Technical University of Denmark

The 5 MW Deepwind Floating Offshore Vertical Wind Turbine Concept Design - Status And Perspective

Schmidt Paulsen, Uwe

Publication date: 2014

Link back to DTU Orbit

Citation (APA):

Schmidt Paulsen, U. (2014). The 5 MW Deepwind Floating Offshore Vertical Wind Turbine Concept Design -Status And Perspective European Wind Energy Association (EWEA). [Sound/Visual production (digital)]. European Wind Energy Conference & Exhibition 2014, Barcelona, Spain, 10/03/2014

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

The 5 MW Deepwind Floating Offshore Vertical Wind Turbine Concept Design -Status And Perspective

Uwe Schmidt Paulsen uwpa@dtu.dk

DTU Wind Energy Department of Wind Energy

Contents

- What is DeepWind
 - Motivation and Background
 - Concept
- Design Status
 - Design tools
 - Rotor
 - Floater
 - Generator and Bearing technology
 - Controls
- Conclusion

DeepWind

- A radical new design- aiming for better COE and a more reliable wind turbine
 - Few components-less failures at less cost
 - Pultrusion-less failures; cost approximately 30% of conventional blade
 - Operation not influenced by wind direction
 - New airfoil profiles available for better efficiency
 - Simple stall control with overspeed protection
- Rotating spar with high Aspect ratio-Less displacement than existing concepts
- No nacelle-low center of gravity high stability
- Upscaling potential
- Insensitive to wind turbulence

Vita L, Paulsen US, Pedersen TF, Madsen HA, Rasmussen F A Novel Floating Offshore Windturbine Concept in Proceedings of the European Wind Energy Conference (EWEC), Marseille, France, 2009

Vita L, Zhale F, Paulsen US Pedersen TF, Madsen HA, Rasmussen F. *Novel Concept For Floating Offshore Wind Turbines: Concept Description And Investigation Of Lift, Drag And Friction Acting On The Rotating Foundation* in Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering, June 6 Shanghai 2010 **OMAE2010-20357**

Larsen TJ, Madsen HA. On The Way To Reliable Aero-elastic Load Simulation On VAWT's. Proceedings of EWEA 2013 Wind Energy conference Vienna; 2013

Vita L Offshore floating vertical axis wind turbines with rotating platform Risø DTU, Roskilde, Denmark, PhD dissertation PhD 80, 2011

³DTU Wind Energy, Technical University of Denmark

Design suites(1)

- General FE model
- Wind
 - ✓ Atmospheric Turbulence
 - ✓ Shear
- Aerodynamics
 - ✓ Dynamic stall
 - ✓ Actuator Cylinder
- Hydrodynamics
 - ✓ Magnus force
 - ✓ Morrison forces
 - ✓ Friction
- Mooring lines
- Generator control

Bearing design-test rig

Airfoil development

9 DTU Wind Energy, Technical University of Denmark

Blade Design

Pultrusion:

Constant chord over length

Low manufacturing cost +

Structural strength for thin profiles -

Fiber Creel Preform Plates Pullers Saw

5 MW blade section, 1st baseline

Rotor shape:

.:. Structural stiffeners to improve strength in blade cross section

Gravity and centrifugal loads are important for VAWT rotor blade shape design Present design fully shape optimized

Blade shape optimization

"Pultrusion is one of the most cost-efficient composite manufacturing methods to produce constant cross sectional profiles at any length". DeepWind-from idea to 5 MW concept Energy Procedia (2014)

Pultrusion manufacturing

Baran I, Tutum CC, Hattel JH. The internal stress evaluation of the pultruded blades for a Darrieus wind turbine. Key Eng. Mat. 2013; 554-557: 2127-2137

Industrial joints solution

Courtesy of SSP Technology A/S Slim profile-----Joint-----Thick profile

Investigation of potential extreme load reduction for a two-bladed upwind turbine with partial pitch," Taeseong Kim, Torben J Larsen, and Anders Yde, Wind Energy, submitted 2013.

- Gravity stability: vertical distance between COG and BC
- If Rotation around COG and weak Pitch-Surge coupling : .:. T_{n5}=2Pi √(I₅₅+a₅₅/k₅₅)
- Avoid resonance
 - Tn> wave periods with significant energy contents
 - □ (I55 + a55) increase or decreasing k55

Floater

Safety system

Demonstrator testing blades hitting water

after

25 March 2014

Safety system

Idea from Demonstrator testing blades hitting water

Huge Rotor Inertia Slow rpm 0.6 rad/s

Max sinking depth to avoid mooring line twisting is 65 m

- ≈ 50 deg twist
- .:. To be verified

Results Blade shape-modified Troposkien shape

- Blade length ≈200 m
- Blade weight ≈ 45 T
- Less bending moments at blade root and predominantly tension

Results-Electrical system

Permanent Magnet

Radial Flux

Height x Dia ≈3m x 6m

Weight (core material) \approx 90 T

Access to electrical components through generator axis, or around rotor

Legend: ¹Permanent magnet ²Stator tooth ³Stator back iron ⁴Winding coil ⁵Rotor back iron

Results-Electrical system

Grid integration 4 quadrant inverter

All active turbine control via generator torque

2p damping with notch filter and PI controller

Results-power curve

Blue SS1 Red SS2 Green SS3

Results-pitch

Blue SS1 Red SS2 Green SS3

Results-roll Blue SS1 Red SS2 Green SS3 Roll [deg] 9 2[⊾]0 _____[m/s]

DTU Wind Energy, Technical University of Denmark

Results-moments

Conclusions

- Demonstration of a optimized rotor design with pultruded, sectionized GRP blades
- Aerodynamic stall control, a robust and simple electrical controls
- 2 Blades with 2/3 less weight than 1st baseline 5MW design, and Less bending moments in root, and tension during operation
- Potential for less costly light weight rotor
- Use of moderate thick airfoils of laminar flow family with smaller CD_0 and good C_P increase efficiency and increase structural rigidity
- Floater : successful design in harsh environment
- Industrial solutions available for joints, underwater generator and mooring system
- No show stopper- the concept can be developed further in an industrial optimization process
- COE/LCOE: DeepWind technology in a steep learning curve
- The 20 MW is far beyond current wind turbine sizes
- 25 DTU Wind Energy, Technical University of Denmark

Acknowledgement

The work is a result of the contributions within the DeepWind project which is supported by the European Commission, Grant 256769 FP7 Energy 2010- Future emerging technologies, and by the DeepWind beneficiaries:

DTU(DK), AAU(DK), TUDELFT(NL), TUTRENTO(I), DHI(DK), SINTEF(N), MARINTEK(N), MARIN(NL), NREL(USA), STATOIL(N), VESTAS(DK) and NENUPHAR(F).

Thank You for Attention

This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 256769

