
1 
 

Surface energy analysis (SEA) study of hyaluronan powders 

 

Lubomír Lapčík
1,2,3*

, Eva Otyepková
1
, Barbora Lapčíková

2,3
, Michal Otyepka

1
 

 

1
Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of 

Science, Palacky University, 17. listopadu 12, 77146 Olomouc,  

Czech Republic 

2
Tomas Bata University in Zlin, Faculty of Technology, Institute of Foodstuff Technology,  nám. T.G. Masaryka 

5555, 760 05 Zlín, Czech Republic 

3
Center of Polymer Systems, Tomas Bata University in Zlin, Faculty of Technology,  

Nam. T.G. Masaryka 5555, Zlin, Czech Republic . 

 

*
Corresponding author.  

E-mail address: lapcikl@seznam.cz 

 

Key words: hyaluronan, powder, wetting, surface energy, distribution, surface energy analysis 

 

Abstract 

Results of inverse gas chromatography adsorption/desorption experiments of selected probes on sodium 

hyaluronate powder material are presented. It was found that a dominating was a dispersive surface energy part 

thus indicating low polarity character of the studied HA powder. For 0 % coverage 30 mJ/m
2
 total surface energy 

was found. There was found a relatively high inhomogeneity of the surface structure of the studied polymer 

powder. A total surface energy distribution was ranging from 10 to 34 mJ/m
2
 with maximum at 18.5 mJ/m

2
. It 

was similarly as in the previous case of surface energy profile controlled by dispersive part. By measuring free 

energy profiles dependencies for selected probe molecules of different polarity there was found approximately 

seven-fold higher energy content (15 kJ/mol) in comparison to dichloromethane (2 kJ/mol). There were 

determined work of cohesion and work of adhesion (water) on HA surface.  

 

1. Introduction 

 

The properties of surfaces and interfaces characterized by surface or interfacial tension and surface 

energy are of a growing importance in recent years. These properties are joined with many phenomena 

concerning adhesion, wetting, spreading and wicking which express themselves in everyone’s daily life, natural 

processes as well as in huge amount of industrial applications such as coating, printing, lubrication, composite or 

mineral processing, textile and wood finishing, oil recovery, painting, highly absorbent materials and adhesives 

to name a few. These processes involve various materials for instance biopolymers [1-4], synthetic polymers, 

wood, paper, stone, soils, cereals and textile which could cover all possible types of surfaces: polar, non-polar, 

much more often rough than smooth or even porous and this may bring many obstructions to their surface 

characterization.  
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There are several well-known techniques of contact angle measurement on flat and smooth surfaces e.g. 

sessile drop or adhering gas bubble method and Wilhelmy method [5]. Nevertheless, most of the real surfaces are 

not ideal but rough and heterogeneous and many materials are available only in the form of powders and fibres. 

It may be possible to compress these particles to obtain flat surface but such system could provide different 

contact angle values because the material undergoes structural and possibly also significant chemical changes. 

Therefore, it would be more suitable to measure contact angles directly on the original surface. 

Despite the difficulties, there are several methods which are applicable to powder and fibrous materials 

[5-10]. The most popular is capillary rise method, thin-layer wicking and the use of Wilhelmy method [5]. 

Furthermore, the measurements seem to yield also an additional notion of pore size and structure of the material 

[5], although it does not provide so extensive information such as mercury porosimetry. However, at the present 

time, a new surface energy analysis technique based on inverse gas chromatography has been found to be very 

effective in characterization of wetting phenomena on powders and fibres [6-10]. 

Hyaluronan (HA), a high molecular weight biopolysaccharide, was discovered by Meyer and Palmer in 

1934 in the vitreous humour of cattle eyes [1]. HA is a member of a group of similar polysaccharides that have 

been termed “connective tissue polysaccharides”, “mucopolysaccharides”, or “glycosaminoglycans”. These 

polysaccharides include chondroitin sulfate, dermatan sulfate, keratan sulfate, heparan sulfate, and heparin. HA 

is a linear, unbranched polymer. Meyer and co-workers found HA to be composed of a repeating disaccharide 

that consists of N-acetyl-D-glucosamine (GlcNAc) and D-glucuronic acid (GlcA) linked by a  1-4 glycosidic 

bond [1]. The disaccharides are linked by  1-3 bonds to form the HA chain. In addition to its presence in the 

vitreous body, HA occurs in many living substrata such as the extracellular matrix and synovial fluids [1-4]. In 

practise, HA is used in wound healing, because it supports tissue reconstruction. During the first few days of 

tissue repair, endogeneous HA is the predominant glycosaminoglycan present in wounds and forms the template 

necessary for reconstruction following injury [1]. HA could be used to enhance the localization of a number of 

possible drugs within the epidermis/dermis. Such an effect is an obvious advantage if the site of action lies 

within the skin layers (e.g., antifungal and antibacterial agents) [1]. A detailed knowledge of surface properties 

of HA is important for practical pharmaceutical application e.g. in drug formulation, construction of wound 

healing dressings, tablets, capsules, dry powder inhalation formulations etc.  

That is why in this study we analyze surface properties of HA using inverse gas chromatography, which 

is an excellent tool for characterization of surface properties of powder materials.  

 

2. Methods 

2.1. Theoretical background 

Surface free energy of a solid can be described as the sum of the dispersive and specific contributions. 

Dispersive (apolar) interactions, also known as Lifshitz-van der Waals interactions, consist of London 

interactions which originate from electron density changes but may include both Keesom and Debye interactions 

[5, 6]. Other forces influencing the magnitude of surface energy are Lewis acid-base interactions which are 

generated between electron acceptor (acid) and electron donor (base). They appear in the compounds containing 

hydrogen bonds - strong secondary bonds between atoms of hydrogen and a highly electronegative element such 

as F, O, N and Cl or other compounds interacting with Lewis acids and bases. Details of the widely accepted 
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theoretical treatment of the estimation of solid surface free energy by selective wetting measurements are 

described in detail in our review article [5].  

The dispersive component of the surface energy 
D
S can be calculated from the retention time obtained 

from inverse gas chromatography measurements of a series of n-alkane probes injected at infinite dilution 

(concentration within the Henry´s portion of the adsorption isotherm) [7]. For evaluation of these dependencies 

there are used two approaches, the first one according to Schultz et al. [8] (1) and the second one according to 

Dorris and Gray [9] (2): 
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where R is the universal gas constant, NA is Avogadro´s number, 
D
L is the dispersive component of surface 

free energy of the liquid probe, 
D
S is the dispersive component of the surface free energy of the solid, VN is the 

retention volume and C is a constant, and 
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where 
2CHa is the surface area of a CH2 unit (~0.6 nm

2
) and 

2CH is its free energy (approximately 35.6 

mJ/m
2
). 

The Hildebrand solubility parameter (δ) provides a numerical estimate of the degree of interaction 

between different materials. It can be a good indication of solubility, particularly for non polar materials such as 

many polymers [10]. Materials with similar values of δ are likely to be miscible. It is defined as the square root 

of the cohesive energy density: 

 

m

V

V
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        (3) 

 

Materials with similar magnitude of the solubility parameters will be capable to interact between each other what 

will result in their mutual solvation, swelling or miscibility. 

 

2.2. Experimental 

 

Inverse gas chromatography was conducted using a Surface Energy Analyser (SEA) (Surface 

Measurement Systems, UK).  Samples were placed in 4 mm (internal diameter) columns, to give a total surface 

http://en.wikipedia.org/wiki/Solubility
http://en.wikipedia.org/wiki/Polymer
http://en.wikipedia.org/wiki/Miscible
http://en.wikipedia.org/wiki/Square_root
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area of approximately 0.5 m
2
.  The following eluent vapours were passed through the column: Nonane, Octane, 

Hexane, Heptane. All reagents were obtained from Sigma Aldrich (USA), and were of analytical grade.  The 

injection of vapours was controlled to pass a set volume of eluent through the column to give pre-determined 

fractional coverage of the sample in the column.  The retention time of the vapours by the particles gives an 

indication of the surface properties of the material, including the surface energy.  By gradually increasing the 

amount of vapour injected, it is possible to build up a surface heterogeneity plot.  

Specific surface area measurements were made using a Micromeritics TriStar 3000 surface area and 

porosity analyser (USA), using the nitrogen BET technique. 

Thermo-gravimetry (TG) and differential thermal analysis (DTA) experiments were performed on 

simultaneous DTA-TG apparatus (Shimadzu DTG 60, Japan). Throughout the experiment, the sample 

temperature and weight-heat flow changes were continuously monitored. Conditions of measurement: Heat flow 

10 °C/min and dynamic atmosphere of nitrogen (N2 – 50 ml/min), range of temperature measurement was from 

40 °C to 500 °C. 

Scanning electron microscopy (SEM) images were captured on a Hitachi 6600 FEG microscope 

operating in the secondary electron mode and using an accelerating voltage of 1 kV. 

Hyaluronate (sodium salt, microbial production) in the form of a white powder was of 0.7 to 0.9 MDa 

molecular weight (CPN, Ltd., Czech Republic). Sample was kept in dry conditions in desiccator (at the ambient 

temperature of 22°C) for 4 weeks prior to the SEA experiments. 

 

3. Results and discussion 

 

Surface properties of HA powders were analysed by several experimental techniques. Specific surface 

area of HA powders was found to be of 15 m
2
/g as observed by BET technique, determined sample density was 

of 1.00 g/cm
3
. To characterize exact moisture content in the studied samples DTA-TG measurements were 

performed. These showed gradual sample mass loss with increasing temperature, having three distinct 

degradation regions (Fig. 1). The first one, characteristic for water loss of 13.72 w.% in the temperature end of 

180 °C and the second and third region, characteristic with polysacharide degradation with starting temperature 

of 180 °C and 300 °C. Observed weight loss for second region was of 38.55 w.% and of 12.26 w.% for the third 

region. Observed relatively high residual mass percentage at 500 °C of 35.49 w.% was ascribed to the presence 

of sodium ions present in the structure, which can form inorganic sub-products in the degradation reaction [11]. 

A typical shape of the particles of studied HA powder are shown in Fig. 2. These were characteristic with 

spherical and cylindrical shape of approximately 70 m wide in diameter. 

 Surface energy profile and its components of studied HA powder based on inverse gas chromatography 

measurements data are shown in Fig. 3. Total surface energy and dispersive surface energy part coverage 

dependencies were of a characteristic exponential decrease with increasing coverage from observed 34.0 mJ/m
2
 

for 0 % coverage for both parameters, to 11.7 mJ/m
2
 for total and to 4.9 mJ/m

2
 for dispersive surface energy 

component at 100 % surface coverage as well. The highest energetic sites occupy approximately only 5 % of the 

HA surface. The significant difference in measured surface energy absolute values at low and high coverage 

indicates high degree of inhomogeneity between highest surface energy sites having approximately three fold 

higher absolute value of the surface energy than the lowest energetic sites. The latter SEA based absolute value 
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of dispersive surface energy calculated by Schultz method [8], very well correlate with the published data 

obtained from contact angle measurements of apolar dispersive component of the surface tension which was 

found to be 39.8 mJ/m
2 

[12]. As shown in Fig. 3, polar acid-base part of the surface energy coverage dependency 

is characteristic with minor linear increase with increasing coverage ranging from 0.7 mJ/m
2
 for 0 % coverage 

up to 6.8 mJ/m
2
 for 100 % coverage. Obtained results indicate dominance of a dispersive part of the surface 

energy, thus suggesting low polarity character of the studied sample. The surface energy distribution is 

characteristic with narrow distribution of the total surface energy ranging from 10 to 34 mJ/m
2
 with the 

maximum at 18.5 mJ/m
2
 (Fig. 4). The total surface energy distribution is controlled by distribution of the 

dispersive part which is ranging from 3.3 mJ/m
2
 to 34.1 mJ/m

2
. It is evident, that the polar surface active sites 

are of relatively low energy, again documenting the low polarity of sample surface. On the other hand, the 

dispersive part surface energy distribution is of more wide character, reflecting higher number of structural 

elements being responsible for this behaviour.  

In most material characteristics of formulation components it is usually assumed that the surfaces of 

materials reflect the inherent nature of the studied substance. However, the surface characteristics of a material 

can be altered by exposing different crystal planes or by contamination of surfaces with foreign materials (e.g. 

from the ambient atmosphere) [13]. To verify degree of surface contamination effects on surface energy analysis 

data, e.g., by adsorbed water molecules and gaseous molecules from the ambient air atmosphere, there was,  

prior to the next experiment, the studied HA sample dried under the vacuum (50 mbar, 25°C) to detach latter 

contaminants from the sample surface. Surface energy distributions (after vacuum drying) indicate dominance of 

a dispersive part contribution to the total surface energy ranging from 33 mJ/m
2
 to 49 mJ/m

2
 with total surface 

energy distribution reaching its maximum at 52 mJ/m
2
 (Fig. 5). When compared with results shown in Fig. 4 the 

latter contaminant free data were of approximately twice energetic. However their relative occupancy remains at 

the same area increment level of 0.4 %. Distribution of acid-base part of surface energy of surface 

“decontaminated” sample was ranging from 1 to 8 mJ/m
2
, with relatively high area increment occupancy of 2.5 

%. 

Specific acid-base free energy distributions for applied selected probes reflect the ratio of structural 

components of the donor-acceptor character present at the HA (s/g) interface (Fig. 6). The broadest distribution 

was found for acetonitrile ranging from -11.8 kJ/mol up to 15.0 kJ/mol specific (acid-base) free energy, the most 

narrowed one for dichloromethane ranging from -10.8 to 2.3 kJ/mol. However for all studied probes these were 

occupying only minor area increments ranging from 0.25 % for dichloromethane, 0.35 % for ethanol, 0.43 % for 

acetonitrile and 0.53 % for acetone and ethylacetate as well. The majority of the polar character surface 

constituents are of the energy ranging from -10.6 to 12.8 kJ/mol. 

In Fig. 7 there are shown results of free energy profiles for selected probes with different polarity. It can 

be seen from the obtained free energy coverage dependencies that the highest reactivity non-polar sites at 0 % 

coverage are of approximately seven-fold higher energy content (15 kJ/mol) in comparison to dichloromethane 

(2 kJ/mol). With increasing surface coverage the linear decrease of the free energy for all probe molecules under 

study was found reaching a value of -11 kJ/mol for a 0.2 coverage. 

Work of HA cohesion and work of adhesion of water on HA sample were calculated from our inverse 

gas chromatography experiments (Fig. 8). These were characteristic with a linear decrease of all measured 

quantities (work of cohesion and its components as well as of work of adhesion and its components) with 
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increasing coverage. There was a clear confirmation of our previously indicated conclusion of dispersive forces 

dominance in comparison to the specific interactions. By the application of a spreading coefficient rule the 

difference of work of adhesion minus work of cohesion if positive, indicates good spreading of water on the 

studied polymer surface. As shown in Fig. 9 only critical surface coverage regime with limiting spreading of 

water was found in the range of 7 to 10 % coverage, where a negative value for total work of adhesion difference 

with total work of cohesion was found. As an addition to the latter results, it can be found from Fig. 9 that the 

dispersive component difference is negative in the studied coverage regime indicating its negative effect to the 

interaction with water molecules. However, for a specific part difference there was observed   higher absolute 

value of 14 mJ/m
2
 in comparison to the -10 mJ/m

2
 for dispersive part. The latter difference was thus indicating 

wetting ability of HA powder surface by water molecules to some extent. With respect to the absolute values of 

free energy extrapolated to the 100 % coverage gives -80 kJ/mol for ethanol and acetone. Observed extrapolated 

value of -80 kJ/mol indicates dominance of the hydrophobic attraction between individual HA molecules rather 

than hydrophilic repulsion leading to dispersion or solubilisation in water.  

In Fig. 10 there are shown results of the surface coverage dependence of the Hildebrand’s solubility 

parameter  for studied HA powder. Its magnitude ranges from 18 MPa
0.5

 for 0 % coverage to 15 MPa
0.5 

for 20 

% coverage. Obtained values of solubility parameter might be one of the parameters allowing us to compare a 

mutual miscibility of HA with other materials e.g. in aerosol inhalation or wound healing applications. 

 

4. Conclusions 

 

It was found in this study that for studied sodium hyaluronate powder with respect to the surface 

coverage dependence of surface energy a dominating was found a dispersive surface energy part thus indicating 

low polarity character of the studied HA powder. For 0 % coverage 30 mJ/m
2
 total surface energy was found. 

There was found relatively high inhomogeneity of the surface structure of the studied polymer powder as 

reflected in the three-fold higher energy content for highest energy sites (at 0 % surface coverage) in comparison 

to the lowest energy sites as observed for 100 % coverage (11.7 mJ/m
2
). A total surface energy distribution was 

ranging from 10 to 34 mJ/m
2
 with maximum at 18.5 mJ/m

2
. It was similarly as in the previous case of surface 

energy profile controlled by dispersive part. There was demonstrated an effect of the surface contamination of 

studied sample by surrounding atmosphere adhered molecules, thus affecting an absolute values of the 

determined surface energies distributions. Here after removal of the adsorbed gaseous molecules and moisture 

acquired from the ambient atmosphere was giving higher absolute values of maximum surface energy by factor 

of 1.7. However, the overall character and mutual ratio between total, dispersive and acid-base parts was 

remained constant. By measuring the free energy profiles dependencies for selected probe molecules of different 

polarity there was found approximately seven-fold higher energy content (15 kJ/mol) in comparison to 

dichloromethane (2 kJ/mol). There were determined work of cohesion and work of adhesion (water) on HA 

surface. It was found that only critical surface coverage regime with limiting spreading of water was found in the 

range of 7 to 10 % coverage, where a negative value for work of adhesion difference with work of cohesion was 

found. Finally, the Hildebrand’s solubility parameter was found to be ranging from 18 to 15 MPa
0.5

 for 0 % to 20 

% surface coverage regimes. 
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Figures and tables charter 

 

Fig. 1. TG DTA pattern of HA powder under study.  

 

Fig. 2. SEM image of studied HA powder. 

 

Fig. 3. Total surface energy and its components profile plot of HA powder under study: empty circle – total 

surface energy, empty triangle down – dispersive part of surface energy, empty square – acid – basic part of 

surface energy. 

 

Fig. 4. Total surface energy and its components distribution plot of HA powder under study. Circle – dispersive 

part of the surface energy, triangle down – acido-basic part of surface energy, square – total surface energy. 

 

Fig. 5. Total surface energy and its components distribution plot of freeze-dried HA powder. Circle – dispersive 

part of the surface energy, triangle down – acido-basic part of surface energy, square – total surface energy. 

 

Fig. 6. Specific acid-base free energy distributions of studied HA powder as observed for selected wetting 

probes: triangle down – ethyl acetate, square – acetone, diamond – acetonitrile, triangle up – ethanol. 

 

Fig. 7. Coverage dependence of free energy profiles of studied HA powder as observed for selected wetting 

probes: full circle – dichloromethane, empty triangle down – ethyl acetate, full square – acetone, empty diamond 

– acetonitrile, full triangle up – ethanol. 

 

Fig. 8. Work of cohesion between HA and work of adhesion and its components of water on studied HA powder 

at 30 °C for different coverage regimes: empty circle – work of cohesion dispersive part, empty triangle down – 

work of cohesion specific part, empty square – work of cohesion total, full circle – work of adhesion dispersive 

part, full triangle down – work of cohesion specific, full square – work of adhesion total.  

 

Fig. 9. Difference between work of adhesion of water on HA and work of cohesion of HA and its components as 

a function of coverage of studied HA powder at 30 °C: full circle – total, empty triangle down – dispersive, full 

square - specific. 

 

Fig. 10. Surface coverage dependence of the Hildebrand´s solubility parameter  of studied HA powder. Full line 

– linear regression, dashed line – 95 % confidence interval.  
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Figure 1. TG DTA pattern of HA powder under study.  
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Figure 2. SEM image of studied HA powder. 
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Figure 3. Total surface energy and its components profile plot of HA powder under study: empty circle – total 

surface energy, empty triangle down – dispersive part of surface energy, empty square – acid – base part of 

surface energy. 
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Figure 4. Total surface energy and its components distribution plot of HA powder under study. Circle – 

dispersive part of the surface energy, triangle down – acido-basic part of surface energy, square – total surface 

energy. 
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Figure 5. Total surface energy and its components distribution plot of freeze-dried HA powder. Circle – 

dispersive part of the surface energy, triangle down – acido-basic part of surface energy, square – total surface 

energy. 
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Figure 6. Specific acid-base free energy distributions of studied HA powder as observed for selected wetting 

probes: triangle down – ethyl acetate, square – acetone, diamond – acetonitrile, triangle up – ethanol. 
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Figure 7. Coverage dependence of free energy profiles of studied HA powder as observed for selected wetting 

probes: full circle – dichloromethane, empty triangle down – ethyl acetate, full square – acetone, empty diamond 

– acetonitrile, full triangle up – ethanol. 
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Figure 8. Work of cohesion between HA and work of adhesion and its components of water on studied HA 

powder at 30 °C for different coverage regimes: empty circle – work of cohesion dispersive part, empty triangle 

down – work of cohesion specific part, empty square – work of cohesion total, full circle – work of adhesion 

dispersive part, full triangle down – work of cohesion specific, full square – work of adhesion total.  
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Figure 9. Difference between work of adhesion of water on HA and work of cohesion of HA and its components 

as a function of coverage of studied HA powder at 30 °C: full circle – total, empty triangle down – dispersive, 

full square - specific. 



18 
 

 

Coverage (n/n
m
)

0.00 0.05 0.10 0.15 0.20


 (

M
P

a
0
.5

)

0

5

10

15

20

25

 

 

Figure 10. Surface coverage dependence of the Hildebrand´s solubility parameter  of studied HA powder. Full 

line – linear regression, dashed line – 95 % confidence interval.  

 


