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Preface
This PhD project is linked to the Danish research project REEL “Reproduction of European eel in Culture”
(1.10.2008 31.3.2010) and the EU FP7 project PRO EEL “Reproduction of European Eel: Towards a Self
sustained Aquaculture (1.4.2010 31.3.2013). Both of these projects are coordinated by J. Tomkiewicz, DTU
Aqua. In the PRO EEL project, the PhD contributes to tasks related to fertilisation experiments and
evaluation of gamete quality and furthermore to experiments on incubation and larval rearing techniques.
The research presented in this thesis was conducted between 2010 and 2013 and experimental work
carried out at the research facility of DTU Aqua at Lyksvad Eel Farm in the southern Jutland.

Prior to starting my PhD, I had the privilege to get hands on knowledge and insight into the research
ongoing in DTU Aqua with respect to induced reproduction and larval culture of European eel. Research
experience was obtained during a series of pilot experiments conducted in the DTU lead ROE III (Artificial
reproduction of European eel) and REEL projects. Integration in the national and international teamwork
including elaboration of proposals and reporting together with experimental research tasks has given me
five uttermost exiting years with a wide variety of experiences within practical aquaculture techniques as
well as basic research and application development.

The amount of unanswered questions, regarding the biology in this fascinating species have been an
inexhaustible source of motivation for this work, and results have only encouraged us to learn more and
seek answers to ever arising new questions. The project has given me a unique opportunity to work with a
wide group of aquaculture experts and scientists across Europe, and I greatly appreciate having had this
opportunity to develop and test ideas.
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Thesis summary
The European eel is a widely distributed fish species of economic and cultural importance. It inhabits both
coastal and freshwater systems, and is targeted by fisheries and treasured as a food item. Although eels are
reared in aquaculture, this industry relies solely upon wild caught juvenile glass eels that arrive to the
European coasts after a 6000 km journey from the Sargasso Sea, where they were hatched. The adolescent
eels start their long migration from the European continent back to their spawning area in the Sargasso Sea
in late autumn as sliver eels. As long as the eels are within the European continent, they are in an immature
stage, and they do not start migration and maturation until the silvering stage. This stage is however tightly
controlled by brain and pituitary hormones, preventing maturation of gonads remote from their natural
breeding area.

This hormonal inhibition of maturation is the main reason why it is difficult to reproduce European eel in
captivity. Although, attempted since 1930ies, utilizing maturational hormones primarily from other fish
species, we only recently succeeded in refining reproduction protocols that enable rich quantities of viable
gametes from this species. In view of these obstacles, the last decade’s research has shown substantial
progress. This PhD has contributed to this progress through new knowledge and development of
procedures for successful egg activation and fertilization as well as incubation and larvae culture.

My PhD work addressed biophysical determinants fundamental to producing healthy eggs and larvae. One
of my aims was to improve methods and results of in vitro fertilization. This research included
characterisation of sperm density, “optimal” sperm to egg ratios and gamete mixing. Eel gametes are
activated by salt water and incubated in a marine aquatic environment. In this regard, my aim was to
identify suited salinities and seawater sources, supporting a good embryonic development. Embryonic
development lasts two days from fertilization to hatch. During this time, as well as in early larval stages,
mortality is high. Here, my aim was to assess effects of temperature and microbial interference during
incubation and larval rearing on order to reduce this mortality in cultures.

The results have provided valuable new insights, contributing to progress of in vitro fertilization methods
and reduced mortality in egg and larval culture. Our fertilisation procedures initially applied spermatocrit as
a sperm quantification technique to standardise sperm:egg ratio. Although being a practical method, it
featured moderate precision. Spectrophotometry in contrast, showed high precision in addition to being a
fast and practical and subsequently supported experiments that identified optimal sperm:egg ratio. Egg
activation and swelling are among the processes often seen to fail in experiments. Activation salinity was
found to be a determinant of egg fertilisation, buoyancy, and egg size although egg size effects differed
among individual females. Fertilization percent was typically high in the range 30 and 40 psu, while rate of
un activated and dead eggs rose in higher salinities. Egg swelling could be optimized using certain artificial
salt types and impeded using others. During egg incubation, microbial interference was found to be a major
obstacle for hatch, rather caused by microbial activity than presence. Larval mortality was highly dependent
on whether antimicrobial conditions were bacteriostatic or bactericidal. This calls for future technology and
microbial management, e.g. by matured water integrated in RAS technology.

The results obtained through these studies have added to Danish progress within artificial reproduction in
European eel by improved fertilization protocols and identification of important parameters during the
early life stages. Such progress has led to present focus on eel larval culture and feeding, which has brought
attention to eel as a potential “new species” in aquaculture.
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Dansk resumé
Den europæiske ål er en vidt udbredt art af stor økonomisk og kulturel betydning. Den lever både i
ferskvand og kystnære havområder over hele Europa, og er en værdsat art både i fiskeriet og som fødevare.
Selvom ål opdrættes i akvakultur, er denne branche helt afhængig af vildfangede glasål. Glasålene fanges,
når de ankommer til de europæiske kyster efter en 6000 km lang rejse fra Sargassohavet, som er den
Europæiske åls gydeområde. Ålene starter deres lange vandring fra de europæiske kyster tilbage til dette
gydeområde som blankål om efteråret. Ålene kønsmodnes ikke så længe de er i Europa, men vil i den
tidlige modningsfase skifte farve fra gullig til sølvblank, hvilket indikerer begyndelsen af kønsmodningen og
den lange vandring. Udviklingen i blankålsstadiet er imidlertid kontrolleret af hormoner fra hjerne og
hypofyse, som sikrer, at udviklingen af sæd og rogn først finder sted, når de nærmer sig Sargassohavet.

Den naturlige hormonale kontrol af modningen er hovedårsagen til at det er vanskeligt at modne ål i
fangenskab. Selvom dette har været forsøgt siden midt i trediverne ved brug af hormoner primært fra fisk,
er det først for nylig lykkedes at udvikle og forbedre procedurer til kønsmodning ålene og derigennem opnå
levedygtige æg fra denne art. Set i lyset af de vanskeligheder, har vi i Danmark gjort bemærkelsesværdige
fremskridt indenfor det senest årti. Forskningen i dette PhD projekt har bidraget hertil gennem ny viden og
udvikling af procedurer inden for aktivering og befrugtning af æg samt inkubations og larvekultur.

Mit PhD adresserer fundamentale biofysiske parametre i dannelsen af sunde æg og larver og et af mine mål
har været at forbedre metoder og resultater af kunstig befrugtning. Dette har omfattet optimering ad sæd
kvantificeringsmetoder, sæd:æg ratio samt media til blanding af sæd og æg. Både æg og sæd aktiveres ved
kontakt med saltvand og æg inkuberes i et saltvandsmiljø. I den henseende var mit mål at sikre en egnet
saltholdighed og type af saltvand i befrugtningsprocedurer for at fremme af befrugtningssucces, ægkvalitet
og udviklingsevne. Fra åleægget befrugtes til fosteret er færdigudviklet og klækker, går der to dage. I
denne periode samt i det tidlige larvestadie er dødeligheden høj. Jeg undersøgte således også effekt af
temperatur og af det mikrobielle miljø i kultur af æg og larver for at reducere denne dødelighed i kulturer.

Denne forskning har bidraget positivt til udviklingen af bedre befrugtningsprocedurer og lavere dødelighed i
kultur af æg og larver. Hidtidige procedurer anvendte spermatokrit til måling af sædkoncentation og stan
dardisering af sæd:æg ratio. Metoden er praktisk, men viste sig ikke præcis. Omvendt fandt vi spektro
fotometer analyse præcis, praktisk og hurtig. Estimering af sædtæthed gennem spektrofotometri blev
derfor implementeret i forsøg, hvor optimal sæd:æg forhold til befrugtning blev bestemt i forsøg. Ægakti
vering og efterfølgende svulmning fejler ofte. Saltholdigheden viste sig at være afgørende for befrugtning,
flydeevne mens effekten på ægstørrelse varierede mellem hunner. Befrugtningsprocenter var høje i inter
vallet mellem 30 og 40 ‰, mens der var flere døde og uaktiverede æg ved højere saltholdigheder. Desuden
sås, at specifikke marine salttyper i aktiveringsvandet forbedrede ægaktiveringen, mens andre gav små æg.
Derudover viste forsøg, at bakteriebelæging på æg under inkubering reducerede klækning. Larveover
levelsen var afgørende afhængig af antibakteriel behandling. Disse resultater viser et behov for mikrobiel
kontrol i inkubering og larvekultur fx gennem anvendelse af recirkuleringssystemer og modnet vand.

Resultaterne af disse studier har bidraget til de fremskridt, vi har gjort i Danmark indenfor det seneste tiår
og har påvist nogle af de forhold, der er afgørende for befrugtningssucces og udviklingen af æg, fostre og
larver i europæisk ål. Dette er medvirkende til, at vi i dag fokuserer på larvekultur og fødeindtagelse, og
dermed i flere henseender kan karakterisere ål som en ”ny art” i akvakultur.

vii



Eggs of European eel in seawater, 36 psu, with buoyancy aided by osmolality of yolk and the clear oildroplet. Eggs on
this image are six hours old, counted from time of fertilization, and show various degrees of cell cleavage symmetry
reflecting the egg quality which is a focus area of this thesis. While the upper of the eggs features a regular cell
cleavage pattern with a gathered blastula, the lower eggs illustrate various degrees of irregular cleavages frequently
seen in in vitro fertilization studies. Photo by Sune Riis Sørensen using equipment funded by Elisabeth og Knud
Petersens Fond.
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Synthesis

1. Introduction

1.1 The European eel
Of thousands of fish species, eel
is one of those most familiar to
humans. It inhabits both marine
and freshwater habitats and is
even capable of migrating over
land in search for new
freshwater habitats. Besides
being a highly treasured food
item, this species’ close
connection to humans has
triggered curiosity and posed a
lot of questions regarding its life
cycle. An early question was why
eels with mature ovaries or
testes were never observed in
nature. Not surprisingly, this lead
to historical myths and in the
work History of Animals dating
back to 350 B.C. by Aristotle, eels
are described not to produce
eggs and not to be differentiated
into males and females like other animals. Cresswell wrote in 1883: Their propagation most likely occurs
buried in the earth and offspring emerges from muddy and wet soils. Today, we find it amusing to read,
however the level of detail given so early in history invoke great respect and furthermore illustrates the
intense curiosity and attention eel reproduction evoked at that time and still does today.

Occasional finds of peculiar looking organisms in the upwelling zone near the Messina strait in Italy became
the next clue to the eel life cycle. These leaf shaped organisms with a glassy transparent body were called
leptocephali and originally considered to be a separate species. In 1896, it was discovered, however that
these organisms were indeed a larval stage of the European eel (Grassi, 1896). Grassi gave a detailed
description of their morphology and furthermore achieved to culture wild caught leptocephali larvae until
they metamorphosed into glass eels. Grassi found it particularly easy to obtain leptochali from stomachs of
the ocean sunfish, Mola mola, and even managed to culture a few of these. Grassi forwarded the
hypothesis of the eel having deep sea spawning, likely in the Mediterranean. Leptocephali larvae were later
caught different places in the Atlantic Ocean and early in the 20th century, a Danish marine researcher
Johannes Schmidt, identified the Sargasso Sea as the spawning site for European eels by delimiting the
area, where the smallest larvae were recorded (Schmidt, 1912, 1923).

Figure 1. An old eel trap, Klitmøller Ålekiste, in northern Denmark which
dates back to 18th century. The eels are caught in limited numbers when
migrating as silver eels in Oct. to Dec. Bypassing the stream through the shed
floor enable safe collection. Females shown here were among those used in
this thesis. Photo Sune Riis Sørensen
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Finding the spawning site of European eel 6000 km away from European shores gave reasons why mature
eels were not observed in European waters (Ginneken and Maes, 2005). In the century following Schmidt’s
findings, intensive research gave a lot of exciting answers to eel biology questions, but certainly not to all
(Righton et al., 2012). The adult eels leave the European coasts during October to November (Fig. 1) around
new moon (Boëtius, 1967) and start their long migration to the Sargasso Sea and, as recently discovered,
most likely aided by sensing Earth’s magnetic field (Durif, 2013). This migration stage involves a set of
morphological changes, where the most obvious is the dorsal part becoming darker, the skin coloration on
flanks and abdomen changes from yellowish to silvery, the skin and mucus layers thicken, and the eyes
enlarge, all considered adaptations to oceanic life by decreasing visibility to predators and promoting ocean

navigation (Rousseau, 2009). During this silvering process also
the digestive tract degenerates and feeding ceases (Boëtius,
1967; Dollerup and Graver, 1985). Silver eels migrate
commonly at an age of 6 to 20, but in some cases they may be
up to 50 years (Poole and Reynolds, 1998). Eels can grow
surprisingly old and a report from Sweden, claims a specimen
to be 155 year old. It was introduced into a drinking well in
Brantevik, in southern Sweden in 1859, preventing e.g.
amphibians from polluting the drinking water. In 1962, the
well was emptied and the eel photographed (Fig. 2). The eel
was put back again, and followed at regular intervals until it
was found dead in august 2014 (Rosén 2014)

The maturation of gonads likely occurs during the migration to the Sargasso Sea (Dufour and Fontaine,
1985) and may partly be triggered by swimming (Righton et al., 2012). In swim trials, particular older eels
were found to start vitellogenesis and initiate oocyte development (Palstra, 2007), while this was less
pronounced in younger eels (van Ginneken, 2007). Maturation is controlled at the brain pituitary level. In
fish, a dual control system exists where gonadotropin release from the pituitary that initiate maturation, is
stimulated by the gonadotropin releasing hormone (GnRH), but inhibited by another hormone, dopamine
(Dufour, 2005). The European eel is unusual in the way that a dopamine inhibition sets in during silvering,
and arrests development at pre pubertal stage before the migration (Dufour et al., 2003; Vidal, 2004). For
gonadal maturation to occur, this dopamine inhibition has to cease, allowing release of gonadotropins and
subsequent synthesis of sex steroids (Dufour et al., 2003). When this occurs, synthesis and release of the
two gonadotropins luteinizing hormone (LH) and follicle stimulating hormone (FSH) eventually will
stimulate oogenesis and spermatogenesis in the ovaries and testis respectively. This pre pubertal
impediment to gonadal maturation is the primary reason for the difficulties experienced in artificial
reproduction in European eel and why natural spawning or even maturing eels have never been observed
near the European continent (Vidal, 2004).

Ovarian development can be induced in female eels by hormonal treatment with salmon or carp pituitary
extract (SPE, CPE) that contain gonadotropins. Injections are given weekly for 12 to 18 weeks until signs of
ripeness. By administration of 17, 20 dihydroxy 4 pregnen 3 one (DHP) shortly after last SPE treatment
final maturation is induced and ovulation occurs 12 to 14h after (Tomkiewicz, 2012). Maturation in male
eels is shorter and 5 to 7 weeks of weekly treatments with human chorionic gonadotropin induces
spermiation (Tomkiewicz, 2012). This can be done using captive reared eels as well as wild caught

Figure 2. European eel claimed to be 155
year old living in a drinking well in Brantevik,
in southern Sweden from 1859 to 2014
(Rosén 2014). Photo: Björn Flyckt in
Nordberg et al 1985
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(Mordenti et al., 2013; Tomkiewicz, 2012). Eels not responding to treatment are common in reproductive
studies, and related to the endocrinology stages of the selected broodstock eels (Durif et al., 2006). Silver
eels that have initiated migration (J. Boëtius, 1967; Dufour and Fontaine, 1985) and those with the highest
condition factor, generally being related to large body size and high age, respond best to induced
maturation (Durif et al., 2006). It is hypothesised that the large variability observed in responsiveness to
both hormonally induced and naturally triggered maturation, e.g. swimming, is a natural trait among eels.
This variability is in nature assumed to account for the unpredictability of oceanic environment (Ginneken
and Maes, 2005; Durif et al., 2006).

1.2 Reproduction studies until now
Experimental eel reproduction research has a long history motivated by the curious reproduction biology of
this species as well as the potential for aquaculture eel using captive bred fry (Fig. 3). A French group of
scientist was the first to publish results on
induced maturation in male eels based on
maturation using urine from pregnant
women containing human chorion
gonadotropin (Boucher, 1934; Fontaine,
1936). Improved protocols for male eel
maturation was developed in the
following years (e.g. Boëtius, 1967;
Meske, 1973; Bieniarz, 1977). Maturing
female eels proved more difficult and
creativity flourished and e.g. organ
transplantation of pituitary glands from
both ox, swine, rats, garfish, plaice and
cod (Bruun et al., 1949). Maturation in
the females was studied by the Danish
scientists Inge and Jan Boëtius in the
1960’ies with the first production of
fertilised eggs (Boëtius, 1962). Later,
Japanese researcher further developed
methods resulting in successful
production of first larvae of Japanese eel
in 1974.

Figure 3. Time line showing major events in the progress of producing
larvae of European eel, Anguilla anguilla in captivity. Grey text indicates
milestones in Japanese eel, A. japonica reproduction studies.
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Another breakthrough in European eel was in the early 80’ies, where a Belorussian research team managed
to successfully rear a batch of larvae, reaching an age of 3½ days post hatch (Bezdenezhnykh et al., 1983;
Prokhorchik, 1986, 1987). This achievement became a milestone as no larvae of European eel were hatched
for the following 20 years. In 2000, Benedikte Pedersen, University of Copenhagen, successfully applied the
protocols developed for Japanese to
the European eel and succeeded in
producing larvae although limited
number and longevity i.e. 1.5 days
(Pedersen, 2004, 2003). A European
Fisheries Fond project in 2005 was
the onset of collaboration between
Danish industry and researchers at
DTU Aqua. This partnership
generated several batches of eel
larvae (Fig. 4) of which several lived
up to 5 days in 2007 (Tomkiewicz and
Jarlbæk, 2008) and succeeded in
mass production of larvae of which
some lived through the yolk sac
phase of ~12 days (Tomkiewicz,
2012). The following years more and frequent batches of larvae were hatched with increasing quality and
longevity (Fig. 5). Currently, research and development is ongoing on a European Commission FP7 project
PRO EEL focus on larval culture and up to 25 day old larvae have been reared during experiments. Within
the same period, several institutes achieved to mature European eels and in a single case to hatch hybrid
larvae of European eel and Short finned eel
(A. australis) living up to 5 days. However,
the Danish and Belorussian hatching of
European eel larvae were the only records until
very recently, where Italian researchers obtained
eggs and fertilization from both stripping and
natural spawning of European eel. Although the
fertilization percent are around 1.5 to 8 % , they
succeeded in obtaining 12 day old larvae (Mordenti et al.,
2013).

Timing of stripping is a crucial factor as matured and ovulated
eggs quickly become overripe and this well known
contributing factor to poor egg quality in aquaculture (Bromage et al., 1994). Natural spawning can produce
better egg quality as opposed to stripping, mainly due to that timing of stripping requires cautious
surveillance of oocyte development and ovulation (Miura et al., 2013; Nomura et al., 2013). Stripping of
gametes however, have been used during the Danish project work (Pedersen, 2004; Tomkiewicz and
Jarlbæk, 2008; Tomkiewicz, 2012) and with the increasing research based technology and practical
experience, better and better results are obtained with sometimes more than 300.000 eggs in a batch and

Figure 5. European eel larvae 14 days
post hatch. Photo Sune Riis Sørensen.

Figure 4. Newly hatched European eel larvae. The clear round oil droplet
clearly aids buoyancy. Photo Sune Riis Sørensen

4



close to 100% fertilization. Unlike natural spawning, stripping facilitates a wide range of small scale
experiments with controlled environmental parameters, and hence enables us to get important knowledge
on how to optimize the reproduction of European eel. Our current ability to produce frequent and large
volumes of viable gametes of European eel gives a unique opportunity to study aspects important to
successful European offspring production and larval rearing, in particular biophysical factors related to
activation and fertilization, incubation and larval culture conditions. Most of these aspects were hardly
known when my work started.

1.3 Gaps in knowledge
By the ability to overcome the natural inhibition of maturation in European eels and generate viable
gametes, the Danish project REEL enabled a historic opportunity for regular offspring production. As a
consequence, research focus shifted from gamete production to studies of gamete fertilisation capacity and
biophysical requirement of early life stages needed for culture of larvae. Such larval production opens for
new opportunities in aquaculture of this endangered species that presently rely on wild caught fry. The
current project PRO EEL to which my PhD relates, has as an aim to extend knowledge on factors influencing
the fertilisation process and egg quality as well as embryonic survival and development of European eel
larvae. This pioneering research is needed to progress offspring production, leading to frequent mass
hatching and enhanced survival throughout the yolk sac stages and hence enter the ultimate goal of PRO
EEL with feeding larvae. The research in this thesis addresses factors and processes related to activation,
fertilisation, embryogenesis and larval development in order to enhance insight in the biology of early life
stages and apply this knowledge for optimising and standardising hatchery protocols.

Particular challenges in breeding experiments include inconsistent results obtained in activation and
fertilization trials, embryonic development failure as well as high mortality during incubation and larval
culture. No documented protocol exist for optimal sperm:egg ratio and activation conditions for application

in standardised in vitro fertilisation
methods or culture conditions
leading to healthy embryonic and
larval culture. Advanced research
results on Japanese eel, Anguilla
japonica, being similar in many ways
to the European eel (Tsukamoto,
2009) can teach us a lot. Thus,
reproduction protocols applied in
European eel build on methods
developed by Japanese researchers
in recent decades. Japanese
protocols are however still not ideal
and many parameters differ among
the two species which calls for basic
research and technology specifically
for European eel. Since no European

Figure 6. Salinity profile of in the Sargasso Sea in the proposed spawning
area, including temperature contours. Data obtained from the Danish
Galathea expedition in 2007.
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eel spawners and eggs have been obtained from the Sargasso Sea (Tsukamoto et al., 2011), we do not
know, at which depth and temperature eggs prevail, or which temperature is optimal for development.
Japanese eel eggs and larvae seem to need higher temperatures ~24 C for optimal development than the
European eel ~21 C (H. Ohta et al., 1997; Ahn et al., 2012; Tomkiewicz and Jarlbæk, 2008; Tomkiewicz,
2012). Bonhommeau et al (2008) shows that the temperature increase in the Sargasso Sea spawning area
from 21.4 C in 1980ies to 22.0 C in 2000 (Bonhommeau et al., 2008) is correlated to the well known decline
in recruitment of European eel described by (Dekker, 2008). The influence of such changes on early life
stages can however best be assessed through experimental studies. Similarly, the salinity profile in the
Sargasso Sea has been recorded (Fig. 6), however, knowledge about buoyancy of the eggs is lacking as well
as the depth at which spawning occurs. The proposed spawning area is believed to be within a depth range
of 50 to 200 meters (Castonguay and McCleave, 1987), which entails salinities in the range 36 37 psu (Fig.
6), but, how variation in salinity affects in vitro activation, fertilization and incubation, we do not know.
Besides the questioned salinity and temperature conditions eggs and larvae develop in a unique microbial
environment in the oligotrophic Sargasso Sea (Li et al., 1992). Hatchery rearing likely entails a very different
microbial environment (Skjermo and Vadstein, 1999; Blancheton et al., 2013) and how this species will be
able to cope with the microbial environment in a hatchery setup is unexplored. These examples emphasise
the importance of studying these basic parameters to learn about eel early life history both for application
in conservation biology and as well as aquaculture technology development.
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2 Objectives of my PhD
Production of European eel larvae requires knowledge about the influence of physical and chemical
parameters on embryonic and larval development, including suitable temperature and salinity conditions,
as well as information on the potential role of microbial interference. The aim was to address these
parameters through a series of controlled experiments. A prerequisite for this work was the development
of standardised fertilisation protocols, including determination of e.g. sperm density and optimal
egg:sperm ratio. Such studies would contribute to improvement of reproductive output following gamete
production in hormonally matured European eels. Three key questions were posed:

Activation and fertilization –how can success be optimized? (Paper 1 and 2)
Determination of sperm density and quality is needed to optimise and standardize the mix of gametes in
fertilisation protocols. Furthermore, salinity and sea water composition can affect egg activation and
fertilization. The objective of this work was to address these variables and develop standardised fertilisation
protocols. In this context, methods to evaluate the outcome of egg activation and fertilization,
characterisation of egg quality are required. An aim was therefore also to identify egg quality characteristics
including information of early cell cleavage quality, size and buoyancy as well as proportions of activated,
unactivated, unripe and dead eggs for application as evaluation criteria. Specific objectives included to:

 Establish methods for accurate and practical quantification of sperm density
 Identify the optimal ratio of sperm to eggs for unaffected high fertilization
 Develop criteria to assess egg quality, and early embryonic development capacity
 Assess adequate salinity and sea water type for use in egg activation and fertilization protocols

Incubation conditions –how can egg quality be improved? (Paper 3, 4 and 5)
Successful incubation procedures require knowledge about the optimal range of temperature and salinity
conditions during the embryonic development as well as efficient water management systems to control
microbial interference. In this context, the objective was to evaluate effects of temperature and salinity
conditions on embryonic development, as well as effects of microbial communities on incubation success.
In addition, the experiments revealed an egg parasite unknown in eel, a syndinian dinoflagellate, and the
impact of this species on egg development success was investigated. Hence specific objectives included to:

 Evaluate effects of salinity and sea water type on incubation success
 Identify optimal temperature range for healthy embryonic development
 Assess the role of microbial interaction during incubation on embryonic viability and hatch success
 Describe the syndinian dinoflagellate and its potential effects on embryonic development

Larval culture –how can survival be enhanced? (Paper 3)
Oceanic pelagic larvae likely calls for distinct culture conditions that differ from standard rearing systems of
a hatchery. In this context, the objective was to identify parameters important for rearing technology in
early larval culture, including the microbial conditions and what parameters to address in suitable culture
systems. Specific objectives included to:

 Test effects of egg disinfection effects on larval survival
 Assess the effects of microbial interaction on yolk sac larvae
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3 Findings of my PhD
A frequent obstacle associated with captive breeding of fish in aquaculture is variable egg quality (Migaud
et al., 2013). Often low survival rates reduce offspring production compared to initial output of eggs prevail
(Bromage et al., 1994) and many external and environmental causes have been found, but no common link,
trait or molecular characteristics across teleost eggs have yet been identified (Migaud et al., 2013). A great
deal is known on salinity, temperature, microbial, and water quality effects on early life stages of many fish
species, however for the European eel equivalent knowledge does not exist.

In the pioneering work with reproduction in European eel, variability in quality among egg batches is
pronounced and although we strive towards stable rearing conditions a big batch of embryos may stop
living, while others batches continue embryonic development and hatch. Often, the maturational protocols
and variation in female characteristics and responsiveness are assumed to be the reason. Certainly, the
maturation process is still sub optimal and a great deal of improvement lies ahead, as e.g. pituitary extracts
(PE) used to induce maturation of females are only analogue to eel hormones or natural triggers. Even so, it
is major step forward that we can induce maturation by hormonal treatment and regularly obtain viable
gametes, however the further production of competent embryos and larvae needs insight in basic
requirements of early life stages in order to develop relevant hatchery technology.

3.1 Activation and fertilization –how can success be optimized? (Paper 1 and 2)
Summary: Spectrophotometry was found to be a precise proxy for sperm density, and supported the
identification of 2.5×104 sperm cells per egg as being optimal for fertilization protocols. Salinity was
found to be a parameter of key importance in egg activation and increase of egg size, however egg
batches from individual females proved highly variable regarding tolerance and optimum. A positive
relationship was found between activation salinity and neutral buoyancy of eggs, and the salinity
independent neutral buoyancy was estimated to 33.8 psu. Artificial sea water was found capable of
successful activation and a group of salt types supported large perivitelline space (PVS) formation in
contrast to others. These salt types did not differ with respect to fertilization or buoyancy
characteristics, besides NaCl treatments being unsuited for activation and fertilization.

Dry fertilisation of stripped eggs is often practiced in captive fish breeding, i.e. stripping fresh semen over
the eggs, mixing gametes and adding water. Although, this procedure may be adequate in practical
hatchery procedures, such methods may cause variability in fertilization success and zygote development.
This is undesirable when the eggs are intended for subsequent controlled experiments to identify effects of
external factors, imposing on the fertilised eggs. Therefore, an initial task was to standardise and optimise
fertilisation procedures, ensuring homogenous gamete mixtures for my further studies.

Homogeneous mixing of gametes and standardization of fertilisation procedures
Unlike many other fishes, European eel females contain no ovarian fluid (Pedersen, 2004, 2003; Tomkiewicz
and Jarlbæk, 2008). Therefore, adequate mixing of gametes is difficult, and accordingly, diluents for sperm
storage and mixing of eggs and sperm have been developed for Japanese eels (Hiromi Ohta et al., 1997).
Similarly, artificial seminal plasma, mimicking that of high quality males, has been formulated for safe
sperm cryopreservation of European eel (Asturiano et al., 2004). This artificial seminal plasma for European
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eel was initially tested for applicability as a diluent for use in the development of improved fertilisation
protocols.

From each of six females, a specific amount of eggs
divided into two portions (three replicates) were
fertilised by adding semen either in pure or diluted
form. Results showed the diluted semen led to a
higher and less variable fertilisation success (Fig.
7). The implementation of this artificial sperm
plasma as sperm diluent has been instrumental for
the development of standardised, optimised
fertilisation procedures and the following small
scale fertilization experiment. A main advantage is
that it ensures a homogenous mixture of gametes
and thus representative sampling of gametes and
low variation due to uniform egg sperm contact
conditions. Furthermore, it facilitated a
preparation of sperm prior to experiments,
considering standardisation of sperm concen
tration. Additional positive effects of this medium
include sperm immobilisation (Paper 2).

Sperm density
Identification of precise sperm quantification techniques was another aim in the development of
fertilization procedures that targeted establishment of a constant sperm to egg ratio in small and large
scale experiments. Sperm to egg ratio is known to be important in fish species with external fertilisation
(Butts et al., 2009). Initially, I estimated and applied the sperm concentration using the spermatocrit, a
method that has proven useful as a proxy for sperm density, e.g. in cod, Gadus morhua, (Trippel, 2003).

An evaluation of the accuracy of spermatocrit as well as different alternative methods was conducted in
order to improve and document the sperm to egg ratio for a standardised fertilization protocol (Paper 1).
The results obtained on the accuracy of spermatocrit for quantification of sperm cells showed high variation
between replicates and samples, and relatively low precision of the method. Computer Assisted Sperm
Analysis, CASA, using multiple frames/captures and flowcytometry, all providing automated quantification
of sperm density were similar in precision to manual sperm counts, using manual hemocytometer. The
latter is known for its accuracy and precision and thus useful for evaluation, although being time consuming
and demanding with regard to operator training (Paper 1). However, constraints in equipment cost and
level of operator training rendered CASA and flowcytometry suboptimal, and instead applicability of
spectrophotometry was tested (Paper 2). A spectrophotometer measures light absorbance at chosen
wavelengths, and the wavelength best for density approximation corresponds to the highest light
absorption from sperm samples due to e.g. cell proteins and lipids. Sperm density was thus approximated
using spectrophotometry and the resulting species specific regression analysis revealed a significant

Figure 7. Fertilisation success of eggs of European eel,
Anguilla anguilla, fertilised using directly added semen
(black bars) and semen diluted in sperm extender P1
(Asturiano et al., 2004) from six different females. Error
bars represent STD. (Sørensen et al. unpubl data).
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positive relationship between sperm density and absorbance at 350 nm (R2 = 0.94, p < 0.001, y =
2.273e+10x 2.805e+10) (Paper 2).

Sperm to egg ratio and time before activation
Identification of the minimum amount of sperm needed for high fertilization success, makes it possible to
eliminate excess sperm that potentially can serve as substrate for microbial growth (Rosenthal et al., 1988)
or increase oxygen consumption from sperm activation (Alavi et al., 2008). We tested the effect of 12
different sperm densities ranging from 1.3×103 to 1.0×106 sperm cells per egg as well as the time lag from
stripping to activation on egg fertilisation success.

The results showed that 2.5×104 sperm cells per egg would be sufficient to sustain a high level of
fertilization, yet being the lowest number avoiding excess sperm. The ratio was based on dilution of 1:99 in
P1 medium as described above and addition of 1ml diluted sperm per 2 gram eggs (Paper 2). Furthermore
activation within 10 minutes was found needed in order to avoid a negative impact on fertilization success.

Assessment of fertilization success
Fertilization success is a simple and valid early predictor of egg quality (Bobe and Labbé, 2010). Although,
fertilization rate is an important measure, it does not include information about specific characteristics of
neither fertilised nor unfertilised eggs. This information was captured through the development of a
categorisation system based on specific characteristics of eggs sampled after fertilisation (Paper 4). This
included both information about cleavage pattern of fertilised eggs and features pertaining to unfertilised
eggs that would otherwise be lost. Such patterns may however possess valuable information identifying e.g.

repeated patterns pertaining to
females or treatments.

This categorisation system (Fig.
8), made it possible to evaluate
results of procedures and
treatments in experiments
considering the substantial
female impact in eel. The system
included tree sub categories of
fertilized eggs distinguished by
the cell cleavage pattern, which
is similar to criteria described for
e.g. cod and turbot (Kjørsvik,
1994; Kjørsvik et al., 2003).

The categorisation of eggs was
made 3 to 6 h post activation.
The fertilisation percentage was
as the proportion of overall
fertilized eggs, T 1. The
categorisation system proved

Figure 8. Categorisation of European eel, Anguilla anguilla, eggs fertilized in
vitro and incubated at 20 ± 0.5 C. Five main types of eggs are displayed based
on morphology and buoyancy at 35 psu, 3 6 h post fertilization. T 1 are
fertilized eggs and subdivided into three sub categorisations based on cell
cleavage pattern: T 1a: regular and symmetric; T 1ab: mostly regular with
minor irregularities; T 1b: irregular.
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applicable to every egg batch stripped and useful in evaluation of small scale experiment (Paper 4) as well
as in the general egg monitoring program during full scale experiments in project REEL and EU project PRO
EEL.

Salt dependent activation
The Danish reproduction studies during 2005 to 2007
found that, although fertilization of eggs was possible,
formation of the characteristic large perivitelline space
was often deficient, using artificial sea water i.e. Tropic
Marin Sea Salt (Tomkiewicz and Jarlbæk, 2008). Such
deficiency of PVS affects embryonic development that in
the later stage curl up and die without the ability to hatch
(Tomkiewicz and Jarlbæk, 2008) (Fig.9). Application of
natural sea water for activation in fertilisation protocols
enhanced successful swelling and subsequent hatch.
Natural sea water, however, may vary in salinity and
quality including microbial communities and in fact,
activation salinity may in itself affect swelling as shown in
the long rough dab, Hippoglossoides platessoides
limandoides (Lønning and Davenport, 1980).

My aim was to investigate if different artificial sea salt types would be applicable and useful to improve and
standardise activation conditions. I compared natural sea water with artificial salt water using different salt
types that differ with respect to metal ions and elements (Atkinson and Bingman, 1997) (Paper 4). Many of
such metal ions are known to affect the activation process and adequate swelling might still be attained
using the proper salt. Therefore, a series of experiments that focussed on effects of different salt types (Fig.
10) was conducted (Paper 4). At same time tolerance of eggs to differences in salinities in the activation
medium was tested. In fertilisation procedures addition of different components in particular the sperm
diluent affects the final activation salinity. If this this is not considered, the ambient salinity during
activation can vary considerably (Paper 4).

The results showed that the swelling depended on both
salinity and salt type, however with substantial variation
among females. The degree of swelling and resulting egg
size was inconsistent among females, and activation
occurred over the entire range of salinities. Also the
maximum size obtained differed among females with egg
sizes up to ~1642 ± 8 μm at 35ppt (Paper 4). In contract
fertilisation success, depended on salinity with highest
fertilisation rates in the range 30 40 psu. In relation to
salt type, two groups were distinguished; one giving
large eggs with a large PVS and another consistently
yielding small egg (Paper 4).

Figure 10. Sea salt types tested for activation of
gametes of European eel. From the top left: Tropic
Marine, Instant Ocean and from bottom left: Red
Sea Pro, Red Sea, Reef Crystal, and Tetra Marine

Figure 9. European eel egg with an insufficient PVS.
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Egg size and fertilization obtained using natural sea water was more variable that those obtained from
activation by several artificial sea salts. Two artificial salt types, Red Sea (RS) and Reef Crystal (RC)
consistently produced large eggs with high fertilization rate. These salts together with natural sea water,
Red Seapro and Tropic Marin sea salt formed the group leading to large eggs. The corresponding yolk
diameter did not change, probably due to impermeablity of the vitelline membrane during early embryonic
development (Paper 4).

The results are discussed in view of mechanisms potentially affecting activation and fertilization of fish eggs
and evoking such size differences. Factors that may contribute are passive influx via protein channels,
aquaporins, that may be inhibited by certain free metal ions (Haddoub, 2009), enzymatic cleavage of
glycoproteins, hyosophorins, released during the cortical reaction, which similarly can be inhibited by
various free di and trivalent metal ions (Eddy, 1983) as well as unsuitable salinities (Finn, 2007). Many of
these inhibiting elements occur in the artificial sea salts used (Atkinson and Bingman, 1997; Hovanec and
Coshland, 2004). In general, the observed egg chorion diameters were substantially larger than described in
several earlier studies of European eel (Boëtius, 1967; Pedersen, 2003, 2004)(Paper 4). Furthermore, the
regular cleaved eggs were significant larger than the eggs with irregularities in cleavage pattern. In total,
14% of fertilized eggs from 10 females showed egg chorion diameters ranging from 1600 μm to 1785 μm,
which compare to the size range reported for wild caught Japanese eel eggs (Tsukamoto et al., 2011;
Yoshinaga et al., 2011). In addition, egg buoyancy at the blastula stage measured 7 HPF was positively
related to the activation salinity. The salinity independent neutral buoyancy was estimated to be 33.8 psu ~
1.0238 g×ml 1 (20 C),

3.2 Incubation conditions –how can egg quality be improved? (Paper 3, 4 and 5)
Summary: At 30 HPF, a positive relationship between activation salinity in the range 30 to 40 psu and
buoyancy of embryos was observed, while the activation salinity at 50 psu had a strong negative
effect. Similarly, buoyancy of egg activated by the salt types leading to small eggs differed from the
group with large eggs, with the small eggs reaching neutral buoyancy at higher salinities. Egg
associated microbial activity had a major negative impact on hatch success and egg disinfection
proved an efficient method to reduce microbial coverage on egg chorion surface. Temperature
experiments using 16, 20 and 24°C were conducted, however analyses are still ongoing.

Salinity and salt type effects during incubation
The neutral buoyancy measured at the stage of embryo formation following incubation in different
salinities, gives an indication of not only the ability for the eggs to maintain buoyancy during incubation but
also their tolerance for unsuitable salinities. The ability to maintain buoyant is a prerequisite for hatching
(Unuma et al., 2005) and we know that embryo formation is a milestone during the embryonic
development in European eel often not possible to achieve in bad quality eggs (Tomkiewicz et al 2012).

The test of buoyancy 30 HPF show a positive relationship between activation salinity and buoyancy, similar
to the one observed 7 HPF. However unlike 7HPF, the high salinity (50 psu) attains a clear deviation from
the main pattern observed within 30 and 40 psu treatments. Hence this latter range probably supports the
salinity limits enabling maintained buoyancy when the embryo is formed. In relation to this is a Japanese
study showing egg hatch and survival to decrease in salinity above 42 psu (Okamura et al., 2007) supporting
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negative effect at such high salinities. With regards to the buoyancy of eggs incubated in various salt types,
the group of salt types supporting big eggs show an evenly and steady buoyancy which is comparable to the
corresponding pattern observed at 7HPF. The two salt types resulting in small eggs do however attain their
neutral buoyancy at a significantly higher salinity. The two treatments based on pure NaCl lost buoyancy
completely. Since the salt types supporting eggs able to maintain a stable buoyancy until embryo formation
is coinciding with the salt types resulting in a proper activation and swelling of eggs, it seem best suited for
activation and incubation of eel eggs.

Temperature effects on embryology and survival
Natural temperature profiles in the Sargasso Sea indicate that temperatures in the proposed spawning area
and depth is about 20 21 degrees (Castonguay and McCleave, 1987; Munk et al., 2010). A first experiment
(in collaboration with Elin Kjørsvik, NTNU, integrated in a master thesis) tested embryonic development and
hatch at three temperatures (16, 20, and 24 C) in triplicate 5 L conical cylinders in a water bath (Davidsen,
2012). Larvae were hatched from all three
temperatures, but survival was highest at 20 C.
The differences in embryonic development time
are shown in Fig. 11 (Davidsen, 2012). In the
lower panel of Fig. 11, these data in day
degrees are merged with data from a similar
study conducted in Japanese eel, showing that
the embryonic development in the two species
is alike.

A second series of experiments also in
collaboration with Elin Kjørsvik, NTNU, focused
on embryonic development, mortality, hatch
rates and larval sizes. Egg batches from
different females were incubated at 12, 16, 20,
and 24 C. Sample and data analysis is in the
final phase and a manuscript is being drafted
(Additional papers 1). These results will provide
useful information regarding optimal rearing
temperature and developmental constraints
during embryology and the early yolk sac stage.
Studies on the Japanese eel showed failure to
hatch at 16 C and 31 C. Results therefore
indicate a lower temperature tolerance in
European eel compared to the Japanese eel.
Preliminary data shows that a temperature
about 20 21 degrees used in the different
studies of this thesis is close to the optimum for
European eel.

Figure 11 Upper graph: Temperature dependent development
time to reach successive embryonic stages of European eel A.
anguilla at 16, 20 and 24 C. Y axis is embryonic stages.
Lower graph: Same data in degree days merged and redrawn
with results from Japanese eel, A. japonica at 16, 19, 22, 25,
28, and 31 C at where 16 and 31 C did not hatch. Data
redrawn from Davidsen (2012) and Ahn et al., (2012).
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Microbial interference during incubation
Microbial induced mortality is a well known factor in aquaculture (Attramadal et al., 2012b) and one of the
main causes to mortality and suboptimal development during early life stages (Skjermo and Vadstein,
1999). Fish eggs are usually spawned into an aquatic environment full of pathogens (Swain and Nayak,
2009; Vadstein et al., 2012). During the embryonic phase or incubation, the chorion provides protection
against direct contact with the microbial environment (Laale, 1980; Finn, 2007), however microbial activity
on the egg chorion surface tends to impede embryonic development (Salvesen and Vadstein, 1995). Effects
possible include insufficient gas exchange and waste product secretion across the chorion from the
perivitelline fluid (Salvesen et al., 1997).

In European eel, the embryonic stage lasts only 48 h at 20 C, after which the larvae hatch in a fairly
undeveloped state (Fig. 12). Effects of microbial interference on embryonic survivorship and larval hatch
were studied in detail using different levels of microbial control and egg disinfection (Paper 3). Microbial
activity more halved the hatch success. This impact was evident from microbial control in merely the last
half part of the incubation period. The observed magnitude of improvement, using antibiotic impediment of
microbial activity, indicates that this phase of the embryonic development period is the most vulnerable.
The degree to which different antibiotic treatments were able to restrain microbial activity was assessed by
measuring growth rates of egg associated bacteria within these treatments. Some antibiotics proved
bacteriostatic and some bactericidal, however no difference in hatch was observed between groups.

Egg surface disinfection tests did
not show a relationship between
the extent of microbial coverage
and hatch rate. The physical
effects caused by bacterial colony
coverage had minor impact
compared to microbial activity on
the chorion surface. This
indicates that eggs tolerate
bacterial adhesion, while specific
bacterial activity is more
important.

Disinfection agents are known to
differ in efficiency among species and stage at which eggs are treated (Salvesen and Vadstein, 1995; Bergh
and Jelmert, 1996; Salvesen et al., 1997). For eel eggs, hydrogen peroxide efficiently removed bacterial
coverage on the egg chorion surface and featured good hatch success (Paper 3).

Thus, assessment of microbial growth and impediment from antibiotic on egg associated microbiota
indicated that microbial activity rather than physical coverage led to reduced hatch success. We therefore
consider surface disinfection in combination with a controlled microbial environment to be of major
importance for future egg incubation.

Figure 12. The incubation period of European eel, Anguilla anguilla at 20 C
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A new eel parasite
During these experiments, I unexpectedly discovered an endoparasite associated with the eggs and larvae,
potentially an Ichthyodinium species that in some species can be of concern for larvae production
(Buchmann, 2013). In order to identify the species, infected eggs were sampled and furthermore, a test was
made to investigate the infection pathway, i.e. whether this organism was associated with the environment
in the hatchery or of maternal origin. Furthermore, occurrence in specific egg batches was registered along
with overall hatch success. This study became the first evidence that European eel host a syndinian
dinoflagellate Ichthyodinium,most likely I. chabelardi (Hollande & Cachon, 1952).

The parasite appeared ~15 HPF and prevailed during embryonic development. This tiny organism is
positioned on the surface of the vitelline membrane with sizes ranging from 5 to 100 μm. Parasites isolated
from sampled eggs were analysed using small subunit ribosomal RNA, which confirmed that the organism
was an Ichthyodinium species. The inclusion of several GenBank derived sequences of environmental genes
revealed that the parasite Ichthyodinium sp. has a cosmopolitan distribution.

Prevalence in the investigated egg batches seemed not to coincide with poor hatch. Lethal effect following
proliferation of this parasite described from a few fish species was not observed neither in eggs nor larvae.
In this light, European eel does not appear to be seriously affected by the presence of Ichthyodinium. Tests
to investigate the infection pathway showed no difference in prevalence between sterile and normal
stripped fertilized eggs, which indicates a maternally transferred pathway.

These first results indicate that this parasite does not impede captive breeding of European eel. Following
inspection of eggs has revealed the parasite to be present in egg batches originating from domestic as well
as wild broodstock. Our results suggest that Ichthyodinium is a naturally occurring parasite in eel, and likely
present also the Sargasso Sea.

3.3 Larval culture –how can survival be enhanced? (Paper 3)
Summary: Disinfection of late egg stages at 25 HPF improved the survival of yolk sac larvae. Microbial
activity had a profound impact on larval survival and bactericidal rearing conditions showed higher
survival than merely bacteriostatic conditions. Microbial management is concluded vital for the
success of larval rearing.

Effects of egg disinfection on yolk sac larvae survival.
Effects of microbial coverage on the egg surface are known to influence survival in fish eggs (Bergh et al.,
1992; Morrison et al., 1999), however egg disinfection is often an effective method to reduce mortality and
increase viability of hatched larvae, and it may even improve performance of less good quality eggs
(Salvesen et al., 1997).

In the present studies, specific egg surface disinfection treatments during the last half of the incubation
period significantly improved survival of yolk sac larvae, while others were inadequate or inefficient (Paper
3). Such improved larval survival agrees with several other studies on marine species (Bergh and Jelmert,
1996; Overton et al., 2010; Salvesen and Vadstein, 1995), and surface disinfection of eggs may be a
beneficial procedure to adopt in breeding protocols for European eel. However, re colonisation after

15



disinfections of eggs will occur and such treatments need to be accompanied by adequate water
management procedures. This will be further discussed in Section 4 Perspectives.

Microbial activity during yolk sac stages
Upon hatch, larvae are equipped with a maternally transferred and mainly passive immune system (Swain
and Nayak, 2009; Magnadottir, 2010) and the larval immune system will gradually develop as it moves from
internal to external feeding. However, the degree to which the immune system is expressed differs and
microbial interference in the oligotrophic Sargasso Sea will probably be substantially lower than what they
experience in our aquaculture facilities. To what extent European eel larvae are capable of coping with this
unnatural microbial environment of a hatchery is as yet unexplored, but needs to be addressed as it
prerequisite for engineering a rearing system suitable for larval production of this species in captivity. We
addressed the bacterial impact on larvae by application of various antibiotic treatments. Larval survival was
evaluated, considering the antibiotic treatment’s capability to restrain microbial growth.

The study showed that larval survival was significantly improved by impeding microbial activity during the
last half of incubation and further during the larval yolk sac growth phase. Results were divided into three
groups:

1: No reduction in microbial growth, resulting in high larval mortality
2: Bacteriostatic conditions, resulting in intermediate larval survival
3: Bactericidal conditions, resulting in high larval survival

All together, these finding indicate either high amounts of pathogens in the environment, high sensitivity of
European eel larvae, or that the eel larvae possess a specialised immune response adapted to the oceanic
environment of the oligotrophic Sargasso Sea. The latter hypothesis seems to be supported by studies on
Japanese eel comprising both wild caught and captive reared larvae (Suzuki and Otake, 2000; Kawabe et al.,
2012). They found a special immune adaptation in early eel larval stages. Although the larvae lack spleen
and lymphoid tissue of the kidney, their thymus was well developed and lectin producing club cells
appeared late in the yolk sac stage and with an exceptional high production of lectins (Suzuki and Otake,
2000; Kawabe et al., 2012). Lectins are known for they ability to act in recognition and neutralization of
pathogens (Magnadottir et al., 2005). However, these may be rather specific towards pathogens (Cambi et
al., 2005) which may relate to high sensitivity observed in yolk sac larvae reared in our hatchery.

These observations of larvae kept in hatchery water thus resemble often described effects of unsuitable
microbial rearing conditions and can likely be greatly improved by implementing well documented
techniques i.e. recirculation techniques, RAS, known to create increased stability (Attramadal et al., 2012b)
and in particular in combination with microbial management where selection for a matured microbial
community is pursued (Skjermo and Vadstein, 1999).
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4 Perspectives
Within recent years and during the period of my PhD, our insight and capabilities, producing multiple and
large batches of viable larvae have taken a major leap forward and has reached a state, where the
challenges in larval culture, we experience, are similar to those often faced for new species in aquaculture.
Less than a decade ago very few fertilization experiments had been successful, and the most progressed
larval production was that of Prokhorchik and Bezdenezhnykh and their Belorussian research group, which
in the mid 1980s makes the famous 3½ days old larvae of European eel (Bezdenezhnykh et al., 1983;
Prokhorchik, 1987). Today, we have in the DTU lead research projects, multiple batches of larvae with
longevity about 20 days post hatch, viable embryos are shipped by car or airplane for culture experiments
in collaborator’s labs, and feeding trials are ongoing. All this, I feel privileged to have been part of.

My PhD has addressed many of the obstacles we face in obtaining high quantities of viable European eel
larvae. Although the female maturation protocol and timing of stripping is of pivotal importance to gamete
quality, working with different parameters that influence gametes after stripping proved beneficial to
enhance larvae production. Within these studies, the research I formed, developing standardised
techniques for gamete activation and fertilisation as well as categorisation of egg quality to evaluate
experiments, improved production of viable embryo and contributed to standardised future reproduction
protocols in European eel.

With regard to salinity conditions for application in protocols for in vitro fertilization, our results in
combination with reported effects on Japanese eel larvae (Okamoto et al., 2009), calls for awareness of
conditions during activation. Although the salinity range tested, spans much wider than the range found in
the Sargasso Sea, such salinity
deviations are not unrealistic in
small scale experiments, where
e.g. evaporation from test
beakers or mixing of media in
small quanta can invoke critical
salinity deviations.

Our results in relation to
increased standardization and
stability among fertilizations,
using artificial salt water
activation and fertilisation
medium, have advantages given
that the right salt mix is applied.
In particular, Red Sea and Reef
Crystal sea salts mixes seem to
have good activation properties
and consistently formed large egg
chorion diameters and PVS. These
results may prove important in
future fertilisation protocols,

Figure 13: Scenario illustrating the difference in formation of perivitelline
space (PVS) in European eel Anguilla anguilla and results for larval hatch that
is accomplished through enzymatic activities and larval boxing to break the
chorion. A: Eggs with weakly developed PVS and impeded hatch. B: big PVS
and thus free movement of embryo to break through the chorion.

17



addressing specifically the frequently observed failure in egg swelling that may impair successful hatch. The
lack of ability to expand the PVS, pertaining to e.g. salt types IO and TE, is observed to impede embryo
movement. Consequently, the embryos are incapable of normal vigorous movements seen in relation to

hatch, when repeated “boxing” motion is exerted on the chorion (Fig. 13),
which in combination with a thick and elastic chorion may lead to hatching
failure.

In contrast, properly swelling of eel eggs appeared to prompt a thin, crisp
chorion. During egg activation, the cortical reaction induces egg swelling, but
also release chorion hardening proteins like alveolin which together with e.g.
Ca2+ hardens the chorion (Masuda et al., 1991; Shibata et al., 2000). Such lack
of hardening may well be part of the reason why small eggs tend to possess a
rubber like chorion (Kjørsvik and Lønning, 1983). It has been demonstrated
that Japanese eel embryos produce and secrete hatching enzymes in the head
region at the time of hatch (Hiroi et al., 2004) (Fig. 14). This aids the hatching
through proteolytic perforation of the chorion, a process that may be
hampered by a thick and rubbery chorion, or the unhardened chorion
featuring a different protein structure (Robles et al., 2007). Further insight into
the effects of specific chemical components in salts on the activation, swelling
and chorion hardening as well as the action of hatching enzymes would
promote optimisation of these processes in culture.

Furthermore, the experimental results showed that biotic effects, in particular the interaction between
eggs and larvae and microbial communities in the ambient environment, needs to be addressed. Microbial
management is fundamental to future success establishing large scale feeding larval culture. The egg as
well as the larvae appeared to be highly susceptible to microbial interference in the experiments
performed.

The control of the microbial environment was found be of paramount importance to success in the
development of future incubation and larval culture systems and practices. The present results show that
surface disinfection of eggs may be beneficial in breeding protocols for European eel; however, we did not
yet investigate how re colonisation of eggs and larvae occurred after disinfections. Without proper
microbial management, re colonisation will likely appear fast by microbial adhesion (Hansen and Olafsen,
1989; Morrison et al., 1999). Bacteria produce adhesins, which acts to recognise surface receptors of host
tissue known as tissue and host tropism (Klemm, 2010). Re colonisation is thus likely to occur with a similar
microbial species composition as before disinfection and selection of opportunistic bacteria may even be
promoted. The results obtained, indicate which paths to follow in future incubation and larval culture
technology and protocols.

A drawback in any bactericidal treatment in egg and larval culture is that it inevitably leaves a virgin
environment of no stability or “Shelter effect” by slow growing bacteria (Salvesen and Vadstein, 1995;
Attramadal et al., 2012a; Blancheton et al., 2013). Therefore such treatments often lead to an intensive
growth of fast growing opportunist (Hess Erga et al., 2010), frequently pathogenic species (Wedekind et al.,
2010; Attramadal et al., 2012a). Disinfection could prove useful, if treatment of eggs is performed detached
from main water and filter systems and with the eggs being passed on to a matured water system. Such

Figure 14. Above a newly
hatched European eel
larvae and below picture
of Japanese eel larvae
close to hatch showing
the head region with
hatching enzymes stained
fluorescent green (Hiroi et
al 2004). Scale bar: 200
μm
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mature water systems can be promoted by controlled nutrient supply to select for slow growing K
strategists (Andrews and Harris, 1986; Skjermo and Vadstein, 1999; Vadstein et al., 2012) or microbial
communities can be selected by supporting or supplementing probiotic bacteria (Bjornsdottir et al., 2010).
Application of mature water technology not only has the potential to lower the negative microbial impact
on egg incubation and survival of hatched larvae, but likely also promote onset of a diverse and stabilizing
gut microbiota needed for feeding and on growing (Tinh et al., 2008). Such stable microbial communities in
culture contrast e.g. axenic or antibiotic controlled environments. Although yolk sac larvae may develop
adequately in a bacteria free environments, digestion will subsequent be hampered by lack of a bacterial
flora in the digestive system, when external feed intake starts (Hansen and Olafsen, 1999).

Although, occurrence of multi resistant bacteria is increasing, high quantities of antibiotics are still used in
today’s aquaculture (Cabello, 2006; Defoirdt et al., 2011). However, prophylactic use of antibiotics is not a
sustainable way to prevent negative microbial interaction, and evidence is increasing that aquaculture acts
as a vector for resistant bacteria to other ecosystems, affecting also humans (Cabello et al., 2013). Finding
sustainable and environmentally friendly alternatives is a necessity (De Schryver et al., 2012). Fortunately
for future production of eel larvae, the past two decades have given rise to a wide variety of alternatives to
counteract pathogenic bacteria, like probiotics, bacteriophages, PHB, disrupted quorum sensing and short
chain fatty acid growth inhibitors (Vine et al., 2006; Tinh et al., 2008; Defoirdt et al., 2011; De Schryver et
al., 2012). Besides these approaches, reducing virulence or growth rates of microbes using such agents,
much effort is also done to refine Recirculated Aquaculture Systems (RAS) to obtain stabile and controllable
microbial communities. The basic model of microbial control in such systems is described by Vadstein et al.
(1993), where control is obtained either through nonspecific reduction of bacteria by e.g. substrate
reduction thus lowering the carrying capacity, or by promoting conditions for beneficial bacteria i.e.
probiotic bacteria. Through such selection, a system gradually matures and becomes dominated by high
microbial species diversity of slow growing forms, creating a stable microbial community characterised by
K strategists as opposed to r strategists (Andrews and Harris, 1986; Skjermo et al., 1997).

Such a matured water system may be suited for future European eel larvi culture, but need also to consider
other specific requirements of eel embryos and larvae besides the microbial community management. This
includes e.g. the physical systems for supporting an efficient exchange of water without obvious negative
effects on larval longevity. A hypothetic RAS system for culture of eel larvae is outlined in Fig. 15. The filter
unit serves to remove organic material and contributes to lowering of the carrying capacity by using a pore
size gradient in which feed and faeces are retained in the first part (filter strainer) followed by a second
filter unit, i.e. a sand filter and finally a tangential pore filter at 0.2 0.8 μm. Water leaving the filter is
treated with Ozone or UV treatment to reduce build up of microbes in tubes leading to reservoir and
Biofilter.
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The choice of UV or ozone would need dedicated tests similar to those of Attramadal et al. (2012a). These
two antimicrobial treatments are fundamentally different, ozone being a chemical process and UV a
physical radiation destroying unprotected living cells, e.g. bacteria. Ozone was found to give better survival
and growth in a cod larvae RAS (Attramadal et al., 2012a) and will likely also prove beneficial in an eel
larvae RAS. Ozone administration is done in association with a protein skimmer ensuring, besides important
removal of soluble proteins and particles, the most effective reaction within the skimmer airstream
(Suantika et al., 2003). Furthermore the air contact within the skimmer prevents leaking reactive radicals
into the main system.

Figure 15. Schematic principle of matured water RAS system for European eel larvae culture. Se description in text.
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European eel, Anguilla anguilla, is a target species for future
captive breeding, yet best methodology to estimate sperm
density for application in in vitro fertilization is not estab-
lished. Thus, our objectives were to evaluate methods to
estimate European eel sperm density including spermatocrit,
computer-assisted sperm analysis (CASA) and flow cytometry
(FCM), using Neubauer Improved haemocytometer as bench-
mark. Initially, relationships between spermatocrit, haemocy-
tometer counts and sperm motility were analysed, as well as
the effect of sperm dilution on haemocytometer counts.
Furthermore, accuracy and precision of spermatocrit, apply-
ing a range of G-forces, were tested and the best G-force used
in method comparisons. We found no effect of dilution on
haemocytometer sperm density estimates, whereas motility
associated positively with haemocytometer counts, but not
with spermatocrit. Results from all techniques, spermatocrit,
CASA and FCM, showed significant positive correlations with
haemocytometer counts. The best correlation between sper-
matocrit and haemocytometer counts was obtained at
6000 9 g (r = 0.68). Of two CASA variants, one or three
photographic fields (CASA-1 and CASA-2), CASA-2 showed
a very high accuracy to haemocytometer counts (r = 0.93),
but low precision (CV: CASA-2 = 28.4%). FCM was tested
with and without microfluorospheres (FCM-1 and FCM-2),
and relationships to haemocytometer counts were highly
accurate (FCM-1: r = 0.94; FCM-2: r = 0.88) and precise
(CV: FCM-1 = 2.5; FCM-2 = 2.7%). Overall, CASA-2 and
FCM-1 feature reliable methods for quantification of Euro-
pean eel sperm, but FCM-1 has a clear advantage featuring
highest precision and accuracy. Together, these results provide
a useful basis for gamete management in fertilization
protocols.

Introduction

European eel, Anguilla anguilla, is a well-known species
in aquaculture with a commercial value in 2010 of
approximately 8.3 € per kg and production approach-
ing 7000 tons (FIGIS 2012). Still, the eel farming
industry relies solely on wild-caught juveniles for
production, as protocols for commercial production of
glass eels are not available. Since 2006, new integrated
methods have expanded this research field for European
eel, thus enabling researchers to produce multiple
batches of competent gametes, embryos and yolk-sac
larvae (PRO-EEL 2013; Tomkiewicz 2012).

For several species of marine finfish, it is challenging
to produce high-quality gametes for fertilization (Bobe
and Labb�e 2010). As such, research has focused on how
to optimize fertilization strategies for a given species
(Butts et al. 2009, 2012). Standardizing the sperm to egg
ratio is one such technique that has been used to
improve fertilization rates (Suquet et al. 1995; Bart and
Dunham 1996; Christopher et al. 2010). Generally,
lowering the sperm density reduces the fertilization
percentage, but any excess sperm sticking to the egg
chorion serves as a substrate for microbial activity,
which is known to impair embryonic development
(Oppenheimer 1955; Bergh et al. 1992). Determining
the optimal sperm to egg ratio (among other methods) is
therefore important for successful in vitro fertilization,
thus implying the need for accurate and precise methods
for quantification of sperm concentration and density.
Sperm quality is commonly assessed using density and

motility/velocity. In the literature, sperm density and
motility have been correlated with quality (Rideout
et al., 2004). Quantifying spermatozoa density is rou-
tinely carried out by counting the number of sperma-
tozoa in a specific volume of ejaculate (Alavi et al.
2008). The most common counting method is performed
using a haemocytometer, which is classified by the
World Health Organization as the ‘gold standard’ for
sperm quantification in humans (WHO 1999). This
method, however, is time consuming (Suquet et al.
1992), and precision relies on skilled personnel. As such,
studies have been conducted to discover faster and more
automated counting methods (reviewed in Fauvel et al.
2010).
Spermatocrit, defined as the ratio of packed sperm to

the total volume of milt 9 100, is a fast and easy
method to estimate spermatozoa concentration. Positive
significant correlations between spermatocrit and sperm
density estimates, using a haemocytometer, have been
reported for several species (Ciereszko and Dabrowski
1993; Rideout et al., 2004; Hatef et al. 2007; Agarwal
and Raghuvanshi 2009). However, it is important to
note that sperm sedimentation is a reported feature in
marine fish species (Fauvel et al. 2010), potentially
compromising the accuracy of spermatocrit estimates.
In addition, fluctuations in spermatozoa size during the
spawning season potentially bias and influence spermat-
ocrit values; for instance, spermatozoa head size
changes in marine fish during a spawning season, such
as in Atlantic cod (Butts et al. 2011).
Computer-assisted sperm analysis (CASA) automates

sperm quality assessment, which in turn provides quick,
precise and objective results (Fauvel et al. 2010; L�opez
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Rodrı́guez et al. 2011). The strength of CASA lies in
quantification of motility, velocity and behavioural
trajectories (i.e. linearity, amplitude of lateral head
movement). CASA is furthermore capable of quantify-
ing density of sperm as shown by Ehlers et al. (2011)
together making it a versatile descriptor of sperm
quality. Flow cytometry (FCM) is another automated
technique that is able to measure the amount of one or
more fluorescent stains in a cell. It features high
precision, sensitivity, accuracy and speed (Cordelli et al.
2005) and due to this deemed a potentially valuable
method for assessing male germ cell quality (Cordelli
et al. 2005). Within this context, there is a need to assess
the applicability of these automated counting methods
for the European eel.
Spermatogenesis in eels applied in captive reproduc-

tion experiments is induced using human chorionic
gonadotropin (hCG) (P�erez et al. 2000; Tomkiewicz
et al. 2011). Spermiation in European eel starts approx-
imately week 5 using 1.5–2.0 IU hCG/g fish in weekly
treatment (P�erez et al. 2000; Asturiano et al. 2006) with
sperm volume increasing until week 8–12 of treatment
after which it stabilizes (Asturiano et al. 2006; Tom-
kiewicz et al. 2011). At this stage, spermatozoa densities
are in the range of 5–18 9 109 cells/ml (P�erez et al.
2000; Gallego et al. 2012). During spermatozoa matu-
ration, spermatozoa size changes in European eel
(Asturiano et al. 2006; Marco-Jim�enez et al. 2006). This
includes an increase in spermatozoa head length from
the 5th to 7th week and head thickening continuing until
the 8th week of hormonal treatment (Asturiano et al.
2006; Marco-Jim�enez et al. 2006). After the 8th week,
only minor changes in spermatozoa/sperm cells head
size occur, followed by a decrease in head length from
the 12th week and onwards (Marco Jim�enez et al. 2006;
P�erez et al. 2009; Pe~naranda et al. 2010). Within the last
decade, European eel sperm have been analysed using
CASA techniques to describe motility parameters (P�erez
et al. 2009; Pe~naranda et al. 2010; Gallego et al. 2013),
ratio of viable spermatozoa (Asturiano et al. 2004,
2005) and their morphology (Marco-Jim�enez et al.
2006). Furthermore, spermatocrit (12 000 9 g) has been
used to standardize sperm: egg ratios in European eel
fertilization experiments (Tomkiewicz 2012). However,
no studies have been conducted to quantify eel sperm
density using CASA or FCM nor has the accuracy and
precision of different methods to quantify sperm density
been evaluated.
The purpose of this study was to provide fast and

reliable tools to measure sperm density for European
eel. More specifically, our objectives were to (i) test the
relationship between spermatocrit and Neubauer
Improved haemocytometer counts; (ii) test whether
spermatocrit and haemocytometer counts correlates
with sperm motility class; (iii) assess the effect of sperm
dilution on haemocytometer counts; (iv) test the accu-
racy of spermatocrit for sperm quantification and
identify the G-force for best correlation between sper-
matocrit and haemocytometer counts; (v) evaluate
accuracy and precision of spermatocrit, CASA, FCM
using haemocytometer counts as benchmark; and (vi)
discuss these results in context of applicability for use in
hatchery production of the European eel.

Materials and Methods

Data collection

Fish and hormonal treatment

Male European eels (n = 43; mean standard length and
body weight � SD: 40 � 2.6 cm and 124 � 21 g,
respectively) were obtained from a commercial eel farm,
Stensg�ard Eel Farm A/S in Jutland, Denmark
(55.655461N: 9.20051E). Age of the fish ranged from 2
to 6 years. The fish were transported to a research facility
(55.407444N: 9.403414E) of the Technical University of
Denmark (DTU) in September 2011, and acclimatized to
saltwater over a 10-day period. While at DTU, the eels
were kept in 300-l tanks equipped with a closed recircu-
lation system. The salinity and temperature of the system
ranged from 36.7 to 37.3 ppt and 19.5–20.5°C, respec-
tively. Saltwater wasmade artificially using TropicMarin
Sea Salt (Dr. Biener GmbH, Wartenberg, Germany).
Fish were maintained under a 12 l light photoperiod at
approximately 20 lux and 12 h dark with a 30-min
gradual transition. No feed was provided during the
experiment to mimic nature, as eels cease feeding in the
silvering stage (Dollerup and Graver 1985).
Hormonal treatment was initiated on 22 September

2011. Prior to onset of hormonal treatment, all males
were anesthetized using ethyl p-aminobenzoate at
20 mg/l (benzocaine; Sigma-Aldrich Chemie, Steinheim,
Germany). Each fish was tagged with a passive inte-
grated transponder (PIT tag) in the dorsal muscle tissue.
Each week, fish were weighed and received dorsal
injections of recombinant human chorionic gonadotro-
pin at 1.5 IU/g fish (rhCG; Ovitrelle, Madrid, Spain)
following Gallego et al. (2012).

Sperm sampling

Milt was collected after the 8th (trail 1) and 9th (trials
2 + 3) hormonal treatment, coinciding with the recom-
mended time to strip sperm for high-quality gametes
(Asturiano et al. 2006). Sperm samples were obtained
24 h after injection of rhCG to optimize sperm quality
(P�erez et al. 2000). Prior to harvest, males were anes-
thetized using benzocaine, as earlier. The urogenital
pore was thoroughly cleaned using Milli-Q water and
dried prior to sperm collection. The first ejaculate of
milt was omitted to avoid urine and faeces contamina-
tion. Ejaculated milt was kept in sterilized 50-ml Falcon
tubes, covered using Parafilm�M, and stored at 4°C
until motility estimation (max. 30 min). Following
motility estimation, sperm was refrigerated at 4°C until
further assessment (within 5 h).

Sperm dilution

Dilutions used for haemocytometer counting, CASA
and FCM were 1 : 1000 or 1 : 2000 (see below).
Haemocytometer counts were performed on fresh
sperm, while the other treatments were conducted on
preserved sperm samples. Sperm dilutions were carried
out immediately after milt collection in P1 medium
(Pe~naranda et al. 2010) containing glutaraldehyde 2.5%
(v/v) (Sigma-Aldrich Chemie, Steinheim, Germany) to
avoid movement of sperm. Dilutions were carried out
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using a two-step procedure by first diluting sperm 1 : 20
and subsequently, 1 : 50 or 1 : 100 to obtain final
dilutions of 1 : 1000 or 1 : 2000, respectively.

Sperm motility determination

Immediately after milt collection, sperm motility was
assessed by mixing 2 ll of milt with 200 ll of 37 ppt
artificial seawater (Aqua Medic Sea salt, GmbH, Bissen-
dorf, Germany), with 2% w/v Bovine Serum Albumin
(Sigma-Aldrich, Chemie, Steinheim, Germany), adjusted
to 8.2 pH (Pe~naranda et al. 2010). After activation, 2 ll
of sperm was assessed in a SpermTrack-10� chamber
(Proiser R+D, S.L.; Paterna, Spain) and observed
between 15 and 30 s after activation using a Nikon
Eclipse 55i microscope (Nikon Corporation, Tokyo,
Japan), fitted with a Nikon DS-Fi1 camera head, and
1009 magnification (10 9 CFI Plan Flour). All the
samples were performed in triplicate and analysed by
the same trained observer to avoid subjective differences
in motility evaluation. Motility of each replicate was
characterized to the nearest 10% increment, averaged and
then categorized into an arbitrary scale where 0: repre-
sents nomotile sperm; while I: <25%; II: 25–50%; III: 50–
75%; IV: 75–90%; and V: 90–100% represent per cent of
motile spermatozoa (P�erez et al. 2009).

Spermatocrit

Spermatocrit, defined as the ratio of packed sperm to
the total volume of milt 9 100, was used to estimate
sperm concentration. Fresh milt from each male was
drawn into three VitrexTM microhaematocrit tubes,
75 mm long, with a 1.1–1.2 mm opening and sealed
using VitrexTM Sigillum wax. Tubes were centrifuged
(Haematokrit 210, Andreas Hettich GmbH & Co.KG,
Tuttlingen Germany) for 10 min at specific G-forces
ranging from 500 to 14 000 9 g (see below for further
details). The mean of three measurements per male was
used for statistical analyses. Spermatocrit was
determined using a digital calliper (�0.05 mm).

Haemocytometer counting

A Neubauer Improved haemocytometer was used for
counting sperm cell density diluted at 1 : 1000 or
1 : 2000 (see section Sperm dilution). Sperm counts
were carried out in triplicate and results expressed as
spermatozoa 9 109/ml.

CASA counting

Milt samples preserved and diluted at 1 : 2000 in P1
medium (see section Sperm dilution) were used for CASA
counting. Sperm (2.5 ll) were added to the SpermTrack-
10� chamber (Proiser R+D, S.L.; Paterna, Spain) and
density was assessed by the concentration module of the
Integrated Semen Analysis System (ISAS; Proiser R+D,
S.L.; Paterna, Spain). Images for CASA analyses were
captured using aNikon Eclipse E-400microscope (Nikon
Corporation, Tokyo, Japan) equipped with a 109 neg-
ative phase objective lens. The image captured repre-
sented approximately 90% of the whole microscope field.

The mean number of cells per field varied between 15 and
45 sperm, depending on sperm density. All analyses were
performed in triplicate and two different methods were
used: CASA-1 = capturing one microscope field per
replicate and CASA-2 = capturing three microscope
fields per replicate.

Flow cytometer counting

Milt samples used for flow cytometer analyses (Cyto-
mics FC500; Beckman Coulter, USA) were diluted at
1 : 2000 in P1 medium (see section Sperm dilution).
Two different methods were applied to calculate sperm
density: FCM-1 = at least 5000 events (spermatozoa
detected, after discarding debris) were analysed by a
medium flow rate (30 ll/min) with time as the mea-
sured factor in each sample; and FCM-2 = a known
concentration of fluorospheres (Flow-CheckTM Fluoro-
spheres, Beckman Coulter) were diluted in each sperm
sample and at least 5000 events (spermatozoa and
fluorospheres detected, after discarding debris) were
analysed by a medium flow rate. Here, the ratio of
sperm cells/fluorospheres was the registered factor in
each sample. In both methods, sperm density was
determined by the number of spermatozoa per volume
analysed for each sample. All spermatozoa were stained
using 0.1 lM SYBR-14 for 10 min, making sperm
distinguishable from the remaining particles. We used
a 20-mW air-cooled Argon ion laser with excitation
wavelength of 488 nm and measured emission light
using the FL1 photodetector channel to read the green
light (525 nm).

Experimental design

Trial 1: Relationships between spermatocrit, sperm
density and motility

Males (n = 43) were stripped and spermatocrit was
measured in triplicate for individual males by centrifug-
ing at 12 000 9 g for 10 min. Sperm samples were
counted using a haemocytometer with a dilution of
1 : 1000. Sperm motility was assessed for each male.

Trial 2: Effect of sperm dilution

In total, 14 randomly chosen males were stripped and
sperm from six of these individuals were selected to have
a good dispersion of motility values and avoid bias (10–
45%). For haemocytometer counts, sperm samples from
the same males were diluted at 1 : 1000 and 1 : 2000 in
P1 medium.

Trial 3: Identification of the optimal G-force

Initially, milt from 35 mature males was collected. From
these fish, sperm from 10males were selected covering the
range from low to high (27–95%) spermatozoa motility.
Spermatocrit was measured using 500; 2000; 4000; 6000;
8000; 10 000; 12 000; and 14 000 9 g at a centrifugal
time of 10 min. For each G-force, new aliquot samples of
sperm were used. For each male, haemocytometer counts
were obtained using samples diluted at 1 : 2000 (see
section Haemocytometer counting).
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Trail 4: Test accuracy of automated methods (CASA,
FCM) with haemocytometer counts

Datawere collected using the same 10 sperm samples as in
Trial 3. Automated counting was performed using CASA
(CASA-1 and CASA-2) and FCM (FCM-1 and FCM-2).
In addition, sperm were counted using a haemocytome-
ter. Measurements were taken in triplicate.

Statistical analyses

DatawereanalysedusingSigmaplotv.11 (SystatSoftware
Inc,Hounslow,UK), andR (RCore Team, 2012, Vienna,
Austria). Shapiro–Wilk and Levene’s test were used to
check for normality and homoscedasticity assumptions,
respectively. Data were expressed as mean � SD. Alpha
was set at 0.05 for main effects and interactions.

Trial 1: Relationships between spermatocrit, sperm den-
sity and motility

To compare spermatocrit and haemocytometer counts,
Model II linear regression was used [ordinary least
products regression as described by (Ludbrook 2010)]
due to possible variation on both x-and y-axis. Model II
regression was run for all males and also for a subset of
males exhibiting motility values >80%. Furthermore,
one-way ANOVAs were run to test whether spermatocrit
and haemocytometer counts were independent of sperm
motility class. Haemocytometer data violated ANOVA

assumptions. As such, a Kruskal–Wallis test was used
for further analyses.

Trial 2: Effect of sperm dilution on sperm density

A student’s t-test was used to compare sperm density
estimates in samples diluted in the ratios 1 : 1000 and
1 : 2000, respectively.

Trial 3: Identification of the optimal G-force

Model II linear regression was used to compare haem-
ocytometer counts and spermatocrit for each G-force.

Trial 4: Test accuracy of automated methods (CASA,
FCM) with haemocytometer counts

Model II linear regression was used to compare CASA-
1, CASA-2, FCM-1, FCM-2, spermatocrit with haem-
ocytometer counts. Next, coefficient of variation (CV)
was used for each counting technique to assess between
subject variability; spermatocrit values for this analysis
were obtained from Trial 3.

Results

Trial 1: Relationships between spermatocrit, sperm
density and motility

Spermatocrit at 12 000 9 g ranged from 12.3 to 100%,
and haemocytometer counts ranged from 1.4 to
21.4 9 109 sperm/ml (Fig. 1). For these 43 males, there
was a significant positive relationship between spermat-
ocrit and haemocytometer counts (r = 0.53,

F1,42 = 15.60, p < 0.001, y =�1.564 + 4.0319). How-
ever, a high degree of scatter was observed in the
spermatocrit values; that is, spermatocrit values for
haemocytometer counts approximately 8 9 109/ml ran-
ged from 15 to 60%. The haemocytometer counts for
males showing motility >80% (n = 10) were generally
higher, resulting in a different relationship between
spermatocrit and haemocytometer counts (r = 0.62,
F1,9 = 5.02, p = 0.030, y = �24.434 + 4.6619).
Haemocytometer counts were associated with motility

class, such that sperm counts were significantly higher in
motility class V (approaching 100%) than in class 0 with
lowest motility (F5,37 = 2.73, p = 0.034; Fig. 2). On the
contrary, spermatocrit values did not vary among sperm
motility classes (H = 4.789, p = 0.442; Fig. 2); class 0
showed high variability as it was composed of two
individuals.

Fig. 1. Relationships between spermatocrit and hemocytometer
counts in the European eel, Anguilla anguilla. Model II linear
regression was used [ordinary least products regression as described
by (Ludbrook 2010)] due to possible error in both x and y-axes.
Regression analyses were run for all males (n = 43) and this is
represented by a solid line; those males with motility >80% (n = 10)
are represented by open circles and a dashed line

Fig. 2. Spermatocrit (gray bars on primary y-axis) and hemocytom-
eter counts (black bars on secondary yaxis) for five sperm motility
classes in the European eel, Anguilla anguilla. Data are expressed as
mean � SD. Values with common letters were not significantly
different via one-way ANOVA. 0 = 0% motility; I: 1–25% motility; II:
25–50% motility; III: 50–75% motility; IV: 75–90% motility; V:
90–100% motility
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Trial 2: Effect of sperm dilution on sperm density

The effect of dilution (1 : 1000 vs 1 : 2000) on haemocy-
tometer estimates of sperm density was non-significant
(t10 = 0.048, p = 0.963; Fig. 3); only the variation among
replicates tended to be higher at lower dilution.

Trial 3: Identification of optimal G-force

Sperm from Male 3 and Male 8 showed a rapid decrease
in spermatocrit over the G-force gradient (Fig. 4). There
were significant positive relationships between spermat-
ocrit and haemocytometer counts at 500; 4000; 6000;
12 000; and 14 000 9 g (r values ranged from 0.33 to
0.68, p ≤ 0.049; Fig. 5.). The best relationship was
found between spermatocrit and haemocytometer
counts at 6000 9 g (r = 0.68, p = 0.016; Fig. 5), as
such these G-force data were used for further
comparisons.

Trail 4: Test accuracy of automated methods (CASA,
FCM) with haemocytometer counts

Computer-assisted sperm analysis (CASA)-1 (r = 0.70,
F1,9 = 7.61, p = 0.012) and CASA-2 (r = 0.93,
F1,9 = 51.16, p < 0.001; Fig. 6) density estimates were
positively related to haemocytometer counts. Further-
more, there were significant positive relationships
between FCM-1 (r = 0.94, F1,9 = 62.921, p < 0.001)
and FCM-2 (r = 0.88, F1,9 = 26.84, p < 0.001) and
haemocytometer counts.
The CVs for CASA-1 (17.9%) and CASA-2 (28.4%)

were in the order of 7.5 times greater compared to the
other counting techniques (CV ranges from 2.5 to 5.9%;
Table 1).

Discussion

In this study, we report several key findings: (i)
haemocytometer counts were positively associated
sperm motility; (ii) haemocytometer counts were not
affected by milt dilution ratio; (iii) optimizing G-force
for centrifuging milt improved the relationship between

spermatocrit and haemocytometer counts; (iv) spermat-
ocrit, CASA and FCM were all positively related to
haemocytometer counts with CASA-2 and FCM-1
having the strongest relationship to haemocytometer
counts.
Spermatocrit has been used to estimate sperm

concentration for several species of fish (Rakitin et al.
1999; Rideout et al. 2004). such as yellow perch, Perca
flavescens (Ciereszko and Dabrowski 1993), haddock,
Melanogrammus aeglefinus (Rideout et al., 2004), Atlan-
tic halibut, Hippoglossus hippoglossus (Tvedt et al.
2001), snow trout, Schizothorax richardsonii (Agarwal
and Raghuvanshi 2009), brown trout, Salmo trutta
(Poole and Dillane 1998), Atlantic salmon, Salmo salar
(Aas et al. 1991), rainbow trout, Oncorhynchus mykiss
(Ciereszko and Dabrowski 1993) and lake whitefish,
Coregonus clupeaformis (Ciereszko and Dabrowski
1993). Together these studies found spermatocrit as a
quick and easy technique for estimating sperm concen-
tration (Alavi et al. 2008). In the present study, we
evaluated the relationship between spermatocrit and
haemocytometer counts for the European eel and
showed a significant positive relationship between these
two quantitative sperm metrics. However, its relation-
ship with haemocytometer counts showed considerable
scatter and appeared inferior to the automated counting
methods. Furthermore, the tests of different centrifugal
G-forces revealed that r-values varied between 0.33 and
0.68 and the best relationship between spermatocrit and
haemocytometer counts was obtained at 6000 9 g.
Higher centrifugal forces tended to result in low
correlation coefficients, as a result of changes in cell
packing within the microhaematocrit tube.
A non-significant relationship between spermatocrit

and haemocytometer counts was found in Atlantic cod,
Gadus morhua (Rakitin et al. 1999). The authors
suggested this might be an artefact of small volumes
of milt being diluted in immobilizing media before
sperm density was quantified using a haemocytometer.
This study by Rakitin et al. (1999) used a one-step 500-
fold dilution and their reported variability was high

Fig. 3. Hemocytometer counts for six males using two different milt
dilutions in the European eel, Anguilla anguilla. Solid sym-
bols = 1 : 1000; open symbols = 1 : 2000 dilution

Fig. 4. Values of spermatocrit for 10 males over a G-force gradient
(500–14 000 9 g) in the European eel, Anguilla anguilla. Male Id is
shown on the right (1–10)
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Fig. 5. Relationships between
spermatocrit and hemocytometer
counts over a G-force gradient
(500–14000 9 g) in the European
eel, Anguilla anguilla. Model II
linear regression was used
[ordinary least products regression
as described by (Ludbrook 2010)]
due to possible error in both x and
y-axes. For each plot the p-value,
sample size, correlation coefficient,
and equation of line are shown

Fig. 6. Relationships between
computer-assisted sperm analysis
(CASA)-1, CASA-2, flow
cytometry (FCM)-1, FCM-2 and
hemocytometer for the European
eel, Anguilla anguilla. Model II
linear regression was used
[ordinary least products regression
as described by (Ludbrook 2010)]
due to possible error in both x and
y-axes. For each plot the p-value,
sample size, correlation coefficient,
and equation of line are shown
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(CV = 27.7%). We found negligible effect of milt
dilution ratio on haemocytometer counts as well as a
low coefficient of variation (CV = 5.9%). The precision
and accuracy of haemocytometer counts have been
addressed in the literature (see Alavi et al. 2008 and
Fauvel et al. 2010 for review) and errors due to
pipetting, dilution ratio, sperm settling times and
operator biases are emphasized (Rakitin et al. 1999).
Therefore, there is a need for species-specific guidelines
for fishes as set by the WHO for humans (WHO 1999).
Sperm motility and spermatocrit values were inde-

pendent, while haemocytometer density estimates
increased with motility class, such that the low motility
class 0 (no motility) had significantly lower sperm
density than the high motility class V (90–100%

motility). The latter concurs with final hydration of
spermatozoa coinciding with final maturation and
increase in motility (Gallego et al. 2012). Useful future
research should relate these quantitative sperm metrics
to other estimates of quality, such as sperm velocity and
fertilization success.
In our study, CASA-2 and FCM-1 show strong

predictive relationships with haemocytometer counts
(r = 0.93 and 0.94, respectively). FCM-1 gave the
strongest relationship. FCM has an advantage over
CASA in that it has a 10-fold lower coefficient of
variation. Similarly, sperm counts measured by haem-
ocytometer and flow cytometer were also highly corre-
lated (r2 = 0.85) in the razorback sucker, Xyrauchen
texanus (Jenkins et al. 2011). CASA, although not
commonly used for quantification of fish sperm density,
gave us promising result. This indicates that CASA is a
universal tool for sperm quality/quantity assessment
and further complements flow cytometry which, besides
quantification, can describe the physiology of milt
parameters (i.e. membrane potential, cell integrity;
Cordelli et al. 2005; Fauvel et al. 2010). CASA software
is commonly used throughout the field of sperm biology
(Marco-Jim�enez et al. 2006; P�erez et al. 2009; Pe~naranda
et al. 2008, 2010). as open-source systems have
immerged, resulting in inexpensive alternatives for
sperm quality assessment (Komori et al. 2006; Wilson-
Leedy and Ingermann 2007). We recommend these
automated systems for studying reproductive physiol-
ogy and for routine assessment of sperm density for the
European eel. Additionally, spectrophotometry meth-
ods should be examined (Fauvel et al. 1999).
When deciding which method to use for quantification

of sperm, both economic feasibility and accuracy/
precision of specific device(s) need to be considered. In

Table 1. Coefficients of variation for haemocytometer, spermatocrit
at 6000 9 g, computer-assisted sperm analysis (CASA-1 and CASA-2)
and flow cytometry (FCM-1 and FCM-2) for the European eel,
Anguilla anguilla. Mean values are shown for each counting method.
Measurements were performed in triplicate for 10 males

Male

number

Neubauer

improved Spermatocrit CASA-1 CASA-2 FCM-1 FCM-2

1 6.1 6.5 36.5 34.7 5.5 3.6

2 11.2 3.0 11.7 31.5 1.7 2.5

3 8.4 2.1 13.8 27.4 1.8 3.5

4 0.0 10.1 6.9 36.0 2.1 1.5

5 5.1 9.6 30.6 27.3 1.7 1.4

6 4.7 6.8 12.0 21.0 2.5 3.9

7 8.7 6.8 1.8 16.0 3.8 4.2

8 6.0 4.0 29.0 21.5 2.0 3.2

9 7.6 4.2 32.4 26.4 0.8 3.0

10 0.9 3.1 3.8 42.2 3.6 0.5

Mean 5.9 5.6 17.9 28.4 2.5 2.7

Table 2. Resource requirements, advantages and disadvantages for the different quantitative methods used to determine sperm density for the
European eel, Anguilla anguilla

Quantification

method Requirements Advantages Disadvantages

Neubauer

Improved

haemocytometer

Microscope required

Neubauer Improved

haemocytometer

Trained personnel

Cheap

Precise – low CV

Described in literature

Time consuming

Spermatocrit Centrifuge required

Microhaematocrit tubes

Tube sealant

Haematocrit tube reader

Fast

Precise – low CV

Low level of training

Inaccurate – low r

Sperm sedimentation

CASA-1 CASA software

Software calibration

Computer and microscope

with frame grabber

Training

Fast

Additional measures of

sperm quality obtained

Low precision – high CV

Inaccurate – low r

Trained personnel

CASA-2 CASA software

Software calibration needed

Computer and microscope

with frame grabber

Training

Fast

Accurate – high r

Additional measures of

sperm quality

easy obtainable

Low precision – high CV

Trained personnel

FCM-1 Flow cytometer required

Training

Precise – low CV

Accurate – high r

Trained personnel

Need to extrapolate by equation

FCM-2 Flow cytometer and

fluorospheres required

Training

Precise – low CV

Accurate – high r

Fluorospheres making it more

expensive than FCM-1

Lower accuracy than FCM-1

Need to extrapolate by equation
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Table 2, we provide an overview of resource require-
ments, advantages and disadvantages for the different
quantitative methods investigated. In summary, the
haemocytometer features low operational costs, precise
measurements, but is time consuming and precision
relies on skilled personnel. Spermatocrit measurements
require a centrifuge, low level of operator training, are
fast, but are not as accurate as other methods. CASA-1
requires special software and a microscope with video
frame grabber. Additionally, CASA-1 gives fast results,
but has relatively low accuracy and precision. CASA-2,
like the aforementioned, needs software, requires a
microscope and video frame grabber. Furthermore,
CASA-2 gives an accurate result, but at low precision.
FCM-1 requires expensive equipment, gives both accu-
rate and precise results, while FCM-2 features the same
characteristics, although slightly more expensive and
less accurate. Both the haemocytometer and automated
counting techniques differ from spermatocrit by giving
counts rather than concentration, and therefore are
likely less subjective to bias from changes in spermato-
zoa head morphology (Marco-Jim�enez et al. 2006).
In conclusion, we found highly predictive relation-

ships between CASA-2 and FCM-1 and haemocytom-
eter counts, which can be considered as accurate
methods for quantification of European eel sperm.
These methods appear the most efficient for develop-
ing standardized fertilization protocols, enabling
optimized sperm to egg ratios. We also found a
lower, but significant correlation between spermatocrit

and haemocytometer counts, although not as clear as
reported in some other fish species.
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Standardization of artificial fertilization protocols for the European eel, Anguilla anguilla, is a prerequisite for
optimizing the use of available gametes in hatchery facilities and for conserving sperm from high quality
males, which is either cryopreserved or in living gene banks. The objectives of this research were to provide a
rapid, accurate and precise method to quantify sperm density by examining the relationship between sperm
density and absorbance by use of a spectrophotometer, determine the optimal number of sperm required to
fertilize eggs in a controlled setting, and explore how long eggs are receptive to fertilization post-stripping.
Mean sperm density and absorbance at 350 nm were 1.54e + 10 ± 4.95e + 9 sperm/mL and 1.91 ± 0.22 nm,
respectively. Regression analysis demonstrated a highly significant positive relationship between sperm density
and absorbance using a spectrophotometer at 350 nm (R2= 0.94, p b 0.001, y= 2.273e+ 10x− 2.805e+ 10);
significant but slightly weaker relationships were also detected at 400, 500, and 600 nm (R2 ≥ 0.93, p b 0.001).
Fertilization success using sperm to egg ratios ranging from 1.3e + 3 to 1.0e + 6 sperm per egg increased from
37.5 to 68.1%, respectively. Sperm to egg ratio had a significant effect on fertilization success (p b 0.0001), where
fertilization success increased from 1.3e+ 3 to 2.5e+ 4 sperm per egg; adding greater than 2.5e+ 4 sperm per
egg had no significant effect. Furthermore, the duration of time post-stripping had a significant effect on
egg fertilization success (p b 0.0001), such that between 0 and 10 min post-stripping 57.4 to 78.2% of the
eggs were fertilized while at 15 min post-stripping a significant decrease in fertilization success was
detected (47.5%). For all statistical models, the female variance component was significant for fertilization
success (p b 0.0001) and explained ≥84% of the models variance. In conclusion, European eel eggs should be
fertilized within 10 min post-stripping using 2.5e + 4 sperm per egg. Together, these findings will contribute
to the development of European eel breeding technology and further our understanding on sperm biology and
reproductive biology in fishes.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

European eel, Anguilla anguilla, has long been a highly valued species
targeted for aquaculture production (Gousset, 1990; Ottolenghi et al.,
2004). Nevertheless, the eel farming industry relies exclusively on
wild-caught juveniles, as rearing protocols for commercial production
of glass eels (an intermediary stage in the eel's life history) are not yet
available. Recently, pioneering research has raised eel breeding from a
state of reproductive failure to a stable production of yolk-sac larvae
(reviewed in Tomkiewicz et al., 2012). Although basic procedures for
artificial fertilization have been described (Mordenti et al., 2013;
Tomkiewicz et al., 2012), as of yet no empirical research has been
directed towards standardizing fertilization protocols. This is especially

critical for species whose gametes are hand-stripped, such as the
European eel, as it may increase fertilization success and embryonic
survival.

Before standardizing fertilization protocols, for any given species,
there is a need for accurate and precisemethods to quantify sperm den-
sity. Currently, several methods are available to quantify sperm density
for the European eel (Sørensen et al., 2013). In brief, haemocytometer
counting featured low operational costs, high precision and accuracy,
but was a tedious and time-consuming technique. Spermatocrit
measurements were cost-effective and rapid, but not as accurate as
the other methods, while computer-assisted sperm analysis and flow
cytometry offered fast and unbiased estimation, but required expensive
software/equipment and skilled personnel (Sørensen et al., 2013).
Determination of sperm density by use of a spectrophotometer howev-
er, has yet to be explored for this species. This method is known to be
reliable, rapid, simple, and inexpensive, thus would allow for more
efficient use of time and prevent stripped gametes from standing too
long before fertilization (Alavi et al., 2008; Dong et al., 2005).
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Fertilization success is predicted to increase when more sperm are
incorporated into an artificial and/or natural spawning event (Butts
et al., 2009; Hatef et al., 2009). However, the benefit of sperm number
should decrease as the total number of cells approaches the number re-
quired to fertilize an entire egg batch (Ball and Parker, 1996; Casselman
et al., 2006). Excess sperm sticking to the chorion of adhesive eggs can
also serve as a substrate formicrobial activity, which is known to impair
embryonic development until hatching (Bergh et al., 1992). Additional-
ly, two or more sperm entering the egg (termed polyspermy) may lead
to abnormal embryonic development and ultimately to death of an
embryo, even though mechanisms exist to minimize and/or block
polyspermy in vertebrates and invertebrates (Psenicka et al., 2010;
Snook et al., 2011). Therefore, determining the “optimal” sperm to egg
ratio is a critical step towards establishing successful in vitro fertilization
protocols.

Gamete receptivity, defined as the length of time gametes are recep-
tive to be fertilized, also impacts reproductive yields and is another
factor which should be considered when spawning fishes in captivity
(Butts et al., 2012a). For instance, when European eel sperm are activat-
ed they lose their fertilization capability within 1–2 min due to limited
amounts of energy reserves available for motility, whereas non-
activated cells can be stored in a refrigerator for extended periods and
still maintain a high capacity to fertilize eggs upon activation (~80%
motility at 7 days of storage; Peñaranda et al., 2010). To the best of
our knowledge, it is unclear how long European eel eggs are receptive
to fertilization post-stripping. In fishes, eggs of high quality, are usually
viable for only a restricted time post-stripping, butmay be prolonged at
appropriate temperatures (Ciereszko et al., 2000). Therefore, defining
the trajectory of this decline is important to optimize spawning collec-
tion procedures for aquaculture and/or research activities (Johnston
et al., 2008).

Therefore, the main goal of this study was to standardize artificial
fertilization protocols for the European eel. More specifically, the objec-
tives were to (i) develop a relationship between sperm density and
absorbance by use of a spectrophotometer, (ii) use this newly devel-
oped relationship to determine the optimal number of sperm required
to fertilize eggs in a controlled setting, and (iii) explore how long eggs
are receptive to fertilization post-stripping. Overall, these findings will
contribute to the development of European eel aquaculture and further
our understanding on sperm biology and reproductive biology in fishes.

2. Materials and methods

2.1. Broodstock collection and management

Female broodstock (n = 42; mean standard length and body
weight ± SEM were 68.8 ± 1.4 cm and 669.0 ± 47.7 g, respectively)
were caught in the silvering stage from a freshwater lake (Vandet
Sø) in northern Jutland, Denmark. Eels were transported, using an
aerated transportation tank, to a research facility (55.407444 N:
9.403414E) of the Technical University of Denmark (DTU). While
at DTU, eels were injected with a passive integrated transponder
(PIT tag) in the dorsal muscle and housed in 300 L tanks equipped
with a closed re-circulation system. Acclimatization to saltwater
took place over a 14-day period. Salinity was adjusted artificially using
TropicMarin Sea Salt (Dr. Biener GmbH,Wartenberg, Germany). During
maturation, eels were kept at a density of ≤30 kg per m3, salinity of
~36‰, and temperature of ~19 to 21 °C. Eels were maintained under
dimmed light conditions at ~20 lx and a natural daily photoperiod
with gradual transition taking 30 min. No feed was provided during
experimentation as eels in silvering stage cease feeding (Dollerup and
Graver, 1985).

To induce vitellogenesis females received weekly (10 to 20 weeks)
injections of salmon pituitary extract (SPE; 18.75 mg/kg body
weight, Argent Chemical Laboratories, Washington, USA) (Kagawa
et al., 2005). Biopsies were routinely taken for evaluation of oocyte

development (Palstra et al., 2005). Based on body weight increase and
oocyte developmental stage indices, females received another injection
of SPE as a priming dose. To stimulate final maturation and induce ovu-
lation females were later injected, ~24 h after receiving the priming
dose, with the maturation-inducing steroid (MIS; 17α,20ß-dihydroxy-
4-pregnen-3-one; 2 mg per/kg body weight; Sigma-Aldrich, St. Louis,
MO, USA) (Ohta et al., 1996). Within 12 to 14 h of receiving MIS, eggs
were stripped by applying pressure to the abdomen of the fish. Expelled
eggs were collected into dry weight boats (7 cm× 7 cmwith volume of
80 mL).

Male broodstockwere reared in a commercial eel farm (Stensgård Eel
Farm A/S) in Jutland, Denmark (55.655461 N: 9.20051E) on a standard
diet (DAN-EX 2848, BioMar A/S, Brande, Denmark) (for composition
see Støttrup et al., 2013). Males (n = 60; mean standard length and
bodyweight were±SEM 38.1± 0.3 cm and 110.0± 2.0 g, respectively)
were transported to DTU's research facility (husbandry conditions as
above).Male eels receivedweekly injectionsof recombinant human cho-
rionic gonadotropin at 1.5 IU g−1

fish (Ovitrelle, Madrid, Spain) (Gallego
et al., 2012). Milt was collected after 7 weeks of hormonal treatment
(~12 h after administration of hormone). For milt collection, the genital
pore was wiped dry using deionized water. The first ejaculate of milt
was omitted to avoid urine and faeces contamination. Samples were
then collected into dry weight boats (3.6 cm × 3.6 cm with volume of
7.5 mL), by applying slight pressure along the abdominal region. Within
10 s, 500 μL of milt from each male was pipetted into 20 mL of
immobilizing medium (Peñaranda et al., 2010).

2.2. Sperm motility assessment

Sperm motility was assessed according to Sørensen et al. (2013). In
brief, within 30 to 40 min post-stripping, the percentage of motile
sperm per male was estimated by adding 0.2 μL of milt onto the centre
of a microscope slide, situated on the stage of a Nikon Eclipse 55i micro-
scope (Nikon Corporation, Tokyo, Japan) maintained at room tempera-
ture. Sperm were activated by adding 200 μL of ~20 °C seawater
obtained from the North Sea and adjusted to 36 ppt with artificial Red
Sea salt (Red Sea Europe, Verneuil sur Avre, France). No coverslip was
added during sperm activation. Sperm motility was assessed at 400×
magnification within 10 to 15 s after the addition of seawater. Motility
was characterized using an arbitrary scale where 0: represents no
motile sperm; while I: b25%; II: 25–50%; III: 50–75%; IV: 75–90%; and
V: 90–100% represent percentage of motile spermatozoa (Pérez et al.,
2009; Sørensen et al., 2013). All samples were performed in triplicate
and analyzed by the same trained observer to avoid subjective
differences in motility assessment. Activation motility scores were all
≥75% (characterized as stage IV or V); no significant difference in
sperm motility was detected between the sperm pools (p b 0.05).

2.3. Experiment 1: Determination of sperm density by use of
a spectrophotometer

Milt (50 μL) was collected from 18 males and each sample was
diluted into disposable glass test tubes (16 mm × 100 mm, Fisher
Scientific, Loughborough, UK) containing 3000 μL of immobilizing
media (P1 media as described in Peñaranda et al., 2010). The resulting
sperm suspensions were homogenized using a vortex mixer for 10 s
(Minishaker MS2; IKA, Staufen, Germany). Homogenized samples
were immediately transferred to plastic cuvettes, the outside of each cu-
vette was wiped with Kimwipes®, and then placed into a spectropho-
tometer (DR 2800; Hach-Lange Aps, Brønshøj, Denmark). Absorbance
values were randomly generated across four different wavelengths
spanning the visible spectrum: 350, 400, 500 and 600 nm. The mean
of three replicates per male was used for statistical analyses.

Sperm density was counted under a Zeiss Axiostar compound
microscope (Carl Zeiss Canada Ltd., Toronto, ON, Canada) at 400×
magnification using an improved Neubauer haemocytometer (see
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Butts et al., 2012b for details). Homogenizedmilt (200 μL) from theplas-
tic cuvettes was further diluted in 3200 μL of immobilizing media and
mixed using a vortex mixer for 10 s. A sample of this sperm suspension
(10 μL) was then micropipetted onto a haemocytometer that had been
pre-covered with a coverslip. The number of sperm in each of the five
larger squares on the haemocytometer was counted. There are 25 of
these large squares on the haemocytometer and each of these large
squares has 16 smaller squares within it. Sperm were counted in the
four large corner squares and the large centre square. Themeannumber
of sperm per large square count (i.e. mean of the five counts) was
multiplied by 25 (to obtain the mean per 5 × 5 large-square grid), by
10 (the depth of the chamber in mm), and then by the initial volume
of the sample to estimate the sperm density. Sperm densities are
expressed as the total number of sperm per mL of a male's ejaculate.
The mean of three replicates per male was used for statistical analyses.

2.4. Experiment 2: Determination of the optimal sperm to egg ratio

Eggs were collected from six females and milt was stripped from 24
haphazardly selected males. Milt (500 μL) from four males was diluted
into 20 mL of immobilizing media to create six unique sperm pools
(500 μL of milt × 4 new males = 2000 μL of diluted milt into each
sperm pool). Eggs from each female were then “crossed” (see below)
with a new sperm pool from the four males.

Using a micropipette, a known volume of sperm from each pool
(adjusted according to the calculated spermdensity using results outlined
for Experiment 1 in Section 3.1)was added to 2mLmicrocentrifuge tubes
(Sarstedt AG & Co., Nümbrecht, Germany) creating 12 experimental
sperm to egg ratios for each sperm pool (1.3e + 3:1, 2.5e + 3:1, 5.0e +
3:1, 1.0e + 4:1, 2.5e + 4:1, 5.0e + 4:1, 7.5e + 4:1, 1.0e + 5:1, 2.5e +
5:1, 5.0e + 5:1, 7.5e + 5:1, 1.0e + 6:1 sperm to egg). Three replicate
microcentrifuge tubes were used for each sperm to egg ratio. Each
microcentrifuge tube was filled to 1000 μL with immobilizing media. Ap-
proximately 500 eggs (mean± SEM= 506± 10 eggs) were placed into
dryweight boats (7 cm× 7 cm) using a 1.0mL syringe. The tip of each sy-
ringewas cut off to prevent the eggs from being compressed or damaged.
Sperm in each microcentrifuge tube was then added to the eggs in the
weight boats. Activation media (20 mL of 37 ppt seawater at ~20 °C)
was immediately added to the eggs. After 5 min gamete contact time,
eggs were transferred into 250 mL plastic tri-corner beakers containing
200 mL of 36 ppt seawater for incubation. The embryos were incubated
at 20 °C until being examined for fertilization success. Fertilization success
was determined 3 to 5 h post-fertilization, by examining amean (±SEM)
of 70±2eggs per replicate. Embryoswere observed and images captured
using a compoundmicroscope equippedwith a digital camera (as above).
Fertilization success was calculated as the percent fertilized eggs.
Fertilized eggs were identified by the presence of blastomere cleavage
(4 to 64 stages), and those not showing N4-cell cleavages were consid-
ered unfertilized.

2.5. Experiment 3: Effect of time post-stripping

Eggs from three femaleswere “crossed”with a sperm pool from four
males (in total 12 males were used) at 0, 5, 10, 15, 20, 30, 40, 60 min
(±3 min) post-egg stripping (see Section 2.4 for further details on
fertilization procedures). For each female, three replicate crosses
were performed at each time post-egg stripping. Throughout stor-
age, the eggs were held in dry weight boats (without extender
media), sealed in plastic bags, and stored in a cooler at 20 °C. Based
on results outlined in Experiment 2 (see Section 3.2), crosses were
conducted using a 2.5e + 4:1 sperm to egg ratio.

2.6. Statistical analyses

Data were analyzed using SAS statistical analysis software (v.9.1;
SAS Institute Inc., Cary, NC, USA) and RMA software for reduced major

axis regression (v. 1.17; http://www.bio.sdsu.edu/pub/andy/rma.html)
(Bohonak, 2004). Residuals were tested for normality (Shapiro–Wilk
test) and homogeneity of variance (plot of residuals vs. predicted
values). Fertilization success was arcsin square-root transformed (Zar,
1996). Alpha was set at 0.05.

2.6.1. Experiment 1: Determination of sperm density by use of
a spectrophotometer

Linear regression analysis was used to examine the relationship be-
tween sperm density and absorbance by use of a spectrophotometer.
Separate regressions were run at each absorbance. One of the underly-
ing assumptions of standard ordinary least squares regression is that
the independent variable, or X-axis, is measured with no error (Zar,
1996). Because absorbance was measured with “possible error”, data
were analyzed using RMA software (Model II regression, Ludbrook,
2010).

2.6.2. Experiments 2 and 3:Determination of the optimal sperm to egg ratio,
and effects of time post-stripping

Fertilization success was analyzed using a mixed-model ANOVA
(PROC MIXED; SAS Institute, 2003) where sperm to egg ratio was
considered a fixed factor and female was considered a random blocking
factor. A-posteriori analyses were not performed on random female
effects. Instead, variance components were constructed using the re-
stricted maximum likelihood (REML) estimation method in SAS PROC
Mixed, and expressed as a percentage. To test for significance among
variance components (VC) greater than zero, likelihood ratio statistics
were generated (SAS Institute, 2003). Denominator degrees of freedom
for all F-tests were approximated using the Kenward-Roger method
(Spilke et al., 2005). A-posteriori analyses performed on fixed effects
were constructed using Tukey's multiple comparisons procedure.

3. Results

3.1. Experiment 1: Determination of sperm density by use of
a spectrophotometer

The overall mean (±SD) sperm density for the 18males was 1.54e+
10± 4.95e+ 9 sperm/mLwithmalemean values ranging from 7.13e+
9 to 2.32e + 10 sperm/mL. Regression analysis demonstrated
that the most variance was explained between sperm density
and absorbance using a spectrophotometer at 350 nm (R2 = 0.94,
F1,17 =235.63, p b 0.001, y = 2.273e + 10x − 2.805e + 10;
Fig. 1). Additionally, significant positive relationships were detect-
ed at 400 (R2 = 0.93, F1,17 =231.31, p b 0.001, y = 2.358e + 10x −

Fig. 1. Relationship between sperm density and absorbance for the European eel,
Anguilla anguilla. Density was determined using a haemocytometer and absorbance was
determined at 350 nm by use of a spectrophotometer.
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2.745e + 10), 500 (R2 = 0.93, F1,17 = 227.36, p b 0.001, y = 2.476e +
10x − 2.628e + 10), and 600 nm (R2 = 0.93, F1,17 = 220.50,
p b 0.001, y = 2.472e + 10x − 2.408e + 10).

3.2. Experiment 2: Determination of the optimal sperm to egg ratio

Mean fertilization success, using sperm to egg ratios ranging from
1.3e+3 to 1.0e+6 spermper egg increased from37.5 to 68.1%, respec-
tively (Fig. 2). Sperm to egg ratio had a significant effect on fertilization
success (F11,180 = 12.24; p b 0.0001; Fig. 2). Fertilization success in-
creased from 1.3e + 3 to 2.5e + 4 sperm per egg, while adding greater
than 2.5e + 4 sperm per egg had no significant effect on fertilization
success (Fig. 2). The female VC was significant for fertilization success
(p b 0.0001) and explained 86.4% of the models variance, while the
residual error explained only 13.6%.

3.3. Experiment 3: Effect of time post-stripping

Duration of time post-stripping had a significant effect on fertiliza-
tion success (F7,50.1 = 9.94; p b 0.0001; Fig. 3). Between 0 and 10 min
post-stripping 57.4 to 78.2% of the eggs were fertilized on average
(Fig. 3). At 15 min post-stripping, a significant decrease in fertilization
success was detected; i.e. decreased to 35.2% at 60 min post-stripping.
The female VC was significant for fertilization success (p b 0.0001)
and explained 84.3% of the models variance while the residual error
explained 15.7%.

4. Discussion

In this study, we report several key findings: (i) haemocytometer
counts for quantification of sperm density were positively related to
absorbance by use of a spectrophotometer, (ii) sperm to egg ratio had
a significant effect on fertilization success, where adding greater than
2.5e + 4 sperm per egg had no significant effect, (iii) duration of time
post-stripping had a significant effect on egg fertilization success, such
that at 15 min post-stripping a significant decrease in fertilization suc-
cesswas detected, and (iv) the female VCwas significant for fertilization
success (for both Experiments) and explained ≥ 84% of the models
variance.

Here, we showed that European eel sperm could be rapidly and
accurately (94% of the variance was explained) quantified by use of a
spectrophotometer. Similar relationships have also been established
for small-bodied biomedical fishes (Tan et al., 2010), as well as econom-
ically important marine (Rouxel et al., 2008), and freshwater species
(Ciereszko and Dabrowski, 1993). To establish our method, we tested

four different wavelengths spanning the visible spectrum. Our results
showed highly significant relationships among readings at 350 to
600 nm, indicating that all testedwavelengths can be used for quantify-
ing spermdensity for this species. Using small-bodied biomedicalmodel
fishes, Tan et al. (2010) observed a similar phenomenon; i.e. no single
maximal absorbance peak was detected across the visible spectrum
(380 to 750 nm). This likely occurs because of variability inmilt compo-
sition, through an assortment of lipids and proteins (among others),
which essentially makes it difficult to find a discrete peak in the absor-
bance spectra via spectrophotometry (Dong et al., 2005). Nevertheless,
the 350 nm wavelength appeared to be the most suitable for sperm
quantification based on having a slightly higher coefficient of determi-
nation (R2=0.94 vs. 0.93). Ultimately, thismethodology can nowbe in-
corporated into routine hatchery and experimental protocols to avoid
potential confounding factors relating to male-to-male variation in
sperm density. Additionally, it should increase the effectiveness of cryo-
preservation and fertilization protocols by standardizing the number of
cells in each cryogenic sperm straw and optimizing sperm to egg ratios
(Alavi et al., 2008; Butts et al., 2011; Ciereszko et al., 2000), respectively.

Based on a literature review by Butts et al. (2012a), the number of
sperm required to fertilize a fish egg is relatively high and species
dependent (mean ± SEM for 15 species was ~550,000 ± 480,000
sperm per egg). To our knowledge, this is the first study that assesses
how sperm number influences egg fertilization for the European eel.
An increase in fertilization success was observed up to 2.5e + 4 sperm
per egg; adding additional spermhad no significant effect on the depen-
dent variable. Consequently, this gamete ratio is now recommended for
studies dealing with European eel fertility, as it secured maximal fertil-
ization rates, while at the same time used limited sperm cells. However,
when using this ratiowe still have to be cognizant of the fertilization en-
vironment, as varying the sperm extender, adding additional activation
media, “crossing” gametes in containers with different dimensions, and
modifying gamete contact timesmay all influence thefinal outcome of a
fertilization event, thus altering the optimal sperm to egg ratio (Alavi
et al., 2008; Casselman et al., 2006; Ciereszko et al., 2000). Thus, these
variables (among other factors) should coincide with those used in
our experimentation, especially if our optimized sperm to egg ratio is
to be used for fertilization. Ultimately, this will enable the fertilizing ca-
pability of individualmales to bemeasured consistently and eachmale's
sperm, whether stored frozen or in living gene banks, to be usedwisely.

We found that at 15 min post-stripping of the eggs, a significant de-
crease in fertilization success was detected. This suggests that European
eel eggs are muchmore sensitive to storage time post-stripping relative
to that of salmonids, such as Chinook- (Oncorhynchus tshawytscha) and
Atlantic salmon (Salmo salar), where a delay in activation did not affect
fertilization for these species until 1 h post-stripping (Munkittrick et al.,

Fig. 2. The effect of sperm to egg ratio on fertilization success in the European eel, Anguilla
anguilla. Sperm to egg ratioswith different letters are significantly different (p b 0.05, least
square means, ANOVA). Error bars represent least square means standard error.

Fig. 3. The effect of time post-stripping of eggs on fertilization success in the European eel,
Anguilla anguilla. Times with different letters are significantly different (p b 0.05, least
square means, ANOVA). Error bars represent least square means standard error.
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1992). In the Japanese eel (Anguilla japonica), Ohta et al. (1996) found
that time post-ovulation, within the ovary, to in vitro egg activation is
an important factor for fertilization with a clear negative effect occur-
ring at 6 to 7 h post-ovulation. This suggests that we should mimic
this ovarian environment in situ to decrease this rapid rate of egg
decay as observed in our study; perhaps through extenders that
mimic the ovarian fluid of European eel under a strict thermal and/or
oxygenated regime.

Fertilization success was strongly influenced by female identity. In
our studies, eggs were obtained from wild-caught females that experi-
enced different conditions prior to capture and size/age varied, although
theywere housed under similar conditions during the reproductive sea-
son (e.g. photoperiod, temperature) and received similar hormonal
therapy. Ultimately, these factors may have contributed to this variabil-
ity in female responsiveness to treatment and egg quality. Eggs from
each female were fertilized using a new sperm pool from multiple
males (having no difference in sperm motility), thus masking any
potential paternal effects that may have been active during and imme-
diately after embryogenesis (Rideout et al., 2004). Nevertheless, there
is still a suite of other genetic and environmental factors, as well as
the associated genetic × environmental interaction, which modulate
nuclear-genetic and extra-nuclear non-genetic constituents (e.g. yolk,
lipids, immunoglobulin,mRNAs, hormones, and stage of oocytematura-
tion) that foster the development, quality, and size of an egg, in turn
influencing female fertility (reviewed in Babin et al., 2007). Future
studies should explore thesematernal processes, to ultimately decipher
the direct mechanisms leading to enhanced egg quality and higher
fertilizations success for this species.

In conclusion, we have now standardized artificial fertilization pro-
tocols for the European eel under controlled experimental conditions.
Based on our findings, we conclude that spectrophotometry is a valu-
able tool for estimating sperm density for this species. Furthermore,
we suggest that European eel eggs should be fertilized using 2.5e + 4
sperm per egg within the first 10 min post-stripping to maintain a
high capacity to be fertilized. Overall, these findings will contribute to
the development of European eel breeding technology and further our
understanding on sperm biology, cryobiology, and reproductive biology
in fishes.
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Recent experimental research applying hormonally induced maturation in European eel has resulted in
production of viable eggs and yolk-sac larvae. However, present incubation and larval rearing conditions are
suboptimal and few larvae survive until onset of first feeding. The aim of this work was to investigate if high
mortality during egg incubation and larval culture resulted frommicrobial interference. By suppressingmicrobial
coverage and activity on fertilised eel eggs using antibiotic and disinfection treatment, egg hatching success and
larval longevity were significantly improved. A new approach based on scanning electron microscopy was
developed to quantify microbial coverage of eggs. Measurements of microbial coverage in combination with
growth curves of egg-associated bacteria indicated that microbial activity rather than physical coverage led to
reduced hatch success. In addition, an inverse relationship betweenmicrobial coverage of eggs and larval survival
indicated that attachment of micro-organisms on the egg surface during the last 24 h of incubation affected later
larval survival. These results suggest that microbial control through application of egg surface disinfection in
combination with microbial management will be fundamental for improved post-hatch larval survival.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

For marine fish in aquaculture, the interactions between micro-
organisms andmucosal surfaces of eggs and larvaehave been associated
with a reduction in egg hatch success and post-hatch survival of larvae
(Hansen and Olafsen, 1999). Microbial colonisation may damage the
zona pelucida by bacterial secretion of proteolytic enzymes exposing
the underlying zona radita (Hansen et al., 1992; Pavlov and Moksness,
1993). Reduced hatch success and premature or delayed hatching
have been attributed to toxins secreted by certain bacterial colonies
(Olafsen, 2001). Similarly, lethal effects may arise from the physical
prevention of chorion gas exchange and intra-oocyte oxygen supply as
reviewed by Hansen and Olafsen (1999). The requirements for oxygen
during embryonic development is greatest during the late incubation
period (Hempel, 1979),whichoften coincideswith thedensest bacterial
coverage (Hansen andOlafsen, 1989; Pavlov andMoksness, 1993). Such
microbial colonisation may be prominent in aquaculture, especially
in egg incubators that often contain high egg densities and ample
substrate supporting growth of micro-organisms (Olafsen, 2001).
Under natural circumstances, the number of bacteria associated with
eggs will generally be lower and colonisation effects on hatch success
are likely to be limited as reported for sardine (Míguez et al., 2004).

European eel (Anguilla anguilla) is a well-known species in
aquaculture, but captive breeding has not yet been established partly
due to complex natural hormonal control mechanisms of eel reproduc-
tion (Dufour et al., 2003) and difficulties in eel larval rearing and
ongrowing (Okamura et al., 2009). Recent experimental research
applying hormonally induced maturation has resulted in production of
leptocephalus larvae and glass eels of Japanese eels (Anguilla japonica)
(Ijiri et al., 2011) aswell as production of viable eggs and yolk-sac larvae
of European eel (Tomkiewicz, 2012). For European eel, present incuba-
tion and larval rearing conditions are suboptimal, resulting in high
mortality in the embryonic and yolk-sac stages, thus few larvae survive
until first feeding. Mortality and disease during egg and larval culture of
marine species in aquaculture are often associatedwith an uncontrolled
microbial community (Olafsen, 2001). Microbial interference is likely a
challenge for the embryonic and early post-hatch development of
European eel. In nature, early life stages of European eel prevail in the
Sargasso Sea with eggs assumed to be neutrally buoyant in the depth
range between 50 and 150 m (Castonguay and McCleave, 1987;
Riemann et al., 2010). Water sample analyses from this aquatic layer
suggest that this is an oligotrophic environment, low in phytoplankton
and zooplankton (Rowe et al., 2012) and bacterial density (app.
4.6–8.8 × 105 colony forming units (CFU) mL−1) (Rowe et al., 2012).

Sensitivity of European eel eggs and larvae towards microbes
is presently unknown. A previous study on sardines in their native
environment examined bacteria loads on eggs by methods of washing
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and detaching adheringmicrobes prior to quantitative analysis (Míguez
et al., 2004). Here bacteria were found in low numbers (1 × 102 CFU)
and attachment to eggs had no effect on hatch and survival. In aquacul-
ture, however, bacteria numbers can be higher (Hansen and Olafsen,
1999) and bacteria composition is different from natural habitats
(Bergh et al., 1992). As reported for severalmarinefish species, microbi-
al interference can be severe (e.g. Bergh et al., 1992) and microbial
interferencemay be of significance for European eel embryos and larvae
in captive breeding. Assessing the importance of microbial interference
will therefore be useful for optimising culture of early life stages for this
species.

In this context, the aim of this study was to investigate if high
mortality during egg incubation and larval culture of European eel
results from microbial interference. Microbial presence and activity on
fertilised eggs were manipulated using antibiotic and disinfection
treatments to investigate effects on hatching success and subsequent
larval mortality. An analytical method based on scanning electron
microscopy (SEM) was developed for quantification of microbial
coverage of the egg surface. The estimated microbial coverage of eggs
was related to hatching success and larval survival to assess the impact
on European eel larviculture and to make recommendations for future
culture methods.

2. Materials and methods

2.1. Broodstock and gamete production

Female silver eels were obtained from a freshwater lake, Lake
Vandet, in northern Jutland, Denmark, while males originated from a
commercial eel farm (Stensgård Eel Farm, Denmark). The broodstock
was transported to a research facility of the Technical University of
Denmark (DTU) and transferred to 300 L tanks in a recirculation system
and acclimatised to artificial seawater adjusted by Tropic Marin® Sea
Salt (Dr. Biener Aquarientechnik, Germany) to ~36 ppt and ~20 °C
(Tomkiewicz, 2012). Broodstock was maintained in a natural daylight
regime i.e. a 12 h photoperiod with a gradual 30 minute shift to dark
conditions. Prior to experiments, fish were anaesthetized (ethyl
p-aminobenzoate, 20 mg L−1; Sigma-Aldrich Chemie, Steinheim,
Germany) and tagged with a passive integrated transponder (PIT tag).

Females were thereafter matured by weekly injections of salmon
pituitary extract (SPE 18.75 mg kg−1 body weight) and males
similarly by weekly injections of human chorionic gonadotropin
(hCG 1.0 mg kg−1 body weight). Female ovulation was induced
using the maturation inducing steroid, 17α,20β-dihydroxy-4-
pregnen-3-one (DHP) (Tomkiewicz, 2012).

2.2. Water quality in fertilisation, incubation and larval culture

Natural North Sea seawater (32.5 ppt) was filtered using a drop-in
housing cartridge filter (0.8 μm, CUNO 3M®, St. Paul, MN, USA) and
salinity adjusted to full-strength seawater (FSW; 36 ppt) using Tropic
Marin® Sea Salt. Salinity was verified using a conductivity metre
(WTW Multi 3410, Wissenschaftlich-Technische Werkstätten GmbH,
Weilheim, Germany). FSW was used in egg activation, fertilisation,
incubation, and larval cultures. Water was kept at 20 °C and aerated
using an airstone during the experiments. FSW used in Experiments 1
and 2, onmicrobial interference, was autoclaved prior to use, i.e. filtered
autoclaved sea water (FASW).

2.3. Fertilisation and incubation

Milt was collected 2 h prior to fertilisation from three to four
males by applying gentle abdominal pressure. Sperm motility was
characterised within 30 s of activation using an arbitrary scale
where 0 represents no motile sperm, I represents b25%, II represents
25–50%, III represents 50–75%, IV represents 75–90% and V represents

90–100% of motile spermatozoa (Sørensen et al., 2013). The percentage
of motile cells was determined using a Nikon Eclipse 55i microscope
(Nikon Corporation, Tokyo, Japan), equippedwith aNikon 400×magni-
fication (40× CFI Plan Flour). Spermwith amotility lower than 50%was
not used. Milt was diluted in an artificial seminal plasma medium,
hereafter P1 media (Asturiano et al., 2004). The milt dilution ratio was
adjusted (Ohta et al., 1996) to 1:99. Diluted sperm was kept in sterile
culture flasks at 4 °C prior to mixing with eggs (Sørensen et al., 2013).
Eggswere stripped into dry and sterilised containers and 1ml of diluted
sperm was added per 2 g of eggs, and then activated by adding FSW.
After activation, gametes were moved to 15 L of FSW for 1 h. Buoyant
eggs were skimmed into 15 L of fresh FSW to remove excess sperm
and negatively buoyant (dead) eggs.

Two hours later, eggs were moved to a 60 L incubator holding FSW
for ~300 g buoyant eggs at 20 °CC ± 0.5. Eggs were kept in suspension
by gentle aeration through an air diffuser. Dead eggs were removed
regularly by purging froma bottomvalve to prevent build-upof bacteria
(Keskin et al., 1994). Fifteen hours post fertilization (HPF), incubator
FSW was renewed. Each batch of eggs was quality screened and only
egg batches showing normal embryonic development were applied in
Experiments 1 and 2. All incubation equipment was cleaned using
Virkon-S 2% solution (Virkon-S®, DuPont, USA) between batches.

2.4. Experiment 1: effect of antibiotic treatment on egg hatching and larval
survival

In Experiment 1, ~10,000 eggs were collected from the incubator at
23 HPF, rinsed gently twice using a 100 μm sieve and 1 L FASW, and
transferred to a glass beaker containing 1 L FASW. From the rinsed
eggs, 4000 eggs were evenly distributed to ten beakers with FASW.
Beaker onewas kept as control and beaker two to ten received different
antibiotic treatments as described in Table 1. The final volume in each
beaker was 900 mL.

For assessment of hatching success, 3 × 48 eggs from each treatment
beaker were transferred to multiwell plates (48-well, Nunc® Non-
treated, Thermo Scientific) with each well containing 1 egg and 1 mL
of treatment water (Table 1). Subsequently, multiwell plates were
covered with lids and incubated in a temperature controlled environ-
ment at 20 ± 0.5 °C (MIR-154 Incubator, Panasonic Europe B.V.) at a
light intensity b5 lx. Hatching success was assessed by counting the
number of hatched larvae in each plate at 55 HPF.

For assessment of larval survival, the ten treatment beakers with
remaining eggs were incubated in the same temperature controlled
environment as the multiwell plates. After hatching at 55 HPF, 4 × 30
hatched larvae were chosen at random from each treatment and trans-
ferred to 4 sterile media flasks (Nunc® 75 cm2 Flasks, Non-treated with
Ventilated Caps, Thermo Scientific) containing 200 mL of new FASW.
Each flask contained newly prepared water with the same antibiotic
mixture as the beaker fromwhich larvae originated, and was incubated
as described above. Survival was determined daily by counting the
larvae, until 350 HPF, which coincides with the expected time of first
feeding (Tomkiewicz, 2012) avoiding starvation effects. All counting
procedures were performed under low intensity red light to avoid
stressing the larvae.

In order to assess the antimicrobial activity of applied antibiotics,
five eggs were transferred at 40 HPF from the FASW beaker (control)
to a petri dish with marine agar (BD Difco™, BD Diagnostic Systems)
for culturing egg-associated microbes. The plate was incubated at 20 ±
0.5 °C for 24 h. A mixture of the grown bacteria was sampled and
further grown in amarine broth (BD Difco™, BD Diagnostic Systems)
for 24 h at 28 °C on an orbital shaker. The mixed culture was then
washed with FASW and diluted using FASW to an optical density of
1 at 600 nm. Antibiotic solutions was then prepared according
to Table 1 and inoculated with freshly grown culture at 1 vol.%
(resulting in ~106 CFU mL−1) along with a negative control
(FASW). From inoculated cultures 3 × 200 μL aliquots were
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transferred to a 96-well plate (Multiwell, Nunc® Non-treated,
Thermo Scientific). Optical density at 600 nm (OD600nm) was
measured every hour for 24 h (Tecan Infinite M200, Tecan Group
Ltd. Männedorf, Switzerland). Cultures that did not show an increase
in OD600nm after 24 h were serial dilution plated on marine agar to
determine the bacterial density.

2.5. Experiment 2: effect of egg surface disinfection on hatching success and
larval survival

Approximately 10,000 eggs from a different egg batch were collect-
ed at 28HPF. Eggs were rinsed twice using a 100 μmsieve and 1 L FASW
and transferred to a glass beaker containing 1 L FASW. From the rinsed
eggs, 4000 eggs were evenly distributed into six beakers each subjected
to a disinfection treatment as described in Table 1, using the following
procedure: eggs were concentrated on a 100 μm sieve and submerged
into disinfection solution while gently swirling the sieve. Subsequently,
eggs were washed two times on the sieve in 800 mL FASW. Each batch
of eggs was finally incubated in a beaker containing 900mL FASWwith
ARlow antibiotic mixture.

For determination of hatching success, 3 × 48 eggs were transferred
from the beakers to 48-well plates as in Experiment 1. Similarly, larval
survival was determined as described in Experiment 1, with the
exception that all media flasks contained FASW with ARlow antibiotic
mixture.

Eggs were sampled for assessment of egg chorion microbial cover-
age. Immediately after disinfection andwashing, 5 eggs from each treat-
ment were sampled and fixed in 2.5% glutaraldehyde (Grade I, Sigma-
Aldrich, Missouri, USA) with 0.1 M phosphate buffered saline (PBS),
pH 7.4. Preserved eggs were dehydrated according to a modified proce-
dure of Laforsch and Tollrian (2000). In brief, eggs were rinsed in 0.1 M
PBS and dehydrated in a graded series of ethanol (70%, 95%, 3 × 100% for
30min each). After the last dehydration step, eggs were transferred to a
50:50 solution of pure ethanol and hexamethyldisilazane (HMDS)
(Sigma-Aldrich, USA) for 30 min, and then to pure HMDS for 30 min.
After this step, excess HMDS was removed leaving only enough to
cover the sample, which was then transferred to a desiccator with

evacuation. Once eggs were chemically dried, they were mounted on
aluminium stubs onto double-sided carbon tape by aid of a dissection
microscope, and sputter coated with gold (E5000, Polaron).

2.6. Assessment of microbial egg chorion coverage using SEM

Sampleswere viewed on anXL FEG 30 scanning electronmicroscope
(Philips, The Netherlands) with an acceleration voltage of 2 kV and a
working distance of 5 mm. Quantification of microbial egg surface
coverage was done as follows: the exposed hemisphere of each egg
was photographed at five surface regions, in the centre of the egg and
in each quadrant (Fig. 1, Step 1). A region of interest (ROI) was selected
at a low magnification (×20) that precluded any visual details of egg
surface andbacterial coverage to assure anunbiased selection of images.
Magnification was subsequently increased to ×5.000 for image acquisi-
tion (Fig. 1, Step 2). If initial ROI provides an image unsuited for quanti-
fication, such as a folded or slanted surface area, the SEM stage was
moved towards the right until a framewith an image suited for acquisi-
tion appeared. From each of the five surface images, three replicate
conversions to binary images were done following adjustment of
contrast and threshold to distinctly outline colonies from chorionic
surface (Fig. 1, Step 3). Subsequently, the three binary images were
analysed using the particle analyser function in the software ImageJ
(Rasband, 1997–2012) to measure surface coverage (Fig. 1, Step 4).
For each binary image, an initial measurement of the smallest and larg-
est bacterial colony was made to set the range of colonies to measure.
Finally, the average values of the 15 binary surface images yielded the
average egg surface coverage.

2.7. Statistical analysis

Statistical analyses for survival data in Experiments 1 and 2 were
performed using SAS software (v.9.1; SAS Institute Inc., Cary, NC, USA;
SAS Institute Inc., 2003). Data for hatching and microbial coverage was
analysed using Sigmaplot v. 11 (Systat Software Inc., Hounslow, UK).
Data were square root transformed when necessary to meet normality
and homoscedasticity assumptions. Differences in treatment means

Table 1
Overview of antibiotic treatments used in Experiment 1 and disinfection treatments used in Experiment 2 for incubation of eggs and larvicultures of European eel (Anguilla anguilla).

Experiment 1: antibioticsa Treatment Antibiotic mixtures and concentrations

FASW Filtered autoclaved seawater — control
PSlow Penicillin (20 ppm), streptomycin (30 ppm)
PSmed Penicillin (45 ppm), streptomycin (65 ppm)
PShigh Penicillin (60 ppm), streptomycin (100 ppm)
ARlow Ampicillin (10 ppm), rifampicin (10 ppm)
ARmed Ampicillin (50 ppm), rifampicin (50 ppm)
ARhigh Ampicillin (100 ppm), rifampicin (100 ppm)
ARKTlow Ampicillin (10 ppm), rifampicin (10 ppm),

kanamycin (10 ppm) trimethoprim (10 ppm)
ARKTmed Ampicillin (50 ppm), rifampicin (50 ppm),

kanamycin (50 ppm), trimethoprim (50 ppm)
ARKThigh Ampicillin (100 ppm), rifampicin (100 ppm)

kanamycin (100 ppm), trimethoprim (100 ppm)

Experiment 2: disinfection b Treatment Disinfection compound Disinfection treatment

FASW No treatment Filtered autoclaved seawaterc

GLUT Glutaraldehyde 100 ppm, 2.5 min
S HYP 100 Sodium hypochlorite 100 ppm, 10 min
S HYP 50 Sodium hypochlorite 50 ppm, 5 min
H2O2 0.2% Hydrogen peroxide 2000 ppm, 15 min
H2O2 0.6% Hydrogen peroxide 6000 ppm, 5 min

a All antibiotics were purchased from Sigma-Aldrich. Penicillin G sodium salt, streptomycin sulphate salt, ampicillin sodium salt and kanamycin sulphate salt (from Streptomyces
kanamyceticus) were dissolved in FASW. Rifampicin and trimethoprimwere dissolved inmethanol prior to addition in FASW. Salt-content of antibiotics was considered and not included
in concentrations.

b Glutaraldehyde (25% Grade II), sodium hypochlorite, and hydrogen peroxide (30% active) were purchased from Sigma-Aldrich.
c Mimicking handling associated with disinfection treatment.
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were detected using the Tukey's least squares means method. All data
are presented as mean ± standard deviation (SD). Significance was
set at α of 0.05 for main effects and interactions.

Larval survival data were analysed using repeated measures
ANOVAs using the following selected time points for Experiment 1:
100, 200, 300, and 350 HPF, and for Experiment 2: 100, 200, and 250
HPF (50 HPF was time of loading newly hatched larvae i.e. 100% surviv-
al). Data were square root transformed when necessary to meet nor-
mality and homoscedasticity assumptions. When interactions were
detected (time × treatment), reduced one-way ANOVA models were
run at each sampling time to determine treatment effects. Within the
reduced models only pre-planned comparisons were performed with
no repeated use of the same data. Therefore α-level corrections for
comparisons were not necessary. Hatching success data for Experi-
ments 1 and 2 were analysed using a one-way ANOVA.

The microbial coverage of egg chorion in Experiment 2 was tested
using a one-way ANOVA on ranks (Kruskal–Wallis) and pairwise
multiple comparison tests (Dunn's method) due to violation of the
homoscedasticity assumption.

3. Results

3.1. Experiment 1: effect of antibiotic treatment on hatching success

The hatching success was significantly improved by the application
of any of the antibiotic treatments (one-way ANOVA; P b 0.001) with
about a doubling of the number of hatched larvae as compared to the
FASWcontrol treatmentwithout antibiotics. Themeanhatching success
in FASWwas 37.8%, while the antibiotic treatments ranged from 67.7 to
81.9% (Fig. 2). No significant differences were detected in hatching
success between the antibiotic treatments.

3.2. Experiment 1: effect of antibiotic treatment on larval survival

Larval survival decreased over the experimental period but the
antibiotic treatments showed capable of improving larval survival
(Fig. 3). The repeatedmeasures ANOVA showed a significant interaction
between time and antibiotic treatment (repeated measures ANOVA; P
b 0.001), therefore separate one-way ANOVA tests were run at 100,
200, 300, and 350 HPF. At each of these time points, significant treat-
ment effectswere detected (one-way ANOVA's; P b 0.001). In summary,
the ARmed, ARKTmed, and ARKTlow showed the highest survivals

throughout the experimental period. Within the specific time point at
100 HPF, the AR and ARKT treatments had the highest survival as com-
pared to the PS treatments,while the FASW showed the lowest survival.
At 200 HPF, no survival was detected in the PS and FASW treatments,
while ARmed, ARKTmed and ARKTlow showed the highest survival. At
300 HPF, ARmed, ARKTmed, and ARKTlow showed a higher survival as
compared to ARlow, ARhigh, and ARKThigh. Finally, at 350HPF the ARKTlow

and ARKTmed showed the highest larval survival.

3.3. Experiment 1: effect of antibiotic treatments on growth of egg-
associated microbiota

Optical density (OD600nm) curves, representing growth of egg-
associated bacteria over time in antibiotic solutions, are shown in
Fig. 4. FASW showed the highest indicator level of bacterial growth,
with an OD600nm that increased from 0.06 to 0.6 over the 24 h period.
The PSlow and PSmed treatments also showed growth, although a bacte-
riostatic effect was evident as compared to the FASW control. The
remaining cultures showed no growth and resembled the negative con-
trol treatment. Dilution plating of cultures with no growth after 24 h

Fig. 1. Procedure to obtain average percent of microbial surface coverage on European eel, Anguilla anguilla, eggs based on scanning electron microscopy (SEM) images. Step 1: choose
photo frame at random sites within five regions on the egg hemisphere; central region and in each quadrant. Step 2: capture suitable images. Step 3: convert to 5 × 3 binary images.
Step 4: calculate average coverage.
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Fig. 2. Larval hatch of European eel, Anguilla anguilla (in %) treated with the different
combinations of antibiotics indicated in Table 1. Bars show means ± SD. Bars with
different superscripts are significantly different (α = 0.05; one-way ANOVA analysis).
Standard deviation (SD) is not shown for ARKTmed due to loss of one of three replicates.
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indicated that the PShigh culture acted bacteriostatic, resulting in a con-
stant density, while the remaining treatments acted bactericidal, as
there was a decrease in cell density from ~1 × 106 to ~1 × 103 or less
(Table 2).

3.4. Experiment 2: effect of disinfection on hatching success

Hatching success following disinfection treatment is illustrated in
Fig. 5. Egg disinfection with GLUT and H2O2 was not found significantly
different regarding hatching success compared to non-disinfected eggs
(FASW) (one-way ANOVA; P = 0.403). In contrast, treatments with
sodium hypochlorite proved fatal for the eggs, as these immediately
turned opaque white and died.

3.5. Experiment 2: effect of disinfection on larval survival

Larval survival decreased over the experimental period (Fig. 6). Re-
peated measures ANOVA showed a significant interaction between
time and antibiotic treatments (repeated measures ANOVA; P b 0.001)
as such separate one-way ANOVA tests were run at 100, 200, and 250
HPF. At each time point significant treatment effects were detected
(one-way ANOVA; P b 0.001). In summary, the 0.6% H2O2 treatment
showed the highest survival throughout the experimental period.With-
in the specific time point at 100 HPF, the disinfection treatment with
0.6% H2O2 had the highest survival and the control treatment (FASW)
had the lowest survival. At 200 HPF, this pattern was retained with lar-
val survival being highest in the 0.6% H2O2 followed by 0.2% H2O2, GLUT
and then FASW. At 250 HPF, the pattern was similar with the exception
of GLUT now being similar to FASW survival. The control treatment
(FASW) in this Experiment 2 (as well as the other treatments)
contained the ARlow antibiotic mixture during the incubation phase
similar to the ARlow treatment in Experiment 1 (Table 1), but larval
survival was lower than seen in Experiment 1 in this treatment (Fig. 3).

3.6. Experiment 2: assessment of microbial egg chorion coverage

A clear visual effect of disinfection treatment on microbial egg
chorion coverage was observed on eggs fixed after disinfection
(Fig. 7A). The average coverage of each treatment is exemplified with
the selected pictures illustrated in Fig. 7B. One-way ANOVA on
the numerical data supports this observed effect (one-way ANOVA;
P b 0.001). The box plot of microbial surface area coverage in Fig. 8
shows the 0.6% H2O2 treatment to efficiently remove microbial
surface coverage and being significantly different from the other
treatments (Dunn's; P b 0.05). A wide scatter in coverage was
observed for the FASW treatment mainly due to one particular egg
with an average coverage of only 3.5%, while the remaining 4 eggs
had an average of 30.6 ± 12.5%. The FASW treatment was not
significantly different from the GLUT or 0.2% H2O2 treatment
(Dunn's; P N 0.05) but differed from the 0.6% H2O2 treatment
(Dunn's; P b 0.05). Regression analysis showed a significant linear
relationship between microbial egg surface coverage and larval
survival at both 100 HPF (R2 = 0.45, P = 0.002), 150 HPF (R2 =
0.43, P = 0.004); 200 HPF (R2 = 0.48, P = 0.002); and 250 HPF
(R2 = 0.42, P = 0.005).

4. Discussion

Microbial interference is known to be an important factor affecting
egg and larviculture for several marine fish species (Hansen et al.,
1992; Oppenheimer, 1955; Shelbourne, 1963), and severity can be
species-specific (Hansen and Olafsen, 1989). Studies on the closely re-
lated Japanese eel indicate that microbial interference may be an issue
in eel larviculture (Ohta et al., 1997; Okamura et al., 2009; Unuma
et al., 2004) as a high concentration of streptomycin (100 ppm) and
penicillin (60 ppm) has been used for egg incubation and larvae cul-
tures. Our study is the first to investigate the sensitivity to and effects
of microbial interference on early life stages of European eel. The find-
ings suggest thatmicrobial control will be required for successful hatch-
ery culture of this species.

Antibiotics serve as an effective tool in microbial management
(Alderman and Hastings, 1998; Cabello, 2006) and led in our study to
a 100% increase in egg hatch success as compared to untreated controls.
The antibiotic treatments of the eggs were applied in the last half of the
incubation period; considering that European eel embryonic develop-
ment lasts ~48 h at 20 °C. The improvement of larval hatching success
using antibiotic treatment implies that activity of egg-associatedmicro-
biota in the last half of the incubation period significantly influence
embryonic survival. The application of egg surface disinfection prior to
incubation in antibiotics (ARlow) did not significantly improve egg
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hatching success. The novel SEM based approach to quantify microbial
egg surface coverage showed that the different disinfection treatments
significantly altered the degree ofmicrobial presence on the egg surface.
It can thus be concluded that physical coverage by bacteria was not the
sole determinant of eel egg hatch success.

Microbial colonisation of the egg surface may interfere with oxygen
supply, which is an important cue for larval hatching, operating both as
a trigger or inhibitor of hatching depending on the species under con-
sideration (Korwin-Kossakowski, 2012; Martin et al., 2011). In the
case of hypoxia triggering hatching, it is the short-term low oxygen
level that stimulates increased movement of the embryo, mixing of
perivitelline fluids within the egg and increased distribution of released
chorionase enzymes (hatching enzymes) secreted from embryonic
glands (Czerkies et al., 2001; Martin et al., 2011). The demand for oxy-
gen is generally low in fish eggs during the early embryonic stages but
increases gradually during the later stages (Czerkies et al., 2001;
Hempel, 1979). Consequently, an effect of chorion blockage on embry-
onic development ismost critical at the later stages. During these stages,
tail formation occurs in the eel embryo and vital functions like heart-
beat, motion and finally hatching set in (Pedersen, 2004). A limitation
of oxygen supply through longer periods of the incubationwill presum-
ably lead to detrimental effects on embryonic development simply due
to oxygen transfer blockage as has been shown for clay particle blockage
in salmon eggs (Greig et al., 2005). Increased microbial activity or
coverage on the egg surface may limit oxygen availability and thus
may have impaired embryo development.

The similarity in hatching success for different disinfection treat-
ments despite the observed differences in egg chorion coverage renders
it unlikely that physical coverage by bacterial colonisation is a determin-
ing factor for hatching success. On the eel eggs, however, the microbial
coverage was less complex and thinner than observed for Atlantic cod
(Gadus morhua) and Atlantic halibut (Hippoglossus hippoglossus)
(Bergh et al., 1992; Hansen and Olafsen, 1989, 1999) which may relate
to the shorter egg incubation time for eels (48 h at 20 °C). Aerobic bac-
terial activity, however, may have scavenged oxygen from the egg sur-
face thereby limiting oxygen diffusion and creating internal hypoxic
conditions (Hansen and Olafsen, 1999; Czerkies et al., 2001). While

the activity of egg surface bacteria has been shown to disrupt the fish
egg chorion by exoproteolytic enzyme production (Hansen and
Olafsen, 1989; Hansen et al., 1992; Pavlov and Moksness, 1993), none
of our SEM images showed indications of abnormal changes to the egg
chorion. The mechanism that reduced hatch success in our studies
cannot be deduced from our data, however the fact that all treatments
with antibiotics had higher success than the control and even the ones
only acting mildly bacteriostatic (e.g. PSlow), suggests that microbial
activity is influencing embryonic survival.

In addition to affecting egg hatch success, microbial activity during
egg incubation also clearly affected larval quality. The experiment
using antibiotics demonstrated that survival of larvae was positively
related to the degree of microbial control. The survival curves distin-
guished two groups, one group surviving no longer than ~180 HPF
(FASW, PSlow, PSmed and PShigh) and another surviving longer than
~300 HPF (ARlow to high and ARKTlow to high). This grouping
corresponded to whether the antibiotics acted bacteriostatic (PSlow,
PSmed, and PShigh) or bactericidal (ARlow to high and ARKTlow to high)
according to the microbial growth curves and subsequent plating cul-
tures. Treatments that acted bactericidal gave highest larval longevity
and in particular the low and medium concentrations seemed to
increase survival. Studies on the toxicity of ampicillin and rifampicin
towards fish embryos and larvae are limited, but our data suggest an
upper limit formixed concentrations between 50 ppmand 100 ppm. De-
creasingmicrobial coverage by disinfection also increased the survival of
hatched larvae and an inverse relationship between the microbial
surface coverage on egg and the larval survival was observed.

Microbial interference during early stages of yolk-sac larvae is
known to inducemortality (Vadstein et al., 2007). The bacterial growth
curves from the PS treatments (PShigh, PSmed, and PSlow) illustrate that
the merely bacteriostatic effect of PS treatments may have allowed mi-
crobial activity during culture of larvae and thus may have contributed
to larval mortality in the PS mixture masking potential effect of treat-
ment during egg incubation. No studies are available on immune

Table 2
Cell density before and after incubation of European eel (Anguilla anguilla) egg-associated bacteria in different antibiotic treatments for 24 h.

Antibiotics PShigh ARlow ARmed ARhigh ARKTlow ARKTmed ARKThigh

Initial density (CFU mL−1) 4.1 × 106 4.1 × 106 4.1 × 106 4.1 × 106 4.1 × 106 4.1 × 106 4.1 × 106

Density after 24 h (CFU mL−1) 2.9 × 106 6.2 × 103 2.6 × 103 2.0 × 103 3.4 × 103 b1 × 103 b1 × 103

Δ density (CFU mL−1) 1.90 × 106 −9.94 × 105 −9.97 × 105 −9.98 × 105 −9.97 × 105 −9.99 × 105 −9.99 × 105
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response for European eel larvae, but Japanese eel larvae have been
shown to possess a weak innate immune system in the yolk-sac stage
with only few blood cells and hardly any lymphocytes (Suzuki and
Otake, 2000). This indicates a low tolerance to host–microbe interac-
tions in the early preleptocephali stage and suggests that eel larvae
are highly sensitive to microbial interference. As proposed by Suzuki
and Otake (2000) this may relate to life in the oligotrophic ocean
depths. Japanese eel larvae do, however, show exceptionally high con-
centrations of lectins in the skin mucus. Lectins are a part of the non-
specific immune system, transferred maternally (Dong et al., 2004;
Zhang et al., 2013), capable of binding to the carbohydrate surface of
pathogens facilitating neutralisation of these (Magnadottir et al., 2005;
Nielsen and Esteve-Gassent, 2006; Swain and Nayak, 2009; Watanabe

et al., 2013). Lectins are, however, likely highly pathogen specific
(Watanabe et al., 2013), and thus may not ensure protection against
the pathogens in hatcheries.

Overall, thefindings from the present experiments illustrate thatmi-
crobial control during the egg and larval stages is a contributing factor of
importance for larviculture of European eel. As prophylactic use of
antibiotics is not a sustainable way to prevent negative microbial inter-
actions, the application of environment friendly alternatives is a neces-
sity. The application of egg surface disinfection with hydrogen peroxide
at 24 HPF appears adequate for the removal of egg associated micro-
organisms and is not associated with health hazards as is the case for
glutaraldehyde (Jara et al., 2013). Re-colonisation of the egg surface by
fast-growing opportunistic micro-organisms should however be
prevented. Future studies implementing the principle of r/K-selection
in the environmental microbial community (Andrews and Harris,
1986; Skjermo et al., 1997; Vadstein et al., 1993) implying incubation
of disinfected eggs in water containing bacteria with a high half satura-
tion constant (Ks) and low growth rate, the so-called K-strategists, is
suggested. Colonisation by such bacteria could prevent colonisation of
the egg chorion by fast growing opportunists (r-strategists) and may
be a useful strategy (Hansen and Olafsen, 1999). Recirculation systems
implying a selection for a microbial community composed of mainly
K-strategists have been proven to sustain high larval survival
(Attramadal et al., 2012a, 2012b) and are probably the best culture sys-
tems for future eel egg incubation and larviculture. Microbial conditions
in such systems may mimic the oligotrophic environment of the
Sargasso Sea, dominated by K-strategists due to low nutrient avail-
ability (Rowe et al., 2012).
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Summary 

    

Improper activation and swelling of in vitro produced eggs of European eel, Anguilla anguilla, 

has been shown to negatively affect embryonic development and hatching. We investigated this 

phenomenon by examining the effects of salinity and sea salt type on egg dimensions, cell 

cleavage patterns, and egg buoyancy. Egg diameter after activation, using natural seawater 

adjusted to different salinities, varied among female eels, but no consistent pattern emerged. 

Activation salinities between 30 to 40 psu produced higher quality eggs and generally larger egg 

diameters. Chorion diameters reached maximal values of 1642 ± 8 μm at 35 psu. A positive 

relationship was found between egg neutral buoyancy and activation salinity. Nine salt types 

were investigated as activation and incubation media. Five of these induced a substantial 

perivitelline space (PVS), leading to large egg sizes, while the remaining four salt types resulted 

in smaller eggs. All salt types except NaCl treatments led to high fertilization rates and had no 

effect on fertilization success as well as egg neutral buoyancies at 7 h post-fertilization. The study 

points to the importance of considering ionic composition of the media when rearing fish eggs, 

and further studies are encouraged.  

 

Keywords: Artificial fertilization; Egg quality; Egg size; Perivitelline space; Buoyancy, Cortical 

reaction 
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1. Introduction 

 

Salinity has a major influence on the distribution of marine fishes in the oceanic environment 

(Holliday, 1969). Adults, juveniles, and most larvae are well adapted to changing environments, 

(Holliday and Blaxter, 1960), while egg and embryonic stages tend to be more sensitive to 

ambient conditions. Salinity optima and tolerance limits for fertilization and early embryonic 

development are apparent for marine fish species; even for those inhabiting variable 

environments, such as plaice, Pleuronectes platessa (Holliday and Blaxter, 1960). Based on 

catches of young larvae the spawning area for European eel, Anguilla anguilla is delimited to the 

southern Sargasso Sea, however, spawning adults or eggs have still not been encountered 

(Tsukamoto et al., 2011). Captive reproduction of eel is challenged by an endocrinological 

inhibition of maturation during the silvering stage, which in nature precedes spawning migration 

to the Sargasso Sea (Dufour et al., 2003). Eel broodstock are therefore matured via hormone 

therapy (Dufour et al., 2003), and recent advancements in reproduction methods of European eel 

have advanced to a state where large quantities of viable gametes, eggs and yolk-sac larvae can 

be regularly obtained and cultured using standardized methods (Tomkiewicz, 2012, Butts et al., 

2014; Sørensen et al., 2014). This now allows us to conduct studies on basic eco-physiological 

factors that are not known in the natural environment for European eel, such as salt and salinity 

effects on eggs/embryos, which are important for gamete activation and fertilization. 

 

Egg activation is a key process in early embryonic development of fishes, triggered by the 

contact between eggs, sperm, and an aqueous medium (i.e. seawater or freshwater). The process 

of egg activation, although not fully understood (Webb and Miller, 2013), follows a general 

mechanism initiated by a release of intra-cellular stored Ca2+ in between the chorion (egg 

envelope) and the yolk membrane (Coward et al., 2002; Alavi et al., 2008). Ca2+ release mediates 

the cortical alveoli, embedded in the plasma membrane around the yolk to exocytose cortical 

proteins (Laale, 1980; Cerdà et al., 2007). Cortical proteins are then broken into smaller units by 

proteolysis and form the osmotic gradient that facilitate uptake of seawater from the environment 

across the chorion (Lønning and Davenport, 1980; Govoni and Forward, 2008). This process 

forms and expands the perivitelline space (PVS) and is facilitated by the flexible structure of the 

chorion. The release of intra-cellular stored Ca2+ is relatively high during this period, and besides 

triggering the cortical reaction, it is assumed to counteract polyspermy, early cell cleavage 
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patterns, and embryonic development (Coward et al., 2002; Claw and Swanson, 2012). Size of 

the PVS determines final egg size and differs between species (Davenport et al., 1981). The PVS 

serves as an important “cushioning” incubation medium for the embryo and provides an essential 

buffer and sink for nitrogenous wastes during embryogenesis (Finn, 2007).  

 

Activated eggs of European eel and Japanese eel, A. japonica have, as seen for other primitive 

species, a remarkably large PVS (Govoni and Forward, 2008) and a prominent oil droplet that is 

part of the egg yolk (Heinsbroek et al., 2013). Natural egg size of European eel remains 

unknown, but the diameter of Japanese eel eggs in nature range from 1490 to 1710 m in contrast 

to the somewhat smaller eggs from captivity-bred broodstock, i.e. 1300 to 1600 m (Tsukamoto 

et al., 2011). In early reproduction experiments of European eel, unfertilized egg sizes ranged 

from 930 to 1400 m (Fontaine et al., 1964), 1000 to 1100 m (Villani and Lumare, 1975; 

Boëtius and Boëtius, 1980) and up to 1200 to 1600 m (Kokhnenko et al., 1977). Pedersen, 2003 

obtained fertilized eggs of ~1000 m and recorded unfertilized eggs from a spontaneous 

spawning female to be 1400 m. Additionally, Palstra (2005) obtained a few developing embryos 

and presents an illustration with an egg of unspecified size (Palstra et al., 2005), although this 

appears large, presumably ~1500 m. Such variation among eggs together with the apparent 

larger size of wild-caught Japanese eel eggs, points to a suboptimal activation process in the 

assisted reproduction procedures. Insights into factors affecting egg swelling are therefore seen as 

crucial for successful in vitro production of eel offspring (Yoshinaga et al., 2011). 

 

Besides the protective PVS, marine pelagic fish eggs depend on a hydrostatic lift to facilitate 

embryonic development in their environment (Govoni and Forward, 2008) and lack of sufficient 

buoyancy is a known defect of eel eggs produced in captivity (Seoka et al., 2003). Egg buoyancy 

is determined during oocyte maturation in the ovary and pelagic species exhibit a particularly 

high proteolysis of yolk proteins into free amino acids (FAA) (Cerdà et al., 2007; Thorsen and 

Fyhn, 1996). FAA increases the osmotic potential and cause an aquaporin mediated water uptake 

of maternal isosmotic water during the hydration process. In turn, this causes the oocyte to swell 

(Fabra et al., 2005; Cerdà et al., 2007; Govoni and Forward, 2008). The difference between egg 

osmolality and that of the seawater environment promotes final egg buoyancy for which 80% is 

due to maternal fluids absorbed by the oocyte, and the remaining ~20% is facilitated by oil 

droplets and yolk lipids (Cerdà et al., 2007; Govoni and Forward, 2008).  
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Preliminary studies on the European eel revealed that use of natural seawater was a 

prerequisite for obtaining viable eggs (Tomkiewicz and Jarlbæk, 2008). Use of natural seawater 

in experiments is however problematic, while collection of water is influenced by the natural 

variability. A selection of commercial available marine salt types, varying in composition 

(Atkinson and Bingman, 1997), enables the possibility to test whether such artificial seawater 

could be a more stable media for in vitro fertilization and experiments. Investigation of the 

applicability of artificial seawater would therefore be of value for understanding the eco-

physiological response of oocytes in different media, and could lead to an improvement of in 

vitro fertilization conditions.  

 

In this study, activation and fertilization processes were explored using a range of salinities, 

seawater and salt types in order to reveal their effects on: 1) magnitude and size of the PVS, 2) 

resulting egg size, 3) fertilization success and early cleavage patterns, and 4) neutral buoyancy of 

the eggs. 

 

2. Material and methods 

 

2.1 Broodstock and gamete management  

Female silver eels were obtained from a freshwater lake (Lake Vandet, Denmark). Eels were 

transported, to a research facility of the Technical University of Denmark (DTU) and stocked in 

300 L tanks in a recirculation system at a density  30 kg per m3. Broodstock was acclimatized to 

artificial seawater adjusted by Tropic Marin® Sea Salt (Dr. Biener Aquarientechnik, Germany) to 

~35 psu and maintained at ~20°C under dimmed light conditions at ~20 lux imitating natural 

daylight, dusk/dawn; local diurnal periodicity. Prior to experiments, fish were anaesthetized 

(ethyl p-aminobenzoate, 20 mg L-1; Sigma–Aldrich Chemie, Steinheim, Germany) and tagged 

with a passive integrated transponder (PIT tag). No feed was provided during experiments, as 

maturing eels cease feeding (Pankhurst and Sorensen, 1984).  

 

To induce vitellogenesis females received weekly injections of salmon pituitary extract (SPE; 

18.75 mg kg-1 body weight, Argent Chemical Laboratories, Washington, USA). Females were 

weighed weekly and at 10% increase, biopsies were routinely made for evaluation of oocyte 
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development. At ~oocyte stage 3 (Palstra et al., 2005), females received another injection of SPE 

as a priming dose to stimulate final maturation. Females were injected, ~24 h after receiving the 

SPE priming, with an injection of maturation-inducing steroid (MIS; 17 ,20ß-dihydroxy-4-

pregnen-3-one; Sigma-Aldrich Denmark A/S,) (Ohta et al., 1996). In the timespan of 12 to14 h 

after receiving MIS, eggs were stripped into dry and sterilized trays by applying slight pressure to 

the abdomen of the fish and stripped eggs were weighed (± 1 g).  

 

Male broodstock were reared at Stensgård Eel Farm in Jutland, Denmark. Males (mean ± SD 

standard length and body weight were 37.6 ± 2.1 cm and 110.2 ± 13.6 g, respectively) were 

transported to DTU facility (husbandry as above) and received weekly injections of human 

chorionic gonadotropin (Sigma Aldrich Denmark A/S) at 1.5 IU g-1 fish. Milt was collected after 

7 to 8 weeks of hormonal treatment (~12 h after administration of hormone) by applying slight 

pressure along the abdominal region and for each fertilization event a pool of milt from 3 to 4 

males was utilized. Prior to milt collection, the urogenital pore was wiped dry using deionized 

water and the initial ejaculate was omitted to avoid contamination. Milt was collected into sterile 

beakers.  

 

Sperm motility was characterized, within 30 s of activation, using a Nikon Eclipse 55i 

microscope (Nikon Corporation, Tokyo, Japan), equipped with a Nikon 400 × mag. objective (40 

× CFI Plan Flour) and motilities < 50% were discarded. Sperm concentration was measured using 

spermatocrit (Haematokrit 210, Andreas Hettich GmbH & Co.KG, Tuttlingen Germany), 

obtained from spinning milt for 10 min at 6000 × g (Sørensen et al., 2013). After motility 

analyses, milt was diluted in P1 medium (Asturiano et al., 2004; Butts et al., 2014) at a ratio of 

1:99. Diluted milt was kept in sterile culture flasks at 20 C, prior to fertilization (within 2 h post-

stripping).  

 

2.2 Experiment 1: Activation salinity 

Eggs from each female (n=5, Table 1) extruded as described above were fertilized with sperm 

from an independent pool of 3-4 males, using a ratio of 1 mL of diluted milt per 2 g of newly 

stripped eggs. Activation seawater from the North Sea, kept in a 2000 L aerated tank, was 

adjusted to targeted salinities (± 0.1 psu) using an electronic conductivity meter (WTW Multi 

3410 + TetraCon325, Wissenschaftlich-Technische Werkstätten GmbH, Weilheim, Germany); 
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taking into consideration the salinity of P1 milt diluent being 10.3 psu. The seawater was adjusted 

to the desired salinities using Tropic Marin Sea Salt. pH was measured using pH-indicator strips 

(pH 6.5 to 10.0, Merck Millipore, KGaA, Darmstadt, Germany) and adjusted to pH 8.2 using 

HCl.  

 

Following mixing of gametes, samples of 3.5 g eggs (~7000 eggs) were distributed into 

triplicate weigh boats (100 mL, 7 cm × 7 cm) for each of the treatments: 30, 35, 40, 45, and 50 

psu. Each replicate was immediately activated, after mixing of gametes, using 11.7 mL of 

activation media from pre-filled disposable 20 mL syringes. Loading and gamete activation were 

performed randomly across treatments. After activation, gametes were gently poured (10 min 

post-activation) into 250 mL glass beakers containing 200 mL of the corresponding salinity 

seawater, supplemented with penicillin G at 45 ppm and streptomycin sulphate at 65 ppm 

(Sigma-Aldrich, St. Louis, Missouri). Egg/embryos were incubated in light below 50 lux at 20 ± 

0.2 °C. After 3.5 to 5 h of incubation, eggs were randomly sampled from each replicate beaker by 

gently mixing eggs to obtain a homogenous sample (see Section 2.4). Digital images of sampled 

egg were then taken (see Section 2.5.1). 

 

2.3 Experiment 2: Activation salt type 

Following stripping, samples of 3.5 g of eggs from each of females (n=5, Table 1) were randomly 

distributed into dry weigh boats (100 mL, 7 cm × 7 cm). There were triplicate samples for each 

activation treatment, which consisted of commercial salts types and natural seawater (Table 2). 

pH was measured using an electronic pH meter (model 827, Metrohm Inc. Riverview, Florida, 

USA), measuring three replicate 35 psu seawater mixtures 1 h after mixing (± 0.01 pH). 

Treatments were mixed with MilliQ water prior to use and adjusted to 35 ± 0.1 psu, taking into 

consideration the salinity of P1 milt diluent being 10.3 psu. Activation salinity was confirmed 

using an electronic conductivity meter. Each replicate was activated as described in Exp. 1 and 

sampling for imaging was performed similar to Exp. 1.  
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2.4 Egg evaluation 

2.4.1 Egg sizes 

Four digital images, from each replicate (4 × ~20 eggs), formed the basis for analysis of egg sizes 

as well as egg categories (see Section 2.4.2). Egg sizes were measured using NIS Elements image 

software (v. 3.32, Nikon Corporation, Tokyo, Japan). Except for the egg categorization (see Fig. 

1), all egg measurements were based solely on fertilized eggs. Image software was used to 

calculate egg diameter by marking five reference points around each egg membrane 

circumference thereby deriving a diameter equivalent to a circle with sphericity of 1. The chorion 

and the yolk (vitelline membrane) circumference hence formed egg chorion diameter and yolk 

diameter, respectively. Sizes were measured within 3.5 to 5 h post fertilization and obtained in 

association to egg categories described in Section 2.4.2. In Exp. 1 and 2,  15 eggs were 

measured per replicate.  

 

To quantify the rate of eggs having egg chorion diameters >1600 μm a dataset was formed 

based on egg measurements from treatments of salt and salt type from both Exp. 1 and Exp. 2. 

Treatments of salt and salt type providing significantly smaller egg sizes were not included in this 

dataset.  

 

2.4.2 Egg categorization and fertilization percent 

Four digital images, from each replicate (4 × ~20 eggs) were acquired at 3.5 to 5 h post 

fertilization and a categorization scheme was established (Fig. 1) that distinguished fertilized, 

unfertilized, and dead eggs, outlining specific characteristics within each of five egg types. 

Fertilized eggs were categorized as Type 1 (T-1), having >4 visible cells (pathogenic first 

cleavage occurs) and represent the proportion of fertilized eggs. To evaluate the regularity of cell 

cleavage patterns, fertilized eggs were subdivided into three subcategories according to early cell 

cleavage symmetry: T-1a) regular cleaved cells showing cleavage symmetry and well-defined 

cell margins with full adhesion between cells; T-1ab) cells with an overall even appearance and 

margin but minor cleavage irregularity; and T-1b) irregular cleavage planes with uneven cell 

sizes and low or no adhesion between cells (Fig. 1). Unfertilized eggs were divided into four 

categories: T-2) unfertilized but activated, showing a PVS, buoyant with mean diameter (± SD) 

of 1163 m ± 181 (N = 234), and variable oil droplets; T-3) eggs failing to activate and form a 

PVS, buoyant with a mean diameter of 917 m ± 39 (N = 219), and variable oil droplets; T-4) 
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unripe, non-ovulated eggs with visible nucleus, non-buoyant with mean diameter of 872 m ± 43 

(N = 378), and variable oil droplets; and T-5) white or opaque eggs cf. dead eggs, non-buoyant 

with mean diameter of 1029 m ± 75 (N = 481). 

 

2.4.3 Egg size difference between T-1a, T-1ab, and T-1b 

 To test for overall size effects between each subcategory of fertilized eggs (T-1a, T-1ab, and T-

1b) data obtained from Exp. 1 and 2 were used. In specific, the 30, 35, 40, and 45 psu treatments 

were used from Exp. 1, while the Std, RS, RSpro, RC, and TM treatments were used from Exp. 2.  

 

2.4.4 Egg activation with and without milt 

Following stripping of female f5 (Table 1), 3.5 g of eggs were randomly distributed into three 

replicate dry weigh boats per treatment (100 mL, 7 cm × 7 cm) and two activation treatments 

were tested, differing in presence and absence of milt. Eggs were activated and incubated as 

described for Exp. 1 and 2 using 35 psu seawater. Digital images was obtained and analyzed as 

described in 2.4 above. 

 

2.5 Measurement of egg neutral buoyancy 

Eggs from two females were used for buoyancy measurements; one used in Exp. 1 and one in 

Exp 2. Neutral buoyancy of eggs, following treatments and incubation, were conducted at 7 and 

30 h post-fertilization. A glass tank (thermo glass preventing temperature gradients) 100 × 10 × 

10 cm was filled from the bottom using methods modified from Coombs (1981). A peristaltic 

pump (Economy Console fitted Easy-Load® 3 pumphead, Masterflex, Cole-Parmer, Vernon 

Hills, Illinois, USA) provided steady addition of high saline water (58 psu, 2.5 to 2.8 mL × min-1) 

into a closed stirred mixing beaker containing low saline water (9 psu). A gradual increasing 

salinity gradient formed from the bottom of the glass tank within ~6 h. Water was premixed using 

demineralised water and Tropic Marine sea salt. Four density glass floats covering the range of 

5.5 to 38 psu (Martin Instruments Co. Welwyn Garden City, Hertz, England) were inserted in the 

salinity gradient and positions used to establish the logarithmic function connection positions and 

salinity within the gradient. A correlation coefficient lower than r < 0.98 was chosen as the lower 

limit for a usable gradient. All salinity-density conversions were temperature-compensated by 

measurements in the gradient (± 0.1 C) (Chapman, 2006).  
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From each replicate, 5 to 10 eggs (~20 eggs per treatment) were gently inserted into the 

gradient using a disposable inoculation needle (1.0 mm), avoiding addition of water to the 

salinity gradient, which can disturb the gradient. Position of the eggs and reference floats were 

read on a metric scale (± 1 mm) 30 min after loading. Positioning was aided by a self-levelling 

laser on a tripod in darkness (SuperCross 2, Laserliner®, Frauenfeld, Switzerland) giving a thin-lit 

cross section in the gradient to ensure an unbiased reading of position in the gradient. A new 

salinity gradient was established between each time point. In the reading at 7 HPF in Exp. 1, eggs 

were left for 210 min to estimate their sinking rate. Sinking rate was measured as egg density 

change in psu min-1.  

  

2.6 Statistical analyses  

Data were analyzed using SAS (v.9.1; SAS Institute Inc., Cary, NC, USA) and Sigmaplot (v.11; 

Systat Software Inc, Hounslow, UK). Residuals were tested for normality (Shapiro-Wilk test) and 

homogeneity of variance (plot of residuals vs. predicted values). When necessary, data were 

transformed to meet the assumptions of normality and homoscedasticity. Treatment means were 

contrasted using a Tukey’s test. All data are presented as mean ± SD. Significance was set at  of 

0.05.  

 

Relationships between female body size (independent variable, i.e. length and weight), egg 

chorion diameter, yolk diameter, and overall fertilization percentage (depended variables) were 

examined using linear regression. 

 

Effects of salinity and salt type on fertilization success and egg traits were analyzed using a 

series mixed-model ANOVAs (PROC MIXED), where salinity and salt type were considered 

fixed factors and the Female and Female × Salinity and/or Salt type interaction were considered 

random factors. A-posteriori analyses were not performed on random effects. Instead, variance 

components (VC) were constructed using the restricted maximum likelihood estimation method 

in SAS PROC Mixed, and expressed as a percentage. To test for significant variability among 

variance components that were > 0, likelihood ratio statistics were generated (PROC MIXED). 

To further explore within female effects, salinity and salt type were analyzed using a series of 

one-way ANOVA models.  
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T-tests were used to compare egg and yolk size between the treatments activated with and 

without milt, while egg buoyancy data were analyzed using one-way ANOVA models. 

Relationships between salinity difference (activation salinity subtracted the measured buoyancy) 

(dependent variable), and the activation salinity (independent variable) were analyzed using 

linear regression.   

 

3. Results 

 

3.1 Experiment 1: Activation with different salinities 

3.1.1 Egg size  

No relationship was detected between female body size and egg characteristics (R2 < 0.11). 

Average egg chorion diameter for the five females ranged from 1207 ± 212 to 1338 ± 203 μm 

across the salinity gradient (Fig. 2A). For the mixed-model ANOVA including all females, 

salinity had no significant effect on egg chorion diameter (Fig. 2A). For the model’s random 

effects, the Female × Salinity interaction was significant and explained the majority of the 

models variance (VC = 99.7%), while the Female VC was not significant (VC = 0.28%). For 

within female effects, salinity had a significant effect on egg chorion diameter for all females 

(Fig. 2B to F). Egg chorion diameter was largest for Female f1 and f2 at 30 and 35 psu (Fig. 

2BC), f3 at 40 to 50 psu (Fig. 2D), f4 at 35 to 50 psu (Fig. 2E), and f5 at 35 to 50 psu (Fig. 2F).  

Yolk diameter ranged from 947 ± 16 to 953 ± 9 μm (Fig. 2A). The mixed-model ANOVA 

showed that salinity had no effect on yolk diameter (Fig 2A), while for the models random 

effects, both the Female (VC = 74.2%) and Female × Salinity VC were significant (VC = 10.8%). 

For within female effects, salinity had no effect on yolk diameter for f1 (Fig. 2B), f2 (Fig. 2C), 

and f3 (Fig. 2D), but significant effects were detected for both f4 (Fig. 2E) and f5 (Fig. 2F).  

 

3.1.2 Fertilization rate and zygote development  

No relationship was detected between female body size and fertilization percent (R2 < 0.05). 

Overall fertilization success ranged from 22.1 ± 18.6 to 60.9 ± 16.9 % across the salinity gradient 

(Fig. 3A). When considering all fertilized eggs (egg category = T-1), salinity had a significant 

effect on fertilization percent, such that the 30 to 40 psu treatments had the highest fertilization 

rates (Fig. 3A). For the model’s random effects, both the Female (VC = 58.4%) and Female × 

64



Salinity interaction were significant (VC = 23.1%). When considering within female effects, 

salinity had a significant effect on fertilization success for females f1, f2, f3, f4, (Fig. 3B to E) 

although not for f5 (Fig. 3F). The highest fertilization rate was achieved for f1 (Fig. 3B), f2 (Fig. 

3C), and f4 (Fig. 3E) at 30 to 40 psu and f3 at 30 to 35 psu (Fig. 3D). Typically, the lowest 

fertilization percentage was detected at 45 to 50 psu (Fig. 3). 

 

The overall rate of regular cleaved fertilized eggs (egg subcategory = T-1a), ranged from 0.65 

± 0.98 to 14.71 ± 21.57% (Fig. 3A). The mixed-model ANOVA showed that salinity had no 

effect on the proportion of regular cleaved fertilized eggs (Fig 3A). The Female VC was 

significant and explained 58.7% of the models variance. The Female × Salinity VC was also 

significant and explained 35.0% of the variance. For within female effects, f2 (Fig 3C) and f4 

(Fig 3E) were significant, where the percentage of regular cleaved fertilized eggs declined across 

the salinity gradient.  

 

For the fertilized eggs that showed mostly regular cell cleavages (egg subcategory = T-1ab), 

salinity had an impact (Fig 3A), where the percentage of fertilized eggs declined at the 50 psu 

treatment. For the models random effects, both the Female VC (VC = 52.2%), and Female × 

Salinity interaction were significant (VC = 17.0%). For within female effects, salinity had a 

significant effect on the distribution of T-1ab fertilized eggs for all females (Fig. 3) except for f3 

(Fig. 3D).  

 

Salinity had no effect on the proportions of fertilized eggs with irregular cell cleavages, (egg 

subcategory = T-1b) (Fig. 3A). On the contrary, both the Female (VC = 72.9%) and Female × 

Salinity (VC = 19.4%) random VCs were significant. When comparing the rate of irregular 

cleaved with overall fertilization percent, the proportion of irregular cleaved eggs increased with 

increasing salinity (Fig. 3A). For within female effects, salinity had a significant effect on the 

distribution of T-1b fertilized eggs for f1, f2, f3, f4 (Fig. 3B to E), but not for f5 (Fig. 3F).  

 

Egg chorion diameter did not differ between eggs activated with and without the presence of 

milt, however yolk diameter was larger in the activated unfertilized eggs (Fig. 4A). Eggs 

activated without the presence of sperm also formed a PVS (Fig. 4B), i.e. T-2 eggs in the 
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categorization scheme (Fig. 1), and occasionally show disk-like structure (Fig. 4B egg 1) and first 

cell cleavage (Fig. 4B egg 2 and 3).   

 

3.1.3. Egg neutral buoyancy   

Activation salinity had a significant effect on egg buoyancy at 7 h post fertilization (HPF) (Fig. 

5A), such that fertilized eggs in the 50 psu treatments had the highest buoyancy, while the 30 and 

35 psu treatments eggs showed lower and similar buoyancy. At 30 HPF, salinity continued to 

significantly affect buoyancy, showing a similar trend (Fig. 5B). Sinking speed of eggs recorded 

over a period of 210 minutes, from 7 to 10.5 HPF, in the salinity gradient column from the 35 psu 

treatment were on average 0.04 ± 0.0009 mm × min-1 corresponding to 0.0025 ± 0.001 psu × min-

1 (N = 13).  

 

The deviation between measured buoyancies and salinity in activation and incubation, in 

relation to treatments, is shown in Figure 5C for 7 HPF and Figure 5D for 30 HPF. The deviation 

was significantly related to the activation salinity, with negative values i.e. buoyancy lower than 

activation salinity at high values at activation salinities and vice versa (R2 = 0.99, y= 0.825X - 

27.87). At 30 HPF, data violated statistical assumptions as buoyancy of the 50 psu treatment 

increased more than the remaining treatments; therefore, the 50 psu treatment was omitted and 

the model was rerun. After rerunning the model, a significant relationship between the salinity 

deviation (activation salinity subtracted the measured buoyancy) was also detected at 30 HPF (R2 

= 0.93, y= 0.655X - 22.073).  

 

3.2 Experiment 2: Activation of eggs with different salt types 

3.2.1 Egg size 

Average egg chorion diameter ranged from 1055 ± 59 to 1562 ± 75 μm across the nine salt types 

(Fig. 6A). The mixed-model ANOVA showed that salt type had a significant effect on chorion 

diameter, such that the RS, RC, RSpro, and Std treatments had the largest egg chorion diameter 

(Fig. 6A). The Female VC was non-significant (VC = 8.5%), while the Female × Salt Type 

interaction was significant and explained the majority of the models variance (VC = 83.5%). For 

within female effects, salt type significantly influenced egg chorion diameter for all females (Fig. 

6). For instance, the RC salt type evoked the largest chorion diameter for f6 (Fig. 6B), while the 

RS salt type caused the largest egg chorion diameter for females f9 (Fig. 7E). For f7, f8, f10 (Fig. 
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6C,D,F), the largest egg chorion diameter was observed across a wide-range of salt types. For all 

females, the IO, TE, NCRS, and NC salt types typically resulted in small egg chorion diameters 

compared to the other treatments (Fig. 6).  

 

Salt type had a significant effect on yolk diameter (Fig 6A). The Female VC was significant 

and explained 46.1% of the variance, while the Female × Salt Type VC was also significant and 

explained 31.8% of the variance. For within female effects, salt type had no effect on yolk 

diameter for female f8 (Fig. 6D) and f10 (Fig. 6F), while salt type had a significant effect for the 

other females.  

 

3.2.2 Fertilization rate and zygote development 

Considering all fertilized eggs, (egg category = T-1), fertilization percentage for the five females 

ranged from 0.3 ± 0.7 to 85.7 ± 9.0% across the nine salt types (Fig. 7A). The mixed-model 

ANOVA showed a significant salt type effect in the fertilization percent. Within this regard, RS, 

RC, RSpro, Std, TM, IO and TE had higher fertilization success than the NC and NCRS treatments 

(Fig. 7A). For the models random effects, the Female VC was significant (VC = 27.4%). The 

Female × Salt Type interaction was also significant and explained 33.7% of the models variance. 

Salt type had a significant effect on fertilization for all females, where the NC treatment always 

had the lowest fertilization while the RS, RC, TM, and IO treatments had the highest fertilization 

(Fig. 7B to F). 

 

The proportion of fertilized eggs with regular cell cleavage (egg subcategory = T-1a), differed 

significantly depending on salt type (Fig 7A), with low proportions in NC and NCRS treatments 

compared to other salt types. The Female VC was significant (VC = 62.1%), and similarly the 

Female × Salt Type interaction, explaining 30.5% of the model’s variance. For each female, the 

effect of salt type on the proportion of eggs with regular cell cleavage was also significant (Fig. 

7B to F). 

 

With respect to the fertilized eggs that showed mostly regular cell cleavage, (egg subcategory 

= T-1ab), salt type had a significant impact on its distribution (Fig. 7A). Furthermore, for the 

model’s random effects the Female VC was significant (VC = 41.7%), and the Female × Salt 

Type interaction was also significant (VC = 39.0%). Salt type had a significant effect on the 
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percentage of mostly regular cleaved eggs for the females f5, f7, f8, f9 (P  0.002; Fig. 7), while 

the effect of salt type was non-significant for f10 (Fig. 7F). The NC and NCRS salt type treatment 

resulted in the lowest percentage of T-1ab for the five females, while for the remaining salt types 

showed no general pattern (Fig. 7B to F).  

 

Salt type had a significant effect on the proportion of eggs with irregular cell cleavages (egg 

subcategory = T-1b) (Fig. 7A), where the NC differed from the NCRS treatment (Fig. 7A). The 

Female VC was significant (VC = 42.9%) and the Female × Salt Type VC was significant and 

explained 49.5% of the model. Salt type effects were significant for all females with respect to 

proportion of T-1b eggs (Fig. 7B to F). 

 

3.2.3 Egg neutral buoyancy   

Mean neutral buoyancy of eggs from the different salt type treatments ranged from 32.4 ± 0.5 to 

37.1 ±1.9 psu at 7 HPF (Fig. 8A) and 32.8 ± 0.5 to 33.8 ± 0.2 psu at 30 HPF (Fig. 8B). At 7 HPF, 

activation and incubation salt type had a significant effect on egg buoyancy, with no significant 

difference between Std, RS, RSpro, RC TM, and TE salt types, which all had the lowest egg 

buoyancy. The NC and NCRS salt types had the highest buoyancy (Fig. 8A). Additionally, RS 

was also significantly lighter than IO. At 30 HPF, the buoyancy of eggs was also significantly 

affected by activation and incubation salt type (Fig. 8B) with NC and NCRS treatments no longer 

buoyant and RS, RSpro and TM having lower neutral buoyancy than IO and TE. 

 

3.3 Size difference among fertilized egg types 

Selection of treatments from Exp. 1 (30 to 45 psu) and Exp. 2 (Std, RS, RSpro, RC, and TM) 

formed a dataset of 896 eggs with regular cell cleavages (T-1a); 753 eggs having mostly regular 

cell cleavages (T-1ab), and 1535 eggs with irregular cell cleavages (T-1b) (Table 3). The 

fertilized egg types significantly differed with respect to egg diameter, yolk diameter, egg 

volume, yolk volume, and the size of the perivitelline space. For all egg metrics, the three 

fertilized egg types differed significantly from each other (Table 3).  
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4. Discussion 

 

Egg sizes of marine fish show both inter- and intra-species variation (Kennedy et al., 2007). 

Maternal effects on egg diameter have been studied in many fish species and are generally found 

significant, depending on diet, broodstock condition, and timing in relation to the reproductive 

season (Kjørsvik et al., 1990; Laale, 1980; Morley et al., 1999). Similarly, paternal effects are 

important, impacting processes related to fertilization (Evans and Geffen, 1998; Kroll et al., 

2013). In our study, wild-caught females were crossed with farmed males, and we found a clear 

female effect that accounted for a large proportion of the models variance, e.g. yolk size had a 

Female VC of 74.2%. However, no relationship was found between female size and egg chorion 

diameter, yolk diameter, or overall fertilization percentage.  

 

Currently, no information is available regarding the size of European eel eggs in nature, and 

we are limited to compare our observations with wild-captured eggs from Japanese eel. These 

wild-captured eggs are reported larger than eggs from their captivity-bred counterparts 

(Tsukamoto et al., 2011; Yoshinaga et al., 2011). In captive breeding of Japanese eel, egg sizes 

are in the range of 1300 to 1600 m, while eggs captured in nature range from 1490 to 1710 m 

with a mean of 1610 m ± 70 m (Tsukamoto et al., 2011; Yoshinaga et al., 2011). Overall, we 

found 13% of 3442 fertilized eggs to be in that range (1600 μm to 1785 μm), thus comparable to 

wild-caught Japanese eel. Our study points to effects of salinity and salt composition on egg size. 

Within females, we found that activation and incubation salinities had an effect on egg size and 

typically the largest eggs were obtained within the 30 to 40 psu interval. The variation among 

females regarding salinity tolerance and optima did however preclude a clear trend. Salinity 

induced swelling is described in the long rough dab, Hippoglossoides platessoides where PVS is 

accounting for up to 85% of the egg volume (Lønning and Davenport, 1980), which is close to 

the average of 74% PVS in regular cleaved eggs that we reported. The mechanisms during 

activation of a fish egg are still unknown (Webb and Miller, 2013) and specifically research on 

the initial swelling following activation has been urged in relation to improving captive rearing in 

eels (Yoshinaga et al., 2011). 

 

As seen in our study, regardless of sperm being present, eel eggs swell upon activation by 

contact with seawater. Activation is known to be triggered by release of intracellular stored Ca2+ 
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in between the yolk and chorion membrane (Finn, 2007). This stimulates the cortical alveoli in 

the yolk membrane, to exocytose glycoprotein into the perivitelline space leaving the broken 

cortical alveoli to fuse with the plasma membrane and form the new protective and impermeable 

vitelline membrane surrounding the yolk (Hart and Yu, 1980). The glycoproteins are cleaved into 

smaller colloid proteins (Gallo and Costantini, 2012) and form a colloid osmotic gradient 

between the exterior and the PVS across the chorion (Shephard, 1989). This osmotic gradient has 

a charge potential, called the perivitelline potential (PVP), and the more negative the PVP, the 

stronger the force of water uptake from the environment (Peterson and Martin-Robichaud, 1986). 

This force is possibly imposed by diffusion through the chorion by cations like sodium, Na+ 

rather than chloride, Cl- (Peterson and Martin-Robichaud, 1986) however the mechanism of water 

influx through the chorion in fish is not fully known (Yoshinaga et al., 2011; Webb and Miller, 

2013). In freshwater fishes, the ionic effects on swelling shows that polyvalent ions like Al3+ and 

Zn2+ inhibit PVS formation with increasing concentration (Eddy, 1983; Shephard, 1989; Li et al., 

1989). Marine fish are fundamentally different as they face a hypertonic environment but are 

likewise sensible to ion composition, as shown in herring by cadmium Cd2+ affecting the osmotic 

gradient plus water uptake and egg size, especially at lower salinities (Alderdice et al., 1979a, 

1979b). The increase in egg diameter we observed could hardly be due to the same effects, as 

increasing salinity would increase inhibiting ions and thus decrease water uptake. A more likely 

explanation seems to be related to a selective influx of Na2+, as suggested by Peterson and 

Martin-Robichaud (1986). This process would enforce a more negative PVP and create a stronger 

force of water uptake. Alone or playing in concert, osmotic shock exerted by the activation 

salinity may also contribute by triggering activation; similar to the mechanical touch of the 

chorion found to onset the activation process in Medeka, Oryzias latipes (Webb and Miller, 

2013).  

 

The diameter of egg yolk showed no consistent size change in relation to salinity supporting 

the impermeable nature of the vitelline membrane; precluding further yolk size increases due to 

osmotic pressure as described by Hart and Yu (1980). This finding is in line with other studies, 

such as those on Lumpsucker, Cyclopterus lumpus (Kjørsvik et al., 1984) or long rough dab 

(Lønning and Davenport, 1980) where even strong hyperosmotic pressure had a low impact on 

yolk osmolality and size. The long rough dab, Hippoglossoides plantessoides limandoides, which 

has an expandable chorion, shows egg properties similar to the eel with a large expansion of the 
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PVS and no size change in yolk plasma diameter (Lønning and Davenport, 1980). Studies have 

shown the cortical reaction and formation of vitelline membrane, is faster once initiated at the 

egg animal pole, i.e. when sperm penetrates (Iwamatsu and Ito 1986) as compared to when 

activated merely by contact with seawater. Consequently, a delayed formation of this membrane 

is expected once activated without sperm cells. This may validate why we found a slightly larger 

yolk diameter once activated without sperm cells, since the slower activation process may cause 

extended membrane exposure to hypertonic medium increasing the yolk membrane diameter by 

osmotic pressure. 

 

In two out of five females, the proportion of regular cleaved eggs (T-1a) showed significant 

peaks around 30 and 35 psu. In spite that the proportion of regular cleaved eggs was low for the 

remaining three females, a general decrease in higher quality blastulas, T-1a as well as T-1ab, 

was observed with increasing salinity. Coincidental at high salinity the irregular cleaved, T-1b, 

accounted for a high proportion of overall fertilized eggs, along with an increase in unactivated 

and dead eggs, T3 and T-5 respectively. Early cell cleavage symmetry, evenness, and mutual 

adhesion at the 8 to 128 cell stage are known to correlate with larval survival in several species 

(Shields et al., 1997; Kjørsvik et al., 2003). Activation and incubation salinity are likely to 

impact the success of in vitro fertilization in eel and the optimum is presumably close to the 

salinity of the proposed spawning area, i.e. ~36.5 psu (Munk et al., 2010). Mechanisms of 

salinity effects on the zygote are scarcely known but they are overall related to external and 

internal supplies of Ca2+. The initial wave of calcium upon sperm entry is released mainly from 

internal stores, while external supplies found in the seawater environment act to renew these 

stores and facilitate complex mechanisms; e.g. inositol triphosphate-mediated calcium release 

(IP3) (Stricker 1999). The different levels of action of this calcium wave may be an underlying 

explanation for variation in fertilization quality patterns we observed at different salinities. A 

study on Japanese eel embryos illustrate the importance of salinity changes as eggs activated at 

33 psu, followed by incubation treatments from 24 to 45 psu show a discrete effect on hatching 

but reduced larval survival above 36 psu, and increased deformities below 30 psu (Okamoto et 

al., 2009).  

 

Egg buoyancy characteristics are fundamental to European eel egg development both in nature 

and hatcheries as after spawning the PVS fills with seawater, equaling the surrounding salinity 
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(Davenport et al., 1981). Neutral buoyancy is therefore determined by a balance between the 

seawater salinity and the yolk osmolality and lipids sealed by the vitelline membrane. Neutral 

buoyancy of eggs were correlated to the activation salinity. By using a range of salinities for 

activation and incubation it was possible to deduce a regression intercept at 33.8 psu, which 

indicates neutral buoyancy regardless of activation salinity. A similar pattern was confirmed at 30 

HPF, although 50 psu had damaging effects. The measurement of neutral buoyancy in a salinity 

gradient can however potentially lead to overestimation of egg density because pelagic eggs with 

time tend to equilibrate across the chorion membrane with the surrounding water (Coombs et al., 

2004; Govoni and Forward, 2008). As defined by Stokes Law, sinking speed is related to egg size 

(Coombs et al., 2004) and we observed a rapid sinking speed until the point of neutral buoyancy. 

Sardine eggs were shown to continue sinking from point of neutral buoyancy in a salinity 

gradient, challenging estimation of neutral buoyancy (Coombs, 2004). In our study however, we 

found eel eggs remaining at the point of neutral buoyancy and sink only marginally from 7 to 

10.5 HPF. This means that from the time of the fully distended chorion and likely during period 

of chorion hardening, the exchange of water across the chorion is very limited which validates 

our neutral buoyancies measures. 

 

Commercial synthetic salt products are often branded as being similar in composition to 

seawater and thus potentially useful for standardizing water conditions for fish culture. Our 

results showed that several salt types were able to activate eggs at the same level as natural 

seawater (Std), but do so more consistently reducing variability. Similarly, some artificial sea salt 

brands as Red Sea Salt (RS); Red sea salt pro, (RSpro;) Reef Crystal, (RC) and Tropic Marin, 

(TM) provided egg sizes as large as, or larger than, Natural seawater (Std). In contrast, Instant 

Ocean (IO) and Tetra Marine (TE), consistently resulted in eggs with a small PVS which also 

pertained to pure NaCl, (NC) and NaCl +10% RS, (NCRS). In summary RS and RC seemed 

consistent in forming large eggs. Hardly any eggs could be fertilized in NC, however adding only 

10% RS proved, in several cases, to enable fertilization and improve PVS formation and thereby 

adding important input to the discussion of external calcium during zygote formation. NC lacks 

ions needed for activation and fertilization like i.e. K+ and Ca2+ but indeed also impacts eel sperm 

functionality that further needs K+, Na+, and HCO3
- (Ohta et al., 2001; Gallego et al., 2014).  
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The mineral compositions for the RS, RC, TM, and IO brands are published (Atkinson and 

Bingman, 1997; Hovanec and Coshland, 2004; Arnold et al., 2007) however variation between 

studies and composition of minor elements between reported brands is considerable (Atkinson 

and Bingman, 1997; Hovanec and Coshland, 2004; Arnold et al., 2007). Minor elements differing 

make up more than twenty components in the salt types, including several of the metals believed 

to affect egg activation. A reported difference between brands relates to the alkalinity and pH 

(Atkinson and Bingman, 1997). IO and RC differed in their ability to induce a large PVS, 

resembled each other in composition (Atkinson and Bingman, 1997; Hovanec and Coshland, 

2004), but showed a difference in pH of 0.6. Such pH variation is however also found between 

the salt types leading to consistently large PVS, thus why pH within the range observed cannot 

determine PVS formation. Variability in alkalinity, not determined in this study on the other 

hand, could have an impact on the sperm via HCO3
- which has been seen to increase motility in 

Japanese eel sperm (Ohta et al., 2001). 

 

Artificial salt types contains many different ions, and several are known to block the cortical 

reaction e.g. Al3+ in Atlantic salmon (Finn, 2007), or inhibit like Zn2+, Mg2+, and SO2-
4 (Eddy, 

1983). A study on Mytilus edulis, found salt type, IO to contain a higher amount of Cu ions from 

industrial processing (Arnold et al., 2007). Until recently, aquaporin was only described as acting 

in tissue of fish and in the fish oocyte during the maturation process (Cerdà and Finn, 2010). 

Amaroli et al., (2013) showed for sea urchins Paracentrotus lividus, that water uptake during 

activation was highly dependent on aquaporin channels in the chorion (Amaroli, 2013) and that 

PVS formation and fertilization was highly inhibited by ions like Cu, Hg and Ni. Assuming 

aquaporins are present in fish egg chorion, then variability in the concentrations of metal ions in 

marine salt types likely impacts the formation of PVS.  

 

Egg neutral buoyancy at 7 HPF did not show differences among salt types reflecting the 

remarkable deviation in egg chorion diameter observed in the eggs from IO and TE. However, at 

the stage of embryo formation (30 HPF) the small eggs obtained using IO and TE became heavier 

and this likely indicates the first signs of insufficient size of PVS. This influences metabolism 

and wastes from the embryo and causes suboptimal incubation conditions (Eddy, 1983). This 

scenario resembles previous reported observations where artificial seawater invoked small eggs 

that were unable to hatch (Tomkiewicz and Jarlbæk, 2008). The neutral buoyancy found from the 
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salts providing large eggs was around 33.8 psu, which is similar to buoyancy estimates of 

Japanese eel eggs (Tsukamoto, 2009).  

 

In summary, salinity and sea salt type significantly influenced egg activation, fertilization, 

buoyancy, and early embryonic development, although with substantial variation in optima and 

tolerance between females. Fertilization success was highest in the salinity range of 30 to 40 psu. 

Salt type significantly affected the egg chorion diameter, and RS and RC lead to consistently 

large eggs while IO, TE, NC and NCRS generated eggs with limited PVS. Yolk diameters showed 

low variability across treatments supporting the impermeability of the vitelline membrane during 

early embryonic development. Activation and incubation salinity affected neutral buoyancy, and 

only within a salinity range of 30 to 40 psu could egg neutral buoyancy be sustained during 

incubation to embryo formation. Salt types were found to induce only small egg chorion 

diameters and failed to sustain buoyancy. In conclusion, salt concentration and elemental 

composition strongly affected processes during egg activation and embryonic development. The 

effects would often play in concert and mechanisms are not fully understood. Successful 

activation and development of the eggs of European eel are crucial for the progress in the 

artificial propagation of the species and further studies on these quality aspects of the activation 

media are encouraged. 
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Table 1: Length (cm) and weight (g) for wild-caught female European eels Anguilla anguilla, used in 

Experiment 1 and 2.  

 

   Female ID Lengths cm Weight g 

Experiment 1 f1 62 432 

 f2 71 612 

 f3 78 955 

 f4 60 492 

 f5 77 890 

 f6 71 750 

 mean ±SD 69.8 ±7.5 676.2 ± 212.4 

Experiment 2 f5 77 890 

 f7 69 599 

 f8 80 832 

 f9 75 781 

 f10 69 551 

 mean ±SD 74.0 ± 4.9 730.6 ± 148.2 
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Table 2: Specification of salt type treatments used in Experiment 2 for activation and incubation of eggs of 

European eel, Anguilla anguilla.  

Treatment Salt type  Components 
Salinity 

±0.1 ppt 
pH 

        Std Natural sea water  
Filtered 0.8 m, salinity adjusted by Tropic 

Marind 
35.0  8.2 ± 0.02 

        RS Artificial sea water  Red Seaa  + MilliQ water 35.0 8.6 ± 0.06 

RSpro Artificial sea water  Red Sea Prob + MilliQ water 35.0 8.4 ± 0.03 

RC Artificial sea water  Reef Crystalc + MilliQ water 35.0 9.1 ± 0.01 

TM Artificial sea water  Tropic Marined + MilliQ water 35.0 8.5 ± 0.03 

IO Artificial sea water  Instant Oceane + MilliQ water 35.0 8.5 ± 0.01 

TE Artificial sea water  Tetra Marinf + MilliQ water 35.0 8.8 ± 0.04 

NC Artificial sea water  NaClg + MilliQ water 35.0 7.4 ± 0.04 

NCRS Artificial sea water  NaClg + 10% Red Seaa (v/w) + MilliQ water 35.0 7.5 ± 0.05 

   Sea salt brands: aRed Sea, RedSea International, Eilat, Israel; bRed Sea Coral Pro salt, RedSea International, Eilat, Israel;  
cReef Crystal, Aquarium system, Sarrebourg, France; dTropic Marin® Sea Salt, Dr. Biener GmbH, Wartenberg, Germany; 
eInstant Ocean, Aquarium system, Sarrebourg, France; fTetra Marine, TetraEurope, Paris, France;  
gNaCl, Sigma-Aldrich, 0.2 μm filtered  
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Table 3: Average eggs metrics of in vitro fertilised eggs from European eel, Anguilla anguilla according 

to egg categories T-1a, T-1ab, and T-1b defined by cleavage symmetry 3.5-5 h after fertilisation. Within 

each egg measure sub-letters indicate significant differences (  = 0.05).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Diameter μm  ± SD  Volume mm3  ± SD 

Egg category N Egg Yolk  Egg Yolk Perivitelline Space 

T-1a:   Regular cleavage 896 1453 ± 162a 934 ± 31a  1.666 ± 0.52a 0.427 ± 0.04a 1.239 ± 0.52a 

T-1ab: Mostly regular cleavage 753 1422 ± 172b 940 ± 27b  1.571 ± 0.54b 0.436 ± 0.38b 1.135 ± 0.53b 

T-1b:   Irregular cleavage 1535 1374 ± 174c 946 ± 31c  1.421 ± 0.52c 0.445 ± 0.04c 0.976 ± 0.50c 
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Figures 

 

 

Fig. 1. Characteristics of egg types used to categorize eggs of European eel, Anguilla anguilla, after in 

vitro activation and fertilisation. Five main types of eggs are displayed based on morphology, size and 

buoyancy at 35 psu, 3 to 6 h post fertilisation and incubation at 20 ± 0.5 C. T-1 includes fertilised eggs 

and is subdivided into three sub-categories based on cell cleavage pattern: T-1a: regular and symmetric; T-

1ab: mostly regular with minor irregularities; T-1b: irregular. 
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Fig. 2. Egg size of European eel, Anguilla anguilla, in relation to activation salinity (psu). Measurements 

include chorion and yolk diameter (μm ± SD) of fertilised eggs 3.5 to 5 h post in vitro fertilisation and 

incubated at 20 ± 0.5 C. (A) Average egg sizes all females. (B to F) egg sizes are for female f1 to f5. 

Letters indicate significant differences (  = 0.05) among salinities within groups.  
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Fig. 3. Fertilisation success and cleavage pattern of in vitro fertilised eggs of European eel, Anguilla 

anguilla, in relation to activation and incubation salinity. Fertilisation percentage and distribution on sub-

categories T-1a, T1ab, and T-1b were assessed 3.5-5 h post fertilisation and incubation at 20 ± 0.5  C. 

Bars show percentage + SD. (A) Average egg sizes all females. (B-F) egg sizes for female f1-f5. Letters 

indicate significant differences (  = 0.05) among salinities within groups. 
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Fig. 4. Eggs of European eel, Anguilla anguilla, activated with and without the presence of sperm. (A) 

Boxplot of egg chorion and yolk diameter at 3.5 h post fertilisation. (B) Images of unfertilised eggs 1.5 to 

4 h post fertilisation with signs of cell cleavage. Characteristics of egg 1: large perivitelline space (PVS) 

and a single disk; egg 2 and egg 3: Negligible PVS and parthenogenic cleavage. 
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Fig. 5. Buoyancy characteristics of eggs from European eel, Anguilla anguilla, activated and fertilised at 

different salinities and incubated at 20 ± 0.5 C. (A+B) Neutral buoyancy of eggs (N  15) from each 

treatment after: (A) 7 HPF, (B) 30 HPF. Letters indicate significant differences (  = 0.05) among groups. 

(C+D) Deviation between activation salinity and salinity at neutral buoyancy in relation to activation 

salinity at (C) 7 HPF (linear regression ± 95% CL, R2 = 0.99, y=0.825X - 27.87), and (D) 30 HPF (linear 

regression excl. 50 psu ± 95% CL, R2=0.93, y=0.655X – 22.073). 
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Fig. 6 
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Fig. 6. Egg size of European eel, Anguilla anguilla, in relation to salt type treatment adjusted to 35.0 ± 0.1 

psu. Measurements include chorion and yolk diameter (μm ±SD) of fertilised eggs 3.5 to 5 h post in vitro 

fertilisation and incubated at 20 ± 0.5 C. Salt type treatment, Std: Natural seawater; RS: Red Sea salt; 

RSpro: Red Sea Pro; RC: Reef Crystal; TM: Tropic Marine; IO: Instant Ocean; TE: Tetra Marine; NC: 

NaCl; NCRS: NaCl + 10% Red Sea salt. (A) average of all females. (B to F) are for female f6 to f10. 

Letters indicate significant differences (  = 0.05) among groups. * mark treatments without fertilised eggs 

or not tested for a particular female  
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Fig. 7.  
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Fig. 7. Fertilisation success and cleavage pattern of in vitro fertilised eggs of European eel, Anguilla 

anguilla, in relation to salt type treatment adjusted to 35.0 ± 0.1 psu. Fertilisation percentage and 

distribution of sub-categories T-1a, T1ab, and T-1b were assessed 3.5 to 5 h post fertilisation and 

incubation at 20 ± 0.5 C. (A) average of all females. (B to F) are for female f6 to f10. Letters indicate 

significant differences (  = 0.05) among groups. Bars show percentage + SD. Salt type treatment, Std: 

Natural seawater; RS: Red Sea salt; RSpro: Red Sea Pro; RC: Reef Crystal; TM: Tropic Marine; IO: 
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Instant Ocean; TE: Tetra Marine; NC: NaCl; NCRS: NaCl + 10% Red Sea salt. * mark treatments without 

fertilised eggs or not tested for a particular female. 

 

  

91



Fig. 8 
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Fig. 8. Neutral buoyancy of eggs from European eel, Anguilla anguilla, in vitro activated and fertilised, in 

relation to salt type treatment adjusted to 35.0 ± 0.1 psu and incubated at 20 ± 0.5 C. Box-plot including 

outliers show density and salinity at neutral buoyancy of (A) eggs (N  15) at 7 HPF, (B) eggs (N  15) at 

30 HPF. Letters indicate significant differences (  = 0.05) among salt type treatments and * mark 

treatments with non-buoyant eggs 
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A presumed parasitic protozoan was found in the eggs of European eel obtained from an experiment on captive
breeding of eel, Anguilla anguilla, based on silver eels from a freshwater lake in the northern part of Denmark.
Gross morphology of the organism was comparable to that of early stages of Ichthyodinium, a syndinian dinofla-
gellate parasite found in pelagic eggs of various marine fish species. Sequences of genes coding for small subunit
ribosomal RNA confirmed that the organismwas an Ichthyodinium species, and molecular phylogenetic analysis
demonstrated the presence of two Ichthyodinium genotypes: one occurring in the Atlantic Ocean and adjacent
coastal waters and one in the Pacific Ocean area. The inclusion of several GenBank-derived environmental
gene sequences, from the Caribbean Sea, revealed to represent Ichthyodinium, suggesting that this parasite
genus is ubiquitous in the World's oceans.

© 2014 Elsevier B.V. All right reserved.

1. Introduction

Ichthyodinium chabelardi is a parasitic dinoflagellate that infects pe-
lagic eggs of several marine fish species (Hollande and Cachon, 1952,
1953; Stratoudakis et al., 2000; Yuasa et al., 2007). It has the life cycle
of a parasitoid, infecting and devouring the egg yolk sac, eventually
causing the death of the unhatched fish embryo or newly hatched
larva. Ichthyodinium infections have currently been reported from eggs
of a dozen of marine fish species and several studies have reported on
rDNA sequences from the parasite and partial life cycle descriptions
(Table 1). However, a lethal parasitoid behaviour has so far only been
observed in fish species from tropical, subtropical, andwarm temperate
waters, such as European pilchard Sardina pilchardus (Hollande and
Cachon, 1952), Atlantic mackerel Scomber scombrus (Meneses et al.,
2003) and yellowfin tuna Thunnus albacares (Yuasa et al., 2007). In
fishes of cold temperate waters, on the other hand, infections with
Ichthyodinium have never been observed to develop to a degree at
which the fish embryos die due to infection (Pedersen et al., 1993;
Skovgaard et al., 2010). An exception to this may be the eggs of Atlantic
mackerel, which are presumed to be killed by the parasite and have
been observed to host Ichthyodinium at low prevalence also at higher
latitudes (Meneses et al., 2003). The reason for this discrepancy is not
fully understood, but it has been suggested that Ichthyodinium depends
on high salinity and water temperature to fulfil its life cycle, or

alternatively, that some fish species such as Atlantic cod Gadus morhua
and turbot Scophthalmus maximus are not suitable hosts for the parasite
and that infection in the eggs of these species is a ‘dead end’ resulting in
the disintegration of parasite cells and potential survival of the embryo
(Skovgaard et al., 2010).

Ichthyodinium was originally described as a syndinid dinoflagellate
by Hollande and Cachon (1952). This systematic position has been
confirmed by recent molecular phylogenetic studies, demonstrating
that Ichthyodinium is genetically affiliated with the syndinid dinoflagel-
lates, which constitute parasitic sister groups to the typical dinoflagel-
lates. More specifically, Ichthyodinium belongs to the so-called Marine
Alveolate Group I (López-García et al., 2001; Skovgaard et al., 2009).
Only few species are known from this group, but a large number of en-
vironmental SSU rRNA gene sequences fall into the group in molecular
phylogenetic analysis, suggesting that microorganisms related to
Ichthyodinium are abundant in the oceans (Guillou et al., 2008). SSU
rDNA sequences of Ichthyodinium are remarkably similar across host
species and only limited genetic variation has been found between
Ichthyodinium from Northern Europe and Southeast Asia (Mori et al.,
2007; Skovgaard et al., 2009). So far, only a single species of the genus
has been formally described.

This study presents data on the occurrence of Ichthyodinium in
European eel, Anguilla anguilla, in an experimental eel reproduction fa-
cility and summarizes available SSU rDNA sequence information. Repro-
duction of European eel in captivity has been attempted for several
decades (Bruun et al., 1949; Pedersen, 2004) with very limited success
in hatching larvae (Bezdenezhnykh et al., 1983). The mechanisms of
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hormonal control in eel maturation are complex and impede reproduc-
tion in captivity (Dufour et al., 2003). Recent research applyinghormon-
ally induced maturation has, however, led to the production of viable
eggs and yolk sac larvae of European eel, enabling detailed study of
morphology and structure and development of embryos and larvae
(Tomkiewicz, 2012). This work led to the discovery of a spherical for-
eign object within the developing embryo, resembling the morphology
of the parasitic protozoan Ichthyodinium, and our aim in the present
work was to isolate and identify this organism that has not previously
been reported from eggs of European eel.

2. Methods and materials

2.1. Production and sampling of fertilized eel eggs

Gametes were obtained from artificially matured female silver eels,
originating from a freshwater lake, Lake Vandet, in northern Jutland,
Denmark, and farmedmale eels from the commercial eel farm, Stensgård
Eel Farm (central Jutland, Denmark) (Tomkiewicz, 2012). Female and
male broodstocks were held separately in recirculation systems with
artificial seawater adjusted to ~36 ppt using Tropic Marin® Sea Salt
(Dr. Biener Aquarientechnik, Germany) and at ~20 °C (Tomkiewicz,
2012).

Natural sea seawater obtained from the North Sea was used in egg
activation, fertilization, incubation, and larval culture. Prior to use, the
water was adjusted from native salinity (32.5 ppt) to 36 ppt using
Tropic Marin® Sea Salt and kept at 20 °C in an aerated reservoir prior
to use (hereafter referred to as hatchery seawater, HSW). Salinity was
measured using an electronic conductivity meter (WTW multi3410,
Wissenschaftlich-Technische Werkstätten GmbH, Weilheim, Germany).
All incubation equipment was cleaned using Virkon-S 2% solution
(Virkon-S®, DuPont, USA) between egg batches.

Spermwas obtained shortly before fertilization from four males and
diluted in artificial seminal plasma (Asturiano et al., 2004) at a volume
ratio of 1:99 in sterile culture flasks. Eggs were stripped into sterilized
and dried containers and 1 mL of diluted sperm was added per 2 g of
eggs followed by activation adding HSW. Prior to stripping, fish were
anaesthetized with ethyl p-aminobenzoate (20 mg L−1; Sigma-Aldrich
Chemie, Steinheim, Germany). After activation, gametes were trans-
ferred to 15 L of HSW. After 1 h, all buoyant eggs were skimmed into

15 L fresh HSW to remove excess sperm and negatively buoyant
(dead) eggs.

Two hours post-fertilization (HPF) eggs were moved to a 60 L incu-
bator holding HSW at 20 °C ± 0.5 for incubation. At regular intervals,
dead eggswere flushing froma bottom valve to avoid build-up of bacte-
ria. Fifteen HPF, HSW was renewed in the incubator.

During the experiment conducted in June 2012, many eggs appeared
to be infectedwith aprotozoanparasite. Infected eggs (n=30)were iso-
lated 15 and 30–35 HPF from 6 selected females and single eggs were
placed in sterile Eppendorf tubes and kept at −20 °C until processing.
Each egg sample was labelled individually and photographed using a
Nikon Eclipse 55i microscope (Nikon Corporation, Tokyo, Japan), fitted
with aNikonDS-Fi1 camera head, using 40, 100, and 400×magnification
(CFI Plan Flour objectives). Larvae were photographed with 20 and 40×
magnifications and during photography held in physiological saline solu-
tion of 0.90% w/v of NaCl to prevent osmotic stress and anaesthetized
using MS222. In addition, samples consisting of 250 mL water, were ob-
tained from an incubator containing many newly hatched larvae, origi-
nating from an egg batch with widely infected eel eggs. The water
samples were filtered through a sterile 0.2 μmpore size filters (Sartorius
Minisart® NML hydrophilic syringe filters) to retain particles present in
the sampled water. A total of 16 samples were prepared for PCR and se-
quence work.

2.2. Infection pathway

In addition to collection of infected eggs, a test of infection pathway
was made. The exterior body parts of a female eel (69 cm, 789 g) and
male eels (n = 4; mean standard length ± SD: 40 ± 2.0 cm and body
weight 121 ± 11 g) were carefully cleaned exterior body parts before
stripping to exclude transfer of parasites from the ambient environment
during stripping. The used bloodstockfishwas anaesthetized and before
stripping rinsed on the entire abdominal region using sterile MilliQ
water and thereafter wiped around gat area using alcohol (96%).

Eggs were stripped into four replicate sterile trays and activated as
described above using sterile filtered seawater (0.2 μm, Sartorius
Minisart® NML hydrophilic syringe filters). Following 10 min of activa-
tion and fertilization, samples of ~200 eggs from each replicate were
inserted in media flasks (Nunc® 75 cm2

flasks, non-treated with venti-
lated caps, Thermo Scientific) containing 200mL of fresh 0.2 μm filtered

Table 1
Fish species reported as host of the fish egg parasite Ichthyodinium. Absence of ‘x’ denotes that infection has been mentioned in text of published papers only.

Fish species Data on morphology
available

SSU rDNA sequences
available

Lethal infection
observed

Reference

Sardina pilchardus x x x Borges et al. (1996), Gestal et al. (2006), Hollande and Cachon
(1952, 1953), Marinaro (1971), Meneses and Ré (1992),
Skovgaard et al. (2009), Silva and Miranda (1992), Stratoudakis
et al. (2000)

Maurolicus muelleri Hollande and Cachon (1953)
‘Gadoids’ Hollande and Cachon (1953)
Sparus aurata ? Marinaro (1971)
Maurolicus pennanti Marinaro (1971)
‘Other sparids’ Marinaro (1971)
Gadus morhua x x –a Pedersen and Køie (1994), Pedersen et al. (1993), Skovgaard

et al. (2010), Bloch et al. (1997)
Scophtalmus maximus x –a Pedersen (1993), Pedersen and Køie (1994)
Trachurus trachurus Farinha in Stratoudakis et al. (2000)
Engraulis encrasicolus Farinha in Stratoudakis et al. (2000)
Micromesistius poutassou Farinha in Stratoudakis et al. (2000)
Thunnus albacares x x x Mori et al. (2007)
Plectropomus leopardus x x x Yuasa et al. (2007)
Scomber scombrus x x Meneses et al. (2003)
Boops boops x x x Skovgaard et al. (2009)
‘Fish eggs’ x x x Shadrin et al. (2002), Shadrin et al. (2010)
Thunnus orientalis x x x Ishimaru et al. (2012)
Anguilla anguilla x x –a Present study
Environmental sequences x Edgcomb et al. (2011)

a No mortality has been documented.
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seawater. As a control, 4 subsequent trays of eggs were activated in a
similar way, except that activating and incubation followed the stan-
dard procedure, i.e. using HSW and the general clean but non-sterile
equipment used at the hatchery (such as containers and incubators).
Samples of ~200 eggs were then transferred to four 250 mL beakers
holding each 200 mL HSW.

After 20 h of incubation, 20 eggs were picked randomly from each
replicate flask or beaker and checked for infection under a dissection
microscope (Nikon Eclipse 55i microscope, Nikon Corporation, Tokyo,
Japan), fitted with a Nikon DS-Fi1 camera head, and 20× magnification
(2 × CFI Plan Flour). The number of spheres was quantified in each egg
and if above 10 spheres, a category of N10 was used.

2.3. DNA extraction, PCR and sequencing

Prior to PCR, DNA was extracted by proteinase K digestion of
samples in 20 μL of lysis buffer (Skovgaard et al., 2011). DNA was PCR-
amplified in 25 μL reactions, using 5 μL of the resulting crude DNA ex-
tract and 1.0 μMof each primer of the pair Icht1F and Icht4R, which am-
plifies approx. 1000 bp of the Ichthyodinium SSU rRNA gene (Skovgaard
et al., 2010). The 25 μL PCR mixture further contained 200 μM of each
dNTP, 3.0 mMMgCl2, 1 unit of Taq polymerase, and the PCR buffer sup-
plied with the enzyme (Bioline no. BIO21040). The PCR was run in an
automated thermocycler (Biometra T3 Thermocycler) under the follow-
ing conditions: an initial denaturing step at 94 °C for 5 min followed by
35 cycles of denaturing at 94 °C for 1 min, annealing at 50 °C for 1 min
and extension at 72 °C for 2min, and afinal extension at 72 °C for 6min.
Positive controls were omitted throughout DNA amplification in order
to eliminate this as a source of potential contamination of samples. Neg-
ative ‘controls’were plentiful, sincemost samples did not result in prod-
ucts suitable for sequencing. No PCR products from the first PCR were
visible on an ethidium bromide-stained agarose gel, and PCR products
were therefore re-amplified. Second rounds of PCR were run both as
re-amplification using the initial primers and as semi-nested PCR
under the same conditions as the initial PCR. Onemicroliter of the prod-
ucts from the initial PCR served as a template for the second PCR, and
the primer combinations used for semi-nested PCR were Icht1F/18S-
EUK1134-R (Bower et al., 2004) and ND4F/Icht4R (Ekelund et al.,
2004). PCR products were sequenced bidirectionally with an
ABI3730xl sequencer (Macrogen, Korea) using the same primers as
used for PCR and semi-nested PCR. Sequence reads were aligned and
assembled using the software ChromasPro 1.75 (Technelysium,
Australia), and their similarities to other known sequences were
established by BLAST searches (Altschul et al., 1997).

2.4. Phylogenetic analysis

BLAST search revealed that the obtained sequence (GenBank
accession number) was similar to several Ichthyodinium sequences. An
alignment was, therefore, made based on the new sequence and
Ichthyodinium SSU rDNA sequences available in GenBank plus a number
of ‘environmental’ sequences with highest similarity to Ichthyodinium
as detected through the BLAST search. The alignment further included
the syndinian dinoflagellate Euduboscquella cachoni with highest simi-
larity to Ichthyodinium and two dinophycean dinoflagellates Karenia
mikimotoi and Pentapharsodinium tyrrhenicum for rooting of the phylo-
genetic tree. The resulting 21 sequences were aligned by the use of
ClustalX2.1 (Larkin et al., 2007). A phylogenetic analysis was then con-
ducted in MEGA5.21 (Tamura et al., 2011), using the Maximum Likeli-
hood method based on the Tamura 2-parameter model (K2 + I, as
suggested by MEGA5.21). Calculation of bootstrap values was based
on 1000 replicates. Positions containing gaps and missing data were
eliminated, resulting in a final dataset covering a total of 568 positions.
Similarities of sequences (including gaps) were calculated by pairwise
comparison using BioEdit 7.1.11 (Hall, 1999).

3. Results

3.1. Infection and morphology

The presumed parasite was visible in all eggs and the smallest stages
of the parasite appeared to be unicellular spheres with a diameter of
approximately 10 μm (Figs. 1–2). These spheres appeared around 15 h
post-fertilization (HPF), i.e. when germ ring appeared (Fig. 1A). Larger,
presumably multicellular life-cycle stages, up till approximately
100 μm (Fig. 2B) in diameter, were visible from around 30 HPF (Figs. 1
and 2). In some cases, these appeared to have been dividing in a bud-
like manner as viewed from depressions in the larger stages with size
and shape corresponding to that of the minor stages (Fig. 2A). These
two stages were exclusively found in the yolk sac of embryos and
newly hatched larvae, but in addition, intermediate sized ‘amoeboid’
(or amorphous) stages (or cell types) were at some occasions seen in
embryos outside the yolk sac (Figs. 3 and 4). No flagella or signs of mo-
tility were observed in any cell types.

Degenerating embryos, containingmanyparasites of different stages
were observed (Fig. 1), however specific causes of mortality could not
be ascertained as other factors also challenge these pioneering experi-
ments. No flagellated parasite stages were observed and no parasite
cells were ever seen outside eel eggs or embryos. It appeared that
there was an initial proliferation of parasite cells until the stage when

Fig. 1. Infection with Ichthyodinium-like spheres in European eel (Anguilla anguilla) egg
and embryos. A: Fertilized egg 15 HPF showing large variety of spheres. B: Embryo 30
HPF showing spheres positioned on or in yolk of eel embryo. Scale bar = 100 μm.
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these became noticeable inside the eggs (15 HPF). However, after this
point there was no obvious growth in parasite numbers and all infected
egg batches resulted in hatching percentages of 1 to 5% of all stripped
eggs and longevity of 7 to 9 days post-hatch, which was in the normal
range for reproduction experiments during that experimental period.
Egg infection was common also in egg batches that resulted in normal
hatching rates and initial survival of larvae. The transition from egg to
larvae coincided with a clear drop in visual detection of the parasite
and observations of infected larvae were rare. However, the filtrates of
water from rearing containers obtained after the first 24 h after hatch
revealed no detectable DNA from Ichthyodinium. Fig. 4A shows an ex-
ceptional case of yolk sac infection found only in this particular larva,
while Fig. 4B represents typical infections when observed in larvae.

3.2. Sequence data

A 972 bp long partial SSU rDNA sequence was achieved on the basis
of several PCRs performed on DNA extract of a single sample (2BFE).
This sample contained several infected A. anguilla eggs from a batch
with some of the highest infection levels observed during the study.
Eggs from this batch were observed infected at 15 HPF and all infected
embryos died before hatch. The sequence obtained was identical to
SSU rDNA of I. chabelardi from S. pilchardus and Boops boops and to

that of a 553 bp long partial sequence of Ichthyodinium sp. from
G. morhua. Similarities to other Ichthyodinium sequences, originating
from the Southeast Asian hosts T. albacares, Plectropomus leopardus,
and Thunnus orientalis, were 98.3%. It would have been desirable also to
obtain sequences of more variable genes or regions than the SSU rDNA,
such as the ITS region, which is already available for I. chabelardi from
S. pilchardus and B. boops. However, attempts were unsuccessful, which
may be due to insufficient amounts of IchthyodiniumDNA in the samples
or, perhaps, a suboptimal match between target DNA and primers.

3.3. Molecular phylogeny

In the phylogenetic analyses (Fig. 5) sequences from I. chabelardi
from fish of European waters and hatcheries (S. pilchardus, B. boops,
G. morhua, and A. anguilla) grouped together with sequences from envi-
ronmental samples from the Cariaco Basin, Caribbean Sea. These se-
quences formed a clade with Ichthyodinium sp. sequences from the
Pacific area (waters and hatcheries in Japan, Indonesia and Vietnam)
branching out as a subclade.

Thus, two distinct groups of Ichthyodinium ribotypes could be identi-
fied and thesewere geographically separatedwith one group originating
from the Atlantic region and the other group from the Pacific region. The
similarity between representatives of these two groups (represented by
I. chabelardi ex S. pilchardus versus Ichthyodinium sp. ex P. leopardus) was

Fig. 2. Egg andembryo of European eel (Anguilla anguilla) infectedwith Ichthyodinium-like
parasite. A: 400×magnification of yolk surface of embryo showing budding of a small cell
from a large multicellular sphere. B: Embryo 25 HPF showing one of the largest spheres
found positioned on or in yolk of eel embryo. Scale bar = 100 μm.

Fig. 3. Infectionwith Ichthyodinium-like spheres in hatched larvae of European eel (Anguilla
anguilla). Although rarely seen, infections were observed in few larvae always associated
with yolk sac of these. A: Larvae at day 1 after hatch and B: larvae on day of hatch
(0 DPH). Scale bar = 100 μm.
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97.9% similar over the nearly entire SSU rRNA gene (1746 bp), corre-
sponding to 37 indels.

The three environmental sequences from the Caribbean Sea
(retrieved form GenBank) clustered with the Atlantic Ichthyodinium
clade with high support (99.6% sequence similarity). Apart from these,
themost similar sequences obtained through BLAST searchwere various
environmental sequences that branched out basal to all Ichthyodinium
sequences (Fig. 5). A single one of these environmental sequences
(clone SSRPB64 originating from the Sargasso Sea, Not et al., 2007)
branched out basallywithin the Ichthyodinium clade (with 97.3% similar-
ity with I. chabelardi ex S. pilchardus).

3.4. Infection pathway

The test of infection pathway showed spheres present in eggs fertil-
ized in filtered water and under sterilized conditions with mean preva-
lence ±SD of 80 ± 10.8% compared to standard hatchery produced
eggs at 90 ± 7.1%. No difference was found between prevalence in the
two groups (t-test, t=−1.55, P= 0.17), but a significant higher num-
ber of spheres per egg (i.e. infection intensity) was found for the con-
trols 3.5 ± 0.6 (mean ± SD) compared to filtered conditions having
4.5 ± 0.5 (t-test, t = −2.50, P = 0.047). The number of eggs with
more than 10 spheres was equal in both treatments.

4. Discussion

Light microscopy revealed clear morphological resemblances
between the presumed parasitic protozoan in A. anguilla eggs and the
parasitic dinoflagellate I. chabelardi: size and shape of the small unicel-
lular spheres and the larger multicellular stages in A. anguilla eggs
were similar to some of the stages of I. chabelardi primordial schizonts
reported from S. pilchardus and S. scombrus (Hollande et al., 1953;
Meneses et al., 2003). These morphological similarities were supported
by the identity of SSU rRNA genes of the presumed parasite in A. anguilla
eggs and I. chabelardi sequences from the confirmed Ichthyodinium
hosts S. pilchardus, B. boops, and G. morhua (Gestal et al., 2006;
Skovgaard et al., 2009, 2010).

The more advanced life cycle stages such as secondary and tertiary
schizonts (Meneses et al., 2003) and swarmer cells (Skovgaard et al.,

Fig. 4. Different morphotypes of Ichthyodinium-like spheres in the larvae of European eel
(Anguilla anguilla). A: Larvae at day 1 after hatch with thumbnail in upper right, showing
position of highmagnification image. Possible formation of swarmer cells is seen and in B:
embryo ~30 h post-fertilization similar cell morphotypes are visible. Scale bar = 100 μm.

Fig. 5. Phylogenetic analysis based on the Maximum Likelihood method conducted in MEGA5.21. The datasets consisted of a 568-bp alignment comprising 21 SSU rDNA sequences of
members of Alveolata with high similarity to Ichthyodinium. The tree is rooted with two sequences from themembers of Dinokaryota. Numbers at internal branches are bootstrap values
(only values above 50 are shown). Numbers in brackets are GenBank accession numbers. Asian samples refer to fish eggs collected in aquaculture and coastal waters in Southeast Asia.
Atlantic samples were collected in the Atlantic Ocean and adjacent coastal waters, including European aquaculture.
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2009) of Ichthyodinium appeared to be lacking in A. anguilla eggs and
embryos. The A. anguilla eggs were incubated in water with a salinity
of 36 ppt and temperature of 20 °C. According to previous reports
(Mori et al., 2007; Skovgaard et al., 2009), such conditions should be
favourable for growth of the parasite. Although a clear drop in detection
of parasite spheres was observed once eggs hatched to larvae, no prolif-
eration of swarmer cells was observed or detected in filtrate of hatching
water. In full strength tropical seawater, lethal effects of the infection
are the results of proliferation of flagellated swarmer cells that rupture
the yolk sac, which is described as clearly visible (Hollande and Cachon,
1952, 1953; Meneses et al., 2003; Mori et al., 2007; Stratoudakis et al.,
2000; Yuasa et al., 2007). The infection and low amount of spheres in
the eel embryos were not comparable to such severe cases and we did
not observe changes in sphere morphology into the amorphous shapes
shown by Yuasa et al. (2007). The numbers andmorphology of the par-
asite resemble more that shown for cod (Skovgaard et al., 2010) in
which mortality and swarmers did not occur. The effect of infection in
eel larvae and the influence on survival therefore suggest to be minor,
however, a dedicated study of larvae survival versus infection has yet
to be conducted. Such study would call for a special setup, since larvae
are sensitive to handling, and the minute size of Ichthyodinium spheres
necessitates microscopic examination to reveal infections, hence
compromising larvae survival.

The phylogenetic analysis in this study confirmed a previous observa-
tion that at least two distinct and geographically separated ribotypes of
Ichthyodinium exist (Skovgaard et al., 2009). Whether these ribotypes
represent separate species cannot presently be determined, given that
no morphological differences have been recognized. No host-specificity
has been detected in Ichthyodinium; genetically identical parasites have
been found in the eggs of different fish species (Skovgaard et al., 2009).
Very little genetic variation is present between parasites from different
host species in the same geographic area (Fig. 5). In addition, parasites
from different parts of the world (i.e. Atlantic region versus Pacific
region) are strikingly similar: SSU rRNA gene sequences from the Atlan-
tic Ichthyodinium and the (Pacific) parasite found in T. albacares are 98%
similar. Interestingly, three Caribbean Sea environmental sequences
(Edgcomb et al., 2011) branched out as members of the Atlantic
Ichthyodinium-clade in the phylogenetic analysis (Fig. 5). The exact
match of these sequences leaves no doubt that they must be of
Ichthyodinium origin, providing additional evidence of a worldwide oc-
currence of this parasite genus.

Irrespective of the number of Ichthyodinium species existing, this
parasite is bound to have large ecological effects through its exploita-
tion of pelagic fish eggs as food source. Ichthyodinium appears to be
abundant in coastal waters all over the world (Meneses et al., 2003;
Shadrin et al., 2010; Stratoudakis et al., 2000) and it infects eggs of a
large number of marine fish species (Table 1). Thus, even though not
all pelagic fish eggs are necessarily suitable hosts for the parasite
(Skovgaard et al., 2010), those that are may suffer high egg mortality
rates due to infections with Ichthyodinium (Meneses et al., 2003).

Infection with Ichthyodinium may also pose challenges for the pro-
duction of marine fish larvae in hatcheries. However, infection has
been found controllable through good husbandry, avoiding horizontal
infection from the environment to newly spawned eggs (Mori et al.,
2007; Yuasa et al., 2007). Mori et al. (2007) were able to avoid disease
outbreak in P. leopardus eggs by rearing broodstock and incubating fer-
tilized eggs in oxidant-treated seawater. Likewise, Yuasa et al. (2007)
did not observe an infection in T. albacares eggs, when spawned eggs
were immediately transferred to sterilized seawater. In the present
study, however, results were contradictory in theway that no reduction
in prevalence was observed, if eggs were transferred to the sterile fil-
tered seawater. The infection pathway in our tests thus appeared to be
vertical. However, several studies have shown evidence for a horizontal
transfer of this parasite (Mori et al., 2007). This questions why we ob-
serve such high prevalence following fertilization in sterile filtered sea-
water. The catadromous life-strategy of eels implies that glass eels

returning from the Sargasso Sea live in freshwater for 12 to more than
20 years before the onset of their spawning migration to the seawater
(Tesch, 2003). Broodstock females used in our study were caught at
the onset of autumn migration, while still in a freshwater habitat and
male counterparts originated from domestic stocks kept in freshwater
tanks for 2–3 years prior to induction of maturation. This implies that
themarine Ichthyodinium schizonts, if present inside the broodstock go-
nads should have survived for several years, while the broodstock lived
in freshwater. Alternatively, the parasite schizonts might have infected
broodstock eels while kept in seawater recirculation system during
experimentation. In Anguillids, the ovaries open into the body cavity,
i.e. the gymnovarian type, and the eggs are conveyed through an open
funnel to the oviduct. The gymnovarian conditionmayprovide parasites
an easier access to ovaries and eggs, than in most teleosts, having
cystovarian condition (Barton, 2007). Sequencing ovarian tissue to
identify Ichthyodinium DNA would prove useful, answering such ques-
tions, however such analyses are challenged by the ratio of maternal
to parasite DNA. Although Ichthyodinium infection did not appear to in-
ducemortality in eel larvae in the present study, studies to clarify the in-
fection pathway are important to ensure the future healthy production
of offspring from captive breed European eels.

Acknowledgements

Financial support for this study was granted by the Danish National
Strategic Research Council through the project IMPAQ — Grant no. 10-
093522. The eel breeding experiments were carried out as part of
research project “PRO-EEL: Reproduction of European Eel — Towards a
Self-sustained Aquaculture” (Grant Agreement no.: 245527) funded
by the European Commission through the FP7 Programme. We wish
to thank S.N. Politis for assistance in experiments and P. Lauesen,
C. Graver and M. Krüger‐Johnsen who participated in the reproduction
experiments in providing eggs for the study.

References

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J.H., Zhang, Z., Miller, W., Lipman, D.J.,
1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Res. 25, 3389–3402.

Asturiano, J.F., Pérez, L., Garzón, D.L., Marco-Jiménez, F., Peñaranda, D.S., Vicente, J.S., Jover,
M., 2004. Physio-chemical characteristics of seminal plasma and development of
media and methods for the cryopreservation of European eel sperm. Fish Physiol.
Biochem. 30, 283–293.

Barton, M., 2007. Bond's Biology of Fishes, 3rd edition. Thomson Brook/Cole, Belmont,
California (912 pp.).

Bezdenezhnykh, V., Prokhorcik, G., Petrikov, A., Petukov, V., Plyuta, M., 1983. Obtaining
the larvae of European eel Anguilla anguilla L. (Pisces, Anguillidae), under experimen-
tal conditions. Dokl. Akad. Nauk SSSR 268, 1264–1266 (in Russian).

Bloch, B., Pedersen, B.H., Jensen, P.V., 1997. An enigmatic and possibly parasitic organisms
in the tissue of embryonated eggs of Baltic cod Gadus morhua. Dis. Aquat. Org. 30,
121–137.

Borges, R., Ré, P., Azevedo, C., 1996. Ichthyodinium chabelardi (Hollande e Cachon 1952),
dinoflagelado parasita dos ovos de sardinha. Ciência biológica. Ecology and Systemat-
ics, 16.

Bower, S.M., Carnegie, R.B., Goh, B., Jones, S.R.M., Lowe, G.J., Mak, M.W.S., 2004. Preferen-
tial PCR amplification of parasitic protistan small subunit rDNA from metazoan tis-
sues. J. Eukaryot. Microbiol. 51, 325–332.

Bruun, A., Hemmingsen, A., Møller-Christensen, E., 1949. Attempts to induce experimen-
tally maturation of the gonads of the European eel, Anguilla anguilla L. Acta
Endocrinol. 2, 212–226.

Dufour, S., Burzawa-Gerard, E., Belle, N., Sbaihi, M., Vidal, B., 2003. Reproductive endocri-
nology of the European Eel, Anguilla anguilla. In: Aida, K., Tsukamoto, K., Yamauchi, K.
(Eds.), Eel Biology. Springer, Japan, pp. 373–383.

Edgcomb, V., Orsi, W., Bunge, J., Jeon, S., Christen, R., Leslin, C., Holder, M., Taylor, G.T.,
Suarez, P., Varela, R., Epstein, S., 2011. Protistan microbial observatory in the Cariaco
Basin, Caribbean. I. Pyrosequencing vs Sanger insights into species richness. ISME J. 5,
1344–1356.

Ekelund, F., Daugbjerg, N., Fredslund, L., 2004. Phylogeny of Heteromita, Cercomonas and
Thaumatomonas based on SSU rDNA sequences, including the description of
Neocercomonas jutlandica sp. nov., gen. nov. Eur. J. Protistol. 40, 119–135.

Gestal, C., Novoa, B., Posada, D., Figueras, A., Azevedo, C., 2006. Perkinsoide chabelardi n.
gen., a protozoan parasite with an intermediate evolutionary position: possible
cause of the decrease of sardine fisheries? Environ. Microbiol. 8, 1105–1114.

202 S.R. Sørensen et al. / Aquaculture 426–427 (2014) 197–203

99



Guillou, L., Viprey, M., Chambouvet, A., Welsh, R.M., Kirkham, A.R., Massana, R., Scanlan,
D.J., Worden, A.Z., 2008. Widespread occurrence and genetic diversity of marine par-
asitoids belonging to Syndiniales (Alveolata). Environ. Microbiol. 10, 3349–3365.

Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis
program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.

Hollande, A., Cachon, J., 1952. Un parasite des oeufs de sardine: l'Ichthyodinium chabelardi,
nov. gen., nov. sp. (Péridinien parasite). C.R. Hebd. Seances Acad. Sci. 235, 976–977.

Hollande, A., Cachon, J., 1953. Morphologie et évolution d'un Péridinien parasite des oeufs
de sardine (Ichthyodinium chabelardi). Bulletin des Travaux publiés par la Station
d'Aquiculture et de Pêche de Castiglione, 4, pp. 321–331.

Hollande, A., Enjumet, M., Manciet, J., 1953. Les péridiniens parasites des Phæodariés et le
problème de la sporogénèse chez ces Radiolaires. C. R. Acad. Sci. 236, 1607–1609.

Ishimaru, K., Iida, N., Okada, T., Miyashita, S., 2012. Ichthyodinium infection in the embryos
and yolk sac larvae of Pacific bluefin tuna Thunnus orientalis. Fish Pathol. 47, 143–146.

Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H.,
Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins,
D.G., 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948.

López-García, P., Rodríguez-Valera, F., Pedrós-Alió, C., Moreira, D., 2001. Unexpected
diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409, 603–607.

Marinaro, J.Y., 1971. Contribution à l’étude des oeufs et larves pélagiques de poissons
Mediterraneans. V. Oeufs pélagiques de la Baie d’Alger. Pelagos 3, 1–118.

Meneses, I., Ré, P., 1992. Infection of sardine eggs by a parasitic dinoflagellate
(Ichthyodinium chabelardi Hollande and Cachon) off the Portuguese coast. Bol. Inst.
Esp. Oceanogr. 8, 201.

Meneses, I., Vendrell, C., Stratoudakis, Y., 2003. Mackerel (Scomber scombrus) eggs para-
sitized by Ichthyodinium chabelardi in the north-east Atlantic: an overlooked source
of mortality. J. Plankton Res. 25, 1177–1181.

Mori, K.I., Yamamoto, K., Teruya, K., Shiozawa, S., Yoseda, K., Sugaya, T., Shirakashi, S., Itoh,
N., Ogawa, K., 2007. Endoparasitic dinoflagellate of the genus Ichthyodinium infecting
fertilized eggs and hatched larvae observed in the seed production of leopard coral
grouper Plectropomus leopardus. Fish Pathol. 42, 49–57.

Not, F., Gausling, R., Azam, F., Heidelberg, J.F., Worden, A.Z., 2007. Vertical distribution of
picoeukaryotic diversity in the Sargasso Sea. Environ. Microbiol. 9, 1233–1252.

Pedersen, B.H., 1993. Embryos and yolk-sac larvae of turbot Scophthalmus maximus are
infested with an endoparasite from the gastrula stage onwards. Dis. Aquat. Org. 17,
57–59.

Pedersen, B.H., 2004. Fertilisation of eggs, rate of embryonic development and hatching
following induced maturation of the European eel Anguilla anguilla. Aquaculture
237, 461–473.

Pedersen, B.H., Køie, M., 1994. A protistan endoparasite in embryos and yolk-sac larvae of
cod Gadus morhua and turbot Scophthalmus maximus. Dis. Aquat. Org. 19, 39–46.

Pedersen, B.H., Buchmann, K., Køie, M., 1993. Baltic larval cod Gadus morhua are infested
with a protistan endoparasite in the yolk-sac. Dis. Aquat. Org. 16, 29–33.

Shadrin, A.M., Pavlov, D.S., Novikov, G.G., 2002. The phenomenon of endoparasitism at
early stages of fish development. Dokl. Biol. Sci. 385, 361–363.

Shadrin, A.M., Pavlov, D.S., Kholodova, M.V., 2010. Long-term dynamics of infection of fish
eggs and larvae with the endoparasite Ichthyodinium sp. (Dinoflagellata) in Nha
Trang Bay, Vietnam. Fish Pathol. 45, 103–108.

Silva, A., Miranda, A., 1992. Laboratory rearing of sardine larvae Sardina pilchardus (Walb.)
and early effects of starvation: a preliminary experiment. Bol. Inst. Esp. Oceanogr. 8,
163–174.

Skovgaard, A., Meneses, I., Angélico, M.M., 2009. Identifying the lethal fish egg parasite
Ichthyodinium chabelardi as a member of Marine Alveolate Group I. Environ.
Microbiol. 11, 2030–2041.

Skovgaard, A., Meyer, S., Overton, J.L., Støttrup, J., Buchmann, K., 2010. Ribosomal RNA
gene sequences confirm that protistan endoparasite of larval cod Gadus morhua is
Ichthyodinium sp. Dis. Aquat. Org. 88, 161–167.

Skovgaard, A., Bahlool, Q.Z.M., Munk, P., Berge, T., Buchmann, K., 2011. Infection of North
Sea cod, Gadus morhua L., larvae with the parasitic nematode Hysterothylacium
aduncum Rudolphi. J. Plankton Res. 33, 1311–1316.

Stratoudakis, Y., Barbosa, A., Meneses, I., 2000. Infection of sardine eggs by the protistan
endoparasite Ichthyodinium chabelardi off Portugal. J. Fish Biol. 57, 476–482.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5: molec-
ular evolutionary genetics analysis using maximum likelihood, evolutionary distance,
and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

Tesch, F.W., 2003. The Eel, Fifth edition. Blackwell Science, Oxford 408.
Tomkiewicz, J., 2012. Reproduction of European Eel in Aquaculture (REEL): consolidation

and new production methods. DTU Aqua Report No 249–2012. Technical University
of Denmark, National Institute of Aquatic Resources.

Yuasa, K., Kamaishi, T., Mori, K.I., Hutapea, J.H., Permana, G.N., Nakazawa, A., 2007. Infec-
tion by a protozoan endoparasite of the genus Ichthyodinium in embryos and yolk-sac
larvae of yellowfin tuna Thunnus albacares. Fish Pathol. 42, 59–66.

203S.R. Sørensen et al. / Aquaculture 426–427 (2014) 197–203

100



DTU Aqua

National Institute of Aquatic Resources

Technical University of Denmark 

Jægersborg Allé 1

2920 Charlottenlund 

Denmark

Tlf.  +45 35 88 33 00

www.aqua.dtu.dk

DTU Aqua – National Institute of Aquatic Resources – is an institute at the Tech-
nical University of Denmark. DTU Aqua’s mission is to conduct research, provide 
advice, educate at university level and contribute to innovation in sustainable 
exploitation and management of aquatic resources. We investigate the biology 
and population ecology of aquatic organism, aquatic physics and chemical pro-
cesses, ecosystem structure and dynamics, taking account of all relevant natural 
and anthropogenic drivers.


	forside
	SRS thesis til tryk rettet 14 jan 2015
	bagside

