of small rotations, while the non-linearities
are accounted for by rotation of the local frames. However, this
requires that changes in elastic forces due to finite rotations are
represented correctly, which in the three-dimensional case is a
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non-trivial task. Consistent tangential stiffness formulations can be
found in [8,9]. In [6] a convected coordinate approach is proposed
for dynamic analysis under the assumption that the nodal forces
are self-equilibrating. However, this condition leads to a very sen-
sitive iteration scheme, which for small out-of-balance forces may
lead to instabilities. The work has been further developed in [10],
where the Cauchy stress tensor is introduced for evaluating
the internal work in connection with an energy conserving
integration scheme, and in [11] where a linear beam theory in
the local frame is used under a small-strain assumption. Common
for these approaches is that the kinetic energy is evaluated in the
initial frame, while the elastic energy is derived, first in the local
frame, and then transformed into the global frame using the
kinematic relationship. This leads to an uncoupled form of the
inertia terms and the non-linearities only appear in the transfor-
mation of the displacement components between local and global
frame.

In a global frame non-linear kinematics must be used and the
inertia terms appear directly [12]. These methods are well-estab-
lished for iso-parametric elements, where they lead to a constant
mass matrix. However, formulations involving finite rotations be-
come considerably more complicated due to the intrinsic nonlinear
nature of the parametrization of rotations. This problem is circum-
vented by the absolute nodal coordinate formulation [1,13,14]. The
crucial step is the use of slopes as nodal coordinates instead of
rotation parameters, leading to Hermitean element interpolation
for beams and plates with properties similar to iso-parametric ele-
ments. The absolute nodal coordinate formulation therefore leads
to a constant mass matrix, while the elastic forces are nonlinear
functions of the element coordinates.

An important aspect is the integration of the dynamic equa-
tions, for which conservative methods based on an integrated form
of the equations of motion have been the subject of extensive re-
search over the last two decades. The original form was presented
for rigid body dynamics by Simo and Wong [15] and extended to
non-linear elastodynamics by Simo and co-workers in terms of a
midpoint state of internal forces [16,17]. The basic principle has
been generalized to non-linear elasticity via the concept of a finite
derivative by Gonzalez [18]. An attractive formulation has been
developed for linear elastic models in terms of Green strains in
which the integral of the internal forces over a time step is repre-
sented by the mean value of end-point states plus an extra term
involving the increment of the geometric stiffness [19]. In these
methods algorithmic damping may be incorporated by forward
weighting of the mean value terms as demonstrated in [20] and
extended to high-frequency damping in [21].

In the present paper the conservative time integration algo-
rithm for translation-based solid elements in a rotating frame of
reference presented in [22] is extended to beam elements
including finite rotations of moderate magnitude. The equations
of motion are formulated in a hybrid state-space format in terms
of local displacements and absolute velocities. This leads to a
simple and direct form of the state-space equations of motion.
The classic rotating frame formulation of dynamics in terms of
local displacements and local velocities leads to a vibration
eigenvalue problem with a somewhat artificial stiffness format of
the momentum equation [24–26]. Furthermore, the classic
approach, in which the local velocity is obtained by time differen-
tiation of the local displacement at a generic point, leads to repre-
sentation of Coriolis and centrifugal terms in which the angular
velocity of the frame appears within the defining element inte-
grals. In contrast, the present formulation makes an appeal to
Hamiltonian mechanics in which momentum and displacement
are treated identically. Therefore the displacement and the velocity
defined at the nodes are represented by use of identical interpola-
tion functions. Hereby, all inertial effects are described by the

classic mass matrix, and operations using the angular velocity of
the frame are applied to the assembled mass matrix.

In Section 2 the kinematic relations between the local displace-
ments and the local components of the absolute velocities are
established. The equations are collected in a compact block
matrix/vector format, combining the translation and the rotation
degrees of freedom. Furthermore, the independent interpolation
of local displacements and absolute velocities is introduced. In
Section 3 the equations of motion are derived from Lagrange’s
equations and combined with the kinematic equation into the
hybrid state-space format. This constitutes the basis for the devel-
opment of the integration algorithm, that is developed in Section 4.
A simple consistent algorithmic dissipation is introduced via the
local energy balance equation. The integration algorithm takes a
particularly simple form for elements with quadratic kinematics,
and this form is summarized in Section 5. Section 6 gives a brief
presentation of a method for constructing structural elements with
consistent quadratic kinematics from the corresponding linearized
elements with geometric stiffness based on the initial stress
formulation. Finally, numerical examples illustrating the accuracy
and the conservation and damping properties of the algorithm
are presented in Section 7.

2. Hybrid state-space

The equations of motion can be established using a configura-
tion as illustrated in Fig. 1. The {x1,x2,x3}-coordinate system
represents a fixed global frame of reference, while the {x1,x2,x3}-
coordinate system represents a rotating frame of reference in
which the structure is described.

Let a discretized beam model be described via N nodes with
coordinates x1, . . . ,xN in the fixed global frame of reference and
coordinates x1, . . . ,xN in the local rotating frame of reference. For
simplicity of notation the origin of the rotating frame coincides
with the origin of the fixed frame of reference. Hereby the transfor-
mation between the position xj and the absolute position xj can be
expressed by a rotation in the form

xj ¼ Rxj; ð1Þ
where R defines a proper orthonormal tensor RTR = I, whose col-
umns contain the global components of the rotating frame axis unit
vectors R ¼ ½x̂1; x̂2; x̂3�. The absolute velocity components are deter-
mined from time differentiation as

vj ¼ R _xj þ _Rxj ð2Þ
and the corresponding local frame components follow by pre-mul-
tiplication with RT,

vj ¼ RTvj ¼ _xj þ RT _Rxj: ð3Þ

Fig. 1. Beam structure in local frame x1, x2, x3 rotating with angular velocity X.
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The product of the rotation matrices in the last term defines the
local components of the angular velocity vector X trough the
relation,

X� ¼ eX ¼ RT _R; ð4Þ
where eX denotes the skew-symmetric matrix representing the
cross-product with the angular velocity vector X = [X1 X2 X3]T,

eX ¼
0 �X3 X2

X3 0 �X1

�X2 X1 0

264
375: ð5Þ

When this is inserted into (3), the velocity relation takes the generic
form

vj ¼ Dtxj ¼ ð@t þ eXÞxj; ð6Þ
where @t is the partial time derivative, and the convective contribu-
tion due to the angular velocity of the local frame is included in the
absolute derivative Dt. This provides the basis for interpolation of
translation based elements, in which the displacements are
described entirely in terms of nodal translations [22]. However,
for elements such as beam elements that include rotational degrees
of freedom a modification is required.

For three-dimensional elements with finite rotations of moder-
ate magnitude the configuration can be described by three transla-
tional and three rotation degrees of freedom the local configuration
of node j is described by the six component format,

xTj ¼ ½xT ;uT �j ¼ ½x1; x2; x3;u1;u2;u3�j: ð7Þ
The rotations are parameterized in terms of the three-component
pseudo-vector format

u ¼ un; ð8Þ
where u denotes the angle of rotation around the direction unit
vector n, see e.g. [9]. In the following derivations it is convenient
to represent the nodal position vector in terms of the initial position
x0
j and the local displacements uj,

xj ¼ x0
j þ uj: ð9Þ

The translational velocity contribution due to the rotation of the
local frame follows from (6), while the angular velocity of the local
frame constitutes an additive contribution to the local angular
velocity, which for moderate local rotations is represented as _uj.
Thus the global six-component velocity vector is expressed as

v j ¼
_uj þ eXxj

_uj þX

" #
; ð10Þ

where the effect of the rotation on the global velocity appears via
extra terms containing the angular velocity of the frame in the formeX and X, respectively.

2.1. Interpolation

The generalized local position vectors for the N nodes in the
structure are conveniently organized as

xT ¼ xT1; x
T
2; . . . ; x

T
N

� �
; ð11Þ

where xT
j ¼ xT

j ;u
T
j

h i
contain the spatial position and orientation,

respectively, for node j. The system format for the absolute velocity
vector is organized in the similar form

vT ¼ vT
1;v

T
2; . . . ;v

T
N

� �
; ð12Þ

where the N nodal velocity vectors vj are determined from (10). The
system format for the absolute velocity can then be expressed in

terms of the generalized nodal position vector x, its time derivative
_x and an additive contribution to the rotational degrees of freedom

v ¼ DtxþXC ¼ _xþ eXDxþXC : ð13Þ
The block matrices eXD and XC are introduced as

eXD ¼
eX

0
. .
.

2664
3775; XC ¼

0
X

..

.

264
375 ð14Þ

where the block matrices d eX 0c and [0T XT]T are repeated for each
node of the structure. The subscript D indicates an N-time repeated
block diagonal form and the subscript C indicates a N-time stacked
column format, respectively. In this way the inertia effects associ-
ated with translations are accounted for by the matrix eXD, while
the matrix XC accounts for the rotational part.

A crucial step in the finite element formulation is the shape
function interpolation of the motion of an arbitrary internal point
with material coordinate n. The interpolation of the nodal positions
is expressed as

xn ¼ NðnÞx; ð15Þ
where N(n) denotes a suitable interpolation in terms of the internal
coordinate n. Traditionally, the global velocities have been obtained
from the interpolated displacement at each point of the structure.
This leads to a form, in which the convective term is represented
via the product eXNðnÞ. When forming the mass matrix this term
leaves the system rotation matrix eX inside the integration of the
element mass matrices. In case of variable angular rotation velocity
X the global inertial matrices will then have to be reassembled.
Alternatively, the mass matrix can be reorganized into several sep-
arate matrices as explained e.g. in [1]. In the special case of iso-
parametric elements with translation degrees of freedom the order
of the factors can be interchanged to give the interpolation of the
convection velocity in the form NðnÞ eXD, see e.g. [22]. A general solu-
tion to this problem follows from the basic structure of Hamiltonian
mechanics, where displacement and velocity – in the form of
momentum – have the same status. In the present context this
amounts to representation of local displacements and global veloc-
ities by their nodal values, with internal element values obtained by
use of identical interpolation schemes. According to this principle
the internal local velocity is represented as

vn ¼ NðnÞv ¼ NðnÞ½ð@t þ eXDÞxþXC �: ð16Þ
This format, with identical interpolation of local generalized
displacements and local components of the absolute velocity,
constitutes a consistent generalization of the special case of iso-
parametric elements, where it follow by direct matrix manipula-
tions [22]. In addition to its close link to the basic principle of
Hamiltonian mechanics this format also leads to considerable
simplifications in the computational procedures by placing the
angular velocity of the frame of reference outside the global system
matrices.

3. Equations of motion

The equations of motion are conveniently derived from
Lagrange’s equations. In standard notation d _u is in column format,
and it then follows from the scalar nature of the increment of the
kinetic energy dT ¼ ð@T=@ _uÞd _u that the partial derivative @T=@ _u
is in row format. Thus, the equations of motion are obtained from
Lagrange’s equations in the form

d
dt

@T
@ _uT

� �
� @T
@uT þ

@G
@uT ¼ f ð17Þ
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in terms of the kinetic energy T(v) and an elastic potential G(u),
where f contains the external generalized forces. The kinetic energy
is determined by integration of the specific kinetic energy in terms
of absolute velocities (16) over the volume of the body. As the inter-
polation refers to initial geometry, this leads to the form

T ¼ 1
2
vTMv ð18Þ

in terms of the classic mass matrixM, which is constant in the pres-
ent application. The effect of rotation of the local frame of reference
is implicitly accounted for via the representation of the absolute
velocity vector v. The first term in Lagrange’s equations is deter-
mined from the time derivative of the term

@T
@ _u

¼ vTM
@v
@ _u

¼ vTM: ð19Þ

For a constant mass matrix M the column format of the time deriv-
ative is

d
dt

@T
@ _uT

� �
¼ M _v : ð20Þ

The second term of Lagrange’s equation follows from

@T
@u

¼ vTM
@v
@u

¼ vTM eXD; ð21Þ

where the partial derivatives @v/@u are obtained from (13).
Finally, the third term is identified as the generalized internal

forces. Assuming elastic material properties, the generalized inter-
nal forces g(u) follow as the displacement derivative of the elastic
potential G(u),

gðuÞ ¼ dGðuÞ
duT : ð22Þ

This gives the dynamic equations of motion in the form

ð@t þ eXDÞMv þ gðuÞ ¼ f ; ð23Þ
where the overall rotation of the rotating frame is accounted for by
the convective time differentiation Dt ¼ @t þ eXD and the absolute
velocity (13). Traditionally this non-linear second order differential
equation is solved by collocation-based integration algorithms such
as Newmark or generalized a-methods, in which approximate
expressions are used to express local displacement and velocity
increments in combination of matching the equations of motion
at discrete points in time. This formulation leads to undesirable
approximations in the representation of gyroscopic and centrifugal
forces, and also has some inconsistencies in the representation of
material and algorithmic damping, see e.g. [23]. In the following
the hybrid state space formulation introduced in [22] for transla-
tion-based iso-parametric elements is extended to elements with
rotation degrees of freedom, and an improved basis for algorithmic
damping presented.

3.1. Hybrid state-space format

The hybrid state-space variables consist of the local node dis-
placements u and the absolute node velocities v. These state-space
variables are governed by a kinematic equation defining the veloc-
ity and a dynamic equation determining the motion. The kinematic
equation is conveniently expressed in terms of the generalized dis-
placement u and the generalized initial position vector x0 from (9),

v ¼ ð@t þ eXDÞuþ eXDx0 þXC : ð24Þ
This equation has considerable similarity with the dynamic
equation of motion (23), and the two equations are conveniently
combined in the following block-matrix format

0 M
�M 0

� �
_u
_v

� �
þ gðuÞ þ eXDMv

M eXT
DuþMv

" #
¼

f

�M eXT
Dx0 �XC

� 	" #
;

ð25Þ
where the external load and the part of the convective terms asso-
ciated with the initial position are collected at the right hand side of
the equations. On the left hand side the block matrix associated
with the time derivatives is anti-symmetric, while the inertial con-
tributions in the second block matrix exhibit symmetry. It is noted
that all inertia effects related to the motion of the local frame are
accounted for via the gyroscopic term eXDM and its transpose.
Therefore the angular acceleration as well as quadratic terms in
angular velocity, associated with centrifugal forces, are accounted
for implicitly. In the classic formulation in terms of the generalized
local displacement u and its time derivative _u [25,26], a similar
structure in terms of anti-symmetric and symmetric block matrices
is obtained by expressing the second equation in a stiffness format
and neglecting the angular acceleration. The present system pro-
vides a more general format and preserves the interpretation of
the second equation as a kinematic relation in terms of the momen-
tum of the system.

The energy balance is conveniently derived directly from the
hybrid state-space format (25) by pre-multiplication with ½ _uT ; _vT �.
This leads to the scalar equation

_uTgðuÞ þ _vTMv þ _xT eXDMv � _vTMð eXDxþXCÞ ¼ _uT f : ð26Þ
The first two terms are recognized as the time derivative of the elas-
tic potential G(u) and the kinetic energy of the absolute motion.
When the time-derivative of the angular velocity terms are ac-
counted for, the latter two terms can similarly be integrated as

d
dt

1
2
vTMv�vTMð eXDxþXCÞþGðuÞ


 �
þvTMð _eXDxþ _XCÞ¼ _uT f : ð27Þ

When v is substituted from the kinematic equation (24), the linear
terms in eXD andXC are canceled by the second term and the energy
equation takes the form

d
dt

1
2
_uTM _u� 1

2
ð eXDxþXCÞTMð eXDxþXCÞ þ GðuÞ


 �
þ vTMð _eXDxþ _XCÞ ¼ _uT f : ð28Þ

This constitutes the local form of the energy balance equation. The
rotation of the local frame is accounted for by a potential due to the
centrifugal forces which is included inside the braces, and a term
containing the angular acceleration of the local frame. It is noted
that even for a stationary rotating system, the work performed by
the centrifugal forces, leads to a modification of the local energy
potential.

4. Integration algorithm

The hybrid state-space format (25) is particularly suitable for
the development of an accurate and efficient algorithm for inte-
gration of the equations of motion in a rotating frame of refer-
ence. First the increments of the hybrid state-space variables
[DuT,DvT] are determined by integration over a time interval
h = tn+1 � tn.

0 M
�M 0

� �
Du
Dv

� �
þ
Z
h

gðuÞ þ eXDMv
Mð eXT

Dx�XCÞ þMv

" #
dt ¼

Z
h

f
0

� �
dt:

ð29Þ
It is noted that the right hand side accounting for the initial position
x0 has been absorbed in the term for the current x. The involved
integral terms are initially expressed in terms of ‘suitable mean
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values’ representing the integral, which has been denoted by the
asterisk.

0 M
�M 0

� �
Du
Dv

� �
þ h

gðuÞ� þ ð eXDMvÞ�
Mð eXT

Dx�XCÞ
� 	

�
þ ðMvÞ�

24 35 ¼ h
f �
0

� �
:

ð30Þ
The ‘suitable mean values’ are then determined such that the dis-
crete version of energy balance represents the corresponding con-
tinuous balance.

The absolute velocity integral is represented by its mean value
h�v . Representative values for the gyroscopic terms are determined
from the finite energy balance to be represented by the mid-point
rule in both factors, whereby

ð eXDMvÞ� ¼ eXDM�v; M eXT
Dx�XC

� 	� 	
�
¼ Mð eXT

D
�x�XCÞ: ð31Þ

In the absence of an external load potential the external force f⁄ is
approximated by its arithmetic mean value �f . If a potential is avail-
able, a finite derivative can be used, [18]. When this is introduced
into the discretized hybrid state-space equation (30), they take
the form

0 M
�M 0

� �
Du
Dv

� �
þ h

gðuÞ� þ eXDM�v

M eXT
D
�uþM�v

24 35 ¼ h
�f

�M eXT
Dx0 �XC

� 	24 35:
ð32Þ

For elastic material behavior the internal force term g(u)⁄ is the fi-
nite derivative of the elastic potential G(u) [18],

DGðuÞ ¼ DuTgðuÞ�: ð33Þ
For linear elasticity with non-linear Green strain the finite deriva-
tive corresponds to using stresses and strains corresponding to a
mean state [16]. When using a quadratic format for the generalized
strains in the present problem, as explained in Section 6, the inter-
nal force term can be recast into the mean value of the internal
forces at tn and tn+1 plus an extra term,

gðuÞ� ¼
1
2
½gnþ1 þ gn� �

1
4
DKgDu; ð34Þ

where DKg is the increment of the geometric stiffness matrix [19].
The advantage of this formulation is that it is in global form and
avoids the introduction of a mean state at the element level.

4.1. Discrete energy balance

The energy balance equation for the discretized algorithm repro-
duces its continuous counterpart (28). It is obtainedbypre-multipli-
cation of the hybrid state-space format (32) with [DuT,DvT]. The
contributions from the first matrix vanish due the skew-symmetric
format, leaving the discrete energy balance equation in the form

1
2
vTMv þ GðuÞ

� �nþ1

n

þ DuT eXDM�v � DvTMð eXD�xþXCÞ ¼ DuT�f ;

ð35Þ
where the contributions from the diagonal terms have been identi-
fied as the increments of the absolute kinetic energy and the local
elastic energy DG. The angular velocity is represented by its mean
value and the last two terms can then be represented in incremental
form

1
2
vTMv � vTMð eXDxþXCÞ þ GðuÞ

� �nþ1

n

¼ DuT�f : ð36Þ

When introducing the increment of the angular velocity DX the
mean value of the angular velocity can be expressed by its value

in the upper and lower limit. Hereby the energy balance equation
becomes

1
2
vTMv � vTMð eXDxþXCÞ þ GðuÞ

� �nþ1

n
þ vTMðD eXDxþ DXCÞ

¼ DuT�f : ð37Þ
This equation is an integrated form of the energy balance equation
(27), in which the angular acceleration is represented via its incre-
ment, _Xh ¼ DX.

The local form of the energy balance can now be obtained by
expressing the absolute velocity v in terms of the local velocity _u
from (24). Hereby the discrete energy balance equation follows as

1
2
_uTM _u� 1

2
ð eXDxþXCÞTMð eXDxþXCÞ þ GðuÞ

� �nþ1

n

þ vTMðD eXDxþ DXCÞ ¼ DuT�f ð38Þ
after the linear terms in the angular velocity are canceled by the
second term in the brackets. This closely corresponds to the contin-
uous energy balance (28), including the term due to accelerated
rotation.

4.2. Algorithmic damping

High-frequency components in any discretized signal suffer
from aliasing, whereby they are displaced from their original fre-
quency to a frequency within the range represented in the discret-
ization. This is an undesirable side-effect of using discrete time
integration, and the effect is often reduced by introducing so-called
algorithmic damping into the time integration algorithm. Ideally,
the goal is to remove frequency components above the Nyquist fre-
quency. However, in practice this ideal goal is reduced to introduc-
ing a dissipation mechanism that leaves the low-frequency regime
virtually unaffected, while increasing the rate of dissipation mono-
tonically with increasing frequency. In the present context the
challenge is to introduce a form of the algorithmic damping that
meets these two requirements and only affects the local motion
in the local frame of reference.

A suitable format for algorithmic damping can be introduced
by considering the equilibrium at the stationary state, which fol-
lows from (23) by omitting the time dependent terms. This can
be expressed in terms of the stationary displacement us in the
form

gðusÞ � eXT
DM eXDus ¼ f þ eXT

DMð eXDx0 þXCÞ: ð39Þ
This equation clearly identifies the stiffness contribution from the
direct action of the centrifugal forces, leading to a modification of
the local energy potential, as discussed in Section 3.1. The dissipa-
tion is now introduced as a suitable fraction a of an equivalent local
energy formed on the basis of local velocity and local displacement
increments, assuming that the angular velocity can be represented
by its mean value,

D ¼ 1
2
a D _uTMD _uþ DuT K� eXT

DM eXD

� 	
Du

n o
: ð40Þ

The important points are the use of local velocity and displacement
increments, and the inclusion of the centrifugal potential in the lo-
cal stiffness K. The dissipation function (40) is now expressed in
terms of increments of the hybrid state-space variables,

D ¼ 1
2
a ðDv � eXDDuÞTMðDv � eXDDuÞ þ DuT K� eXT

DM
�eXD

� 	
Du

n o
:

ð41Þ
The quadratic terms in the angular velocity cancel, leaving the local
dissipation in the form
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D ¼ 1
2
a DvTMDv � DvTM eXDDu� DuT eXT

DMDv þ DuTKDu
n o

:

ð42Þ
This formula can be expressed in matrix format in terms of the hy-
brid state-space variable increment as

D ¼ 1
2
a½DuT ;DvT � K � eXT

DM

�M eXD M

24 35 Du
Dv

� �
: ð43Þ

For a non-rotating structure this format reduces to that used in
[20,21].

When the dissipation term is included in the equations of mo-
tion (32), they take the form

1
2ahK Iþ 1

2ah eXD

� 	
M

M �Iþ 1
2ah eXT

D

� 	
1
2ahM

264
375 Du

Dv

� �
þ h

gðuÞ� þ eXDM�v

M eXT
D
�uþM�v

24 35
¼ h

�f

�M eXT
Dx0 �XC

� 	24 35: ð44Þ

This constitutes an energy dissipative modification of the hybrid
state-space format (32), which is recovered for a = 0. It is seen that
the algorithmic dissipation is introduced via symmetric terms with
the common factor 1

2ah in the first block matrix. These terms may
be absorbed into the second matrix by replacing the equal weight-
ing of the mean values with a forward weighting, determined by the
algorithmic damping parameter a.

The present a-damping scheme can be generalized to high-fre-
quency dissipation by use of auxiliary variables that are updated
via vector relations, and therefore nearly without additional com-
putational cost [21]. Higher order accuracy can be obtained by
introducing off-diagonal block matrices � 1

12 h
2K in the first matrix

in (44) in combination with additional off-diagonal damping block
matrices � 1

2ahK in the second term [27]. However, this extension
requires solution of the full state-space equation system of size
2n � 2n. The combination of improved phase accuracy and adjust-
able damping can also be obtained via discontinuous interpolation,
using an extended format with the discontinuities represented as
internal variables [28,29].

5. Hybrid state-space integration algorithm

From an algorithmic point of view it is expedient to solve the
equations of motion (44) by first eliminating the velocity vn+1 at
tn+1 from the first equation by use of the second, and then solving
the resulting equation for the displacement increment Du. It is ob-
served that the mass matrix M appears as a factor of all the terms
of the second equation. After removing this factor this equation
takes the form

h �v þ 1
2
aDv

� �
¼ Duþ h eXD �uþ 1

2
aDu

� �
þ h eXDx0 þXC

� 	
: ð45Þ

Following [9] the algorithmic dissipation is expressed in terms of
the parameter

j ¼ 1þ a: ð46Þ
Thedisplacement andvelocitymeanvalues occurring in (45) are then
expressed in terms of previous value and increment via the relations

�uþ 1
2
aDu ¼ 1

2
jDuþ un; �v þ 1

2
aDv ¼ 1

2
jDv þ vn ð47Þ

When these expressions are substituted into (45) and u is absorbed
into the generalized position xn at tn the following compact expres-
sion for the displacement increment is obtained

Dv ¼ 2
jh

þ eXD

� �
Du� 2

j
vn � ð eXDxn þXCÞ
h i

ð48Þ

Here the term 2/jh has been used without the unit matrix in accor-
dance with standard notation in the mathematics literature. When
this is inserted as replacement for the velocity increment in the first
equation of (44), the discretized equation for the displacement
increment Du takes the form

2gðuÞ� þ j
2
jh

þ eXD

� �
M

2
jh

þ eXD

� �
þ aK

� �
Du ¼ ðf nþ1 þ f nÞ

þ 2
2
jh

þ eXD

� �
M vn � ð eXDxn þXCÞ
h i

� 2 eXDMvn: ð49Þ

A typical time step requires iterative solution of (49) for the gener-
alized displacement increment Du, followed by evaluation of the
generalized velocity increment Dv from (48).

The time integration algorithm is shown in pseudo-code format
in Table 1. At the beginning of a time step a predictor for the gen-
eralized displacement increment Du is formed by using the kine-
matic relation (48) with the assumption that the generalized
velocity increment vanishes, whereby

Du ¼ h Iþ 1
2
jh eXD

� ��1

v � ð eXDxþXCÞ
h i

n
: ð50Þ

For time steps during which the angle of rotation of the frame of ref-
erence is modest the first parenthesis can be omitted without caus-
ing essential reduction of the convergence rate. In the following
step the current value of the residual of the generalized force bal-
ance is calculated. This residual is associated with an algorithmic
stiffness matrix K⁄ determined from the first variation of the cur-
rent displacement,

d 2g� þ aKDuð Þ ¼ d gnþ1 þ gn �
1
2
DKgDuþ aKDu

� �
’ Knþ1

c þ Knþ1
g � 1

2
DKg þ aK

� �
du; ð51Þ

where the first equality follows from (34) for elements with qua-
dratic nonlinearity. When the representative stiffness matrix K,
introduced in the definition (40) of the algorithmic dissipation, is
identified as the average stiffness matrix, K ¼ K, the algorithmic
stiffness matrix follows from (51) in the form

K� ¼ Knþ1
c þ Kg þ aK ¼ jKþ 1

2
DKc: ð52Þ

This stiffness matrix and the residual are used to solve for the sub-
increment du, and the generalized velocity increment Dv then fol-
lows from the kinematic equation (48).

Table 1
Hybrid state-space algorithm for rotating structure.

(1) Initial conditions: u0, v0
(2) Prediction step (n :¼ n + 1):

Du ¼ h Iþ 1
2jh eXD

� 	�1
½v � ð eXDxþXC Þ�n

(3) Residual calculation: u = un + Du

r ¼ 2f� � 2g� � aKDu� jð2=jhþ eXDÞMð2=jhþ eXDÞDu
þð4=jhÞMvn � 2ð2=jhþ eXDÞMð eXDxn þXCÞ

(4) Displacement sub-increment:

K� ¼ jKþ 1
2DKc þ jð2=jhþ eXDÞMð2=jhþ �~XDÞ

du ¼ K�1
� r; Du ¼ Duþ du

If jrj > er or jduj > eu repeat from (3)
(5) State vector update:

Dv ¼ ð2=jhþ eXDÞDu� ð2=jÞ½vn � ð eXDxn þXC Þ�
un+1 = un + Du, vn+1 = vn + Dv

(6) Return to (2) for new time step, or stop
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For rotating beams the main effect of the rotation is often asso-
ciated with the additional stiffness from the centrifugal force. If the
local generalized displacements of the beam are small this enables
the use of a simple two-step procedure. In the first step a general-
ized displacement state is determined corresponding to stationary
rotation with the current angular velocity,

gðusÞ ¼ f � eXT
DMð eXDxs þXCÞ: ð53Þ

For small displacements the stationary generalized displacements
us can be calculated by using the constitutive matrix Kc with cen-
trifugal forces based on the initial position x0,

Kcus ¼ f � eXT
DMð eXDx0 þXCÞ: ð54Þ

The displacement field us is then used to determine the internal
forces and the corresponding geometric stiffness matrix. In the sec-
ond step the generalized displacement increment Du is found from
the linearized form of (49) using the a stiffness matrix formed by
combining the linearized constitutive and estimated geometric
stiffness. The accuracy of this approximation is illustrated in Exam-
ple 7.2.

6. Beam elements with quadratic kinematics

The present formulation assumes the structure to have an elas-
tic potential function G(u), where u contains the components of
the generalized displacements. For rotations of unlimited magni-
tude special measures must be taken to account for their non-
Euclidean nature. If using a three-parameter pseudo-vector repre-
sentation of rotations an extra term appears in the second variation
to account for the curvature of the underlying parameter space, see
e.g. [30,9]. Alternatively, a higher-dimensional parameter repre-
sentation can be used in connection with constraints, e.g. the four
parameter quaternion parameter representation [31], or a nine
parameter representation of the components of the rotation matrix
[32]. In the present context the structure is fixed in the rotating
frame of reference, whereby typical local displacements are mod-
erate. In this case considerable simplifications can be obtained by
using a kinematically quadratic theory in the local frame. Kinemat-
ically quadratic beam theories have been used successfully in con-
nection with finite rotations e.g. for post-buckling analysis by
Kouhia [33] and for rotating beams by Meijaard [34]. A key point
is the consistency of the structural model within its range of appli-
cation. It has recently been demonstrated that the classic linear-
ized theories for structural elements supplemented by a
geometric stiffness matrix based on an initial stress formulation,
typically used for stability analysis, can be extended to consistent
quadratic kinematics directly at the assembled element level by
using the constitutive and geometric stiffness matrices. A brief out-
line of the structure of this formulation is given here, while the full
details are given in [35].

A structural element with generalized displacements u contains
a number of rigid body modes, and the elastic energy can therefore
be expressed in terms of a number of deformation modes c with
fewer components than the number of generalized displacements,
see e.g. Sections 5.1 and 5.2 in [9]. The elastic energy of the ele-
ment is of the form G(c), and the corresponding generalized inter-
nal forces are defined by

s ¼ @GðcÞ
@cT

: ð55Þ

The generalized forces are obtained from the elastic energy by dif-
ferentiation ‘through’ the generalized strains c as

g ¼ @c
@u

� �T
@G
@cT

¼ FTs; ð56Þ

where the strain gradient matrix F(u) is defined by

F ¼ @c
@u

: ð57Þ

The incremental force–displacement relation is of the form

dg ¼ Kdu; ð58Þ
where the tangent stiffness matrix K follows from differentiation of
(56) as

K ¼ FT @
2GðcÞ
@cT@c

Fþ sk
@2ck
@uT@u

: ð59Þ

This relation has the well known form

K ¼ Kc þ Kg ; ð60Þ
where Kc represents the constitutive stiffness matrix, while Kg is the
geometric stiffness matrix, represented as a summation of contribu-
tions from each of the equilibrium states with generalized internal
force sk.

The theory outlined above is closed in a consistent way by
assuming that the generalized strain components ck are quadratic
functions of the generalized displacement components uj. The
strain gradient matrix F is then linear in the displacement compo-
nents, and the matrices formed by the second derivatives of ck,
defining the geometric stiffness, have constant components. For a
linearly elastic beam element the second strain derivatives of the
elastic energy are defined by a symmetric constant matrix. Thus,
the beam theory with quadratic kinematics is defined completely
by the elastic stiffness of the deformation modes, @T

c@cG, and the
coefficient matrices @T

u@uck. These matrices constitute the basis of
classic linear initial stress analysis, used e.g. for stability analysis
[36,37]. In the linearized initial stress formulation the stress state
sk in the geometric stiffness is assumed in the form of initial stres-
ses, and the strain gradient matrix F(0) is evaluated corresponding
to the undeformed state. Thus, the defining matrices can be ex-
tracted directly from existing linearized theory. The extension to
kinematically quadratic form consists in using the current state
strain gradient F(u) and the current value of the internal stress
components sk [35].

The present beam theory with quadratic kinematics is based
on an initially straight element and an asymptotic approximation
of the rotations. The range of validity of the approximation can
be estimated by comparing the numerical solution of selected
examples with exact analytical results in terms of elliptic inte-
grals for an elastica, given e.g. by Mattiasson [38,39]. These re-
sults include finite displacement of a cantilever elastica loaded
by a transverse force of constant direction at the tip. As an indi-
cation of the error a load corresponding to the tip inclination
0.15 gives a transverse tip displacement of u1 = 0.066 L with an
error of 0.8 pct.

7. Examples

This section presents four numerical examples. The first
example illustrates the accuracy of the present procedure in
relation to the eigenvalue solution of a stationary rotating blade.
The second example considers an accelerated rotation of a canti-
levered beam, originally introduced by Kane et al. [3]. This
example illustrates the transient performance of the algorithm,
and presents comparisons with fully non-linear solutions as well
as the linearized formulation. The last two examples illustrate
conservation properties of the algorithm and the controlled dis-
sipation effects related to algorithmic damping in relation to a
wind turbine blade and a three-bladed wind turbine rotor,
respectively.
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7.1. Effect of centrifugal forces on rotating blade

The accuracy of the present beam formulation and its associated
geometric stiffness is illustrated considering a frequency analysis
of a rotating blade for different angular velocities. The analysis is
based on the numerical example presented by Maqueda et al.
[40], and illustrates the capability of the present formulation to ac-
count for the effect of the centrifugal stiffening, induced by the lo-
cal frame rotation, on the eigenvalue solution. The blade is
modeled as a beam of length L with solid rectangular section of
height h and width w, rotating with constant angular velocity X0

around an axis that is orthogonal to the axis and the long side of
the cross-section. The dimensions and material properties are
summarized in Table 2.

The blade is modeled as a cantilever beam represented by 10
beam elements with a total of 66 degrees of freedom. A vibration
analysis is carried out based on the constitutive stiffness K0

c in
the initial configuration plus a geometric stiffness established from
the corresponding stationary rotation state K0

g . The eigenfrequen-
cies for the two first flap modes and the first lag mode are shown
in Table 3 for the angular velocities; 0.1X0,0.2X0, . . . ,X0.

For each of the three natural frequencies the table gives the re-
sults of the present analysis plus two sets of results from the bench-
mark study ofMaqueda et al. [40]. The resultsmarkedMBS are from
a non-linear theory based on the Green strains associatedwith large
rotations of undeformed cross-sections. In [40] this formulation is
considered as ‘geometrically exact’ and is used as reference. Of the
several other beam element formulations investigated in [40] the
Absolute Nodal Coordinate Formulation using an elastic line ap-
proach, here denotedANCF, is the alternative theory that reproduces
the results of the ‘geometrically exact’ theorymost closely. It is seen
that the present formulation in terms of simple explicit matrices
agrees with the reference results within an accuracy of 0.1% over
the full range of rotation frequencies and performs better than the
various fully kinematically non-linear formulations in terms of
absolute nodal coordinates, also considered in [40].

7.2. Kane’s driver

This example illustrates the properties and accuracy of the hy-
brid state-space algorithm, and the relation between non-linear
and linearized beam theory in relation to transient analysis is con-

sidered. A spin-up sequence of a prismatic beam rotating about a
fixed axis is considered. The beam was originally introduced by
Kane et al. [3], and has been widely adopted as a benchmark prob-
lem when modeling rotating structures, see e.g. [12,10,34], where
the latter provides numerical values suitable for comparison. For
the present analysis parameters corresponding to [12] have been
used. These are equivalent to a beam of length L = 10 m with a
square cross-section with side length b = 0.0775 m. The beam is
homogeneous and isotropic elastic with parameters E = 6.67 GPa
and G = 2.00 GPa, and has mass density q = 200 kg/m3. The angular
velocity is increased over a period Ts = 15 s to its final value
Xs = 6 rad/s according to

X2ðtÞ ¼
Xs

Ts
t � Ts

2p
sin

2pt
Ts

� �
; 0 6 t 6 Ts;

Xs; t > Ts:

8<: ð61Þ

In the present analysis 10 elements are used with a time step
h = 0.05 s, which is ten times larger than in [12]. The primary influ-
ence of the magnitude of the time increment is its influence on the
phase error, which increases proportionally with the time for sec-
ond order algorithms like the present and those used in the
references.

The results for the transverse and axial tip displacement are
shown in Fig. 2(a) and (b), respectively. The response is character-
ized by the maximummagnitude of the displacement components,
occurring after about 7 s, and the behavior in the stationary state
occurring after the end of the transient at Ts = 15 s. Numerical values
for these magnitudes are collected in Table 4 for the present
quadratic theory, the linearized beam theory, a fully non-linear iso-
parametric element with quadratic interpolation [22], and results
published by Simo and Vu-Quoc [12], Downer et al. [10] and
Meijaard [34]. The final axial displacement ufin

3 ¼ 5:14� 10�4 corre-
sponds to the elongation in steady rotationwithout vibrations and is
given in analytic form in [12]. This value is reproduced by the three
numerical methods to within less than 0.5 pct. In the linearized ini-
tial stress results the axial displacement has been obtained by post-
processing of the transverse translations and rotations at the beam
element ends. The results for the axial displacement umin

3 at the point
of maximum bending agree well between the beam formulations,
while the quadratically interpolated isoparametric element shows
a somewhat smaller value. The main characteristic in the problem
is the transverse tip displacement, shown in the two last columns.
The results for largest value umin

1 occurring near the middle of the
transient differ by less than 0.5 pct. According to [34] the value of
umin
1 in [12] is about 1 pct. lower, and that in [10] about 2 pct. higher.

The amplitude for the transverse vibrations are slightly higher in
both these references.

The evolution of the mechanical energy is illustrated in Fig. 3(a).
The results agree well with the corresponding energy development
obtained by a fully non-linear solid model [22]. In the algorithm
the energy increment is directly related to the external work, rep-

Table 2
Parameters of rotating blade.

q 2699.23 kg/m3

E 727777 � 105 N/m2

m 0.3 –
L 8.178698 m
w 0.33528 m
h 0.033528 m
X0 27.02 rad/s

Table 3
Natural frequencies for rotating blade with varying angular velocity.

Method X/X0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Present x1 2.64 3.95 6.37 9.00 11.67 14.36 17.05 19.74 22.44 25.14 27.84
MBS 2.64 3.95 6.37 9.00 11.67 14.35 17.04 19.74 22.44 25.13 27.83
ANCF 2.64 3.95 6.38 9.02 11.71 14.41 17.12 19.85 22.57 25.30 28.03

Present x2 16.55 17.93 21.52 26.43 32.02 37.98 44.14 50.42 56.79 63.20 69.66
MBS 16.55 17.92 21.52 26.42 32.01 37.96 44.12 50.40 56.76 63.17 69.62
ANCF 16.76 18.13 21.71 26.62 32.22 38.21 44.41 50.74 57.16 63.64 70.17

Present x3 26.39 26.42 26.49 26.62 26.80 27.02 27.29 27.60 27.94 28.31 28.71
MBS 26.34 26.41 26.49 26.61 26.79 27.02 27.29 27.60 27.94 28.32 28.72
ANCF 25.34 25.38 25.45 25.57 25.74 25.95 26.20 26.48 26.80 27.14 27.52
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resented by DuTf, where f is the load vector appearing on the right
side of the discretized state-space equation (32). Thus, the first six
components of the vector f represent the reactions needed to pro-
duce the imposed motion of the support. The support moment, ex-
tracted from the left side of the state-space equation (32), is shown
in Fig. 3(b). The curve has a maximum around t = 7 s at the peak of
the imposed angular acceleration and exhibits oscillations after the
transient in order to maintain constant angular velocity of the
support.

7.3. Rotating wind turbine blade

The basic properties of the algorithmic damping are illustrated
with reference to a structure representing a simplified wind tur-
bine blade. The blade is modeled as a tapered cantilever beam with
a closed box section as illustrated in Fig. 4. The blade model is cho-
sen in a simple parametric form to enable its use as reference.

The blade geometry is described by a parametric set of data in
terms of the length L and the width b0 = L/15 at the root. A constant

width to height ratio b/h = 4 applies to all cross-sections as well as
the constant wall thickness t = b0/50. The width of the cross-sec-
tion varies linearly along the length as described by the expression

bðnÞ ¼ b0½1� ð1� cÞn�; n ¼ x3=L: ð62Þ

The cross-section parameters are summarized in Table 5. For the
present analysis the length has been chosen to L = 50 m and
c = 0.2. The elastic parameters are E = 100 GPa and G = 20 GPa, and
the mass density is q = 2000 kg/m3. The blade is discretized using
10 beam elements with shear flexibility determined by the flanges
parallel to the load direction.

Fig. 2. (a) Axial tip displacement u3. (b) Transverse tip displacement u1.

Table 4
Calculated tip displacements in Kane’s driver.

N umin
3 ufin

3 � 104 umin
1

Du1

Quadratic 4 �0.0185 5.156 �0.5693 0.0035
8 �0.0186 5.133 �0.5710 0.0038

Initial stress 4 �0.0187 5.159 �0.5721 0.0036
8 �0.0188 5.147 �0.5740 0.0039

Isoparametic 8 �0.0153 5.130 �0.5639 0.0027
16 �0.0156 5.134 �0.5701 0.0036

Refs. [12], [34] 4 – 5.14(a) �0.5739(b) 0.0037(b)

(a) refers to Ref [12].
(b) refers to Ref [34].
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Fig. 3. (a) Mechanical energy. (b) Moment at support.

Fig. 4. Configuration of blade with linearly varying box cross-section.

Table 5
Cross-section properties.

A 2ht + 2bt
I1 1

2 bth
2 þ 1

6 th
3

I2 1
2htb

2 þ 1
6 tb

3

J (2b2h2t)/(b + h)
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A steady state situation where the blade rotates with constant
angular velocityX2 = 2 rad/s is considered. Local vibrations are ini-
tiated by an initial displacement field corresponding to first edge-
wise mode in the steady rotating state with tip displacement
umax
1 ¼ L=10. A time step h = 0.02 s is used and with an angular fre-

quency x2 = 13.65 rad/s this corresponds to 23 steps per vibration
period.

Fig. 5 illustrates the influence of the algorithmic damping on the
development of the local energy DE = E � Es, obtained by subtract-
ing the energy

Es ¼ GðusÞ � 1
2
ð eXDxs þXCÞTMð eXDxs þXCÞ; ð63Þ

corresponding to a stationary rotation from the total mechanical
energy E. The time scale is normalized with respect to the vibration
period T2 of the first edge-wise mode. Fig. 5(a) shows the undamped
case corresponding to a = 0, and it is observed that the local
mechanical energy is constant to within a relative accuracy of
10�12. Fig. 5(b) shows the similar damped case for a = 0.05, indicat-
ing what appears to be exponential decay of the local mechanical
energy. The algorithmic damping was introduced in a form depend-
ing only on the local motion in order not to influence the general
rotation of the structure. This is illustrated in Fig. 6(a), showing
the angular momentum component L2 along the axis of rotation
for the two cases described above. It is seen that the algorithmic
damping leads to a decrease in the oscillations in the angular
momentum, while leaving the mean value unaffected.

In the frequency interval below the aliasing limit, xkh < 1, the
damping parameter a can be linked to the modal damping ratio
of the local vibration mode by the asymptotic relation
fk ¼ 1

2aðxkhÞ [21], whereby

DE ’ DE0e�2fkxkt: ð64Þ

In the present example this corresponds to a damping ratio of the
first edge-wise mode of f2 = 0.0068. The attenuation of the local
vibration energy DE is illustrated in Fig. 6(b), clearly demonstrating
the accuracy of this representation with respect to the local
mechanical energy.

7.4. Three-blade rotor system

This example illustrates the effect of multiple modes on the
damping of a system representing a three blade rotor. The rotor
consists of three blades modeled as tapered beams as described
in the previous example. The three blades are connected to the
end of a flexible shaft as illustrated in Fig. 7. In order to approx-
imate the structural behavior of a typical wind turbine rotor, the
blades have been twisted corresponding to a linearly varying
pitch angle with a maximum angle of w0 = 15�. Each blade is
modeled by 10 beam elements as in the previous example, while
the shaft is modeled by a single beam element providing support
flexibility.

The flexibility of the shaft is an important structural feature. In a
three-bladed rotor with identical blades the vibration modes occur
in sets of three. If the shaft is modeled as a fully rigid connection,
the vibration modes for the three blades decouple and the eigen-
frequencies associated with each set of modes correspond to those
of a single blade. Reduction of the shaft stiffness leads to coupling
of the blade modes and as a consequence the modes occur in sets
of one collective mode and two ‘whirling’ modes. In the collective
modes all blades have identical motion, while the ‘whirling’ modes
correspond to a phase difference of 2

3p in the vibration of each of
the three blades, corresponding to a forward and a backward
whirling mode, see e.g. [41,42]. For the present analysis the shaft
is represented by a solid steel cylinder of length Ls = 1 m and diam-
eter ds = 0.5 m with elastic parameters E = 210 GPa and m = 0.3 and

Fig. 5. Local mechanical energy: (a) a = 0, (b) a = 0.05. Mechanical energy (�), local kinetic energy ( ).

Fig. 6. (a) Angular momentum for a = 0 ( ) and a = 0.05 ( ). (b) Energy decay for a = 0 ( ) and a = 0.05 ( ), e�2f2x2 t (�).
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mass density 7850 kg/m2. However, the torsional stiffness is
increased by a factor ten in order to represent a realistic ratio be-
tween eigenfrequencies for the first edge-wise collective mode
and corresponding pair of whirling modes.

A situation where the blades rotate at a realistic operating
speed X2 = 1.65 rad/s is considered. The effect of simultaneous
excitation of several modes on the damping properties is illus-
trated by two load cases with an initial displacement field: in
Fig. 7(a) three forces P = 10kN are applied at the tip in the direc-
tion of the overall rotation, and in Fig. 7(b) a pair of equal but
opposite forces P = 10 kN are applied at the tip of two blades.
The first displacement field mainly excites the collective vibra-
tion mode with the lowest angular frequency of x4 = 7.84 rad/
s, with all blades performing simultaneous edge-wise displace-
ment leading to an overall torsional motion around the shaft.
The second load case is designed to excite the corresponding for-
ward and backward whirling modes, with a slightly higher angu-
lar frequency around x5�6 = 12.6 rad/s. A time step of h = 0.02 is
used, corresponding to 40 and 25 time steps per vibration period
of the collective and whirling modes, respectively.

The development of the local mechanical energy DE in each of
the two load cases is illustrated in Fig. 8(a) and (b) with a = 0.05.
This corresponds to the modal damping ratios f4 = 0.0039 and
f5�6 = 0.0063. It is seen that the present algorithmic damping is
capable of distinguishing between the different modes in a more
complex structure and provide the highest damping to the highest
frequency mode. The contributions from higher frequency modes
lead to a faster initial decay as predicted by the modal energy de-
cay formula (64).

8. Conclusions

A time integration algorithm for flexible beams with moderate
finite rotations in a rotating frame of reference has been developed
in terms of hybrid state-space variables consisting of local dis-
placements and global velocities. The formulation is an extension
of [22] in which the displacement field was represented entirely
in terms of nodal translations. An important feature of the present
element discretization involving nodal translations and rotations is
the use of identical interpolation functions for the local displace-
ments and the global velocities. This is different from the tradi-
tional approach in which velocities are obtained via time
differentiation at a generic material point. The identical interpola-
tion is justified by the equal status of displacement and momen-
tum in Hamiltonian mechanics, and it leads to representation of
all inertial effects in terms of the classic mass matrix, with Coriolis
and centrifugal effects represented via global operations on the
assembled mass matrix using the angular velocity of the rotating
frame.

In the hybrid state-space format a conservative time discretiza-
tion is obtained by use of the mean value of the angular velocity. A
simple algorithmic dissipation scheme is developed in terms of the
local motion, thereby avoiding algorithmic resistance to the con-
vective motion from rotation of the frame. The algorithmic damp-
ing scheme takes the form of simple forward weighting of the
representative mean values, and degenerates to known schemes
for a non-rotating structure.

The performance of the algorithm has been illustrated using a
beam theory with quadratically non-linear rotations. The accuracy

Fig. 8. (a) Energy decay for load case (a). (b) Energy decay for load case (b). a = 0.05 ( ), e�2fjxj t (�).

Fig. 7. Rotor configuration with initial load cases.
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of the algorithm and the conservative properties are demonstrated
by examples, illustrating that the algorithmic dissipation can be
approximated by an exponential decay of the local mode of vibra-
tion. The examples demonstrate that for vibrations of rotors typical
of wind turbine operations the non-linearity is dominated by the
geometric stiffness.
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SUMMARY

An angular momentum and energy-conserving time integration algorithm for rigid body rotation is formu-
lated in terms of the quaternion parameters and the corresponding four-component conjugate momentum
vector via Hamilton’s equations. The introduction of an extended mass matrix leads to a symmetric set of
eight state-space equations of motion. The extra inertial parameter serves as a multiplier on the kinematic
constraint, and it is demonstrated that convergence characteristics are improved by selecting this parameter
somewhat larger than the inertial moments. External loads enter these equations via the set of momen-
tum equations. Initially, the normalization of the quaternion array is introduced via a Lagrange multiplier.
However, this Lagrange multiplier can be expressed explicitly in terms of the gradient of the external load
potential, and elimination of the Lagrange multiplier from the final format leaves only an explicit projection
applied to the external load potential gradient. An algorithm is developed by forming a finite increment of
the Hamiltonian. This procedure identifies the proper selection of increments and mean values, and leads
to an algorithm with conservation of momentum and energy. Implementation, conservation properties, and
accuracy of the algorithm are illustrated by examples with a flying box and a spinning top. Copyright © 2012
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The motion of rigid bodies is encountered frequently in engineering, physics, and chemistry.
Although the description and integration of the translation part of the motion has found a fairly
conclusive form, rigid body rotation is still actively investigated. In contrast to translations, where
the motion is formed by addition of incremental displacements, rotations combine in the form of
products of the incremental rotation matrices. Thus, efficient and accurate integration of rotations
requires that the special features associated with accumulating finite rotations are accounted for.
The components of the rotation tensor constitute an orthogonal matrix and thus has only three inde-
pendent components. In connection with robotics and mechanisms, it may be desirable to use the
Euler angles, forming a sequence of three rotations about particular selected axes; but for general
motion involving rotations, it is often preferable to describe the rotation in terms of a pseudo-vector,
describing the magnitude of the rotation and direction of its axis. In particular, the magnitude may
be represented in different ways, leading to various forms of the pseudo-vector representation as
described, for example, in [1] and [2].

The classic methods of numerical time integration, such as the Newmark method, are based on
matching of the equation of motion at specific points in time, supplemented by approximate relations
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between generalized displacement, velocity, and acceleration. This line of approach is based on a
full parameter representation of the motion and does not in itself account for the fact that the dif-
ferential equations of rigid body rotation typically are related to a tangent space. In relation to
Newmark type methods, this may be accounted for by introducing a suitable tangent space pro-
jection [3], or more directly by including the nonlinear convected form of the equations as in the
algorithm of Krysl and Endres [4], in which the current rotation matrix is predicted from the last
established angular velocity and acceleration, whereas the new angular velocity and acceleration are
determined via the equation of motion and a kinematic difference equation. A general formulation
of the Newmark scheme for rotations including the alpha-modification for high-frequency dissipa-
tion has been presented by Brüls et al. [5,6]. Algorithms, in which a complete time step is formed by
parts using different integration rules have been developed, for example, by Krysl [7] and Nukala
and Shelton [8]. A particular role is taken by algorithms based on midpoint integration, whereby
the structure of the original differential equations is conserved, see for example, [9, 10]. A different
approach is based on an integrated form of the equations of motion, in which the equation of motion
is then replaced by the increment of the angular momentum, see for example, Simo et al. [11, 12].
By suitable integration of external loads and convection terms, these algorithms conserve momen-
tum and energy. A particular simple form was obtained in [13] by use of the Cayley representation
of the rotation, whereas conservative integration of a more general class of equations was considered
by Lens et al. [14].

Common to the algorithms previously mentioned is the occurrence of trigonometric functions to
accomplish the finite update of the rotation and the use of a local formulation to express angular
velocity and in some of the cases the angular acceleration. In contrast, a fully algebraic formula-
tion can be obtained by using a representation of the rotation tensor in terms of the four-component
quaternion parameters [15–18], or by using a representation of the rotation tensor as a set of three
vectors with six length and orthogonality constraints introduced via Lagrange multipliers, [19, 20].

The present paper presents a compact and direct development of the Hamilton equations of motion
of a rigid body based on quaternion parameters and a corresponding implicit conservative inte-
gration algorithm. The paper starts with a brief summary of kinematics in terms of quaternion
parameters and then proceeds to the dynamics of a rigid body in Hamiltonian form. An essential
feature of this formulation is that the extension from six Hamiltonian equations to eight because
of the four-component quaternion format is accompanied by two constraint equations: a normaliza-
tion condition on the quaternion parameters, and an orthogonality relation between the quaternion
parameters and the corresponding momentum parameters. These conditions form an integral part
of the four-component format and do not require independent representation. However, in the pres-
ence of a load potential, the corresponding derivatives in terms of the quaternion parameters must
be constrained in view of the quaternion normalization condition. It is demonstrated for both the
original momentum differential equations and the discretized algorithmic form that this constraint
may be introduced directly into the dynamic equation of motion in the form of a projection operator
on the gradient of the potential. Hereby, the algorithm takes a simple form in which the quaternion
and momentum parameter increments are given by suitably formed explicit mean values securing
both momentum and energy conservation. The quaternion parameter formulation has been consid-
ered recently by Betsch and Siebert [21] but in a different form, in which the Lagrange multiplier is
retained in the algorithm. The discretized algorithm is derived directly from a finite increment of the
Hamiltonian and takes a simple form because of elimination of the constraint Lagrange multiplier
that leaves only a projection operator on the load potential gradient. The formulation makes use
of an extended inertia matrix, and it is demonstrated that the auxiliary parameter in this matrix is
mainly related to the quaternion constraint and should be given sufficient magnitude relative to the
moments of inertia to implement this constraint with full accuracy.

2. KINEMATICS

Let the position of a point in a rigid body have the material coordinates X , corresponding to the
spatial coordinates x. If the body is rotated about the common origin of these coordinate systems,

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:734–752
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the spatial coordinates are given by the relation

x DRX , (1)

where R is the component matrix of the rotation tensor. The rotation may be specified in terms of
the rotation vector ' D 'n with length ' representing the rotation angle and direction given by the
unit vector n. The rotation tensor is expressed in terms of the angle ' and the direction vector n
as [22, 23],

R D cos' I C sin' OnC .1� cos'/nnT , (2)

where On denotes the skew-symmetric tensor corresponding to the vector product n�. The vector
has the same length in the local and in the spatial coordinate system, and thus the rotation tensor R
satisfies the identity RTR D I , whereby R is a proper orthogonal tensor with inverse R�1 DRT .

The time derivative of the rotation relation (1) gives

Px D PRX D PRRTx D O!x, (3)

where O! denotes to the skew-symmetric angular velocity matrix associated with the spatial angular
velocity !,

O!D!�D PRRT . (4)

The local components of the skew-symmetric angular velocity tensor are obtained by a transforma-
tion involving the rotation tensor R,

O�DRT O!R DRT PR. (5)

It is seen that the local components of the rotation tensor are obtained by interchanging the order of
the factors in the matrix product in (4).

2.1. Quaternion parametrization of rotations

The rotation tensorR given by (1) can be expressed in homogeneous algebraic form by introducing
the following four-component representation in terms of the half-angle 1

2
',

qT D
�
q0, qT

�
(6)

with the components

q0 D cos
�
1
2
'
�

, q D sin
�
1
2
'
�
n. (7)

The four components Œq0, q1, q2, q3� are known either as the Euler parameters or the quaternion
parameters. The latter is used here to be more specific. It is an important property of these parameters
that they satisfy the identity

qT qD q20 C q
2
1 C q

2
2 C q

2
3 D 1. (8)

When using the set of four-quaternion parameters, this equation appears in the form of a constraint
equation. Here and in the following, three-component vectors and the corresponding 3� 3 matrices
are denoted by boldface italics, whereas the corresponding four-component quaternion quantities
are denoted by boldface roman type.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:734–752
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An important feature of the quaternion representation is that the rotation tensorR in (1) takes the
following homogeneous quadratic form

R.q/D

2
64
q20 C q

2
1 � q

2
2 � q

2
3 2.q1q2 � q0q3/ 2.q1q3C q0q2/

2.q2q1C q0q3/ q20 � q
2
1 C q

2
2 � q

2
3 2.q2q3 � q0q1/

2.q3q1 � q0q2/ 2.q3q2C q0q1/ q20 � q
2
1 � q

2
2 C q

2
3

3
75 . (9)

The formula follows directly from (2) by expressing the trigonometric functions in terms of the
half-angle 1

2
'. An important property of the homogeneous quadratic quaternion parameter repre-

sentation of the rotation tensor is that it can be split into the product of two matrix transformations
in the form [22],

R.q/DH .q/G .q/T , (10)

where both the 3� 4 matrices G .q/ andH .q/ are linear in the quaternion parameters and given by

G .q/D
�
�q q0I � Oq

�
, H .q/D

�
�q q0I C Oq

�
. (11)

These matrices are easily shown to satisfy the quaternion parameter relations

G .q/ qDH .q/ qD 0, (12)

implying orthogonality between the four-component quaternion parameter vector q with each row
in the matrices G .q/ and H .q/. The orthogonality relations between the four-component quater-
nion parameter vector q, and each of the rows imply that the original 4 � 3 matrices G .q/T , and
H .q/T can be extended to a nonsingular 4 � 4 format by including q as an extra column, defining
the regular matrices

Q.q/D
�

q G .q/T
�
D

�
q0 �qT

q q0I C Qq

�
(13)

and

P.q/D
�

q H .q/T
�
D

�
q0 �qT

q q0I � Qq

�
. (14)

It is easily verified that these matrices are orthogonal, satisfying the relations

Q.q/Q.q/T D P.q/P.q/T D I. (15)

These matrices play a central role in the four-component formulation of rigid body dynamics
because they constitute regular linear factors in a product representation of the extended 4 � 4
rotation matrix,

R.q/DQ.q/P.q/T D
�
1 0T

0 R.q/

�
. (16)

This product decomposition of the extended rotation matrix in terms of regular 4 � 4 matrices
generalizes the product decomposition of the classic 3�3 rotation matrix (10). The formula is easily
verified by use of the defining relations (13) and (14). It is observed that the format of the extended
rotation matrix corresponds to the transformation of four-component quaternion arrays, where the
first scalar component remains unchanged, whereas the vector part is rotated by the classic rotation
tensor R.

The angular velocity can be obtained via its skew-symmetric matrix representation O! from (4).
The vector format must then be extracted by suitable matrix operations. The four by four format
of this procedure has been described, for example in [24]. A more direct approach, described in

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:734–752
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detail in [23] Sections 3.5.2–3.5.3, consists in considering the relation between a state of rotation
given by the quaternion parameter representation q and a subsequent state qC Pqdt obtained by an
extra infinitesimal rotation!dt . The incremental rotation is represented by the linearized quaternion
Œ1, 1

2
!dt�, and the quaternion representation of the final state is obtained by the addition formula for

quaternion parameters. This relation is then inverted to yield the incremental angle 1
2
!dt in terms

of the original quaternion vector q and its increment Pqdt . After division by dt , the result of these
operations is

1

2
!D�Pq0q C q0 Pq C Oq Pq. (17)

This result is given in a three-component vector format. In the present context, it is convenient to
expand this format to the full 4� 4 matrix form

!!D

�
0

!

�
D 2 P.q/T Pq. (18)

The angular velocity is a three-component vector, and therefore, the scalar quaternion component
vanishes. The corresponding components in the local frame are obtained by pre-multiplication with
the 4� 4 rotation matrix R.q/T given by (16), whereby

��D

�
0

�

�
D 2Q.q/T Pq. (19)

A particular feature of the quaternion representation of angular velocity is its bilinear form in the
quaternion q and its time derivative Pq.

The inverse relations providing the time derivative Pq in terms of the global or local components
of the angular velocity follow from the orthogonality relations (15) in the form

PqD
1

2
P.q/!!, PqD

1

2
Q.q/��. (20)

These relations are used to express nonhomogeneous initial angular velocity conditions.

3. DYNAMICS

The motion of a rigid body is governed by its kinetic and potential energy via the variational princi-
ples of Lagrange or Hamilton, see for example [25]. The present paper concentrates on the motion
due to rotation, which is here referred to the origin of the frame(s) of reference.

3.1. Kinetic energy and momentum

In the present context, the kinetic energy is conveniently expressed with respect to the local frame as

T D 1

2
�TJ �, (21)

where � is the local component angular velocity, and J is the local inertia tensor defined by the
volume integral

J D

Z
V

h�
XTX

	
I �XXT

i
� dV , (22)

where � is the mass density.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:734–752
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When introducing the quaternion representation (19) of the local or material angular velocity, the
expression for the rotational kinetic energy assumes a biquadratic form in the quaternion q and its
time derivative

T D 1

2

h
0,�T

i �
J0 0T

0 J

� �
0

�

�
D 2 PqTQ.q/ J Q.q/T Pq, (23)

where the augmented 4 � 4 inertia matrix is introduced as J D diagŒJ0,J �. The kinetic energy
is independent of the value of the parameter J0, which is an artifact of expanding the number of
independent velocity parameters from the original three to four. Specific proposals for the value of
J0 have been given in [15] and [21] based on the assumption that it serves a role similar to the
components of the inertial tensor J . However, as demonstrated in the following, the role of J0 is
not directly related to the physics of the equations of motion but rather to the non-dimensional con-
straint .8/ on the quaternion parameters and thus an ‘optimal’ choice of J0 appears to be mainly a
numerical issue.

The quaternion form of the momentum p, conjugate to the quaternion parameters representation
q of the generalized displacements, is defined as the partial derivative of the kinetic energy T from
(23) with respect to Pq, whereby

pD
@T
@ PqT
D 4Q.q/ J Q.q/T Pq. (24)

On the basis of this expression, it is easily shown by using (12) that the quaternion form of
the generalized displacements q and their conjugate momentum variables p satisfy the following
orthogonality relation

qT pD 0. (25)

This relation constitutes the dynamic constraint complementing the kinematic constraint (8)
expressing normalization of the quaternion parameters q.

The four-component format for the angular momentum in local form is expressed via the local
angular velocity relation (19) as

LD
�
0

L

�
D

�
J0 0T

0 J

� �
0

�

�
D J��D 2J Q.q/T PqD

1

2
Q.q/T p, (26)

where the last equality follows from (24). According to (15a), Q.q/ is an orthogonal matrix, and the
magnitude of the angular momentum therefore follows from (26) in the form

kLk2 DLTLD
1

4
pT pD

1

4
kpk2. (27)

Conservation properties for this length are established in the following sections.
In the Hamiltonian formulation, the kinetic energy is expressed as a function of the generalized

displacement variables and the corresponding conjugate momentum variables. This requires the
inverse of the quaternion momentum relation (24), obtained by use of the orthogonality relation
(15a) for Q.q/,

PqD
1

4
Q.q/ J�1 Q.q/T p. (28)

Substitution of this expression into the kinetic energy (23) gives

T D 1

8
pTQ.q/ J�1 Q.q/T p, (29)

where the kinetic energy is expressed solely in terms of the generalized displacement q and the con-
jugate momentum p. In this expression, the roles of q and p can be interchanged without changing
the value of the total product. This property is most easily established via the following result for

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:734–752
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the product of the first two factors. By use of the specific form of the component matrix Q.q/ given
in (13), it follows that

pTQ.q/D pT
�

q G .q/T
�
D
�

qT p �qTG .p/T
�
D qT

�
p �G .p/T

�
. (30)

Thus, the interchange of the arguments q and p leads to a change of sign on the last three compo-
nents, that is, the vector part of the four-component array. The inverse inertia matrix J�1 does not
couple the scalar and the vector parts of the four-vectors in the product, and thus simultaneous inter-
change of the arguments in the first two factors and in the last two factors leaves the total product
unaffected. A particular consequence of this result is that the kinetic energy can be expressed in the
alternative form

T D 1

8
qTQ.p/ J�1 Q.p/T q. (31)

The more general form of the argument interchange result is used in connection with the discrete
algorithm in Section 4.

3.2. Hamilton equations

Hamilton’s equations constitute a convenient means of deriving the equations of motion for rigid
body rotation in terms of quaternions. While a Lagrangian formulation relies on a set of gener-
alized displacements and their time derivatives, Hamiltonian mechanics considers the generalized
displacements and their conjugate momentum components as independent variables. The governing
equations then follow as two sets of first-order differential equations in the form

PqD
@H
@pT

, PpD�
@H
@qT

. (32)

These are commonly known as Hamilton’s canonical equations. In the present context, it is advan-
tageous to use an extended form of the Hamiltonian that includes the quaternion normalization
condition (8) via a Lagrange multiplier �,

HD T .q, p/C V.q/C �
�
qT q� 1

�
, (33)

where the external forces are generated by the potential V.q/. The kinetic energy is biquadratic in
the quaternion parameters q and the conjugate momentum variables p, and the kinematic equation
of motion is obtained from (29) as

PqD
1

4
Q.q/ J�1 Q.q/T p, (34)

while the dynamic equation follows from (31) as

PpD�
1

4
Q.p/ J�1 Q.p/T q � @V=@qT � 2�q. (35)

In addition to these equations, differentiation with respect to � gives the quaternion constraint (8).
This is the starting point of the solution of the problem as a system of differential algebraic equations
in [21].

The explicit elimination of the Lagrange multiplier � constitutes a crucial step in the present
formulation. Differentiation of the orthogonality constraint (25) gives the condition

qT PpC pT PqD 0. (36)
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The two products in this condition can be expressed by pre-multiplication of (35) with qT and (34)
with pT . When adding the resulting two equations, their first terms on the right side are equal to
˙2T by (29) and (31) and therefore cancel. This leaves the simplified equation

qT PpC pT PqD �qT
�
@V=@qT C 2�q

�
. (37)

In order to satisfy the constraint derivative equation (36), the Lagrange multiplier must be
determined as

2�D�
qT

qT q
@V
@qT

. (38)

When this expression is used to eliminate �, the second equation of motion (35) takes the form

PpD�
1

4
Q.p/ J�1 Q.p/T q �



I �

q qT

qT q

�
@V
@qT

. (39)

It is seen that the effect of eliminating the Lagrange multiplier � is to introduce a projection operator
in front of the potential gradient. Hereby, any component in the potential gradient proportional
to q will be eliminated, and the orthogonality constraint derivative (36) is satisfied identically,
irrespective of the properties of the potential V.q/.

The quaternion normalization equation (8) is contained in the kinematic equation (34), where
pre-multiplication with qT yields

qT PqD
1

4
qTQ.q/ J�1 Q.q/T pD 0. (40)

The last equality follows from the orthogonality between q and p, which has just been estab-
lished. Similarly, a balance equation of the magnitude of the angular momentum follows from
pre-multiplication of the dynamic equation (39) with pT , whereby

pT PpD�
1

4
pTQ.p/ J�1 Q.p/T q � pT

@V
@qT
D �pT

@V
@qT

. (41)

The first term vanishes because the product pTQ.p/ only has a scalar component, while the scalar
component vanishes in the product Q.p/T q because of the orthogonality relation (25). It follows
from this scalar balance equation that the length of the angular momentum vector kLk D 1

2
kpk is

conserved in the absence of external loads.
In summary, after elimination of the Lagrange multiplier �, the two sets of equations of motion

(34) and (39) contain the six equations of dynamics plus the time derivatives of the normalization
constraint (8) and the orthogonality constraint (25). Thus, to the extent the equations are integrated
with due respect for exact conservation of the constraints they can be used directly as demonstrated
by the discretized form derived in the following section.

4. STATE-SPACE INTEGRATION ALGORITHM

The first step in the development of a conservative time integration algorithm is to express the evo-
lution equations (34) and (39) in a discrete format. Conservative time integration algorithms do not
rely on collocation of the equations of motion at selected points in time but rather on an integrated
form such that the basic physical quantities like momentum and energy are conserved over a finite
time step from tn to tnC1 or such that the energy is dissipated in a controlled manner—see for
example [11, 12, 14, 26]. A similar approach can be used for constraint conditions. Rather than
enforcing the constraints at selected points in time, they are introduced via their increments over
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the integration interval. Thus, if the constraints are satisfied initially, they will also be satisfied at
any later time step, if the constraint increments are represented without approximation error. In the
present context, the quadratic constraint conditions (8) and (25) are represented via their increments
as a byproduct of using the extended Hamilton functional (33).

4.1. Conservation of energy

The discretized form of the equations of motion are derived by considering a finite increment over
the time interval �t D Œtn, tnC1� of the extended Hamiltonian defined from (33) in the form

HD T .q, p/C V.q/C N�
�
qT q� 1

�
. (42)

The Lagrange multiplier � in the continuous form represents a generalized reaction force needed to
uphold the kinematic constraint. In the discretized form, the Lagrange multiplier is replaced by a
constant N� representing the effective mean value over the interval. It is noted that Lagrange multi-
pliers often represent an action over a time interval, and thus the value of the multiplier is associated
with the time interval rather than specific values at interval end points tn and tnC1, see for example
the discussion of the role of Lagrange multipliers in [27].

The kinetic energy has a symmetric quadratic format, given by either of the forms .29/ or .31/.
The increment can therefore be expressed as twice the product of the increment of one factor and
the mean value of the other factor. Using the expression (29), this corresponds to

�T D 1

4
�
�
qTQ.p/

�
J�1

h
Q.p/T q

i
, (43)

where the overbar denotes the arithmetic mean, Œ �D 1
2
Œ. /nC . /nC1�. The increment in the first

factor is evaluated similarly as products of increments and mean values, whereby

�T D 1

4

h
�qTQ.p/C qTQ.�p/

i
J�1

h
Q.p/T q

i
. (44)

Finally, when the expression is separated into two additive terms, it can be verified by use of (30)
that the positions of the arguments in the last term can be interchanged, giving the kinetic energy
increment in the form

�T D 1

4

°
�qT

h
Q.p/ J�1 Q.p/T q

i
C�pT

h
Q.q/ J�1 Q.q/T p

i±
. (45)

This relation represents a discretized equivalent of the rule of partial differentiation with the fac-
tors to �q and �p defining appropriate finite partial derivatives, see for example [26] for a similar
approach to finite Green strain. It is important to note the special combination of mean values in the
finite derivatives that are needed to provide energy conservation and correct representation of the
constraints in the discretized equations.

In a similar way, the gradient of the potential V.q/ must be introduced via its finite derivative
@V�=@q, defined by [28],

�V.q/D�qT @V�=@qT . (46)

Potentials in connection with rigid body motion are often given in terms of powers of the
quaternion parameters, and the finite derivative can then typically be extracted directly from the
definition (46). When using this definition of the finite derivative of the potential, the increment of
the Hamiltonian (42) takes the form

�HD�T C�qT
�
@V�=@qT C 2 N� Nq

�
, (47)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:734–752
DOI: 10.1002/nme



INTEGRATION OF RIGID BODY MOTION BY QUATERNION PARAMETERS 743

with �T already determined by (45). In order for the discretized equations to satisfy the incremen-
tal form of the orthogonality equation (36), the load provided by the parenthesis in (47) must be
orthogonal to the mean value of the quaternion vector Nq,

NqT
�
@V�=@qT C 2 N� Nq

�
D 0. (48)

This equation determines the Lagrange multiplier N�, and elimination of the multiplier then gives the
final form of the increment of the Hamiltonian in the form

�HD�T C�qT



I �
Nq NqT

NqT Nq

�
@V�
@qT

. (49)

Upon substitution of �T from (45), this equation takes the form

�HD�pT
@T�
@pT
C�qT

�
@T�
@qT
C



I �
Nq NqT

NqT Nq

�
@V�
@qT

�
, (50)

where the finite derivatives of the kinetic energy T are defined by the square brackets in (45).
The discretized equations of motion follow directly from equating the increment of the

Hamiltonian (50) to zero, whereby

�qD
1

4
�t Q.q/ J�1 Q.q/T p , (51)

�pD�
1

4
�t Q.p/ J�1 Q.p/T q� �t



I �
Nq NqT

NqT Nq

�
@V�
@qT

. (52)

These equations form a clear discretized analog to the kinematic equation (34) and the extended
dynamic equation (39). The solution to these equations satisfies the energy conservation condition,
expressed in incremental form as �H D 0, by the construction of the equations using finite deriva-
tives and the introduction of the discretized form of the projection operator on the finite derivative
of the potential.

4.2. Constraints and angular momentum

The remaining scalar identities consist of the quaternion-momentum orthogonality condition (25),
the quaternion normalization condition (8), and the conservation of the magnitude of the angular
momentum in the absence of external loads as expressed in (41). The discrete form of the quaternion-
momentum orthogonality condition is obtained from (51)–(52) by pre-multiplication with Np and Nq,
respectively. The external load term vanishes because of the projection operator, leaving

�
�
qT p

�
D qT�pC pT�qD

1

4
�t qTQ.p/ J�1Q.p/T q�

1

4
�t pTQ.q/ J�1Q.q/T pD 0. (53)

The last quality follows from use of the result (30) about simultaneous interchange of the arguments
in the two first factors and in the two last factors in for example the second term. The quaternion
normalization condition is formulated in incremental form as

1

2
�
�
qT q� 1

�
D qT�qD

1

4
�t qTQ.q/ J�1Q.q/T pD

1

4
�t NqT NqJ�10 qT pD 0, (54)

where the last equality follows from the orthogonality relation (53). Finally, the increment of the
angular momentum follows from pre-multiplication of (52) with Np, giving

2�kLk2 D
1

2
�
�
pT p

�
D pT�pD��t pT



I �
Nq NqT

NqT Nq

�
@V�
@qT

. (55)
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Here, the contribution from the first term in (52) vanishes because of the orthogonality condition
qT pD 0 as in the corresponding differential relation (41). Clearly, this relation leads to conservation
of the magnitude of the angular momentum in the absence of external load, whereas the projection
operator leads to a higher-order modification of the discretized contribution from the external load
when present.

4.3. Discrete integration algorithm

The time integration algorithm is a simultaneous Newton–Raphson solution of the discrete dynamic
equation of motion (52) and the kinematic equation (51). The residual vector rT D Œrq, rp� is the
difference between the right and the left-hand sides,

rq D�q�
1

4
�tQ.q/ J�1 Q.q/T p , (56)

rp D�pC
1

4
�tQ.p/ J�1 Q.p/T q C �t



I �
Nq NqT

NqT Nq

�
@V�
@qT

. (57)

In the Newton–Raphson procedure, the iterative step amounts to equating the linearized residual
equation to zero. The equation is formulated in terms of the current residual r and the linearized
increment ır as

rC ırD rC


@r
@q
ıqC

@r
@p
ıpC : : :

�
D 0 (58)

where the dots denote contributions from higher-order derivatives. When using the condensed
notation gT D ŒqT, pT �, the equation take the form

K ıgD�r, (59)

where the tangent stiffness matrix

KD
�

Kqq Kqp

Kpq Kpp

�
(60)

follows from differentiation of (56) and (57).
The iteration process is implemented with convergence criteria on the equations of motion with a

prescribed tolerance, represented as a fraction "r of the initial length of the considered vector��rq
��6 "r ,

��rp
��6 "r kp0k . (61)

The kinematic constraint kqk D 1 and the dynamic constraint pT q D 0 must be satisfied by the
initial conditions. Ideally, they are satisfied at later times via their increments as demonstrated in (53)
and (54). The orthogonality constraint (53) follows from symmetry properties, whereas the round-
ing error in the normalization condition (54) on the quaternion parameters depends directly on the
parameter J0. In the algorithm, the orthogonality condition is enforced via the tolerance condition

jpT qj6 "c kpk , (62)

whereas the dependence of the convergence on the parameter J0 is largely eliminated by renormaliz-
ing the quaternion parameters q at the end of each time increment. The conservative time integration
algorithm for rigid body rotations is summarized in pseudo-code format in Table I.

5. NUMERICAL EXAMPLES

In this section two numerical examples are used to illustrate the accuracy and conservation
properties of the presented time integration algorithm for rigid body rotation. Furthermore, the role
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Table I. Conservative time integration algorithm.

1) Initial conditions: q0, p0 .

2) Prediction step:
qD qn,
pD pn.

3) Residual calculation:

rq D�q� 1
4�tQ.q/ J�1 Q.q/T p,

rp D�pC 1
4�tQ.p/ J�1 Q.p/T q

C �t
�

I � . Nq NqT /=. NqT Nq/
�
@V�=@qT .

4) Update incremental rotation parameters:
ıgD�K�1 r,
gD gC ıg,
If krk> "r and jpT qj> "ckpk repeat from 3).

5) Renormalize quaternion parameter:
qD q=kqk.

6) Return to 2) for new time step, or stop.

of the auxiliary parameter J0 as a weighting factor for the normalization constraint rather than a
physical property is highlighted. In the first example the free motion of a rigid box is considered,
while the second example deals with a spinning top in a gravitational field.

5.1. Spinning box

This example considers the box introduced in [13] with side lengths Œ1, 3, 2� and mass 12. The
principal moment of inertia tensor with respect to the center of mass is then given by J D
diag Œ12, 5, 10�. It is noted that the maximum principal moment of inertia is smaller than the sum
of the two smallest, that is, Ji 6 Jj CJk , a condition sometimes violated by examples used to illus-
trate rigid body motion in the literature. The auxiliary parameter J0 is initially chosen as J0 D tr.J /,
that is, a value in the same order of magnitude as the remaining coefficients in the moment of inertia
tensor as suggested in [15] and [21].

The box is illustrated in its initial position in Figure 1(a) at t D t0. The motion is started with
an initial angular velocity of �0 D Œ0.0, 0.05, 10.0�T , that is, the box spinning around its interme-
diate axis of inertia with a small perturbation. It is well-known that free rigid body rotations are
stable only about the axis of maximum or minimum moment of inertia, whereas spinning motion
around the intermediate axis is unstable in the sense that a small perturbation leads to reversal of
the body at regular intervals, see for example [25] Section 5.6. This property makes the present
choice of initial conditions particularly suitable for testing numerical algorithms for rigid body
motion, [11, 13].

The iteration tolerances are chosen as "r D "c D 10�6. In the present case the active condi-
tions are on the unbalances in the equations of motion (61), while the constraint conditions (62)

Figure 1. Motion of box at selected time steps, �t D 0.01.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:734–752
DOI: 10.1002/nme



746 M. B. NIELSEN AND S. KRENK

are satisfied automatically within a relative error of 10�13, when the tolerance on the residual is
satisfied. It was demonstrated in Sections 4.1 and 4.2 that in the absence of approximation error,
the algorithm conserves the energy and the magnitude of the angular momentum. For the present
tolerances, the kinetic energy T D 500 as well as the magnitude of the angular momentum kLk are
conserved to an accuracy around 10�12. The global components of the angular momentum vector
l D Œ0, 0.25, 100�T are conserved to a similar accuracy.

The local components of the angular velocity are illustrated in Figure 2. Initially, the box spins
around the global x3-axis as shown in Figure 1(a). At t D t1, the local angular velocity component
�3 approaches zero, when the box tips over as illustrated in Figure 1(b). At t D t2 the sign of �3 is
reversed corresponding to the situation where the box is turned upside down, see Figure 1(c). Finally,
the box tips over again at t D t3 and approaches the initial configuration. This pattern repeats itself
in a periodical manner with period T D 5.446 (evaluated for �t D 10�6). The results presented in
Figures 2(a) and 2(b) are determined for time steps �t D 0.1 and �t D 0.01, respectively. These
are identical apart from a small change in time scale. For the present simulation, the time difference
between two turns is 2.50 for �t D 0.1 and 2.72 for �t D 0.01 corresponding to a shortening of
time scale of approximately 8% when using �t D 0.1.

The second-order accuracy of the present algorithm is illustrated in Figure 3, showing the period
error for different time steps �t . The period is evaluated from the angular velocity and compared
with the reference period T evaluated for a fine discretization of �t D 10�6. The figure also shows

(a) (b)

Figure 2. Local angular velocity components �1 ( ), �2 ( ), �3 ( ). (a) �t D 0.1, (b) �t D 0.01.

Figure 3. Relative period error. �0 D Œ10, 0, 0�T ( ), �0 D Œ0, 0, 10�T ( ), �0 D Œ0, 0.05, 10�T ( ),
.��t/2=12 ( ), .��t/2=48 ( ).
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(a) (b)

Figure 4. Error on homogeneous constrains: (a) normalization constraint and (b) orthogonality constraint.
J0 D Jii=10 ( ), J0 D Jii ( ), J0 D 10Jii ( ).

the well-known asymptotic result for integration of a single component, see for example [23],

�T

T
'

1

12
.��t/2.

In addition to the combined motion resulting from the initial conditions with a small perturbation,
the figure also shows results for the trivial cases where the box rotates with constant angular velocity
about the axis of maximum moment of inertia (x1-axis) and the intermediate axis (x3-axis), respec-
tively. In these two special cases, the representation of the motion through the half-angle leads to a
reduction of the convergence constant by a factor of 4, and the line with coefficient 1=48 shows an
excellent fit to these special cases.

As discussed in Section 3.1, the auxiliary parameter J0 is associated with the normalization con-
straint (8) rather than a physical property. This is illustrated in Figure 4, showing results for an
algorithm without renormalization of the quaternion parameters. The development of the error in
the quaternion parameter constraint is illustrated in Figure 4(a) for J0=Ji i D 0.1, 1, 10, respectively.
It is seen that the relative error on the normalization constraint decreases roughly in proportion
to the increase in J0=Ji i , indicating that J0 acts as a weighting factor on this constraint. In con-
trast, the orthogonality constraint is satisfied to high accuracy irrespective of the value of J0. When
repeating the calculation with the algorithm including renormalization as shown in Table I, the nor-
malization error drops to the numerical accuracy of the MATLAB (The MathWorks, Natick, Mass.)
implementation around 2 � 10�16, whereas the error on the orthogonality condition remains
virtually unaffected.

5.2. Spinning top in gravitational field

This example considers the motion of a conical top with one point fixed as illustrated in Fig. 5. The
top motion is expressed in terms of the angle of nutation � , the angle of precession ', and the spin
angle  .

The top has the same dimensions as in [21] with height h D 0.1 and radius r D h=2. The
mass is m D ��2h=3 with mass density � D 2700. The center of gravity is located at a distance
l D 3h=4 from the origin, described by the vector with local components X D Œ0, 0, l �T . The local
components of the inertia tensor are

J1 D J2 D
3

5
m



r2

4
C h2

�
, J3 D

3

10
mr2.
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Figure 5. Configuration of rotating top.

These are supplemented by the auxiliary inertia parameter J0 D 10Ji i . The top is in a uniform
gravitational field with acceleration g D 9.81 in the negative x3-direction. This corresponds to the
potential energy

V.q/Dmgl cos.�/Dmgl
�
q20 � q

2
1 � q

2
2 C q

2
3

�
.

The last expression is obtained by noticing that the projection of the gravitational acceleration vector
on the global center of gravity vectorR.q/X extracts the diagonal componentR33 of the quaternion
rotation tensor defined in (9).

5.2.1. Fast top. First, a fast top is considered, i.e. a top where the initial kinetic energy T due to
rotation about the local X3-axis is large compared to the maximum variation in potential energy V .
The following initial conditions have been used corresponding to a ratio 2V=T < 0.05

�0 D
�

3
, �0 D Œ0, 0, 300�T .

According to [25] Section 5.7 approximate values for the angular precession and nutation
frequencies can be expressed as

P� '
J3

J1
�3 D 35.3 , P' '

mgl

J3�3
D 3.27

corresponding to the periods T� ' 0.18 and T' ' 1.9.
The motion of the center of gravity for the fast top is illustrated in Figure 6. It is seen that the top

displays a combined motion composed of precession about the global x3-axis and nutation between
two bounding angles as described in [25]. The precession is illustrated via the x1-component of
the center of mass in Figure 6(a). The precession period corresponds roughly to the estimate T'
with small perturbations because of nutation. The nutation is illustrated in Figure 6(b) by the x3-
component, oscillating with a period close to the estimated T� . The equations of motion have been
solved for the three time steps�t D .40, 20, 2/�10�4, corresponding to approximately 5, 10 and 100
time steps per full revolution of the top around its local axis in terms of the initial angular velocity
�0 D k�0k. Furthermore, a reference solution determined for a very fine time step �t D 10�6 is
also presented. The convergence limits are set to "r D "c D 10�6.

The vertical component of the external moment vanishes, and thus both the total mechanical
energy and the l3-component of the spatial angular momentum vector are conserved, if the pro-
cesses were carried to complete convergence. The relative error on the total mechanical energy and
the l3-component of the spatial angular momentum vector are presented in Figure 7(a) and 7(b)
for the relatively crude discretization �t D 0.004. It is seen that E and l3 are conserved within a
relative error of 10�8.
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(a) (b)

Figure 6. Motion of center of mass for fast top: (a) x1.t/, (b) x3.t/. �t D 0.004 ( ), �t D 0.002 ( ),
�t D 2 � 10�4 ( ), reference solution ( ).

(a) (b)

Figure 7. Conserved quantities: (a) energy and (b) spatial component of angular momentum l3.�t D 0.004.

Figure 8. Local component of angular velocity L3. �t D 0.004 ( ), �t D 0.002 ( ), �t D 2 � 10�4 ( ).

It can be shown, see for example [25] p. 211, that also the local angular momentum component
L3 is a conserved quantity. The error on L3 is illustrated in Figure 8. The error exhibits a regular
variation matching the period of the nutation shown in Figure 6. In contrast to the energy E and the
vertical momentum component l3, conservation of the momentum component L3 along the axis of
the top relies on exact representation of the time integral of the external moment. As this contribution
is only evaluated to within the accuracy of the present second-order approximation of the equations
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(a) (b)

Figure 9. Conservation of constraints: (a) normalization constraint, (b) orthogonality constraint.
J0 D Jii ( ), J0 D 10Jii ( ), J0 D 102 Jii ( ). �t D 0.004.

of motion, a second-order error is introduced into the conservation of L3. The error is introduced
because the moment is only represented via the energy conserving finite differential @V�=@q and a
projection operator based on the mean value Nq of the quaternion parameters. The inherent second-
order accuracy leads to a relative period error for the primary variables q, which is proportional to
.k�0k�t/

2, and thus the error on the external potential is expected to be proportional to this error
squared. For the large time step of �t D 0.004 and current nutational frequency of approximately
35.3, this yields a relative error of 4 � 10�4, which corresponds closely to the error on L3 illustrated
in Figure 8. It is seen that the error is reduced when a smaller time step is applied.

The accuracy with which the constraint equations are satisfied is illustrated in Figure 9 with
Figure 9(a) showing the effect of renormalization of the quaternion parameters and Figure 9(b)
showing that the error on the orthogonality condition is well below the tolerance of "c D 10�6. The
figure also illustrates that with the normalized algorithm, the error on the constraints is unaffected
by the specific value of the parameter J0.

5.2.2. Precessing top. Finally, the special case of a top in uniform precession without nutation
is considered. The initial conditions are taken corresponding to those considered in [21] with
precession rate P' D 10 and

�0 D
�

3
, �0 D Œ0, P' sin.�0/, P C P' cos.�0/�

T .

In order to obtain the case of regular precession for a given initial inclination angle �0, the angular
velocities P and P' must be determined such that they satisfy the following relation, see for example
[25] Section 5.7,

P D
mgl

J3 P'
C
J1 � J3

J3
P' cos.�0/. (63)

The x1-component and x3-component of the motion of the center of mass are illustrated in
Figure 10 for �t D 0.01, 0.005, 0.002 together with the exact analytical solution. The chosen
time discretizations correspond to approximately 5, 9 and 22 time steps per revolution time T D
2�= k�0k. It is seen from the numerical simulations that the top exhibits nutation. This is a
consequence of the period error predicted by the algorithm which essentially corresponds to under-
estimating the angular frequencies for rotational motion, thereby violating the condition for steady
precession (63). As expected, this deviation from the ideal behavior is reduced for smaller time
steps. The apparent coincidence between the precession and the nutation period is a consequence
of the particular choice of parameters rather than a general physical property. As in the case of a
fast top, the total mechanical energy and the spatial angular momentum component l3 are conserved
within a relative error of 10�6 for convergence parameters "r D "c D 10�6. For this value of the

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:734–752
DOI: 10.1002/nme



INTEGRATION OF RIGID BODY MOTION BY QUATERNION PARAMETERS 751

(a) (b)

Figure 10. Motion of center of mass for precessing top: (a) x1.t/, (b) x3.t/. �t D 0.01 ( ),
�t D 0.005 ( ), �t D 0.002 ( ), analytical solution ( ).

Figure 11. Relative period error. Precessing top ( ), fast top ( ), .��t/2=12 ( ).

tolerances, convergence was obtained using imean D imax D 5 for the time increment �t D 0.01
and by using imean D imax D 4 for the smaller time increments �t D 0.005, 0.002.

The second-order convergence of the algorithm is illustrated in Figure 11, showing the relative
period error �T=T for the nutation of the fast top in Figure 6(b) and the rotation of the precessing
top in Figure 10(a). The time increment is made non-dimensional via the parameter ��t , where
� is formed as the algebraic mean of k�k over the individual time steps. The analytical solution
is used as reference for the precessing top, whereas a numerical solution obtained with a fine time
discretization of �t D 10�6 is used as reference solution for the fast top. In both problems, the
development of the period error fits well with the asymptotic formula.

6. CONCLUSIONS

A direct momentum and energy conserving integration procedure has been developed for rigid body
motion. The formulation makes use of the four quaternion parameters and the corresponding four
generalized momentum variables, connected via an augmented inertia matrix that contains an aux-
iliary inertia parameter. The equations of motion are obtained by considering a finite increment
of the corresponding Hamiltonian and representing external loads via a finite gradient of the load
potential in terms of the quaternion parameters. The gradient of the load potential must be con-
strained, but it is a key feature of the present formulation that this constraint—originally introduced
via a Lagrange multiplier—is reformulated by elimination of the Lagrange multiplier, leaving only
a simple projection operator applied to the four-component load gradient. The present formulation
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results in an explicit discretized form of the Hamilton equations for the quaternion and momentum
increments, where the conservation properties are generated by the use of appropriately defined
mean values in the finite derivatives of the Hamiltonian function. The two extra conditions of the
quaternion formulation—the quaternion parameter constraint and the orthogonality condition of
the quaternion and momentum vectors—are imbedded in the generalized equations of motion and
do not require special attention, apart from the projection operator on the load potential gradient.
The role of the auxiliary inertia parameter is to act as a weight on the quaternion normalization
constraint, as illustrated in the numerical examples, suggesting a value somewhat larger than the
physical moments of inertia.
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a b s t r a c t

A conservative time integration formulation is developed for rigid bodies based on a con-
vected set of orthonormal base vectors. The base vectors are represented in terms of their
absolute coordinates, and thus the formulation makes use of three translation components,
plus nine components of the base vectors. Orthogonality and unit length of the base vectors
are imposed by constraining the equivalent Green strain components, and the kinetic
energy is represented corresponding to rigid body motion. The equations of motion are
obtained via Hamilton’s equations including the zero-strain conditions as well as external
constraints via Lagrange multipliers. Subsequently, the Lagrange multipliers associated
with the internal zero-strain constraints are eliminated by use of a set of orthogonality
conditions between the generalized displacements and the momentum vector, leaving a
set of differential equations without additional algebraic constraints on the base vectors.
A discretized form of the equations of motion is obtained by starting from a finite time
increment of the Hamiltonian, and retracing the steps of the continuous formulation in dis-
crete form in terms of increments and mean values over each integration time increment.
In this discrete form the Lagrange multipliers are given in terms of a representative value
within the integration time interval, and the equations of motion are recast into a conser-
vative mean-value and finite difference format. The Lagrange multipliers are eliminated
explicitly within each integration interval leaving a projection operator expressed in terms
of displacement component mean values. Hereby the number of variables is reduced by six
for each rigid body in the problem, and the difference equations lead to conservation of the
orthonormality conditions for the local base vectors. Examples demonstrate the efficiency
and accuracy of the procedure.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Numerous computational methods for analyzing constrained mechanical systems have been developed over the last two
decades. The governing equations of motion for a mechanical system with holonomic constraints typically yields a set of dif-
ferential algebraic equations (DAEs) of index three, when constraint equations are included via Lagrange multipliers. Several
methods exist for direct algebraic elimination of the Lagrange multipliers, which in addition to reducing the size the
underlying equations leads to an index-reduction from three to two. The most widely used methods within constrained
mechanical systems are Maggi’s formulation, see e.g. [1], and the null space formulation, [2], where the Lagrange multipliers
are eliminated by construction of an instantaneous null space matrix. Alternatively a Moore–Penrose generalized inverse can
be used as described by Udwadia and Kabala [3]. The index can be further lowered by introducing the constraints in
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differentiated form – typically at the acceleration level. However, common for these approaches is that the elimination pro-
cess is performed prior to the discretization process. When recast into a discrete form the matrices used for elimination of
the Lagrange multipliers depend on time, and therefore require evaluation at each time step. Furthermore, when constraints
are enforced in differentiated form, use of classical time discretization schemes based on asymptotic properties typically lead
to violation of the original constraints, also known as drift from the invariant constraint manifold. In these cases the numer-
ical behavior can be improved by stabilizing the constraint equations by using e.g. Baumgarte stabilization [4] or penalty-
based stabilization techniques based on an augmented Lagrangian formulation, [5]. Alternatively, constraint violations
may be eliminated by geometric projection onto the constraints manifold, [6,7,8], where the latter is in the framework of
the null space formulation. Comprehensive reviews of procedures for constraint enforcement have been given by Bauchau
and Laulusa [9,10] and Bauchau [11].

The efficient and accurate handling of the constraints in the form of stable numerical schemes for time integration has
been the subject of substantial research in recent years. A particular role has been taken by the energy and momentum con-
serving schemes, in which the underlying equations of motion are recast into incremental form by suitable integration of
internal and external work as well as convection terms, thereby leading to the correct change in energy and momentum over
a finite time step. These methods were originally developed for rigid body dynamics [12], and later extended to non-linear
elastodynamics [13]. Gonzalez [14] presented energy and momentum conserving schemes for general models in non-linear
elasticity via the introduction of a discrete derivative. A similar approach can be used for enforcing constraints in multibody
dynamics. Rather than enforcing the constraints at discrete points in time, constraints can be enforced in incremental form
along with the associated Lagrange multipliers represented by their mid-point value, see e.g. [15]. This is equivalent to
imposing a condition of zero work done by the constraint forces. A fairly general mid-point based scheme with conservation
properties for constrained multibody dynamics has been proposed by Lens et al. [16]. In the constraint elimination methods
discussed above the constraint elimination is performed prior to the discretization in time, and these methods are therefore
not well-suited for development of discrete conservative time integration schemes. A different path is followed in the dis-
crete null space method [17]. The original equations are first discretized into an energy/momentum preserving form, and
subsequently the Lagrange multipliers are eliminated via the discrete null space matrix, which constitutes the orthogonal
complement to the gradient matrix of the constraints. In particular, the discrete null space matrix can be obtained in explicit
form for are wide number of kinematic constraints as is illustrated in [18].

In the present paper a conservative time integration algorithm is presented, based on a direct discretization of Hamilton’s
equations for rigid body motion and the constraints in terms of finite increments in time. The formulation uses three trans-
lational components and nine convected base vector components as kinematic variables plus six Lagrange multipliers for
enforcing orthonormality of the base vectors. The use of the local base vector components is similar to the approach in
[19]. However, while in [19] the inertia of the body is represented via the constant Euler tensor, the present approach rep-
resents the kinematics of the rigid body rotation via the instantaneous angular velocity corresponding to rigid body rotation.
Hereby the kinetic rotation energy is expressed directly in terms of the moment of inertia tensor of the rigid body. In this
format the kinematic constraints of the base vectors are incorporated into the kinematic equations of motion, facilitating
direct elimination of the Lagrange multipliers initially introduced to enforce the rigid-body constraints. The elimination is
based on a set of orthogonality relations between the generalized displacements and their conjugate momentum variables,
leaving only a projection operator applied to the gradients of the external potential and possible kinematic constraints.

2. Kinematics

The motion of a solid body is illustrated in Fig. 1. A local coordinate system with base vectors q1;q2;q3 is centered at a
point O defined by the position vector q0. A point located inside the solid body with coordinates x0 ¼ ½x01; x02; x03�

T has the glo-
bal components

xðtÞ ¼ q0ðtÞ þ QðtÞx0; ð1Þ
where Q is the deformation gradient tensor, defined by

Q ¼ ½q1;q2;q3� ¼
@x
@x0

: ð2Þ

x1

x2
x3

q0

q1

q2q3

O

Fig. 1. Rigid body described by position vector q0 and base vectors q1;q2; q3.
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In the case of a rigid body rotation the base vectors remain an orthonormal triple, as expressed by the matrix condition

Q TQ ¼ I; ð3Þ
where I is the 3� 3 unit matrix. In the following the global components of the position vector q0 and the base vectors
q1;q2;q3 are used as independent variables, and the six independent equations contained in the rigid body condition (3) ap-
pear as constraints.

The kinetic energy of a body with volume V0 can be expressed by the integral

T ¼ 1
2

Z
V0

_xT _xqdV0; ð4Þ

where q denotes the mass density, and where the global velocity _x follows by differentiation of (1), as

_x ¼ _q0ðtÞ þ _QðtÞx0: ð5Þ
When the reference point O is selected as the center of mass, the kinetic energy takes a particularly simple form where the
translational kinetic energy of the center of mass T t decouples from the rotational kinetic energy of the body Tr as

T ¼ Tt þ Tr: ð6Þ
First, the kinetic energy associated with translational motion is expressed in terms of the global velocity of the center of mass
v as

Tt ¼ 1
2

Z
V0

vTvqdV0 ¼ 1
2
m _qT

0
_q0; ð7Þ

where m denotes the mass of the body, and _q0 is the velocity of the center of mass, corresponding to x0 ¼ 0 in (5). Similarly,
the rotational part of the kinetic energy can be expressed in terms of the velocity v r due to rotation in the form

Tr ¼ 1
2

Z
V0

vT
r vrqdV0: ð8Þ

It is noted that v r is represented by its local components, while the translational velocity _q0 is in global components.

2.1. Rigid body motion

In the present formulation the kinetic energy is based on a rigid body rotating with angular velocityX. The rotation veloc-
ity can therefore be expressed in terms of the angular velocity X as

vr ¼ X� x0 ¼ X̂x0 ¼ �x̂0X; ð9Þ
where the symbol ð^Þ denotes the vector product via the skew-symmetric local component matrix

X̂ ¼ X� ¼
0 �X3 X2

X3 0 �X1

�X2 X1 0

264
375: ð10Þ

The rotation velocity v r is expressed in local components by the last expression in (9) and substituted into (8), whereby

Tr ¼ 1
2
XT

Z
V0

x̂T0x̂0qdV0

� �
X ¼ 1

2
XT JX: ð11Þ

The inertia tensor is defined by the volume integral

J ¼
Z
V0

x̂T0x̂0qdV0 ¼
Z
V0

xT
0x0I� x0xT0

� �
qdV0; ð12Þ

conveniently expressed in local components, whereby J is constant.
When assuming that the base vectors remain orthonormal, the local components of the angular velocity can be expressed

by projection of the base vector derivatives _qi on the base vectors qj via the relations

X1 ¼ _qT
2q3 ¼ � _qT

3q2;

X2 ¼ _qT
3q1 ¼ � _qT

1q3;

X3 ¼ _qT
1q2 ¼ � _qT

2q1:

ð13Þ
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These relations are conveniently given in matrix format by arranging the global components of the base vectors in column
format as

q ¼ ½qT
1;q

T
2;q

T
3�

T
: ð14Þ

The angular velocity is then given as

X ¼ �1
2
GðqÞ _q ¼ 1

2
Gð _qÞq; ð15Þ

in terms of the matrix

GðqÞ ¼
0 �qT

3 qT
2

qT
3 0 �qT

1

�qT
2 qT

1 0

264
375: ð16Þ

The matrix GðqÞ has the same structure in terms of the three vectors q1;q3;q3, as the skew-symmetric 3� 3 matrix for the
vector product defined by the symbol ð^Þ in (10). The structure of the G-matrix implies the identity

GðqÞq
3�9

¼ 0
3�1

: ð17Þ

It is convenient to combine the expressions for the global translation velocity v and local components of the angular velocity
X in terms of the vector of independent coordinates qT ¼ ½qT

0;q
T
1;q

T
2;q

T
3� in the compact matrix format

v
X

� �
¼ I 0

0 � 1
2GðqÞ

" #
_q0

_q

� �
¼ GðqÞ _q; ð18Þ

where the 6� 12 matrix GðqÞ is a block diagonal form of the G-matrix from (16) and a 3� 3 unit matrix I. In the particular
case, where the base vectors qj are orthonormal, the matrix GðqÞ satisfies the orthogonality relation

GðqÞ
6�12

GðqÞ
12�6

T ¼ I 0
0 1

2 I

" #
: ð19Þ

In essence this relation defines a generalized inverse of the matrix GðqÞT .
The kinetic energy associated with rigid body motion can now be expressed in terms of the current value of q and the

time derivative _q by substitution of the translation velocity and angular velocity from (18) into the expressions (7) and
(11), whereby

T ¼ 1
2 vT XT
� 	 mI

J

� � v
X

� �
¼ 1

2
_qTGðqÞT JGðqÞ _q: ð20Þ

The extended inertia tensor J is introduced as a block diagonal form of the massm and the inertia tensor J. This expression for
the kinetic energy is based on the assumption of rigid body motion, as expressed by the constraint equations (3).

2.2. Rigid body constraints

The rigid body constraints (3) on the deformation gradient matrix Q correspond to vanishing of all Green strain compo-
nents, as expressed by the matrix relation

E ¼ 1
2

Q TQ � I

 �

¼ 0: ð21Þ

When expressed in terms of the columns qj of the deformation gradient tensor Q the six independent strain components are

eðqÞ ¼ 1
2

qT
1q1 � 1

qT
2q2 � 1

qT
3q3 � 1

qT
2q3 þ qT

3q2

qT
3q1 þ qT

1q3

qT
1q2 þ qT

2q1

2666666664

3777777775
: ð22Þ

The kinematic constraints appear in the present formulation through their time derivative, conveniently written in the form

_e ¼ CðqÞ _q ¼ Cð _qÞq ¼ 0; ð23Þ
with the rearranged 6� 12 deformation gradient matrix
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CðqÞ ¼ @e
@q

¼

0 qT
1 0 0

0 0 qT
2 0

0 0 0 qT
3

0 0 qT
3 qT

2

0 qT
3 0 qT

1

0 qT
2 qT

1 0

2666666664

3777777775
: ð24Þ

In the present formulation CðqÞ acts as constraint matrix. It satisfies the orthogonality relation

CðqÞ
6�12

CðqÞ
12�6

T ¼ I 0
0 2I

� �
; ð25Þ

provided the base vectors qj are orthonormal. The factor 2 on the lower diagonal block is due to the representation of shear
strains in terms of angular strain.

It is an important property of the present formulation that for orthonormal base vectors qj the constraint matrix CðqÞ is
orthogonal to the rotation matrix GðqÞ in the sense

CðqÞ
6�12

GðqÞ
12�6

T ¼ 0
6�6

ð26Þ

This relation follows directly by substitution of the matrix definitions (24) and (16).

3. Dynamics

The equations governing the motion for a constrained rigid body can be obtained via the variational principles of Lagrange
and Hamilton, see e.g. [20]. Here, the equations of motion for translational and rotational motion are derived simultaneously
based on the kinetic energy (20) with extended inertia tensor.

3.1. Kinetic energy and momentum

The momentum components p ¼ ½pT
0;p

T
1;p

T
2;p

T
3�T associated with the motion described by the kinematic components

q ¼ ½qT
0;q

T
1;q

T
2;q

T
3�T follow from differentiation of the kinetic energy (20) as

p ¼ @T
@ _qT

¼ GðqÞT JGðqÞ _q: ð27Þ

This relation gives the momentum p in terms of the generalized velocity _q. In order to obtain the Hamiltonian as a function of
the generalized displacements q and the corresponding momentum p the relation (27) must be inverted. For a rigid body the
base vectors qj are orthonormal, and it then follows from pre-multiplication with GðqÞ that

GðqÞp ¼ GðqÞGðqÞT JGðqÞ _q ¼ I 0
0 1

2 I

" #
JGðqÞ _q; ð28Þ

where the orthogonality relation (19) has been used. This relation is now used to eliminate _q from the kinetic energy (20),
whereby the following expressions in terms of the momentum vector p are obtained,

Tðq;pÞ ¼ 1
2
pTGðqÞT m�1I 0

0 4J�1

" #
GðqÞp ¼ 1

2
pTGðqÞTJ�1GðqÞp: ð29Þ

The factor 4 appears in the lower block of the inertia matrix because the rotation matrix G constituting the lower block of G is
not normalized, but satisfies the product relation GGT ¼ 2I. This is accounted for by including a factor 4 on the inverse inertia
tensor J�1 associated with rotational motion in the matrix J�1. This relation serves as the basis of a Hamilton formulation of
the dynamic equations of motion for rigid body rotation.

The choice of the local reference point O as the center of mass gives the matrices in the kinetic energy a block-diagonal
structure, whereby generalized momentum p0 is the momentum associated with the translation q0 of O. The local angular
momentumwith respect to the origin of the local frame O is obtained by representing the angular velocity in terms of q and _q
via (15),

L ¼ JX ¼ �1
2
JGðqÞ _q: ð30Þ

The momentum vector p associated with the rotation of the base vectors can be expressed in terms of the angular
momentum L by pre-multiplication of (30) with the rotation matrix � 1

2GðqÞT , introduced in (15) to represent the angular
velocity,

S. Krenk, M.B. Nielsen / Comput. Methods Appl. Mech. Engrg. 269 (2014) 437–453 441



�1
2
GðqÞTL ¼ 1

4
GðqÞT JGðqÞ _q ¼ p; ð31Þ

where the last equality follows from the momentum definition (27), when recalling the factor 1
2 in the relation (18) between

the matrices GðqÞ and GðqÞ. For a rigid body the matrix GðqÞ satisfies the orthogonality relation (19), and thus the magnitude
of the angular momentum vector takes the form

kpk2 ¼ pTp ¼ 1
4
LTGðqÞGðqÞTL ¼ 1

2
kLk2: ð32Þ

In case of free rigid body rotation this length represents an invariant and the conservation of this property is considered in
the following sections. It is seen that while the vector relation (31) between L and p contains a transformation matrix the
lengths of the two vectors are related by a constant factor. Conservation properties for the generalized momentum vector
p are considered in Section 3.4.

3.2. Hamilton’s equations

The present formulation is based on an extended form of Hamilton’s energy functional in which the sum of the rotational
kinetic energy Tðq;pÞ and the potential energy function VðqÞ is augmented by a set of zero Green strain constraints specified
via (22). Furthermore external constraints e.g. associated with the presence of joints may be included, whereby the aug-
mented Hamiltonian can takes the form

Hðq;pÞ ¼ Tðq;pÞ þ VðqÞ þUðqÞTk� eðqÞTc: ð33Þ
Here eðqÞ is the six-component strain vector (22) associated with deformation of the basis qj, and c is the corresponding six-
component vector of Lagrange multipliers, whileUðqÞ and the corresponding vector of Lagrange multipliers k account for the
external constraints.The equations of motion follow from the extended Hamiltonian (33) by differentiation, using the
expression (29) for the kinetic energy,

_q ¼ @H
@pT ¼ GðqÞTJ�1GðqÞp; ð34Þ

_p ¼ @H
@qT ¼ �GðpÞTJ�1

0 GðpÞq� @V
@qT �

@U
@q

� �T

kþ CðqÞTc: ð35Þ

The constraint matrix CðqÞT in the last term of the second equation is the derivative of the strain vector, as shown in (23). The
kinetic energy is independent of the translation q0, and thus the upper left diagonal block in the extended inertia tensor in
the second equation vanishes. This is denoted by a subscript as J�1

0 ¼ diag½0;4J�1�. The first equation (34) is the kinematic
equation for the development of the generalized displacement vector, while the dynamic equation (35) gives the develop-
ment of the conjugate momentum vector.In the case of an augmented Hamiltonian, the equations associated with the exter-
nal constraints may be obtained from stationarity with respect to k. This gives the external constraint equation,

@H
@kT

¼ UðqÞ ¼ 0: ð36Þ

A particular feature of the present formulation is that the Lagrange multipliers c associated with internal constraints (23) can
be eliminated, whereby these constraints do not appear directly in the final equations.

3.3. Momentum constraint equation

The representation of the kinetic energy via the three-component angular velocity of a rigid body leads to the key prop-
erty of the present formulation, that the time derivative of the six constraints are then included in the kinematic equation
(34). Substitution of _q from the kinematic evolution equation (34) into the strain rate expression (23) gives

_e ¼ CðqÞGðqÞT J�1GðqÞp ¼ 0; ð37Þ
where the last equality follows from the matrix product relation (26), which is valid when the vectors qj constitute an ortho-
normal basis. Thus, when starting with an orthonormal basis qj, this property will be propagated via the kinematic Hamilton
equation (34).

A central point in the present formulation is the elimination of the Lagrange multipliers c associated with the orthonor-
mality constraints on the base vectors. This is accomplished by establishing a set of orthogonality relations between the con-
vected base vectors qj and the corresponding momentum vectors pk. The defining relation (27) of the momentum vector is
pre-multiplied by the constraint matrix CðqÞ,

CðqÞp ¼ CðqÞGðqÞT JGðqÞ _q: ð38Þ
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According to (26) the product of the constraint matrix CðqÞ and the rotation matrix GðqÞT vanishes, leaving the six orthog-
onality relations

CðqÞp ¼ 0: ð39Þ
These relations constitute a complement to the kinematic constraints (23), and correspond to replacing _q by p. They play
central roles both in connection with momentum conservation and elimination of the Lagrange multipliers associated with
orthonormality of the base vectors qj, as discussed in the following two sections.

3.4. Conservation of momentum

It was shown in (37) that the time-derivatives of the zero-strain constraints are contained in the kinematic equation of
motion. A conservation equation for the magnitude of the local angular momentum kLk is obtained by pre-multiplication of
the rotational part _p in the dynamic equation of motion (35) with the corresponding momentum vector p. The first term
vanishes due to the skew-symmetric structure of GðpÞ. Furthermore, the last term vanishes due to the displacement-momen-
tum orthogonality relation (39). This leaves the result

1
4
dðkLk2Þ

dt
¼ pT _p ¼ �pT @V

@qT þ
@U
@q

� �T

k

" #
ð40Þ

showing conservation of the length of the local angular momentum vector L in the absence of external loads and constraints.
Component relations for the linear and angular momentum are obtained as follows. As already observed the linear

momentum is equal to p0. The angular momentum is obtained by pre-multiplication of the relation (31) with GðqÞ, whereby

GðqÞp ¼ �1
2
GðqÞGðqÞTL ¼ �L; ð41Þ

where the last equality follows from the lower part of the orthogonality relation (19). This gives the following relation be-
tween the linear and the angular momentum p0 and L, and the 12-component generalized momentum vector p,

p0
1
2 L

" #
¼ GðqÞp: ð42Þ

The three first components in this relation are the global components of the linear momentum, while the three last compo-
nents are the local components of the angular momentum.

Conservation properties are associated with the absolute derivative, and the angular momentum L must therefore be
transformed into global components, differentiated and the derivative then transformed back into local components, as ex-
pressed by

DL
Dt

¼ �Q T d
dt

QGðqÞp½ � ¼ � d
dt

GðqÞp½ � � Q T _Q GðqÞp½ �; ð43Þ

where the factors on the last term represents the rotation of the base vectors. When the vectors qj constitute an orthonormal
basis this rotation factor can be expressed as

�Q T _Q ¼ _Q TQ ¼ Gð _qÞGðqÞT : ð44Þ
When using this result the last term in the absolute derivative (43) can be expressed as

�Q T _Q GðqÞp½ � ¼ Gð _qÞ GðqÞTGðqÞ
h i

p ¼ 2Gð _qÞp: ð45Þ

The last equality is obtained by using the momentum constraint equations (39) to rearrange terms in the matrix within the
square brackets. When substituting this expression into (43), the absolute time derivative of the angular momentum is ob-
tained in the form

DL
Dt

¼ Gð _qÞp� GðqÞ _p ¼ �GðpÞ _q� GðqÞ _p: ð46Þ

It is seen that the effect of the rotation of the basis is to change the sign of the first term.In order to establish the momentum
conservation properties it is convenient to combine the linear and angular momentum derivatives in the form

D
Dt

GðqÞp½ � ¼ G0ðpÞ _qþ GðqÞ _p: ð47Þ

where the matrix G0 is obtained from G by omitting the unit matrix in the upper left diagonal position. The time derivatives _q
and _p are now substituted from the Hamilton Equations (34) and (35), whereby

D
Dt

GðqÞp½ � ¼ G0ðpÞGðqÞTJ�1GðqÞp� GðqÞGðpÞTJ�1
0 GðpÞq� GðqÞ @V

@qT þ
@U
@q

� �T

k� CðqÞTc
" #

: ð48Þ
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The result from the last term in the square brackets vanishes due to the orthogonality relation (26) between the matrix GðqÞ
and the constraint matrix CðqÞ. The first two terms are reduced by observing that due to the diagonal block matrix format of
the matrices G and J�1 the presence of a factor with vanishing upper left block will eliminate the corresponding block in a
product of these matrices. Thus, only the lower right diagonal blocks contribute to the first two terms. The structure of the
matrix G implies that G0ðpÞq ¼ �G0ðqÞp, and thus the equation reduces to

D
Dt

GðqÞp½ � ¼ G0ðpÞG0ðqÞT þ G0ðqÞG0ðpÞT
h i

J�1
0 G0ðqÞp� GðqÞ @V

@qT þ
@U
@q

� �T

k

" #
: ð49Þ

Finally, when carrying out the matrix products in the first set of brackets the resulting diagonal terms vanish due to the first
three momentum constraint conditions in (39), while the off-diagonal terms vanish due to the last three conditions. This
leaves the momentum balance equation in the form

D
Dt

GðqÞp½ � ¼ �GðqÞ @V
@qT þ

@U
@q

� �T

k

" #
: ð50Þ

These equations demonstrate conservation of linear and angular momentum components without external or constraint
force components. Furthermore, mutual constraints linking two bodies lead to constraint forces that cancel when consider-
ing the total momentum of the combined system. As demonstrated in the examples in Section 5, this conservation property
is retained in the discretized time integration algorithm.

3.5. Elimination of internal constraints

The Lagrange multipliers c associated with the internal constraints that maintain orthonormality of the local basis are
eliminated by use of the momentum constraint equations (39). Time differentiation of the displacement-momentum con-
straint relation gives the equation

CðpÞ _qþ CðqÞ _p ¼ 0; ð51Þ
where the positions of the factors _q and p have been interchanged in the first term. It may be noted that the form of this
incremental constraint relation is similar to the absolute derivative of the momentum vector (47), when replacing the rota-
tion matrix with the constraint matrix. Substitution of the time derivatives _q and _p from (34) and (35) gives

CðpÞGðqÞTJ�1GðqÞp� CðqÞGðpÞTJ�1
0 GðpÞq� CðqÞ @V

@qT þ
@U
@q

� �T

k� CðqÞTc
" #

¼ 0: ð52Þ

The structure of the matrix CðqÞ eliminates contributions from translational components. Furthermore, it can be demon-
strated by direct computation and use of the displacement-momentum orthogonality relation (39) that the matrix products
constituting the first part of the two first terms satisfy the identity

CðpÞGðqÞT þ CðqÞGðpÞT ¼ 0; ð53Þ
When interchanging the roles of q and p in the last two factors of the second term in (52) the sign changes, and the identity
(53) then leads to cancellation of the first two terms. This leaves the much simplified equation

CðqÞ @V
@qT þ

@U
@q

� �T

k� CðqÞTc
" #

¼ 0; ð54Þ

which determines the Lagrange multiplier vector as

c ¼ CðqÞCðqÞT
h i�1

CðqÞ @V
@qT þ

@U
@q

� �T

k

" #
: ð55Þ

It is notable that the internal Lagrange multiplier vector c vanishes in the absence of external loads and external constraints.
In fact, the corresponding homogeneous Hamilton equations can be solved directly without imposing the internal con-
straints explicitly.

Substitution of the internal Lagrange multiplier from (55) gives the dynamic Hamilton equation (35) in the form

_p ¼ �GðpÞTJ�1
0 GðpÞq� I� CðqÞT CðqÞCðqÞT

h i�1
CðqÞ

� �
@V
@qT þ

@U
@q

� �T

k

" #
: ð56Þ

It follows from (25) that when qj is an orthogonal basis, the inverse matrix has the simple diagonal form

CðqÞCðqÞT
h i�1

¼ I 0
0 1

2 I

" #
: ð57Þ
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When the modified dynamic Hamilton equation (56) is solved together with the kinematic Hamilton equation (34), the con-
straints are maintained via their time derivatives, and the contribution from the external force potential and the external
constraint gradients act via a projection operator without reference to a Lagrange multiplier. A similar feature was found
in [21] regarding elimination of the Lagrange multiplier associated with the scalar constraint for quaternion parameters.

The extended dynamic Hamilton equation (56) can be given a simplified form in which the constraint matrix CðqÞ does
not appear. In the projection operator appearing in front of the potential gradient and the external constraint gradient in (56)
the projection of the gradients on the deformation modes via the constraint matrix CðqÞ is subtracted from the unconstrained
gradients. The remaining part corresponds to the components in terms of rotation modes. In fact, this part can be obtained
directly by projection on the rotation modes by use of the matrix GðqÞ. Direct substitution of the vector expressions of the
matrices gives the following identity, when q represents an orthonormal basis,

I� CðqÞT CðqÞCðqÞT
h i�1

CðqÞ ¼ GðqÞT ½GðqÞGðqÞT ��1
GðqÞ: ð58Þ

This leads to the more compact form of the dynamic Hamilton equation

_p ¼ � @H
@qT ¼ �GðpÞT J�1GðpÞq� GðqÞT ½GðqÞGðqÞT ��1

GðqÞ @V
@qT þ

@U
@q

� �T

k

" #
; ð59Þ

where the constraint matrix CðqÞ does not appear. In particular, when the vectors qj constitute an orthonormal basis, the
normalizing matrix expressed by the inverse matrix product from (19) can be replaced by the diagonal matrix diag½I;2I�.
It is noted that in the discretized form developed in Section 4 the equations of motion are used in connection with mean
values of two sets of base vectors qj. These mean vectors are not orthonormal, and a suitable mean value form of the original
dynamic equation (56) must be used.

4. State-space time integration

The key point in developing a conservative time integration algorithm is to discretize the evolution equations based on an
integrated form, such that the correct incremental change of the energy and momentum is obtained over a finite time step
from tn to tnþ1. This approach is different from the collocation-based methods, in which the equations are matched at discrete
points in time. Similarly, constraints are included via exact representation over the finite time integration increment. In this
context it is important to realize that the role of the associated Lagrange multipliers is to ensure the satisfaction of the con-
straints at the end of the current interval of integration, see e.g. [22] for a discussion of the role of Lagrange multipliers in
mechanics. The Lagrange multipliers are therefore associated with the integration interval, and not the selected points in
time. Hence, if simulations are initiated with proper initial conditions satisfying the constraints, exact integration of the con-
straint increments will ensure continued satisfaction at any later time step.

4.1. Energy conservation for rigid body rotations

The discretized conservative form of the equations of motion (34) and (56) is obtained by considering a finite increment
of the augmented Hamiltonian defined in (33) over the time interval ½tn; tnþ1�. This increment is expressed as

DH ¼ DTðq;pÞ þ DVðqÞ þ DUðqÞTk� DeðqÞTc: ð60Þ
The role of the Lagrange multipliers k and c is to impose the constraints at the end of the time interval, when they are sat-
isfied at the beginning. The Lagrange multipliers are therefore introduced in the form of a representative value that is asso-
ciated with their role over the interval, i.e. an effective mean value. There has been some uncertainty about this point in the
literature, and Lagrange multipliers have sometimes been interpolated between the integration time points, typically leading
to oscillatory behavior.

The kinetic energy is a symmetric bi-quadratic form given by either of the expressions in (29). It is easily shown that the
time increment of a quadratic form is obtained by replacing in turn one factor with its increment, while the other is repre-
sented by its mean value, see e.g. [23,24]. For the present symmetric form this gives

DT ¼ D pTGðqÞT
h i

J�1 GðqÞp
h i

: ð61Þ

By the same argument the first factor can further be factored into products of increments and mean values, whereby

DT ¼ DpTGðqÞT þ pTGðDqÞT
h i

J�1 GðqÞp
h i

: ð62Þ

By interchanging the roles of q and p in all factors associated with the second term the following structure of the increment
of the kinetic energy DT is identified

DT ¼ DqT @T�
@qT þ DpT @T�

@pT ; ð63Þ
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defining the finite derivatives of T as

@T�
@qT ¼ GðpÞTJ�1

0 GðpÞq; @T�
@pT ¼ GðqÞTJ�1GðqÞp: ð64Þ

Similarly as in the continuous dynamic equation (35), the matrix J�1
0 is introduced since T does not depend on q0. It is seen

that (63) represents a discrete equivalence to partial differentiation where the finite increments Dq and Dp serve to identify
the finite derivatives that reproduce the exact energy increment, see e.g. [14]. In particular, the conservative properties of the
algorithm rely on the special combination of increments and mean values in (64). The increment of the potential VðqÞ is
represented similarly in terms of its finite derivative @V�=@q,

DV ¼ DqT @V�
@qT : ð65Þ

The particular form of the finite derivative can often be extracted in explicit form via a finite difference.
The internal constraints (23) are homogeneous quadratic forms of the generalized displacements q, and thus the

increment of the strain constraints can be expressed as a combination of increments and mean values as

De ¼ CðqÞDq ¼ 0: ð66Þ
It is seen that this equation constitutes the discrete form equivalent to (23). Finally, the increment of the external constraints
is expressed in terms of its finite derivatives as

DU ¼ DqT @U�
@qT ¼ 0: ð67Þ

External constraints often describe a distance or an angle, and this would lead to an explicit expression of the finite deriv-
ative with respect to the generalized displacements q.

The specific form of the discretized equations of motion with the finite time increment h follow from (60) by introducing
the increments in terms of the finite derivatives by (63) and (65)–(67),

Dq ¼ @H�
@pT ¼ hGðqÞTJ�1GðqÞp; ð68Þ

Dp ¼ @H�
@qT ¼ �hGðpÞTJ�1

0 GðpÞq� h
@V�
@qT þ

@U�
@q

� �T

k� CðqÞTc
" #

: ð69Þ

These equations are constructed such that a finite increment of the Hamiltonian DH ¼ 0, which is an expression of conser-
vation of energy. Furthermore, it is seen that the discrete equations of motion constitute a clear equivalent to the kinematic
equation (34) and the dynamic equation (35), when the respective gradients are represented by their finite derivatives. It is
also clear from the form of these equations that the Lagrange multipliers c and k are associated with the time interval
½tn; tnþ1�, rather than any particular point in time.

4.2. Elimination of internal constraints

As in the continuous case it is convenient to eliminate the explicit dependence on the Lagrange multipliers c associated
with the internal constraints. The elimination is based on the incremental form of the displacement-momentum relation
(51), given by

CðpÞDqþ CðqÞDp ¼ 0: ð70Þ
When substituting the increments from (68) and (69) the following relation for c is obtained

CðpÞGðqÞTJ�1GðqÞp� CðqÞGðpÞTJ�1
0 GðpÞq� CðqÞ @V�

@qT þ
@U�
@q

� �T

k� CðqÞTc
" #

¼ 0: ð71Þ

In contrast to the continuous case (52) the two first terms do not cancel in general, because now the first two factors are
based on the mean values q and p that are not necessarily orthonormal. Thus, the explicit expression for the c vector in terms
of q and p follows in the form

c ¼ c0 þ CðqÞCðqÞT
h i�1

CðqÞ @V�
@qT þ

@U�
@q

� �T

k

" #
; ð72Þ

where the term

c0 ¼ CðqÞCðqÞT
h i�1

CðqÞGðpÞT þ CðpÞGðqÞT
h i

J�1
0 GðpÞq: ð73Þ
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accounts for the two terms associated with the homogeneous equations. It can be shown that this contribution is of order
kDqkkDpk, and thereby of order ðDtÞ2 relative to the other terms. However, the term c0 must be included in the formulation
to realize the full accuracy of the algorithm, as well as including energy and momentum conservation.

After elimination of c, the dynamic equation of motion (69) takes the form,

Dp ¼ �hGðpÞTJ�1
0 GðpÞqþ hCðqÞTc0 � h I� CðqÞT CðqÞCðqÞT

h i�1
CðqÞ

� �
@V�
@qT þ

@U�
@q

� �T

k

" #
: ð74Þ

This constitutes the discrete equivalent to (56). In the discretized form the projection is based on the mean values CðqÞ, and
this appears to preclude further reduction to the more compact rotation matrix form (59) of the continuous problem.
Furthermore, it should be noted that while the equations associated with rotational motion includes a representation of
rotating moment of inertia tensor J via the G-matrices, the inertia effects associated with translation of the center of mass
only contains the mass of the body m as a scalar factor. Typically this makes the rotational part of the motion the controlling
factor for the numerical accuracy as illustrated in Section 5.2.

4.3. State-space algorithm

The kinematic equation (68), the dynamic equation (74) and the increment of the external constraints for the time step
Dt ¼ tnþ1 � tn are solved simultaneously by Newton–Raphson iteration. The unknown variables are the current value of
qT ;pT
� 	

and the external Lagrange multipliers, kT associated with the current time interval. These are conveniently collected
in the state vector

u ¼ qT ;pT ; kT
� 	T

: ð75Þ
Similarly, the corresponding residual vector is arranged in the form

r ¼ rTq ; r
T
p ; r

T
k

h iT
; ð76Þ

with elements defined by the discretized equations of motion and the external constraints as

rq ¼ Dq� hGðqÞT J�1GðqÞp; ð77aÞ

rp ¼ Dpþ hGðpÞT J�1GðpÞqþ h
@V�
@qT þ

@U�
@q

� �T

k� CðqÞTc
" #

; ð77bÞ

rk ¼ @U�
@q

Dq; ð77cÞ

with the Lagrange multipliers c associated with the internal constraints are expressed in terms of q and p by (72).
Iterations based on the Newton–Raphson procedure amounts to considering the linearized equation for the residual r gi-

ven by,

rþ dr ¼ rþ @r
@q

dqþ @r
@p

dpþ @r
@k

dkþ � � �
� �

¼ 0; ð78Þ

where the dots indicate higher order terms. The linearized increment dr is then determined in order to make the residual
vanish. This corresponds to the system of equations

Kdu ¼ �r; ð79Þ
with the elements of the tangential stiffness matrix defined by partial differentiation as

Kij ¼ @ri=@uj: ð80Þ
Consistent expressions for the tangential stiffness are given by (A.2)–(A.5) in Appendix A. The iteration procedure is imple-
mented with a convergence criterion specifying that the length of the residual vector must be less a prescribed value er. It is
convenient to define individual convergence criteria for each of the residual equation (77) reflecting the different lengths of
the various vectors in (76). These are implemented as

rq
�� �� 6 er qk k0; rp

�� �� 6 er pk k0 ð81Þ
and

rkk k 6 er: ð82Þ
The implementation of the algorithm for rigid body rotations is illustrated in pseudo-code format in Table 1. It has been
noted previously that the Lagrange multipliers are associated with the particular interval of integration and do not have
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any continuity requirements, hence the value k0 ¼ 0 included in the initial conditions is a purely formal construct to estab-
lish the full vector un needed in the subsequent iteration procedure.

5. Numerical Examples

In this section two numerical examples are presented. The first example serves to illustrate the conservative properties of
the algorithm in the absence of an external potential by considering free rotational motion of a rigid body. The second exam-
ple generalizes the formulation also to include translational motion and the motion of a spinning top in a gravitational field
with one point fixed is investigated for three different configurations. Additional examples involving multiple bodies con-
nected by various types of hinges are presented in [25].

5.1. Free rotation of rigid body

The first example considers free rotation of a rigid body. The parameters are equivalent to those used in [21,26], corre-
sponding to a box with side lengths ½1;3;2� and mass 12. This yields a principal moment of inertia tensor with respect to the
center of mass given by J ¼ diag½13;5;10�. The motion is initiated by an angular velocity of X0 ¼ ½0:0;0:05;10�T , i.e rotation
around the axis of intermediate moment of inertia with a small perturbation. This leads to unstable motion where the body
is reversed at regular intervals as discussed in [21,26].

The discretized algorithm was derived by forming a finite increment of the augmented Hamiltonian, whereby conserva-
tion of energy in absence of approximation error is ensured. In the present example the kinetic energy T ¼ 500 as well as the
magnitude of the angular momentum vector kLk are conserved within an accuracy of 10�15 when an iteration tolerance of
er ¼ 10�8 is used. Similarly the kinematic constraint condition (22) as well as the displacement–momentum orthogonality
relation (39) are satisfied within a very high accuracy for the present iteration tolerance. This is illustrated in Figs. 2(a)
and 2(b) for the time step h ¼ 0:01.

The second order accuracy of the present algorithm is illustrated in Fig. 3 in terms of the period error for different values
of the non-dimensional time steps xh, with x ¼ kX0k. The period error is obtained from X3 relative to a reference period T
evaluated for a fine discretization of h ¼ 10�6. For comparison, results obtained by the algorithm based on quaternions
presented in [21], the energy–momentum scheme ALGO C1 presented in [12] and the algorithm based on the Cayley repre-
sentation of the rotation tensor from [26] are included. It is seen that all algorithms are second order accurate. However,

Table 1
Conservative time integration algorithm.

(1) Initial conditions:

u0 ¼ ½qT ;pT ;0T �T0
(2) Prediction step:

u ¼ un ,
(3) Residual calculation:

r ¼ rðq;p; kÞ from (77).
(4) Update incremental rotation parameters:

du ¼ �K�1r,with K from Appendix A.
u ¼ uþ du,
If rk k > er , repeat from (3).

(5) Return to (2) for new time step, or stop.
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Fig. 2. Error on homogeneous constrains: (a) Kinematic constraint, (b) Orthogonality relation.
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while the accuracy of the benchmark algorithms roughly corresponds to the well-known asymptotic results for a single load
component DT=T ¼ ðxhÞ2=12, see e.g. [24], the convergence constant of the present algorithm is changed from 1=12 to about
1=100. The number of iterations for convergence of the present algorithm was 4 in mean and 4 as maximum. For the
quaternion algorithm these numbers were 3 and 3, while for the Cayley formulation they were 2.2 and 3.

5.2. Rotating top in gravitational field

In this example the motion of a spinning top in a gravitational field with one point fixed as illustrated in Fig. 4(a) is ana-
lyzed. The motion is conveniently expressed in terms of the angle of nutation h, the angle of precession u and the spin angle
w.

The top is represented as a cone with dimensions equivalent to those used in [18], i.e height a ¼ 0:1, radius r ¼ a=2 and
mass m ¼ qpr2a=3. The mass density is q ¼ 2700 and the center of gravity is located at a distance of l ¼ 3a=4 along the local
x3-axis from the tip. The local moments of inertia are determined as

J1 ¼ J2 ¼ 3
80

mð4r2 þ a2Þ þmd2
; J3 ¼ 3

10
mr2;

where d denotes the distance from the origin of the base vector frame to the center of gravity. The top is located in a uniform
gravitational field with acceleration g ¼ 9:81 in the negative x3-direction, hence the load potential takes the form

VðqÞ ¼ mgT q0 þ Qxcm
0

� �
:

Here, the gravitational vector is given as g ¼ ½0; 0; g�T , the deformation gradient tensor follow from (2) and xcm0 holds the local
coordinates of the center of mass. The special case of a uniformly precessing top without nutation is considered. This requires
that the initial angle of inclination h0, the angular velocity components _u and _w satisfy the relation

_w ¼ mgl
J3 _u

þ J2 � J3
J3

_u cosðh0Þ;

see e.g. [20]. The initial conditions correspond to the those used in [18,21], i.e. a precession rate _u ¼ 10, an initial inclination
angle h0 ¼ p=3 and the initial angular velocity vector

X0 ¼ ½0; _u sinðh0Þ; _wþ _u cosðh0Þ�T :
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Fig. 4. Configuration of rotating top.
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In order to illustrate the effect of including translational motion and holonomic constraints, three different configurations
are considered:

Case 1 Purely rotational motion with the origin of the local body frame coinciding with the origin of the initial reference
frame.

Case 2 Combined rotation and translation with the origin of the local body frame linked to the origin of the initial refer-
ence frame by a holonomic constraint,

UðqÞ ¼ q0 ¼ 0:

Case 3 Combined rotation and translation with the origin of the local body frame located at the center of gravity, and
with the distance to the origin of the initial reference frame fixed by a holonomic constraint,

UðqÞ ¼ q0 � lq3 ¼ 0:

The x1- and the x3-component of the center of gravity for all the three cases are illustrated in Figs. 5(a) and 5(b) for a rel-
atively large time step h ¼ 0:01 corresponding to approximately 5 time steps per period T ¼ 2p=kX0k. It is seen that the algo-
rithm predicts a significant period error, which leads to nutation due to violation of the steady precession condition. This
issue was also observed and discussed in [21] for an algorithm based on quaternions. The effect is most pronounced for
the cases 1 and 2 where the location of the center of mass is governed by the base vectors q1;q2;q3, which are determined
with reduced accuracy compared to q0 as discussed in Section 4.2.

The numerical simulations have been performed using an iteration tolerance of 10�8, and the conserved quantities,
namely the total mechanical energy and the vertical component of the angular momentum l3, are conserved well within this
tolerance. The average as well as maximum number of iterations for convergence were 6, 6 and 7, respectively, for the three
formulations.

The accuracy of the zero strain constraints (22) and the displacement-momentum orthogonality relation (39) are illus-
trated in Fig. 6. While the errors on the constraints in Fig. 6(a) are in the order of 10�15 for all three cases, a lower accuracy
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Fig. 5. Motion of center of mass for precessing top: (a) x1ðtÞ, (b) x3ðtÞ. Case 1 (—), Case 2 (- · -), Case 3 (- - -), analytical solution (� � �).
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is seen for the orthogonality relation in Fig. 6(b) in case 3, i.e. when the top exhibits both translational and rotation motion.
For this case the orthogonality constraint is only satisfied within an accuracy of 10�12. A closer inspection of each of the six
orthogonality relations reveals that only the accuracy on the three relations associated with q3 are reduced, indicating that
only these constraints are active in the present configuration. However, it should be noted that the error is still well below
the iteration tolerance.

Finally, the second-order convergence of the algorithm in the non-trivial case where both an external potential and
external constraints are included is illustrated in Fig. 7. Figure 7(a) illustrates the relative error on the vibration period
DT=T evaluated via the x1-component of the center of mass, while Fig. 7(b) shows the relative error on the x3-component
of the center of mass. The latter is a direct measure of the nutation illustrated in Fig. 5. In both figures the time increment
is represented in non-dimensional form in terms of xh, where x is taken as kX0k. As discussed above the particular
high accuracy in C ase 3 is due to the fact that the location of the center of mass is determined solely in terms of the
translational components q0, which are determined with full accuracy. Comparable results are obtained by reducing the
time step by a factor three in the cases 1 and 2 corresponding to a shift of the time scale, whereby all points in
Figs. 7(a) and 7(b) are aligned.

6. Conclusions

An energy and momentum conserving time integration algorithm for constrained rigid body motion, in which the rota-
tional motion is represented via a convected set of orthonormal base vectors, has been developed. The equations of motion
are derived from Hamilton’s equation with three translational components plus nine base vector components as generalized
coordinates. The formulationmakes use of an augmented Hamiltonian where orthonormality constraints for the base vectors
equivalent to vanishing of all Green strain components are included via Lagrange multipliers. However, a key feature of the
formulation is that when the kinetic energy for rotational motion is formed via the instantaneous angular velocity, the La-
grange multipliers associated with the zero-strain constraints of the base vectors can be eliminated explicitly by using a set
of displacement-momentum orthogonality relations. The effect of the Lagrange multipliers is then represented via a projec-
tion operator applied to the load potential gradient and the gradients of possible kinematic constraints, which subtracts their
projections on the deformation modes from the unconstrained gradients. A discretized form of Hamilton’s equations is iden-
tified by forming a finite increment of an augmented Hamiltonian energy function, whereby the conservation of energy and
momentum is obtained by suitable combinations of mean values and increments in the finite derivatives of the Hamiltonian.
Similarly, constraints are introduced in the form of finite increments, while the associated Lagrange multipliers are repre-
sented as constants in each time interval in order to reflect their role as the effective reaction forces needed for maintaining
the constraints. This is in accordance with the physical interpretation of Lagrange multipliers on kinematic constraints as the
corresponding reaction forces, and the association of the Lagrange multipliers with the incremental time interval enables
local elimination.

Appendix A. Tangential Stiffness

In this appendix the explicit expression for the consistent tangential stiffness matrix used for Newton–Raphson iterations
in Section 4 is given. For the actual implementation it may be convenient express the stiffness matrix (80) in a symmetric
form. This can be accomplished by interchanging the equations associated with the increments of q and p, respectively, and
embedding the factor h=2 on k in the system vector u , whereby
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K ¼
Kpq Kpp ð@U�=@qÞT
Kqq Kqp 0

@U�=@q 0 0

264
375: ðA:1Þ

The non-zero sub-matrices follow from differentiation of the residual expressions in (77) as

Kqq ¼ I12�12 � h
2

GðfÞ � GðqÞTJ�1
0 Gðpnþ1Þ

h i
; ðA:2Þ

Kqp ¼ � h
2
GðqÞTJ�1Gðqnþ1Þ; ðA:3Þ
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Kpp ¼ I12�12 þ h
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� hCðqÞT @c

@p
: ðA:5Þ

The derivatives of the Lagrange multipliers associated with the internal constraints follow by differentiation of (72) as
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o
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and

@c
@p

¼ 1
2

CðqÞCðqÞT
h i�1

CðqÞGðgÞ þ C GðqÞTg

 �

� CðqÞGðpÞT þ CðpÞGðqÞT
h i

J�1Gðqnþ1Þ
n o

; ðA:7Þ

where it is seen that the first six terms in (A.6) vanish in the case of free rotation. The expressions (A.2)–(A.5) make use of the
intermediate variables

f ¼ J�1GðqÞp; g ¼ J�1GðpÞq; ðA:8Þ
along with the matrix operators

GðgÞ ¼
0 �g3I g2I
g3I 0 �g1I
�g2I g1I 0

264
375; CðcÞ ¼

c1I c6I c5I
c6I c2I c4I
c5I c4I c3I

264
375: ðA:9Þ

representing the derivatives of the products GðqÞTg and CðqÞTc with respect to the independent variables q, respectively.
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SUMMARY

A two-node free-floating beam element capable of undergoing arbitrary large displacements and finite rota-
tions is presented in explicit form. The configuration of the beam in three-dimensional space is represented
by the global components of the position of the beam nodes and an associated set of convected base vectors
(directors). The local constitutive stiffness is derived from the complementary energy of a set of six indepen-
dent deformation modes, each corresponding to an equilibrium state of constant internal force or moment.
The deformation modes are characterized by generalized strains, formed via scalar products of the element
related vectors. This leads to a homogeneous quadratic strain definition in terms of the generalized dis-
placements, whereby the elastic energy becomes at most bi-quadratic. Additionally, the use of independent
equilibrium modes to set up the element stiffness avoids interpolation of kinematic variables, resulting in a
locking-free formulation in terms of three explicit matrices. A set of classic benchmark examples illustrates
excellent performance of the explicit beam element. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Large-displacement beam elements for efficient and accurate modeling of flexible slender structures
has been the subject of a substantial number of papers. In particular, nonlinear beam theories in an
initial frame of reference has been considered. A finite displacement beam theory was proposed by
Reissner [1, 2] and used as basis for a computational approach by Simo and Vu-Quoc [3, 4]. This the-
ory is often referred to as ‘geometrically exact’ as it coincides with the strain definitions in the Euler
elastica, when shear and axial deformations are neglected, and is theoretically capable of account-
ing for finite rotations and for arbitrarily large deformation. The beam is commonly represented as a
flexible curve with each material point associated with a cross-section, whose orientation is specified
by a local set of base vectors (directors). This can be considered as a specific version of the theory
for Cosserat rods [5]. The apparent simplicity and consistency of the underlying beam equations
have led to the development of many different formulations; see, for example, [6–10]. However, as
pointed out by Romero [11], the large number of formulations indicate that significant difficulties
are associated with numerical discretization of the continuous equations. In particular, the inter-
polation of kinematic variables introduces the need for special measures in order to avoid locking
phenomena caused by different interpolation of different strain components. Common approaches
are the use of reduced integration [4] or the introduction of a hierarchical displacement interpolation
where an additional center node is introduced locally at element level; see for example, [7].

Another aspect, initially highlighted by Crisfield and Jelenic [12], is the lack of frame indiffer-
ence in many of the early formulations. This deficiency is closely related to the spatial interpolation
of noncommuting finite rotations, for example, represented by the total or incremental form of rota-
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60 M.B. NIELSEN AND S. KRENK

tion pseudo-vectors [6, 7] or rotation increments [4]. This may lead to nonobjective discrete strain
measures, even if the strain definition itself is objective. Additionally, it was illustrated in [12] that
interpolation of incrementally updated rotations may lead to path-dependent solutions. A strain
objective formulation was presented in [8], but with substantial increase in complexity. Alternative
approaches that also preserve the objectivity of the strain measure by direct interpolation of the
nine base vector components (directors) have been presented by Betsch and Steinmann [10, 13] and
Romero and Armero [9].

To circumvent the issues associated with interpolation of finite rotations, so-called rotationless
formulations such as the absolute nodal coordinate formulation have been developed; see for exam-
ple, [14, 15]. In these formulations, inclinations, defined as the partial derivatives of the absolute
nodal position vector rather than rotation variables, represent the orientation of the element. This
permits the use of standard isoparametric interpolation, whereby a constant mass matrix is obtained.
A drawback of these methods is that they suffer from a number of locking mechanisms due to the
redundant representation of the kinematics [16]. Solutions accomplished by reformulation of the
elastic forces exist, but at the expense of the some of the advantages and simplicity of the initial
formulation. Furthermore, when position derivatives are used instead of rotations, representation of
the curvature field requires the second derivatives, hence a lower accuracy is obtained compared to
geometrically exact beam formulations [17].

A fundamentally different path was followed by Belytschko and co-workers [18, 19] who intro-
duced the co-rotating formulation, in which the deformation of each element is considered with
respect to a local element-based coordinate system. In this way, the overall large rigid body motion
is accounted for by the co-rotating frame, while deformations are considered only within the local
co-rotating frame, for example in the form of ‘natural modes’ presented by Argyris et al. [20],
which identifies a set of independent discrete deformation modes. In this way, discrete interpola-
tion of finite rotations is avoided, leading to an intrinsic objective description. Depending on the
application, the local deformation can be modeled at various levels of sophistication ranging from
linear small-deflection beam theory [21], over formulations including initial stress-based geomet-
ric stiffness [22], to relatively advanced formulations for beam–columns [23] and fully nonlinear
flexibility-based beam elements by Neuhofer and Filippou [24, 25]. A recent formulation based on
the co-rotational approach with inclusion of a second-order approximation for the local deformation
has been presented in [26]. However, significant complexity is associated with deriving a consistent
tangential stiffness accounting for finite rotation of the co-rotating frame. In particular, the task of
obtaining a unique symmetric form requires special attention.

The present paper presents a free-floating beam element. The formulation combines the
advantages of the co-rotating formulation with the consistency of the inertial frame approach.
The key point is the use of global components of the position vector and the director vectors as
generalized displacements, similar to Betsch and Steinmann [10] and Romero and Armero [9]. A
set of generalized strains corresponding to each of the six deformation modes of the beam element
is then defined in terms of scalar products of the global director components and the vector connect-
ing the beam end points. The deformation modes characterized by the generalized element strains
represent equilibrium states of the element, in which either an internal force or moment component
is constant. The constitutive contribution to the element stiffness is then obtained from the com-
plementary energy of the deformation modes, which provides a simple procedure for fairly general
beams including pre-curvature [27] or nontrivial coupling effects [28]. In this paper, only straight
beam elements are considered, and the external part of the geometric stiffness, associated with
rotation of forces and moments at the element nodes, is included. Internal geometric stiffness
effects from, for example, the normal force, could be included approximately in explicit form [23]
or in a full iterative form [25]. However, as illustrated by the examples, the geometric stiffness
effects are captured quite well by the simple external geometric stiffness formulation for element
sizes that are sufficiently small relative to the corresponding buckling length scale. The present
flexibility-based procedure for deriving the local stiffness properties avoids interpolation of kine-
matic variables and thereby circumvents the various locking phenomena associated with most
kinematic representations. The generalized element strains defining the deformation modes are
expressed by global vector components, and the formulation is therefore intrinsically objective and
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frame invariant. The tangential stiffness matrix is derived in explicit form from differentiation of
the generalized force increments. The format has a certain resemblance to the co-rotating formula-
tion but does not refer to any element-based local frame of reference. Furthermore, the formulation
does not make use of finite rotations and leads directly to an explicit symmetric form of the global
stiffness matrix.

The basic assumptions and the generalized displacements for the beam element are presented in
Section 2. The generalized element strains with the static equilibrium modes are defined as quadratic
forms of the generalized displacements in Section 3. The constitutive stiffness is obtained from the
complementary energy of a set of six independent equilibrium modes in Section 4, while the full
tangential stiffness matrix is given explicitly in Section 5. Finally, a solution algorithm for static
analysis is summarized in Section 6, and numerical examples illustrating the numerical performance
of the present free-floating beam element are presented in Section 7.

2. BEAM ELEMENT

A beam can be considered as a special case of a three-dimensional continuum in which one direction
is much larger than the other two. Geometrically, it is therefore convenient to represent a beam as
a curve segment x.s0/ where each material point x0.s0/ D Œx01 ; x

0
2 ; x

0
3 �
T is associated with a cross-

section. The local deformation state at each cross-section can be represented by a set of local basis
vectors q1;q2;q3, where subscripts 1 and 2 refer to the vectors spanning the plane of the cross-
section, while subscript 3 refers to the normal to the cross-section plane. The global coordinates
x.s0/ of a material point associated with the cross-section defined by the point q0.s0/ on the beam
axis can then be expressed in the form

x.s0/ D q0.s0/ C R.s0/x0.s0/ ; (1)

where q0.s0/ is the reference position of the local basis and R.s0/ is the transformation tensor
between local and global components, defined as

R D Œq1;q2;q3� : (2)

This is similar to the starting point for Cosserat rod theories; see, for example, [3, 5].
A common assumption for beam theories is to neglect the deformation in the cross-section plane.

This implies that the vectors q1 and q2 representing the orientation of each cross-section must
remain orthonormal. The third unit vector is defined as the normal to the cross-section given by
q3 D q1 � q2, and thus the triple

®
qT1 ;q

T
2 ;q

T
3

¯
constitutes a local orthonormal basis that rotates

with the cross-section as illustrated in Figure 1.
In the present formulation, a beam element in three-dimensional space is uniquely defined in

terms of the position and orientation of the cross-sections at its end points with respect to a fixed

Figure 1. Beam representation as a curve with orthonormal directors.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 98:59–78
DOI: 10.1002/nme



62 M.B. NIELSEN AND S. KRENK

Figure 2. Configuration of beam element in the global frame of reference.

frame of reference ¹i1; i2; i3º as illustrated in Figure 2. The global position of the beam end points A
and B are represented by the vectors qA0 and qB0 , while the orientation of the corresponding cross-

sections is represented via the base vectors in the cross-section planes
�
qT1 ;q

T
2

�T
A

and
�
qT1 ;q

T
2

�T
B

.
The configuration of each node can therefore be described by the nodal displacement vectors

qTA D
�
qT0 ; q

T
1 ; q

T
2

�
A
; qTB D

�
qT0 ;q

T
1 ;q

T
2

�
B
: (3)

In this representation, the configuration at each of the two element nodes is described by nine vector
components. In the global analysis, constraints are introduced at each node, reducing the number of
free parameters to 6.

The orthonormality conditions for the unit vectors q1;q2 are equivalent to enforcing vanishing
in-plane Green strain components,

e.q/ D
1

2

2
64

qT1 q1 � 1

qT2 q2 � 1

qT1 q2 C qT2 q1

3
75 D 0: (4)

The corresponding element constraint gradient matrix with respect to the local base vectors in the
cross-section plane q˛ follows by a differentiation as

C.q˛/ D
@e
@q˛
D

2
64

0 qT1 0
0 0 qT2
0 qT2 qT1

3
75 ; ˛ D 0; 1; 2; (5)

with the block columns corresponding to differentiation with respect to the components of q0, q1,
and q2, respectively. These conditions are imposed at nodes A and B via global constraints on a
two- or three-director set at the nodes as discussed in Section 6.

It is convenient to introduce the notation

qT D
�
qTA;q

T
B

�
; gT D

�
gTA; g

T
B

�
; (6)

for the full set of generalized displacements and conjugate forces associated with a single element
AB . The internal energy is given by the elastic potential G, and the generalized forces are identified
by considering a small change ıG of the displacement state,

ıG D ıqT
@G

@qT
D ıqT g : (7)

This defines the generalized forces conjugate to the displacements q in the form

g D
@G

@qT
: (8)

The differentiation is performed with respect to the 18 unconstrained displacements q corresponding
to nine components at each of the element nodes. The constraints (4) are imposed subsequently as
part of the global system of equations. The generalized force components representing the nodal
forces appearing in the interaction between the elements are derived via differentiation of the internal
elastic energy by use of (8).
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3. KINEMATIC RELATIONS

For an elastic beam element, the internal elastic energyG associated with elastic deformation can be
fully represented via a set of generalized strain components, each defining a mode of deformation.
Rigid body motion does not contribute to the elastic energy, and thus the number of generalized
strains is smaller than the number of generalized displacements. The stiffness relations for the full set
of generalized displacements can therefore be obtained via a reduced number of deformation modes
combined with a transformation between the generalized strains and generalized displacements as
illustrated in the subsequent sections.

In the present formulation, it is convenient to choose the deformation modes such that they each
correspond to a set of end loads in equilibrium as illustrated in Figure 3. A similar approach is pre-
sented in [22] for co-rotating beam elements. However, a central point of the present formulation
is that the deformation modes are expressed with respect to the global frame of reference, and the
associated deformation components are obtained by simple scalar products of the global general-
ized displacement vectors. In this way, the introduction of an intermediate co-rotating coordinate
system is avoided, giving two important features: no special attention is required for combining
overall rotations associated with rigid body motion and local rotations of the deformation modes,
and no special procedures are needed for establishing full symmetry of the co-rotational part of the
tangential stiffness, usually constructed from extension and rigid body rotations alone.

The six equilibrium modes comprise three modes with a constant internal force component and
three modes with a constant internal moment component as illustrated in Figure 3 for a straight
beam element of length 2a. The local directors in the undeformed element are given by the base
vectors ¹q01;q

0
2; q

0
3º, with q01;q

0
2 defining the cross-section planes.

The first two deformation modes correspond to a constant shear force Q1 and Q2, respectively,
each generated by a force couple at the end sections. In order to create equilibrium, each of the two
shear force states must be accompanied by end moments

M a
˛ D a e˛ˇQˇ ; (9)

where e˛ˇ is the permutation symbol, defined by e12 D �e21 D 1 and e11 D e22 D 0. The moments
M a
˛ act in the same direction at nodes A and B and generate an anti-symmetric bending moment

distribution in the beam element. For a symmetric beam element, this corresponds to anti-symmetric
curvature distributions with rotation angle 1

2
'a˛ at nodes A and B as illustrated in Figure 3(a, b). The

factor 1
2

on the end rotations is introduced to obtain the simple product form M a
˛ '

a
˛ for the asso-

ciated external virtual work. In the hierarchy of deformation modes, the anti-symmetric bending

(a) (b) (c)

(d) (e) (f)

Figure 3. Deformation modes of beam element. (a) Constant shear force Q1. (b) Constant shear force
Q2. (c) Constant normal force N . (d) Constant bending moment M1. (e) Constant bending moment M2.

(f) Constant torsion moment M .
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modes are characterized by the constant shear forces Qˇ , and it is convenient to introduce the asso-
ciated conjugate displacements uˇ . When using generalized stresses and the associated conjugate
displacements, the corresponding work is expressed by a simple product. Thus, the external work
of the anti-symmetric bending modes can be expressed either for the configuration in Figure 3 with
rotation at nodesA andB , but without transverse displacement, or for the rotated element with oppo-
site transverse displacements at A and B , but without rotation of these points. Rigid body motion
does not influence the virtual work, and thus the virtual work can be expressed in two forms as

M a
˛ '

a
˛ D Qˇ uˇ : (10)

Substitution ofM a
˛ from (9) into this relation results in conjugate transverse displacements given as

uˇ D a '
a
˛ e˛ˇ ; (11)

corresponding to the transverse displacement of node A relative to node B when the element is
rotated to eliminate the end point of the rotations. The third mode corresponds to extension by the
normal force N , generating the elongation u of the distance between the nodes. The first two of
the constant moment modes consist of opposing bending moments M s

˛ at nodes A and B , gener-
ating a constant and thereby symmetric bending moment distribution in the beam element. For a
symmetric beam element, this corresponds to symmetric curvature distributions with rotation angle
˙1
2
's˛ at nodes A and B as illustrated in Figure 3(c, d). The final constant moment mode corre-

sponds to opposing torsion moments of magnitude M at A and B , generating a constant internal
torsion momentM in the element and a total angle of twist '. The generalized strains and conjugate
stresses for the six equilibrium modes are conveniently collected in the vectors

v D
�
u1; u2; u; '

s
1; '

s
2; '

�T
; t D

�
Q1;Q2; N;M

s
1 ;M

s
2 ;M

�T
; (12)

whereby the external work takes the simple scalar product form vT t.
While in principle large-displacement analysis of structures includes large deformations, the local

deformations within an element are moderate given a sufficiently detailed discretization. In the
present formulation, the generalized displacement components q account for arbitrarily large dis-
placements and finite rotations of the nodes with respect to a global reference frame. These nodal
generalized displacements are used to define generalized strains describing the equilibrium defor-
mation modes of each element. The nonlinear kinematic relations describing the local deformations
are sought in a homogenous quadratic form in the generalized displacements q. For linear internal
element properties, this leads to a bi-quadratic elastic energy potential, which is particularly suit-
able for designing a momentum and energy conserving time integration scheme in global form;
see, for example, [29]. The examples in Section 7 indicate that the required number of the present
simple elements is comparable to other more elaborate two-node elements and less than double for
elements with interior nodes.

Generalized strains in quadratic form can be obtained by assuming that the angle '˛ between the
cross-section normal q3 and the element reference vector �q0 D qB0 � qA0 connecting nodes A and
B is small, whereby sin'˛ ' '˛; see Figure 4. The rotation angle '˛ of a cross-section relative
to the element reference vector �q0 then follows by projecting the reference vector on to the unit
vector qˇ in the cross-section plane, whereby

'˛ '
1

2a
�qT0 qˇeˇ˛ : (13)

Figure 4. Local rotation by projection on beam reference axis.
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In the present formulation, a is assumed to be half the original length of the element, that is, without
account of any local shortening effects due to bending. This is consistent with the assumption of
the element as being initially straight, whereby the shortening due to bending becomes a higher-
order effect. This may put certain restrictions on what can be represented by a single element, hence
for some applications it may be convenient to extend the representation of the local deformation
modes to a more sophisticated form accounting for nonlinear column effects, initial curvature, and
so on; see for example [23, 25]. However, as illustrated in the examples in Section 7, the nonlinear
geometric effects can be accurately captured by slightly increasing the number of elements, whereby
the geometric stiffness effects are accounted for via the external contributions of the individual
elements, essentially amounting to rotation of the forces at the nodes.

The generalized strain components (12) for the deformation modes are now expressed in terms of
scalar products of the cross-section vectors q˛ at beam nodes A and B , and the element reference
vector �q0 by using the approximation (13). The angle of twist ' associated with the torsion mode
is approximated by in-plane projections of the cross-section vectors q˛ ,

' D
1

2

�
qA˛
�T

qBˇ eˇ˛ : (14)

The rotation angles 's˛ associated with symmetric bending follow as the difference between the local
rotation angles evaluated at nodes A and B , whereby

's˛ D '
B
˛ � '

A
˛ D

1

2a
�qT0

�
qBˇ � qAˇ

�
eˇ˛ : (15)

Similarly, the anti-symmetric rotation angles 'a˛ can be identified as the sum of the local end-point
angles, as

'a˛ D '
B
˛ C '

A
˛ D

1

2a
�qT0

�
qBˇ C qAˇ

�
eˇ˛ : (16)

The equivalent transverse displacements uˇ follow from substitution of this expression into (11),

uˇ D �
1

2
�qT0

�
qBˇ C qAˇ

�
: (17)

Finally, the Green strain " is introduced as a measure for the axial extension the element, whereby
the associated generalized strain component u D 2a" takes the form

u D
1

4a

�
�qT0�q0 � 4a

2
�
: (18)

The relations (15)–(18) define the local generalized strains components v as quadratic forms of the
global components of the generalized displacement components q. The local strain components are
obtained by scalar products of globally defined vectors, and they are therefore independent of a
change of the global frame of reference. Thus, the generalized strains are invariant to finite rigid
body motion. This is a crucial aspect of any finite displacement beam element, which has sometimes
been violated; see for example [12] for a discussion on objectivity of strain measures.

4. LOCAL CONSTITUTIVE STIFFNESS

The constitutive stiffness associated with elastic deformation of the beam is conveniently derived
from the complementary energy for the equilibrium modes defined in Figure 3. This leads to a
simple procedure for obtaining the stiffness matrix for fairly general beam elements without the need
for special measures for including shear deformation [27, 30]. Furthermore the locking problems,
often encountered in low-order beam formulations due to inconsistent interpolation of rotations and
displacements, are avoided.
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4.1. Elastic constitutive equations

For a linear elastic material, the internal energy is a quadratic form in the generalized strains v. This
can be expressed as

G.v/ D
1

2
vTAv ; (19)

with A representing the elastic stiffness associated with the generalized strains v. The conjugate
internal forces t then follow as the partial derivative of the internal energy with respect to the internal
strains, whereby

t D
@G

@vT
D Av : (20)

In the present formulation, the generalized strains v and conjugate stresses t are defined by (12)
associated with the deformation modes illustrated in Figure 3.

The relation between the global generalized forces g and the local internal stresses t from (20) is
obtained by differentiation of the internal energy (8), as

g D
�
@v
@q

	T
@G

@vT
D

�
@v
@q

	T
t D FT t : (21)

This identifies the transformation matrix between the local generalized stresses and global gen-
eralized forces in terms of the derivatives of their conjugate kinematic counterparts in the
form

F D
@v
@q
: (22)

This transformation matrix serves to expand the reduced set of internal stresses to the full number
of generalized forces similar to the transformation matrix used in [22, Chapter 5] in relation to a
co-rotating formulation.

4.2. Complementary energy formulation

The constitutive properties of the beam element are contained in the stiffness matrix A associ-
ated with the deformation modes. A general form including the effect of shear deformation can
be obtained from complementary energy via the flexibility matrix A�1 following the procedure
described in [30]. The complementary energy is defined via a Legendre transform of the internal
potential G.v/ as

Gc.t/ D vT t � G.v/ D
1

2
tTA�1 t : (23)

Each deformation mode corresponds to a state of constant internal force or moment, expressed
in terms of the components in t. For a general deformation state, the distribution of internal
forces and moments is described by the components of the vectors Q D ŒQ1;Q2;Q3�

T and
M D ŒM1;M2;M3�

T . In elastic beam theory, these are related to the conjugate strain and curvature
components � D Œ�1; �2; �3�T and � D Œ�1; �2; �3�T , respectively, via a linear constitutive relation,
which can be expressed in the flexibility or compliance format


�

�

�
D
�
C
� 
 Q

M

�
; (24)

in terms of the symmetric 6� 6 cross-section flexibility matrix C. In the general case of an inhomo-
geneous anisotropic material, a full description of the deformation properties may require up to 21
independent flexibility components.

When the internal forces and strains have been defined as conjugate, the complementary energy
per unit length of the beam follows in the form

Gs D
1

2

h
QT ; MT

i �
C
� 
 Q

M

�
: (25)
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This form is particularly suitable for calculating the local constitutive element stiffness, as the dis-
tribution of the internal forces Q and moments M along the element is statically determinate and
defined in simple terms from the equilibrium modes in Figure 3, independent of the cross-section
properties of the beam element.

Let the axial position in the beam element of length 2a be represented by the normalized coordi-
nate � D Œ�1; 1�. The distribution of internal forces can now be expressed in terms of the constant
components, as 2

666664

Q1.�/

Q2.�/

Q3.�/

M1.�/

M2.�/

M3.�/

3
777775
D

2
666664

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 a� 0 1 0 0

�a� 0 0 0 1 0

0 0 0 0 0 1

3
777775

2
666664

Q1

Q2

N

M s
1

M s
2

M

3
777775
; (26)

or in the more compact form 

Q.�/
M.�/

�
D T.�/ t ; (27)

where the 6� 6 transformation matrix T.�/ is defined in (26). The flexibility matrix of the deforma-
tion modes can now be obtained by substitution of the relation (26) into the cross-section flexibility
relation (25) followed by integration over the length of the element,

Gc.t/ D
Z l0

0

Gs.s0/ ds0 D a

Z 1

�1

1

2

�
Q.�/T ; M.�/T

�
C



Q.�/
M.�/

�
d� ; (28)

which identifies the flexibility matrix A�1 of the deformation modes by the integral

A�1 D a
Z 1

�1

T.�/TC T.�/ d� : (29)

The stiffness matrix A for the deformation modes then follows from inversion of (29). In particular,
for a constant flexibility matrix C, for example for a prismatic beam, the �-terms accounting for
the linearly varying anti-symmetric moment only contribute via quadratic terms, and thus it may be
convenient to perform the integration in explicit form, whereby

A�1 D 2a

2
66666666664

C11 C
1
3
a2C55 C12 �

1
3
a2C54 C13 C14 C15 C16

C21 �
1
3
a2C45 C11 C

1
3
a2C44 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

3
77777777775
: (30)

In particular, it is noted that the flexibility procedure for calculating the stiffness matrix yields a
nonsingular format also for beams without shear flexibility. The procedure is easily extended to
pre-twisted or curved beams; see for example [27, 28]. However, in the present paper, only straight
homogeneous beams are considered, hence the stiffness matrix of the deformation modes takes the
following uncoupled form:

A D
1

2a

2
6666664

3 2a
�2EI2

3 1a
�2EI1

EA
EI1

EI2
GJ

3
7777775
; (31)
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where EI˛ represents the stiffness of the symmetric bending mode about the ˛-axis, GJ is the
St. Venant torsional stiffness, and EA is the axial stiffness. The coefficients 3 ˛EI˛ are the bend-
ing stiffness of the anti-symmetric bending modes expressed via the shear flexibility parameter  ˛
defined as

 ˛ D
1

1Cˆ˛
; ˆ˛ D

3EI˛
a2GAˇ

; (32)

where ˛ and ˇ denote two different transverse axes. In the limit of vanishing shear flexibility
ˆ˛ D 0, whereby the stiffness of the anti-symmetric bending modes in (31) is reduced to 3EI˛ .

5. BEAM ELEMENT STIFFNESS MATRIX

In nonlinear analysis, the element stiffness matrix can be derived from the incremental form of the
generalized force relation (21). This involves a change in the internal forces t as well as a change in
the transformation matrix F, as expressed by

dg D FT d tC dFT t : (33)

The first term represents the change in the internal force vector, associated with a change in deforma-
tion state via the local constitutive relation (20). The internal forces are functions of the generalized
strains v, hence the incremental change associated with a change in the generalized displacements
q follows via the chain rule of differentiation as

d t D dqT
@t
@qT

D dqT

�
@v
@q

	T
@2G

@vT @v

�
D dqT

�
FTA

�
; (34)

with the transformation matrix F defined by (22) and the stiffness matrix A of the deformation
modes, obtained as the inverse of the 6 � 6 flexibility matrix (29).

The second term in (33) is conveniently expressed in component form, as

dFT t D dqT


@2vk

@qT @q
tk

�
; (35)

with summation over repeated subscripts k D 1 : : : 6 associated with each of the internal stress
components tk . Upon substitution of the incremental relations (34) and (35) in (33), the increment
of the global components of the element force vector is obtained in the form

dg D K dq ; (36)

with the tangent stiffness matrix K given in the symmetric form

K D FTAF C
@2vk

@qT @q
tk D FTAF C Kg : (37)

The general form of this format is a characteristic of Lagrange type finite element formulations,
with the first term expressing the constitutive changes of the internal stress state, transformed from
local to global representation via the matrix F, while the second term represents the geometric
stiffness Kg due to rotation of the current stresses via the second derivatives of the generalized stress
components vk ; see for example [22].

The constitutive stiffness matrix, represented as the first term in (37) is obtained by matrix multi-
plication between the local stiffness matrix A, obtained via the inverse of the flexibility matrix (29),
and the transformation matrix (22). The latter can be expressed in explicit form by differentiation of
the quadratic kinematic relations (15)–(18), yielding

FT D
�
@v
@q

	T
D

1

2a

2
666666664

2a Nq1 2a Nq2 ��q0 ��q2 �q1 0
�a�q0 0 0 0 �q0 aqB2

0 �a�q0 0 ��q0 0 �aqB1
�2a Nq1 �2a Nq2 �q0 �q2 ��q1 0
�a�q0 0 0 0 ��q0 �aqA2

0 �a�q0 0 �q0 0 aqA1

3
777777775
: (38)
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Here, F is presented in transposed form for typographical reasons. Furthermore, the sum and the
difference of the end point vectors have been introduced as 2 Nq˛ D qA˛ C qB˛ and �q˛ D qB˛ � qA˛ ,
respectively.

The geometric element stiffness matrix is conveniently arranged in the block matrix format,

Kg D
@2vk

@qT @q
tk D

"
Kg
11 Kg

12

Kg
21 Kg

22

#
: (39)

The block matrices are then identified by differentiation of the generalized strain components vk
given by (14), (16) and (17), (18), whereby the geometric stiffness block matrices are found to be

Kg
11 D

1

2a

2
64

N �Ms
2 CMa

2 Ms
1 �Ma

1

�Ms
2 CMa

2 0 0

Ms
1 �Ma

1 0 0

3
75 ; (40)

Kg
22 D

1

2a

2
64

N �Ms
2 �Ma

2 Ms
1 CMa

1

�Ms
2 �Ma

2 0 0

Ms
1 CMa

1 0 0

3
75 ; (41)

Kg
12 D KgT

21 D
1

2a

2
64

�N Ms
2 CMa

2 �Ms
1 �Ma

1

Ms
2 �Ma

2 0 aM

�Ms
1 CMa

1 �aM 0

3
75 : (42)

These matrices have conveniently been expressed in terms of the symmetric moment M s
˛ , the

anti-symmetric moment M a
˛ defined in terms of Qˇ by (9), the torsion moment M , and the normal

force N via the 3 � 3 unit matrix representations

Ms
˛ DM

s
˛I ; Ma

˛ DM
a
˛ I ; M DM I ; N D N I : (43)

It is noted that the bending moment combinations correspond to the bending momentsMA
˛ andMB

˛

at the element nodes. This explicit and compact form of the element matrices A, F, and Kg leads to
a straightforward implementation as illustrated in the following.

6. SOLUTION ALGORITHM

In the present formulation, the equilibrium equations are derived from an extended potential G�.q/,
where the sum of the internal energy G.q/ and the work performed by external nodal forces f are
supplemented by the kinematic zero strain constraints (4) associated with orthonormality of the
cross-section directors. In the assembled model, the element base vectors q˛ are represented in terms
of a set of base vectors associated with each node. The constraints are introduced via Lagrange
multipliers �, and thus the extended potential can be expressed in the form

G�.q/ D G.q/ C e.q/T� � qT f : (44)

Stationarity with respect to q and � leads to the following set of nonlinear algebraic equations

g.q/ C C.q/T�D f ;

e.q/D 0 ;
(45)

where the first set defines the equilibrium equations, while the second set holds the constraint
equations arranged in the form eT D ŒeT1 ; e

T
2 ; : : : ; e

T
n � for the nodes 1 : : : n. These equations can

be solved iteratively by the Newton–Raphson method. The unknown variables of the problem, the
generalized nodal displacements q, and the Lagrange multipliers � are conveniently collected in the
vector u D ŒqT ;�T �T . The residual vector r representing the unbalance between internal forces and
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applied external load is formed as the difference between the left-hand and right-hand sides in (45),
yielding

r D

"
f � g.q/ � C.q/T�

�e.q/

#
: (46)

Equilibrium iterations are performed using the Newton–Raphson scheme, which essentially
amounts to equating the linearized residual equation to zero, via the current residual vector r and
the linearized increment ır, as

r C ır D r C
�
@r
@q
ıq C

@r
@�
ı� C : : :

	
D 0 : (47)

This can be arranged in the form of a set of linearized equations for the increments ıu,

Kıu D r ; (48)

where the tangential stiffness for the system is defined as the partial derivatives of the residual
relation (46), as

K� D
@r
@u
D

"
KC� C.q/T

C.q/ 0

#
: (49)

The element stiffness matrix is given in explicit form by (37) via the deformation gradient (22) and
the geometric stiffness matrices (40), (41), and (42). The matrices C.q/ and�.�/ are block diagonal
matrices in the form

C.q/ D

2
64

C1
: : :

Cn

3
75 ; �.�/ D

2
64
�1

: : :

�n

3
75 ; (50)

in terms of the nodal contribution to the constraint derivatives Cj .
The number of constraints depends on the problem. In a general three-dimensional problem, the

constraint conditions ej contain six conditions, each corresponding to a Green strain component.

Table I. Solution algorithm.

1) Initial conditions u D
h
qT0 ; 0

T
iT

2) Flexibility matrix A�1 D a
R 1
�1 TT

�
C T� d�,

3) Increment load f D fn C�f

4) Stress and internal forces:
Generalized strain v from (15) to (18).
Generalized stress t D Av.
Strain gradient F D @v=@q
Internal forces g D FT t

5) Residual calculation r D

"
f � g � C.q/T�

�e.q/

#

6) Check global equilibrium If krk < "r, repeat from 3).

7) Form tangent stiffness K D FTAFC
@2vk

@qT @q
tk

K� D



KC� CT

C 0

�

8) Solve global equations ıu D K�1� r

u D uC ıu
9) Return to 3).
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However, in the case of a two-dimensional initial geometry, only the three strain components indi-
cated in (4), with gradient matrix Cj as given in (5), are needed. In the plane case, the Lagrange
multiplier matrix �j for node j appearing on the diagonal of the global stiffness matrix (49) takes
the form

�j D

2
4 0 0 0

0 �1I �3I
0 �3I �2I

3
5
j

: (51)

The introduction of support conditions, usually expressed as homogeneous nodal constrains, are
easily implemented by eliminating the associated degrees of freedom. For the translational degrees
of freedom, this task is trivial, while the procedure for preventing rotation about a fixed axis, for
example, q3, amounts to eliminating the in-plane transverse component of one of the orthogonal
vectors spanning the plane perpendicular to the axis of rotation, that is, either q12 or q21 and vice
versa.

An implementation based on Newton–Raphson iterations is illustrated in Table I with a termi-
nation criterion requiring that the Euclidean norm of the residual vector (46) must be less than a
prescribed value "r . Classic Newton–Raphson iterations are performed with a constant load incre-
ment within each equilibrium iteration; hence, these methods encounter problems at load maximum.
In the following examples, the results for nonmonotonic changing loads have been obtained using
the arc-length method in the form presented in [22].

7. REPRESENTATIVE NUMERICAL EXAMPLES

In this section, the numerical performance of the presented beam element is illustrated on a number
of classic benchmark examples from the literature. The capability of handling large displacements
and finite rotations is illustrated by plane as well as spatial problems.

7.1. Large deformation of cantilever

The first example considers large deformation of a cantilever subjected to a transverse force P at
its free end as shown in Figure 5(a). The example has been considered by a number of authors
for illustrating the influence of geometric stiffness for various beam formulations; see for example
[22, 26, 31]. Parameters similar to the ones used in the latter two references have been used,
that is, the cantilever is modeled as a beam with length L D 2, a rectangular cross-section with
h D b D 0:1, and Young’s modulus E D 2:07 � 1011. Vanishing shear and axial deforma-
tions have been enforced by increasing the associated stiffness coefficients by a factor of 105 for

Figure 5. Cantilever with conservative end force. (a) Initial configuration. (b) Normalized load-displacement
curves. (�) Four elements, (C) eight elements.
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Figure 6. Convergence of tip displacements. (4) u1 elements, (�) u2.

comparison with an accurate elliptic integral solution based on inextensible elastica theory given by
Mattiasson [32]. The load is described by the nondimensional parameter PL2=EI and applied in 10
equal load steps leading to a final load of PL2=EI D 10. Results for the nondimensional load and
the nondimensional displacements u1=L and u2=L are illustrated in Figure 5(b) for two different
discretizations corresponding to four and eight equal beam elements, respectively. The results are
obtained with a relative tolerance of the residual of 10�6 leading to an average number of iterations
around six. The elliptic integral solution [32] is plotted for comparison. It is seen that both mod-
els agree well with the analytical results, even at the final state where the horizontal displacement
exceeds half the length of the beam. The deflections obtained using the four element discretization
correspond to these numerical results within an accuracy of 2:5% and 2:0% for the horizontal and
vertical deflections, respectively, while the error is reduced to below 0:6% and 0:5%, respectively,
when increasing the number of elements to eight. The element exhibits second-order convergence
as illustrated in Figure 6, which demonstrates a rather good performance, when considering the
absence of local geometric stiffness within the individual elements.

7.2. Shallow angle frame

In this example, the shallow angle beam shown in Figure 7(a) is considered. The angle beam is
loaded by a vertical downward load at the central node. A crucial feature of this example is the need
for accounting for shortening due to bending. This is not included within the element in the present
formulation, and thus it is necessary to use more than one element for each straight beam, whereby
the shortening effect is represented by the finite displacements of the beam nodes. The solution

Figure 7. Angle beam with clamped supports. (a) Initial configuration. (b) Normalized load-displacement
curve. (�) Five elements, (C) 10 elements, (—) reference solution obtained by using 50 elements.
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depends on the inclination h=b as well as the relative slenderness of the two beams, which may be
expressed as L20A=I . Results for an inclination of h=b D 0:024 and a slenderness of L20A=I D
3:0�104 are shown in Figure 7(b) in terms of the nondimensional vertical load PL2=EI as a function
of the vertical displacement of the center node u2=L.

The results have been obtained for two models where each straight beam has been modeled
using five and 10 identical elements, respectively. Approximate solutions can be obtained based on
second-order theory according to Williams [33], or by using a more direct approach where each
beam is considered as an inclined beam–column in a state of anti-symmetric bending; see, for exam-
ple, [34]. However, both approaches involve linearization of the angles, and thus none of them
represent the exact solution. Instead, comparison is performed with respect to a reference solution
obtained by using 50 elements for each straight beam. The final load P D 1:5EI=L2 is reached in
10 equal load steps using 4:7 and 4:8 Newton–Raphson iterations, respectively. It is seen that excel-
lent agreement is found by using only five elements, which illustrate that the representation of local
effects such as shortening due to bending can be obtained by using a moderate number of elements.
In the formulation of Neuhofer and Filippou [25], the nonlinear deformation is included in a nonlin-
ear kinematic field inside the element, leading to similar results when using five integration points
within the element.

7.3. Buckling of clamped-hinged circular arch

Application of the present simple explicit beam formulation to a curved structure is now considered.
A nonlinear analysis of the pre-buckling and post-buckling behavior of the clamped-hinged circular
arch illustrated in Figure 8(a) is performed. Numerical results for this example have been presented
by several authors for validating flexible beam formulations; see for example Simo and Vu-Quoc
[4], Géradin and Cardona [35], Ibrahimbegovic [7], and Gerstmayr and Irschik [31]. Furthermore,
inextendable elastica solutions for post-buckling of arches with various angles have been presented
by DaDeppo and Schmidt [36]. Parameters similar to those in [7] have been used corresponding to
an arch with radius R D 100 and an angle of � D 215ı. The bending stiffness is EI D 106, while
the axial and shear stiffness are EA D GA D 102EI in order to approximate the inextensible elastica
solution.

Results for the normalized horizontal displacements u1=R and the normalized vertical displace-
ments u2=R for varying load P , described via the nondimensional parameter � D PR2=EI, are
shown in Figure 9. These have been obtained an arc-length solver with a hyperplane constraint for
controlling the current displacements and load increments [22]. Furthermore, the deformed shape
at load levels �i D ¹0:0; 4:0; 7:0; 8:8;�0:8; 0:8; 9:1º corresponding to the ones presented in [4] are
shown in Figure 8(b). Two different configurations based on 20 and 40 straight beam elements are
considered. The behavior for both configurations agrees well with the results presented in [4, 35]

Figure 8. Clamped-hinged circular arch. (a) Initial configuration. (b) Deformed configuration at various load
levels �i
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Figure 9. Normalized load-displacement curves for clamped-hinged circular arch. (—) 40 elements, (- - -)
20 elements.

where 40 linear elements have been used. The present 20 element discretization exhibits a slightly
lower buckling load but still captures the overall behavior. The buckling load for the 40 element
discretization has been found to 884, which is within an error of 1:5% of the value reported by
da Deppo and Schmidt [36] of 897. A better accuracy for the 20 element discretization could be
obtained with the present formulation by including pre-curvature as in [7].

7.4. Buckling of hinged angle frame

In this example, the buckling of the hinged frame illustrated in Figure 10 is considered. In essence,
the buckling behavior is driven by a column instability of the vertical element, which can be inter-
preted as a spring-supported Euler column subjected to an eccentric vertical load at the top. The
example has also been considered previously by several authors; see for example Simo and Vu-Quoc
[4], Betsch and Steinmann [10], or Romero and Armero [9].

The parameters correspond to the ones used in [4], that is, a square frame with h D b D 120

subjected to a conservative vertical load P located at a horizontal distance of 24 from the frame
corner. Each leg is modeled as a beam with a rectangular cross-section 2 � 3, Young’s modulus
E D 7:2 � 106, and a Poisson’s ratio 	 D 0:3. This corresponds to an axial stiffness EA D 43:20 �
106, a shear stiffness GA D 16:62 � 106, a bending stiffness EI D 14:40 � 106, and a torsional
stiffness GJ D 11:08 � 106.

Results for the load–displacement curves are presented in Figure 11(a) and 11(b) for two different
representations corresponding to five and 10 elements per leg. The post-buckling behavior has been
traced using an arc-length solver with a hyperplane constraint for simultaneous control of the load

Figure 10. Buckling of hinged angle frame. (a) Initial configuration. (b) Deformed configuration at various
load levels �i
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Figure 11. Load-displacement curves for hinged angle frame. (a) Horizontal displacement. (b) Vertical
displacement. (—) 10 elements per leg, (- - -) five elements per leg.

and displacement increments; see, for example, [22]. It is seen that the response obtained by the
present 10 element discretization for each leg is very similar to the ones presented in the references,
while a slight difference is observed when each leg is discretized using only five elements. However,
it should be noted that quadratic three-node elements have been used in all the references; hence,
the present simple explicit formulation is fully competitive when the same number of nodes is used.
Finally, the deformed configuration at certain load levels defined in terms of �j D P=103 are
illustrated in Figure 10(b). The load levels are found as �1 D 0:00, �2 D 15:05, �3 D 18:35,
�4 D �8:98, and �1 D 20:75, which agrees well with the results in [4, 10].

7.5. Three-dimensional deformation of curved cantilever

The last example illustrates the three-dimensional performance based on the 45-degree cantilever
bend originally proposed by Bathe and Belourchi [37] and used for numerical validation of various
beam formulations by a number of authors; see for example Simo and Vu-Quoc [4]. The exam-
ple has furthermore been used to demonstrate path invariance of various beam formulations; see

Figure 12. Cantilever 45-degree bend. (a) Initial configuration. (b) Load-displacement curves. (—) u1,
( - - -) u2, (- � -) u3.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 98:59–78
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Table II. Tip position for curved cantilever beam (eight elements).

x1 x2 x3

Bathe and Belourch [37] 47.2 53.4 15.9
Simo and Vu-Quoc (GEBT) [4] 47.23 53.37 15.79
Cardona and Géradin (GEBT) [6] 47.04 53.50 15.55
Romero and Armero (GEBT) [11] 46.98 53.50 15.69
Crisfield (CR) [21] 46.84 53.71 15.61
Jonker and Meijaard (CR) [26] 46.94 53.64 15.64
Present explicit element 46.63 54.58 15.44

Jelenić and Crisfield [8] or Betsch and Steinmann [10]. However, the present formulation relies on
an objective local deformation description via a set of deformation modes. Thus, the formulation
avoids interpolation of incremental rotations and is path independent by construction.

The curved beam is modeled as a 45ı section of a circle with radius R D 100 in the x1-x3 plane
as illustrated in Figure 12(a). The beam has a unit square cross-section, and a Young’s modulus and
shear modulus of E D 107 and G D E=2, respectively. A conservative vertical load is applied
at the tip in the x2 direction. The tip displacement as a function of the applied load is illustrated
in Figure 12 for a discretization of eight initially straight elements and corresponds closely to the
results presented in [4]. Numerical results for the tip position are presented in Table II along with
results from the original publication [37], formulations based on geometrically exact beam theory
(GEBT) and co-rotating formulations (CR). A more extensive comparison can be found in [26].
It is seen that the present explicit formulation yields rather accurate results compared to the other
approaches despite its simple kinematics and explicit form.

8. CONCLUSIONS

An explicit free-floating beam element with two nodes for analysis of three-dimensional structures
is presented. Each node is represented by its position vector and a set of orthonormal base vectors.
The beam stiffness matrix is obtained in global components in explicit form by combining a simple
local representation in terms of equilibrium deformation modes with a corresponding set of non-
linear generalized strains, expressed explicitly via scalar products of the global position and base
vectors associated with the two nodes of the element. In the present paper, the local stiffness asso-
ciated with the equilibrium modes of deformation is assumed to be linear elastic and the element
homogeneous, but extensions allowing for, for example, nonhomogeneous properties, geometric
stiffness, and initial curvature within the local element representation are fully within the proposed
format. The formulation is based on vector properties and does not make use of any representation
of finite rotations. The formulation is frame invariant and valid for arbitrarily large displacements,
with the only restriction being the assumption of moderate local deformation within the individual
element. The global formulation is in terms of the position vector of each node and a corresponding
set of orthonormal base vectors. For general beam structures with three-dimensional joints, three
base vectors are required at each node, while structures that are initially plane only need two base
vectors at each node. The rotation-free vector formulation leads to a redundant representation with
three additional degrees of freedom for plane structures and six for general three-dimensional struc-
tures. The corresponding constraints take a very simple form corresponding to zero Green strain for
the base vector sets at each node. The solution demonstrates the applicability of directly Newton–
Raphson-based techniques, such as the arc-length method. A number of very large-displacement
benchmark problems for simple beams and frames demonstrate that the present free-floating ele-
ment formulation requires a similar number of elements, when compared to the formulations in the
literature. This makes the element very competitive, as its global stiffness properties are defined in
terms of three explicit matrices.
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Abstract The present work describes a method for the structural optimization of wind tur-
bine rotor blades for given prescribed aerodynamic shape. The proposed approach operates
at various description levels producing cost-minimizing solutions that satisfy desired de-
sign constraints at the finest modeling level. At first, a “coarse”-level constrained design
optimization is performed by using a 1D spatial geometrically exact beam model for aero-
servo-elastic multibody analysis and load calculation, integrated with a 2D FEM cross sec-
tional model for stress/strain analysis, and the evaluation of the 1D model fully-populated
cross sectional stiffness matrices. Next, a “fine”-level 3D FEM model is used for the refine-
ment of the coarse-level solution. Improved results obtained at the level of the 3D model are
utilized at the following coarse-level iteration through a heuristic modification of the design
constraints. In addition, a buckling analysis is performed at the fine description level, which
in turn affects the nonstructural blade mass. The updated constraint bounds and mass make
their effects felt at the next coarse-level constrained design optimization, thereby closing the
loop between the coarse and fine description levels. The multilevel optimization procedure
is implemented in a computer program and it is demonstrated on the design of a multi-MW
horizontal axis wind turbine rotor blade.
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1 Introduction

The aerostructural design problem of wind turbine rotor blades concerns the definition of
the optimal external aerodynamic shape and of the structural components of the blade that
realize some desirable compromise among several figures of merit, including aerodynamic
efficiency, weight, manufacturing costs, transportability, etc. All necessary trade-offs are
usually considered and ultimately finalized within the more general problem of designing
the whole wind turbine, where the goal is typically the minimization of the cost of energy.
This paper is concerned with the structural design of wind turbine rotor blades for given

aerodynamic shape. Although this is only one aspect of the more general problem of de-
signing a blade and a wind turbine, as mentioned above, it is nevertheless a highly complex
and challenging task. In fact, the design should identify optimal structural layout, choice of
materials and proper sizing of all structural members to ensure a cost-effective, safe and ef-
ficient operation throughout the lifetime of the machine. Given layout and materials, the siz-
ing problem should be performed in such a way that all blade components (from webs, skin,
and spar caps, to root bolting and all the way down to glued connections, reinforcements,
etc.) can withstand extreme loads and the effects of fatigue due to deterministic cyclic and
stochastic turbulent excitations. Furthermore, the blade should be designed in such a way
to avoid resonant conditions, which would increase vibrations and fatigue, be stiff enough
to avoid striking the tower even under extreme operating conditions, be flutter-free in all of
its operating envelope including emergency conditions, and also free from local instabili-
ties such as skin buckling, wrinkling, etc. The design should also be able to fully exploit
the anisotropic properties of composite materials, for example, for inducing load mitigating
couplings between blade bending and twisting [1]. Clearly, these goals should be met with
the minimum possible cost, while satisfying all necessary manufacturing constraints.
The main challenge of this design problem comes from the need to marry the unsteady

nature of loading in a wind turbine, which requires transient analyses, with the need to cap-
ture local effects such as stress concentrations and instabilities in complex 3D structures
made with anisotropic composite materials. Transient analyses are routinely performed with
beam-like models of the machine dynamics, coupled to suitable aerodynamic models and
control laws that enable the simulation of the whole spectrum of unsteady operating con-
ditions defining extreme loads and deflections, as well as fatigue. On the other hand, the
verification of the local state of stress and strain and its stability are typically conducted
with detailed 3D static finite element models, under loading conditions obtained from the
ones computed with the transient models.
This two-stage analysis is typically performed “by hand”: After a first coarse-level pre-

liminary sizing performed using beam-like models, one performs a fine-level verification us-
ing 3D FEM and corrects any possible deficiency, for example, by increasing the thickness
or lamination sequence of a component. Possibly, the result of the fine-level verification is
used to update the coarse-level dynamic model and the process is iterated until convergence.
Clearly, this procedure is time consuming and labor intensive. Furthermore, the design is
not conducted as an integrated multilevel optimization, and might lead to suboptimal re-
sults since there is not a consistent way to reflect the results of the fine-level analysis into
modifications of the coarse-level models.
The scope of the present paper is to improve on the current design method of rotor blades,

by proposing a multilevel design procedure that conducts the design in a fully integrated and
automated manner. The method includes 2D finite element models for the characterization
and analysis of the blade cross sections, aero-servo-elastic multibody models for load calcu-
lation according to certification guidelines [2, 3], and detailed 3D finite element models for
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detailed stress-strain, fatigue and buckling analysis. The design optimization is conducted
by iterating among the various levels, so as to deliver a cost-minimizing design solution that
also satisfies all desired design constraints at the finest description level, i.e., the detailed 3D
model.
The design of wind turbine blades has been the subject of several investigations, and

software packages are available that can support the process at the various necessary de-
scription levels. In the following, we review some of the relevant literature, first for prelim-
inary coarse-level sizing and then for detailed fine-level verification, and we compare the
state-of-the-art with the new integrated and multilevel procedures proposed here.
As previously stated, a coarse beam model is often sufficient for preliminary analysis as

it is capable of providing fast and accurate results for primary parameters such as natural
frequencies, deflections, loads, and the estimation of the overall dynamic behavior of the
machine. At this stage, multibody procedures are routinely adopted, using geometrically
exact beam formulations as in [4] and as in the nonlinear finite-element-based multibody
dynamics wind turbine simulation code Cp-Lambda (Code for Performance, Loads, Aero-
Elasticity by Multi-Body Dynamic Analysis) [5, 6] used here, or with Timoschenko beam
elements as in [7]; modal representations of the flexible elements are also in widespread use,
as in the wind turbine aero-elastic codes FAST [8] and GH-Bladed [9].
The use of such tools for preliminary design of rotor blades has been described in a few

publications. In particular, the codes RotorOpt [10, 11] and FOCUS6 [12] implement in-
tegrated design environments. A suite of design tools is described in [13], providing the
facilities for preliminary blade design, although the various software modules do not appear
to be integrated in a unified optimization framework. Recently, the multidisciplinary wind
turbine design code Cp-Max (Code for Performance Maximization) was described in [14].
In that work, the structural blade design problem is formulated as a constrained optimiza-
tion based on a two-level modeling system. The first level is represented by a parametric
aero-servo-elastic multibody model, while the second level by 2D finite element paramet-
ric models of the blade cross sections. The integration of the two models allows for the
synthesis of a beam given its cross sections, and for the evaluation of the sectional loading
given the beam one, which are the two crucial steps of the design problem. In fact, from
the sectional models, fully-populated stiffness matrices are computed using the code ANBA
(Anisotropic Beam Analysis), based on the anisotropic beam theory formulated in [21]. The
stiffness matrices obtained in this way are used for defining geometrically exact shear and
torsion-deformable beams [19] in Cp-Lambda. On the other hand, recovery relations pro-
vided by ANBA allow for the computation of local sectional stresses and strains based on
internal stress resultants computed with Cp-Lambda.
The formulation described in [14] enables the structural optimization of rotor blades

through the integration of 2D cross sectional analysis and 1D spatial beam models. Al-
though that paper mentioned the link towards a detailed fine-level 3D FEM verification of
the design, the formulation lacked the ability to close the loop from fine-level analysis back
to coarse-level representation, which is the only way one can generate a design that is op-
timal and constraint satisfying at the finest description level. This loop closure capability
is described in the present work, and has been incorporated in an updated version of the
Cp-Max software.
Several tools have been developed for the detailed structural analysis of wind turbine

blades, typically developed in the form of pre- and post-processing software interfaced with
commercial FE solvers. For example, NUMAD [15] serves as a preprocessor for the commer-
cial FE software ANSYS. Given an externally generated CAD model, the code produces a
mid-thickness model of the blade, meshes it using shell elements, and lets the user define all
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necessary material properties, loading and boundary conditions for the required analyses.
Similarly, FOCUS6 is also capable of generating detailed structural models of rotor blades
using lay-up shell elements, while NSE-blade-mesher [16] exploits a combined solid
and shell element mesh in connection with the FE solver ABAQUS. This code was used
for confirming the bending and twisting behavior of a blade predicted by sectional analysis
in [17], while a full structural multicriteria optimization for a given aerodynamic shape is
performed in [18] by utilizing a parametric FE model using ANSYS.
Here, a new tool is described for the automatic generation and analysis of 3D FE struc-

tural blade models. First, a detailed CAD model is generated in terms of NURBS (Non-
Uniform Rational B-Splines) surfaces directly from the blade geometry obtained at the
coarse description level. Next, the CADmodel is associated with material properties, bound-
ary as well as extreme and fatigue loading conditions, and meshed into shell or solid ele-
ments to enable the execution of the necessary analyses.
Static deflection and fatigue analyses are conducted on the fine-level 3D model, with the

goal of verifying the satisfaction of the stress, strain, and fatigue constraints, since the 3D
model can represent effects that sectional and beam models cannot capture. Furthermore, a
nonlinear buckling analysis is performed under the maximum tip deflection loads.
A heuristic approach is used for incorporating the effects of the 3D FEM level analyses

back into the coarse-level model. This way, new 2D sectional models are generated, which
in turn define a new 1D spatial beam model, and the complete process is repeated. Typically,
very few iterations between the coarse and fine levels are necessary for convergence.
Through the new procedure described herein, a multilevel optimization is used to de-

termine cost-minimizing design solutions that satisfy all desired constraints at the finest
description level within reasonable computational costs. In particular, the loop closure be-
tween fine 3D FEM static and coarse multibody dynamic and cross sectional models is the
main contribution of the present paper, and it has not been described before to the authors’
knowledge.
The paper is organized as follows. At first, the general principles of the multilevel opti-

mization procedure are described in Sect. 2.1 and the algorithmic organization of the code
is illustrated in Sect. 2.2. Next, a detailed description is given in Sect. 3 of the various tasks
that implement the automated CAD and FE model generation procedures and associated FE
analyses, starting with a brief discussion of the relevant modeling aspects in Sect. 3.1. The
description of the CAD model generation of the various components of the blade follows
in Sect. 3.2, and the generation of the FE model is given in Sect. 3.3. This modeling task
is conducted in two different manners tailored to the subsequent meshing, as described in
Sect. 3.3.1, which is performed using either layered composite shells or solid elements. The
correct orientation of the anisotropic material properties is addressed in Sect. 3.3.2, while
the conversion of the relevant envelope load cases from the coarse description level into rep-
resentative loading conditions for the 3D FE model is described in Sect. 3.3.3. Finally, the
fine-level analyses are discussed in Sect. 3.4. The paper is complemented by Sect. 4, where
the capabilities of the proposed integrated multilevel optimization procedures are illustrated
on the structural design of a blade for a 2MW horizontal axis wind turbine.

2 Multilevel structural optimization of wind turbine rotor blades

2.1 Overview of multilevel optimization

Figure 1 illustrates the proposed multilevel constrained structural design optimization of
wind turbine rotor blades, which is briefly described here below.
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Fig. 1 Multilevel structural blade optimization for given aerodynamic shape

As a starting point for the optimization, an initial definition of the blade structural con-
figuration and associated material properties is required. Next, the primary design variables
are defined at selected span-wise sections, typically including the thicknesses of skin, shear
webs, and spar caps as well as the area of the leading and trailing edge reinforcements;
intermediate values along the blade span are interpolated using shape functions.
Based on this and all other necessary input data, a complete aero-servo-elastic model of

the machine is developed using the wind turbine simulation code Cp-Lambda. All enti-
ties in the model are described using Cartesian coordinates in a single inertial frame, and
constraints are enforced using Lagrange multipliers. Blades are described using a geometri-
cally exact shear and torsion deformable beam model [19], which can represent arbitrarily
large three dimensional rotations and displacements; spatial discretization is obtained us-
ing an isoparametric formulation, resulting in a nonlinear full finite element method. Time
integration of the resulting differential algebraic multibody equations of motion in index-3
form is performed using a nonlinearly unconditionally stable energy decaying integration
scheme [20]. The code supports static and transient analyses as well as the computation of
frequencies and mode shapes about deformed equilibrium configurations.
Each blade is described in terms of cross sectional properties computed at user-selected

span-wise stations; for the computation of transient loads the number of sections is of the or-
der of one-hundred, while in the optimization loop defining the blade properties a few tens
of sections are usually sufficient. Sectional stiffness matrices accounting for all possible
structural couplings are computed using the code ANBA [21], based on either 2D finite ele-
ment meshes or equivalent panels. In the latter case, which is the one considered here, each
section is meshed with a number of panels ranging between one-hundred and one-hundred
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Fig. 2 Topological
representation of wind turbine
multibody model

and fifty, depending on the local geometry. Each blade is finally modeled as a geometrically
exact beam, using a number of cubic elements between twenty and thirty.
The aerodynamic loads computation is based on classical Blade Element Momentum

(BEM) theory. Blades are associated to lifting lines described by three-dimensional twisted
curves, and aerodynamic loads are then computed on the basis of local flow characteristics
and local airfoil aerodynamic coefficients, stored in look-up tables [14].
The topological description of the wind turbine multibody model is reported in Fig. 2.

The turbine flexible bodies—i.e. the blades, tower and drive train—are modeled by beam
elements, while rigid bodies are used to model the inertial properties of the hub, genera-
tor and nacelle. Revolute joints are used for the pitch and rotor degrees of freedom, and
are connected to the outputs of their relevant actuator models, while the tower foundation
characteristics are modeled with torsional springs and dampers.
The model is supplemented by a regulation strategy and a collective-pitch/torque con-

troller based on a speed-scheduled linear quadratic regulator (LQR) [22], capable of con-
trolling the machine over its entire operating envelope.
With the closed-loop aero-servo-elastic model, transient design load cases (DLCs) are

simulated that include turbulent wind cases, extreme gusts, and a variety of fault conditions,
according to [2, 3]. Automatic procedures manage the post-processing of all generated re-
sults, to define a generalized load envelope. Sectional load envelopes are extracted as matri-
ces containing values of the maximum and minimum internal stress resultants. In the present
work, a generalized load envelope is defined that also includes the time histories of turbulent
loads due to DLC 1.2 [2], used for the determination of fatigue damage, as well as the loads
associated with the maximum tip deflection. The determination of the latter loading condi-
tion is formulated as an optimization problem that looks for a set of equivalent static loads
that, together with gravitational and inertial loads associated with the operational conditions
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at the time when the maximum tip deflection occurs, closely match the actual deflections
and internal stress distribution [14].
Using the generalized load envelope, for each instantiation of the blade design one can

compute all relevant design quantities, such as maximum tip deflection, stress, and strain
states at selected verification points in a number of span-wise sections through recovery
relations provided by ANBA, and the level of fatigue-induced damage at the same verifi-
cation spots. These quantities are then enforced as inequality constraint conditions for the
optimization problem.
The code also computes the Campbell diagram of the machine, so that constraint condi-

tions ensuring a resonant-free design can be included in the optimization. Furthermore, one
can also include additional constraints on the unknown design parameters, such as bounds
on the span-wise ply tapering rates or on the relative position between sectional center of
gravity and pitch axis.
In this work, the merit function of the optimization problem is represented by the total

mass of the blade. This quantity is computed based on the spatial and sectional configuration
of the blade and also includes nonstructural masses due to surface coating, foam core, resin
take-up, etc. Here, it is implicitly assumed that mass is well correlated with cost; the choice
of mass as the merit function is also due to the fact that reliable cost models are not available
in the public domain.
The constrained multi-disciplinary optimization is run until convergence using the se-

quential quadratic programming (SQP) method implemented in the fmincon routine of
the Matlab software [23]. In order to reduce the computational cost, the optimization is
run for a frozen load envelope; once the cost optimization converges, a new aero-servo-
elastic wind turbine model is generated following the previously described steps and the
relevant analyses are repeated for updating the generalized load envelope. The optimization
is repeated until no more changes in the load envelope and the design are detected, which
typically takes very few iterations. This procedure minimizes the number of evaluations of
the generalized load envelope so as to reduce the computational cost [14].
From the computed blade geometry, the code automatically generates a 3D CAD model,

which precisely accounts for all components of the blade (shear webs, web core, flanges,
spar caps, leading and trailing edge reinforcement, internal skin, skin core and external skin)
as well as their associated material properties and laminate characteristics (see Sect. 3). The
meshing of the blade is performed with the commercial preprocessing software Hyper-
Mesh [24], which provides macro-based facilities for automatic mesh generation using ei-
ther shell or solid elements and the subsequent export of the model data in the form of input
files compatible with various commercial FE solvers.
The 3D FE model provides the framework for a fine-level verification of the design con-

straint inequalities associated with admissible stresses, strains, deflections, and fatigue dam-
age, as the detailed model reveals effects that may have been overlooked by the coarse
quasi-3D model composed of 1D spatial beam and 2D cross sectional models. For exam-
ple, local stress concentrations at the beginning and end of the spar caps or at regions with
rapidly changing geometry in the span-wise direction cannot be correctly represented by
beam models, since in these cases the very hypotheses underlying beam theories are vi-
olated. In case constraint violations are detected at the fine-level, the coarse optimization
loop is repeated with constraint bounds that are tightened proportionally to the violation
amount; coarse and fine-level iterations are repeated until an optimal design that satisfies
the constraint conditions at the finest description level is obtained.
In addition, the 3D model can be used for designing secondary structural components,

as for example the thickness of the skin core through a linearized buckling analysis. This in
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turn affects the nonstructural mass of the blade model leading to an improved estimate for
the cost function. This mass change affects the coarse-level analysis, that is then repeated
until convergence; this is usually accomplished in a few iterations as illustrated in Sect. 4.3.

2.2 Algorithmic organization of multi-level optimization

The multilevel optimization for minimum blade weight that was sketched in the previous
pages, can be more precisely expressed in the following algorithmic form:

Function
(
p∗

s ,w
∗)= MinBladeWeight(pa,ps ,D,Γs) : (1a)

(E) = LoadEnvelope(pa,ps ,D), (1b)

do (1c)

(ps1,ps2) = ps , (1d)(
p∗

s1,w
∗
1

)= MinWeightBladeFrozenLoads(pa,ps1,D,E,Γs), (1e)

(M) = 3DCADAndFEMeshGeneration
(
pa,p

∗
s1 ∪ ps2,E

)
, (1f)(

p∗
s2,w

∗
2,Γ

′
s

)= 3DFEAnalysis(M,ps2,D,E,Γs), (1g)

p∗
s = p∗

s1 ∪ p∗
s2, (1h)(

E′)= LoadEnvelope
(
pa,p

∗
s ,D

)
, (1i)

�ps1 = ∥∥p∗
s1 − ps1

∥∥, �E = ∥∥E′ − E
∥∥, (1j)

ps = p∗
s , E = E′, Γs = Γ ′

s , (1k)

while (�ps1 ≥ tolps1 and �E ≥ tolE). (1l)

Here, and in the following, functions are indicated with the notation

(O) = FunctionName(I ), (2)

where I indicates a list of input variables, while O a list of output ones.
In (1a), the mass optimization function takes as input the known and given parameters pa

describing the aerodynamic shape of the blade, the unknown structural parameters ps , the
additional data structure D and list of constraint bounds Γs , and returns the optimal values
of structural parameters p∗

s and corresponding blade weight w
∗.

Unknowns ps are partitioned into primary structural variables ps1, which are designed
during the coarse optimization, and secondary structural variables ps2, such as the skin core
thickness that can only be analyzed in the 3D FE model. List D contains all relevant data
describing the characteristics of the machine

D = {Pr,Vin,Vout,R,H,AF,C, vtipmax ,LDLC, . . .}, (3)

which, among others, include rated power Pr , range between cut-in Vin and cut-out Vout
wind speeds, rotor radius R, tower height H , list of airfoil data AF= {. . . ,AFi , . . .}, wind
turbine class C [2], maximum admissible tip speed to limit noise emissions and list LDLC =
{. . . ,DLCi.j, . . .} containing all DLCs according to [2, 3] used for blade sizing. Finally,
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Γs is a vector of constraint parameters used for enforcing the design inequalities during
structural optimization, defined as

Γs = (
σ adm, εadm, δtip,max, [ωL,ωU ], . . .)T , (4)

where σ adm and εadm denote the admissible magnitudes for stress and strain components,
δtip,max is the maximum admissible tip deflection and the interval [ωL,ωU ] represents bounds
for the placement of selected natural frequencies.
The coarse-level optimization for the primary structural design variables, ps1, is per-

formed using the quasi-3D beam model in (1e), as illustrated by the “coarse” level block in
Fig. 1. Next, the 3D CAD model is created and its meshM is generated in (1f), as described
later on in Sect. 3. Finally, the refined structural analysis in terms of the 3D FE model is
performed in (1g), which yields updated values of the secondary design variables, ps2, and
of the design inequality parameters, Γs . These three steps are shown in the “fine” level block
of Fig. 1.
As pointed out in [14], the recalculation of the full load envelope E for each change

in the structural design variables may imply a considerable computational cost. Therefore,
the coarse (1e) and fine (1g) level steps are conducted considering the load envelope E as
frozen. However, it should be emphasized that the effects of the design on the load envelope
is recovered by the iteration in (1c–1l), so that the procedure has the sole effect of reducing
the computational cost, but does not affect the results.
The coarse-level constrained optimization (1e), which is solved using the SQP algorithm,

takes the form

Function
(
p∗

s ,w
∗)= MinWeightBladeFrozenLoads(pa,ps ,D,E) : (5a)

p∗
s =min

ps

W(ps ,D)
(
and w∗ = argmin

ps

W
)
, (5b)

s.t.: gs(ps) ≤ 0, (5c)

ω(ps ,D) ∈ [ωL,ωU ], (5d)

σ (ps ,E,D) ≤ σ adm, (5e)

ε(ps ,E,D) ≤ εadm, (5f)

d(ps ,E,D) ≤ 1, (5g)

δtipmax(ps ,E,D) ≤ δtipadm . (5h)

The design constraint inequalities for this problem involve the following conditions:

– (5c): requirements on the unknown structural parameters, such as for example limits on
the span-wise ply tapering rates.

– (5d): the placement of significant natural frequencies to lie within a desired interval
[ωL,ωU ] in order to avoid resonant conditions. This could be a requirement for the first
flap-wise blade eigenfrequency to lie above the three-per-rev frequency at the rated rotor
speed, or a requirement for a suitable gap between two consecutive blade frequencies.

– (5e), (5f): bounds on stress and strain components σ and ε, respectively, at a selected
number of points on cross sections of interest, in order so ensure sufficient structural
strength according to [2, 3].
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– (5g): criterion on fatigue induced damage in turbulent wind conditions DLC 1.2 [2]. Dam-
age dσr at a point on a cross section due to a single stress component σr is computed
according to [2], while a multiaxial damage index d is computed according to [25, 26] as

d = d2/m
σ1

+ d2/m
σ1

− (dσ1dσ2)
1/m + d2/m

σ6
, (6)

where m denotes the inverse slope of the S-N curve and indices 1, 2, and 6 refer to the
longitudinal, transverse, and shear stress components, respectively. The damage indices
d for each verification point on each cross section are collected in a vector d and are all
bounded to unity.

– (5h): a limit on the maximum blade tip deflection throughout all time histories of all
DLCs.

The fine-level analysis (1g) can be stated in the following algorithmic form:

Function
(
p∗

s2,w
∗
2,Γ

′
s

)= 3DFEAnalysis(M,ps2,D,E,Γs) : (7a)(
p∗

s2,w
∗
2

)= MinSecondaryWeight(M,D,E), (7b)

Γ ′
s = ConstraintVerificationAndUpdate(M,D,E,Γs), (7c)

and comprises of two main steps.
The first, (7b), concerns the design of secondary structural parameters, in this case rep-

resented by the skin core thickness with respect to local buckling. This problem yields the
optimal values of the secondary variables p∗

s2, as well as an improved estimate for the blade
mass w∗ = w∗

1 + w∗
2 . The buckling analysis in itself can be formulated as the following

constrained optimization:

Function
(
p∗

s2,w
∗
2

)= MinSecondaryWeight(M,D,E) : (8a)

p∗
s2 =min

ps2
W2(M,D)

(
and w∗

2 = argmin
ps2

W2

)
, (8b)

s.t.: λ(M,D,E) ≥ 1, (8c)

where λ are the eigenvalues of the linearized buckling problem associated with the load-
ing conditions stored in the generalized envelope E. Further details on the solution of this
problem are given in Sect. 3.4.4.
The second step, (7c), concerns the verification of the design constraint conditions on

the 3D FE model through static, modal and fatigue analyses. If constraint violations are de-
tected, updated constraint bounds Γ ′

s are generated, that will in turn affect the next solution
of problem (1e). The design constraint that are verified at this level are:

– Placement of natural frequencies, corresponding to the coarse-level inequalities (5d).
– Bounds on stress and strain components, corresponding to the coarse-level inequali-
ties (5e) and (5f).

– Fatigue induced damage constraints, corresponding to the coarse-level inequalities (5g).
– Maximum blade tip deflection, corresponding to the coarse-level inequality (5h).

If the verification of the constraint conditions on the fine-level model performed in (7c)
reveals that some design inequalities are not satisfied, a heuristic approach is applied in
which the constraints are modified proportionally to the violation amount. Assume that a
condition for maximum stress σmax,2D is satisfied at a given section σmax,2D < σadm at the
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end of the ith coarse-level optimization, but it is violated when the fine-level 3D analysis
is performed, i.e. σmax,3D > σadm. Then the admissible stress for the (i + 1)th iteration is
modified as

σ
(i+1)
adm = sσ σ

(i)

adm, (9)

where sσ = σmax,3D/σmax,2D . This way, a more stringent constraint condition is imposed at
the next coarse-level iteration. It may be expected that the stress ratio between the quasi-
3D and the 3D analyses is almost constant for moderate variations of the structural element
sizes. Therefore, the present approach may be used for refining the coarse-level analysis
according to the results from the fine-level solution. The other constraint parameters Γs are
handled in a similar way, so that the full set of constraint limits may be updated as

Γ ′
s = SΓs, (10)

where S is a diagonal matrix containing the constraint limit modification factors s(·) for each
of the constraint conditions.

3 CAD modeling, FE generation and analysis

Crucial to the success of the present automated optimization procedure is the construction
of a robust and reliable finite element model. For a complex structure such as a wind turbine
blade this requires several steps, which can be summarized as:

– Parametric definition of each blade component, either in terms of its bounding surfaces
or of the laminate mid-planes, as described in Sect. 3.2.

– Generation of a complete FE model, described in Sect. 3.3, which in turn requires:
– Mesh generation, including both the 3D blade discretization using either shell or solid
elements and the discretization of 2D cross sections for sectional analysis in terms of
panel or surface elements, as described in Sect. 3.3.1.

– Assignment of element properties, including the laminate ply stacking sequences
and associated thicknesses, material parameters, and fiber orientations, as detailed in
Sect. 3.3.2.

– Conversion of the 1D spatial beam model loading conditions into equivalent conditions
for the 3D FE model, as described in Sect. 3.3.3.

– FE analysis and post-processing of the results for the verification of the relevant design
conditions, as detailed in Sect. 3.4.

In this work, the CAD model generation, as well as the assignment of the associated ma-
terial properties and loading conditions, is based on the information from the coarse-level
optimizer, and it is performed in Matlab. The FE mesh generation is performed using
the batch meshing facilities of HyperMesh, where the required scripts are generated in
Matlab. Finally, Matlab scripts handle the batch submission of the various analyses per-
formed using MSC Nastran [27], as well as their post-processing.

3.1 Modeling aspects

The way in which the FE modeling of wind turbine blades is conducted may have a sig-
nificant influence on the procedures used for generating the CAD geometry. The most fre-
quently used technique for blade modeling is based on layered shell elements [12, 15], which
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Fig. 3 Two possible FEM models of rotor blades

are commonly available in commercial FE solvers. Most implementations provide the pos-
sibility of specifying the extent of the elements in terms of offsets from a reference surface
other than its mid-thickness. This is particularly convenient when dealing with wind turbine
blades, as the elements can be specified with respect to the exterior surface defined by the
shape of the airfoils. Since the external shape is smooth, the generation of the necessary
CAD model is not particularly complicated.
However, a possible drawback of the offset technique is that it may result in the erroneous

prediction of the torsional behavior of the blade [30]. This problem is of particular concern
since torsion affects loading through changes in the angle of attack, as for example explicitly
exploited for load mitigation in bend-twist coupled rotor blades [1]. Recent improved shell
formulations circumvent this problem, as for example element SHELL281 [32] or the pre-
integrated matrix input [33] available for ANSYS.
Otherwise, one can generate a mid-thickness CAD model of the blade, as done manu-

ally in [31]. The construction of the geometry using mid-thickness surfaces, illustrated in
Fig. 3(a) at left, is in general rather cumbersome, since thickness variations lead to step
changes between contiguous mid-thickness surfaces.
Alternatively, solid elements can be used for building the mesh, as shown in Fig. 3(b)

at right. These are particularly suitable for capturing interlaminar stresses, for delamina-
tion and debonding analysis. However, the use of solid elements may complicate the CAD
generation, since both the external and internal surfaces must be defined, which may be
cumbersome to do in the various transition zones of a blade. Furthermore, one should pay
specific attention to the accurate definition of the material property orientation [34]. While
procedures for associating the correct material orientation to models composed of shell ele-
ments are rather well established (e.g., by direct projection of a user-defined material refer-
ence vector on the element [35]), the case of complex models composed of solid elements
requires special attention as individual local coordinate systems must be defined for each
element in the mesh.
For generality, the present implementation supports all approaches mentioned above, so

that one may generate mid-thickness or exterior surface shells with offsets, or, alternatively,
solid element meshes. It further includes 2D sectional meshing capabilities, based on either
panel or 2D surface elements, to be used for sectional analysis in ANBA.

3.2 CAD model

The generation of a complete CAD surface model for shell meshing is accomplished as
follows.
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Fig. 4 Selected steps in the generation of the CAD model of a wind turbine blade

A number of cross sections, typically of the order of one hundred, are obtained by
thickness-interpolation of the generating airfoil data points, using their span-wise chord and
twist distributions. Chordwise spline interpolations are used for parameterizing the airfoils
from their data points, and nodes define the location of the boundaries of the projections of
the various blade elements (spar caps, shear webs, etc.) onto the external blade surface, as
illustrated in Fig. 4(a).
For mid-thickness CAD generation, an inward projection along the local normal is per-

formed using the thickness information associated with each blade element. This way, steps
at the boundaries between elements with different thicknesses are generated. The thickness
data accounts for span-wise variations, as computed by the coarse-level optimization, as
well as user-defined chord-wise variations; the latter ones are used to avoid modeling errors
associated with the overlapping of inner skin/core, which are likely to occur near the trailing
edge [17].
From the chordwise interpolations of the airfoils or their mid-thickness projections, col-

location data points are obtained with sufficient sampling resolution (typically of the order
of one thousand points per cross section) to allow for an accurate surface parameterization,
which is obtained by using NURBS [36] on each surface describing a blade component
projection. In the present implementation, only nonrational surfaces are utilized, whose
weights are equal to unity, and control points are obtained by least squares from collo-
cation points. Collocation parameters for chord-wise interpolation are obtained using the
centripetal method [37], while span-wise collocation parameters follow by averaging of the
parameters determined at two consecutive sections. Once all collocation parameters are ob-
tained, knot vectors are computed by using the average method suggested by de Boor [36].
An illustration of the resulting surface model is given in Fig. 4(b) for the case of mid-
thickness representation.
For the construction of a solid mesh, the external blade surfaces are first generated as

described above. Next, the various surfaces are further partitioned into simpler subsurfaces,
as illustrated in Fig. 4(c). Partitioning is performed such that, by extruding inward each ex-
ternal subsurface along the local thickness direction, one can obtain the associated facing
internal subsurface; this will allow for the generation of the solid mesh by means of a sim-
ilar through-the-thickness extrusion of a surface mesh, as explained later on. Contact areas
between two surfaces, as at the glued connections between shear webs and spar caps, are
also used for the partitioning, so as to ensure conforming discretizations during meshing.
The information associated with the parametric NURBS representation of the resulting

model is finally exported in IGES (Initial Graphics Exchange Specification) format towards
HyperMesh for subsequent meshing.
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The present approach, which tries to generate an accurate geometric model before mesh-
ing, differs significantly from the lofting of predefined cross sectional meshes used for ex-
ample in [17], and presents several advantages. In fact, using this approach the shape of the
internal skin as well as the transitions between zones with varying thickness along the span
of the blade are precisely reconstructed. This is particularly important since these regions
must be accurately modeled [3], and it may be particularly useful in areas of rapid span-wise
variations as the one between root and max chord span.

3.3 FE model

3.3.1 Mesh generation

The generation of an unstructured mostly quadrilateral shell mesh is obtained by using Hy-
perMesh on the exterior or mid-thickness surface CAD model; a limited number of tri-
angular elements is generally obtained close to corners and in a few difficult spots. The
meshing algorithm ensures the conformity of the resulting grid across edges bounding the
various subsurfaces of the model.
An unstructured mostly hexahedral solid mesh is obtained by first quad meshing the

external subsurface of each individual blade component as for the shell case, projecting
the mesh onto the opposite internal surface, optionally defining through-the-thickness dis-
cretizations by the same projection, and finally connecting the resulting surface grids into a
solid one. Since the initial surface meshes are conforming, the final solid grid is also guar-
anteed to be conforming.
The surface meshing and extrusion procedure is illustrated in Fig. 5 for a span-wise

portion of the spar cap; notice that the external surface has been divided into several stripes in
the chord-wise direction, to account for the glued connections with the shear webs. A span-
wise portion of the resulting complete solid mesh is illustrated in Fig. 6(a), and details of
the trailing edge with its reinforcement strip and the thickness variation of the core is shown
in Fig. 6(b).
For sectional analysis, one can generate either a panel mesh, i.e. a discretization of the

mid-thickness line in 1D elements, or a 2D mesh, i.e., a grid of quad or tria elements that
discretize the various components of the cross section. The first option was used in the
examples of the present paper, although the second is also implemented in the code and

Fig. 5 Surface meshing and extrusion procedure
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Fig. 6 Span-wise portion of solid mesh and trailing edge detail

Fig. 7 2D mesh for cross sectional analysis

provides for a higher definition evaluation of the state of stress of the cross section, possibly
including also the interlaminar stresses.
For the panel case, meshing of the mid-thickness sectional line model is straightforward.

For the 2D case, the external lines are first projected inward by using the local normals; this
way defining the bounding lines of the various blade component cross sections. The exter-
nal line mesh is then extruded inwards, possibly realizing multiple through-the-thickness
subdivisions, accounting for the local thickness information available at each cross section;
connection of the external and extruded line meshes generates the cross sectional surface
grid.
A 2D cross sectional mesh and a close-up view of the trailing edge area are illustrated in

Figs. 7(a) and 7(b), respectively.

3.3.2 Material properties

Material properties, including the orientation of the fibers with respect to the pitch axis, are
associated with the various entities of the CAD model during its definition.
Once the mesh has been generated, the definition of the material properties of each mesh

element is obtained as follows. At first, the centroid of each element is computed; if the
element is of the 3D type, its centroid is projected onto the master CAD face of that blade
component. At that CAD face location, a local material reference frame is defined that has
a unit vector in the direction of the fibers and a second unit vector along the local normal,
computed from the NURBS surface parameterization. The orthotropic material properties
of the element are then readily obtained by transforming into the local reference frame of
that same element.
For shell meshes, the procedures support either the generation of single layer equivalent

composite laminates or of layer-by-layer representations. The latter approach is particular
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Fig. 8 Recovery of inertial loads
from sectional internal stress
resultants and aerodynamic loads

convenient for modeling very thin layers, such as the skin coating that would result in ele-
ments with very high aspect ratios. Even though such details of the blade design may seem
to be of minor importance from the structural point of view, they can indeed have a signifi-
cant influence on the estimation of the total mass (up to 4÷5 %), with a consequent possible
effect on the blade dynamic properties.

3.3.3 Equivalent loading conditions

In order to perform all relevant analyses on the fine-level FE model, appropriate loading
and boundary conditions must be generated from the results of the coarse-level multibody
simulations; these include loads inducing extreme stress and strain values, loads associated
with maximum tip deflections, as well as time histories of the turbulent loads cases for the
evaluation of fatigue damage. For each of these loading conditions, span-wise distributions
of the internal stress resultants and of the aerodynamic forces are readily available from the
multibody simulations. The computation of equivalent loading conditions for the FE model
is here performed by distinguishing between aerodynamic and inertial loads. This way, re-
alistic loading conditions for the blade can be established, e.g., by limiting the application
of the aerodynamic loads to the external skin nodes.
Span-wise distributions of inertial loads are recovered by enforcing the equilibrium of

a blade portion. With reference to Fig. 8, consider a blade segment η ∈ [ηi, ηi+1], where
η ∈ [0,1] is the span-wise nondimensional coordinate running along the beam reference line
passing through the sectional point E. The internal stress resultants on the (i + 1)th section
is f i+1, and the moment resultant about E ismi+1, while the ones on the ith section negative
face are −f i and −mi , respectively. At the span-wise station η, per-unit-span aerodynamic
forces f A(η) and moments mA(η) are applied at the aerodynamic reference line passing
through the sectional point A, which is at a distance rA(η) from point E on the ith section.
Similarly, per-unit-span inertial forces f I (η) and moments mI (η) are applied at the beam
reference line, which is at a distance rI (η) from point E on the ith section.
The force and moment (about E) equilibrium conditions for the blade segment write

−f i + f i+1 +
∫ ηi+1

ηi

(
f A + f I

)
dη = 0, (11a)

−mi + mi+1 +
∫ ηi+1

ηi

(
mA + mI + rA × f A + rI × f I

)
dη + r × f i+1 = 0. (11b)

By using a trapezoidal approximation for the span-wise integrals, one obtains∫ ηi+1

ηi

f I dη ≈ ηi+1 − ηi

2

(
f I

i + f I
i+1
)
, (12)
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Fig. 9 Load application to spar
caps nodes using the RBE3
element

where f I
i and f I

i+1 are sectional inertial forces. By inserting (12) into (11a), starting from
the blade tip, one may compute each sectional inertial force f I

i based on the sectional resul-
tants and aerodynamic loads. Similarly, from (11b) one may compute each sectional inertial
moment mI

i .
Once sectional loads have been recovered as explained, they are applied to the blade

structure by means of RBE3 interpolation elements provided in the commercial FE solver
MSC Nastran [27]. Different sets of nodes can be associated with different interpolation
elements, each one in turn associated with a different set of forces and moments. This way
aerodynamic loads can be applied to the sole skin nodes, while inertial loads can be applied
to all sectional nodes; alternatively, combined loads can be applied to the spar cap nodes,
as shown in Fig. 9. In all cases, forces are distributed to each node considering local user
defined weighting factors, while moments are applied as sum of equilibrated forces on de-
pendent nodes, as explained in [29]. An example of the application of loads to the spar cap
of a shell 3D model is reported in Fig. 9.
A more realistic way of representing aerodynamic loads would be to reconstruct the

chord-wise pressure distribution, for example using assumed shapes from experimental mea-
surements or from suitable numerical models such as Xfoil [28]. This feature will be in-
cluded in future releases of the code.

3.4 Analysis

The automatically generated 3D FE model enables the detailed fine-level verification of the
various constraint inequalities associated with the overall optimization problem. Further-
more, it can be used for designing secondary structural parts such as the skin core thickness
by means of a linearized buckling analysis. In the present section, the assumptions and pro-
cedures for these various analyses are described.

3.4.1 Static analysis

Static analyses are performed for the verification of the constraint inequalities associated
with the max/min allowable stresses/strains and the maximum tip deflection, with the aim
of revealing possible effects not captured by the beam model.
For each user-defined verification section, the max/min stress/strain loading conditions

are readily identified by scanning all DLCs of interest [14], and using the sectional recovery
relations provided by ANBA. Next, the corresponding equivalent loading conditions are first
computed as described in Sect. 3.3.3 from the coarse-level analysis, and then applied to the
3D FE model. Similarly, by scanning all DLCs, the maximum tip deflection condition is
identified and translated into an equivalent loading condition.
Geometric and material linear static analyses are performed in MSC Nastran, and the

relevant results in terms of strains, stresses and displacements are processed in Matlab
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to detect possible violations of the constraint conditions. It was verified that, for the ex-
amples developed in the present work, the use of geometrically nonlinear analyses, as op-
posed to the present linear ones, yield only negligible differences, although this might not
be the case for the future projected very long and slender next generation wind turbine
blades.

3.4.2 Modal analysis

During coarse optimization, a design accommodating desired dynamic properties can be
obtained by specifying suitable constraints for significant natural frequencies of the blade,
as described in Sect. 2.2. Such constraints are typically expressed for the rotating blade at
rated RPM. The inertial effects associated with blade rotation are taken into account in the
Cp-Lambda modal analysis by first performing a nonlinear static analysis subjected to a
loading condition including the inertial effects of rotational motion, and then by performing
a modal analysis about the resulting deformed configuration, accounting for the centrifugal
stiffness term.
A similar procedure could be used for performing the modal analysis on the 3D FE

model [27]. However, while coarse-level constraints are enforced for the rotating frequen-
cies, the fine-level verification of the frequency conditions is performed here for simplic-
ity as a standard nonrotating modal analysis about the blade undeformed configuration. In
particular, ratios between corresponding nonrotating frequencies, computed on the coarse-
level beam and fine-level FE models, are used as indicators of the disagreement between
the two representations. This is a reasonable assumption, since both models are sophisti-
cated enough to precisely account for inertia-related changes of frequencies, and thus the
ratios between nonrotating frequencies are expected to change in a similar fashion. Further-
more, rotational effects on frequencies are typically rather limited for wind turbine rotor
blades.

3.4.3 Fatigue analysis

Similarly to the coarse-level optimization procedure [14], the fine-level evaluation of dam-
age caused by loads in turbulent wind conditions (DLC 1.2 [2]) is only conducted for a
limited set of critical points at user-defined verification sections. Such critical points are
identified during coarse optimization as the sectional spots where the multiaxial damage
index d of Eq. (6) exceeds a specified threshold.
The stress time histories necessary for evaluating the damage index are conveniently

computed by exploiting the linear superposition of static unit load cases applied to the FE
model with load histories obtained from the beam model (see e.g. [38]). At each verification
point, a static force or moment (in the case of shells) of unit magnitude is applied, and the
full stress time history follows as

σi(t) =
∑

j

Pj (t)
σi,j

Pj,FEA
, (13)

where Pj (t) denotes a load history obtained by a multibody transient simulation, Pj,FEA the
applied unit load, and σi is the static stress resultant at point i for load case j . This procedure
reduces the computational cost necessary for the evaluation of the full stress time history on
the comprehensive 3D FE model. The remaining steps required for the computation of the
damage index follow the same procedure used at the coarse analysis level, using rain-flow
counting and the associated Markov matrices.



Structural optimization of wind turbine rotor blades

3.4.4 Buckling analysis

An additional feature only provided by a full 3D FE model is the capability of performing a
linearized buckling analysis, which can be used for designing secondary structural elements,
such as the skin and web core thicknesses. It is important to include the sizing of secondary
components in the design process, because the distribution of the associated structural mate-
rial has a significant influence on the nonstructural mass, which in turn affects the dynamic
behavior of the blade by changing its natural frequencies.
Prior to the FE analysis, an initial distribution of the core material and thickness for skin

and webs can be estimated by the following two step procedure, based on simplified design
formulas:

1. Choice of material. Appropriate stiffness properties for the core material are estimated
such that local buckling (or wrinkling) is avoided, as this may cause fractures in the
core or delamination. Following [39], this is accomplished by comparing the computed
extreme compressive stress to the following critical stress:

σadm,wrinkling = 0.5 3
√

GcoreEcoreEskin, (14)

where G and E denote the shear and Young’s moduli, respectively.
2. Thickness sizing. For the skin and web panels, the critical buckling stress σadm,buck and
shear τadm,buck are computed using the following equations:

σadm,buck = π2

tpanelb2
Kc

√
D11D22, (15a)

τadm,buck = π2

tpanelb2
Ks

4
√

D11D
3
22, (15b)

where tpanel is the skin or web panel thickness, b is the panel edge width, D11 and D22

are the diagonal components of the out-of-plane bending stiffness matrix of the sandwich
panels computed with classical laminate theory. Finally, Kc and Ks are buckling factors
accounting for several properties of a sandwich structure, like its ortotrophy, curvature
and out-of-plane shear flexibility, as well as for the way the longitudinal stress is dis-
tributed along the plate edge. For further details about the computation of the buckling
factors, see [40].
At several stations along the blade span, the skin core is sized by imposing the con-

straint λs ≥ 1, where λs is the skin buckling load factor, computed by solving the follow-
ing equation:

λs

(
σ

σadm,buck

)
+ λ2s

(
τ

τadm,buck

)2
= 1, (16)

which takes into account stress-shear interactions [41]. Similarly, the web core is sized
constraining λw ≥ 1, where λw is the solution of

λ2w

((
σ

σadm,buck

)2
+
(

τ

τadm,buck

)2)
= 1. (17)

Subsequently in the design process, at the fine verification level and similarly to the case
of the primary structural variables described in Sect. 2.2, the core thickness of a region where
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buckling occurs is increased by an amount proportional to the exceedance of the constraint
condition λ ≤ 1, where λ is the buckling eigenvalue associated with the applied load.
In the present implementation, the linear buckling analysis is performed using the loading

condition that results in the maximum tip deflection of the blade, as this results in severe
compressive loads on the suction side of the blade. Alternatively, loads associated with the
extreme values of compressive stresses at relevant sections could be identified from the load
envelope and used for the buckling analysis.

4 Applications and results

4.1 Baseline wind turbine

In this section, the performance of the developed multilevel optimization procedures is il-
lustrated with respect to a Class-IIIA 2MW HAWT with a 45 m rotor radius. The structural
layout of the blade is a stressed-shell configuration with single upper and lower spar caps
confined within two planar shear webs, normal to the maximum chord line. The primary
structural design parameters ps1 are defined as the common thickness of the two shear
webs, the common thickness of the upper and lower spar caps and the thickness of the
external blade shell. These quantities are represented by span-wise linear interpolations of
corresponding nodal unknowns located at η = 0, 0.01, 0.03, 0.10, 0.195, 0.20, 0.25, 0.4, 0.5,
0.6, 0.75, 0.8, 0.98, and 1, resulting in a total number of primary structural design parameters
equal to 53. A typical blade section is reported in Fig. 10.
The main blade structural components are reported in Table 1. The blade is made of

six different material types, whose mechanical properties are summarized in Table 2. Non-
structural masses are accounted for with both span-wise and chord-wise proportional quan-
tities. A first estimate of the secondary design parameters, represented by the skin core
thickness, is obtained using the preliminary design formulas described in Sect. 3.4.
The coarse minimum weight structural sizing is based on DLCs 1.2, 1.4, 1.5, 1.6, 1.7,

2.2, 2.3, and 6.1 [2]. The design constraints include: placement of the first and second blade
natural frequencies with at least 12% and 20% gaps, respectively, with the three-per-rev har-
monic, a maximum blade tip deflection of δtipadm = 5 m, max/min allowable stresses/strains
and fatigue constraints (see Eqs. (5a)–(5h)).
The frequency placement and max tip deflection constraints are active at convergence,

and thus the design is driven by the blade flap bending stiffness. In addition, fatigue con-
straints are active in the skin between 10 % and 40 % span, where the largest chords occur,
while constraints associated with stresses/strains are far from their respective limits. For this

Fig. 10 Primary structural design parameters on a typical section
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Table 1 Structural configuration

Component Starting section
(% span)

Ending section
(% span)

Material type

Skin 0 100 Stitched triaxial
−45/0/+45 fiberglass

Spar caps 3 97.8 Unidirectional fiberglass

Shear webs 10 97.8 Stitched biaxial
−45/+45 fiberglass

Trailing and leading
edge reinforcements

10 80 Unidirectional fiberglass

Skin core 10 97.8 T500 Foam

Web core 10 97.8 T400 Foam

Table 2 Material properties

Material type Longitudinal Young’s
modulus [MPa]

Transversal Young’s
modulus [MPa]

Shear modulus
[MPa]

Stitched triaxial
−45/0/+45 fiberglass

28,500 10,300 6400

Unidirectional fiberglass 38,200 8600 3500

Stitched biaxial
−45/+45 fiberglass

9700 9700 10,900

T500 foam 93 93 40

T400 foam 65 65 28

reason, static analyses performed at the fine level are limited to the loading condition that
results in the maximum tip deflection.
Two different 3D models are generated using either mid-thickness shell elements or solid

elements. For the shell model, the blade is discretized by isoparametric linear triangular
and quadrilateral elements with layered composite properties. The solid model is based on
isoparametric linear prismatic and hexahedral solid elements. For both models, the charac-
teristic element side lengths are about 5 cm. All loads are applied to the spar caps using
RBE3 elements.
At first, possible differences between the coarse-level model and the detailed 3D models

are investigated by performing modal, static, fatigue, and buckling analyses. Next, bounds
are updated for the constraints that fail verification, and the effects of loop closure on a
subsequent coarse-level iteration are illustrated.

4.2 First multilevel iteration

4.2.1 Modal analysis

Table 3 reports the first flap-wise and edge-wise blade natural frequencies obtained with the
3D mid-thickness shell, 3D solid, and beam Cp-Lambda/ANBA models. The associated
vibration modes are visualized in Fig. 11.
It is noted that the first flap-wise natural frequency agrees well for all models. On the

other hand, the matching is not as good for the edge-wise mode, since the frequency pre-
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Table 3 Comparison of the two
lowest blade natural frequencies Shell Solid Cp-Lambda/ANBA

ω1,flap [Hz] 0.8552 0.8533 0.8568

ω1,edge [Hz] 1.0120 1.0076 1.0560

Fig. 11 The two lowest blade vibration modes

dicted by the beammodel is about 4 % higher than the 3D ones. In the coarse-level optimiza-
tion, this frequency is constrained to have a 20 % margin with respect to the three-per-rev
harmonic, and the constraint is active at convergence. To account for this, the constraint
bound for this frequency is increased by 4 % for the next coarse-level design iteration.

4.2.2 Static analysis

A static analysis for the load case corresponding to the maximum blade deflection is con-
ducted next. A comparison of the flap- and edge-wise blade deflections obtained with the
beam and 3D FE models reveals that all agree very well within a 0.02 % margin.
On the other hand, as expected, the stress distribution shows much larger differences.

Figures 12(a) and 12(b) plot the span-wise distribution of maximum stresses in the fiber
direction of skin and caps, respectively.
Figure 13 shows the skin-wise distribution of the longitudinal stress at 10 % of blade

span, plotted as a function of the nondimensional coordinate 0≤ s ≤ 1. The importance of
3D effects in this blade region is particularly clear if one looks at the shell and solid models
stress distributions and compares them to the beam one.
Significant relative differences are apparent at the root region, and in particular at the be-

ginning of webs, leading and trailing edge reinforcements. The cause for these discrepancies
is due to the simultaneous presence of rapid transitions in the local geometry and a low skin
thickness. The latter exhibits a rapid variation in the first 10 % span, becoming only 1/20 of
the root thickness. The figures show that peaks arise exactly at the boundary region of the
spar caps and the transition of the skin core, a complex region illustrated in Fig. 14.
In summary, the investigation of static loading conditions clearly illustrates the need for a

detailed 3D FE analysis in order to obtain reliable estimates of the stress field over the whole
blade. While a beam model in general provides reasonable results for most of the blade span,
it is however unable to describe the detailed stress field at critical three dimensional and
rapidly varying regions.

4.2.3 Fatigue analysis

A fatigue analysis as described in Sect. 3.4 is performed using the mid-thickness shell
model. Results for the fatigue damage index evaluated according to the multiaxial criterion
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Fig. 12 Normalized maximum
stresses in fiber direction

of Eq. (6) at selected span-wise sections are illustrated in Fig. 15(a), along with comparable
results obtained on the beam model.
It appears that the detailed 3D mid-thickness shell model predicts a significant peak at

10 % span, violating the fatigue constraint. Similarly to the static analysis case, the peak is
grossly underestimated by the coarse-level beam model.
Figure 15(b) plots the fatigue damage parameter in the skin at the most critical region,

within a margin of 100 mm around 10 % span. Fatigue damage is computed at points dis-
tributed along the airfoil, and plotted as a function of the curvilinear coordinate s. Similarly
to the span-wise results, the 3D FE model predicts higher damage coefficients than the beam
model, while both indicate the trailing edge region (s = 0 and s = 1) of the blade as the most
exposed to fatigue.
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Fig. 13 Normalized stress in the
skin at the span-wise station
η = 0.10, vs. curvilinear
coordinate s

Fig. 14 Detail of the blade root:
(a) trailing edge transition,
(b) beginning of skin core,
(c) beginning of spar caps

4.2.4 Linear buckling analysis

Finally, a linearized buckling analysis of the 3D FE model is conducted by subjecting the
blade to the loading condition of maximum tip displacement.
The first two buckling modes are shown in Figs. 16(a) and 16(b). The first mode is local-

ized near the blade root, while the second at the maximum chord region. Only the first mode
is critical for the applied loading condition (λ ≤ 1), and the instability is caused by the high
compressive stresses that are generated around 10 % span.
To correct for this, the structural capacity at this region would need to be increased. This

can be done by using procedure (8a)–(8c), which would increase the skin core thickness.
However, it should be noted that the same region of the blade failed the verification of the
fatigue constraints. The update of the associated constraint bounds will induce, at the next
coarse-level optimization, a modification of the primary structural parameters that will also
induce a local strengthening of the structure. As a side effect, this might results in a sufficient
buckling resistance for the original core thickness. In light of this observation, it was decided
to avoid the update of the secondary design parameters, and wait for the result of the next
coarse design iteration.

4.3 Closure of multilevel optimization loop

The closure of the loop between the coarse-fine analyses and back is illustrated by per-
forming a second iteration. After the first iteration, the fine-level FE results identified the
following critical aspects:
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Fig. 15 Damage index at
selected verification points

– The natural frequency spacing constraint is violated, as the 3D model edge-wise fre-
quency is approximately 4 % lower than the one predicted by the coarse-level beam
model.

– Significant stress concentrations are present at the initiation sections of spar caps, shear
webs, and trailing and leading edge reinforcements, around 3 % and 10 % span.

– Fatigue constraints are violated at 10 % span due to the same stress concentrations, with
a fatigue damage index exceeding 1.8.

– The thickness of the blade skin core around 10 % span is not sufficient to resist local
buckling.

These results are used for tightening some of the constraint conditions for the next coarse
iteration, which become:

ω1,edge ≥ 1.04 · 1.20 · 3P, (18a)
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Fig. 16 Close-up view of first two buckling modes

d(ps ,D)10 %skin ≤ 1/1.8. (18b)

The first condition modifies the edge-wise frequency spacing constraint, while the second
corrects the fatigue condition at 10 % span. Since stress peaks do not exceed allowables, no
specific action is taken. For buckling, no action is taken in order to see if the strengthening
induced by the tighter fatigue constraint is capable of fixing the problem.
The geometrical changes caused by the updated constraints are illustrated in Figs. 17(a)

and 17(b).
The trailing edge reinforcement has been significantly increased. This change is driven

by the need for an increased edge-wise bending stiffness, required for the satisfaction of the
modified frequency constraint condition, and the fine 3D edge-wise frequency now satisfies
the 20 % margin with the three-per-rev harmonic.
The skin thickness in the critical region at 10 % span has been increased from 5 % to

10 % of the root thickness, so as to satisfy the more stringent fatigue constraint condition.
This has in turn increased the total blade mass by about 1.2 %.
The direct effect of increased skin thickness on the fatigue damage index computed on the

fine 3D model is illustrated in Fig. 18. The figure shows that the previous peak at 10 % span
is lowered to just below unity, indicating that the design now satisfies the fatigue requirement
at the fine level.
Furthermore, as illustrated in Fig. 19(a), the previously identified skin stress concen-

trations are lowered in the critical region. In particular, the skin thickness increase at
10 % span eliminates the stress peak at that same location, whereas the peak at 3 %
span, i.e., at the beginning of the spar caps, is only slightly reduced. Changes in the skin
geometry affect also the spar cap stresses, which are similarly lowered as illustrated in
Fig. 19(b).
Finally, the increased skin thickness has an indirect effect on the buckling capacity.

In fact, the lowest buckling eigenvalue is now increased from 0.8 to 2.08, implying that
the improved design exhibits sufficient buckling strength so that, in this particular case,
a skin core thickness increase by the secondary design loop proves not to be neces-
sary.
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Fig. 17 Normalized thicknesses
of blade components

Fig. 18 Damage index at
selected sections along blade
span
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Fig. 19 Normalized maximum
stresses in fiber direction

5 Conclusions

In this paper, we have presented a multilevel optimization method for wind turbine rotor
blades, that operates at different description levels to generate a cost-minimizing solution
satisfying a number of design requirements expressed as inequality constraints.
The highlights of the proposed approach can be summarized as follows:

– Determination of the complete load envelope, including fatigue loads, by multibody aero-
servo-elastic simulations conducted according to certification guidelines.

– Multidisciplinary optimization by iteration between a multibody model and cross sec-
tional 2D models, which provide the synthesis of fully populated stiffness matrices and
the computation of sectional stresses and strains.
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– Automatic generation of detailed 3D NURBS-based CAD model, accounting for all prin-
cipal structural components, using either shell (with or without offsets) or solid descrip-
tions.

– Automatic meshing of the models, including association of properties for anisotropic
composite layered materials and loading conditions from the multibody aero-servo-elastic
analyses.

– Complete reanalysis of the blade at the fine 3D FE description level, and verification of
the satisfaction of the design constraints, including buckling.

– Heuristic update of the design constraints, based on the results of the fine-level re-
analysis, and loop closure that enables successive coarse-level iterations until conver-
gence.

The procedure was demonstrated on a 2MW wind turbine. After a first coarse-level op-
timization, detailed stress and fatigue analyses conducted on the fine-level 3D model re-
vealed significant stress concentrations between the root and the maximum chord regions.
These effects were not captured by the coarse-level beam model, which is blind to highly
three-dimensional variations and abrupt changes in the stress field. Furthermore, the modal
analysis of the 3D model showed the violation of a frequency constraint condition, while
the buckling analysis highlighted the presence of skin instability under the maximum tip
deflection loading condition. By tightening the respective constraint bounds for the subse-
quent coarse-level iteration, it was shown that convergence can be obtained very rapidly by
iterating between the coarse and fine levels.
Although the skills of an experienced analyst is irreplaceable when conducting the de-

sign of complex engineering systems such as a wind turbine blade, the proposed highly au-
tomated design tools are believed to be able to streamline the design process and help in the
exploration of the design space, relieving the burden of the most complex and error-prone
tasks and allowing the user to focus on the understanding of the various design tradeoffs to
come to the best possible solution.
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