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Abstract: – The paper deals with continuous-time adaptive control of a tubular chemical reactor with the 
countercurrent cooling as a nonlinear single input – single output process. The mean reactant temperature and 
the output reactant temperature are chosen as the controlled outputs, and, the coolant flow rate as the control 
input. The nonlinear model of the reactor is approximated by an external linear model with a structure chosen 
on the basis of controlled outputs step responses. Its parameters are estimated via corresponding delta model. 
The control system structure with two feedback controllers is considered. The resulting controllers are derived 
using polynomial approach. The method is tested on a mathematical model of the tubular chemical reactor. 
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1 Introduction 
Tubular chemical reactor are units frequently used 
in chemical industry. From the system theory point 
of view, tubular chemical reactors belong to a class 
of nonlinear distributed parameter systems with 
mathematical models  described by sets of nonlinear 
partial differential equations (NPDRs). The methods 
of modelling and simulation of such processes are 
described e.g.  in [1] – [5]. 
It is well known that the control of chemical 
reactors, and, tubular reactors especially, often 
represents very complex problem. The control 
problems are due to the process nonlinearity, its 
distributed nature, and high sensitivity of the state 
and output variables to input changes. Evidently, the 
process with such properties is hardly controllable 
by conventional control methods, and, its effective 
control requires application some of advanced 
methods. Here, various  efficient methods may be 
used as the predictive control, e.g. [6], [7], [8], the 
robust control, e.g. [9], the fuzzy nonlinear control, 
e.g. [10], the model reference control, e.g. [11], or 
nonlinear control, e.g. [12], [13] and [14]. Some 
others methods are described in [15]. 
One possible method to cope with this problem is 
using adaptive strategies based on an appropriate 
choice of a continuous-time external linear model 
(CT ELM) with recursively estimated parameters. 
These parameters are consequently used for parallel 
updating of controller‘s parameters. Some results 
obtained in this field were presented by authors of 
this paper e.g. in [16] and [17]. 

 For the CT ELM parameter estimation, either the 
direct method [18] and [19] or application of an 
external delta model with the same structure as the 
CT model can be used. The basics of delta models 
have been described in e.g. [20] and [21]. Although 
delta models belong into discrete models, they do 
not have such disadvantageous properties connected 
with shortening of a sampling period as discrete z-
models. In addition, parameters of delta models can 
directly be estimated from sampled signals. 
Moreover, it can be easily proved that these 
parameters converge to parameters of CT models for 
a sufficiently small sampling period (compared to 
the dynamics of the controlled process), as shown in 
[22].  
This paper deals with continuous-time adaptive 
control of a tubular chemical reactor with a 
countercurrent cooling as a nonlinear single input – 
single output process. With respect to practical 
possibilities of a measurement and control, the mean 
reactant temperature and the output reactant 
temperature are chosen as the controlled outputs, 
and, the coolant flow rate as the control input. The 
nonlinear model of the reactor is approximated by a 
CT external linear model with a structure chosen on 
the basis of computed controlled outputs step 
responses. The parameters of the CT ELM then are 
estimated via corresponding delta model. The  
control structure with two feedback controllers is 
considered, e.g. [23]. The resulting controllers are 
derived using the polynomial approach [24] and the 
pole assignment method (see, e.g. [25]). The method 
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is tested on a mathematical model of a tubular 
chemical reactor. 
 
2 Model of the Reactor 
An ideal plug-flow tubular chemical reactor with a 

simple exothermic consecutive reaction 
1 2k k

A B C→ →  
in the liquid phase and with the countercurrent 
cooling is considered.  Heat losses and heat 
conduction along the metal walls of tubes are 
assumed to be negligible, but dynamics of the metal 
walls of tubes are significant. All densities, heat 
capacities, and heat transfer coefficients are 
assumed to be constant. Under above assumptions, 
the reactor model can be described by five PDRs in 
the form 

 1
A A

r A
c cv k c
t z

∂ ∂+ = −
∂ ∂

 (1) 

 1 2
B B

r A B
c cv k c k c
t z
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with initial conditions  

( ,0) ( )s
A Ac z c z= , ( ,0) ( )s

B Bc z c z= , ( ,0) ( )s
r rT z T z= , 

( ,0) ( )s
w wT z T z= , ( ,0) ( )s

c cT z T z=  

and boundary conditions 

0(0, ) ( )A Ac t c t= (kmol/m3), 

0(0, ) ( )B Bc t c t= (kmol/m3), 0(0, ) ( )r rT t T t= (K),   

( , ) ( )c cLT L t T t= (K). 

Here, t is the time, z is the axial space variable, c are 
concentrations, T are temperatures, v are fluid 
velocities, d are diameters, ρ are densities, cp are 
specific heat capacities, U are heat transfer 
coefficients, n1 is the number of tubes and L is the 
length of tubes. The subscript (⋅)r stands for the 
reactant mixture, (⋅)w for the metal walls of tubes, 
(⋅)c for the coolant, and the superscript (⋅)s for 
steady-state values. 
The reaction rates and heat of reactions are 
nonlinear functions expressed as 

 0 exp j
j j

r

E
k k

RT
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠

,   j = 1, 2 (6) 

 1 1 2 2( ) ( )r r A r BQ H k c H k c= −Δ + −Δ  (7) 

where k0 are pre-exponential factors, E are 
activation energies, ( )rH−Δ are in the negative 
considered reaction entalpies, and R is the gas 
constant. 
The fluid velocities are calculated via the reactant 
and coolant flow rates as 

 2
1 1

4 r
r

qv
n dπ

=  , 2 2
3 1 2

4
( )

c
c

qv
d n dπ

=
−

 (8) 

The parameter values with correspondent units used 
for simulations are given in Table 1. 
 
Table 1. Used parameter values 
L = 8 m n1 = 1200 
d1 = 0.02 m d2 = 0.024 m 

d3 = 1 m  
ρr = 985 kg/m3 cpr = 4.05 kJ/kg K 
ρw = 7800 kg/m3 cpw = 0.71 kJ/kg K 
ρc = 998 kg/m3 cpc = 4.18 kJ/kg K 
U1 = 2.8 kJ/m2s K U2 = 2.56 kJ/m2s K 
k10 = 5.61⋅1016 1/s k20 = 1.128⋅1018 1/s 
E1/R = 13477 K E2/R = 15290 K 
(-ΔHr1) = 5.8⋅104 kJ/kmol (-ΔHr2) = 1.8⋅104 kJ/kmol 

 
From the system engineering point of view, 

out( , )A Ac L t c= , out( , )B Bc L t c= , out( , )r rT L t T=  
and out(0, )c cT t T=  are the output variables, and, 

( )rq t , ( )cq t , 0 ( )Ac t , 0 ( )rT t and ( )cLT t  are the 
input variables. Among them, for the control 
purposes, mostly the coolant flow rate  can be taken 
into account  as the control variable, whereas other 
inputs entering into the process can be accepted as 
disturbances. In this paper, the mean reactant 
temperature given by 

 
0

1( ) ( , )
L

m rT t T z t d z
L

= ∫  (9) 

and the reactant output temperature out ( )rT t  are 
considered as the controlled outputs. 
 
3 Computation Models 
For computation of  both steady-state and dynamic 
characteristics, the finite diferences method is 
employed. The procedure is based on substitution of 
the space interval  0,z L∈< >  by a set of discrete 

WSEAS TRANSACTIONS on FLUID MECHANICS Petr Dostál, Vladimír Bobál, Jiří Vojtěšek, Zdeněk Babík

E-ISSN: 2224-347X 14 Issue 1, Volume 7, January 2012



node points { }iz for i = 1, … , n , and, subsequently, 
by approximation of derivatives with respect to the 
space variable in each node point by finite 
differences. Two types of finite differences are 
applied, either the backward finite difference  
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or the forward finite difference 
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Here, a function ( , )y z t  is continuously 
differentiable in the interval 0, L< > , and, h L n=  
is the diskretization step. 
 
3.1 Dynamic model 
Applying the substitutions (10), (11) in (1) – (5) 
and, omitting the argument t in parenthesis, PDRs 
(1) – (5) are approximated by a set of ODRs in the 
form 

 [ ]0 1 0
( ) ( ) ( ) ( 1)A

A A
dc i b k i c i b c i

dt
= − + + −  (12) 
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[ ] [ ]3 4
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r w c w
dT i b T i T i b T i T i

dt
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 5 6 5

6
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w
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b T m
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for 1, ... ,i n=  and 1m n i= − + , and, with initial 
conditions  

( ,0) ( )s
A Ac i c i= , ( ,0) ( )s

B Bc i c i= , ( ,0) ( )s
r rT i T i= , 

( ,0) ( )s
w wT i T i=  and ( ,0) ( )s

c cT i T i=  for 1, ... ,i n= .  

The boundary conditions enter into Eqs. (12) – (14) 
and (16) for i = 1 . 
Now, nonlinear functions in Eqs. (12) – (16) take 
the discrete form 
 

 0( ) exp
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j
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E
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RT i
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,  j = 1, 2 (17) 

 1 1

2 2

( ) ( ) ( ) ( )
( ) ( ) ( )

r r A

r B

Q i H k i c i
H k i c i

= −Δ +
+ −Δ

 (18) 

for i = 1, … , n. 
The parameters b in Eqs. (12) – (16) are calculated 
from formulas 
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Here, the formulas for computation of Tm and our tT  
take the discrete form 
 

 
1

1( ) ( , )
n

m r i
i

T t T z t
n =

= ∑ , out ( ) ( , )r r nT t T z t=  (20) 

 
3.2 Steady-state model 
Computation of the steady-state characteristics is 
necessary not only for a steady-state analysis but the 
steady state values ( )sy i  also constitute initial 
conditions in ODRs (12) – (16) (here, y presents 
some of the variable in the set (12) – (16)). 
The steady-state model can simply be derived 
equating the time derivatives in (12) – (16) to zero. 
Then, after some algebraic manipulations, the 
steady-state model takes the form of difference 
equations 

 0

0 1
( ) ( 1)

( )
s s
A As

bc i c i
b k i

= −
+

 (21) 

 1 0
0 2
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B A Bsc i k i c i b c i

b k i
⎡ ⎤= + −⎣ ⎦+
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0 2
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b b
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 3 4
3 4

1( ) ( ) ( )s s s
w r cT i b T i b T i

b b
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 (24) 
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1( ) ( 1) ( )s s s
c c wT m b T m b T m
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 (25) 

for 1, ... ,i n=  and 1m n i= − + . Nonlinear functions 
accordant with a steady-state are 

 0( ) exp
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js

j j s
r

E
k i k

RT i

⎛ ⎞−
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Now, the formulas for computation Tm and our tT  
have the form 

 
1

1 ( )
n

s s
m r i

i
T T z

n =
= ∑ ,  out ( )s s

r r nT T z=  (28) 

 
3.3 Steady-state and dynamic characteristics 
Typical reactant temperature profiles along the 
reactor tubes computed for 0 2.85s

Ac = , 0 0s
Bc = , 

0 323s
rT = ,  0 293s

cT =  and 0.15s
rq =  for various  

coolant flow rates are shown in Fig. 1. A presence 
of a maximum on the reactant temperature profiles 
is a common property of many tubular reactors with 
exothermic reactions. 
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Fig. 1 Reactant temperature profiles for various  
           coolant flow rates. 
 
A dependences of the reactant mean temperature 
and the reactant output temperature on the coolant 
flow rate is shown in Fig. 2. The form of both 
curves documents a nonlinear relation between   
supposed controlled outputs and the coolant flow 
rate which is considered as the control input.  
Dynamic charakteristics were computed in the 
neighbourhood of the chosen operating point 

30.27 m /ss
cq = , 334.44Ks

mT = , out 326.10Ks
rT =  

For the dynamic analysis and subsequent control 
purposes, the controlled outputs are defined as  
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Fig. 2 Dependence of the reactant mean  
           temperature on the coolant flow rates. 
 
deviations from steady values 

 1

2 out out out

( ) ( ) ( )

( ) ( ) ( )

s
m m m

s
r r r

y t T t T t T

y t T t T t T

=Δ = −

=Δ = −
. (29) 

 Such form is frequently used in the control. The 
deviation of the coolant flow rate is denoted as  

 ( ) s
c c cq q t qΔ = − .  (30)  

The responses of both outputs to the coolant flow 
rate step changes are shown in Figs. 3, 4.  
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Fig. 3 Reactant mean temperature step responses. 
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Fig. 4 Reactant output temperature step responses. 
 
The above shown responses demonstrate more 
expressive nonlinear behaviour of the reactant 
output temperature to input changes than the 
reactant mean temperature. This fact is evident also 
from the gain values computed as 
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( )lims t c

y tg
q→∞

=
Δ

 (31) 

and presented in Tab. 2. 
 
   Tab. 2 Gains for various input hanges. 

Δqc - 0.025 - 0.05 0.025 0.05 
Main reactant temperature 

gs -155.4 -166.2 -263.5 -205.1 
Output reactant temperature 

gs -69.6 -72.0 -194.3 -193.5 
 
This fact predicates better properties of the reactant 
mean temperature as the controlled output than the 
reactant output temperature. Moreover, the 
dynamics of the reactant output temperature is 
slower in comparison with the dynamics of the 
reactant mean temperature. 
 
4 CT and Delta ELM 
For the control purposes, the control input variable 
are considered in the form 

 
( )

( ) 10
s

c c
s
c

q t q
u t

q
−

=  (32) 

This expression enables to obtain control input and 
controlled output variables of approximately the 
same magnitude. 
A choice of the CT ELM structure does not stem 
from known structure of the model (1) – (5) but 
from a character of simulated step responses. It is 
well known that in adaptive control a controlled 
process of a higher order can be approximated by a 
linear model of a lower order with variable 
parameters. Taking into account profiles of curves 
in Figs. 3 and 4 with zero derivatives in t = 0, the 
second order CT ELM has been chosen for both 
controlled outputs in the form of the second order 
linear differential equation 
 1 0 0( ) ( ) ( ) ( )y t a y t a y t b u t+ + =  (33) 

where y = y1 or y = y2 , and, in the complex domain, 
as the transfer function 

 0
2

1 0
( ) bG s

s a s a
=

+ +
. (34) 

Establishing the δ operator 

 
0

1q
T

δ −=  (35) 

where q is the forward shift operator and T0 is the 
sampling period, the delta ELM corresponding to 
(33) takes the form 

 2
1 0 0( ) ( ) ( ) ( )y t a y t a y t b u tδ δ′ ′ ′ ′ ′ ′ ′+ + =  (36) 

where t′ is the discrete time. 
When the sampling period is shortened, the delta 
operator approaches the derivative operator, and, the 
estimated parameters ,a b′ ′  reach the parameters a, 
b of the CT model (33). 
 
5 Delta Model Parameter Estimation 
Substituting 2t k′ = − , equation (36) can be 
rewriten to the form 

 
2

1 0

0

( 2) ( 2) ( 2)
( 2)

y k a y k a y k
b u k

δ δ′ ′− + − + − =
′= −

 (37) 

In the paper, the recursive identification method 
with exponential and directional forgetting was 
used. 
Establishing the regression vector 

( )( 1) ( 2) ( 2) ( 2)T k y k y k u kδ δ− = − − − − −Φ (38) 

where   

 
0

( 1) ( 2)( 2) y k y ky k
T

δ − − −− =  (39)  

the vector of delta model parameters 

 ( )1 0 0( )T k a a bδ ′ ′ ′=Θ  (40) 

is recursively estimated from the ARX model 

 2 ( 2) ( ) ( 1) ( )Ty k k k kδ δδ ε− = − +Θ Φ  (41) 

where  

 2
2

0

( ) 2 ( 1) ( 2)( 2) y k y k y ky k
T

δ − − + −− =  (42)  

 
6 Controller Design 
The control system with two feedback controllers is 
depicted in Fig. 5.  
 

- -

v 

ew u u0 y 
 R CT ELM

Q 

 
 
Fig. 5. Control system with two feedback controllers 
 
In the  scheme, w is the reference signal, v  denotes 
the load disturbance, e the tracking error, u0 output 
of controllers, u the control input and y the 
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controlled output. The  transfer  function  G(s) of 
the CT ELM is given by (34).  
The reference w and the disturbance v are 
considered as step functions with transforms  

 0( ) wW s
s

= ,  0( ) vV s
s

=  (43) 

The transfer functions of both controllers are in 
forms 

 ( ) ( )( ) , ( )
( ) ( )

r s q sR s Q s
p s p s

= =  (44) 

where q , r and p  are coprime polynomials in s 
fulfilling the condition of properness  deg degr p≤   
and  deg degq p≤  .  
The controller design described in this section 
appears from the polynomial approach. The general 
requirements on the control system are formulated 
as its internal properness and strong stability (in 
addition to the control system stability, also the 
controller stability is required), asymptotic tracking 
of the reference and load disturbance attenuation. 
The procedure to derive admissible controllers can 
be performed as follows: 
Transforms of the basic signals in the closed-loop 
system take following forms (for simplification, the 
argument s is in some equations omitted) 

 [ ]( ) ( ) ( )bY s rW s pV s
d

= +  (45) 

 [ ]1( ) ( ) ( ) ( )E s a p bq W s b pV s
d

= + −  (46) 

 [ ]( ) ( ) ( )aU s rW s pV s
d

= +  (47) 

Here, 
 [ ]( ) ( ) ( ) ( ) ( ) ( )d s a s p s b s r s q s= + +  (48) 

is the characteristic polynomial with roots as poles 
of the closed-loop. 
Establishing the polynomial t as 
 ( ) ( ) ( )t s r s q s= +  (49) 

and substituting (49) into (48), the condition of the 
control system stability is ensured when 
polynomials p  and t are given by a solution of the 
polynomial Diophantine equation 
 ( ) ( ) ( ) ( ) ( )a s p s b s t s d s+ =  (50) 

with a stable polynomial d on the right side. 
With regard to the transforms (43), the asymptotic 
tracking and load disturbance attenuation are 
provided by divisibility of both terms a p bq+  and 
p  in (46) by s. This condition is fulfilled when 

polynomials p and q have forms 

 ( ) ( )p s s p s= ,  ( ) ( )q s s q s= . (51) 

Subsequently, the transfer functions (44) take forms 

 ( )( )
( )

q sQ s
p s

= ,  ( )( )
( )

r sR s
s p s

=  (52) 

and, a stable polynomial p(s) in their denominators 
ensures the stability of controllers.  
The control system satisfies the condition of internal 
properness when the transfer functions of all its 
components are proper. Consequently, the degrees 
of polynomials q and r must fulfil these inequalities 
 deg degq p≤ ,  deg deg 1r p≤ + . (53) 

Now, the polynomial t can be rewritten to the form 
 ( ) ( ) ( )t s r s s q s= + . (54) 

Taking into account the solvability of (50) and 
conditions (53), the degrees of polynomials in (50) 
and (52) can be easily derived as 

deg deg degt r a= = , deg deg 1q a= − ,  

 deg deg 1p a≥ − ,  deg 2degd a≥ .  (55) 

Denoting deg a = n, polynomials t, r and q have  
forms 

0
( )

n
i

i
i

t s t s
=

=∑ , 
0

( )
n

i
i

i
r s r s

=
=∑ , 1

1
( )

n
i

i
i

q s q s −

=
=∑  (56) 

and, relations among their coefficients are 
 0 0r t= ,  i i ir q t+ =  for 1, ... ,i n= . (57) 

Since by a solution of the polynomial equation (50) 
provides calculation of coefficients ti, unknown 
coefficients ri and qi can be obtained by a choice of 
selectable coefficients 0,1iβ ∈  such that 

 i i ir tβ= ,  (1 )i i iq tβ= −  for 1, ... ,i n= . (58) 

The coefficients iβ  distribute a weight between 
numerators of transfer functions Q and R.  
Remark: If 1iβ = for all i, the control system in Fig. 
5 reduces to the 1DOF control configuration (Q = 
0). If 0iβ = for all i, and, both reference and load 
disturbance are step functions, the control system 
corresponds to the 2DOF control configuration. 
For the second order model (34) with deg 2a = , the 
controller's transfer functions take specific forms 

 

2 1

0
2

2 1 0

0

( )( )
( )

( )( )
( ) ( )

q s q s qQ s
p s s p

r s r s rr sR s
s p s s s p

+= =
+

+ +
= =

+

. (59) 

where 

0 0r t= , 1 1 1r tβ= , 2 2 2r tβ= ,  
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 1 1 1(1 )q tβ= − , 2 2 2(1 )q tβ= − . (60) 

The controller parameters then result from a 
solution of the polynomial equation (50) and depend 
upon coefficients of the polynomial d. The next 
problem here is to find a stable polynomial d that 
enables to obtain acceptable stabilizing controllers.  
In this paper, the polynomial d with roots 
determining the closed-loop poles is chosen as 

 2( ) ( ) ( )d s n s s α= +  (61) 

where n is a stable polynomial obtained by spectral 
factorization 
 ( ) ( ) ( ) ( )a s a s n s n s∗ ∗=  (62) 

and α is the selectable parameter. 
Note that a choice of d in the form (61) provides the 
control of a good quality for aperiodic controlled 
processes.  
The coefficients of n then are expressed as  

 2
0 0n a= ,  2

1 1 0 02 2n a n a= + −  (63) 

and, the controller parameters p0 and t can be 
obtained from solution of the matrix equation 

 1 0

0 0

0

1 0 0 0
0 0

0 0
0 0 0

a b
a b

b

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

×

0

2

1

0

p
t
t
t

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 

3 1

2 0

1

0

d a
d a

d
d

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (64) 

where 

 
2

3 1 2 1 0
2 2

1 0 1 0 0

2 , 2

2 ,

d n d n n

d n n d n

α α α

α α α

= + = + +

= + =
 (65) 

Now, it follows from the above introduced 
procedure that tuning of controllers can be 
performed by a suitable choice of selectable 
parameters β and α. 
The controller parameters r and q can then be 
obtained from (60). 
The adaptive control system is shown in Fig. 6. 
 

Controller 

Parameter estimation 

Controlled 
    process 

    Computation of 
controller parameters 

T0 T0 

w  u 

q, p  v 

 y 

b, a 

 -

 
Fig. 6 Adaptive control scheme. 
 
7 Control Simulation 
Also the control simulations were performed in a 
neighbourhood of the operating point 

30.27 m /ss
cq = ,  334.44Ks

mT = , out 326.10Ks
rT = . 

For the start (the adaptation phase), the P controller 
with a small gain was used in all simulations. 
With respect to more expressive nonlinearity and 
slower dynamics of the reactant output temperature 
in comparison with the reactant mean temperature, 
the changes of references as well as the control 
running time intervals were chosen different for 
both outputs. 
The effect of the pole α on the controlled responses 
is transparent from Figs. 7 and 8. For both outputs, 
two  values of α were selected. The control 
simulations show sensitivity of controlled outputs to 
α. The higher values of this parameter speed the 
control, however, they provide greater overshoots 
(undershoots). Other here not mentioted simulations 
showed that a careless selection of the parameter α 
can lead to controlled output responses of a poor 
quality, to oscillations or even to the control 
instability.  
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Fig. 7 Controlled output y1 responses: effect of α 

        (β1 = 1, β2 = 0.5). 
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Fig. 8 Controlled output y2 responses: effect of α 
          (β1 = 1, β2 = 0). 
 
Moreover, an increasing α leads to higher values 
and changes of the control input as shown in Fig. 9 
and 10. This fact can be important in control of real 
technological processes. 
The controlled output y1 response for two values β2 
is shown in Fig. 11. It can be seen that an effect of 
this parameterer is insignificant.  
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Fig. 9 Coolant flow rate responses in control of  
          reactant mean temperature – effect of α 
          (β1 = 1, β2 = 0.5). 
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Fig. 10 Coolant flow rate responses in control of  
          reactant output temperature – effect of α  
         (β1 = 1, β2 = 0). 
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Fig. 11 Controlled output responses: effect of β2 
            (α = 0.1, β1 = 1). 
 
The controlled output responses documenting an 
effect of the parameter β1 are in Figs. 12 and 13. In 
both cases, a higher value of β1 results in greater 
overshoots (undershoots) whereas its influence on 
the speed of control is inexpressive. 
Corresponding control input responses can be seen 
in Figs. 14 and 15. There, an increasing β1 leads to 
greater values of inputs, however, it can reduce 
occured oscilattions, as shown in Fig. 15. 
Of interest, the evolution of estimated CT ELM 
parameters in control of the reactant mean 
temperature is shown in Fig. 16. 
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Fig. 12 Controlled output responses: effect of β1 

            (α = 0.15, β2 = 0). 
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Fig. 13 Controlled output responses: effect of β1 

            (α = 0.04, β2 = 0). 
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Fig. 14 Coolant flow rate responses in control of  
          reactant mean temperature – effect of β1 
          (α = 0.15, β2 = 0). 
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Fig. 15 Coolant flow rate responses in control of  
             reactant output temperature – effect of β1 
             (α = 0.15, β2 = 0). 
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Fig. 16 CT ELM parameter evolution  (α = 0.15,  
             β1 = 1,  β2 = 0). 
  
A presence of an integrating part in the controller 
enables rejection of various step disturbances 
entering into the process. As an example, step 
disturbances attenuation for the output y1 is 
presented. Step disturbances 3

0 0.15 kmol / mAcΔ = , 
30.03 m / srqΔ = −  and 0 2KrTΔ =  were  injected 

into the nonlinear model of the reactor in times 
220svt = , 440svt =  and 640svt = . The controller 

parameters were estimated only in the first 
(tracking) interval t < 200 s. The authors' 
experiences proved that an utilization of recursive 
identification using the delta model after reaching of 
a constant reference and in presence of step 
disturbances decreases the control quality. From this 
reason, during interval t ≥ 200 s, fixed parameters 
were used. The controlled output responses y1 are 
shown in Fig. 17. 
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Fig. 17 Controlled output in presence of  step  
            disturbances (α = 0.15, β1 = 0.5, β2 = 0). 
 
To illustrate an effect of an additive random  
disturbance, the result of the controlled output y1 
simulation in a presence of the random signal 

0( ) ( ) s
A Av t c t c= −  is shown in Fig. 18.  

 
8 Conclusions 
In this paper, one approach to continuous-time 
adaptive control of the mean and output reactant 
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Fig. 18. Controlled output in the presence of  
              random disturbance in 0Ac  (α = 0.15). 
 
temperatures in a tubular chemical reactor  was 
proposed. The control strategy is based on the 
preliminary steady-state and dynamic analysis of the 
process and on the assumption of the temperature 
measurement along the reactor. The proposed 
algorithm employs an alternative continuous-time 
external linear model with parameters obtained 
through recursive parameter estimation of a 
corresponding delta model. The control system 
structure with two feedback controllers is 
considered. Resulting continuous-time controllers 
are derived using the polynomial approach and 
given by a solution of the polynomial Diophantine  
equation. Tuning of their parameters is possible via 
closed-loop pole assignment. The presented method 
has been tested by computer simulation on the 
nonlinear model of the tubular chemical reactor with 
a consecutive exothermic reaction. The simulation 
results demonstrate an applicability of the presented 
control strategy.  
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