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Abstract

Enzymes are highly efficient bio-catalysts interesting for industries and medicine.

Therefore, a goal of utmost importance in biochemical research is to understand

how an enzyme catalyzes a chemical reaction. Here, the computational iden-

tification of functionally or structurally important residue positions can be of

tremendous help. The datasets that are most informative for the algorithms are

the 3D structure of a protein and a multiple sequence alignment (MSA) composed

of homologous sequences. For example, an MSA allows for the quantification of

residue conservation. Residue conservation at a given position indicates that

only one type of amino acid fulfills all constraints imposed by protein structure

or function. Furthermore, a detailed analysis of less strictly conserved residue

positions may identify pairs, whose orchestration is mutually dependent and in-

duces correlated mutations. Both of these conservation signals are indicative of

functionally or structurally important positions.

In the first part of this thesis, methods of machine learning were used to

identify and classify these residue positions. It was the aim to predict in a

mutually exclusively manner a role in catalysis, ligand-binding or protein sta-

bility for each residue position of a protein. Unfortunately, for many proteins

the 3D structure is unknown. For other proteins, the number of known ho-

mologs is not sufficient to compile a meaningful MSA. Therefore, three variants

of a classifier were designed and implemented, named CLIPS-1D, CLIPS-3D, and
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Abstract

CLIPS-4D. These multi-class support vector machines allow for a classification

based on an MSA (CLIPS-1D), a 3D structure (CLIPS-3D), and a combination

of both (CLIPS-4D). CLIPS-1D exploits seven sequence-based features, whereas

CLIPS-3D utilizes seven structure-based features. CLIPS-4D combines the seven

sequence-based features of CLIPS-1D with those two structure-based features

that increased its classification performance. A comparison with existing meth-

ods and a detailed analysis on a well-studied enzyme confirmed state-of-the-art

prediction quality for CLIPS-1D and CLIPS-4D.

In the second part of this thesis an algorithm for the identification of corre-

lated mutations was improved. A common method for the identification of cor-

related mutations is to deduce the mutual information (MI) of a pair of residue

positions from an MSA. The classical MI is based on Shannon’s information

theory that utilizes probabilities only. Consequently, these approaches do not

consider the similarity of residue pairs, which is a severe limitation. In order to

improve these algorithms, H2rs was developed for this thesis. Thus, the MI-

values originate from the von Neumann entropy (vNE), which takes into account

amino acid similarities modeled by means of a substitution matrix. To further

improve the specificity of H2rs, the significance of MIvNE-values was assessed

with a bootstrapping approach. The analysis of a large in silico testbed and the

detailed assessment of five well-studied enzymes demonstrated state-of-the-art

performance.
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Zusammenfassung

Enzyme sind hocheffiziente Biokatalysatoren, die sowohl für industrielle als auch

für medizinische Anwendungen höchst interessant sind. Deshalb ist es eines

der wichtigsten Ziele biochemischer Forschung zu verstehen wie Enzyme chemis-

che Reaktion katalysieren. Dafür ist eine computergestützte Identifikation von

funktionell oder strukturell wichtigen Aminosäuren von außerordentlicher Hilfe.

Die Datensätze mit dem größten Informationsgehalt für solche Algorithmen sind

Protein 3D-Strukturen und multiple Sequenzalignments (MSAs), die aus ho-

mologen Sequenzen bestehen. MSAs erlauben es beispielweise die Konservier-

heit einzelner Aminosäuren zu quantifizieren. Die strikte Konserviertheit einer

Aminosäure an einer bestimmten Position zeigt, dass nur ein Typ von Aminosäure

alle Anforderungen der Struktur und Funktion erfüllt. Darüber hinaus kann die

Analyse weniger strikt konservierter Aminosäuren solche Paare identifizieren, die

voneinander abhängig sind und deshalb korrelierte Mutationen auslösen. Diese

beiden Konserviertheitssignale deuten auf funktionell oder strukturell wichtige

Aminosäuren hin.

In dieser Arbeit wurden Methoden des maschinellen Lernens dazu ver-

wendet solche Aminosäuren zu identifizieren und zu klassifizieren. Ziel war es

für jede Aminosäure eines Proteins eine Rolle in der Katalyse, der Liganden-

bindung oder der Proteinstabilität vorherzusagen. Leider ist die 3D-Struktur

vieler Proteine noch nicht bekannt. Für andere Proteine ist es nicht möglich
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Zusammenfassung

ein MSA von ausreichender Größe und Qualität zu erzeugen. Deshalb wurden

drei Varianten eines Klassifikator entwickelt: CLIPS-1D, CLIPS-3D und CLIPS-

4D. Diese Mehrklassen Support Vektor Maschinen ermöglichen eine Klassifika-

tion anhand eines MSAs (CLIPS-1D), einer 3D Struktur (CLIPS-3D) oder bei-

dem (CLIPS-4D). CLIPS-1D nutzt sieben sequenz-basierte Merkmale. CLIPS-

3D hingegen nutzt sieben struktur-basierte Merkmale. CLIPS-4D wiederum

kombiniert die sieben sequenz-basierten Merkmale von CLIPS-1D mit den zwei

struktur-basierten Merkmalen von CLIPS-3D, die die Klassifikation verbesserten.

Ein Vergleich mit etablierten Methoden und eine detaillierte Analyse eines gut

untersuchten Enzyms bestätigten für CLIPS-1D und CLIPS-4D eine Vorhersage-

qualität auf dem Stand der Technik.

Eine weit verbreitete Methode um korrelierte Mutationen zu identifizieren,

ist die Bestimmung der Transinformation (MI) eines Aminosäurepaares anhand

eines MSAs. Die klassischeMI basiert auf Shannon’s Informationstheorie, die nur

Wahrscheinlichkeiten zur Berechnung heranzieht. Folglich können diese Metho-

den Ähnlichkeiten von Aminosäuren nicht berücksichtigen, was eine große Ein-

schränkung darstellt. Deshalb wurde in dieser Arbeit der Algorithmus H2rs en-

twickelt. Hier basieren die MI-Werte auf der von Neumann Entropie (vNE), die

Aminosäureähnlichkeiten in Form einer paarweisen Ähnlichkeitsmatrix berück-

sichtigt. Um die Spezifität von H2rs weiter zu verbessern, wurde die Signifikanz

der MIvNE-Werte durch einen Bootstrapping-Ansatz bestimmt. Die Auswer-

tung eines großen Datensatzes und eine detaillierte Analyse von fünf gut unter-

suchten Enzymen hat für H2rs eine Vorhersagequalität auf dem Stand der Technik

bestätigt.
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1 Introduction

Proteins are versatile macromolecules that are of utmost importance for almost

all cellular processes. They are involved in signaling, transport, and have struc-

tural as well as defense functions. Furthermore, they act as enzymes that catalyze

a multitude of chemical reactions that would otherwise not take place in a reason-

able timespan [160]. For a detailed understanding of proteins, their composition

and properties are described in the following section.

1.1 Proteins and enzymes

Proteins usually consist of one or more chains of amino acids. An amino acid is

composed of an amine (-NH2) and a carboxylic acid (-COOH) functional group

that are connected by a C-atom. Furthermore, this C-atom binds a hydrogen

atom and another group, the amino acid side chain which is responsible for the

differences in physicochemical properties of amino acids. Figure 1.1 gives an

overview of the most important amino acid properties like polarity, size, and

charge. One amino acid molecule can react with two others and become chained

by peptide bonds, thus forming peptides. Proteins are peptides consisting of

more than 30 amino acids. Once linked in a chain, an individual amino acid is

called a residue. Figure 1.2 shows the conformation of a residue participating

in two peptide bonds. The linked residues without side chains are also known
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1 Introduction

Figure 1.1: Venn-diagram of the properties of the 20 amino acids

Amino acids are grouped by their phyicochemical properties. Major properties

are polar, hydrophobic, and small. This figure was taken from [96].

as the main chain or the backbone. The sequence in which residues appear in

a main chain is called primary structure. Determined by the primary structure

and the local environment, amino acid chains will fold to energetically favorable

secondary structures like the extremely regular local sub-structures α-helix and

β-sheet which are linked by flexible regions, called loops. These folding patterns

are mostly stabilized by backbone interactions like hydrogen bonds in which hy-

drogens are bound to highly electronegative atoms such as nitrogen and oxygen.

A single protein usually contains several of these secondary structure elements.

Driven by non-specific hydrophobic effects, the secondary structure elements are

folded into a compact three-dimensional arrangement, the tertiary structure. Fur-

thermore, the term quaternary structure is used to describe proteins composed of

multiple subunits. Such complexes of two or more subunits are called multimers.

Specifically, a complex with only one subunit is called a monomer, one with two
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1.1 Proteins and enzymes

Figure 1.2: Conformation of a peptide bond

The two peptide bonds of an amino acid residue (green) are shown (red). All six

atoms participating in a peptide bond lie on a plane. The amino acid side chain

is denoted as R. This figure was taken from [96].

subunits a dimer. Proteins from different species which have a common ancestor

are called homologs if they share the same function. Based on this evolutionary

relationship these proteins are similar in sequence and structure and thus can be

grouped into protein families. The Pfam protein families database (release 26.0)

[117] contains a collection of over 13000 manually curated protein families. Of

those, over 3500 are domains of unknown function (DUF), protein subunits that

have no characterized function.

Enzymes are proteins that act as bio-catalysts. The decarboxylation of orotidine

5‘-phosphate, for example, proceeds with a half-life of 78 million years in neutral

solution. In the presence of the enzyme orotidine 5‘-phosphate decarboxylase

from Saccharomyces cerevisiae, however, the reaction is accelerated by a factor of

1017 to a half-life of merely 18 milliseconds [118]. The effectiveness of enzymes is

due to the reduction of the activation energy Ea by stabilizing the energetically
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unfavourable transition state of a substrate. This is shown in Figure 1.3 for the

enzyme indole-3-glycerol phosphate synthase (TrpC) from Sulfolobus solfataricus

which catalyzes the ring closure of an N-alkylated anthranilate (CdRP) to a 3-

alkyl indole derivative (IGP). The activation energy Ea (catalyst) of the reaction

in the presence of TrpC is lower than the activation energy Ea in absence of

a catalyst because the amino acids K53 and E51 stabilize the transition state.

This illustration, however, is a simplification as there are several intermediate

products which induce more than one transition state in this particular reac-

tion. As enzymes are such outstanding bio-catalysts, one of the most important

goals in biochemical research is to determine the function of an enzyme (and how

exactly such an enzyme catalyzes its chemical reaction). Because most exper-

imental methods for the characterization of molecular functions are expensive,

time-consuming and hard to conduct, computational methods have become more

and more popular. Only a few residues are directly involved in catalysis. In

Figure 1.3 these are the two residues E51 and K53. These are close to the active

site of an enzyme which is where substrate-binding and the reaction take place.

Other residues do not directly participate in catalysis but are still important for

binding the substrate or cofactors and yet others play a fundamental role in sta-

bilizing the whole enzyme. Therefore, algorithms that are able to predict such

crucial sites are of tremendous help in unraveling the function of an enzyme.

The aim of this work was to develop algorithms for the identification of residues

important for catalysis, ligand-binding or structure. Amongst others, machine

learning algorithms were utilized with features from protein structures and se-

quences.
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1.2 Machine learning

Figure 1.3: Simplified reaction coordinate diagram

The reaction from an N-alkylated anthranilate (CdRP) to indole-3-glycerol phos-

phate (IGP) is shown. The activation energy Ea (catalyst) of the reaction in the

presence of the enzyme indole-3-glycerol phosphate synthase (TrpC) from Sul-

folobus solfataricus is lower than the activation energy Ea in absence of a catalyst

because the amino acids K53 and E51 stabilize the transition state.

1.2 Machine learning

In general, machine learning is a discipline of artificial intelligence that studies

systems that can learn from data without being specifically programmed. Ma-

chine learning algorithms can be used to combine overlapping or contradictory

information to an optimal prediction. If there is no prior knowledge about the

available data, unsupervised algorithms like principal component analysis, inde-

pendent component analysis or clustering algorithms can be applied to discover

structure in the data [33]. If there are labelled examples available (i.e. samples
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with known class affiliation), supervised algorithms like neural networks, or sup-

port vector machines (SVMs) can be utilized. As these algorithms are able to

learn from crucial information to correctly classify unknown data, they perform in

general better than unsupervised procedures. Because SVMs perform exceedingly

well in identifying important protein residues [113] [166] [148], they were also used

in this work. Separating two sets of data can be a very difficult task. Therefore,

a basic SVM projects the data into a high dimensional space and constructs a

hyperplane to separate the (lower-dimensional) data, thus, efficiently achieving a

non-linear classification into two classes. This procedure is also called the kernel

trick. The best separation is achieved by the hyperplane that has the largest

distance to the nearest training data points, also called the support vectors, of

any class (Figure 1.4). SVMs can be tuned to allow for multi-class predictions

Figure 1.4: Principle of a support vector machine

Data points of class one (black dots) are separated from data points of class two

(blue dots) by a hyperplane (green) in a higher dimensional space.

and soft margins for a better consideration of outliers by allowing misclassified

examples. Furthermore, SVMs are able to calculate a posteriori probabilities for

predictions which is often preferable over a binary classification. To avoid over-

learning, which occurs if a statistical model is too tightly fit to a finite set of data

points, the labelled data have to be partitioned for testing and training. This
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1.2 Machine learning

ensures the generalizability of a classifier, i.e. the accurate classification of new

data after having experienced the training data. Usually a k-fold cross-validation

is used for this purpose. Therefore, the original data set is randomly divided into

k subsets of equal size. Of these, k − 1 subsets are used as training data and the

remaining single subset is used for testing, so that each subset is used once for

testing and k − 1 times for training. As the test data are labeled samples, they

can be categorized in four groups after classification. True positives and false pos-

itives are correct and incorrect positive predictions, respectively. True negatives

and false negatives are defined accordingly. Based on this four categories, a mul-

titude of measures to determine the performance of a classifier can be calculated.

Sensitivity, Specificity, Precision, and Accuracy are the most widely used ones.

Furthermore, Matthew’s correlation coefficient (MCC) is especially useful when

comparing classes with a high imbalance in the number of positive and negative

samples [93].

Prior to a classification, meaningful information (features) have to be extracted

and selected from the data. This is a crucial step in creating a classifier because

the information content and orthogonality of the used features determines the

performance of the whole classifier to a large degree. In the case of identifying

important residues, features for training an SVM can be extracted from sequence

data and protein structures.
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1.3 Protein structures

Protein structures are represented in silico as rigid 3D models of actual proteins.

They are either obtained by X-ray crystallography or by nuclear magnetic reso-

nance spectroscopy. The former uses the diffraction of X-ray beams into many

specific directions when hitting atoms of a previously crystallized protein [95].

By measuring the angles and intensities of the diffracted beams, the density of

electrons within the crystal can be determined. Consequently, atom positions can

be modeled into the electron density map. The latter uses powerful magnets to

send radio frequency signals through a protein sample and measures the absorp-

tion [124]. The nuclei of individual atoms will, depending on their environment,

absorb different frequencies of radio signals. Furthermore, the absorption signals

can be perturbed by neighboring nuclei, which can be exploited to determine their

distance. These distances in turn can be used to determine the structure of the

protein. All structures are stored as text files with atom types and coordinates

in the Protein Data Bank [13]. As an example, TrpC from Sulfolobus solfataricus

is shown in Figure 1.5. The enzyme belongs to the highly populated (βα)8-

topology where canonically eight β-sheets are surrounded by eight α-helices. A

simplified representation of this enzyme’s reaction coordinate diagram is shown

in Figure 1.3.

An especially useful feature for classifying important residues which can be de-

duced from protein structures is the relative solvent accessible surface area (rSASA).

It is used to identify catalytic residues and ligand-binding sites as these are often

positioned in surface pockets to be able to interact with the substrate. Struc-

turally important sites on the other hand are mostly buried in the core of the

protein. Usually the accessible surface of a protein is determined by a small spher-

ical probe molecule rolling over the protein in silico [122]. During this process,

the probe touches all possible contact points of the protein [46]. The center of

12



1.3 Protein structures

Figure 1.5: Representation of a protein structure

The protein structure of TrpC from Sulfolobus solfataricus is shown in cartoon

representation. The bound ligand indole-3-glycerol phosphate is depicted in stick

representation (magenta). α-helices are colored orange, β-sheets are green and

loops blue. The PDB entry with ID 1A53 was used and visualized with PyMOL

[132].

the probe is tracked continuously and, thus, outlines the solvent accessible sur-

face area (SASA) as depicted in Figure 1.6. The resulting surface is measured

analytically or numerically in Å2. The radius of the probe is usually chosen as 1.4

Å. This corresponds to the size of a water molecule [82]. Therefore, the center of

the probe touches about the same area of a protein surface that is accessible for

a water molecule [119]. If the probe radius is chosen as zero, the Van-der-Waals-

surface will be determined, which is a protein’s imaginary hard shell that can not

be penetrated by other molecules. The rSASA of a residue is then determined by

dividing its SASA by the maximally obtainable SASA for that kind of residue,

which is the SASA of a G-X-G tripeptide. For classification purposes, a wide

13



1 Introduction

Figure 1.6: Schematics of the solvent accessible surface area

The solvent accessible surface area (blue) and the solvent excluded surface (red)

are defined by a probe (orange) rolling over the molecule’s atoms (green). This

figure was taken from [74].

range of structure-based features like flexibility [113], distortion angles [162], and

other topological constraints [151] are useful in finding important residues.

1.4 Multiple sequence alignments

Besides structural data, sequence data can be utilized for extracting features to

train and assess an SVM. The most information about a protein can be deduced

from multiple sequence alignments (MSAs). An MSA is an arrangement of three

or more sequences of homologs, so that corresponding residues are aligned in

one column. During evolution sequences might be changed by point mutations

or insertions and deletions which alter amino acid occupation or protein length.

Therefore, gaps have to be inserted between residues to mathematically mimic

these mutations. An MSA holds much more information than a single sequence

14



1.4 Multiple sequence alignments

because there is a multitude of sequence information for each residue position

reflecting the evolution this protein has undergone. Figure 1.7 depicts a part

of an MSA of TrpC homologs. The term residue position denotes a column of

Figure 1.7: Example of a multiple sequence alignment

Positions 179 - 202 of an MSA of indole-3-glycerol phosphate synthase (TrpC)

from Sulfolobus solfataricus are shown. Each line represents a homologous protein

sequence named by a gene identifier number (e.g. gi|491667737). Each letter

depicts an amino acid residue (see Abbreviations). The alignment was generated

with MAFFT [70] and visualized with Jalview [156] in the Zappo color scheme

which groups residues by their physiochemical properties.

an MSA and likewise the residue’s position in a corresponding protein structure.

At some residue positions only a certain residue fulfils all requirements for a

properly functioning protein. Consequently, some or all mutations at such a

residue position are impossible (i.e. lethal for the organism carrying the mutation)

which leads to characteristically occupied columns in MSAs. An invariant column

is called strictly conserved as e.g. column 188 in Figure 1.7. As important residues

are subjected to the most severe requirements, the predominant feature used to
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identify important residue positions in silico is the conservation of individual

MSA columns. Strictly conserved residues are often vital for protein function

[20] [110] [155] whereas a predominant but not strictly conserved amino acid

may play a role in protein stability or ligand-binding [83] [3]. A multitude of

scores for measuring conservation has been proposed. Reviews of conservation

measures are given in [150] and [65]. One of the simplest methods used is the

relative frequency f(k) of an MSA column k, where the most frequent residue

determines the conservation of a column. Therefore, strictly conserved columns

score equal to one. For instance, column 198 in figure 1.7 has a conservation

of f(198) = 6/15. More sophisticated and widely used are methods based on

Shannon’s entropy H(k) [135]:

H(k) = −
20∑

i=1
f(ak

i ) ln f(ak
i ) (1.1)

Here, a strictly conserved column has an entropy of zero. The maximum value

differs regarding to the used logarithm but is always reached when all 20 amino

acids occur with equal frequency. Many variations of Shannon’s entropy like the

relative entropy or the Jensen-Shannon divergence exist.

Due to the different physicochemical properties of residues, only some can partic-

ipate in catalysis [11]. Therefore, the abundance of amino acids is an especially

prominent feature for catalytic residues as these can be separated in two groups.

The first group (A, F, G, I, L, M, P, l, and W) consists of the nonpolar, un-

charged and, thus, catalytically inert amino acids (see 1.1), which cannot directly

participate in catalysis. But even these residues can in some cases be of impor-

tance for catalysis due to steric effects and substrate specificity. The residues of

the second group are polar or charged (C, D, E, H, K, N, Q, R, S, T, and Y).

They can, for example, donate or accept protons and are thus catalytically active.

There are similar but weaker tendencies for binding sites and structurally impor-

tant residues. Hydrophobic residues tend to be stabilizing, whereas hydrophilic
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1.4 Multiple sequence alignments

residues are rather unimportant for protein structure. Polar, hydrophilic residues

often play an important role in ligand-binding as they tend to be exposed to the

solvent. Additional features for finding important residues are the conservation of

proximate residues [20] [11] and the abundance of particular amino acid residues

observed at important sites [42] [11].

Due to mutual dependencies even not highly conserved residue positions can be

of importance the function and stability of a protein. Such residue positions can

be identified with the help of an MSA but correlations are often due to struc-

tural reasons. For instance, the occurrence of a specific amino acid at a given

position may crucially depend on the local environment, which can impose restric-

tions with respect to the size (or chemical properties) of the neighboring residues.

Thus, an amino acid replacement at one position is tolerated only together with

a complementary residue substitution at a correlated site. As a consequence, the

frequencies of particular residues at adjacent positions in the structure of a protein

can be interrelated (Figure 1.8). Correlated mutations can appear either inter-

molecular [145] [159] and can, therefore, play an important role in protein-protein

interfaces or intramolecular [134] [145]. Intramolecularly correlated residue po-

sitions can be important for protein structure as covarying residues are often in

close proximity to each other [91]. Generally, it is difficult to predict a structural

or functional role for covarying residues [31]. The identification of correlated

mutations is further complicated by phylogenetic noise if an MSA is dominated

by a large number of closely related homologs and small sample size bias, i.e.

correlations caused randomly by the composition of sparse sequence data. Al-

gorithms for the identification of correlated mutations can be divided into two

groups: global and local approaches. Global methods were developed recently

[16] [67] [102] [90]. These methods treat pairs of residues as mutually dependent

entities and, thus, minimize the effects of chained covariation and noise which
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Figure 1.8: Schematics of a correlated mutation

A) The backbone (blue lines) and proximate residues (blue spheres) of a small

residue (green sphere) and a large residue (orange sphere) are shown. B) The

large residue (orange) is mutated to a small residue, which causes a destabilizing

cavity (red ellipse). C) A compensating mutation occurs, the green residue is mu-

tated to a larger one to stabilize the local environment defined by the neighboring

residues.

is very advantageous in contact prediction. On the other hand, the older local

methods [97] [88] [92] [6] [147] [44] [51] [136] assume the independence of residue

pairs. Consequently, local methods tend to find structurally close and likewise

distant correlations. A prerequisite for the application of global and likewise lo-

cal methods is the existence of MSAs with a sufficiently large number of diverse

sequences. As local methods only consider pairs of residues, the required number

of sequences is considerably lower. Local methods have been successfully applied

to contact prediction and the identification of important residues. For example,

Lockless and Ranganathan [88] have developed a specific method named SCA

since 1999 and recently proposed the existence of correlated groups of residues,

called sectors, each responsible for a physicochemical property of a protein [54].

Another method is H2r, which has successfully identified residue positions impor-

tant for function or structure [31]. A review can be found in [28].
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1.5 Aim of this work

There are many different measures that are used to quantify the correlation of

the occupancy of residue positions. One of the most used measures in global and

local methods alike is the mutual information U(k, l) of two residue position k

and l which is based on Shannon’s entropy (Formula 1.1):

U(k, l) = H(k) +H(l) −H(k, l) (1.2)

Consequently, most of these approaches only take the raw amino acid frequencies

into account but not the similarities between different residues (Figure 1.1) or

the required magnitude of biochemical changes it takes to mutate an amino acid

to another.

1.5 Aim of this work

The aim of this work was the development of algorithms for the identification of

functionally or structurally important amino acid residues by utilizing MSAs and

protein structures and thus helping in elucidating the function of uncharacterized

proteins. This aim was divided into two subtasks.

The first subtask was to develop a classifier for the identification of important

residue positions and to assign a role in catalysis, ligand-binding or protein struc-

ture for each residue. Such a fine grained separation is to date unique. Due to its

good performance a SVM was chosen as classifier. For training and assessment,

datasets were collected and preprocessed. A data set for structurally important

sites was manually compiled from non-enzymatic proteins as there was no other

data available. The greatest challenge was to extract and select appropriate

features to identify and simultaneously distinguish the three different groups of

highly conserved residues (i.e. catalytic, ligand-binding, and structurally impor-

tant residues). Finally, the classifier was trained and assessed.

The second subtask was the improvement of H2r, an algorithm that predicts
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correlated residue positions. These are not highly conserved but still important

residue positions. To increase the specificity of H2r, a method to incorporate the

similarity of amino acids was developed. Therefore, the von Neumann entropy

was utilized as it can serve as a framework for such similarities. However, no

experimentally validated data set for correlation analysis exists and well studied

proteins are still an exception. Because of that it is neither possible to construct

reliable models for similarities of couplings directly nor by means of machine

learning methods. Even unsupervised machine learning methods cannot be ap-

plied because the signal is too weak. To overcome this drawback a model for

not correlated residues was deduced from a very large data set. As correlated

mutations are rare, a coupled pair of residues can be detected by the deviation

from this model. For evaluation purposes a test bed for statistical analysis was

created.
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2 Summary and discussion

In this chapter the results of the developed algorithms are summarized and dis-

cussed. The first part covers the identification of highly conserved, structurally

and functionally important residues. Therefore, three classifiers were developed

that are based on (1) sequence data, (2) structural data, and (3) both sequence

and structural data. The second part covers the improvement of H2r, an algo-

rithm for finding correlated mutations in MSAs.

2.1 Classification of highly conserved residue

positions

The program CLIPS was developed in different versions in regard to the type of

features used for training and testing the underlying multi-class SVM. CLIPS-1D

is solely based on features extracted from sequence data. CLIPS-3D is based

exclusively on features from protein structures and is thus applicable in cases

where not enough sequences are available to generate a high-quality MSA. Fi-

nally, CLIPS-4D combines the best structure- and sequence-based features in one

classifier. All versions were trained and assessed on three non-redundant and

non-overlapping datasets. The set CAT_sites consists of 840 catalytic sites from

264 enzymes. Residues are defined as catalytic if annotated as such in the man-

ually curated part of the Catalytic Site Atlas [114]. Of those enzymes, 216 also
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2 Summary and discussion

have annotated binding sites in the PDBsum database [79], which constitute the

4466 ligand-binding sites of the LIG_sites dataset. As there was no representa-

tive set of structurally important sites available, conserved residues in the core

of non-enzymatic proteins were utilized as these most likely play a crucial role

in determining the structure of those proteins [133]. Thus, for the STRUC_sites

dataset, 3703 residues that are more conserved than the average from 136 non-

enzymatic proteins were merged. The complement of STRUC_sites constitutes

the set of unimportant residues NOANN_sites. All structural data were acquired

from the PDB database and the corresponding MSAs were taken from the HSSP

database [126].

2.1.1 CLIPS-1D: A solely sequence-based classifier

Sequence-based features were extracted and selected from STRUC_sites, LIG_-

sites, and CAT_sites by means of three two-class SVMs. Each SVM distinguished

for one of these data sets if a residue was of the respective importance or not.

The resulting performance values suggested to use the entropy-based normalized

Jensen-Shannon divergence as a measure for conservation (Formula (4), Pub-

lication A) and an abundance value for scoring the occurrence of residues at

crucial sites (Formula (6), Publication A). Furthermore, the conservation and

abundance of a residue’s sequence neighborhood was assessed by two weighted

scores (Formula (5) and (7), Publication A). All abundance scores compare a

residue position with the composition of all residue positions annotated as im-

portant. All features improved performance, but the conservation of a considered

residue position contributed most to the classification of CAT_sites, LIG_sites,

and STRUC_sites. Furthermore, the abundance of a residue position had a large

influence on the classification of CAT_sites. Based on the above features the

multi-class SVM CLIPS-1D was trained on all four data sets. The multi-class
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2.1 Classification of highly conserved residue positions

SVM returned for each sample four class probabilities pclass. Classification was

achieved based on the largest of the four pclass-values determined by the SVM.

As tests showed that the abundance of STRUC_sites did not contribute to the

performance of CLIPS-1D, the final feature set consists of the following seven

features: (1) the Jensen-Shannon divergence of a residue position and (2) its

neighborhood, the abundance of a residue position in regard to (3) CAT_sites,

(4) LIG_sites, and (5) STRUC_sites, the abundance of a site’s neighborhood

in regard to (6) CAT_sites and (7) LIG_sites. Finally, residue specific p-values

for funtionally and structurally important residue positions were deduced from

the pclass-values of the residue in NOANN_sites to assess the reliability of the

predictions.

2.1.1.1 Statistical Evaluation

Classifiers that identify two classes of important residues have already been devel-

oped in the past. One of these is FRpred [42] which was selected for a comparison

with CLIPS-1D because it had outperformed other sequence-based methods. It

assigns scores of 0-9 for each class to each residue; the higher the score, the more

probable a functional role is. A classification of CAT_sites and LIG_sites with

FRpred resulted in MCC-values (Formula (10), Publication A) of 0.250 and 0.197

when considering predictions scored 9 as positive cases (Table 2.1). For predic-

tions scored ≥ 8, MCC-values of 0.231 and 0.219 were achieved. In contrast to

CLIPS-1D’s fine-grained separation of important residues, FRpred distinguishes

only catalytic and ligand-binding sites. Thus, the percentage of false positives

from the other two groups is given as a measure for STRUC_sites. FRpred pre-

dicted 22% (score 9) and 41% (score 8) of the STRUC_sites as catalytic sites

or ligand-binding sites. The MCC-values for the binary SVMs were 0.324, 0.213,

and 0.782, respectively. For CLIPS-1D, the performance in classifying CAT_-
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CAT_sites LIG_sites STRUC_sites
2C-SVM 0.324 0.213 0.782
CLIPS-1D 0.337 0.117 0.666
FRpred, score ≥ 8 0.231 0.219 41%
FRpred, score = 9 0.250 0.197 22%

Table 2.1: Performance of CLIPS-1D, the binary SVMs, and FRpred

MCC-values are given for the three binary SVMs, the multi-class SVM CLIPS-1D

and FRpred on the three data sets CAT_sites, LIG_sites, and STRUC_sites.

For FRpred, residues that scored at least 8 or 9 were evaluated. As FRpred does

not predict structurally important sites, the percentage of false positives from the

other two groups is given. Taken from Publication A, Table 1.

sites increased with respect to the binary SVM to 0.337. For STRUC_sites, the

MCC-value decreased from 0.78 to 0.67 as LIG_sites and STRUC_sites share

similar values of conservation and have an overlapping abundance. Because the

binary SVMs were trained on only one data set each, they did not suffer from

these similarities. The classification of LIG_sites was worst. The MCC-value

droped from 0.21 to 0.12 due to that similarity.

Generally, performance differed to a large degree for different residue types and

different classes. Class-specific MCC-values for each residue type are listed in Ta-

ble 2.2. For CAT_sites, the catalytic active residues R, D, C, H, K, and S were

predicted with high MCC-values. This was partially due to the larger data basis

for these residues and their unique characteristics as being polar or charged. Most

other MCC-values were close to zero or not determinable (P, V) due to empty

sets. Catalytic residues C and T were regularly misclassified as structurally im-

portant. Both residues are not exceedingly overrepresented at catalytic sites and

share similar abundance values with STRUC_sites. The performance values for
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2.1 Classification of highly conserved residue positions

Residue CAT_sites LIG_sites STRUC_sites

A -0.002 0.164 0.774
C 0.404 0.162 0.676
D 0.302 0.016 0.315
E 0.345 0.052 0.348

F 0.058 0.041 0.771
G 0.024 0.262 0.591
H 0.424 -0.063 0.086
I -0.001 0.135 0.701

K 0.452 0.031 0.337
L -0.001 0.056 0.815
M -0.002 0.127 0.666
N 0.071 0.139 0.561

P - 0.139 0.683
Q 0.098 0.111 0.678
R 0.287 0.04 0.319
S 0.307 0.156 0.595

T 0.055 0.174 0.682
V - 0.119 0.761
W -0.008 0.007 0.689
Y 0.097 0.046 0.741

Table 2.2: Residue and class-specific performance values of CLIPS-1D

MCC-values for each residue type and each class are given. No MCC-values could

be determined for catalytic residues P and V due to missing cases. Taken from

Publication A, Table 3.

LIG_sites were overall lower as conservation and abundance values did not stand

out. For STRUC_sites, the mean MCC-value for the hydrophobic residues A, I,

L, M, F, P, W, and V were 0.733, whereas the mean value of the hydrophilic ones

was 0.494. Hydrophobic residues tend to be buried in the core of proteins and

are thus often crucial for stability. But not all STRUC_sites are hydrophobic

as the hydrophilic residues C, G, and T are overrepresented in STRUC_sites.

Furthermore, residues important for secondary structure like L, F, and P tend to

be overrepresented as well. On the other hand hydrophobic residues like A, I, M,

and V are underrepresented in STRUC_sites.

2.1.1.2 A Case study that illustrates classification performance

To investigate the performance of CLIPS-1D more closely, the well-studied en-

zyme indole-3-glycerol phosphate synthase (TrpC) from Sulfolobus solfataricus
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was analyzed. For TrpC, not only catalytic and binding sites are annotated in

the PDB-sum database [79], but also many studies have been conducted about

its folding kinetics [50] and its structure [57] [130]. The analysis was based on

the HSSP-MSA related to PDB-ID 1A53. Table 2.3 lists all predictions for true

functional sites. The catalytic residues E51, K53, K110, E159, and S211 were cor-

Residue pCAT pLIG pST RUC pNOA p-value Classification
CS LBS

E51 0.806 0.075 0.114 0.005 0.02 CAT
K53 0.835 0.065 0.088 0.012 0.004 CAT
N89 0.006 0.231 0.001 0.762 NOA
K110 0.866 0.078 0.046 0.011 0.002 CAT

F112 0.001 0.202 0.007 0.79 NOA
L131 0.001 0.071 0.92 0.008 0.006 STRUC
E159 0.899 0.048 0.05 0.003 0.005 CAT
N180 0.098 0.77 0.116 0.016 0.016 LIG

E210 0.866 0.059 0.068 0.007 0.008 CAT
S211 0.738 0.168 0.087 0.007 0.005 CAT
I212 0.001 0.655 0.104 0.24 0.065 NOA
L231 0.003 0.224 0.762 0.011 0.025 STRUC

I232 0.006 0.835 0.059 0.099 0.017 LIG
S233 0.449 0.363 0.098 0.09 NOA
S234 0.133 0.289 0.006 0.572 NOA

Table 2.3: Classification of catalytic and binding sites for TrpC

Predictions for true catalytic and binding sites are given. Besides residue type

and position, the four class probabilities pclass and p-values are shown. The last

two columns give the predicted classes (CAT, LIG, STRUC, and NOA) for true

catalytic and binding sites, respectively.

rectly identified. Only N180 was falsely predicted as LIG_site. Sites in contact

with the ligand were classified as NOANN_sites (N89, F112, I212, S233, S234),

CAT_sites (E210), and STRUC_sites (L131, L231). Only I232 was correctly
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2.1 Classification of highly conserved residue positions

classified as LIG_site. Additionally classified as LIG_sites were K55, I179, and

S181, which are all neighbors of catalytic sites. Furthermore, 20 residues were

predicted as structurally important. Figure 2.1 shows that all of these are buried

in the core of the protein. Nine of these 20 residue positions (and the three

Figure 2.1: Location of predicted STRUC_sites in TrpC

The surface of TrpC (grey) and its substrate IGP (blue) are shown. All predicted

STRUC_sites are buried (orange) in the core of the enzyme. The entry with PDB-

ID 1A53 was used and visualized with PyMOL [132]. Taken from Publication A,

Figure 2.

false-positive LIG_sites) are known to be structurally important in homologous

proteins [8]. Eight of the 20 belong to fragments, which are strongly protected

against deuterium exchange [49]. This indicates a crucial role of these residues

in the folding mechanism. Furthermore, a molecular dynamics study [94] and a

comparison of enzyme variants [130] suggest that two more STRUC_sites inter-

act with the substrate. In summary, only four of the 20 STRUC_sites have no

known structural function.
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2 Summary and discussion

2.1.2 CLIPS-3D: A solely structure-based classifier

To investigate the performance of structure-based features, CLIPS-3D was devel-

oped. Furthermore, there are some cases where not enough sequences exist to

generate a high-quality MSA (e.g. for proteins exclusively occurring in mammals).

In that case CLIPS-1D cannot be applied as it is solely based on features extracted

from sequence data. However, if a protein structure is available, CLIPS-3D can

be used to analyze these cases. CLIPS-3D uses eight structure-based features:

The amino acid composition in regard to (1) CAT_sites, (2) LIG_sites, and (3)

STRUC_sites and the composition of the 3D neighborhoods (4-6). Furthermore,

the (7) rSASA (Formula (12), Publication B) and (8) the location of residues in

pockets (Formula (13), Publication B) is utilized. Pocket detection is based on

the cavity detection algorithm fpocket [81].

In comparison to CLIPS-1D, the classification of functionally important residues

was improved (Table 2.4). In fact the MCC-value for CAT_sites decreased

slightly from 0,337 to 0,307 but the MCC-value for LIG_sites increased drasti-

cally from 0.117 to 0.221. This is due to the fact that functional residues have to

be close to the surface to be able to interact with the ligands. As CLIPS-1D only

uses sequence data, it is ignorant about that property and is thus outperformed

by CLIPS-3D. The MCC-value for STRUC_sites, however, dropped by 38% from

0.666 to 0.426, because CLIPS-3D lacks crucial information about conservation.
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2.1 Classification of highly conserved residue positions

2.1.3 CLIPS-4D: A sequence- and structure-based classifier

It is to be expected that the exploitation of information from sequence and

structure combines the advantages of both approaches. Therefore, CLIPS-4D

which uses the same sequence-based information as CLIPS-1D and, additionally,

structural information was developed. The existing pool of CLIPS-1D’s seven

sequence-based features was extended by two of CLIPS-3D’s structure-based fea-

tures consisting of the rSASA and the pocket score as those turned out to be

the most informative. Other structure-based features did not improve the per-

formance of CLIPS-4D.

2.1.3.1 Statistical analysis

For a large scale evaluation CLIPS-1D, CLIPS-3D, CLIPS-4D, and ConSurf [4]

were considered. ConSurf is a well-established tool for calculating the evolu-

tionary conservation of residue positions in proteins using an empirical Bayesian

inference or (optionally) a maximum likelihood method. Amongst other values,

it outputs a conservation score in the range of 0-9. In this analysis, a residue

with a high conservation score was assigned a structural role if it was buried

or a functional role if it was exposed to the solvent. As ConSurf cannot dis-

tinguish between catalytic and ligand-binding residues, the union of CAT_sites

and LIG_sites was used for this part of the evaluation. Residues with score 9

were considered as positives as Consurf performed best with this threshold. The

resulting MCC-values can be found in Table 2.4 which also lists the MCC-values

of CLIPS-1D, CLIPS-3D, CLIPS-4D. ConSurf performed marginally better than

CLIPS-1D and CLIPS-3D for functionally relevant sites due to the access to

structural data and sequence information. The MCC-value of 0.46 for struc-

turally important sites, however, was inferior to CLIPS-1D. In comparison with

these algorithms, CLIPS-4D performed best for both catalytic and ligand-binding
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CAT_sites LIG_sites STRUC_sites
CLIPS-1D 0.34 0.12 0.67
CLIPS-3D 0.31 0.22 0.43
CLIPS-4D 0.43 0.27 0.68
Consurf 0.30 0.46

Table 2.4: Performance of CLIPS-1D, CLIPS-3D, CLIPS-4D, and

Consurf

MCC-values are given for CLIPS-1D, CLIPS-3D, CLIPS-4D, and Consurf on the

three data sets CAT_sites, LIG_sites, and STRUC_sites. As ConSurf does not

distinguish between catalytic and ligand-binding sites, the sets CAT_sites and

LIG_sites were merged before classification.

sites with MCCs of 0.43 and 0.27, respectively. Additionally, it performed slightly

better than CLIPS-1D for structurally important sites. This improvement was

small because the MCC value of CLIPS-1D was already 0.67. Furthermore, the

additional structural data available to CLIPS-4D is not specifically useful for the

recognition of structurally relevant sites, as these only contain binary information

about a residue’s position in a surface pocket. It contains no information that

allows to distinguish between surface and core residues in general.

2.1.3.2 Case studies that illustrate classification performance

For a more detailed analysis, targets were chosen from the ligand-binding site

prediction category of the Critical Assessment of protein Structure Prediction

(CASP) experiments. Corresponding MSAs were fetched from the HSSP database.

The best performing methods of CASP9 [129] and CASP10 [22] were based on

homology transfer which maps the annotations of a similar, already annotated

enzyme to the enzyme under study. Therefore, methods like firestar [89] reached
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2.1 Classification of highly conserved residue positions

MCC-values of up to 0.7 in CASP10. However, if the ligand is large and flexible,

it is particularly difficult for these methods to predict the full binding site as a

mapping from a known enzyme might be incomplete or even false. Therefore,

the six most difficult CASP9 and CASP10 targets binding biological ligands were

chosen for a detailed comparison of CLIPS-4D and firestar. As shown in Ta-

ble 2.5 the MCC-value of CLIPS-4D was higher than firestar’s for targets T0526

and T0604. Additionally, a union of the predictions generated by firestar and

CLIPS-4D resulted in a higher sensitivity at the cost of a moderate loss in speci-

ficity for targets T0615 and T0721 (Publication B, Table 3 and Supplement). On

targets T0584 and T0632 firestar performed better than CLIPS-4D.

Among these targets, the performance of CLIPS-4D was worst for T0584, a

T0526 T0584 T0604 T0615 T0632 T0721
3NRE 3NF2 3NLC 3NQW 3NWZ 4FK1

firestar 0.49 0.69 0.45 0.52 0.49 0.73
CLIPS-4D 0.61 0.19 0.54 0.34 0.24 0.45
Union 0.58 0.44 0.54 0.50 0.40 0.68

Table 2.5: Classification performance of firestar, CLIPS-4D and an

ensemble classifier on ligand-binding sites of six CASP targets

The row with label ‘Union’ gives MCC-values resulting from merging positive

predictions from firestar and CLIPS-4D. The first two lines give the target number

and the PDB-ID, respectively.

polyprenyl transferase. It generates the product from isopentenyl diphosphate

and dimethylallyl diphosphate by consecutive steps of elongation, cyclopropaga-

tion, rearrangement and cyclization reactions [153]. Consequently, the product

grows into an elongation cavity until reaching residues protruding into the cav-

ity [84] and thus determining the length of the product. Five residues shown to
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be important for catalysis [84] were predicted exclusively by CLIPS-4D. Four of

these residues are not directly involved in ligand-binding in the CASP control

structure with PDB-ID 1RQI and are thus handled as false positive predictions.

Furthermore, 18 CLIPS-4D predictions line the elongation cavity modeled previ-

ously [143] and three more contact the ligand after an active site rearrangement.

Therefore, experimental evidence confirmed that at least some of these predic-

tions were not false positives.

In summary, these findings suggest that CLIPS-4D can supplement homology

transfer methods in difficult cases like active site rearrangements, flexible sub-

strates or unknown poses of a ligand.

2.1.3.3 Comparison with CLIPS-1D

To underline the benefits of incorporating structural data into CLIPS, class- and

residue-specific MCC-values are listed for CLIPS-1D and CLIPS-4D in Table 2.6.

No values could be calculated for CAT_sites I, L, M, V, and P because of miss-

ing cases. On the one hand, the catalytically inert amino acids did not benefit

from structural data as MCC-values were still close to zero. This might be due

to a lack of data as on average only nine samples per amino acid were available.

On the other hand the catalytically active residues were predicted by CLIPS-4D

with MCC-values of up to 0.585, which is a large improvement. CLIPS-1D per-

formed slightly ( 0.01) better on catalytic phenylalanines and glycines but was

outperformed on all other residues. Thus, the prediction of these amino acids

benefits from the incorporation of structural data. In the case of ligand-binding

sites the improvement was even larger. CLIPS-4D predicted 19 residues with a

mean improvement of 0.15, only the MCC-value for aspartic acid droped slightly.

The improvement was due to the fact that binding sites tend to lie in surface cav-

ities which CLIPS-1D is ignorant about. The recognition of structurally relevant
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Residue CAT_sites LIG_sites STRUC_sites

A -0.001 (0.001) 0.331 (0.167) 0.790 (0.016)
C 0.445 (0.041) 0.241 (0.079) 0.732 (0.056)
D 0.402 (0.100) 0.009 (-0.007) 0.491 (0.176)
E 0.443 (0.098) 0.102 (0.052) 0.509 (0.161)

F -0.001 (-0.059) 0.256 (0.216) 0.779 (0.008)
G -0.001 (-0.025) 0.434 (0.172) 0.624 (0.033)
H 0.496 (0.072) 0.033 (0.096) 0.186 (0.100)
I - (-) 0.364 (0.229) 0.707 (0.006)

K 0.585 (0.133) 0.132 (0.101) 0.372 (0.035)
L - (-) 0.273 (0.217) 0.772 (-0.043)
M - (-) 0.382 (0.255) 0.687 (0.021)
N 0.128 (0.057) 0.239 (0.100) 0.642 (0.081)

P - (-) 0.187 (0.048) 0.670 (-0.013)
Q 0.186 (0.088) 0.277 (0.166) 0.691 (0.013)
R 0.331 (0.044) 0.114 (0.074) 0.471 (0.152)
S 0.399 (0.092) 0.283 (0.127) 0.643 (0.048)

T 0.059 (0.004) 0.337 (0.164) 0.715 (0.033)
V - (-) 0.344 (0.225) 0.727 (-0.034)
W -0.005 (0.018) 0.241 (0.234) 0.654 (-0.035)
Y 0.179 (0.082) 0.188 (0.146) 0.714 (-0.027)

Table 2.6: Residue and class-specific performance values of CLIPS-4D

MCC-values for each residue and each class are given. The change in regard to

CLIPS-1D is given in brackets.

sites is generally sound in both methods. Nevertheless, CLIPS-4D performed

slightly better in recognizing these buried and highly conserved amino acids. For

15 residues, the MCC-value increased by 0.06 on average, the decrease for the

other five residues was 0.03. Taken together, the classification of ligand-binding

sites benefited most from the structural data assessed by CLIPS-4D. The im-

provement for structurally and catalytically important sites was less pronounced

but still significant.
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2.2 Identification of correlated mutations

Unlike highly conserved residues, correlated residue positions cannot be identi-

fied by machine learning methods as the data basis is too sparse. Consequently,

no model for correlated mutations exists as the substitution frequencies for pairs

of amino acids are unknown. Under the assumption that correlated mutations

are rare, the consideration of a very large amount of residue pairs describes the

normal, uncorrelated case, in other words, a null model. Thus, a coupled pair

of residues can be detected by the deviation from this null model. In analogy

to matrices like P2PMAT [39] in inter residue contact prediction, the null model

is a similarity matrix A for residue pair substitutions. The similarity values

were deduced from a large, non-redundant set of protein structures and corre-

sponding MSAs from the HSSP database. The matrix entries were calculated

in analogy to the BLOSUM series [56] but the concept was adapted to pairs

of residues. To integrate this null model in the previously developed algorithm

H2r [97], the von Neumann entropy (Formula (5), Publication C) from quantum

physics was adopted as it is a generalization of Shannon’s entropy and can regard

amino acid similarities in an appropriate manner. Thus, the mutual informa-

tion (UvNE(k, l)) can be deduced for two residue positions k and l (Formula (9),

Publication C). Only significant values of UvNE(k, l) were further regarded by

calculating a bootstrapping-based statistical measure for the strength of pairwise

correlations. Bootstrapping is a resampling method for estimating the distribu-

tion function of a random variable by deducing an empirical distribution from

just one sample [37]. Here, this sample is the given arrangement of residues in a

pair of columns k and l. By shuffling the content column-wise, the entropy (con-

servation) of the two individual columns remains constant; however, the putative

correlation between the two residue positions degrades. Thus, by comparing the

UvNE(k, l)-value deduced from the unaltered combination of residue pairs with a
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distribution of UvNE(k∗, l∗)-values resulting from many shuffling rounds, the cor-

relation strength for this specific combination of residue pairs observed in columns

k and l can be rated. Consequently, if the UvNE(k∗, l∗)-values are similarly large

or surpass the UvNE(k, l)-value, the correlation is statistically not significant.

On the other hand, if all UvNE(k∗, l∗)-values are significantly lower, then this

specific UvNE(k, l)-value signals a pronounced dependency in the orchestration

of the two residue positions, which indicates correlated mutations. Finally, the

conn(k)-value for all residue positions k is determined by counting the number

of significantly correlated pairs k is part of. To alleviate the comparison of dif-

ferent proteins, conn(k) was further transformed into z-scores conz(k). This way

the importance of a single residue position k can be assessed and measured in a

robust manner.

2.2.1 Statistical analysis

Based on the observation that many correlated mutations are in close proximity

to functional sites [115] [75], a test bed for a large scale evaluation was created.

A dataset of 200 non-redundant enzymes (PDB structures and corresponding

HSSP MSAs) with known catalytic and binding sites served as a basis for the

assessment. Residues in a proximity of 1 Å to a functional site were regarded

as positives, all other residues (including the functional sites) as negatives. This

is a crude approach as not all residues in the proximity of a functional site are

covarying (and vice versa) but there is no generally accepted alternative for a

large scale evaluation. Although H2rs does not use any information other than

an MSA it yielded a specificity between 0.97 and 0.98, a precision between 0.18

and 0.19, and a balanced accuracy between 0.51 and 0.52 for a conz(k)-threshold

of 2 and p-values between 10−2 and 10−4 as can be seen in Table 2.7. Smaller

p-values and higher conz(k)-thresholds, however, yielded a precision of up to 0.3,
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p-value z-score Specificity Precision Accuracy
10−2 4.0 1.00 0.30 0.50
10−2 2.0 0.97 0.18 0.51
10−3 2.0 0.97 0.18 0.51

H2rs 10−4 2.0 0.98 0.19 0.52
10−5 2.0 0.98 0.18 0.51
10−10 2.0 0.98 0.17 0.51
10−11 2.0 0.98 0.17 0.51

H2r 0.95 0.17 0.5

Table 2.7: Performance of H2rs

Specificity, precision and balanced accuracy for H2rs and H2r are shown. Residues

in a proximity of less than 1 Å of at least one functional site in a dataset of 200

enzymes were regarded as positives. Negatives were the functional sites itself and

residues with a distance of more than 1 Å to any functional site. For H2rs, the

performance for different p-values and z-scores is shown.

a specificity of over 0.99, and a balanced accuracy of 0.5 at the cost of fewer

predictions made by H2rs. Nevertheless, the introduction of p-values and z-

scores allows for a flexible analysis, which can be adapted to the user’s needs.

Although the previously developed algorithm, H2r, predicted important residue

positions with high specificity [31], H2rs performed better. Furthermore, H2rs

attained slightly higher values in precision and balanced accuracy. This is due to

a better consideration of the physicochemical properties of amino acids and the

calculation of a significance threshold for each individual residue position pair

which in combination leads to less false positive predictions.
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2.2.2 Case studies that illustrate classification performance

To investigate the performance of H2rs more closely, a detailed analysis on three

well studied enzymes of the tryptophan biosynthesis TrpA, TrpB, and TrpC and,

additionally, on the dihydrofolate reductase (DHFR) and a hexokinase (HK) was

done. The results were compared with the global contact prediction method

PSICOV [67] (the best scoring L/5 predictions, where L is the sequence length)

and H2r. MSAs for each enzyme were created by using DELTA-BLAST [15]

with a max target threshold of 2000 and an expect threshold of 10−10 and aligned

with Mafft [70] in linsi mode. To concentrate on the most promising candidates,

p-value thresholds of 10−11 and a conz(k)-thresholds of 2.0 were chosen for all

evaluations. Using less conservative thresholds would lead to more predicted

residues but, presumably, to more false positives as well.

TrpA and TrpB constitue the tetrameric tryptophan synthase complex, which

catalyzes the final reaction from indole-3-glycerole phosphate and serine to tryp-

tophan. TrpA cleaves indoleglycerol-3-phosphate to glyceraldehyde-3-phosphate

and indole, which is transported to TrpB through a hydrophobic tunnel. There it

is condensed with serine to yield tryptophan. TrpA from Salmonella typhimurium

consists of 268 residues of which only two surpassed the chosen thresholds. L100

had a conz(100)-value of 2.2 and L127 had a conz(127)-value of 2.0. Both residues

are in close proximity to the substrate. Among others, both residue positions were

part of the L/5 predictions of PSICOV (Table 2.8). H2r predicted only L100. For

TrpB from Salmonella typhimurium, 13 of the 397 residues were predicted by H2rs

as being important. T88, Q90, and V91 are in close proximity to the substrate-

binding residue K87 [99]. C170 and F280 are at the end of the hydrophobic tunnel

[125]. T190 and S308 are metal-binding sites [79]. Furthermore, experiments in

[121] have shown that S308 and G268 are important for the coordination of ion

binding. S297 and P257 are in close proximity to the bound sodium ion. M282
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Protein Residue PSICOV H2rs H2r Residue’s role

stTrpA L100 1 2.2 3.23 Near binding site
L127 2 2 Near binding site

stTrpB C62 0 2.2 7.31 ND
T88 1 2.4 Near binding site
Q90 0 2.4 7.46 Near binding site
V91 0 2.1 Near binding site

C170 4 4.5 End of substrate tunnel
T190 6 2.2 Metal-binding site
P257 0 2.2 6.69 Near metal ion
G268 0 2.3 Coordination of ion binding
F280 0 2.4 2.81 End of substrate tunnel
M282 4 2.6 Near binding site
S297 3 4.2 Near metal ion
S308 0 2.4 8.54 Metal-binding site
Q312 0 2.9 ND

ssTrpC I48 3 2.4 ND
I133 3 2.6 9.77 Catalytically important
V134 2 2.3 Near active site
I136 1 2.1 ND
L142 1 2.7 Catalytically important
A209 3 2.1 Near binding site
S234 4 2.1 9.54 Phosphate-binding site

ecDHFR A9 2 2.2 Near active site
W30 0 2.3 Binding site
K32 0 2.3 Binding site
M92 0 3.4 Near active site
G121 0 2.7 2.77 Near active site
H149 0 2.1 4.38 Coupled motion

smHK T69 1 2.8 Domain interface
A215 2 2.6 End of domain 1
C217 0 2.7 13.9 End of domain 1
A218 0 2.3 End of domain 1
C224 0 2.2 Start of domain 2
V230 3 2.1 Near binding site
V256 2 2.1 Domain interface
K290 0 2.2 Near binding site
T409 1 2.4 Near C224
V412 0 2.0 Near binding site

Table 2.8: Overlapping predictions of H2rs with H2r and PSICOV on

five case studies

All residues predicted by H2rs with conz(k)-values ≥ 2 on the five case studies are

shown. For each residue, corresponding PSICOV and H2r predictions are noted.

For PSICOV the occurrence of a residue in the top L/5 contact predictions is

shown, for H2r mean conn(k)-values from 25 bootstrapping runs are noted. The

last column lists the role of the residues that could be found in literature. “ND”

indicates that no role for this residue could be found.

is in contact with F280 and S308. There was no information available for C62

and Q312. Of those 13 predictions, PSICOV identified five as well (Table 2.8).

Consequently, H2rs identified six residue positions of importance that were not
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recognized by PSICOV. This might be due to the fact that important residues

are not necessarily in contact with each other. H2r predicted C62, Q90, P257,

S308, and F280.

TrpC from Sulfolobus solfataricus catalyzes the ring closure of an N-alkylated

anthranilate to a 3-alkyl indole derivative, which is the fourth step in the tryp-

tophan biosynthesis. H2rs predicted seven of the 248 residues as important. The

highest conz(k)-values were assigned to L142 and I133. After individually mutat-

ing those residues to alanine, the activity of TrpC dropped 30-fold in each case

[30]. I133 and V134 are in close proximity to the substrate-binding site L132.

A209 lies next to the substrate-binding site E210 and the catalytic residue S211

[79]. S234 is known to be a phosphate-binding site. No information was found

for I48 and I136. All those residue positions were detected by PSICOV as well,

even the potential false positives I48 and I136. H2r, however, only detected two

of those residue positions, the binding site S234 and the catalytically important

residue I133.

DHFR from Escherichia coli catalyzes the reduction of 7,8-dihydrofolate to 5,6,7,8-

tetrahydrofolate utilizing the nucleotide cofactor 5,10-methylenetetrahydrofolate

reductase. It can be found in most organisms and plays a critical role for cell

proliferation and cell growth. H2rs predicted seven of 159 residue positions as

important. A9 and M92 are in close proximity to the binding site A7 and the cat-

alytic site I94, respectively [79]. W30 and K32 are in contact with the substrate.

H149 is known to play a significant role in the network of coupled motions that in-

duce configurations allowing for the hydride transfer [157]. Finally, mutations of

G121, which lies in proximity of NADP, are known to reduce the hydride transfer

rate [146]. Among those only A9 was predicted by PSICOV. H2r identified G121

and H149. The low overlap shows a significant improvement over H2r which only

predicted two residue positions for DHFR at all, because it is known that there
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are many correlated motions which most likely involve correlated mutations in

DHFR. PSICOV, however, predicted 54 residue positions which is about one third

of all residues. Nevertheless, the overlap to H2rs’ predictions was very small.

HK from Schistosoma mansoni (PDB-ID 1BDG) is the first enzyme in the gly-

colytic pathway and catalyzes the transfer of a phosphoryl group to alpha-6-

glucose. The 3D crystal structure contains SO4 anions in the catalytic cleft [77].

It consists of two domains, a hexokinase type-1 (residues 18 – 218) and a hex-

okinase type-2 domain (residues 221 – 457). H2rs identified 10 residues. A215,

C217, and A218 are located at the very end of domain 1, whereas C224 occurs

at the very beginning of domain 2. Furthermore, these four residues are flanking

a β-turn [79]. K290 and V230 are neighbors of the binding sites Q291 and I229,

respectively. V412 is a neighbor of the SO4-binding sites G414 and S415. T409

is close to C224 (see above). The role of only two residues (T69 and V256) is

unknown. However, both residues are located close to the domain interface (≤

5.2 Å). H2r predicted C217 and additionally D376, whose function is not known.

Five of H2rs’ predicted residue positions were also predicted by PSICOV. The

results obtained for HK emphasize that not all correlated mutations are caused

by functional constraints: 4 of 10 residues with high conz(k)-values are located

at the domain interface and two of them (C217, C224) belong to a disulfide bond

that stiffens the orientation of the two domains in some of the homologous pro-

teins. This positions were occupied in only 43% of the sequences by cysteines.

The orchestration of these two residue positions fits well to the idea of mutual

dependencies and pairwise correlations.

Generally, this detailed analysis of five enzymes as well as the assessment of the

in silico testbed signals the improved specificity gained by introducing the von

Neumann entropy and by integrating a more sensitive statistical approach that

adapts to the composition of each pair of MSA columns. However, this improve-

40



2.2 Identification of correlated mutations

ment suffers by a much longer execution time as the calculation of eigenvalues is

computationally very demanding. The predictions of H2rs and PSICOV overlap

only marginally, which can be explained by the scope of the methods. Global

methods aim at identifying contacting residue pairs which are not all necessarily

located near functional sites and therefore eliminate transitive correlations. Lo-

cal methods do not eliminate transitive correlations and are thus able to predict

correlation far apart in the structure. Therefore, global methods are not able to

substitute local methods.
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RESEARCH ARTICLE Open Access

CLIPS-1D: analysis of multiple sequence
alignments to deduce for residue-positions a role
in catalysis, ligand-binding, or protein structure
Jan-Oliver Janda1, Markus Busch1, Fabian Kück2, Mikhail Porfenenko1 and Rainer Merkl1*

Abstract

Background: One aim of the in silico characterization of proteins is to identify all residue-positions, which are
crucial for function or structure. Several sequence-based algorithms exist, which predict functionally important sites.
However, with respect to sequence information, many functionally and structurally important sites are hard to
distinguish and consequently a large number of incorrectly predicted functional sites have to be expected. This is
why we were interested to design a new classifier that differentiates between functionally and structurally
important sites and to assess its performance on representative datasets.

Results: We have implemented CLIPS-1D, which predicts a role in catalysis, ligand-binding, or protein structure for
residue-positions in a mutually exclusive manner. By analyzing a multiple sequence alignment, the algorithm scores
conservation as well as abundance of residues at individual sites and their local neighborhood and categorizes by
means of a multiclass support vector machine. A cross-validation confirmed that residue-positions involved in
catalysis were identified with state-of-the-art quality; the mean MCC-value was 0.34. For structurally important sites,
prediction quality was considerably higher (mean MCC = 0.67). For ligand-binding sites, prediction quality was
lower (mean MCC = 0.12), because binding sites and structurally important residue-positions share conservation
and abundance values, which makes their separation difficult. We show that classification success varies for
residues in a class-specific manner. This is why our algorithm computes residue-specific p-values, which allow for
the statistical assessment of each individual prediction. CLIPS-1D is available as a Web service at http://www-bioinf.
uni-regensburg.de/.

Conclusions: CLIPS-1D is a classifier, whose prediction quality has been determined separately for catalytic sites,
ligand-binding sites, and structurally important sites. It generates hypotheses about residue-positions important for
a set of homologous proteins and focuses on conservation and abundance signals. Thus, the algorithm can be
applied in cases where function cannot be transferred from well-characterized proteins by means of sequence
comparison.

Background
It is of general interest to identify important sites of a
protein, for example when elucidating the reaction
mechanism of an enzyme. To support this task, classi-
fiers have been developed, which utilize different kinds
of information about the protein under study. Some
algorithms are based on sequences [1-11], other ones

make use of 3D-data [12,13], and a third class combines
both approaches [14-18].
A strong argument in favor of sequence-based methods

is their broad applicability and their potential to character-
ize proteins with a novel fold. Additionally, some signals
seem to be more pronounced in sequence- than in 3D-
space [19]. Commonly, these methods depend on a multi-
ple sequence alignment (MSA) composed of a sufficiently
large number of homologs. Based on the assumption that
critical residues are not altered during evolution, the cano-
nical feature to identify important residue-positions in an
MSA is the conservation of individual columns. The
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degree of conservation can help to predict a role: In many
cases, strictly conserved residues are essential for protein
function [7,20,21]. In contrast, a prevalent but not exclu-
sively found amino acid is often important for protein sta-
bility [22,23], which similarly holds for ligand-binding
sites. Thus, for a precise discrimination, several properties
have to be interpreted. Features that improve prediction of
functionally important sites are the conservation of proxi-
mate residues [7,24] and the abundance of amino acid
residues observed at catalytic sites [8,24]. In addition,
implicit features deduced from protein sequences have
been utilized, like the predicted secondary structure and
the predicted solvent accessible surface of residues [5,8].
Most of the existing algorithms focus on the identifica-

tion of sites relevant for protein function. In order to
broaden the classification spectrum, we implemented the
sequence-based algorithm CLIPS-1D, which predicts func-
tionally important sites in addition to residue-positions
crucial for protein structure in a mutually exclusive man-
ner. It is based on a multiclass support vector machine,
which assesses not more than seven properties deduced
from residue-positions and their local neighborhood in
sequence space. Our approach compares favorably with
state-of-the-art classifiers and predicts catalytic residue-
positions with a mean MCC-value of 0.34. The mean
MCC-value is for structurally important sites 0.67 and for
ligand-binding sites it is 0.12. Our findings show that
separating ligand-binding sites and structurally important
sites is difficult due to their similar properties and that
classification quality depends on the residue type.

Results and discussion
Analysis of local conservation and abundance signals
allows for a state-of-the-art classification
High-quality datasets consisting of catalytic sites, ligand-
binding sites, and sites important for protein structure
are required to train and assess support vector machines
(SVMs), which predict the respective roles of residue-
positions. Based on the content of EBI-databases, we pre-
pared the redundancy-free and non-overlapping sets
CAT_sites and LIG_sites, which consist of 840 catalytic
sites and 4466 ligand-binding sites deduced from a set of
264 enzymes named ENZ (see Methods). Whereas the
full set of functionally important sites is known for many
enzymes, residues that crucially determine structure have
not been identified for a representative set of proteins.
Thus, to compile such sites, we had to follow an indirect
approach [25] by assuming that residues in the core of
proteins lacking enzymatic function are conserved due to
their relevance for structure. This notion is supported by
the fact that conserved hydrophobic core-residues can
contribute substantially to protein stability [26]. By re-
annotating a comprehensive set of non-enzymes from

reference [27], we culled the dataset NON_ENZ, which
consists of 136 proteins. NON_ENZ contains 3703 buried
residue-positions, which are more conserved than the
mean (see Methods); we designated these sites STRUC_-
sites. For all proteins under study, MSAs were taken from
the HSSP database [28] and filtered prior to analysis.
Next, we identified features, which allow for a state-of-

the-art classification of CAT_sites, LIG_sites, and
STRUC_sites. Thus, we trained three two-class (2C-)
SVMs to predict for each residue-position k, whether it is
important for catalysis (SVMCAT), ligand-binding
(SVMLIG), or protein structure (SVMSTRUC) and com-
pared performance values. In the end, the features used
to characterize each k were in the case of SVMCAT a nor-
malized Jensen-Shannon divergence consJSD (k) (formula
(4)) and an abundance-value abund(k, CAT_sites) scoring
the occurrence of residues at CAT_sites according to for-
mula (6). The proximity of k was assessed by means of a
weighted score consneib(k) (formula (5)) and a novel

abundance-value abundneib(aak
s , CAT sites) , deduced from

conditional frequencies in the ± 3 neighborhood [8] of

CAT_sites (formula (7)). Thus, abundneib(aak
s , CAT sites)

compares the local environment of site k with the one

observed for residues aak
s at positions annotated as cata-

lytic sites. In order to quantify the contribution of indivi-
dual features to classification quality, performance was
determined for SVMs exploiting either all four features
or a combination of three features, respectively. Analo-
gously, scores for LIG_sites were computed, and SVMLIG

was trained and assessed.
It is difficult to unambiguously determine a classifier’s

performance, if the numbers of positive and negative
cases differ to a great extent, as is here the case. This is
why we computed a battery of performance values, which
are given in Additional file 1: Table S1. Their comparison
confirms for our problem that the performance measures
support each other, thus we focus on MCC-values [29],
which are also listed in Table 1. The MCC-values for
SVMCAT and SVMLIG were 0.324 and 0.213, respectively.
MCC-comparison makes clear that for CAT_sites and
LIG_sites all four features add to classification quality.
For CAT_sites, consJSD (k) and abund(k, CAT_sites) con-
tributed most, for LIG_sites, the conservation score
consJSD(k) was most relevant; compare Additional file 1:
Table S1 and Additional file 1: Figure S1, which shows
ROC and PROC curves.
Can SVMCAT and SVMLIG compete with state-of-the-art
classifiers? For the assessment, we selected FRpred,
which has outperformed other approaches and which
additionally exploits the predicted secondary structure
and solvent accessibility [8]. It has reached 40% preci-
sion at 20% sensitivity for the identification of catalytic
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residues and is accessible as a Web service [8]. FRpred
lists two subtypes of predictions, FRcons-cat for catalytic
sites and FRcons-lig for ligand-binding sites. All results
are scored with values of 0-9; the higher the score, the
more probable is a functional role of the residue. A clas-
sification of CAT_sites and LIG_sites with FRpred
resulted in MCC-values of 0.250 (FRcons-cat) and 0.197
(FRcons-lig), when considering predictions scored 9 as
positive cases. For predictions scored at least 8, the
MCC-values were 0.231 and 0.219, respectively. Interest-
ingly, performance was better, when we uploaded our
preprocessed HSSP-MSAs than when FRpred compiled
MSAs on itself (compare Additional file 1: Table S1),
which indicates the high quality of these specifically fil-
tered MSAs. In summary, the comparison of perfor-
mance values for FRpred, SVMCAT, and SVMLIG

confirmed that the four features selected by us account
for a state-of-the-art classification.
Using corresponding features and the set STRUC_sites,

we analogously trained SVMSTRUC for the prediction of
residue-positions important for structure, which gave an
MCC-value of 0.761. Classification quality was determined
to the greatest extent by consJSD (k). When classifying
without this feature, MCC was lowered to 0.346. Utilizing
the feature abundneib(k, STRUC_sites) deteriorated perfor-
mance; a higher MCC-value (0.782) was gained by an
SVM trained on the remaining three features. Even abund
(k, STRUC_sites) had only a marginal effect, although the
respective scores differ considerably from those of abund
(k, CAT_sites) and abund(k, LIG_sites); compare Table 2
and Additional file 1: Figure S2. Thus, in proteins without
enzymatic function, the assessment of conservation con-
tributed most to separate the conserved buried residues
from all other ones, which constitute the negative cases.
FRpred predicted with score 9 22% and with score 8 41%
of the STRUC_sites as catalytic sites or ligand-binding
sites; see Table 1.

CLIPS-1D: Towards a more diversified prediction of
residue function
In order to elaborate the subtle differences distinguishing
functionally and structurally important residue-positions,
all combinations of the above training sets have to be
exploited. This is why we prepared a multi-class support
vector machine (MC-SVM) for CLIPS-1D, which was
trained on the four classes CAT_sites, LIG_sites,
STRUC_sites, and NOANN_sites, i.e., all residue-positions
from NON_ENZ not selected as STRUC_sites. Due to the
above findings on 2C-SVMs, we chose the following
seven features: consJSD (k), consneib(k), abund(k, CAT_-
sites), abund(k, LIG_sites), abund(k, STRUC_sites),
abundneib(k, CAT_sites), and abundneib(k, LIG_sites). The
MC-SVM outputs a list of four class-specific probability
values pclass. Based on the largest pclass-values, residue-
positions were assigned one of the four classes; the
resulting distributions are shown in Figure 1. 65% of the
CAT_sites and 76% of the STRUC_sites were correctly
assigned. 64% of the LIG_sites and 19% of NOANN_sites
were misclassified, and each class contributed a notice-
able fraction of false positives. 13% of the STRUC_sites
were classified as CAT_sites and 10% as LIG_sites.
Although the algorithm frequently failed to assign the
correct class, separating positions with and without a
crucial role was more successful: 96% of the CAT_sites,

Table 1 Classification performance of SVMs and FRpred
on functionally and structurally important residue-
positions

CAT_sites LIG_sites STRUC_sites

2C-SVM 0.324 0.213 0.782

CLIPS-1D 0.337 0.117 0.666

FRpred, score ≥ 8 0.231 0.219 41%

FRpred, score = 9 0.250 0.197 22%

The line “2C-SVM” gives MCC-values resulting from a classification of catalytic
sites (CAT_sites) with SVMCAT, of ligand-binding sites (LIG_sites) with SVMLIG,
and of structurally important sites (STRUC_sites) with SVMSTRUC. The line “CLIPS-
1D” shows the performance of the MC-SVM. For FRpred, performance
resulting from the analysis of HSSP-MSAs is given. For CAT_sites and LIG_sites,
MCC-values are listed resulting from FRcons-cat or FRcons-lig scores of at least
8 or 9, respectively. For STRUC_sites, the same percentage of false positives
resulted from FRcons-cat and FRcons-lig predictions.

Table 2 abund(k, CLASS)-values for amino acid residues

Residue CAT_sites LIG_sites STRUC_sites

A -2.0424 -0.3537 -0.1210

C 1.3255 0.7376 1.2398

D 1.1178 0.0426 -0.0498

E 0.6536 -0.3856 -0.6615

F -0.7708 -0.0081 0.5057

G -0.7533 0.4195 0.7020

H 1.8883 0.8279 -0.3044

I -2.8164 -0.3026 -0.6449

K 0.6051 -0.3615 -1.0215

L -2.4503 -0.5416 0.2116

M -1.4026 0.1374 -0.4882

N -0.1972 0.3566 -0.2254

P -5.0000 -0.4542 0.3643

Q -0.7243 -0.1841 -0.5615

R 0.6834 0.3879 -0.2593

S 0.0027 -0.0125 -0.7006

T -0.5435 0.2314 -0.3363

V -2.9568 -0.4130 -0.3294

W 0.1927 0.5548 1.2811

Y 0.3265 0.4572 0.7058

The score-values were deduced from residues belonging to the respective
classes. See formula (6) for a definition of the scores.
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65% of the LIG_sites, and 98% of the STRUC_sites were
classified as structurally or functionally important and
81% of the NOANN_sites were classified as having no
crucial function. It turned out that the respective MCC-
value was optimal, if CAT_sites with pCAT(k) > 0.61 were
selected as positives. In summary, the corresponding
MCC-values were 0.337, 0.117, and 0.666 for CAT_sites,
LIG_sites, and STRUC_sites; see Table 1. In comparison
with 2C-SVMs, the performance on CAT_sites improved
moderately. However, the performance on LIG_sites and
STRUC_sites dropped, which indicates that the separa-
tion of LIG_sites and STRUC_sites is difficult.
The comparison of abund()-values (compare Table 2)

makes clear that residues are unevenly distributed among
the classes, which must influence the residue-specific clas-
sification quality. Thus, we determined class-specific
MCC-values for each residue, which are listed in Table 3.
As expected, performance differs drastically for individual
residues and between classes. Among CAT_sites, Arg, Asp,
Cys, His, Lys, and Ser were predicted with high quality.
Most of the other MCC-values were near zero and no
MCC-value could be computed for Pro and Val due to
empty sets. The performance-values for LIG_sites were
generally lower. Among STRUC_sites, the mean MCC-
value for the hydrophobic residues Ala, Ile, Leu, Met, Phe,
Pro, Trp, and Val was 0.733; the mean of all hydrophilic
ones was 0.494. In summary, these findings proposed to
determine classification quality in more detail by comput-
ing class- and residue-specific p-values (see Methods).
Thus, the user can assess the statistical significance of
each individual prediction. Table 4 lists the resulting per-
formance for p-value cut-offs of 0.01, 0.025, and 0.05. As
can be seen, specificity is high in all cases; sensitivity and
precision are lower and class-dependent.

An alternative to CLIPS-1D is the algorithm ConSeq,
which predicts functionally or structurally important resi-
due-positions but does not distinguish catalytic and
ligand-binding sites. Based on the analysis of five pro-
teins, a success rate of 0.56 has been reported [5]. In
order to estimate the performance of the latest ConSeq
version [30], we have uploaded one sequence for each of
the first five ENZ and NO_ENZ entries (see Additional
file 1: Tables S3 and S4 for PDB-IDs) and used the Web
server with default parameters. As ConSeq does not dif-
ferentiate between catalytic sites and ligand-binding sites,
the union of CAT_sites and LIG_sites was considered as
positives in this case. For the combination of these resi-
due-positions, sensitivity was 0.41, specificity 0.84, and
precision 0.16; for STRUC_sites the values were 0.30,
0.86, and 0.31, respectively. A comparison of the perfor-
mance values indicates that CLIPS-1D can compete with
ConSeq.

Utilizing CLIPS-1D as a web service
A version of CLIPS-1D trained on the full datasets is
available as a Web service at http://www-bioinf.uni-
regensburg.de/. Its usage requires to upload an MSA in
multiple Fasta-format; the result will be sent to the user
via email.
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Figure 1 Classification performance of CLIPS-1D in predicting
functionally and structurally important residue-positions. Based
on the maximal class-probability pclass all members of the classes
CAT_sites, LIG_sites, STRUC_sites, and NOANN_sites were categorized.
NOANN_sites are all residue-positions not selected as STRUC_sites in
the NON_ENZ dataset, i.e. positions without assigned function. Note
that the absolute numbers of residue-positions are plotted with a
logarithmic scale.

Table 3 Residue-specific MCC-values

Residue CAT_sites LIG_sites STRUC_sites

A -0.002 0.164 0.774

C 0.404 0.162 0.676

D 0.302 0.016 0.315

E 0.345 0.052 0.348

F 0.058 0.041 0.771

G 0.024 0.262 0.591

H 0.424 -0.063 0.086

I -0.001 0.135 0.701

K 0.452 0.031 0.337

L -0.001 0.056 0.815

M -0.002 0.127 0.666

N 0.071 0.139 0.561

P - 0.139 0.683

Q 0.098 0.111 0.678

R 0.287 0.040 0.319

S 0.307 0.156 0.595

T 0.055 0.174 0.682

V - 0.119 0.761

W -0.008 0.007 0.689

Y 0.097 0.046 0.741

The MCC-values were determined in a class- and residue-specific manner. Due
to missing cases, MCC-values could not be determined for Pro and Val
residues at CAT_sites.
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To illustrate the application of CLIPS-1D, we present
an analysis of the enzyme indole-3-glycerol phosphate
synthase (IGPS), which is found in many mesophilic and
thermophilic species. IGPS belongs to the large and ver-
satile family of (ba)8-barrel proteins, which is one of the
oldest folds [31]. Additionally, folding kinetics [32] and
3D-structure of IGPS [33,34] have been studied in detail.
We analyzed the HSSP-MSA related to PDB-ID 1A53,

i.e. the IGPS from Sulfolobus solfataricus. Table 5 lists all
CLIPS-1D predictions with a p-value ≤ 0.025. According
to the respective PDB-sum page [35], E51, K53, K110,
E159, N180, and S211 are the catalytic residues. Besides
N180, which was predicted as LIG_site, the other 5 sites
were correctly identified as CAT_sites. The sites which
have contact to the ligand were classified as follows:
CAT_sites E210, LIG_sites I232, STRUC_sites F112, L131,
L231, NOANN_sites G212, G233, S234. Classified as
LIG_sites were also K55, I179, and S181, which are all
neighbors of catalytic sites. 20 residues were predicted as
STRUC_sites; Figure 2 shows that all belong to the core
of the protein. Their function will be discussed below.

Strengths and weaknesses of CLIPS-1D
Adding the class STRUC_sites allowed us to compare
properties of functionally and structurally important resi-
due-positions and to assess their impact on classification
quality.
For CAT_sites, the abundance scores indicate a strong

bias of Arg, Asp, Glu, His, and Lys towards catalytic resi-
due-positions, which is in agreement with previous find-
ings [24]. CAT_sites, which were classified as structurally
important, were most frequently Cys and Tyr residues.
Both residues are not exceedingly overrepresented at cata-
lytic sites and abund(k, CAT_sites)- and abund(k,
STRUC_sites)-values are similarly high; compare Table 2.
For extracellular proteins, structurally important Cys resi-
dues are frequently involved in disulphide bonds. Thus,
algorithms like DISULFIND [40] can help to clarify
CLIPS-1D’s Cys classification.
Least specific was the classification of LIG_sites, which

also suffered the most drastic loss of performance. The
MCC-value dropped from 0.21 (gained with SVMLIG) to
0.12, and most misclassifications gave STRUC_sites, which
is due to the similarity of these sites with respect to the

features used for classification: For both classes, consJSD(k)
is most relevant for classification success, and among all
combinations of abundance-values the pairs abund(k,
LIG_sites) and abund(k, STRUC_sites) differ least; com-
pare Table 2. The similarity of these residue-positions is
further confirmed by the large number of STRUC_sites
classified as functionally important by FRpred, which addi-
tionally suggests that the assessment of the predicted sec-
ondary structure and the predicted solvent accessibility
contributes little to discriminate functionally and structu-
rally important sites. It follows that LIG_sites and
STRUC_sites span a fuzzy continuum, which cannot be
divided by means of the considered sequence-based fea-
tures. On the other hand, each MCC-value characterizes a
binary classification and underestimates the performance
of CLIPS-1D. For example, when assessing the perfor-
mance of LIG_sites via an MCC-value, residue-positions
classified as STRUC_sites were counted as false-negatives.
A more detailed analysis of Figure 1 and the findings on
sIGPS illustrate that LIG_sites were often classified as
CAT_sites or STRUC_sites and not as sites without any
function (NOANN_sites), which is a drastic difference not
considered by an MCC-value.
For STRUC_sites, the MCC-value decreased from 0.78

to 0.67 for the above reasons; however, the MCC-value is
still considerably high. Can one make plausible, why these
buried residue-positions are preferentially occupied by a
specific set of residues? At mean, hydrophobic interactions
contribute 60% and hydrogen bonds 40% to protein stabi-
lity; for the stability of larger proteins, hydrophobic inter-
actions are even more important [41]. The fraction of
misclassified hydrophobic STRUC_sites was low; compare
MCC-values of Table 3. Thus, CLIPS-1D identifies with
high reliability conserved residues of the protein’s core,
which are most likely important for protein stability. On
the other hand, the analysis of abund(k, STRUC_sites)-
values (compare Table 2) shows that not all STRUC_sites
are conserved hydrophobic residues: The hydrophobic
residues Ala, Ile, Met, and Val are underrepresented,
whereas the hydrophilic residues Cys, Gly, and Tyr are
overrepresented. Additionally, the comparison of abun-
dance scores indicates a preference of Leu, Phe, and Pro
for structurally relevant sites. These preferences reflect the
specific function of these residues for secondary structure

Table 4 Performance of CLIPS-1D for different p-values

Cut-off Sensitivity Specificity Precision

CAT LIG STRUC CAT LIG STRUC CAT LIG STRUC

0.010 0.170 0.030 0.225 0.996 0.991 0.991 0.316 0.176 0.827

0.025 0.276 0.077 0.445 0.992 0.977 0.977 0.270 0.178 0.789

0.050 0.401 0.137 0.582 0.987 0.954 0.961 0.246 0.165 0.742

The three performance measures were determined (see Methods) by selecting as positive cases all residue-positions with a p-value not greater than the given
cut-off. Labels: “CAT” CAT_sites, “LIG” LIG_sites, “STRUC” STRUC_sites.
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[42]. Additionally, the score-values demonstrate that
CLIPS-1D does not exclusively select ILV-residues, which
are considered important for protein folding [32].
STRUC_sites, misclassified as catalytic ones, were often
Arg, Asp, and Glu, which shows that the abund(k, CAT_-
sites)-values have a strong effect on classification.
NOANN_sites predicted as CAT_sites were frequently Arg,
Asp, and His; Gly, Ser, and Thr were often predicted as
LIG_sites. Most likely, at least some of these residue-posi-
tions belong to binding sites on the protein-surface e.g.

protein-protein interfaces. Identifying these residues is
possible [43], but beyond the scope of this study.

STRUC_sites are crucial elements of the sIGPS structure
A detailed comparison of the two thermostable variants
sIGPS from S. solfataricus [33], tIGPS from Thermotoga
maritima, and the thermolabile eIGPS from Escherichia
coli has made clear that these thermostable proteins
have 7 strong salt bridges more than eIGPS, and that
only 3 of 17 salt bridges in tIGPS and sIGPS are

Table 5 CLIPS-1D predictions for residue-positions in sIGPS (PDB-ID 1A53)

Residue Position pCAT pLIG pSTRUC pNOANN p-value Classification

CS LBS STRUC

I 49 0.001 0.154 0.824 0.022 0.003 SC

E 51 0.806 0.075 0.114 0.005 0.020 CAT

K 53 0.835 0.065 0.088 0.012 0.004 CAT

K 55 0.051 0.544 0.197 0.208 0.011 SC

S 56 0.017 0.170 0.801 0.012 0.004 SC

L 60 0.002 0.128 0.829 0.041 0.019 IA

A 77 0.006 0.172 0.810 0.011 0.018 FC

I 82 0.002 0.259 0.667 0.073 0.011 SR

T 84 0.002 0.111 0.881 0.007 0.003 N

L 108 0.006 0.106 0.863 0.024 0.012 SR

K 110 0.866 0.078 0.046 0.011 0.002 CAT

F 112 0.146 0.053 0.788 0.014 0.020 STRUC FC

Q 118 0.007 0.114 0.872 0.008 0.002 FC

A 122 0.001 0.066 0.882 0.051 0.010 FC

A 127 0.024 0.193 0.776 0.008 0.022 N

L 131 0.001 0.071 0.920 0.008 0.006 STRUC SR

L 132 0.004 0.164 0.794 0.038 0.023 SR,FC

I 133 0.005 0.169 0.790 0.036 0.005 FC

L 137 0.007 0.151 0.813 0.029 0.020 SC,FC

L 157 0.001 0.105 0.886 0.008 0.010 SC,FC

E 159 0.899 0.048 0.050 0.003 0.005 CAT

D 165 0.189 0.071 0.699 0.040 0.007 N

I 179 0.001 0.819 0.068 0.112 0.021 SCE

N 180 0.098 0.770 0.116 0.016 0.016 LIG

S 181 0.011 0.774 0.134 0.081 0.019 SCE

L 184 0.009 0.157 0.818 0.016 0.020 IA

L 197 0.003 0.130 0.818 0.049 0.020 N

E 210 0.866 0.059 0.068 0.007 0.008 CAT

S 211 0.738 0.168 0.087 0.007 0.005 CAT

L 231 0.003 0.224 0.762 0.011 0.025 STRUC SC

I 232 0.006 0.835 0.059 0.099 0.017 LIG

The first two columns give the residue and its position in sIGPS. The following four columns list the probabilities for the residue’s membership with CAT_sites,
LIG_sites, STRUC_sites, or NOANN_sites. The column labeled “p-value” lists the p-value for the class with max(pCLASS). The columns “CS” and “LBS” indicate the
classification of known catalytic and ligand-binding sites. The last column lists the annotation deduced for residues predicted as STRUC_sites. Meaning of labels:
“CAT”, “LIG”, “STRUC”, residues predicted as CAT_sites, LIG_sites, or STRUC_sites, respectively. “SC” element of a stabilization center pair in sIGPS, “SCE” ditto in
eIGPS, “SR” stabilization residue in sIGPS; see [36]. “FC” element of the folding core; see [37]. “IA” interaction with substrate; see [38]. “N” no function assigned.
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topologically conserved [44]. It follows that CLIPS-1D
can only identify the specific subset of structurally
important residue-positions which are relevant for most
of the homologous proteins constituting the MSA under
study. For sIGPS, tIGPS, and eIGPS stabilization centers
(SC) and stabilization residues (SR) have been deter-
mined [36]. Residues of SCs form tight networks of
cooperative interactions which are energetically stabi-
lized; SRs are embedded into a conserved hydrophobic
3D-neigborhood. 20 residue-positions of sIGPS were
classified as STRUC_sites by CLIPS-1D. 9 of these 20
residue-positions as well as the 3 false-positive LIG_sites
are a SC or SR residue in one of the three homologous
enzymes; compare Table 5. For sIGPS, the structure of
folding cores, i.e. local substructures, which form early
during protein folding has been determined by means of
HD exchange experiments [37]. 8 of the STRUC_sites
belong to fragments, which are strongest protected
against deuterium exchange (> 84%, see Table 3 in
reference [37]), which indicates their significant role in
the partially folded protein. A molecular dynamics study
[38] and a comparison of enzyme variants [34] have
made clear that two more STRUC_sites belong to loops
interacting with the substrate. When combining the
above findings, only 4 of the 20 STRUC_sites have no
accentuated function, which confirms the relevance of
these sites for the enzyme’s structure.

Main application of CLIPS-1D: Predicting important sites
of uncharacterized proteins
For the test cases of the CASP 7 contest, the firestar [17]
and the I-TASSER [45] server have reached MCC-values

of 0.7 when predicting functionally important residues;
the performance of other servers has been substantially
lower [17]. Both servers utilize the transfer of informa-
tion from evolutionary related and well-characterized
proteins. If applicable, this approach allows for a superior
prediction quality. However, it fails completely if the
function of homologous proteins is unknown. For such
cases, methods are required that identify functionally and
structurally important sites by analyzing conservation sig-
nals and propensity values. In contrast to ConSeq [5] and
FrPred [8], CLIPS-1D predicts a specific role in catalysis,
ligand-binding, or structure for each residue-position.
The only prerequisite for its application is the existence
of a sufficiently large number of homologous sequences,
which can easily be combined to an MSA and which
should be filtered according to our experience.
The number of genes which lack annotated homologs

is huge: In mid 2011, the Pfam database [46] contained
nearly 4000 domains of unknown function. Additionally,
a comparison of databases for protein-coding genes and
their products unravels a tremendous deficit of knowl-
edge by indicating that function is unknown for more
than 40% of all protein-coding genes [47]. These genes
may code for unknown folds and novel enzymatic cap-
abilities. However, if computational biology fails to iden-
tify function, an enormous battery of experiments have
to be accomplished, due to the number of distinct enzy-
matic activities and other protein functions observed in
Nature; see e.g. [48]. Therefore, all plausible hypotheses
generated by CLIPS-1D and similar methods are of
value and help to reduce the number of experimental
analyses.

90°

Figure 2 Localization of STRUC_sites in sIGPS. Based on PDB-ID 1A53, the surface of the whole protein (grey) and of residues predicted as
STRUC_sites (orange) is shown. The substrate indole-3-glycerole phosphate is plotted in dark blue. The picture was generated by means of PyMOL [39].
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One might expect that exploiting the 3D-structure of a
protein contributes a lot to functional assignment. This is
not necessarily the case: Structure-based algorithms have
failed to outperform MSA-based approaches in predicting
catalytic sites and have maximally reached the same
MCC-value; see [18] and references therein. However, if
3D-data and an MSA are at hand, features deduced from
structure and from homologous sequences can be utilized
in a concerted manner. In addition to the above features,
signals caused by correlated mutations [3,49] can then be
utilized to further characterize catalytic sites, which are
surrounded by residues spanning a network of mutual
information [50]. This is why we work on exploiting a
combination of these features and the near future will
show, whether this approach further improves classifica-
tion quality. There is an urgent need for such methods: In
mid 2011, no function has been attributed to more than
4% of the protein structures deposited in the Protein Data
Bank [51].

Conclusions
By analyzing an MSA by means of CLIPS-1D, residue-
positions involved in catalysis can be identified with
acceptable quality. In contrast, ligand-binding sites and
residue-positions important for protein structure are
hard to distinguish due to their similar patterns of con-
servation and residue propensities. Our MC-SVM can
be applied to cases where the function of all homologs
is unknown. The algorithm supports the user’s decisions
by computing a p-value for each prediction.

Methods
CAT_sites and LIG_sites, datasets of catalytic and ligand-
binding residue-positions
To compile a test set of functionally important sites, we
processed the content of the Catalytic Site Atlas (CSA)
[52]. We exclusively utilized the manually curated entries
of CSA and did not consider sites that have been anno-
tated by means of PSI-BLAST alignments. In order to
eliminate redundancy of proteins, we used the PISCES ser-
ver [53] with a sequence-similarity cut-off of 25%. For
each protein, an MSA was taken from the HSSP database
[28] and selected for further analyses, if it contained at
least 125 sequences. The resulting dataset consists of 264
enzymes and related MSAs, which we named ENZ. These
proteins contain 840 catalytic residues, which we denomi-
nated CAT_sites. For these proteins we also deduced
ligand-binding sites by exploiting PDBsum pages [35]. The
resulting dataset consists of 216 proteins and contains
4466 binding sites, which we named LIG_sites. The data-
sets CAT_sites and LIG_sites do not overlap; their content
is listed in Additional file 1: Tables S2 and S3.
In order to eliminate too similar and too distant

sequences which might introduce a bias, the number of

identical residues ident(si, sj) was determined for each
pair of sequences si, sj belonging to the same MSA.
Sequences were removed until the fraction of identical
residues was in the range 0.25 ≤ ident(si, sj) ≤ 0.90.
Additionally, sequences deviating from the first one in
length by more than 30% were deleted.

STRUC_sites, a set of conserved residue-positions in
proteins lacking enzymatic function
A set of 480 non-enzyme proteins has been compiled in
reference [27]. Based on PDBsum and CSA, we re-anno-
tated all entries and prepared a redundancy-free set of
MSAs as explained above. The resulting dataset
NON_ENZ consists of 136 proteins and related MSAs
from HSSP with at least 50 sequences. In order to
exclude residues from interfaces and other binding sites,
we did not consider residue-positions lying at the pro-
tein surface by eliminating all sites with a relative sol-
vent accessible surface area of at least 5% (see [43] and
references therein). Among the remaining sites were
3703 with a conservation value consident (k) > 1.0 (see
formula (2)). For lack of a more biochemically motivated
classification scheme, these conserved sites were
regarded as important for structure. We named this set
STRUC_sites, its content is listed in Additional file 1:
Table S4. We designated the complement NO_ANN
sites; these are the remaining 19,223 residue-positions of
the NON_ENZ dataset.

Conservation of an individual site
An instructive measure to assess conservation of a single
residue-position k is max_frequ(k), the largest amino
acid frequency fk(aai) observed in column k of an MSA:

max frequ(k) = max
i=1..20

(fk(aai)) (1)

To normalize for MSA-specific variations of conserva-
tion, we computed consident (k), which is a z-score
deduced from max_frequ(k) according to

consident(k) =
max frequ(k) − μident

σident
(2)

Mean μident and standard deviation sident values were
determined individually for each MSA under study. An
alternative conservation measure is the Jensen-Shannon
divergence [8] of site k:

JSD(k) = H(
f obs
K − f backgr

2
) − 1

2
H(f obs

K ) − 1
2

H(f backgr) (3)

f obs
K is the probability mass function for site k approxi-

mated as f obs
K (aai) = fk(aai) by the amino acid frequen-

cies observed in the respective column k of the MSA;
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the mean amino acid frequencies as found in the Swis-
sProt database [54] were taken as background frequen-
cies f backgr. H(.) is Shannon’s entropy [55]. For
classification, we used the z-score consJSD (k):

consJSD(k) =
JSD(k) − μJSD

σJSD
(4)

Mean μJSD and standard deviation sJSD values were
determined individually for each MSA. For the predic-
tion of functionally important residues, JSD(k) has per-
formed better than other conservation measures [7].

Conservation of a sequence neighborhood
To characterize the conservation of a sequence neigh-
borhood, consneib(k) was computed in analogy to [8]:

consneib(k) =
1

|Neib|
∑

l ∈Neib
wl consJSD(k + l) (5)

Neib = {-3,-2,-1,+1,+2,+3} determined the set of neigh-
boring positions. The weights were: w-1 = w+1 = 3, w-2 =
w+2 = 2, w-3 = w+3 = 1. Note that conservation of posi-
tion k was not considered to compute consneib(k).

Propensities of catalytic sites, ligand-binding sites, and
positions important for structure
Inspired by [24], three scores abund(k, CLASS) were
computed as:

abund(k, CLASS) =
20∑

i=1
fk(aai) log

f CLASS(aai)
f backgr(aai)

(6)

fbackgr (aai) were the above background frequencies.
fCLASS (aai) were the frequencies of residues from one
set CLASS Î {CAT_sites, LIG_sites, STRUC_sites}.

Scoring propensities of a neighborhood
To assess the class-specific neighborhood of a site k, we
introduced:

abundneib(aak
s , CLASS) =

1
|Neib|

∑

l∈Neib

20∑

i=1
fk+l(aai) log

f CLASS
k+l (aai|aas)

f backgr(aai)
(7)

Here, aak
s is the amino acid aas occurring at site k

under consideration, fk+l (aai) is the frequency of aai at

position l relative to k and f CLASS
k+l (aai|aas) is the condi-

tional frequency of aai at the same positional offset
deduced from the neighborhood of all residues aas of a
set CLASS Î {CAT_sites,LIG_sites,STRUC_sites}. Neib is
the ± 3 neighborhood.

Evaluating classification performance
To assess the performance of a classification, the rates
TPR (Sensitivity), FPR, Specificity, and Precision

TPR =
TP

TP + FN
, FPR =

FP
FP + TN

, Specificity =
TN

TN + FP
, Precision =

TP
TP + FP

(8)

as well as ROC and PROC curves were determined
[56]. For a ROC curve, depending on a cut-off for one
parameter (here it is pclass (k)), the TPR values are
plotted versus the FPR values. For a PROC curve, Preci-
sion is plotted versus TPR. As a further performance
measure, the Matthews correlation coefficient (MCC)
has been introduced [29]:

MCC =
TP · TN − FP · FN

√
(TP + FN)(TP + FP)(TN + FP)(TN + FN)

(9)

MCC-values are considered a fair measure to assess
performance on unbalanced sets of positives and nega-
tives, as observed here [57]. In all formulae, TP is the
number of true positives, TN the number of true nega-
tives, FP the number of false positives and FN the num-
ber of false negatives. For example, when classifying
catalytic sites with SVMCAT, positives are the selected
CAT_sites and negatives are all other residue-positions
of the considered MSAs.

Classifying by means of support vector machines
We utilized the libsvm library [58] with a Gaussian
radial basis function kernel and determined during
training optimal parameters gRBF and C by means of a
grid search [59]. Prior to presenting features to the
SVM, they were normalized according to

MCC =
TP · TN − FP · FN

√
(TP + FN)(TP + FP)(TN + FP)(TN + FN)

(10)

Here, Ve(k) is for residue k the value of feature e, and
min(Ve) and max(Ve) are the smallest and the largest
value determined for this feature.
Our 2C-SVMs predict for each residue-position k,

whether it is a catalytic site (SVMCAT), a ligand-binding
site (SVMLIG), or a site important for structure
(SVMSTRUC). Taking SVMCAT as an example, an a pos-
teriori probability pclass (k), here it is pCAT (k), for the
label “k is a catalytic site” was deduced from the dis-
tance of the feature set for k and the hyperplane separ-
ating catalytic and non-catalytic residue-positions [60].
We utilized pclass (k) to assess performance and to

assign classes. Training and assessment was organized
as an 8-fold cross validation. For each training step, the
number of positive and negative cases was balanced, i.e.
for SVMCAT, residue-positions from CAT_sites and the
same number of non-catalytic sites was selected. In
order to eliminate sampling bias during the grid search,
each parameter was deduced as means from training
trials with the same positives and 50 different, randomly
selected sets of negative cases. To compute the
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performance measures (e.g. MCC-values), all positive
and all negative cases belonging to the selected subset
of MSAs were classified.
Analogously, an MC-SVM was applied to the four

classes CAT_sites, LIG_sites, STRUC_sites, and
NOANN_sites. The output of the MC-SVM consists of
four class-probabilities pclass (see [60]) for each residue-
position. These were deduced from the a posteriori
probabilities of the six 2C-SVMs, which were trained on
one specific combination of two classes, each. Each resi-
due-positions k was assigned to the class, whose pclass-
value was largest. p-values were determined as follows:
For each class and each residue, the respective cumula-
tive distribution was deduced from the pclass-values of
all residue-positions k not belonging to the considered
class. I. e., the p-value for a Glu-residue with pSTRUC-
value s(k) is the fraction of all Glu-residues from
NOANN_sites reaching or surpassing s(k).

Additional material

Additional file 1: A plot comparing abund(k, CLASS)-values, Figures
and Tables giving performance-values of 2C-SVMs, and Tables
listing the composition of datasets. (PDF 327 kb).
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ABSTRACT

Motivation: The precise identification of functionally and structurally

important residues of a protein is still an open problem, and state-of-

the-art classifiers predict only one or at most two different categories.

Result: We have implemented the classifier CLIPS-4D, which predicts

in a mutually exclusively manner a role in catalysis, ligand-binding or

protein stability for each residue-position of a protein. Each prediction

is assigned a P-value, which enables the statistical assessment and

the selection of predictions with similar quality. CLIPS-4D requires as

input a multiple sequence alignment and a 3D structure of one protein

in PDB format. A comparison with existing methods confirmed state-

of-the-art prediction quality, even though CLIPS-4D classifies more

specifically than other methods. CLIPS-4D was implemented as a

multiclass support vector machine, which exploits seven sequence-

based and two structure-based features, each of which was shown to

contribute to classification quality. The classification of ligand-binding

sites profited most from the 3D features, which were the assessment

of the solvent accessible surface area and the identification of surface

pockets. In contrast, five additionally tested 3D features did not

increase the classification performance achieved with evolutionary

signals deduced from the multiple sequence alignment.

Availability: CLIPS-4D is available as a web-service at http://www-

bioinf.uni-regensburg.de.

Contact: rainer.merkl@ur.de

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

An important goal of computational biology is the comprehen-

sive annotation of proteins, which requires to predict a function

and to identify all crucial residues. To assign function to a query

sequence, BLAST (Altschul et al., 1997) and other, more sensi-

tive, algorithms of sequence comparison (Söding, 2005) are of

utmost value. However, these methods are per se not capable to

identify residues, which are critical for function or stability; thus,

alternative approaches are needed. One technique is the mapping

of known functional sites based on a sequence alignment (Lopez

et al., 2011), which is named homology transfer. Alternatively, if

the 3D structure of a query is available, algorithms can exploit

structural correspondences with annotated active sites to identify

functional residues (Goyal et al., 2007; Stark and Russell, 2003).

More generally applicable are methods that do not require anno-

tated proteins for comparison but assess each individual residue-

position by means of a knowledge-based scoring system. Owing

to the relevance of this task, a large number of such in silico

approaches have been introduced, which are sequence-based

(Berezin et al., 2004; Capra and Singh, 2007; Casari et al.,

1995; Fischer et al., 2008; Gutman et al., 2005; Huang and

Brutlag, 2001; Lichtarge et al., 1996; Overington et al., 1990;

Sankararaman et al., 2009; Tang et al., 2009; Teppa et al.,

2012) or combine information from sequence and structure of

a protein (Ashkenazy et al., 2010; Capra et al., 2009; Kalinina

et al., 2009; Laskowski et al., 2005a; Panchenko et al., 2004;

Sankararaman et al., 2010; Yahalom et al., 2011; Yao et al.,

2003) to predict one or two functional categories.

As we were interested to classify more specifically, we have

recently introduced a multiclass support vector machine

(MC-SVM), which we named CLIPS-1D (Janda et al., 2012).

In contrast to other approaches, CLIPS-1D predicts in a mutu-

ally exclusively manner a role in catalysis, ligand-binding or pro-

tein structure by analyzing a multiple sequence alignment

(MSA). Interestingly, not more than seven carefully selected fea-

tures related to the conservation and the abundance of residues

at individual sites and their local sequence neighborhood were

sufficient to attain state-of-the-art performance.
Many of the inferred 3D features are orthogonal to the se-

quence-based features exploited by CLIPS-1D, and therefore we

expected an increase of classification quality for a combination

of both. This is why we have systematically determined the clas-

sification performance for combinations of 1D and 3D features

and selected an optimal combination for a novel classifier, which

we named CLIPS-4D. This program uses the 3D structure of a

single protein chain to deduce the local environment of each

residue and does not use the position of ligands. A comparison

with CLIPS-1D made clear that the prediction of ligand-binding

sites profited most from the integration of 3D features. Our

approach compares favorably with state-of-the-art algorithms,

although this MC-SVM distinguishes catalytic, ligand-binding

and structurally relevant residue-positions.

*To whom correspondence should be addressed.
yThe authors wish it to be known that, in their opinion, the first two
authors should be regarded as joint First Authors.
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2 METHODS

2.1 1D features

2.1.1 Conservation of a residue-position The conservation measure

JSD(k) (Fischer et al., 2008) has performed better than other conserva-

tion measures (see Capra and Singh, 2007) and was computed for a resi-

due-position k according to

JSDðkÞ ¼ Hð
f obsK � f backgr

2
Þ �

1

2
Hðf obsK Þ �

1

2
Hð f backgrÞ ð1Þ

fobsK is the probability mass function for site k approximated as

fobsK ðaaiÞ ¼ fkðaaiÞ by the amino acid frequencies observed in the respect-

ive column k of the MSA; the mean amino acid frequencies as found in

the SwissProt database (Bairoch and Apweiler, 2000) were taken as back-

ground frequencies fbackgr. H(.) is Shannon’s entropy (Shannon, 1948).

For classification, we used the z-score consJSD(k):

consJSDðkÞ ¼
JSDðkÞ � �JSD

�JSD
ð2Þ

Mean mJSD and standard deviation �JSD values were determined individu-

ally for each MSA.

2.1.2 Conservation of a sequence neighborhood To characterize the

conservation of a sequence neighborhood, consneib(k) was computed in

analogy to Fischer et al. (2008):

consneibðkÞ ¼
1

jNeibj

X

l2Neib

wl consJSDðkþ lÞ ð3Þ

Neib ¼ f�3, � 2, � 1, þ 1, þ 2, þ 3g determined the set of neighboring

positions. The weights were w�1¼wþ1¼ 3, w�2¼wþ2¼ 2, w�3¼wþ3¼ 1.

The conservation of position k did not contribute to consneib(k).

2.1.3 Propensities of catalytic sites, ligand-binding sites and posi-
tions important for structure Inspired by Bartlett et al. (2002), three

scores named abund(k, CLASS) were computed:

abundðk,CLASSÞ ¼
X20

i¼1

fkðaaiÞ log
fCLASSðaaiÞ

fbackgrðaaiÞ
ð4Þ

fbackgrðaaiÞ were the above background frequencies, and fCLASSðaaiÞ were

the frequencies of residues from one set CLASS 2{CAT_sites, LIG_sites,

STRUC_sites}. For the analysis of a single sequence with CLIPS-3D (see

later in the text), fkðaaiÞ was 1.0 for aaks and zero for all other residues.

2.1.4 Scoring propensities of a neighborhood To assess the class-

specific neighborhood of a site k, we introduced

abundneibðaa
k
s ,CLASSÞ ¼

1

jNeibj

X

l2Neib

X20

i¼1

fkþlðaaiÞ log
fCLASSkþl ðaaijaasÞ

fbackgrðaaiÞ

ð5Þ

Here, aaks is the amino acid aas occurring at site k under consideration,

fkþlðaaiÞ is the frequency of aai at position l relative to k, and

fCLASSkþl ðaaijaasÞ is the conditional frequency of aai at the same positional

offset deduced from the neighborhood of all residues aas of a set CLASS.

Neib is the �3 neighborhood.

2.2 3D Features

2.2.1 Conservation of a 3D neighborhood To characterize the con-

servation of a 3D neighborhood of a residue aak in a protein,

3D� consneibðkÞ was computed in analogy to Formula (3):

3D� consneibðkÞ ¼
1

j3D�Neibj

X

l23D�Neib

consJSDðlÞ ð6Þ

3D-Neib is the set of all residues aal in the vicinity of k possessing an

atoms such that the distance between van der Waals spheres of at least

one pair of sidechain heavy atoms (atomr, atoms) with atomr from aak is at

most 0.5 Å. consJSD(l) is a normalized Jensen–Shannon divergence; see

Formula (2).

2.2.2 Scoring propensities of a 3D neighborhood To assess the

class-specific 3D neighborhood, we introduced

3D� abundneibðaa
k
s ,CLASSÞ ¼

1

j3D�Neibj

X

l23D�Neib

X20

i¼1

flðaaiÞ log
fCLASSl ðaaijaasÞ

fbackgrðaaiÞ

ð7Þ

Here, aaks is the amino acid aas occurring at site k under consideration,

flðaaiÞ is the frequency of aai at position l, and fCLASSl ðaaijaasÞ is the

conditional frequency of aai deduced from the neighborhood of all resi-

dues aas of a set CLASS. The set 3D-Neib was determined as previously

mentioned.

2.2.3 Mutual information score of a 3D neighborhood As pro-

posed (Buslje et al., 2010), we determined a proximity score pMI,

which assesses the mutual information of pairs of residue-positions in

the vicinity of k.

pMIðkÞ ¼
1

j3D�Neibj

X

l23D�Neib

cMIðlÞ ð8Þ

cMI(l) is a cumulative mutual information value (see Buslje et al., 2010),

and 3D-Neib was determined as previously mentioned.

2.2.4 Assessing the B-factor of a residue In analogy to Petrova and

Wu (2006), a normalized B-factor BF(k) was computed.

BFðkÞ ¼
BFmeanðkÞ � �BFmean

�BFmean
ð9Þ

BFmean(k) is the mean B-factor deduced from all n atoms of residue aak
according to

BFmeanðkÞ ¼
1

n

Xn

i¼1

BFAðatomiÞ ð10Þ

and mBFmean and �BFmean are the mean and the standard-deviation deter-

mined individually for each 3D structure.

2.2.5 Computing the relative solvent-accessible surface
area Using the software library BALL (Hildebrandt et al., 2010), the

solvent-accessible surface area (SASA) was deduced from the protein 3D

structure for each residue aak to compute the relative SASA (rSASA).

rSASAðaakÞ ¼
SASAðaakÞ

SASAmaxðaakÞ
ð11Þ

Here, SASAmax(aak) is the maximally possible SASA (Miller et al., 1987)

of the amino acid.

2.2.6 Assessing pockets As has been shown, fpocket (Le Guilloux

et al., 2009) is one of the best methods for the identification of pockets in

proteins (Volkamer et al., 2010). fpocket scores cavities of the protein

surface based on a Voronoi tessellation and alpha spheres. To compen-

sate for the protein-specific number of pockets, we determined a normal-

ized score nPocket.

nPocketðaakÞ ¼
maxðPocketScoreÞ

PocketScoreðaakÞ
ð12Þ

max(PocketScore) is the largest score deduced for any pocket of the con-

sidered protein, and PocketScore(aak) is the score of the pocket in which

aak is allocated. We assigned a score of �1 to all residues that did not

belong to pockets or whose rSASA value was54%.
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2.2.7 Evaluation of the classification performance To assess the

performance of a classification, the rates Sensitivity (Recall), Specificity

and Precision

Sensitivity ¼
TP

TPþ FN
, Specificity ¼

TN

TNþ FP
, Precision ¼

TP

TPþ FP

ð13Þ

were determined as well as areas under the precision-recall curve

(PR-AUC). As a further performance measure, the Matthews correlation

coefficient (MCC) has been introduced (Matthews, 1975).

MCC ¼
TP � TN� FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ FNÞðTPþ FPÞðTNþ FPÞðTNþ FNÞ
p ð14Þ

MCC-values are considered a fair measure to assess performance on

unbalanced sets of positives and negatives (Ezkurdia et al., 2009), as

observed here. In all formulae, TP is the number of true positives, TN

the number of true negatives, FP the number of false positives, and FN

the number of false negatives. For example, when classifying catalytic

sites, positives are the selected CAT_sites, and negatives are all other

residue-positions of the considered MSAs.

2.2.8 Classifying by means of SVMs CLIPS-4D was configured

and trained as described for CLIPS-1D (Janda et al., 2012). We used

the libsvm library (Chang and Lin, 2011) with a Gaussian radial basis

function kernel and determined optimal parameters �RBF and C during

training by means of a grid search (Schölkopf and Smola, 2002). Training

and assessment was organized as an 8-fold cross validation. For each

training step, the number of positive and negative cases was balanced.

To eliminate sampling bias during the grid search, all parameters were

deduced as means from training trials with the same positives and 50

different randomly selected sets of negative cases. In contrast to training,

all positive and all negative cases were classified to compute performance

measures (e.g. MCC-values). The output of the MC-SVM consists of four

class-probabilities pCLASS (see Wu et al., 2004) for each residue-position.

Each residue-positions k was assigned to the class, whose pCLASS-value

was largest. P-values were determined as follows: For each class and each

residue, the respective cumulative distribution was deduced from the

pCLASS-values of residue-positions l belonging to NOANN_sites. That

is, the P-value for a Glu-residue with pSTRUC-value s(k) is the fraction

of all Glu-residues from NOANN_sites reaching or surpassing s(k).

3 RESULTS AND DISCUSSION

3.1 Selecting an optimal combination of 1D and

3D features

For training and testing SVMs on a combination of 1D and 3D
features, we used the set of MSAs prepared for CLIPS-1D

(Janda et al., 2012) and supplemented the respective pdb-files
(Dutta et al., 2009). In brief, all MSAs were taken from the
HSSP database (Sander and Schneider, 1991), and each resi-

due-position was assigned to one of four sets (classes) represent-
ing functional categories. The set CAT_sites consists of 840
catalytic residue-positions, which are listed in the manually

curated part of the Catalytic Site Atlas (CSA, Version 2.2.12)
(Porter et al., 2004) and come from 264 enzymes. For 216 of

these enzymes, we found 4466 ligand-binding sites in the
pdbsum database (Laskowski et al., 2005b), which constitute
the dataset LIG_sites. Owing to the lack of a representative set

of proteins, which are annotated with structurally important resi-
due-positions, we regarded conserved residues in the core of pro-
teins important for structure. Thus, we have handpicked 136

proteins without enzymatic function and identified 3703

residue-positions, which were both buried and more conserved
than the mean; see Janda et al. (2012). This set was named
STRUC_sites; the remaining 19 223 residue-positions were

named NOANN_sites and represented residue-positions without
crucial function. During training and testing, residue-positions
from one set CLASS 2 f CAT_sites,LIG_sites,STRUC_sites g

and from NOANN_sites served as positive or negative cases to
train six two-class SVMs; for details, see Janda et al. (2012).
For CLIPS-1D, we have chosen seven sequence-based features

for classification: consJSD(k) [Formula (2)] assesses the conserva-
tion of individual residue-positions and consneib(k) [Formula (3)]
assesses the conservation of their neighborhood. abund(k, CLASS)

[Formula (4)] scores the abundance of residues at functionally or
structurally important sites and abundneib(k, CAT_sites) and
abundneib(k, LIG_sites) [Formula (5)] score the composition in

the neighborhood of functionally important sites.
To this end, six more features, which require a 3D structure for

their computation, were selected as candidates for a combination

with the aforementioned sequence-based features. Two are 3D
versions of sequence-based conservation scores: 3D� consneibðkÞ
[Formula (6)] scores the conservation of residues in the 3D neigh-

borhood of residue-position k and 3D� abundneibðaa
k
s ,CLASSÞ

assesses the class-specific abundance of residues in the 3D neigh-
borhood of amino acid aas at position k [Formula (7)]. pMI(k)

[Formula (8)] scores dependencies of residue distributions in the
vicinity of residue k and has been reported as improving the
prediction of catalytic sites (Buslje et al., 2010). The biochemical

role of a residue may affect its flexibility, which can be estimated
with the mean B-factor BF(k) (Petrova and Wu, 2006) computed
according to Formula (9). The relative solvent accessible surface

area rSASA(k) [Formula (11)] allows for the differentiation of
surface and core residues. Catalytic and ligand-binding sites tend
to lie in surface pockets (Volkamer et al., 2010); thus, we used

the normalized score nPocket(k) according to Formula (12) as a
further feature.
Before finding an optimal combination of features, we were

interested to corroborate the contribution of evolutionary infor-
mation and of 3D data to classification quality. Thus, we
combined those features that do not require an MSA for classi-

fication and named the resulting MC-SVMCLIPS-3D. We chose
abund(k, CLASS), which scores the abundance of residues in
functionally or structurally important sites (Janda et al., 2012),

and the 3D features 3D� abundneibðaa
k
s ,CLASSÞ, rSASA(k) and

nPocket(k). CLIPS-3D was trained and assessed by means of an
8-fold cross validation on the aforementioned classes. The output

of this and all other MC-SVMs of the CLIPS-suite is for each
residue-position a set of four class probabilities pCLASS(k)
(Wu et al., 2004), which were taken to assign k to the class

with the highest probability.
Generally, it is difficult to characterize the performance of a

classifier, if the number of positive and negative cases is highly

unbalanced as is also the case here. A fair measure (Ezkurdia
et al., 2009) is the MCC [Formula (14)], which was computed for
all analyses; see Table 1. Comparing the MCC-values of CLIPS-

1D and CLIPS-3D shows that evolutionary information is
important to predict CAT_sites and STRUC_sites, and that 3D
data contribute markedly to the prediction of LIG_sites.
Next, we combined each of the aforementioned 3D features and

all CLIPS-1D features to train and assess six different MC-SVMs
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analogously. The comparison with MCC-values of CLIPS-1D

made clear that only rSASA and nPocket improved classification

performance and that the classification of LIG_sites profited most

by the latter two features (Table 1). Further performance tests

showed that the assessment of a residue’s neighborhood in 3D

space did not outperform the respective 1D features. Thus, we

combined the seven sequenced-based features of CLIPS-1D with

rSASA and nPocket to form the classifier CLIPS-4D. Compared

with CLIPS-1D, the MCC-values increased from 0.34 to 0.43 for

CAT_sites, from 0.12 to 0.27 for LIG_sites and from 0.67 to 0.68

for STRUC_sites. As the respective MCC-value was optimal, if

CAT_sites with pCAT(k)40.64 were selected as positives, we im-

plemented this cutoff for functional assignment. For the output of

CLIPS-4D, we additionally determined a residue-specific P-value,

which indicates the fraction of NOANN_sites reaching or surpass-

ing the considered pCLASS-value (see Section 2.2.8). Using P-

values in the range of 0.01–0.20 as cutoffs, MCC-values as well

as Sensitivity (Recall), Specificity and Precision [Formulae (13)]

of CLIPS-4D were determined (Table 2 and Supplementary

Fig. S1). MCC-values of CAT_sites and LIG_sites reached a plat-
eau for P� 0.05. Thus, we recommend the P-value of 0.05 for the

selection of functional sites, as sensitivity is acceptable and speci-
ficity is then as high as 0.99, 0.95 and 0.96 for CAT_sites,

LIG_sites and STRUC_sites; compare Table 2.
In summary, the final configuration of CLIPS-4D is an

MC-SVM, which classifies based on nine features. These are
the seven sequence-based features consneib(k), abund(k, CLASS)

and abundneibðaa
k
s ,CLASSÞ, plus the two 3D features rSASA(k)

and nPocket(k). CLIPS-4D is available as a web service at http://
www-bioinf.uni-regensburg.de; this version was trained on the

full datasets. An assessment of typical output is provided as

Supplementary Data.

3.2 Classification performance of CLIPS-4D varies in a

class- and residue-specific manner

Owing to their biochemical properties, residues are not evenly

distributed at functionally or structurally important positions.

For example, only 11 residues are generally observed as being
directly involved in catalysis (Bartlett et al., 2002), and few resi-

dues are overrepresented at catalytic sites. The charged residues
Lys, Glu, Arg, Asp and His as well as Cys are the only residues

with an abund(k, CAT_sites)-value40.5, whereas Pro and the

hydrophobic residues Val, Ile, Leu and Ala are scored5�2.0,
i.e. are drastically underrepresented. To characterize classification

performance in detail, we determined in a class-specific manner
MCC-values for each individual residue. In Figure 1, these MCC-

values were plotted versus abundance scores. For CAT_sites, all of

the overrepresented residues were classified with an MCC-
value40.33. In contrast, the underrepresented residues Ala, Gly

and Phe had an MCC-value of zero; no MCC-value could be
computed for the underrepresented residues Pro, Val, Ile, Leu

and Met due to missing values. The abund(k, LIG_sites)-scores

were less extreme, indicating that more types of residues are
involved in ligand-binding than in catalysis. MCC-values were

lowest (50.13) for the underrepresented residues Glu and Lys
but also for the overrepresented residues Asp, Arg and His.

These three residues were also observed as CAT_sites, which

might explain why some ligand-binding sites were misclassified
as catalytic ones. Among STRUC_sites, the MCC-values were

generally higher (mean 0.63) and for the hydrophobic residues

Ala, Val, Ile, Leu, Met, Phe, Tyr and Trp the mean was 0.73.

Table 2. Classification performance of CLIPS-4D for different P-value thresholds

P-value threshold Sensitivity (Recall) Specificity Precision MCC

CAT LIG STRUC CAT LIG STRUC CAT LIG STRUC CAT LIG STRUC

0.010 0.26 0.10 0.34 1.00 0.99 0.99 0.45 0.44 0.88 0.33 0.19 0.50

0.025 0.34 0.20 0.51 0.99 0.98 0.98 0.36 0.39 0.81 0.34 0.25 0.59

0.050 0.47 0.32 0.64 0.99 0.95 0.96 0.34 0.31 0.75 0.39 0.28 0.64

0.100 0.50 0.43 0.74 0.99 0.92 0.95 0.32 0.27 0.73 0.39 0.28 0.68

0.150 0.50 0.46 0.77 0.99 0.91 0.94 0.32 0.26 0.72 0.39 0.29 0.69

0.200 0.50 0.46 0.79 0.99 0.91 0.94 0.32 0.25 0.71 0.39 0.28 0.69

Note: All values were determined according to Formulae (13) and (14). The specific results for the classes CAT_sites, LIG_sites and STRUC_sites are listed in the columns

labeled ‘CAT’, ‘LIG’, and ‘STRUC’, respectively.

Table 1. MCC-values of classifiers for crucial residue-positions

Classifier CAT_sites LIG_sites STRUC_sites

CLIPS-3D 0.31 0.22 0.43

CLIPS-1D 0.34 0.12 0.67

3D� consJSD 0.29 0.10 0.69

3D� abundneib 0.32 0.11 0.66

pMI 0.34 0.09 0.64

BF 0.32 0.11 0.66

rSASA 0.34 0.13 0.63

nPocket 0.37 0.27 0.68

CLIPS-4D 0.43 0.27 0.68

ConSurf 0.30 0.46

Note: For all variants of the CLIPS classifier, MCC-values for the classification of

CAT_sites, LIG_sites and STRUC_sites are listed. CLIPS-3D is based on seven

propensities or structure-based features, which do not require an MSA for compu-

tation, and CLIPS-1D uses seven sequence-based features. Each of the lines labeled

3D� consJSD, 3D� abundneib, pMI, BF, rSASA and nPocket gives the performance

of an MC-SVM exploiting the seven CLIPS-1D features plus the listed 3D feature.

CLIPS-4D is a classifier using the seven CLIPS-1D features plus rSASA and nPocket.

The classifier ConSurf does not distinguish catalytic and ligand-binding sites.

Therefore, we merged the sets CAT_sites and LIG_sites before classification.
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Classification performance was lowest for the two less abundant

residues His and Lys. In summary, these findings indicate that

classification performance varies to a great extent depending on

residues and their function. This is why we introduced P-values,

which allow the user to select predictions of similar quality for all

classes and sites. A detailed analysis of class-specific misclassifica-

tions was added to the Supplementary Data.

3.3 The more specific classification of CLIPS-4D reaches

the same performance as less specific alternatives

Methods for the identification of functionally important residues

can be divided into homology transfer methods and other

approaches that do not use knowledge about binding sites in a

homologous protein for a prediction. As CLIPS-4D belongs to

the second group, we comprehensively compared its performance

with other methods following the same approach.

DISCERN (Sankararaman et al., 2010) and POOL

(Somarowthu et al., 2011) use 1D and 3D features to predict

functionally important residue-positions. On a subset of the

CSA, a recall of 0.50 at a precision of 0.19 was determined for

DISCERN (Sankararaman et al., 2010); CLIPS-4D reached for

this recall a precision of 0.32. For a subset of 100 enzymes from

the CSA and a false-positive rate of 0.05, POOL had a recall of

0.87 at a precision of 0.15 (Somarowthu et al., 2011). For

P¼ 0.05, the recall of CLIPS-4D was 0.47 at a precision of

0.34; compare Table 2. ConCavity, which focusses on ligand-

binding residues, reaches a PR-AUC value of 0.65 for entries

of the LigASite database and one of 0.32 for catalytic sites of

the CSA (Capra et al., 2009). CLIPS-4D reaches PR-AUC values

of 0.23 for LIG_sites and of 0.30 for CAT_sites, respectively

(Supplementary Fig. S1). Most plausibly, the lower performance

of CLIPS-4D on LIG_sites is due to the pdbsum-specific choice

of ligands (which include metal ions) and ligand-binding resi-

dues. However, the MCC-value of 0.56 reached by CLIPS-4D

for the difficult case of CASP9 target T0604 (Schmidt et al.,

2011) suggests the prediction of a substantial number of biologic-

ally relevant ligand-bindings sites; see later in the text.
An alternative to CLIPS-4D is ConSurf, which predicts two

distinct categories, namely, functionally or structurally important

residue-positions. ConSurf is available as a web service and

deduces a measure for evolutionary conservation from an

MSA (Ashkenazy et al., 2010). The overall performance of

ConSurf was better when we uploaded our preprocessed MSAs

instead of letting ConSurf generate MSAs on its own (data not

shown). Additionally, performance of ConSurf was best if we

classified residues having assigned the maximal conservation

score of 9 as positive and all other residues as negative cases.

We presumed a structural role if the residue was buried

(rSASA55%) and a functional role if it was exposed to the

solvent (rSASA� 5%). As ConSurf does not distinguish between

catalytic and ligand-binding sites, we merged CAT_sites and

LIG_sites before the assessment. The resulting MCC-value of

0.30 was closer to the MCC-value reached by CLIPS-4D for

LIG_sites, which corresponds to their overrepresentation in the

merged datasets. For STRUC_sites, the MCC-value was 0.46;

see Table 1.

In summary, these comparisons confirmed state-of-the-art per-

formance for CLIPS-4D, which offers a broader classification

spectrum than alternatives.

3.4 CLIPS-4D can supplement homology transfer meth-

ods in the prediction of ligand-binding sites

In the ligand-binding site prediction category of CASP, it is the

task to predict residues directly involved in ligand binding in the

experimental control structure. The results of CASP9 (Schmidt

et al., 2011) and CASP10 experiments (http://www.prediction-

center.org/casp10/) impressively demonstrate that most ligand-

binding residues can be predicted with high performance by

homology transfer methods. However, if the ligand is large and

flexible, it is difficult to predict the full binding site, as indicated

Fig. 1. Class-specific performance of CLIPS-4D for individual residues. In

a class-specific manner, MCC-values were determined for each residue and

plotted versus the respective abundance values abund(k, CLASS). The

rareness of residues P, V, I, L and M among CAT_sites precluded to

compute MCC-values. Thus, they were assigned an MCC-value of �0.1
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by a lower performance (MCC-value of�0.5 for best-performing

methods) on CASP9 target T0604 (Schmidt et al., 2011).

Additionally, substrates tend not to be crystallized in proteins,

and their binding residues are more family specific. Thus, we

hypothesized that CLIPS-4D might supplement homology trans-

fer by predicting additional residues that bind substrates or non-

metal ligands.
First, we confirmed that CLIPS-4D predictions help to iden-

tify substrate or product binding sites of the enzymes IGPS

(1A53), LgtC (1G9R), HIT (1KPF) and TIM (1M7P); pdb ids

are given in brackets. In each of these and the following cases,

the sets CAT_sites and LIG_sites were merged before assessing

in a CASP-related manner the performance for residues bind-

ing non-metal ligands. A detailed analysis was added as

Supplementary Data.
Second, we compared the outcome of CLIPS-4D and firestar

(Lopez et al., 2011), a top-performing method, for those cases of

CASP9 where the MCC-value of the best-performing participant

of the contest was lowest (Schmidt et al., 2011). We selected five

targets with a non-metal ligand, namely, T0526, T0584, T0604,

T0615 and T0632. Owing to the lack of sufficiently large MSAs

or unavailable 3D structures, we could only analyze one non-

metal target of CASP10, namely T0721. Results were summar-

ized in Table 3 and listed as Supplementary Data. In two of the

six cases (T0526, T0604), the MCC-value of CLIPS-4D was

superior to firestar. A union of the predictions generated by

firestar and CLIPS-4D gave in comparison with firestar for

two more cases (T0615, T0721) a higher sensitivity at the cost

of a moderate loss in specificity.
Among these six CASP targets, the performance of CLIPS-4D

was worst for T0584 (pdb id 3NF2). T0584 is a polyprenyl trans-

ferase generating the product from the building blocks isopente-

nyl diphosphate and dimethylallyl diphosphate (DMAPP) by

consecutive steps of elongation, cyclopropagation, rearrange-

ment and cyclization reactions (Wallrapp et al., 2013). During

synthesis, the product grows into an elongation cavity, and mu-

tagenesis studies made clear that residues protruding into the

elongation cavity determine the length of the product (Liang

et al., 2002). Two pairs of aspartates of Asp-rich regions are

involved in binding DMAPP and catalysis via chelation of the

cofactor Mg2þ. Five residues from these Asp-rich regions shown

to be important for catalysis (Liang et al., 2002) were predicted

by CLIPS-4D as CAT_sites. Four of these residues are not

directly involved in ligand binding in the experimental control

structure 1RQI and are thus false-positive predictions as well as

41 LIG_sites. Of these, 18 line the elongation cavity modeled

previously (Tarshis et al., 1996). Three more LIG_sites most

likely contact the ligand after an active site rearrangement; see

Supplementary Data for details. Therefore, experimental evi-

dence makes plausible some of these predictions that do not

belong to the extended binding site.

Thus, although not representative due to the small number

of analyses, these findings suggest to supplement the result of

homology transfer with CLIPS-4D predictions in cases of active

site rearrangements, flexible substrates or unknown poses of a

ligand.

4 CONCLUSIONS

The combination of evolutionary and 3D data allows CLIPS-4D

to predict critical residue-positions with state-of-the-art quality.

As shown here, not more than nine features are sufficient to

reach state-of-the-art classification performance, if features are

orthogonal to each other. The sequence- and structure-based

features contribute differently to the identification of func-

tionally and structurally important residue-positions: For the

identification of catalytic and structurally important sites, se-

quence-based features like conservation are most relevant, for

ligand-binding sites 3D features indicating a position in a surface

pocket contribute markedly to classification quality. Assessing

the content of the CSA made clear that those residues, which

were frequently found at catalytic sites could be identified with

high quality. In contrast, the identification of residues, which are

rare at catalytic sites, and those of ligand-binding sites is still a

Table 3. Classification performance on ligand-binding sites of firestar, CLIPS-4D and a combination of predictions determined for CASP targets

T0526 T0584 T0604 T0615 T0632 T0721

3NRE 3NF2 3NLC 3NQW 3NWZ 4FK1

firestar

MCC 0.49 0.69 0.45 0.52 0.49 0.73

Sens 0.44 1.00 0.36 0.36 0.38 0.74

Spec 0.99 0.96 0.99 0.99 0.98 0.97

CLIPS-4D

MCC 0.61 0.19 0.54 0.34 0.24 0.45

Sens 1.00 0.46 0.73 0.55 0.50 0.48

Spec 0.95 0.87 0.94 0.91 0.82 0.95

Union

MCC 0.58 0.44 0.54 0.50 0.40 0.68

Sens 1.00 1.0 0.79 0.82 0.75 0.84

Spec 0.94 0.86 0.93 0.90 0.81 0.94

Note: All MCC-, sensitivity (label ‘Sens’), and specificity (label ‘Spec’) values were determined according to Formulae (13) and (14). The rows with label ‘Union’ give

performance values resulting from merging positive predictions from firestar and CLIPS-4D. The first line gives the number of the target, and the second line gives the pdb id.
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difficult problem. CLIPS-4D identifies biologically relevant resi-

due-positions and can supplement methods of homology

transfer.
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A class-specific assessment of classification performance 

The class-specific MCC-values signal a noticeable fraction of misclassifications. To study the kind of 

misclassifications in detail, all residues of our four datasets were classified with CLIPS-4D and based on the 

largest pclass-values, residue-positions were assigned one of the four classes; the resulting distributions are 

shown in Supplementary Figure 2. 68% of the CAT_sites and 79% of the STRUC_sites were assigned 

correctly. 57% of the LIG_sites and 21% of the NOANN_sites were misclassified, and each class contributed a 

noticeable fraction of false positives. 9% of the STRUC_sites were classified as CAT_sites and 10% as 

LIG_sites. However, although the algorithm failed to assign the correct class to a certain extent, separating 

positions with and without a crucial role was more successful: 97% of the CAT_sites, 73% of the LIG_sites, 

and 98% of the STRUC_sites were classified as structurally or functionally important and 79% of the 

NOANN_sites were classified as having no crucial function.  

Ten case studies: classifying the residues from proteins with bound substrate or 

product analogs and from six CASP targets 

To illustrate the performance of CLIPS-4D, we first analyzed data related to the enzyme indole-3-glycerol 

phosphate synthase (IGPS) from the hyperthermophilic archaeon Sulfolobus solfataricus. We chose this 

enzyme as many functionally and structurally important residues have been identified previously. CLIPS-4D 

was provided with the MSA from the HSSP database and the pdb-file 1A53.  

Supplementary Table 1 lists the predictions of CLIPS-4D for all functional sites and all sites with a p-value 

≤ 0.05, which is our recommended setting. CLIPS-4D predicted 24 STRUC_sites; eight of which are known to 

be part of the folding core (Pace et al., 2011) and another six have been identified as stabilization residues 

or stabilization centers (Bagautdinov and Yutani, 2011). L131 is a LIG_site and L60 is known to interact with 

the substrate (Mazumder-Shivakumar and Bruice, 2004). No structural role has so far been assigned to the 

remaining eight buried residues T84 (98%), E85 (67%), G91 (100%), L96 (82%), A127 (97%), I160 (78%), D165 

(89%), and L197 (84%). The conservation (given in brackets) of most residues strikingly exceeds the mean 

90



- 3 - 

value of all IGPS residues, which is 50%. Of the six catalytic residues listed in CSA (E51, K53, K110, E159, 

N180, S211), CLIPS-4D correctly classified five as CAT_sites and N180 was predicted as a LIG_site. According 

to pdbsum, nine residues are in contact with the ligand. The three residues G212, L231, and G233 were 

classified correctly as LIG_sites. E210 was predicted as CAT_site and L131 as STRUC_site. For K55 the 

pLIG_sites-value was highest, but the p-value was 0.095. For F89, F112, and S234 pCAT_sites-values were highest, 

but below the cut-off of 0.64. Of the false positive predicted eight LIG_sites, three are in contact with the 

substrate, see (Mazumder-Shivakumar and Bruice, 2004) and two are important for structure. 

Additionally, we analyzed this dataset and three more ones in a manner similar to the CASP approach. 

To begin with, we identified by means of PyMol (Schrödinger) those residues with a distance of at most 4 Å 

from one heavy atom belonging to a product, or substrate analog. These residues were taken as positive 

cases and all other residues were negative cases. From the union of CAT_sites and LIG_sites, the numbers of 

TP, TN, FP, and FN residues were deduced, performance values were determined as described and listed in 

Supplementary Table 2. The last column of Supplementary Table 1 lists the resulting classification and 

Supplementary Figure 3 shows the localization of these residues in IGPS. The MCC-value was 0.56 and all 

positive predictions were in the vicinity of the product IGP, compare Supplementary Figure 3. 

For the following three enzymes, performance values were added to Supplementary Table 2 and for 

each case, a Supplementary Table and a Supplementary Figure shows the results in more detail. Again, 

CLIPS-4D was provided with a pdb-file and an MSA from the HSSP database.  

LgtC from Neisseria meningitidis is a glycosyltransferase which was crystallized with a donor sugar 

analog (UPF) and an acceptor sugar analog (ACY). The MCC-value of the CLIPS-4D prediction was 0.51. Note 

that the crystal structure is lacking the C-terminal 25 residues (Persson et al., 2001). Thus the environment 

of the residues 260-282 might not be the natural one and this might explain some FP predictions of CLIPS-

4D. Results are listed in Supplementary Table 3 and illustrated in Supplementary Figure 4. 
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The histidine triad protein (HIT) family consist of relatively small proteins and is among the most 

ubiquitous in nature. The pdb dataset 1KPF contains the structure of this nucleotidyl hydrolase from Homo 

sapiens plus a substrate analog, namely AMP (Lima et al., 1997). The MCC-value of the CLIPS-4D prediction 

was 0.42. Results are listed in Supplementary Table 4 and illustrated in Supplementary Figure 5. 

The Plasmodium falciparum triosephosphate isomerase (TIM) catalyzes the isomerisation between 

dihyroxyacetone phosphate and d-glyceraldehyde-3-phosphate. The crystal structure (pdb id 1M7P) 

contains the enzyme and the substrate analog G3H. The MCC-value for CLIPS-4D predictions was 0.45. 

However, according to (Parthasarathy et al., 2002) several residues classified as FP are involved in catalysis 

or ligand binding; see Supplementary Table 5: Residues 166 - 176 belong to a catalytic loop, which 

undergoes a structural rearrangement during catalysis and plays a crucial role in preventing phosphate 

elimination, E165 is a catalytic base of the catalytic triad, S73 provides an anchoring hydrogen bond to the 

ligand and residues G209 - V212 are anchoring the phosphate group of the ligand. These findings make 

plausible that at least some of the CLIPS-4D predictions which are far apart from the substrate are 

important for the enzyme’s function; compare also Supplementary Figure 6. On the other hand, comparing 

these and the following results makes also clear that each output will contain a certain number of false 

positive predictions. It is the similarity of these residue-positions to catalytic or ligand binding sites that 

brings CLIPS-4D to distinguish them from the rest.  

In a second round of performance tests, we concentrated on CASP targets and a comparison with the 

outcome of homology transfer methods. Supplementary Tables 6 – 11 list the output for the CASP targets 

T0526, T0584, T0604, T0615, T0632, and T0721, which possess a nonmetal ligand and are the five most 

difficult cases of CASP9 (Schmidt, et al., 2011) or are from CASP10. In all cases, CLIPS-4D was provided with 

an MSA from the HSSP database and the corresponding pdb file. The tables list all predicted CAT_sites and 

LIG_sites with a p-value ≤ 0.05. The union of these predictions was considered as ligand-binding and 

classified according to the definition of the extended binding sites of the CASP contest in order to deduce 
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performance values for nonmetal ligands. For comparison, the predictions of firestar (Lopez, et al., 2011) 

were listed as well. The MCC-values of CLIPS-4D predictions varied in the range of 0.19 - 0.61. 

Note that F156, R232, T270, and E506 of T0604 have been under predicted binding sites in CASP9 

(Schmidt, et al., 2011) but were correctly predicted as ligand-binding by CLIPS-4D. The performance on 

T0584 is discussed in detail in the next paragraph. 

A detailed analysis of CLIPS-4D predictions for CASP target T0584 

According to the definition of the extended ligand binding site (Schmidt, et al., 2011) 9 CAT_sites and 31 

LIG_sites are false positive predictions for target T0584 (pdb id 3NF2), which results in an MCC-value of not 

more than 0.19. This target is a polyprenyl transferase and synthesizes a C15 isoprenoid from the 

fundamental building blocks IPP and DMAPP by consecutive steps of elongation, cyclopropagation, 

rearrangement and cyclization reactions (Wallrapp et al., 2013). Aspartates of two Asp-rich regions are 

involved in binding DMAPP and catalysis via chelation of Mg2+, a cofactor required for enzyme activity. Five 

Asp-residues from these regions confirmed to be important for catalysis by mutagenesis studies (Liang et 

al., 2002) were predicted by CLIPS-4D as CAT_sites; compare Supplementary Table 7. Supplementary Figure 

7 shows the orientation of these functionally important Asp-residues, namely D128, D129, D132, D258, and 

D259 relative to the position of three Mg2+ atoms and the ligands, whose positions were transferred from 

the experimental control structure 1RQI via 3D superposition using PyMol (Schrödinger). According to the 

definition of the extended ligand binding site, only D128 is a positive prediction.  

During synthesis, the substrate grows into an elongation cavity, which was modeled previously (Tarshis 

et al., 1996). 18 of the LIG_sites line this elongation cavity; compare Supplementary Table 7 and 

Supplementary Figure 8. The homologous enzyme farnesyl pyrophosphate synthetase from Escherichia coli 

undergoes significant substrate induced active site rearrangements in the C terminus, the 4-5 loop, and 

the 9-10 loop, which contain residues contacting the substrate (Hosfield et al., 2004). A similar 

mechanism has been deduced for the mint geranyl pyrophosphate synthase (Hsieh et al., 2010) and a 

prenyltransferase from Arabidopsis thaliana (Hsieh et al., 2011). Three LIG_sites belong to the 4-5 loop in 
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3NF2. Six LIG_sites belong to a loop not found in other polyprenyl transferases (see Supplementary Figure 

9). It would be interesting to see whether this loop alters conformation upon substrate binding and shields 

the reaction center in a similar manner as the 4-5 loop. All mentioned residues are not directly involved 

in ligand binding in the experimental control structure 1RQI and are thus false positive predictions according 

to CASP. However, the function of corresponding residues in homologous enzymes suggests that at least 

some of the predicted CAT_sites or LIG_sites are involved in substrate-binding or catalysis. 
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Residue Position pCAT pLIG pSTRUC pNOANN p-value Prediction 
Classification 

Contact 
CS LBS STRUC 

I 49 0.001 0.053 0.906 0.040 0.000 STRUC   SC  
A 50 0.011 0.095 0.487 0.406 0.045 STRUC   SR  
E 51 0.660 0.059 0.262 0.019 0.032 CAT CAT   TP 

TPK 53 0.888 0.084 0.016 0.013 0.001 CAT CAT   TP 
K 55 0.049 0.410 0.267 0.274 0.095 NOANN  FN   
S 56 0.084 0.723 0.144 0.048 0.026 LIG    FP 
S 58 0.107 0.803 0.069 0.020 0.011 LIG  (IA)  FP 
L 60 0.004 0.073 0.879 0.044 0.011 STRUC   IA  
Y 76 0.057 0.151 0.566 0.227 0.041 STRUC   FC  
A 77 0.009 0.064 0.907 0.021 0.008 STRUC   FC  
S 81 0.394 0.098 0.493 0.015 0.022 STRUC   SR  
I 82 0.000 0.062 0.835 0.103 0.003 STRUC   SR  
L 83 0.012 0.767 0.185 0.036 0.014 LIG  (IA)  FP 
T 84 0.004 0.072 0.907 0.016 0.004 STRUC     
E 85 0.358 0.093 0.409 0.140 0.025 STRUC     
F 89 0.530 0.306 0.149 0.015  NOANN  FN  FN 
G 91 0.002 0.039 0.948 0.011 0.030 STRUC     
L 96 0.002 0.073 0.790 0.135 0.019 STRUC     
P 106 0.000 0.044 0.902 0.053 0.022 STRUC   SC  
L 108 0.005 0.021 0.962 0.012 0.002 STRUC   SR  
K 110 0.893 0.085 0.012 0.010 0.001 CAT CAT   TP 
F 112 0.523 0.252 0.198 0.026  NOANN  FN  FN 
Q 118 0.009 0.046 0.930 0.016 0.001 STRUC   FC  
A 122 0.001 0.038 0.882 0.079 0.010 STRUC   FC  
A 127 0.027 0.047 0.914 0.012 0.007 STRUC     
L 131 0.000 0.013 0.983 0.004 0.000 STRUC  STRUC  FN 
L 132 0.004 0.039 0.925 0.032 0.005 STRUC   SR,FC  
I 133 0.033 0.715 0.185 0.067 0.028 LIG   FC,FP FP 
L 137 0.005 0.046 0.920 0.029 0.005 STRUC   FC,SC  
L 157 0.001 0.024 0.968 0.008 0.002 STRUC   FC,SC  
E 159 0.918 0.061 0.014 0.007 0.001 CAT CAT   TP 
I 160 0.000 0.100 0.456 0.444 0.045 STRUC     
D 165 0.091 0.035 0.839 0.036 0.002 STRUC     
A 169 0.008 0.067 0.523 0.403 0.041 STRUC   FC  
N 180 0.172 0.735 0.080 0.013 0.026 LIG LIG   TP 
L 184 0.065 0.596 0.296 0.043 0.043 LIG  (IA)  FP 
L 197 0.001 0.065 0.857 0.076 0.012 STRUC     
E 210 0.764 0.061 0.148 0.026 0.018 CAT  CAT  TP 
S 211 0.748 0.203 0.041 0.009 0.004 CAT CAT   TP 
G 212 0.118 0.660 0.177 0.045 0.049 LIG  LIG  TP 
I 213 0.001 0.825 0.084 0.091 0.012 LIG     
S 214 0.037 0.730 0.005 0.228 0.023 LIG    FP 
L 231 0.012 0.706 0.253 0.028 0.025 LIG  LIG  TP 
I 232 0.018 0.234 0.307 0.441  NOANN    FN 
G 233 0.090 0.777 0.107 0.026 0.023 LIG  LIG  TP 
S 234 0.615 0.319 0.026 0.040  NOANN  FN  FN 
R 238 0.129 0.662 0.025 0.184 0.028 LIG 

 
 SC FP 

 
Supplementary Table 1: CLIPS-4D predictions for residue-positions in Sulfolobus solfataricus IGPS (pdb id 1A53). 
The table lists results for known catalytic and ligand binding sites and all predictions with a p-value ≤ 0.05. The first two columns 
give the residue and its position in sIGPS. The following four columns list the probabilities for the assignment to CAT_sites, LIG_sites, 
STRUC_sites, and NOANN_sites calculated by CLIPS-4D. Column “p-value” lists the p-value for the class with the highest probability 
pCLASS and column “Prediction” the resulting prediction. “FN” are false negative predictions. The columns “CS” and “LBS” give the 
classification of known catalytic and ligand-binding sites which were deduced from CSA and pdbsum. Residues that interact with the 
substrate are indicated by “(IA)”; see (Mazumder-Shivakumar and Bruice, 2004). In contrast, column “STRUC” indicates the 
annotation deduced for residues predicted as STRUC_sites. Labels “CAT”, “LIG” symbolize residues predicted as CAT_sites or 
LIG_sites, respectively. Meaning of labels in column “STRUC” is as follows: “IA” interaction with substrate; see (Mazumder-
Shivakumar and Bruice, 2004) “SC” element of a stabilization center pair in sIGPS, “SR” stabilization residue in sIGPS; see 
(Bagautdinov and Yutani, 2011). “FC” element of the folding core, see (Gu et al., 2007). The column “Contact” gives a classification 
of all predictions with respect to their distance to the product IGP, which is an approach similar to that of the CASP contest. The 
resulting MCC-value is 0.56 
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IGPS 
1A53 

LgtC 
1G9R 

HIT 
1KPF 

TIM 
1M7P 

MCC 0.56 0.51 0.42 0.45 

Sens 0.67 0.50 0.53 0.88 

Spec 0.96 0.96 0.91 0.92 

Prec 0.53 0.61 0.47 0.26 

 
 
Supplementary Table 2: CLIPS-4D performance for enzymes with bound substrate analogs or products 

All MCC-, sensitivity (label “Sens”), specificity (label “Spec”), and precision (“Prec”) values were determined according to Formulae 

(13) and (14) given in the manuscript. The first two lines list the name and the pdb id of the enzyme.  
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Residue Position pCAT pLIG pSTRUC pNOANN p-value Prediction Contact 

D 2 0.199 0.576 0.049 0.176 LIG 0.029 FP 
A 6 0.040 0.671 0.035 0.254 LIG 0.031 TP 
A 7 0.015 0.177 0.009 0.799 

  
FN 

D 8 0.801 0.141 0.036 0.021 CAT 0.020 TP 
N 10 0.037 0.698 0.024 0.241 LIG 0.037 TP 
Y 11 0.397 0.407 0.113 0.083 LIG 0.138 FN 
H 78 0.151 0.532 0.026 0.292 LIG 0.058 FN 
I 79 0.003 0.540 0.042 0.416 LIG 0.064 FN 
S 80 0.037 0.769 0.029 0.165 LIG 0.018 TP 
T 82 0.085 0.685 0.015 0.215 LIG 0.052 FN 
T 83 0.014 0.757 0.123 0.107 LIG 0.030 TP 
R 86 0.641 0.252 0.070 0.037 CAT 0.032 TP 
D 103 0.871 0.080 0.032 0.017 CAT 0.007 TP 
I 104 0.000 0.478 0.025 0.497 

  
FN 

D 105 0.861 0.080 0.039 0.020 CAT 0.008 TP 
D 130 0.491 0.295 0.108 0.106 

  
FN 

F 132 0.014 0.518 0.013 0.455 LIG 0.087 FN 
V 133 0.000 0.187 0.001 0.812 

  
FN 

N 153 0.321 0.574 0.054 0.051 LIG 0.074 FN 
A 154 0.028 0.237 0.245 0.489 

  
FN 

G 155 0.013 0.119 0.817 0.051 STRUC 0.094 FN 
Y 186 0.209 0.532 0.045 0.214 LIG 0.080 FN 
Q 187 0.005 0.143 0.005 0.847 

  
FN 

D 188 0.766 0.137 0.063 0.034 CAT 0.032 TP 
Q 189 0.098 0.727 0.120 0.055 LIG 0.019 TP 
D 227 0.824 0.099 0.058 0.018 CAT 0.015 FP 
Y 230 0.777 0.073 0.125 0.026 CAT 0.002 FP 
R 231 0.716 0.132 0.117 0.035 CAT 0.017 FP 
H 244 0.852 0.128 0.007 0.013 CAT 0.038 TP 
C 246 0.635 0.302 0.027 0.036 CAT 0.012 TP 
G 247 0.845 0.101 0.035 0.019 CAT 0.000 TP 
K 250 0.946 0.030 0.007 0.016 CAT 0.000 TP 
E 262 0.704 0.122 0.125 0.048 CAT 0.027 FP 
E 266 0.738 0.081 0.133 0.048 CAT 0.022 FP 
T 272 0.115 0.701 0.153 0.031 LIG 0.046 FP 
E 276 0.646 0.142 0.156 0.055 CAT 0.035 FP 
K 281 0.205 0.553 0.137 0.105 LIG 0.042 FP 

 

Supplementary Table 3: CLIPS-4D predictions for residue-positions in galactosyltransferase LgtC from Neisseria meningitidis (pdb 

id 1G9R). 

The table lists all residue positions predicted by CLIPS-4D as being involved in ligand binding. The first two columns give the residue 

and its position in the pdb file. The following four columns list the probabilities for the assignment to CAT_sites, LIG_sites, 

STRUC_sites, and NOANN_sites calculated by CLIPS-4D. “p-value” lists the p-value for the class with the highest probability pCLASS and 

all residue positions with a p-value ≤ 0.05 for CAT_sites or LIG_sites were predicted as ligand binding in analogy to the definition 

introduced for CASP. Column “Contact” indicates the classification similar to that of the CASP definition. Residues, with a distance of 

at most 4 Å to the substrate analog AMP are positive all other ones are negative cases. The MCC-value is 0.51. 
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Residue Position pCAT pLIG pSTRUC pNOANN p-value Prediction Contact 

I 18 0.001 0.770 0.072 0.157 LIG 0.018 TP 
F 19 0.004 0.662 0.304 0.030 LIG 0.045 TP 
I 22 0.001 0.757 0.207 0.035 LIG 0.022 FP 
I 27 0.002 0.670 0.188 0.140 LIG 0.040 FP 
A 29 0.001 0.738 0.030 0.230 LIG 0.023 FP 
F 41 0.044 0.730 0.192 0.034 LIG 0.025 TP 
H 42 0.082 0.483 0.009 0.426 LIG 0.080 FN 
D 43 0.723 0.204 0.056 0.016 CAT 0.040 TP 
I 44 0.001 0.726 0.109 0.165 LIG 0.027 TP 
S 45 0.013 0.406 0.009 0.572 

  
FN 

L 53 0.021 0.055 0.897 0.027 STRUC 0.009 FN 
Q 62 0.010 0.619 0.008 0.363 LIG 0.044 FP 
R 95 0.707 0.151 0.113 0.029 CAT 0.018 FP 
V 98 0.000 0.681 0.005 0.314 LIG 0.029 FP 
N 99 0.497 0.373 0.110 0.020 

  
FN 

E 100 0.059 0.709 0.010 0.222 LIG 0.006 FP 
G 105 0.049 0.699 0.111 0.141 LIG 0.039 TP 
Q 106 0.128 0.769 0.079 0.024 LIG 0.011 TP 
S 107 0.047 0.740 0.015 0.197 LIG 0.021 TP 
V 108 0.002 0.521 0.385 0.092 LIG 0.061 FN 
V 111 0.000 0.871 0.029 0.100 LIG 0.006 FP 
H 112 0.671 0.276 0.020 0.033 CAT 0.092 FN 
H 114 0.670 0.275 0.021 0.034 CAT 0.092 FN 
L 116 0.121 0.617 0.040 0.222 LIG 0.039 FP 

 

Supplementary Table 4: CLIPS-4D predictions for residue-positions in the histidine triad (HIT) protein from Homo sapiens (pdb id 

1KPF). 

The table lists all residue positions predicted by CLIPS-4D as being involved in ligand binding. The first two columns give the residue 

and its position in the pdb file. The following four columns list the probabilities for the assignment to CAT_sites, LIG_sites, 

STRUC_sites, and NOANN_sites calculated by CLIPS-4D. “p-value” lists the p-value for the class with the highest probability pCLASS and 

all residue positions with a p-value ≤ 0.05 for CAT_sites or LIG_sites were predicted as ligand binding in analogy to the definition 

introduced for CASP. Column “Contact” indicates the classification similar to that of the CASP definition. Residues, with a distance of 

at most 4 Å to the sugar analog UPF and the acceptor analog ACY are positive all other ones are negative cases. The MCC-value is 

0.42. 
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Residue Position pCAT pLIG pSTRUC pNOANN p-value Prediction Contact Function 

N 10 0.711 0.134 0.141 0.014 CAT 0.003 TP  
K 12 0.936 0.041 0.011 0.012 CAT 0.000 TP  
S 45 0.038 0.648 0.008 0.306 LIG 0.047 FP  
Q 64 0.195 0.679 0.072 0.054 LIG 0.031 FP  
N 65 0.048 0.711 0.159 0.082 LIG 0.032 FP  
S 73 0.046 0.774 0.154 0.026 LIG 0.016 FP SUB_INTERACTION 
G 76 0.112 0.720 0.129 0.038 LIG 0.031 FP  
E 77 0.771 0.173 0.027 0.029 CAT 0.017 FP  
V 78 0.003 0.779 0.022 0.196 LIG 0.016 FP  
H 95 0.838 0.128 0.012 0.021 CAT 0.042 TP  
F 96 0.021 0.865 0.087 0.027 LIG 0.005 TP  
E 97 0.718 0.054 0.190 0.038 CAT 0.025 FP  
E 104 0.798 0.123 0.057 0.021 CAT 0.014 FP  
E 165 0.877 0.082 0.028 0.012 CAT 0.004 FP CAT_BASE 
A 169 0.001 0.577 0.387 0.035 LIG 0.047 FP CAT_LOOP 
I 170 0.019 0.867 0.089 0.026 LIG 0.007 FP CAT_LOOP 
G 171 0.250 0.659 0.074 0.016 LIG 0.049 FP CAT_LOOP 
T 175 0.063 0.722 0.025 0.191 LIG 0.040 FP CAT_LOOP 
Q 180 0.054 0.640 0.052 0.253 LIG 0.039 FP  
L 183 0.001 0.623 0.031 0.345 LIG 0.037 FP  
E 187 0.027 0.487 0.003 0.483 LIG 0.046 FP  
G 209 0.022 0.853 0.106 0.019 LIG 0.010 FP ANCHOR 
S 211 0.260 0.691 0.036 0.012 LIG 0.034 TP  
V 212 0.020 0.730 0.077 0.173 LIG 0.023 FP ANCHOR 
L 230 0.002 0.785 0.188 0.025 LIG 0.010 TP  
G 232 0.134 0.768 0.081 0.018 LIG 0.024 TP  
N 233 0.377 0.509 0.092 0.022 LIG 0.099 FN  
A 234 0.125 0.756 0.096 0.024 LIG 0.020 FP  

 

Supplementary Table 5: CLIPS-4D predictions for residue-positions of the Plasmodium falciparum triosephosphate isomerase 

(pdb id 1M7P). 

The table lists all residue positions predicted by CLIPS-4D as being involved in ligand binding. The first two columns give the residue 

and its position in the pdb file. The following four columns list the probabilities for the assignment to CAT_sites, LIG_sites, 

STRUC_sites, and NOANN_sites calculated by CLIPS-4D. “p-value” lists the p-value for the class with the highest probability pCLASS and 

all residue positions with a p-value ≤ 0.05 for CAT_sites or LIG_sites were predicted as ligand binding in analogy to the definition 

introduced for CASP. Column “Contact” indicates the classification similar to that of the CASP definition. Residues, with a distance of 

at most 4 Å to the sugar analog UPF and the acceptor analog G3H are positive all other ones are negative cases. The MCC-value is 

0.43. The last column “Function” lists the function of FP predictions according to (Parthasarathy, et al., 2002). S73 provides an 

anchoring hydrogen bond to the ligand, E165 is a catalytic base, residues 166 - 176 belong to the catalytic loop and residues G209 - 

V212 are anchoring the phosphate group of the ligand.  
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Residue Position pCAT pLIG pSTRUC pNOANN p-value Prediction CASP firestar 

P 35 0.001 0.631 0.047 0.321 0.027 LIG FP TN 
K 37 0.031 0.679 0.006 0.284 0.012 LIG FP TN 
T 43 0.040 0.696 0.016 0.248 0.049 LIG TP FN 
D 44 0.051 0.614 0.004 0.330 0.022 LIG FP TN 
N 55 0.365 0.521 0.101 0.014 0.091 LIG TN FP 
R 56 0.792 0.176 0.027 0.005 0.008 CAT TP TP 
R 67 0.156 0.603 0.039 0.203 0.044 LIG FP TN 
W 77 0.031 0.637 0.017 0.316 0.035 LIG TP FN 
L 82 0.088 0.303 0.099 0.510  

 
TN FP 

H 83 0.877 0.105 0.008 0.009 0.031 CAT TP TP 
W 87 0.052 0.764 0.125 0.059 0.010 LIG FP TN 
W 147 0.007 0.901 0.015 0.077 0.000 LIG FP TN 
H 148 0.896 0.088 0.007 0.009 0.020 CAT TP TP 
Y 150 0.058 0.768 0.084 0.090 0.013 LIG FP FP 
W 173 0.006 0.607 0.012 0.376 0.045 LIG TP FN 
W 198 0.018 0.792 0.016 0.175 0.008 LIG FP TN 
N 200 0.099 0.711 0.111 0.078 0.032 LIG TP FN 
W 206 0.043 0.731 0.199 0.027 0.017 LIG FP TN 
N 207 0.036 0.691 0.011 0.262 0.037 LIG FP TN 
E 224 0.023 0.519 0.003 0.455 0.037 LIG FP TN 
F 235 0.007 0.783 0.039 0.171 0.016 LIG FP TN 
F 241 0.011 0.752 0.005 0.232 0.021 LIG TP FN 
L 252 0.002 0.742 0.077 0.178 0.018 LIG FP TN 
E 253 0.932 0.058 0.007 0.003 0.000 CAT TP TP 
E 282 0.029 0.532 0.006 0.432 0.033 LIG FP TN 

 

Supplementary Table 6: CLIPS-4D and firestar predictions for residue-positions of CASP target T0526 (pdb id 3NRE). 

The table lists all residue positions predicted by CLIPS-4D or by firestar (Lopez, et al., 2011) as being involved in ligand binding. The 

first two columns give the residue and its position in the pdb file. The following four columns list the probabilities for the assignment 

to CAT_sites, LIG_sites, STRUC_sites, and NOANN_sites calculated by CLIPS-4D. “p-value” lists the p-value for the class with the 

highest probability pCLASS and all residue positions with a p-value ≤ 0.05 for CAT_sites or LIG_sites were predicted as ligand binding 

according to CASP specification. Column “CASP” indicates the rating according to the CASP definition of the extended ligand binding 

site (Schmidt, et al., 2011). The column “firestar” lists the corresponding classification for predictions generated by firestar during 

the CASP contest.  
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Residue Position pCAT pLIG pSTRUC pNOANN p-value Prediction CASP firestar Localization 

R 47 0.192 0.598 0.055 0.156 0.049 LIG FP TN  
L 54 0.010 0.644 0.189 0.158 0.034 LIG FP TN  
Y 71 0.155 0.661 0.105 0.080 0.037 LIG FP TN  
F 73 0.004 0.814 0.029 0.153 0.011 LIG FP TN  
A 83 0.004 0.783 0.009 0.204 0.016 LIG FP TN ADD_LOOP 
D 84 0.025 0.714 0.005 0.256 0.009 LIG FP TN ADD_LOOP 
G 85 0.033 0.857 0.014 0.096 0.010 LIG FP TN ADD_LOOP 
D 86 0.046 0.661 0.007 0.286 0.015 LIG FP TN ADD_LOOP 
G 87 0.010 0.867 0.032 0.091 0.009 LIG FP TN ADD_LOOP 
G 88 0.087 0.751 0.133 0.029 0.026 LIG FP FP ADD_LOOP 
K 89 0.685 0.274 0.028 0.014 0.014 CAT TP TP  
A 90 0.001 0.182 0.011 0.806  

 
TN FP  

V 91 0.004 0.596 0.034 0.366 0.048 LIG FP FP CAVITY 
R 92 0.614 0.284 0.084 0.018  

 
FN TP  

E 118 0.863 0.112 0.016 0.009 0.004 CAT FP FP CAVITY 
H 121 0.634 0.287 0.035 0.043 0.102 CAT FN TP  
S 124 0.164 0.544 0.142 0.150 0.076 LIG FN TP  
L 125 0.039 0.659 0.266 0.036 0.033 LIG TP TP  
L 126 0.016 0.785 0.034 0.165 0.010 LIG FP TN  
H 127 0.940 0.044 0.008 0.008 0.002 CAT FP FP  
D 128 0.923 0.050 0.021 0.007 0.001 CAT TP TP  
D 129 0.831 0.139 0.024 0.006 0.013 CAT FP FP CAVITY 
M 131 0.039 0.625 0.096 0.240 0.050 LIG TN FP  
D 132 0.873 0.084 0.036 0.008 0.007 CAT FP FP CAVITY 
D 134 0.666 0.199 0.086 0.049 0.051 CAT TN FP  
R 137 0.778 0.169 0.043 0.009 0.009 CAT TP TP  
R 138 0.604 0.302 0.077 0.017  

 
FN TP  

R 140 0.111 0.737 0.064 0.088 0.010 LIG FP TN 4-5 LOOP 
D 141 0.133 0.590 0.076 0.201 0.024 LIG FP TN 4-5 LOOP 
T 142 0.004 0.810 0.115 0.072 0.019 LIG FP TN 4-5 LOOP 
W 144 0.030 0.741 0.094 0.134 0.015 LIG FP TN  
D 157 0.692 0.079 0.220 0.009 0.045 CAT FP TN  
L 189 0.004 0.638 0.200 0.158 0.036 LIG TP TP  
Q 193 0.157 0.687 0.128 0.028 0.028 LIG FP FP CAVITY 
D 196 0.776 0.141 0.065 0.018 0.029 CAT FP TN CAVITY 
E 200 0.359 0.516 0.057 0.069 0.037 LIG FP TN CAVITY 
M 213 0.001 0.672 0.285 0.042 0.041 LIG FP TN CAVITY 
E 214 0.074 0.583 0.028 0.316 0.021 LIG FP TN CAVITY 
K 217 0.911 0.071 0.012 0.006 0.000 CAT TP TP  
T 218 0.352 0.522 0.112 0.014 0.100 LIG FN TP  
L 221 0.054 0.673 0.246 0.028 0.029 LIG FP TN CAVITY 
L 222 0.003 0.805 0.019 0.174 0.008 LIG FP TN CAVITY 
F 254 0.150 0.620 0.207 0.024 0.058 LIG TN FP  
Q 255 0.407 0.443 0.120 0.029 0.097 LIG FN TP  
D 258 0.801 0.125 0.061 0.013 0.020 CAT FP FP CAVITY 
D 259 0.696 0.245 0.049 0.010 0.045 CAT FP TN CAVITY 
L 261 0.003 0.731 0.180 0.087 0.020 LIG FP TN CAVITY 
G 262 0.021 0.745 0.156 0.078 0.028 LIG FP TN  
G 265 0.069 0.716 0.132 0.082 0.033 LIG FP TN  
A 269 0.002 0.597 0.006 0.395 0.043 LIG FP TN  
T 270 0.036 0.711 0.130 0.123 0.043 LIG FP TN  
K 272 0.923 0.062 0.009 0.006 0.000 CAT FP FP CAVITY 
Q 273 0.085 0.684 0.045 0.185 0.028 LIG FP TN CAVITY 
D 277 0.814 0.131 0.046 0.009 0.018 CAT FP TN CAVITY 
R 281 0.118 0.629 0.068 0.184 0.039 LIG FP TN  
K 282 0.614 0.322 0.040 0.024  

 
FN TP  

K 283 0.162 0.597 0.026 0.215 0.028 LIG FP TN CAVITY 
V 373 0.001 0.730 0.039 0.230 0.023 LIG FP TN  

 

Supplementary Table 7: CLIPS-4D and firestar predictions for residue-positions of CASP target T0584 (pdb id 3NF2). 

For the meaning of the first ten columns, see legend to Supplementary Table 2. The column “Localization” indicates residues that 

line the elongation cavity (label CAVITY), belong to the 4-5 loop (label 4-5 LOOP) or to an additional loop (label ADD_LOOP) not 

found in other polyprenyl transferases. 
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Residue Position pCAT pLIG pSTRUC pNOANN p-value Prediction CASP firestar 

R 3 0.643 0.228 0.086 0.043 0.032 CAT FP TN 
E 6 0.729 0.046 0.171 0.055 0.023 CAT FP TN 
E 14 0.813 0.072 0.081 0.033 0.010 CAT FP TN 
E 15 0.755 0.080 0.120 0.044 0.019 CAT FP TN 
D 20 0.786 0.071 0.110 0.033 0.027 CAT FP TN 
K 24 0.754 0.069 0.121 0.057 0.008 CAT FP TN 
S 35 0.056 0.731 0.164 0.049 0.023 LIG FP TN 
N 37 0.091 0.661 0.205 0.043 0.046 LIG FP TN 
R 40 0.688 0.249 0.042 0.020 0.023 CAT FP TN 
G 42 0.021 0.735 0.187 0.056 0.029 LIG FP TN 
R 46 0.733 0.182 0.061 0.025 0.016 CAT FP TN 
I 103 0.041 0.815 0.026 0.119 0.012 LIG TP TP 
G 104 0.047 0.871 0.056 0.026 0.008 LIG TP TP 
F 105 0.002 0.285 0.002 0.710  

 
TN FP 

G 106 0.200 0.728 0.048 0.024 0.031 LIG TP TP 
P 107 0.000 0.641 0.284 0.076 0.025 LIG TP TP 
C 108 0.323 0.497 0.044 0.136 0.053 LIG FN TP 
L 110 0.002 0.686 0.047 0.264 0.028 LIG FP TN 
V 126 0.001 0.116 0.029 0.854  

 
TN FP 

E 127 0.844 0.118 0.019 0.019 0.007 CAT TP TP 
R 128 0.481 0.402 0.075 0.042  

 
FN TP 

R 135 0.082 0.075 0.810 0.033 0.002 STRUC TN FP 
T 136 0.001 0.123 0.003 0.873  

 
TN FP 

F 156 0.047 0.781 0.132 0.040 0.016 LIG TP FN 
G 157 0.027 0.290 0.634 0.049 0.157 STRUC FN FN 
G 159 0.023 0.877 0.080 0.020 0.008 LIG FP TN 
G 160 0.035 0.893 0.051 0.020 0.005 LIG TP TP 
A 161 0.017 0.919 0.048 0.016 0.004 LIG TP TP 
G 162 0.073 0.856 0.050 0.021 0.010 LIG TP FN 
F 164 0.047 0.674 0.107 0.172 0.042 LIG TP FN 
S 165 0.634 0.287 0.054 0.025 0.010 CAT TP FN 
G 167 0.007 0.159 0.769 0.065 0.105 STRUC FN FN 
K 168 0.787 0.171 0.018 0.025 0.006 CAT TP FN 
Y 170 0.080 0.707 0.024 0.188 0.025 LIG TP FN 
E 189 0.024 0.534 0.002 0.439 0.033 LIG FP TN 
A 190 0.023 0.711 0.010 0.257 0.026 LIG FP TN 
H 203 0.800 0.134 0.021 0.045 0.048 CAT FP TN 
G 205 0.042 0.124 0.787 0.047 0.102 STRUC TN FP 
K 215 0.009 0.592 0.008 0.391 0.028 LIG FP TN 
T 231 0.013 0.646 0.014 0.327 0.063 LIG FN FN 
R 232 0.089 0.711 0.010 0.190 0.014 LIG TP FN 
V 233 0.002 0.546 0.045 0.407 0.058 LIG FN FN 
A 262 0.062 0.796 0.103 0.040 0.015 LIG TP TP 
V 263 0.000 0.819 0.008 0.173 0.011 LIG TP TP 
G 264 0.111 0.778 0.083 0.029 0.023 LIG TP TP 
H 265 0.715 0.208 0.020 0.057 0.079 CAT TN FP 
A 267 0.001 0.136 0.500 0.364 0.043 STRUC FN FN 
T 270 0.009 0.713 0.050 0.228 0.043 LIG TP FN 
G 289 0.005 0.084 0.861 0.049 0.078 STRUC TN FP 
H 294 0.865 0.063 0.025 0.047 0.035 CAT FP TN 
A 315 0.041 0.621 0.039 0.299 0.038 LIG FP TN 
Y 331 0.087 0.686 0.143 0.084 0.030 LIG FP TN 
F 333 0.004 0.861 0.115 0.021 0.005 LIG FP TN 
C 334 0.902 0.056 0.016 0.026 0.001 CAT FP TN 
C 336 0.827 0.131 0.016 0.025 0.004 CAT FP TN 
P 337 0.000 0.804 0.133 0.063 0.004 LIG FP TN 
G 338 0.690 0.180 0.111 0.018 0.000 CAT FP TN 
V 342 0.003 0.422 0.152 0.424  

 
FN FN 

N 354 0.075 0.778 0.119 0.028 0.014 LIG TP FN 
G 355 0.079 0.770 0.115 0.036 0.023 LIG TP FN 
R 361 0.648 0.211 0.099 0.041 0.032 CAT FP TN 
R 480 0.646 0.114 0.207 0.033 0.032 CAT FP TN 
G 505 0.025 0.223 0.690 0.062 0.137 STRUC FN FN 
E 506 0.799 0.165 0.018 0.018 0.014 CAT TP FN 
G 512 0.048 0.853 0.075 0.025 0.010 LIG FP TN 
G 513 0.060 0.838 0.077 0.025 0.012 LIG TP FN 
I 514 0.001 0.886 0.089 0.024 0.005 LIG TP FN 
L 515 0.010 0.643 0.007 0.340 0.034 LIG FP TN 
A 517 0.006 0.844 0.105 0.046 0.010 LIG TP FN Su
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Residue Position pCAT pLIG pSTRUC pNOANN p-value Prediction CASP firestar 

Q 23 0.022 0.783 0.132 0.062 0.009 LIG FP TN 
R 25 0.566 0.325 0.083 0.026  

 
TN FP 

K 26 0.054 0.496 0.010 0.440 0.058 LIG FN TP 
D 27 0.201 0.591 0.060 0.148 0.024 LIG FP TN 
Y 33 0.156 0.676 0.138 0.030 0.033 LIG TP FN 
E 66 0.777 0.186 0.025 0.012 0.017 CAT FP TN 
D 67 0.861 0.100 0.031 0.008 0.008 CAT FP TN 
R 88 0.165 0.598 0.024 0.213 0.049 LIG FP TN 
E 89 0.256 0.603 0.101 0.039 0.019 LIG FP TN 
V 90 0.001 0.865 0.058 0.076 0.007 LIG FP TN 
D 93 0.090 0.562 0.081 0.268 0.030 LIG FP TN 
K 98 0.020 0.709 0.008 0.262 0.007 LIG TP FN 
R 101 0.071 0.662 0.012 0.255 0.028 LIG FP TN 
K 102 0.040 0.583 0.006 0.372 0.032 LIG TP FN 
Q 105 0.014 0.746 0.081 0.159 0.016 LIG FP TN 
N 108 0.016 0.659 0.073 0.252 0.049 LIG FP TN 
K 111 0.202 0.636 0.026 0.137 0.017 LIG FP TN 
K 120 0.810 0.149 0.020 0.022 0.005 CAT FP TN 
D 126 0.815 0.075 0.023 0.087 0.018 CAT FP TN 
N 127 0.306 0.594 0.086 0.013 0.067 LIG FN TP 
L 128 0.002 0.334 0.310 0.354  

 
FN FN 

D 130 0.281 0.452 0.168 0.100 0.063 LIG FN TP 
L 131 0.012 0.618 0.236 0.135 0.039 LIG TP TP 
W 139 0.016 0.593 0.030 0.362 0.046 LIG TP FN 
R 143 0.014 0.267 0.034 0.685  

 
FN FN 

Y 147 0.034 0.674 0.025 0.267 0.033 LIG TP FN 
W 150 0.022 0.599 0.071 0.308 0.046 LIG FP TN 

 

Supplementary Table 9: CLIPS-4D and firestar predictions for residue-positions of CASP target T0615 (pdb id 3NQW). 

The table lists all residue positions predicted by CLIPS-4D or by firestar (Lopez, et al., 2011) as being involved in ligand binding. The 

first two columns give the residue and its position in the pdb file. The following four columns list the probabilities for the assignment 

to CAT_sites, LIG_sites, STRUC_sites, and NOANN_sites calculated by CLIPS-4D. “p-value” lists the p-value for the class with the 

highest probability pCLASS and all residue positions with a p-value ≤ 0.05 for CAT_sites or LIG_sites were predicted as ligand binding 

according to CASP specification. Column “CASP” indicates the rating according to the CASP definition of the extended ligand binding 

site (Schmidt, et al., 2011). The column “firestar” lists the corresponding classification for predictions generated by firestar during 

the CASP contest.  

 

104



- 17 - 

 

Residue Position pCAT pLIG pSTRUC pNOANN p-value Prediction CASP firestar 

D 34 0.033 0.517 0.004 0.446 0.043 LIG FP TN 
K 39 0.027 0.577 0.005 0.391 0.036 LIG FP TN 
R 43 0.034 0.600 0.004 0.362 0.049 LIG FP TN 
L 48 0.008 0.697 0.065 0.230 0.027 LIG FP TN 
A 49 0.004 0.593 0.052 0.352 0.043 LIG FP TN 
Q 53 0.013 0.673 0.056 0.258 0.031 LIG FP TN 
E 55 0.065 0.652 0.009 0.273 0.012 LIG FP TN 
N 76 0.121 0.303 0.559 0.016 0.028 STRUC FN TP 
V 81 0.003 0.773 0.065 0.159 0.016 LIG FP FP 
H 82 0.918 0.072 0.005 0.005 0.013 CAT FP TN 
G 83 0.010 0.904 0.078 0.008 0.003 LIG TP TP 
I 85 0.001 0.710 0.013 0.276 0.028 LIG FP TN 
L 90 0.003 0.605 0.079 0.313 0.041 LIG FP TN 
D 91 0.929 0.055 0.014 0.002 0.001 CAT FP TN 
T 92 0.082 0.717 0.036 0.165 0.043 LIG FP TN 
G 95 0.021 0.780 0.175 0.024 0.021 LIG FP TN 
Q 96 0.020 0.760 0.006 0.214 0.014 LIG FP TN 
N 99 0.059 0.668 0.013 0.260 0.046 LIG FP TN 
S 107 0.038 0.752 0.016 0.195 0.020 LIG FP TN 
A 108 0.002 0.843 0.028 0.127 0.010 LIG FP TN 
V 109 0.001 0.756 0.085 0.158 0.020 LIG TP FN 
T 110 0.196 0.572 0.215 0.016 0.083 LIG FN FN 
Y 117 0.139 0.302 0.511 0.049 0.046 STRUC FN TP 
V 118 0.000 0.645 0.029 0.325 0.037 LIG TP TP 
K 119 0.120 0.458 0.026 0.395 0.073 LIG FN TP 
P 120 0.006 0.326 0.319 0.349  

 
FN TP 

H 134 0.441 0.311 0.059 0.189  
 

FN FN 
G 136 0.090 0.443 0.434 0.033 0.107 LIG FN FN 
K 137 0.106 0.637 0.017 0.240 0.017 LIG TP FN 
Q 138 0.006 0.612 0.012 0.371 0.044 LIG TP FN 
R 139 0.026 0.629 0.015 0.330 0.039 LIG TP FN 
E 143 0.652 0.181 0.140 0.026 0.034 CAT FP TN 
E 152 0.017 0.218 0.007 0.758  

 
TN FP 

G 157 0.053 0.784 0.096 0.067 0.021 LIG FP TN 
T 158 0.053 0.744 0.115 0.088 0.032 LIG FP TN 
G 159 0.060 0.669 0.133 0.137 0.047 LIG FP TN 
V 163 0.002 0.645 0.104 0.250 0.037 LIG FP TN 
L 164 0.003 0.600 0.010 0.387 0.043 LIG TP FN 
R 165 0.073 0.595 0.017 0.315 0.049 LIG FP TN 
S 166 0.024 0.687 0.042 0.247 0.036 LIG TP FN 
R 167 0.271 0.524 0.059 0.145 0.074 LIG FN FN 

 

Supplementary Table 10: CLIPS-4D and firestar predictions for residue-positions of CASP target T0632 (pdb id 3NWZ). 

The table lists all residue positions predicted by CLIPS-4D or by firestar (Lopez, et al., 2011) as being involved in ligand binding. The 

first two columns give the residue and its position in the pdb file. The following four columns list the probabilities for the assignment 

to CAT_sites, LIG_sites, STRUC_sites, and NOANN_sites calculated by CLIPS-4D. “p-value” lists the p-value for the class with the 

highest probability pCLASS and all residue positions with a p-value ≤ 0.05 for CAT_sites or LIG_sites were predicted as ligand binding 

according to CASP specification. Column “CASP” indicates the rating according to the CASP definition of the extended ligand binding 

site (Schmidt, et al., 2011). The column “firestar” lists the corresponding classification for predictions generated by firestar during 

the CASP contest.  
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Residue Position pCAT pLIG pSTRUC pNOANN p-value Prediction CASP firestar 

I 9 0.378 0.550 0.028 0.044 0.062 LIG TN FP 
G 10 0.084 0.865 0.037 0.014 0.009 LIG TP TP 
A 11 0.041 0.749 0.170 0.040 0.022 LIG FP FP 
G 12 0.400 0.559 0.028 0.013 0.076 LIG FN TP 
P 13 0.000 0.865 0.057 0.077 0.002 LIG TP TP 
A 14 0.018 0.893 0.075 0.014 0.005 LIG TP TP 
V 21 0.000 0.783 0.022 0.195 0.014 LIG FP TN 
R 24 0.739 0.131 0.121 0.009 0.016 CAT FP TN 
F 32 0.004 0.199 0.016 0.780  

 
TN FP 

D 33 0.919 0.048 0.028 0.005 0.002 CAT TP TP 
N 34 0.020 0.650 0.010 0.319 0.052 LIG FN TP 
N 35 0.009 0.275 0.061 0.655  

 
FN FN 

T 36 0.003 0.635 0.003 0.359 0.066 LIG FN FN 
N 37 0.109 0.458 0.177 0.255 0.124 LIG FN TP 
R 38 0.276 0.549 0.075 0.100 0.065 LIG FN TP 
N 39 0.059 0.719 0.203 0.019 0.032 LIG TP TP 
V 41 0.002 0.611 0.016 0.370 0.043 LIG FP TN 
T 42 0.013 0.663 0.179 0.145 0.058 LIG FN TP 
S 45 0.106 0.682 0.016 0.196 0.036 LIG TP TP 
H 46 0.477 0.406 0.038 0.080  

 
FN TP 

G 47 0.022 0.760 0.162 0.055 0.024 LIG FP TN 
K 60 0.103 0.541 0.027 0.328 0.045 LIG TP FN 
K 78 0.026 0.658 0.006 0.311 0.015 LIG TP FN 
T 79 0.018 0.520 0.005 0.457 0.100 LIG FN FN 
V 80 0.003 0.519 0.119 0.359 0.064 LIG FN TP 
A 109 0.262 0.608 0.111 0.019 0.041 LIG TP TP 
T 110 0.004 0.835 0.083 0.078 0.014 LIG TP TP 
G 111 0.142 0.664 0.165 0.029 0.047 LIG TP TP 
Q 113 0.016 0.721 0.006 0.257 0.019 LIG FP TN 
E 114 0.170 0.669 0.044 0.117 0.010 LIG TP TP 
Y 126 0.324 0.503 0.095 0.079 0.093 LIG FN TP 
G 127 0.057 0.665 0.241 0.037 0.047 LIG FP FP 
F 131 0.012 0.800 0.052 0.136 0.012 LIG FP TN 
S 132 0.051 0.727 0.016 0.207 0.026 LIG FP FP 
C 133 0.296 0.632 0.031 0.041 0.019 LIG FP FP 
Y 135 0.043 0.835 0.074 0.048 0.004 LIG FP TN 
C 136 0.067 0.848 0.045 0.040 0.001 LIG TP TP 
D 137 0.589 0.312 0.035 0.064  

 
TN FP 

R 233 0.139 0.596 0.032 0.234 0.049 LIG FP TN 
N 235 0.012 0.645 0.009 0.334 0.052 LIG FN FN 
F 237 0.104 0.545 0.110 0.241 0.076 LIG FN FN 
G 268 0.024 0.140 0.819 0.017 0.094 STRUC FN TP 
E 269 0.530 0.350 0.066 0.054  

 
FN TP 

Q 273 0.005 0.656 0.002 0.337 0.034 LIG FP TN 
S 277 0.113 0.479 0.016 0.392 0.101 LIG FN TP 
L 278 0.008 0.586 0.024 0.381 0.044 LIG TP FN 
A 281 0.036 0.805 0.047 0.111 0.014 LIG TP TP 

 

Supplementary Table 11: CLIPS-4D and firestar predictions for residue-positions of CASP target T0721 (pdb id 4FK1). 

The table lists all residue positions predicted by CLIPS-4D or by firestar (Lopez, et al., 2011) as being involved in ligand binding. The 

first two columns give the residue and its position in the pdb file. The following four columns list the probabilities for the assignment 

to CAT_sites, LIG_sites, STRUC_sites, and NOANN_sites calculated by CLIPS-4D. “p-value” lists the p-value for the class with the 

highest probability pCLASS and all residue positions with a p-value ≤ 0.05 for CAT_sites or LIG_sites were predicted as ligand binding 

according to CASP specification. Column “CASP” indicates the rating according to the CASP definition of the extended ligand binding 

site (Cassarino et al., under review, draft version). The column “firestar” lists the corresponding classification for predictions 

generated by firestar during the CASP contest.  
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Supplementary Figure 1: Class-specific performance of CLIPS-4D.  

Precision-recall curves were plotted for CAT_sites, LIG_sites, and STRUC_sites, respectively.  

The corresponding PR-AUC values are 0.30, 0.23, and 0.78, respectively. 

 

 

  

Supplementary Figure 2: Classification performance of CLIPS-4D in predicting functionally and structurally 

important residue-positions.  

Based on the largest class-probability pclass all members of the classes CAT_sites, LIG_sites, STRUC_sites, and 

NOANN_sites were categorized. Note that the absolute numbers of residue-positions are plotted with a logarithmic 

scale. 
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Supplementary Figure 3: CLIPS-4D prediction of ligand-binding sites in Sulfolobus solfataricus IGPS (pdb id 1A53).  

The protein is displayed in gray (cartoon mode); the sets CAT_sites and LIG_sites were merged prior to the assessment. Residues 

with a distance of at most 4 Å to the product IGP (orange spheres) are positive, all other ones are negative cases. TP predictions are 

green, FP red, and FN are cyan.  
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Supplementary Figure 4: CLIPS-4D prediction of substrate-binding sites in LgtC (pdb id 1G9R).  

The protein is displayed in gray (cartoon mode); the sets CAT_sites and LIG_sites were merged prior to the assessment. Residues 

with a distance of at most 4 Å to the substrate analogs ACY (light orange spheres) and UPF (orange spheres) are positive, all other 

ones are negative cases. TP predictions are green, FP red, and FN are cyan. 25 C-terminal residues are missing in the crystal 

structure, thus the environment of residues 260 - 282 might not be the natural one; FP predictions from this region are shown in 

pink.  
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Supplementary Figure 5: CLIPS-4D prediction of substrate-binding sites in HIT protein family (pdb id 1KPF).  

The protein is displayed in gray (cartoon mode); the sets CAT_sites and LIG_sites were merged prior to the assessment. Residues 

with a distance of at most 4 Å to the substrate analog AMP (orange spheres) are positive, all other ones are negative cases. TP 

predictions are green, FP red, and FN are cyan.  
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Supplementary Figure 6: CLIPS-4D prediction of substrate-binding sites in Plasmodium falciparum triosephosphate isomerase 

(pdb id 1M7P).  

The protein is displayed in gray (cartoon mode); the sets CAT_sites and LIG_sites were merged prior to the assessment. Residues 

with a distance of at most 4 Å to the substrate analog G3H (orange spheres) are positive, all other ones are negative cases. TP 

predictions are green, FP red, and FN are cyan. Several FP residues are involved in catalysis or ligand binding according to 

(Parthasarathy, et al., 2002) and are shown in a different color: Residues 166 - 176 (pale green) belong to the catalytic loop, E165 is 

a catalytic base, S73 provides an anchoring hydrogen bond to the ligand and residues G209-V212 are anchoring the phosphate 

group of the ligand. These residues are shown in pink. 
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Supplementary Figure 7: CLIPS-4D prediction of CAT_sites for CASP target T0584 (pdb id 3NF2).  

The protein is displayed in gray (cartoon mode). The five Aps-residues D128, D129, D132, D258, and D259 involved in binding 

DMAPP and catalysis via chelation of Mg
2+

 (Wallrapp, et al., 2013) are shown as dark green sticks. Only D128 is a TP according to the 

definition of the extended ligand binding site. 3 Mg
2+

 atoms (light green) and the ligands DST and IPR (orange) are shown as spheres, 

their position was transferred via 3D superposition from the experimental control structure 1RQI by means of PyMol (Schrödinger). 
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Supplementary Figure 8: CLIPS-4D prediction of all ligand-binding sites for CASP target T0584 (pdb id 3NF2).  

The protein is displayed in gray (cartoon mode). TP are shown in green, FP residues which line the elongation cavity as deduced 

from the avian geranyltransferase (Tarshis, et al., 1996) are dark blue, FN residues are cyan. Left image: Residues belonging to the 

4-5 loop are purple. Six more LIG_sites (colored light blue) belong to a loop not found in other polyprenyl transferases, compare 

Supplementary Figure 5. All other FP predictions are red. 3 Mg
2+

 atoms are show as green spheres and farnesyl diphosphate, which 

is a C15 compound and mimics the product, is shown in orange; their orientation was transferred from 1RQI or 3AQ0 in analogy to 

(Wallrapp, et al., 2013) by means of PyMol (Schrödinger). Right image: H127 and D157 are close to farnesyl diphosphate, but their 

function is unknown. 
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Supplementary Figure 9: Sequence and structure comparison of polyprenyl transferases.  

The MSA contains sequences of polyprenyl transferases whose structure is known. The first column of the MSA (grey) lists the GI 

number and the pdb id of the proteins. Residues of the 4-5 loops are shown in purple. The MSA indicates that polyprenyl 

synthase from Streptomyces coelicolor (target T0584, pdb id 3NF2, first line of the MSA and left image) contains an insert (labeled 

light blue) not found in other polyprenyl transferases. 1RQJ shows the active conformation of farnesyl pyrophosphate synthase from 

E. coli and 3KRA the geranyl pyrophosphate synthase from mint. The figure was generated by means of Jalview (Waterhouse et al., 

2009). 
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H2rs: Deducing evolutionary and functionally
important residue positions by means of an
entropy and similarity based analysis of multiple
sequence alignments
Jan-Oliver Janda1, Ajmal Popal2, Jochen Bauer2, Markus Busch1, Michael Klocke2, Wolfgang Spitzer2, Jörg Keller2

and Rainer Merkl1*

Abstract

Background: The identification of functionally important residue positions is an important task of computational
biology. Methods of correlation analysis allow for the identification of pairs of residue positions, whose occupancy
is mutually dependent due to constraints imposed by protein structure or function. A common measure assessing
these dependencies is the mutual information, which is based on Shannon’s information theory that utilizes
probabilities only. Consequently, such approaches do not consider the similarity of residue pairs, which may
degrade the algorithm’s performance. One typical algorithm is H2r, which characterizes each individual residue
position k by the conn(k)-value, which is the number of significantly correlated pairs it belongs to.

Results: To improve specificity of H2r, we developed a revised algorithm, named H2rs, which is based on the von
Neumann entropy (vNE). To compute the corresponding mutual information, a matrix A is required, which assesses
the similarity of residue pairs. We determined A by deducing substitution frequencies from contacting residue pairs
observed in the homologs of 35 809 proteins, whose structure is known. In analogy to H2r, the enhanced algorithm
computes a normalized conn(k)-value. Within the framework of H2rs, only statistically significant vNE values were
considered. To decide on significance, the algorithm calculates a p-value by performing a randomization test for
each individual pair of residue positions. The analysis of a large in silico testbed demonstrated that specificity and
precision were higher for H2rs than for H2r and two other methods of correlation analysis. The gain in prediction
quality is further confirmed by a detailed assessment of five well-studied enzymes. The outcome of H2rs and of a
method that predicts contacting residue positions (PSICOV) overlapped only marginally. H2rs can be downloaded
from www-bioinf.uni-regensburg.de.

Conclusions: Considering substitution frequencies for residue pairs by means of the von Neumann entropy and a
p-value improved the success rate in identifying important residue positions. The integration of proven statistical
concepts and normalization allows for an easier comparison of results obtained with different proteins. Comparing
the outcome of the local method H2rs and of the global method PSICOV indicates that such methods supplement
each other and have different scopes of application.
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Background
An important objective of molecular biochemistry is a
detailed analysis of protein characteristics like function-
ality, stability, and dynamics. This is a laborious and
time consuming task due to the many aspects of protein
function and the large spectrum of experimental methods
required for their determination. Ideally, one would
characterize experimentally the contribution of each indi-
vidual amino acid residue, which is however not feasible
for larger proteins. This is why the biochemical assess-
ment of proteins has to concentrate on a relatively small
number of residues. In enzymes, these are the residues
directly involved in catalysis and substrate binding; result-
ing annotations can be found in dedicated databases like
PDBsum [1]. However, there are no equivalent databases
available when one has to identify residues which are
important for stability or other characteristics.
Due to the enormous success of genome sequencing

projects, the sequences of more than 17 000 protein
families (InterPro Version 45, [2]) are known at date and
thus, methods of computational biology are of utmost
importance to support their characterization. A large
number of in silico approaches are at hand to identify
important residues. Often, a family-specific multiple
sequence alignment (MSA) is the main data source to
elucidate the role of the residues; for latest reviews see
refs. [3,4]. Most effective is the assessment of residue
variation deduced from the corresponding MSA columns.
The success of these analyses can be explained with the
biochemical properties of the residues: For example, in
most cases only one residue-type fulfills all critical re-
quirements at catalytic sites, which prohibits a mutation.
Accordingly, a strict residue conservation is a strong
indicator signaling functionally important residues [5-8]. In
contrast, a prevalent but not exclusively found amino acid
is often important for protein stability [9,10], which simi-
larly holds for ligand-binding sites [8]. Interestingly, these
less conserved residue positions may bear a pattern indica-
tive of dependencies in the occupancy of two or more posi-
tions. The importance of these correlation signals and their
consequences have long been realized [11]. Quite different
approaches have been introduced to identify correlated
residue pairs; see e.g. refs. [12-24]. Unfortunately, these
correlation signals, which are due to constraints imposed
by the local environment of a residue, can be disturbed by
neutral mutations. If an MSA contains sequences from
many closely related species, neutral mutations in a prede-
cessor may give rise to a strong correlation signal. Thus, the
elimination of highly similar sequences improves the quality
of correlation analysis [25,26]. Additionally, other approa-
ches have been proposed to eliminate signals induced by a
common evolutionary path of the proteins [27-29].
All these methods for the analysis of correlation pat-

terns are aimed at the identification of pairs of residues,

which are functionally or structurally important. More
specific methods enable us to predict residue contacts.
For the latter application, transitive dependencies, which
by definition interlink several pairs of residues, have to
be eliminated as well [30]. Different approaches have
proven applicable and these algorithms have been named
global methods [4]. Among them are PSICOV [31],
DCA [32], and EVfold [33]. The common idea of global
methods is to treat pairs of residues as mutually
dependent entities and to minimize the effects of transi-
tive covariation and phylogenetic noise.
In contrast, most algorithms like those described in

refs. [12-24,34] do not correct for transitive dependen-
cies. These approaches have been named local methods
[4] as they assume that pairs of residue positions are
statistically independent of other pairs. Due to chaining
effects, the identified residue positions constituting a
pair, can be near to each other or far apart in the protein’s
structure.
Most of the local methods rely in one way or another

on assessing the mutual information, which is commonly
based on Shannon’s entropy [35]. Thus, these local
methods deduce a measure for mutual dependencies
solely from the amino acid frequencies observed at the
positions under study. Consequently, the biochemical
properties of the residues are ignored, which may de-
grade the performance of the algorithm.
One of these local methods is the algorithm H2r [34],

which identifies in a first step mutual dependencies
between pairs of residue positions and scores in a sec-
ond step each residue position k by the conn(k)-value,
which is the number of significant pairwise correlations
it is involved in. Mutagenesis studies with two enzymes
demonstrated that positions with high conn(k)-values
have an increased probability of being important for
enzyme function or stability [36].
As we were interested to further improve performance

of H2r in terms of specificity, we implemented H2rs,
which additionally takes into account substitution fre-
quencies for residue pairs. Moreover, H2rs determines a
specific p-value for each analysis of a residue pair, which
facilitates the selection of significant correlation signals.
To further standardize the analyses, H2rs normalizes the
resulting conn(k)-values to z-scores, which we named conz
(k)-values. Using a testbed consisting of 200 enzymes, we
demonstrated in a comparison with the predecessor algo-
rithm H2r and two alternative algorithms that a larger frac-
tion of residues endowed by H2rs with high conz(k)-values
are located near ligand binding sites. Additionally, we stud-
ied in detail the predictions of H2r, H2rs, and the global
method PSICOV for five well characterized enzymes. It
turned out that the outcome of local and global methods
overlapped only marginally and that residues with high
conz(k)-values are functionally or structurally significant.
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Results
Utilizing the von Neumann entropy to improve the
identification of correlated mutations
A classification or regression problem can be solved op-
timally by means of sophisticated classifiers like support
vector machines, given that positive and negative exam-
ples are at hand during training. However, there is no clear
definition of a correlated mutation. This is why we cannot
model the positive cases and can only characterize as pre-
cisely as possible the standard situation. Thus, to create a
null model, we can deduce mean substitution frequencies
for residue pairs from a large number of samples by
analyzing known proteins. These substitution frequencies
reflect the expected case and will allow us to identify more
precisely deviations, which indicate mutual dependencies.
Based on this argument, we anticipated an improve-
ment in the identification of correlated mutations, if
we additionally take into account the similarity of
residue pairs together with their frequencies. Note that
frequencies are the only source of information in the
standard approach.
The algorithm H2r is based on Shannon’s information

theory [35] and computes for each pair of residue posi-
tions k, l the term U (k, l) according to

U k; lð Þ ¼ 2
H kð Þ þ H lð Þ−H k; lð Þ

H kð Þ þ H lð Þ ð1Þ

Here, H(k) is the entropy of an individual column k

H kð Þ ¼ −
X20
i¼1

p aki
� �

lnp aki
� � ð2Þ

and p aki
� �

is the probability of amino acid ai at position
k. The entropy H(k, l) of two variables (columns) k
and l is

H k; lð Þ ¼ −
X
i;j

p aki ; a
l
j

� �
lnp aki ; a

l
j

� �
ð3Þ

and p aki ; a
l
j

� �
is the probability of the amino acid pair

(ai, aj) at positions k and l. In this context, frequency

values deduced from the columns of an MSA served as

estimates for probabilities.
Due to normalization, U(k, l) is a more reliable indica-

tor of co-evolution than a raw mutual information value
[14]. As we were interested to improve specificity, we
searched for an information theoretical concept allowing
the integration of substitution frequencies determined
for residue pairs.
The von Neumann entropy (vNE) is a generalization

of the classical Shannon entropy and has been intro-
duced in quantum statistical mechanics [37]. In com-
putational biology, the vNE has been used successfully
to characterize the conservation of individual residue

positions [38,39]. Extending this concept to residue
pairs, we aimed at a novel UvNE(k, l) term to replace
U(k, l).
The core concept of the vNE is the utilization of a

so-called density matrix ρk,l, that is, a positive definite
matrix whose trace (the sum of the diagonal elements)
equals to 1. ρk,l can be computed for each pair k, l
according to:

ρk;l ¼ Pk;l APk;l ð4Þ
Here, Pk;l ¼ diag

ffiffiffiffiffi
p1

p
;…;

ffiffiffiffiffiffiffiffi
p400

p� �
and p1…p400 are the

pairwise amino acid probabilities p aki ; a
l
j

� �
specified in

Formula (3). These probabilities satisfy the normalization

condition
X400
i¼1

pi ¼ 1. A is a 400 × 400 matrix that assesses

the similarity of residue pairs and it is this matrix that
allows us to model substitutions more precisely. If A is
equal to the identity matrix, then the vNE is equal to the
Shannon entropy, that is, vNE(k, l) =H(k, l); see below.
Based on ρk,l, the von Neumann entropy vNE(k, l) can be
calculated as

vNE k; lð Þ ¼ vNE ρk;l

� �
¼ −

X400
i¼1

λi log λi ð5Þ

by means of the eigenvalues λi of ρk,l. Normalization
analogous to Formula (1), which reduces phylogenetic
crosstalk, requires corresponding values vNE(k) and vNE(l).
For their determination, we applied partial traces [40]
on ρk,l to deduce two density matrices ρk;lk and ρk;ll ,
which are specific for a pair of columns k, l. The elements
of ρk;lk and ρk;ll were named si,j and ti,j, respectively, and
were computed according to

si;j ¼
X20
u¼1

r20 i−1ð Þþu; 20 j−1ð Þþu ð6Þ

and

ti;j ¼
X20
u¼1

r20 u−1ð Þþi; 20 u−1ð Þþj ð7Þ

where ri,j denotes the appropriate entry in the density
matrix ρk,l. Thus, this approach allows us to deduce all
entropy terms from the density matrix ρk,l, which elimi-
nates normalization problems. We calculate the vNE ρk;lm

� �
for the residue positions m ∈ {k, l} analogously to
equation (5) based on the eigenvalues λi of the 20 × 20
matrix ρk;lm :

vNE ρk;lm

� � ¼ −
X20
i¼1

λi log λi ð8Þ

Finally, we define the normalized UvNE(k, l)-value:
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UvNE k; lð Þ ¼
vNE ρk;lk

� �
þ vNE ρk;ll

� �
−vNE ρk;l

� �

vNE ρk;lk

� �
þ vNE ρk;ll

� � ð9Þ

Computing these values is straightforward, if a matrix
A is at hand.

Computing a matrix A to assess the similarity of residue
pairs
In the case of correlated mutations, the matrix A is a
prerequisite to assess the similarity of residue pairs that
occur in homologous proteins at corresponding positions.
To determine the 400 × 400 values of A, we followed the
concept introduced for the BLOSUM approach to score
the similarity of amino acid residues based on substitution
frequencies [41]. Here, we extended this concept to pairs
of residues, as similarly used in P2PMAT [42]. A pre-
compiled and redundancy free set of 35 809 protein 3D
structures [43] offered by the PISCES server [44] was used
as a representative sample. For each protein, the corre-
sponding MSA was taken from the HSSP database [45] to
deduce pairwise substitution frequencies. Based on the 3D
structure, those residue pairs k, l were identified which
contacted each other in the protein. The distances be-
tween the centers of any two heavy atoms belonging to
one residue each were determined and alternatively the
cut-offs 3.5 Å and 5.0 Å were chosen to select contacting
pairs. These values correspond to the interval of distances
used during CASP9 to identify contacts between residues
and ligands [46]. For these cut-offs, we deduced 7 752 286
and 27 283 508 contacts from 15 062 205 sequences,
respectively. Then, substitution frequencies were deter-
mined by analyzing the corresponding columns of the
MSAs; see Figure 1 and Methods. The values of the two
corresponding matrices A3.5 and A5.0 were normalized to
affirm symmetry. Their comparison indicated highly similar
values indicating that this distance is no critical parameter,
which is in agreement with findings of CASP9 [46]. As we

wanted to consider the larger number of contacts for the
determination of the similarity values, we chose A =A5.0

for all further computations. This matrix is available as
Additional file 1.

A p-value for the strength of correlation signals deduced
from a randomization test
Our next goal was to introduce a universally applicable
statistical measure for the strength of the pairwise corre-
lations, and we opted for a randomization test. Here, the
null hypothesis is that there is no dependency in the
pairwise frequencies. Thus, we can assess the strength of
each pairwise correlation by shuffling the content of the
two columns k, l under study [47]. As we shuffle the
content column-wise, the entropy (conservation) of the
two individual columns remains constant; however, we
simultaneously degrade the putative correlation between
the two residue positions. Then, we can compare the
UvNE(k, l) value deduced from the unaltered combin-
ation of residue pairs with a distribution of UvNE(k*, l*)
values resulting from many shuffling rounds. Thus, we
can rate the correlation strength for this specific com-
bination of residue pairs observed in columns k and l.
Consequently, if the UvNE(k*, l*) values are similarly large
or surpass the UvNE(k, l) value, the correlation is statisti-
cally not significant. On the other hand, if all UvNE(k*, l*)
values are significantly lower, then this specific UvNE(k, l)
value signals a pronounced dependency in the occu-
pancy of the two residue positions, which indicates cor-
related mutations.
To compute this p-value efficiently, the number of ran-

domized samples has to be minimized. Moreover, we need
a statistical model which has to be valid, if the number of
residue types is relatively small which may cause a skewed
distribution. The more conserved the residue positions
are, the fewer pairwise frequencies occur and the more
the distribution of pairwise frequencies deviates from a
normal distribution; compare Figure 2. As we wanted to
assess the extremeness of the UvNE(k, l) values, we selected

Figure 1 Computation of a pairwise similarity matrix A. (A) For each residue (k, blue) of our dataset, all neighbors with a distance of at most
5 Å measured between the centers of heavy atoms were determined. Here, it is one residue l marked red. (B) Residue positions k, l were linked
with the corresponding columns of the MSA and transition frequencies were deduced from a comparison of the residue pairs. (C) In this
illustrative example, we observe one transition from AA to AC, two transitions from AA to CA and one transition from AA to CC. Transition
frequencies were used to construct the 400 × 400 matrix A of substitution frequencies for residue pairs.
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a Gumbel distribution [48] for modeling. This distribution
is specified by only two parameters μ and β that can be
determined in a straightforward manner; see Methods and
Formulae 12–14. To confirm that the Gumbel distribution
is a proper model, we determined histograms consisting
of 1000 UvNE(k*, l*) values each for all of 2 646 726 pairs
of residue positions in our dataset. Prior to the computa-
tion of the next UvNE(k*, l*) value, columns were shuffled
100M times, where M is the number of sequences in the
respective MSA. A Kolmogorov Smirnov test [49] with
α = 0.01 confirmed that the distributions of these
UvNE(k*, l*) values and the deduced Gumbel distribution
did not differ significantly for 99.14% of all cases. Using
the same dataset, we additionally made clear that the
two parameters μ and β can be estimated with ad-
equate precision after 25 instances of randomization.
Thus, to compute a specific p-value for each residue
pair, it is sufficient to compute 25 UvNE(k*, l*) values
and to determine one value of the fitted cumulative
Gumbel distribution.
For a protein of length L, we apply this test N = L(L + 1)/2

times, which suggests to introduce the Bonferroni
correction [50] in order to reduce the number of false
positive results caused by the frequent application of the
test. Thus, a corrected cut-off c_o for the corresponding
p-value p is

c o k; lð Þ ¼ μ−β log log
1

1−p=N

� �� �
: ð10Þ

c_o(k, l) allows for a statistically meaningful and content
specific selection of correlated residue positions. μ and β
are defined by Formulae (13) and (14); see Methods.
For the identification of correlated mutations, a p-value

p has to be selected beforehand. Then, all pairs of residue
positions with UvNE(k, l) ≥ c_o(k, l) are utilized to compute
conn(k)-values by counting the number of significantly
correlated pairs k (or analogously l) is part of. To fur-
ther alleviate the comparison of different test sets,
conn(k)-values were transformed to z-scores conz(k); see
Formula (15).

An in silico testbed for the assessment of correlation
methods
The ultimate validation of a correlated mutation is a
biochemical experiment, which is frequently based on
the replacement of residues by the standard amino acid
alanine. However, the detailed experimental analysis of a
large number of mutations introduced in one protein
like dihydrofolate reductase [51,52] is still the exception.
This lack of reliable results impedes establishing a bona
fide testbed for correlation methods and enforces the
use of in silico surrogates. It is known that many corre-
lated mutations are in close proximity to functional sites
[19,47,53-55]. Thus, a testbed has been created that
consists of 44 enzymes whose structure and active site
residues are well characterized [54]. To assess the quality
of correlation analysis, residue positions around func-
tional sites have been counted as positives and all others
as negatives [54]. To broaden the statistical basis, we
compiled a non-redundant dataset of 200 enzymes,
whose functional sites, i.e. catalytic and binding sites, are
known and which are represented by a PDB structure
and a corresponding MSA in the HSSP database; see
Materials. To determine performance values, 64 575
residues were classified and the distances between van
der Waals spheres were determined. We regarded all
6192 residues with a maximal distance of 1 Å to a func-
tional site as positive cases and all other 58 383 residues
as negative cases. The classification and the resulting
performance depends on the chosen p-value and the
cut-off for conz(k). This is why we tested several combi-
nations and summarized results in Table 1. For a p-value
between 10−2 and 10−4 and a conz(k)-threshold of 2.0,
the specificity was between 0.97 and 0.98 and precision
was between 0.18 and 0.19. For the p-value 10−2 and the
conz(k)-threshold of 4.0, specificity was 1.0 and precision
0.30. For p-values ≤ 10−5 and conz(k) = 2.0 the per-
formance reached a plateau. The comparison with the
predecessor algorithm H2r made clear that the novel
algorithm performed better: Specificity and precision
were up to 3% higher. Additionally, we analyzed the
same dataset with the algorithms CMAT [56] and SCA
[16], which predict pairs of correlated residue positions.

Figure 2 Distribution of UvNE() values for one pair of residue
positions. The histogram (blue) shows the distribution of the UvNE
(k*, l*) values of the first two residue positions of ssTrpC resulting
from shuffling the content of columns k and l of the MSA. A
normality test on this distribution failed (P = 0.991), which indicates
that the distribution is not Gaussian. The corresponding cumulative
distribution is shown in black. The cumulative Gumbel distribution
with parameters μ and β deduced from 25 randomization tests is
shown in green. The red line depicts the actual UvNE value of this
pair of residue positions. The orange line shows the UvNE value this
pair would need to surpass a p-value of 0.01.
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Standalone versions as of February 2014 were down-
loaded and applying the same criteria as above, per-
formance was determined. CMAT was used with default
parameters. For SCA, we selected three cut-off values 0.7,
1.5, and 3.0. Performance values were added to Table 1.
CMAT reached a specificity of 0.77 and a precision of
0.13. For SCA, the specificity increased from 0.53 to 0.99,
and the precision from 0.12 to 0.15, for the cut-offs 0.7
and 3.0. These results indicate that residue positions
predicted by H2rs are more likely close to functional sites.
Moreover, the number of false positives is lower, as indi-
cated by the higher precision values determined for H2rs.
These numbers are a rough estimate of the algorithm’s
performance due to the limitations of the in silico testbed.
However, all other alternative methods of performance
evaluation [57] are not applicable here: These are the
analysis of simulated MSAs, the determination of the
residues’ spatial distance or an assessment of free energy
differences derived from double mutants.

An assessment of predicted coevolving residues in
well-characterized enzymes
To evaluate performance of our algorithm in more
detail, we analyzed the H2rs predictions for five well
studied enzymes: three enzymes from tryptophan bio-
synthesis, named TrpA, TrpB, TrpC, dihydrofolate re-
ductase (DHFR), and hexokinase (HK). TrpA and TrpB
constitute the heteromeric tryptophan synthase complex,
which catalyzes the final reaction of indole-3-glycerole
phosphate and serine to tryptophan. TrpA cleaves indole-
3-glycerol phosphate to glyceraldehyde-3-phosphate and

indole, which is transported through a hydrophobic tunnel
to the active center of TrpB. There, tryptophan is synthe-
sized from serine and indole [58]. For the localization of
predicted residue positions, we utilized the 3D dataset
with PDB ID 1KFC, which is the TrpA/TrpB complex
from Salmonella typhimurium (stTrpA, stTrpB). The
enzyme indole-3-glycerol phosphate synthase (TrpC)
catalyzes the ring closure of an N-alkylated anthranilate to
a 3-alkyl indole derivative, which is the fourth step in the
tryptophan biosynthesis. It adopts the widespread (βα)8-
barrel fold and has been studied in detail [59]. Here, we
utilized the structure of TrpC from Sulfolobus solfataricus
(ssTrpC, PDB ID 1A53). DHFR catalyzes the reduction of
dihydrofolate to tetrahydrofolate via hydride transfer from
NADPH. It has been found in most organisms and plays a
critical role for cell proliferation and cell growth [60]. We
utilized the structure determined for DHFR from Escheri-
chia coli (ecDHFR, PDB ID 7DFR). The hexokinase from
Schistosoma mansoni (smHK, PDB ID 1BDG) is the first
enzyme in the glycolytic pathway and catalyzes the trans-
fer of a phosphoryl group to alpha-6-glucose (GLC). The
3D crystal structure contains SO4 anions in the catalytic
cleft [61]. smHK is the only enzyme of a larger set that
has been analyzed previously by correlation analysis
and for which the MSA (smHK_CMA) was available
online. To generate smHK_CMA, the authors have used a
sophisticated protocol to merge several structure based
MSAs [19].
Although local and global methods of correlation

analysis have different objectives, we were interested to
determine the overlap of their predictions. This is why
we also compared the outcome of H2rs and PSICOV
[31], which is a global method predicting residue contacts.
For PSICOV we analyzed the top L/5 predictions, which is
the recommended default for a protein sequence of
length L. An MSA was created for each enzyme by using
DELTA-BLAST [62] with the options max target
threshold 2000 and expect threshold 10−10. The
resulting sequences were realigned by means of MAFFT
[63] in linsi mode. We were interested in an assess-
ment of the most specific H2rs predictions. This is why
we chose the low cut-off 10−11 for the p-value and a conz
(k)-threshold of 2.0. To allow for a comparison, we also
listed the conz(k)-values for all residues predicted by H2r
in Table 2. Residues were regarded as functionally import-
ant, if they were close to a functional site specified in
PDBsum [1]. Thus, all direct neighbors in the sequence
were chosen and all residues with a 3D distance of
maximally 5 Å (determined between heavy atoms).
stTrpA consists of 268 residues, and H2rs predicted

two important residues, namely L100 and L127. Both
residues are in close proximity to the substrate; see
Figure 3. H2r predicted L100, S125, A129, I153 and
L162. S125 stabilizes the inactive conformation of the

Table 1 Performance of four local methods deduced from
an in silico testbed

Cut-off z-score Specificity Precision

10−2 4.0 1.00 0.30

10−2 2.0 0.97 0.18

10−3 2.0 0.97 0.18

H2rs 10−4 2.0 0.98 0.19

10−5 2.0 0.98 0.18

10−10 2.0 0.98 0.17

10−11 2.0 0.98 0.17

H2r 0.95 0.17

CMAT 0.77 0.13

SCA 0.7 0.53 0.12

1.5 0.84 0.15

3.0 0.99 0.15

For all programs, specificity and precision were deduced from the analysis of
200 enzymes with known catalytic and binding sites. Residues with a maximal
distance of 1 Å to a functional site were regarded as positives. All other
residues were regarded as negatives. H2r and CMAT were used with default
settings. For H2rs, the cut-off was applied to the p-value. For SCA, three cut-off
values were chosen.
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active center [64]. A129 and I153 are near the active site
and L162 belongs to the TrpA/TrpB interface [1]. L100
and L127 also belong to the 80 L/5 predictions of PSICOV;
see Table 2.
For stTrpB, H2rs predicted 13 of the 397 residues as

being important; see Figure 3. T88, Q90, and V91 are in
close proximity to the substrate binding residue K87
[65]. C170 and F280 are located at the end of the hydro-
phobic tunnel [66] and T190 and S308 are metal binding
sites [1]. G268 is important for the coordination of ion
binding [67], and S297 and P257 are in close proximity

Table 2 Annotation of residue positions predicted in five
enzymes as being important by H2rs and H2r

Protein Residue H2rs H2r PSICOV Residue’s role

stTrpA L100 2.2 3.2 1 Near binding site

S125 1.1 6.8 1 Stabilizes the active site

L127 2.0 2 Near binding site

A129 1.9 5.7 5 Near active site

I153 0.9 4.6 1 Near active site

L162 0.7 6.1 0 TrpA/TrpB interface

stTrpB P7 1.3 6.8 0 ND

C62 2.2 7.3 0 ND

G83 1.8 7.2 2 Near binding site

T88 2.4 1 Near binding site

Q90 2.4 7.5 0 Near binding site

V91 2.1 0 Near binding site

L121 1.8 6.3 1 ND

C170 4.5 4 End of substrate tunnel

T190 2.2 6 Metal binding site

P257 2.2 6.7 0 Near metal ion

G268 2.3 0 Coordination of ion binding

F280 2.4 2.8 0 End of substrate tunnel

M282 2.6 4 Near binding site

S297 4.2 3 Near metal ion

F306 −0.8 5.0 0 Metal binding site

S308 2.4 8.5 0 Metal binding site

Q312 2.9 0 ND

ssTrpC I48 2.4 3 ND

A50 1.4 6.1 1 Near active site

Y76 1.1 4.0 1 ND

M109 1.9 4.3 2 Near active site

I133 2.6 9.8 3 Catalytically important

V134 2.3 2 Near active site

I136 2.1 1 ND

L142 2.7 1 Catalytically important

N161 1.4 6.9 2 Near active site

L187 1.8 4.6 1 Mutation L187A is neutral

A209 2.1 3 Near binding site

S234 2.1 9.5 4 Phosphate binding site

ecDHFR A9 2.2 2 Near active site

W30 2.3 0 Binding site

K32 2.3 0 Binding site

M92 3.4 0 Near active site

G121 2.7 2.8 0 Near active site

D144 1.9 5.1 0 ND

H149 2.1 4.4 0 Coupled motion

Table 2 Annotation of residue positions predicted in five
enzymes as being important by H2rs and H2r (Continued)

smHK T69 2.8 1 Domain interface

A215 2.6 2 End of domain 1

C217 2.7 13.9 0 End of domain 1

A218 2.3 0 End of domain 1

C224 2.2 0 Begin of domain 2

V230 2.1 3 Near binding site

V256 2.1 2 Domain interface

K290 2.2 0 Near binding site

D367 1.5 9.8 2 ND

T409 2.4 1 Near C224

V412 2.0 0 Near binding site

For the enzymes stTrpA, stTrpB, ssTrpC, ecDHFR, and smHK, H2r and H2r were
used to identify important residue positions. For these residues, annotation
was deduced from literature. The first column lists the name of the enzyme.
The second column gives the residue and its position. The third column gives
the conz(k)-value deduced by H2rs from all UvNE()-values based on a p-value of
10−11. The column H2r lists mean conn(k)-values resulting from 25 randomization
tests. The column PSICOV lists the number of contacting pairs the residue
belonged to. The last column lists the role of the residues, for details see Results.
“ND” indicates that we did not find clues to the function of this residue.

Figure 3 Residues of the stTrpA/stTrpB complex possessing
highest conz(k)-values. For stTrpA (light blue) and stTrpB (gold),
residues with conz(k)-values≥ 2.0 and p-values≤ 10−11 are plotted
in red as sticks. H2rs predicted for stTrpA 2, and for stTrpB 13
important residue positions. Ligands indole-3-glycerol phosphate
and pyridoxal phosphate are plotted as green sticks. The sodium ion
is shown as a green ball.
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to the bound sodium ion. M282 is in contact with F280
and S308; see above. The role of the two residues C62
and Q312 is unknown to us. In contrast, H2r predicted
five of these residues, namely C62, Q90, P257, F280,
S308, and additionally P7, G83, L121, and F306. F306 is
a metal binding site, G83 is near the binding site for the
substrate and the function of P7 and L121 is unknown
to us. Of the 13 H2rs predictions, 5 belong to the 80 L/5
contacting residues predicted by PSICOV; see Table 2.
For ssTrpC, H2rs predicted 7 important positions; see

Figure 4. V134 is near the active site. I133 and L142 are
catalytically important: After replacing each of these two
residues by alanine, the activity of TrpC dropped 30-fold
[68]. A209 is located next to the substrate binding site
E210 and the catalytic residue S211 [1]; S234 is known
to be a phosphate binding site [1]. The role of the two
residues I48 and I136 is unknown to us. H2r detected
the phosphate binding site S234, the catalytically import-
ant residue I133, plus the residues A50, Y76, M109,
N161, and L187. A50, M109, and N161 are near the active
site. The role of L187 is unknown however, the L187A
mutation has no drastic effect on function and stability
[36]. The function of Y76 is unknown to us. All of the
residue positions predicted by H2rs belonged to the
50 L/5 contacting residue pairs predicted by PSICOV;
see Table 2.
For ecDHFR, H2rs predicted six important residue

positions; see Figure 5. W30 and K32 are contacting the
substrate, whereas A9 and M92 are in close proximity to
the binding site A7 and the catalytic site I94, respectively
[1]. H149 plays a significant role in the network of

coupled motions required for a hydride transfer [69] and
a mutation of G121, which lies in proximity of NADPH,
reduced the hydride transfer rate [70]. The predecessor
algorithm, H2r, identified G121, H149, plus D144, whose
function is unknown to us. Of the above sites, only A9
was an element of the 32 L/5 predictions of PSICOV;
see Table 2.
smHK consists of a HK type-1 (residues 18 – 218) and

a HK type-2 domain (residues 221 – 457); see entry
Q26609 of Uniprot [71]. H2rs identified 10 suspicious
residues (Figure 6), which we number according to the

Figure 4 Residues of ssTrpC with highest conz(k)-values. For
ssTrpC, H2rs identified 7 residues with conz(k)-values≥ 2.0 and
p-values≤ 10−11, which are shown as red sticks. The ligand
indole-3-glycerol phosphate is shown as green sticks.

Figure 5 ecDHFR residues with highest conz(k)-values. For
ecDHFR, H2rs predicted 6 residues with conz(k)-values≥ 2.0 and
p-values≤ 10−11, which are shown as red sticks. The ligands folic
acid and NADP are shown as green sticks.

Figure 6 smHK residues with highest conz(k)-values. For smHK,
H2rs predicted 10 residues with conz(k)-values≥ 2.0 and p-values≤
10−11, which are shown as red sticks. The ligand GLC is shown as
green sticks and the SO4 ion in the catalytic cleft as green balls.

Janda et al. BMC Bioinformatics 2014, 15:118 Page 8 of 13
http://www.biomedcentral.com/1471-2105/15/118

123



PDBsum [1] entry 1BDG. A215, C217, and A218 are
located at the very end of domain 1, whereas C224
occurs at the very beginning of domain 2 and these four
residues are flanking a ß-turn [1]. K290 is a neighbor of
Q291 that binds GLC, V230 is a neighbor of I229 (binds
GLC) and of T232 (binds SO4) [1]. V412 is a neighbor
of G414 and S415 that both bind SO4 [1]. T409 is close
to C224 (see above). Only for two residues, namely T69
and V256, their role is unknown to us; however both
residues are located at the domain interface at a distance
of not more than 5.2 Å. H2r found C217 and addi-
tionally D376, whose function is unknown to us. 5 of
the H2rs predictions were in the 91 L/5 predictions
of PSICOV. When utilizing the MSA smHK_CMA, H2rs
predicted only three residues with a positive conz(k)-value,
which is given in brackets: K295 (3.0), T172 (0.71), and
C217 (0.71). T172 binds GLC, and K295 is located next to
the GLC binding E294 [1]. For C217, see above. Interest-
ingly, in the 668 sequences remaining in the MSA after
filtering, residue positions 217 and 224 were occupied in
not more than 43% by cysteines, which form a disulfide
bridge that stiffens the orientation of the two domains
[1]. Alternatively, the following residue pairs were ob-
served with more than 2% frequency: ST (12.7%), GV
(7.8%), SM (6.1%), RT (5.1%), HP (2.7%), AV (2.4%) and
RA (2.1%). These distinct pairwise combinations support
nicely the idea of mutual dependencies and pairwise
correlations.
Although the number of cases is small, these well

characterized proteins allow for a more realistic assess-
ment of the prediction performance. Altogether, H2rs
predicted 38 important residues and H2r 26, respectively.
False positives were 4 (11%) in the case of H2rs and 6
(23%) in the case of H2r. Thus, the resulting precision is
0.89 for H2rs and 0.77 for H2r. These results emphasize
the relatively high specificity reached by computing
conn(k)-values and additionally suggest a considerable
improvement for the novel algorithm.

Discussion
H2rs is a major improvement over H2r
For all well-characterized enzymes studied in Results,
H2rs predicted a larger number and a higher fraction of
residue positions for which we could rationalize an
important role in function or stability. Here, we concen-
trated on the analysis of residues with a conz(k)-value ≥
2.0. Generally, this detailed analysis of five enzymes signals
more precisely than the assessment of our in silico testbed
the improved specificity of H2rs. It was achieved i) by
replacing Shannon’s entropy by the von Neumann entropy
and ii) by integrating a more sensitive statistical approach
that adapts to the composition of each pair of MSA col-
umns. Based on this dataset, we can expect a 10% increase
in specificity to nearly 90%. However, this improvement

has to be paid with a much longer execution time: Com-
puting the von Neumann entropy requires the determin-
ation of eigenvalues, which is time-consuming and the
determination of p-values further increases the execution
time by a factor of 25. One way of accelerating the
calculation of entropy values might be an application
of the Rényi entropy [72], which is a generalization of
the von Neumann entropy.
For 0 < α ≠ 1, the α-Rényi entropy is given by α−RE k; lð Þ

¼ 1
1−α log

X400
i¼1

λαi and for α→ 1, we recover the Neumann

entropy vNE(k, l). Interestingly, for α = 2, the calculation
of the α-Rényi entropy does not require the eigenvalues of
the matrix ρk,l but only the diagonal entries of the square
of ρk,l, which drastically speeds up the computation. How-
ever, it has not been tested yet whether the Rényi entropy
allows the adequate modeling of biological phenomena
like residue substitutions.

Global and local methods of correlation analysis
complement each other
One goal in the design of H2r, which is a local method,
was the identification of individual residue positions
important for protein function or stability. This is why
we introduced the conn(k)-value. For two enzymes it has
been shown that positions with high conn(k)-values have
an increased probability of being important for enzyme
function or stability [36]. The results presented here
further confirm the high specificity to be gained with
local methods, which is in agreement with data from the
literature; see e.g. refs. [19,73]. The results obtained for
smHK emphasize that not all correlated mutations are
due to functional constraints: 4 of 10 residues with high
conz(k)-values were located at the domain interface and
two of them (C217, C224) belong to a disulfide bond
that interlinks the domains in some of the homologous
proteins. The other residue combinations observed at
these two positions illustrate nicely that they were to a
great extent occupied by unique residue pairs. Moreover,
these findings emphasize a limitation of the in silico
testbed. Structurally important residues often lay far
apart from the catalytic center [74]. As shown above,
some bear a strong correlation signal and are identified
by H2rs. However, these hits are regarded as false posi-
tives and deteriorate the performance values deduced
from the testbed.
Whereas local methods consider transitive correlations

as well, global methods aim at eliminating these depend-
encies. The outcome of H2rs and the L/5 predictions of
the global method PSICOV overlapped only for 22 of
53 residue positions; see Table 2. This result can be
explained by the scope of the methods: According to
the desired function, global methods identify contacting
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residue pairs which are not necessarily enriched near
functional sites.
Using the MSA smHK_CMA, H2rs predicted only

three residues known to be functionally important, albeit
two with low conz(k)-values. Using the same dataset, the
algorithm Comulator, which aims at identifying pertur-
bations [16], detected a network of six residue positions
that surround the active site. Their occupancy almost
perfectly separated the two main groups of glucokinases
[19]. In summary, these findings highlight the pros and
cons of the different approaches and suggest that they
supplement each other quite well.

MSAs have to be prepared carefully
A critical parameter of correlation analysis is the prepar-
ation of the input, i.e. the MSA. For the prediction of
intra-protein residue contacts, a strong correlation be-
tween the number of homologs and the prediction
strength has been shown, which further increased, if
orthologs and paralogs were included in the MSA [25].
For the sake of standardization, we used in all cases
studied here the same methods of MSA preparation
without human intervention. Additionally we chose
identical and very rigorous cut-offs for the identification
of important residue positions. This rigid protocol might
be the reason for the considerably differing number of
predictions: Using the cut-off conz(k) ≥ 2.0 and a p-values
of 10−11, H2rs predicted for stTrpA only 2, but for stTrpB
13 important residue positions. These differences suggest
for the user an individual adjustment of the parameters
for each protein family in order to optimize the benefit of
correlation analysis.

Conclusions
The various global and local methods of correlation ana-
lysis have their own field of application and supplement
each other. We made plausible that residues in the vicin-
ity of functional sites, which are a large portion of H2rs
predictions, do not necessarily belong to residue pairs
with the strongest global correlation signal. The predic-
tions of global methods can be assessed by the 3D distance
of the involved residue pairs. In contrast, the evaluation of
local methods is more ambiguous. Due to the lack of a
precise definition of a correlated mutation, it is diffi-
cult to specify positive cases. This circumstance has
drastic consequences and imposes restrictions to the
design and the evaluation of algorithms. With this in
mind, we developed an algorithm that considers pair-
wise substitution frequencies and assesses the strength
of the correlation signal statistically. We made plausible
that in silico testbeds only allow for a rough performance
evaluation. Favorable is the detailed analysis of well char-
acterized model systems, which is only feasible for a small
number of cases.

Methods
Similarity of amino acid pairs and density matrices
Our approach requires for the assessment of two amino
acid pairs i = (aar, aas) and j = (aat, aau) a similarity
matrix A of size 400 × 400 such that each entry ai,j gives
a normalized measure for the similarity of the two pairs.
To create A, we utilized a precompiled and redundancy
free list of 35 809 PDB entries [43] offered by the PISCES
server [44]. For each protein structure, we analyzed the
corresponding MSA from the HSSP database [45]. These
MSAs were further processed to eliminate unrelated
sequences and closely related ones, which is known to
improve the quality of the predictions [25]. This is why we
compared for each MSA all pairs of sequences sr, ss and
eliminated sequences ss until all sequences contained in
pairwise comparison at least 20% and not more than 90%
identical residues.
Next, we determined for each protein all pairs of resi-

due positions k, l which are close in 3D space. Distances
were determined by using the BALL software library
[75] and the cut-off was a maximal distance of 5.0 Å
between the centers of any two heavy atoms belonging
to one of the corresponding residues. Alternatively a cut-
off of 3.5 Å was used. Contacting residues were mapped
to the corresponding MSA columns and pairwise amino
acid transitions were counted for all sequence pairs to
determine substitution frequencies f(i, j). We adapted a
concept, which was introduced for the determination of
the BLOSUM matrices [41]; see Figure 1. Each matrix
element ai,j was normalized [38]:

ai;j ¼ f i; jð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f i; ið Þf j; jð Þp ð11Þ

The result is a positive semi-definite similarity matrix
A with ai,i = 1 and 0 ≤ ai,j ≤ 1 (i ≠ j) elsewhere. A can then
be used to calculate density matrices ρk,l for residue
positions k and l, see Formula (4). The matrix ρk,l fulfills
all requirements of being a density matrix: First, ρk,l
is positive semi-definite since A is positive definite.
Second, by the cyclicity of the trace, the trace of ρk,l
equals the sum of all probabilities, which is 1 due to
our normalization.

A p-value for the significance of pairwise correlations
In order to determine the statistical significance of cor-
relations, we utilized a randomization test and shuffled
the columns of the MSA. Consequently, the entropy at
each individual position was unchanged, but the cor-
relation between pairs of positions was randomized.
Subsequently, we re-calculated a distribution X of UvNE

values x and repeated this process 25 times, which
was sufficient to estimate the mean �x and the stand-
ard deviation σ of X needed to approximate a Gumbel
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distribution [48]. The cumulative Gumbel distribution F
has the form

F x; μ; βð Þ ¼ e−e
− x−μð Þ=β ð12Þ

and requires two parameters

β ¼ σ
ffiffiffi
6

p� �
π

ð13Þ

μ ¼ �x þ γβ ð14Þ
β and μ result from �x and σ of X and γ is the Euler–
Mascheroni constant (≈0.5772). Using F(.), we determined
a Bonferroni corrected p-value; see Formula (10).

Characterization of individual residues
In analogy to H2r, H2rs calculates a conn(k)-value by
counting the occurrence of each residue k in the set of all
significantly correlated pairs of residues. Furthermore, the
conn(k)-values are transformed into z-scores conz(k) by

conz kð Þ ¼ conn kð Þ−conn kð Þ―――――――

σconn kð Þ
ð15Þ

where conn kð Þ―――――――
and σconn(k) are the mean and standard

deviation of the distribution of all conn(k)-values > 0
determined for the protein under study.

In silico testbed and assessment of performance
To statistically evaluate algorithms, we utilized parts of the
datasets CAT_sites and LIG_sites consisting of known cata-
lytic and ligand binding sites, which we have introduced
recently [76]. In short, the dataset consists of 200 non
redundant PDB entries with corresponding HSSP MSAs
[45], each containing at least 125 sequences. Functional
sites were identified by means of annotations from the
literature entries of the catalytic site atlas [77] and binding
site annotations from the PDBsum database [1]. All resi-
dues within a maximal distance of 1 Å to a functional site
were taken as positives, all other residues as negatives. Sub-
sequently, we determined specificity, and precision:

Specificity ¼ TN
TN þ FP

ð16Þ

Precision ¼ TP
TP þ FP

ð17Þ

In both Formulae, TP is the number of true positives,
TN the number of true negatives, FP the number of false
positives, and FN the number of false negatives.

Additional file

Additional file 1: Similarity Matrix A. Format Excel. The file contains
raw substitution frequencies and normalized values.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JOJ: Implemented and validated the algorithm H2rs and wrote a first draft
of the manuscript. AP deduced the matrix A. JB implemented and assessed
the algorithm for the computation of the p-value. MB was involved in
implementing the testbed and determined the performance of CMAT and
SCA. MK, WS, and JK designed and assessed the method to compute the
UvNE(k, l)-values. RM conceived of and managed the project and wrote
the final version of the manuscript. All authors read and approved the
final version.

Acknowledgements
This work was supported by the Deutsche Forschungsgemeinschaft within
the priority program SPP 1395 (ME 2259/1-1).

Author details
1Institute of Biophysics and Physical Biochemistry, University of Regensburg,
D-93040 Regensburg, Germany. 2Faculty of Mathematics and Computer
Science, University of Hagen, D-58084 Hagen, Germany.

Received: 13 January 2014 Accepted: 17 April 2014
Published: 27 April 2014

References
1. Laskowski RA, Chistyakov VV, Thornton JM: PDBsum more: new summaries

and analyses of the known 3D structures of proteins and nucleic acids.
Nucleic Acids Res 2005, 33(Database issue):D266–D268.

2. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P,
Buillard V, Cerutti L, Copley R, Courcelle E, Das U, Daugherty L, Dibley M,
Finn R, Fleischmann W, Gough J, Haft D, Hulo N, Hunter S, Kahn D, Kanapin
A, Kejariwal A, Labarga A, Langendijk-Genevaux PS, Lonsdale D, Lopez R,
Letunic I, Madera M, Maslen J: New developments in the InterPro
database. Nucleic Acids Res 2007, 35(Database issue):D224–228.

3. de Juan D, Pazos F, Valencia A: Emerging methods in protein co-evolution.
Nat Rev Genet 2013, 14(4):249–261.

4. Marks DS, Hopf TA, Sander C: Protein structure prediction from sequence
variation. Nat Biotechnol 2012, 30(11):1072–1080.

5. Pei J, Grishin NV: AL2CO: calculation of positional conservation in a
protein sequence alignment. Bioinformatics 2001, 17(8):700–712.

6. Capra JA, Singh M: Predicting functionally important residues from
sequence conservation. Bioinformatics 2007, 23(15):1875–1882.

7. Wang K, Samudrala R: Incorporating background frequency improves
entropy-based residue conservation measures. BMC Bioinformatics 2006,
7:385.

8. Janda JO, Busch M, Kuck F, Porfenenko M, Merkl R: CLIPS-1D: analysis of
multiple sequence alignments to deduce for residue-positions a role in
catalysis, ligand-binding, or protein structure. BMC Bioinformatics 2012,
13:55.

9. Lehmann M, Loch C, Middendorf A, Studer D, Lassen SF, Pasamontes L, van
Loon AP, Wyss M: The consensus concept for thermostability engineering
of proteins: further proof of concept. Prot Eng 2002, 15(5):403–411.

10. Amin N, Liu AD, Ramer S, Aehle W, Meijer D, Metin M, Wong S, Gualfetti P,
Schellenberger V: Construction of stabilized proteins by combinatorial
consensus mutagenesis. Protein Eng Des Sel 2004, 17(11):787–793.

11. Altschuh D, Lesk AM, Bloomer AC, Klug A: Correlation of co-ordinated
amino acid substitutions with function in viruses related to tobacco
mosaic virus. J Mol Biol 1987, 193(4):693–707.

12. Atchley WR, Wollenberg KR, Fitch WM, Terhalle W, Dress AW: Correlations
among amino acid sites in bHLH protein domains: an information
theoretic analysis. Mol Biol Evol 2000, 17(1):164–178.

13. Neher E: How frequent are correlated changes in families of protein
sequences? Proc Natl Acad Sci U S A 1994, 91(1):98–102.

14. Martin LC, Gloor GB, Dunn SD, Wahl LM: Using information theory to
search for co-evolving residues in proteins. Bioinformatics 2005,
21(22):4116–4124.

15. Larson SM, Di Nardo AA, Davidson AR: Analysis of covariation in an SH3
domain sequence alignment: applications in tertiary contact prediction
and the design of compensating hydrophobic core substitutions. J Mol
Biol 2000, 303(3):433–446.

Janda et al. BMC Bioinformatics 2014, 15:118 Page 11 of 13
http://www.biomedcentral.com/1471-2105/15/118

126



16. Lockless SW, Ranganathan R: Evolutionarily conserved pathways
of energetic connectivity in protein families. Science 1999,
286(5438):295–299.

17. Dekker JP, Fodor A, Aldrich RW, Yellen G: A perturbation-based method
for calculating explicit likelihood of evolutionary co-variance in multiple
sequence alignments. Bioinformatics 2004, 20(10):1565–1572.

18. Kass I, Horovitz A: Mapping pathways of allosteric communication
in GroEL by analysis of correlated mutations. Proteins 2002,
48(4):611–617.

19. Kuipers RK, Joosten HJ, Verwiel E, Paans S, Akerboom J, van der Oost J,
Leferink NG, van Berkel WJ, Vriend G, Schaap PJ: Correlated mutation
analyses on super-family alignments reveal functionally important
residues. Proteins 2009, 76(3):608–616.

20. Göbel U, Sander C, Schneider R, Valencia A: Correlated mutations and
residue contacts in proteins. Proteins 1994, 18(4):309–317.

21. Pazos F, Helmer-Citterich M, Ausiello G, Valencia A: Correlated mutations
contain information about protein-protein interaction. J Mol Biol 1997,
271(4):511–523.

22. Halperin I, Wolfson H, Nussinov R: Correlated mutations: advances and
limitations. A study on fusion proteins and on the Cohesin-Dockerin
families. Proteins 2006, 63(4):832–845.

23. Singer MS, Vriend G, Bywater RP: Prediction of protein residue contacts
with a PDB-derived likelihood matrix. Protein Eng 2002, 15(9):721–725.

24. Lichtarge O, Yao H, Kristensen DM, Madabushi S, Mihalek I: Accurate and
scalable identification of functional sites by evolutionary tracing.
J Struct Funct Genomics 2003, 4(2–3):159–166.

25. Ashkenazy H, Unger R, Kliger Y: Optimal data collection for correlated
mutation analysis. Proteins 2009, 74(3):545–555.

26. Dunn SD, Wahl LM, Gloor GB: Mutual information without the influence
of phylogeny or entropy dramatically improves residue contact
prediction. Bioinformatics 2008, 24(3):333–340.

27. Tillier ER, Lui TW: Using multiple interdependency to separate functional
from phylogenetic correlations in protein alignments. Bioinformatics 2003,
19(6):750–755.

28. Simonetti FL, Teppa E, Chernomoretz A, Nielsen M, Marino Buslje C: MISTIC:
Mutual information server to infer coevolution. Nucleic Acids Res 2013,
41(Web Server issue):W8–W14.

29. Gültas M, Haubrock M, Tüysüz N, Waack S: Coupled mutation finder: a new
entropy-based method quantifying phylogenetic noise for the detection
of compensatory mutations. BMC Bioinformatics 2012, 13:225.

30. Burger L, van Nimwegen E: Disentangling direct from indirect
co-evolution of residues in protein alignments. PLoS Comp Biol 2010,
6(1):e1000633.

31. Jones DT, Buchan DW, Cozzetto D, Pontil M: PSICOV: precise structural
contact prediction using sparse inverse covariance estimation on large
multiple sequence alignments. Bioinformatics 2012, 28(2):184–190.

32. Weigt M, White RA, Szurmant H, Hoch JA, Hwa T: Identification of direct
residue contacts in protein-protein interaction by message passing.
Proc Natl Acad Sci U S A 2009, 106(1):67–72.

33. Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, Zecchina R, Sander C:
Protein 3D structure computed from evolutionary sequence variation.
PLoS One 2011, 6(12):e28766.

34. Merkl R, Zwick M: H2r: identification of evolutionary important residues
by means of an entropy based analysis of multiple sequence
alignments. BMC Bioinformatics 2008, 9:151.

35. Shannon C: A mathematical theory of communication. Bell Syst Technical J
1948, 27:379–423.

36. Dietrich S, Borst N, Schlee S, Schneider D, Janda JO, Sterner R, Merkl R:
Experimental assessment of the importance of amino acid positions
identified by an entropy-based correlation analysis of multiple-sequence
alignments. Biochemistry 2012, 51(28):5633–5641.

37. von Neumann J: Mathematical Foundations of Quantum Mechanics. Princton:
Princeton University Press; 1996.

38. Johansson F, Toh H: Relative von Neumann entropy for evaluating amino
acid conservation. J Bioinform Comput Biol 2010, 8(5):809–823.

39. Zhang SW, Zhang YL, Pan Q, Cheng YM, Chou KC: Estimating residue
evolutionary conservation by introducing von Neumann entropy and a
novel gap-treating approach. Amino Acids 2008, 35(2):495–501.

40. Messiah A: Quantum mechanics. Dover: Dover Publications; 1999.
41. Henikoff S, Henikoff JG: Amino acid substitution matrices from protein

blocks. Proc Natl Acad Sci U S A 1992, 89(22):10915–10919.

42. Eyal E, Frenkel-Morgenstern M, Sobolev V, Pietrokovski S: A pair-to-pair
amino acids substitution matrix and its applications for protein structure
prediction. Proteins 2007, 67(1):142–153.

43. Bernstein FC, Koetzle TF, Williams GJ, Meyer EF Jr, Brice MD, Rodgers JR,
Kennard O, Shimanouchi T, Tasumi M: The Protein Data Bank. A
computer-based archival file for macromolecular structures.
Eur J Biochem 1977, 80(2):319–324.

44. Wang G, Dunbrack RL Jr: PISCES: recent improvements to a PDB sequence
culling server. Nucleic Acids Res 2005, 33(Web Server issue):W94–W98.

45. Sander C, Schneider R: Database of homology-derived protein structures
and the structural meaning of sequence alignment. Proteins 1991,
9(1):56–68.

46. Schmidt T, Haas J, Gallo Cassarino T, Schwede T: Assessment of
ligand-binding residue predictions in CASP9. Proteins 2011,
79(Suppl 10):126–136.

47. Proctor EA, Kota P, Demarest SJ, Caravella JA, Dokholyan NV: Highly
covarying residues have a functional role in antibody constant domains.
Proteins 2013, 81(5):884–895.

48. Gumbel EJ: Statistics of Extremes. New York: Columbia University Press; 1958.
49. Smirnov N: Table for estimating the goodness of fit of empirical

distributions. Ann Math Stat 1948, 19:279–281.
50. Dunn OJ: Multiple comparisons among means. J Am Stat Assoc 1961,

56(293):52–64.
51. Rod TH, Radkiewicz JL, Brooks CL 3rd: Correlated motion and the effect of

distal mutations in dihydrofolate reductase. Proc Natl Acad Sci U S A 2003,
100(12):6980–6985.

52. Balog E, Perahia D, Smith JC, Merzel F: Vibrational softening of a protein
on ligand binding. J Phys Chem B 2011, 115(21):6811–6817.

53. Travers SA, Fares MA: Functional coevolutionary networks of the
Hsp70-Hop-Hsp90 system revealed through computational analyses.
Mol Biol Evol 2007, 24(4):1032–1044.

54. Lee BC, Park K, Kim D: Analysis of the residue-residue coevolution
network and the functionally important residues in proteins.
Proteins 2008, 72(3):863–872.

55. Wang ZO, Pollock DD: Coevolutionary patterns in cytochrome c oxidase
subunit I depend on structural and functional context. J Mol Evol 2007,
65(5):485–495.

56. Jeong CS, Kim D: Reliable and robust detection of coevolving protein
residues. Protein Eng Des Sel 2012, 25(11):705–713.

57. Xu H, Li X, Zhang Z, Song J: Identifying coevolution between amino acid
residues in protein families: advances in the improvement and
evaluation of correlated mutation algorithms. In Current Bioinformatics,
Volume 8. Bentham Science Publishers Ltd. Netherlands; 2013:148–160.

58. Weber-Ban E, Hur O, Bagwell C, Banik U, Yang LH, Miles EW, Dunn MF:
Investigation of allosteric linkages in the regulation of tryptophan
synthase: the roles of salt bridges and monovalent cations probed by
site-directed mutation, optical spectroscopy, and kinetics. Biochemistry
2001, 40(12):3497–3511.

59. Schneider B, Knöchel T, Darimont B, Hennig M, Dietrich S, Babinger K,
Kirschner K, Sterner R: Role of the N-terminal extension of the (βα)8-barrel
enzyme indole-3-glycerol phosphate synthase for its fold, stability, and
catalytic activity. Biochemistry 2005, 44(50):16405–16412.

60. Baccanari D, Phillips A, Smith S, Sinski D, Burchall J: Purification and
properties of Escherichia coli dihydrofolate reductase. Biochemistry 1975,
14(24):5267–5273.

61. Kuser PR, Krauchenco S, Antunes OA, Polikarpov I: The high resolution
crystal structure of yeast hexokinase PII with the correct primary
sequence provides new insights into its mechanism of action. J Biol
Chem 2000, 275(27):20814–20821.

62. Boratyn GM, Schaffer AA, Agarwala R, Altschul SF, Lipman DJ, Madden TL:
Domain enhanced lookup time accelerated BLAST. Biol Direct 2012, 7:12.

63. Katoh K, Standley DM: MAFFT multiple sequence alignment software
version 7: Improvements in performance and usability. Mol Biol Evol 2013,
30(4):772–780.

64. Kulik V, Hartmann E, Weyand M, Frey M, Gierl A, Niks D, Dunn MF,
Schlichting I: On the structural basis of the catalytic mechanism and the
regulation of the alpha subunit of tryptophan synthase from Salmonella
typhimurium and BX1 from maize, two evolutionarily related enzymes.
J Mol Biol 2005, 352(3):608–620.

65. Miles EW, Kawasaki H, Ahmed SA, Morita H, Morita H, Nagata S: The beta
subunit of tryptophan synthase. Clarification of the roles of histidine 86,

Janda et al. BMC Bioinformatics 2014, 15:118 Page 12 of 13
http://www.biomedcentral.com/1471-2105/15/118

127



lysine 87, arginine 148, cysteine 170, and cysteine 230. J Biol Chem 1989,
264(11):6280–6287.

66. Ruvinov SB, Yang XJ, Parris KD, Banik U, Ahmed SA, Miles EW, Sackett DL:
Ligand-mediated changes in the tryptophan synthase indole tunnel
probed by nile red fluorescence with wild type, mutant, and chemically
modified enzymes. J Biol Chem 1995, 270(11):6357–6369.

67. Rhee S, Parris KD, Ahmed SA, Miles EW, Davies DR: Exchange of K+ or Cs+

for Na+ induces local and long-range changes in the three-dimensional
structure of the tryptophan synthase α2β2 complex. Biochemistry 1996,
35(13):4211–4221.

68. Dietrich S: Mutationsanalyse und kinetische Untersuchungen zum
Reaktionsmechanismus der Indolglycerinphosphat-Synthase aus
Solfolobus solfataricus. PhD thesis. University of Regensburg,
Biochemistry II; 2010.

69. Watney JB, Hammes-Schiffer S: Comparison of coupled motions in
Escherichia coli and Bacillus subtilis dihydrofolate reductase. J Phys Chem
B 2006, 110(20):10130–10138.

70. Thorpe IF, Brooks CL 3rd: The coupling of structural fluctuations to
hydride transfer in dihydrofolate reductase. Proteins 2004, 57(3):444–457.

71. UniProt C: Update on activities at the Universal Protein Resource
(UniProt) in 2013. Nucleic Acids Res 2013, 41(Database issue):D43–D47.

72. Rényi A: On measures of information and entropy. In Proceedings of the
fourth Berkeley Symposium on Mathematics, Statistics and Probability 1960;
1961:547–561.

73. Teppa E, Wilkins AD, Nielsen M, Buslje CM: Disentangling evolutionary
signals: conservation, specificity determining positions and coevolution.
Implication for catalytic residue prediction. BMC Bioinformatics 2012,
13(1):235.

74. Wierenga RK: The TIM-barrel fold: a versatile framework for efficient
enzymes. FEBS Lett 2001, 492(3):193–198.

75. Hildebrandt A, Dehof AK, Rurainski A, Bertsch A, Schumann M, Toussaint NC,
Moll A, Stöckel D, Nickels S, Mueller SC, Hildebrandt A, Dehof AK, Rurainski
A, Bertsch A, Schumann M, Toussaint NC, Moll A, Stöckel D, Nickels S,
Mueller SC, Lenhof HP, Kohlbacher O: BALL-biochemical algorithms library
1.3. BMC Bioinformatics 2010, 11:531.

76. Janda JO, Meier A, Merkl R: CLIPS-4D: a classifier that distinguishes
structurally and functionally important residue-positions based on
sequence and 3D data. Bioinformatics 2013, 29(23):3029–3035.

77. Porter CT, Bartlett GJ, Thornton JM: The Catalytic Site Atlas: a resource of
catalytic sites and residues identified in enzymes using structural data.
Nucleic Acids Res 2004, 32(Database issue):D129–D133.

doi:10.1186/1471-2105-15-118
Cite this article as: Janda et al.: H2rs: Deducing evolutionary and
functionally important residue positions by means of an entropy and
similarity based analysis of multiple sequence alignments. BMC
Bioinformatics 2014 15:118.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Janda et al. BMC Bioinformatics 2014, 15:118 Page 13 of 13
http://www.biomedcentral.com/1471-2105/15/118

128



6 Acknowledgement

At this point I would like to thank everyone that helped finishing this thesis.

Special thanks goes to my supervisor Prof. Dr. Rainer Merkl, who has been

always there to listen and give advice.

I am grateful to Prof. Dr. Reinhard Sterner and Prof. Dr. Stephan Waack for

their expertise and advice as my mentors.

I would also like to thank all the current and former colleagues at the University

of Regensburg, for their support and for some much needed humor and enter-

tainment. In particular, I would like to thank Patrick Löffler and Dietmar Birzer

for interesting discussions and Linux support, as well as Hermann Zellner for ad-

vanced Linux support.

Thanks also go to the former students Ajmal Popal, Jochen Bauer, Thomas

Beisiegel, Markus Busch, Mareike Lück, Clemens Zvacek, Florian Kück, Mikhail

Porfenenko, Andreas Meier, Michael Klocke, Andre Seidenspinner, and Benjamin

Gathmann.

Special thanks go to my family and friends for their support. Finally, I would like

to thank Anja for her faith in me and providing me with unending encouragement.

129


	List of figures
	List of tables
	Abbreviations
	Abstract
	Zusammenfassung
	Introduction
	Proteins and enzymes
	Machine learning
	Protein structures
	Multiple sequence alignments
	Aim of this work

	Summary and discussion
	Classification of highly conserved residue positions
	CLIPS-1D: A solely sequence-based classifier
	CLIPS-3D: A solely structure-based classifier
	CLIPS-4D: A sequence- and structure-based classifier

	Identification of correlated mutations
	Statistical analysis
	Case studies that illustrate classification performance


	Bibliography
	List of publications and personal contribution
	Publications
	Publication A
	Publication B
	Publication C

	Acknowledgement

