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Resumo

A investigação biomédica evoluiu para uma ciência rica em dados,
os quais podem ser recolhidos em enormes quantidades a partir de
diversos recursos simultaneamente. No entanto, o valor dos dados
está no conhecimento que deles se pode extraír através da sua análise.
Em domínios como a medicina translacional, a integração e interoper-
abilidade dos dados são um requerimento fundamental para que estes
possam ser analisados eficientemente.

A web semântica e as suas tecnologias foram propostas como uma
solução para a integração e interoperabilidade de dados. Uma das fer-
ramentas da web semântica é a utilização de ontologias, que permitem
descrever o conhecimento de um domínio de uma maneira formal e
estruturada.

A tese subjacente ao presente trabalho é que a representação em on-
tologias do conhecimento de um domínio pode ser explorada para
melhorar o atual conhecimento sobre uma doença e os seus processos
de diagnóstico e prognóstico. Os seguintes objetivos foram definidos
para validar esta tese: 1) criar um modelo semântico que represente e
integre as fontes de dados heterogéneos necessárias para a caracteri-
zação de uma doença e do seu prognóstico, explorando tecnologias da
web semântica; 2) desenvolver uma metodologia que explore o conhec-
imento representado em ontologias por forma a melhorar os resultados
obtidos com métodos de exploração aplicados a conjuntos de dados
de medicina translacional.

O primeiro objetivo foi cumprido, tendo resultado nas seguintes con-
tribuições: a metodologia para o desenvolvimento de um modelo
semântico na linguagem OWL; um modelo semântico da doença car-
diomiopatia hipertrófica; e uma revisão da exploração de recursos da
web semântica em sistemas de medicina translacional.



O segundo objetivo, também cumprido, tem como contribuições a
adaptação de uma análise de enriquecimento padrão ao uso de dados
de doentes; e a aplicação dessa análise de enriquecimento no mel-
horamento das previsões feitas com conjuntos de dados de medicina
translacional.

Palavras Chave: Representação de conhecimento, Medicina transla-
cional, Web semântica, Ontologias, Integração de dados, Exploração
de dados



Abstract

Biomedical research has evolved into a data-intensive science, where
prodigious amounts of data can be collected from disparate resources
at any time. However, the value of data can only be leveraged through
its analysis, which ultimately results in the acquisition of knowledge.
In domains such as translational medicine, data integration and in-
teroperability are key requirements for an efficient data analysis.

The semantic web and its technologies have been proposed as a solu-
tion for the problems of data integration and interoperability. One of
the tools of the semantic web is the representation of domain knowl-
edge with ontologies, which provide a formal description of that knowl-
edge in a structured manner.

The thesis underlying this work is that the representation of do-
main knowledge in ontologies can be exploited to improve the cur-
rent knowledge about a disease, as well as improve the diagnosis and
prognosis processes. The following two objectives were defined to val-
idate this thesis: 1) to create a semantic model that represents and
integrates the heterogeneous sources of data necessary for the charac-
terization of a disease and of its prognosis process, exploiting semantic
web technologies and existing ontologies; 2) to develop a methodol-
ogy that exploits the knowledge represented in existing ontologies to
improve the results of knowledge exploration methods obtained with
translational medicine datasets.

The first objective was accomplished and resulting in the following
contributions: the methodology for the creation of a semantic model
in the OWL language; a semantic model of the disease hypertrophic
cardiomyopathy; and a review on the exploitation of semantic web
resources in translation medicine systems. In the case of the second



objective, also accomplished, the contributions are the adaptation of a
standard enrichment analysis to use data from patients; and the appli-
cation of the adapted enrichment analysis to improve the predictions
made with a translational medicine dataset.

Keywords: Knowledge Representation, Translational medicine, Se-
mantic web, Ontologies, Data integration, Data exploration



Resumo Estendido

A investigação biomédica tem vindo a tornar-se uma ciência rica em
dados, os quais podem ser recolhidos em enormes quantidades a partir
de diversos recursos simultaneamente. No entanto, o valor dos dados
está no conhecimento que deles se pode extraír através da sua análise.
Em domínios como a medicina translacional, a integração e interoper-
abilidade dos dados são um requerimento fundamental para que estes
possam ser analisados eficientemente.

A web semântica foi proposta como uma nova abordagem para a Web,
a qual, geralmente composta por documentos, passa a ser composta
por dados. Esta abordagem permite uma mais fácil manipulação de
dados entre domínios, e assim resolver a maioria dos problemas iner-
entes à integração de dados. A implementação de uma abordagem
da web semântica resulta, em última instância, numa rede de da-
dos e conhecimento que pode ser explorada tanto por computadores
como por pessoas. Ao trabalhar para a criação desta rede, consegue-
se melhorar a interoperabilidade entre aplicações, independentemente
do seu domínio do conhecimento, assim como facilitar a integração e
a exploração de dados.

Uma das ferramentas da web semântica é a representação do con-
hecimento de um domínio com ontologias, as quais fornecem uma
descrição formal e estruturada desse conhecimento. A utilização de
ontologias em medicina translacional é de extrema importância devido
à necessidade de integrar e explorar dados para a sua implementação.

Os dados usados em medicina translacional são recolhidos no contexto
da prática médica, e como tal são frequentemente caracterizados por
um número reduzido de atributos clínicos e por um número elevado de
valores em falta. Estas características dificultam significativamente o



uso destes conjuntos de dados em tarefas de exploração (e.g., min-
eração de dados), sendo consequentemente desejável enriquecê-los de
algum forma.

A forma mais direta de enriquecimento de um conjunto de dados seria
através da adição de mais instâncias ou de instâncias de melhor quali-
dade, mas devido à natureza restrita dos dados de doentes esta opção
é raramente possível. Por outro lado, o conhecimento codificado em
ontologias é público, e pode ser explorado para enriquecer conjuntos
de dados da medicina translacional.

A tese subjacente ao presente trabalho é que a representação em on-
tologias do conhecimento de um domínio pode ser explorada para mel-
horar o atual conhecimento sobre uma doença, assim como melhorar
os seus processos de diagnóstico e prognóstico. Os seguintes objetivos
foram definidos para validar esta tese: 1) criar um modelo semântico
que represente e integre as fontes de dados heterogéneos necessárias
para a caracterização de uma doença e do seu prognóstico, explo-
rando tecnologias da web semântica; 2) desenvolver uma metodologia
que explore o conhecimento representado em ontologias por forma a
melhorar os resultados obtidos com métodos de exploração aplicados
a conjuntos de dados de medicina translacional.

O primeiro objetivo foi cumprido sob a forma de um modelo semân-
tico da cardiomiopatia hipertrófica (CMH), uma doença que benefi-
cia de uma abordagem como a da medicina translacional. O mod-
elo representa dois domínios de conhecimento heterogéneos, o clínico
e o genético, sendo composto por três módulos: Clinical Evalua-
tion, o qual contém conceitos administrativos e os elementos clínicos
necessários para o prognóstico de doentes com CMH; Genotype Analy-
sis, contendo conceitos associados com a realização de testes genéticos
em amostras biológicas; e Medical Classifications, um módulo auxil-
iar que contém padrões médicos usados na caracterização de elemen-
tos clínicos tais como sintomas. Este modelo semântico desempenha
um papel importante na integração de dados de ambos os domínios



através das relações estabelecidas entre os módulos que compõem o
modelo. Foi desenvolvido na linguagem OWL (uma das tecnologias
da web semântica), reutiliza vocabulários já existentes, e tem mapea-
mentos definidos entre os seus conceitos e conceitos de vocabulários
externos. Todos estes aspectos, em conjunto com o seu desenvolvi-
mento em módulos, facilitam a sua utilização por terceiros. Apesar
do uso de um caso de estudo, a metodologia para criar o modelo foi
planeada de forma a poder ser utilizada para outras doenças, assim
como o modelo em si pode ser usado e estendido para outras doenças.

O primeiro objetivo da tese resultou assim nas seguintes contribuições:
a metodologia para o desenvolvimento de um modelo semântico na
linguagem OWL; um modelo semântico da doença cardiomiopatia
hipertrófica; e uma revisão da exploração de recursos da web semân-
tica em sistemas de medicina translacional.

Do segundo objetivo resultou uma metodologia que identifica termos
ontológicos enriquecidos num conjunto de dados de doentes. Esta
metodologia foi adaptada a partir da técnica denominada análise de
enriquecimento, a qual é extensivamente usada na análise funcional de
grandes conjuntos de genes identificados com técnicas de alto rendi-
mento tais como microarrays de expressão. A análise de enriquec-
imento explora o uso de métodos estatísticos para analisar os ter-
mos ontológicos com os quais um conjunto de genes está anotado. O
propósito desta análise é a identificação de atributos biológicos que es-
tejam representados no conjunto de genes em estudo em maior quanti-
dade do que seria esperado devido ao acaso. Esses atributos biológicos
são considerados como estando enriquecidos, ou sobre-representados,
no conjunto de estudo e são usados na formulação de uma interpre-
tação biológica acerca desse conjunto.

A metodologia de enriquecimento desenvolvida neste trabalho foi adap-
tada para analisar dados clínicos e genéticos de doentes, em vez de
genes. Os dados clínicos incluem atributos como sintomas e medições



(e.g., peso, pressão arterial), enquanto os genéticos se referem à pre-
sença/ausência de mutações específicas da doença. Esta metodologia
insere-se numa abordagem de prognóstico cujo propósito é auxiliar
médicos na avaliação de doentes em relação à possibilidade de virem
a sofrer um evento associado à doença ou de apresentarem uma man-
ifestação característica da doença. A abordagem de prognóstico ex-
plorará os resultados obtidos com a metodologia de enriquecimento
numa subsequente tarefa de classificação com algoritmos de miner-
ação de dados, de forma a obter o prognóstico dos doentes.

Foram usados dois conjuntos de dados nesta parte do trabalho: um
de doentes com CMH, focando a ocorrência de um evento associado
à doença - paragem cardíaca súbita; e outro de doentes com doença
pulmonar obstrutiva crónica (DPOC), focando uma das manifestações
características da doença - enfisema.

Os termos ontológicos identificados como enriquecidos pela metodolo-
gia de enriquecimento são usados como perfil de anotação dos doentes
através da sua incorporação no conjunto de dados sob a forma de
atributos. Esta utilização dos termos enriquecidos foi testada com
diferentes conjuntos de atributos e diferentes classificadores, e os resul-
tados mostram que resulta numa incorporação de novo conhecimento
no conjunto de dados que conduz a uma melhoria das previsões do
prognóstico.

O segundo objetivo da tese resultou assim nas seguintes contribuições:
a adaptação de uma análise de enriquecimento padrão ao uso de da-
dos de doentes; e a aplicação dessa análise de enriquecimento no mel-
horamento das previsões feitas com conjuntos de dados de medicina
translacional.

O trabalho aqui apresentado consiste no primeiro passo para o desen-
volvimento de um sistema de análise de doenças para assistir médicos
nos processos de diagnóstico e prognóstico, o qual contribuirá para
o avanço do conhecimento sobre a doença em análise. Este sistema
contribuirá igualmente para o avanço da medicina translacional, uma



vez que facilitará a integração de dados do domínio da investigação
básica com dados clínicos, e a sua transformação em conhecimento
que virá a ser usado na prática clínica.
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Chapter 1

Introduction

1.1 A data intensive world

Biomedical research has evolved into a data-intensive science, where prodigious
amounts of data can be collected from disparate resources at any time (Hey
et al., 2009). However, the value of data can only be leveraged through its
analysis, which ultimately results in the acquisition of knowledge. In domains
such as translational medicine, where multiple types of data are involved, often
from different sources and kept in different formats (e.g., hospital data, genetic
data and pharmaceutical data), data integration and interoperability are key
requirements for an efficient data analysis.

Translational medicine focuses on the improvement of human health by bridg-
ing the gap between basic science research and the clinical practice (Albani &
Prakken, 2009; Webb & Pass, 2004; Woolf, 2008). It is unquestionable that trans-
lational medicine is a multidisciplinary research domain that relies both on public
and protected data. Public data includes resources such as medical guidelines,
scientific literature and biomedical databases, while protected data is composed
of private data from patients and proprietary data from pharmaceutical and pub-
lishing companies. Translational medicine thus requires appropriate technologies
for the correct interpretation of distributed and disparate data resources, and
it is easy to conceive that such a large scale endeavor will eventually require a
versatile infrastructure that preserves data semantics at all integration levels.
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1. INTRODUCTION

1.2 Using the semantic web for data integration
and exploration

The need for data integration and data interoperability has a long-standing his-
tory. The Committee on Models for Biomedical Research proposed in 1985 a
structured and integrated view of biology to cope with the available data (Com-
mittee on Models for Biomedical Research, 1985). Ten years later, in 1995, David-
son et al. questioned the feasibility of data integration, since the resulting data
structure has to follow changes in the data itself and individual research groups
fail to comply with the integration structure (Davidson et al., 1995). In 2007,
the challenges identified for data integration in genomic medicine were the lack of
clinical data sources; the privacy issues linked to clinical data; the inherent com-
plexity of medical records; and finally, the lack of data representation standards
in the clinical domain (Louie et al., 2007). These selected examples show that
data integration remains an open research topic and that its complexity escalates
with the increase in number of the heterogeneous domains to be integrated.

The World Wide Web is the key information channel for the communication
of public data, particularly for the scientific community, since it enables a fast
publication of methods, results and opinions, and it is easily reached by virtually
anyone, anywhere. This information channel fulfills the requirements for efficient
data exchange between scientific communities and data repositories, and thus
should also be explored in translational medicine for optimal progress. However,
its usefulness in this context is counterbalanced by the lack of data standards
across domains, of explicit data representations, and of interoperability among
data resources, which hinder the sharing of data between the biomedical and the
clinical domains (Sagotsky et al., 2008).

Berners-Lee et al. (2001) proposed the vision of the semantic web, where the
Web of documents is replaced by the Web of data, thus enabling the manipulation
of data over disparate domains and solving most of the problems previously stated
for data integration. The manipulation of data is achieved by substituting the
links connecting Web pages (i.e., the documents) with links connecting the data
elements themselves, through the representation of the data domain of knowledge
with structured semantic representations, and through the use of the standard
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technologies. If built upon this infrastructure, many of the technical challenges
faced by translational medicine are thus prevented.

The implementation of a semantic web approach ultimately results in a net-
work of data and knowledge that can be exploited by computers and not only
humans. Working towards the creation of this network improves the interoperabil-
ity among applications, independently of their domain of knowledge, facilitates
data integration and exploration. The mappings defined between data elements
enable the issuing of queries over otherwise independent datasets, and the formal
representation of the domain knowledge can be leveraged through the use of rea-
soning for the identification of new implicit connections between data elements
(Rebholz-Schuhmann et al., 2012).

The domain knowledge can be represented through resources that reliably
abstract their real-world objects and the interactions existing amongst those ob-
jects. Such representations exist in the form of ontologies, where an ontology is
“an explicit specification of a conceptualization” (Gruber, 1993).

Ontologies provide a means to formally describe the domain knowledge in a
structured manner that can be shared among people and computers alike. If this
description of the knowledge is accepted as a reference by the community (e.g., the
Gene Ontology (Ashburner et al., 2000)), its representation of the reality becomes
a standard, and data integration is facilitated. This is true even if different
abstraction levels are provided from unrelated datasets, since the hierarchical
structure of ontologies supports the identification of a common ancestor for any
two related concepts, by traversing the ontology graph (Stein, 2003).

Another common use of ontologies is for data annotation: by annotating
an instance with ontology terms it is possible to obtain a description of that
instance according to the knowledge encoded in the ontology. Different instances
thus annotated can be compared based on their set of annotations, in order to
calculate their degree of (semantic) similarity (Pesquita et al., 2009). A set of
instances can also be compared against the population from which it was collected
to identify the set of ontology terms that can be used to explain what differentiates
it from the rest of the population (i.e., enrichment analysis) (Khatri et al., 2012;
Robinson & Bauer, 2011).
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1.3 Domain knowledge representation in transla-
tional medicine

The use of ontologies is invaluable in translational medicine due to the need
of data integration and exploration for its realization. As indicated before, the
use of semantic web technologies and of ontologies in particular facilitates data
integration. Additionaly, the use of OWL (a semantic web technology) as the
ontology encoding language enables the realization of inference over the explicitly
represented data in order to identify non-explicitly represented knowledge. The
exploitation of these aspects is of great interest in the data and knowledge pipeline
at the core of the diagnosis and prognosis processes, two of the possible outcomes
of a translational medicine approach. In those two processes, clinical and genetic
data need to be integrated, consumed by medical and molecular biology experts
alike, and the use of inference over both types of data can be fundamental in the
identification of specific data and patients for subsequent analysis.

Since the data used in the diagnosis/prognosis process is collected in the
context of medical practice, the resultant datasets are frequently characterized
by a small number of clinical features and a high number of missing values. These
characteristics can significantly hamper the use of such datasets for knowledge
exploration purposes (e.g., data mining), and consequently it is greatly desirable
to enrich them in some manner.

The most straightforward form of dataset enrichment would be through the
addition of more data instances or of higher quality data instances, but due to
the restricted nature of patients’ data this option is seldom available. On the
other hand, the knowledge encoded in ontologies is public, and can be exploited
to enrich translational medicine datasets.

1.4 Objectives

The thesis underlying the present work is that the representation of domain
knowledge in ontologies can be exploited to improve the current knowledge about
a disease, as well as improve the diagnosis and prognosis processes.

In order to validate this thesis, the following two objectives were defined:
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1. To create a semantic model that represents and integrates the heteroge-
neous sources of data necessary for the characterization of a disease and
of its prognosis process, exploiting semantic web technologies and existing
ontologies.

2. To develop a methodology that exploits the knowledge represented in ex-
isting ontologies to improve the results of knowledge exploration methods
obtained with translational medicine datasets.

1.4.1 Contributions

The contributions of my work are the following:

• The methodology for the creation of a semantic model in the OWL language
describing a genetic disease (Machado et al., 2010, 2012a). This methodol-
ogy is composed by numerous steps such as the identification of the data
to represent, the definition of the hierarchical relations between the data
elements, and the identification of external resources to use. All the steps
included several iterations and decision points that can be extrapolated to
any model facing the same decisions.

• A semantic model of the disease hypertrophic cardiomyopathy (used as
case-study), for which no public semantic representation existed upon the
beginning of this work. The model is composed by three modules: Clinical
Evaluation, Genotype Analysis, and Medical Classifications. The concepts
in the two first modules are mapped to external resources, mappings that
can be used to traverse between resources. The three modules can be used
both together and independently, and can be extended to represent any
disease. The model is available from https://sites.google.com/site/

hcmsemanticmodel/home-1.

• A review on the exploitation of semantic web resources in translation medicine
systems, which analyzes 11 non-commercial systems (developed from 2007
to 2013) integrating genetic and clinical data (Machado et al., 2013b).
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• The adaptation of a standard enrichment analysis (based on the hypergeo-
metric distribution) to directly use clinical and mutation data from patients
(Machado et al., 2012b, 2013a).

• The application of the adapted enrichment analysis to the improvement of
a translational medicine dataset. The methodology was tested with the
diseases hypertrophic cardiomyopathy and chronic obstructive pulmonary
disease, and three ontological resources. The evaluation of the enrichment
analysis was done based on the performance of the enriched dataset in
data mining algorithms. The methodology can be used with any structured
vocabulary and for any dataset, medical or otherwise, provided that there
are vocabularies representing the domain of knowledge of the dataset.

1.5 Document organization

The rest of the document is organized as follows:

• Chapter 2 - a state of the art chapter divided in the four following subjects:
biomedical topics; biomedical vocabularies used in this work; knowledge
representation for data integration; and knowledge representation for data
exploration.

• Chapter 3 - a description of the first part of my work, which is the repre-
sentation of knowledge for data integration. In this chapter is described the
methodology for the creation of the semantic model and the composition of
the model.

• Chapter 4 - a description of the second part of my work, which is the ex-
ploitation of knowledge representations for data exploration. In this chapter
is described the adapted enrichment methodology and the results obtained
in terms of dataset quality improvement.

• Chapter 5 - the conclusions and future possibilities of the present work.

6



Chapter 2

State of the Art

This chapter is divided in four sections.
The first section details relevant biomedical concepts such as translational

medicine and personalized medicine.
The second section introduces the biomedical vocabularies used in the present

work.
The third section presentes the main semantic web standard technologies and

tools, how domain knowledge is represented with ontologies, as well as eleven
translational medicine implementations of a semantic web approach. These im-
plementations are detailed in terms of their biomedical goal and their use of the
semantic web tools, which is compared with how the semantic web tools are best
exploited.

The fourth and final section describes the concepts and work relevant for
the second part of my work, which is the exploration of domain knowledge repre-
sented in existing ontologies for the quality improvement of translational medicine
datasets.

2.1 Biomedical background

2.1.1 Translational medicine

The bridging between basic science research and the clinical practice done by
translational medicine approaches works at two distinct levels: at the level of
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basic science research, translating it into new devices or treatments (“from the
bench to the bedside”); and at the level of clinical practice, transferring the new
treatments into its daily routine (Figure 2.1) (Wei, 2012; Woolf, 2008). Addition-
ally, knowledge in translational medicine can also flow in the contrary direction,
resulting in the initiation of new basic research based on the clinical observations
of a disease development.

Figure 2.1: Knowledge workflow in translational medicine. Translational medicine
improves the knowledge on human diseases by translating basic science research results into
new exams, devices and treatments, which are then incorporated into the clinical practice. It
also explores the knowledge collected during patient care to identify new research topics and
topics that need further research.

Delivering solutions from the “bench to the bedside” and their incorporation
into the health care practice requires that data flows from research in molecu-
lar biology, genetics and pharmacology into the clinical domain and in reverse.
Within this flow of data and knowledge, research on the molecular mechanisms
of diseases and drugs can be translated more quickly into novel treatment ap-
proaches, and observations about patients can as well lead to novel hypotheses
and experimental conditions.
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2.1.2 Personalized medicine

Many human diseases are influenced by both environmental and genetic fac-
tors (Manolio et al., 2010). One of the action fields of translational medicine
is precisely genomic medicine, which consists in exploring the molecular genetics
knowledge of diseases and translating it into: personalized treatments with more
beneficial responses and with reduced undesired effects; the prediction of disease
susceptibility; new drug targets for diseases until now untreatable (Louie et al.,
2007). For example, a clinician may analyze a patient’s mutations to explain ob-
served drug side effects or may retrieve the list of biomarkers and their functions
that have been associated with a specific cancer type.

A disease biomarker is any measurable characteristic that can be used as an
indicator of a disease (Atkinson et al., 2001), such as blood-based proteins and
genetic variants. Just as the name suggests, genetic variants are variations in the
genetic code that can occur throughout the human population. With the com-
pletion of the Human Genome Project, our potential knowledge on the molecular
pathways underlying human diseases and on the treatment of these diseases has
increased exponentially due to the possibility to associate those genetic variants
with the observable manifestations of diseases. This is an invaluable accomplish-
ment of modern medicine that can result in the association of individual genotypes
(i.e., the genetic information of a person) with individual phenotypes (i.e., the
observable characteristics of a person) (Frazer et al., 2009).

The identification of genotype-phenotype relationships is consequently an im-
portant result in translational medicine approaches that can result in timely di-
agnostics (i.e., the identification of a disease in a person) and increasingly ac-
curate prognostics (i.e. the prediction of the likely outcome of a disease in a
person).

2.2 Biomedical vocabularies

Several biomedical ontologies from the clinical and the genetic domains of knowl-
edge were used in the two parts of the present work. On the first part, the develop-
ment of a semantic model, the following vocabularies were considered: SNOMED-
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CT1; National Cancer Institute Thesaurus (NCIt) (Sioutos et al., 2007); Ontology
of Clinical Research (OCRe) (Sim et al., 2010); Gene Regulation Ontology (Beis-
swanger et al., 2008); and Sequence Ontology (Eilbeck et al., 2005). The first
three are clinical vocabularies, whereas the last two are genetic. On the second
part, the enrichment of translational medicine datasets, the following vocabu-
laries were considered: SNOMED-CT; NCIt; and the Gene Ontology (a genetic
ontology) (Ashburner et al., 2000).

All of these vocabularies are organized in hierarchies with multiple levels of
granularity and, with the exception of the Sequence Ontology, are available on
BioPortal (an ontology repository from the National Center for Biomedical On-
tology2). A brief description of each of these ontologies is provided below.

SNOMED-CT is a healthcare terminology created to record clinical informa-
tion in Electronic Health Records, covering topics such as clinical finding/disor-
der, body structure, pharmaceutical/biologic product, and social context. This
terminology currently contains more than 397,000 concepts3 (as of October, 2013).

The NCIt is a controlled terminology created by the National Cancer In-
stitute to integrate molecular and clinical cancer-related information within a
unified biomedical informatics framework. It covers topics that include cancers,
drugs, therapies, anatomy, cellular and subcellular processes, and experimental
organisms. It currently contains more than 103,000 concepts4 (as of May, 2013).

OCRe was created in the context of the Human Studies Database Project
to model features such as design type, interventions, and outcomes to support
scientific query and analysis. It currently contains more than 380 concepts5 (as
of June, 2013).

The Gene Regulation Ontology was designed to model complex events that
are part of the gene regulatory processes, with the purpose of meeting the needs
of advanced information extraction and text mining systems targeting the identi-
fication of event representations in scientific literature. In its more recent version,

1http://www.ihtsdo.org/snomed-ct/
2http://bioportal.bioontology.org/
3http://bioportal.bioontology.org/ontologies/SNOMEDCT
4http://bioportal.bioontology.org/ontologies/NCIT
5http://bioportal.bioontology.org/ontologies/OCRE
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it contains more than 500 classes1 (as of April, 2010).

The Sequence Ontology was created by a group of scientists and developers

from the model organism databases (FlyBase (Marygold et al., 2013), WormBase

(Harris et al., 2010), Ensembl (Flicek et al., 2013), SGD (Cherry et al., 2012) and

MGI (Eppig et al., 2012)) for the annotation of genomic data, which is invaluable

for sequencing experiments, bioinformatics analysis and molecular biology. This

is the only ontology not currently available on BioPortal.

Finally, the Gene Ontology resulted from a coordinated effort to create a

common description for gene and protein functions across species, since until

then each species-specific database used its own terminology. It is composed by

three orthogonal branches that enable the annotation of biological products with

terms describing: the molecular functions they perform, the biological processes

in which they are involved, and the cellular components where they are located

or of which they are a component. This ontology currently contains more than

40,000 concepts2 (as of November, 2013).

2.3 The semantic web in translational medicine

2.3.1 Technological standards in the semantic web

Over the past decade, the semantic web community, and in particular the World

Wide Web Consortium (W3C)3, has been developing a set of core technologies

to realize the vision of the semantic web. Some of these technologies have since

become de facto standards4, and have brought the semantic web to life.

The existing technologies have been defined for purposes ranging from data

and knowledge representation to data querying and data transformation. In this

section are presented the technological aspects of the semantic web that are more

relevant for data integration and knowledge representation.

1http://bioportal.bioontology.org/ontologies/GRO
2http://bioportal.bioontology.org/ontologies/GO
3http://www.w3.org/
4http://www.w3.org/standards/semanticweb/
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The Resource Description Framework (RDF) is a standard language for data
representation and interchange on the Web1. It uses the Universal Resource Iden-
tifier (URI) to identify each data element represented2. The basic structure of
RDF is the triple, a statement composed of a subject connected with an object
through a predicate, similar to narrative statements in English (e.g., “HomoSapi-
ens isA mammal.”, “Dopamin treats ParkinsonSyndrome .”). Since either of these
elements can be part of different statements, data in RDF is best visualized
through a directed graph, where the nodes represent the subjects and objects,
and the arcs represent the predicates (or relations).

Due to its very basic and simple format, RDF restricts the representation
of data to low levels of expressiveness (e.g., it does not allow the union of con-
cepts, the definition of hierarchic relations between concepts, or the definition
of cardinality in non-hierarchical relations). To overcome this limitation, two
other technologies have been proposed: the RDF Schema (RDFS)3, a specifica-
tion language for data properties based on RDF; and the Web Ontology Language
(OWL)4, a language to formally define semantics, which also enables reasoning
based on Description Logics (Baader et al., 2003). Both formal languages extend
RDF and enable the inference of new knowledge. As a result, knowledge can be
shared and at the same time assessed for formal semantic consistency.

The representation of ontologies in RDFS or OWL provides additional ad-
vantages, namely: novel interpretations of the existing data against the ontolog-
ical knowledge enabled by the mapping of data elements in RDF representation
(“instances”) to the ontological concepts (“classes” or “types”); and more detailed
semantic comparisons of concepts that exploit the expressiveness of these formats
(Couto & Pinto, 2013).

The Open Biomedical Ontologies (OBO) format5 also exists for ontology rep-
resentation, although it is not a standard semantic web technology. Due to its
popularity in the health care and life sciences domains, extensive work has been

1http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
2http://www.w3.org/standards/techs/uri#w3c_all
3http://www.w3.org/TR/rdf-schema/
4http://www.w3.org/standards/techs/owl#w3call
5http://www.geneontology.org/GO.format.obo-1_2.shtml
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done in the conversion of ontologies in this format to OWL1,2 (Tirmizi et al.,
2011).

SPARQL, a self-referencing acronym for SPARQL Protocol and RDF Query
Language3, is a query language to access RDF data. Since RDF data may be
distributed over disparate data sources (including data stores exporting RDF
from non-RDF relational databases), SPARQL has to retrieve data from all these
resources. Due to the graph structure of RDF, SPARQL queries are transformed
into graph pattern searches that rely only on the knowledge about the relations
between concepts but not on a particular data model. SPARQL is also able to
query RDFS and OWL provided that the graph pattern matching of the SPARQL
query is defined with semantic entailment relations instead of the explicit graph
structures4. Although other query languages exist for RDF (e.g., RDQL5), the
availability of a SPARQL endpoint (i.e., an interface that provides access to a
dataset through SPARQL queries) guarantees the independence from software
and implementation specifications.

In addition to the technological standards, the definition of mappings be-
tween resources is another key element in the semantic web, enabling interlinked
structured data according to the principles defined by Tim Berners-Lee: (1) use
Uniform Resource Identifiers (URIs) as names for things; (2) use resolvable URIs
(e.g., based on the HTTP protocol) so that those names can be looked up (either
by people or machines); (3) provide useful information for look-up through the
URI, using the standards (e.g., RDF, SPARQL); and (4) include links to other
URIs, so that they can discover more things6,7,8. The URI can then be used to
define any real-world entity (or “thing”), be it an object or an abstract concept
(Dodds & Davis, 2012).

Examples of real-world entities in the biomedical domain are diseases, drugs,
facts related to genes and protein functions, patient symptoms, biological mea-

1http://www.cs.man.ac.uk/~horrocks/obo/
2http://www.bioontology.org/wiki/index.php/OboInOwl:Main_Page
3http://www.w3.org/standards/techs/sparql#w3c_all
4http://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/
5http://www.w3.org/Submission/RDQL/
6http://www.w3.org/DesignIssues/LinkedData.html
7https://dvcs.w3.org/hg/gld/raw-file/default/bp/index.html
8http://www.w3.org/TR/2013/NOTE-ld-glossary-20130627/
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surements and family history. Ideally, each individual entity should have only
one URI, so that every application points to the same source, regardless of its
domain. This means that if the entity is altered in the original source, all ap-
plications pointing to it will be automatically updated. Additionally, the correct
definition of URIs ensures that mappings between resources do not lead to se-
mantic inconsistencies.

2.3.2 Knowledge representation with ontologies

In computer science the term “ontology” encompasses several types of conceptual
models such as thesauri and glossaries, in addition to formal ontologies, which
are logical structures defined by axioms and represented in formal languages (e.g.,
RDFS and OWL).

The use of ontologies is widespread in the biomedical domain due to the need
of common representations among databases and research groups, but they can
serve several other purposes (Noy & McGuinness, 2001):

• To enable reuse of domain knowledge

• To make domain assumptions explicit

• To separate domain knowledge from the operational knowledge

• To analyze domain knowledge

Following the definition of the same authors (Noy & McGuinness, 2001), an
ontology is a formal explicit description of concepts (called classes) in a domain
of discourse; of properties defined for each concept that describe various features
and attributes of the concept (called properties); and of restrictions on properties
that, for example, define which classes the properties can be associated with.

The development of an ontology can be a complex task. Among other aspects,
its complexity increases with the complexity of the domain to model. It also
requires knowledge on the ontology developing tools; for complex domains, it
takes time to analyze which part to model; it requires the evaluation of different
modeling options; and that a consensus is reached between developers and users.

14



2.3 The semantic web in translational medicine

The design of an ontology should follow three rules and six steps (Noy &
McGuinness, 2001). The rules are the following:

• There is no one correct way to model a domain - there are always viable
alternatives. The best solution almost always depends on the application
and on anticipated extensions.

• Ontology development is necessarily an iterative process.

• Concepts in the ontology should be close to objects (physical or logical) and
relationships in the domain of interest. These are most likely to be nouns
(objects) or verbs (relationships) in sentences that describe the domain.

The six ontology design steps are the following:

1. Determine the domain and scope of the ontology. The domain is the knowl-
edge to be represented in the ontology (e.g., a disease), and the scope is the
purpose of the ontology (e.g., the diagnosis of a disease).

2. Consider reusing existing ontologies.

3. Enumerate important terms in the ontology.

4. Define the classes and the class hierarchy.

5. Define the properties of classes.

6. Define the restrictions on the properties.

The properties can be of two types: data properties, and object properties.
The first are properties for which the value in the RDF triple is a data literal,
whereas the second are properties for which the value is an individual. For both
types of properties it is possible to define a domain and a range. Domain axioms
state that the subjects of the property have to belong to the class(es) set as
domain, and range axioms state that the objects of the property have to be of
the type of literal specified (for data properties) or have to belong to the class(es)
specified as range (for object properties).

The definition of restrictions is the explicit representation of data or object
properties as class descriptors.
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2.3.3 Translational medicine systems

According to my analysis, eleven systems have been reported in the scientific
literature from 2007 to 2013 that present translational medicine solutions deal-
ing with medical conditions as disparate as cardiovascular diseases, cancer and
diabetes.

Three systems focused on the cardiovascular system: one on the identifica-
tion and prioritization of candidate genes for cardiovascular diseases (Gudivada
et al., 2008); another one on genetic association studies for hypercholesterolemia
(Coulet et al., 2008); and the third one also addressing association studies but
for cerebrovascular diseases (Colombo et al., 2010).

Two systems targeted cancer and its causes: one exploring genetic association
studies for cervical cancer (ASSIST) (Agorastos et al., 2009); and the other one
identifying personalized treatments for colon cancer patients (MATCH) (Siddiqi
et al., 2008).

Two other systems targeted type 2 diabetes mellitus: one focused on the un-
derstanding of its causes to discover novel treatment hypotheses (SESL) (Rebholz-
Schuhmann et al., 2013); and the other one on genetic association studies (Pathak
et al., 2012). The latter covered hypothyroidism in addition to type 2 diabetes.

Each of the remaining four solutions tackled different biomedical tasks: the
repurposing of drugs (Qu et al., 2007); Traditional Chinese Medicine (TCM)
(Chen et al., 2007); neuroscience research (Receptor Explorer) (Cheung et al.,
2009); and congenital muscular dystrophy (Sahoo et al., 2007).

Seven of these systems integrate public resources, while the remaining four
consider only private data. In Figure 2.2 is shown the distribution of public
resources integrated in each solution.

2.3.3.1 Technical implementation

The translational medicine systems can be divided in four groups regarding their
technical goal: exploitation of RDF as a data structure; data integration with the
use of semantic web technologies; data integration through the representation of
formal semantics; and data integration for inference purposes. Gudivada et al.
(2008) developed the only system in the first group, with the goal of exploring the
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Figure 2.2: Public resources integrated by the translational medicine systems
surveyed. The resources shown on the left are those integrated by the three systems targeting
the cardiovascular system, whereas the resources shown on the right side are those integrated by
the remaining four systems. The resources integrated in the cardiovascular system sub-domain
that were also considered in at least one of the other sub-domains are underlined.
MRD - Mental Retardation Database; MPO - Mammalian Phenotype Ontology; Gene - NCBI
Gene Database; OMIM - Online Mendelian Inheritance in Man; GO - Gene Ontology; KEGG
- Kyoto Enclycopedia of Genes and Genomes; SNP - SNP Database; LSD - Locus Specific
Databases; GXA - Gene Expression Atlas; UMLS - Unified Medical Language System; GOA -
Gene Ontology Annotation; OBO - Open Biomedical Ontologies; LODD - Linked Open Drug
Data; BAMS - Brain Architecture Management System; MeSH - Medical Subject Headings.

graph structure of RDF (see Tables 2.1 and 2.2 for a compilation of the semantic
web resources used in the systems). The integrated resources were stored locally
in relational databases and instantly converted to RDF when necessary for a
specific disease and gene set. The conversion of the resources was mediated by
the Disease Card Ontology (also referred to as Disease-Drug Correlation Ontology
by Qu et al. (2007)), which was developed in OWL and included the reuse of
external resources. The authors applied a graph-theory measure to the resulting
RDF graph to score the importance of data elements (the graph nodes) in the
data network.

Four systems exploit the semantic web technologies for data integration: Che-
ung et al. (2009), Sahoo et al. (2007), Rebholz-Schuhmann et al. (2013), and
Pathak et al. (2012).

Cheung et al. (2009) present Receptor Explorer, developed by the W3Cs
BioRDF task force group to demonstrate the use of the technologies and re-
spective enabling tools in the implementation of a data federation (i.e., the data
integrated is not locally stored but rather maintained at its original location). The
system integrates resources already in RDF, mapping them at ID level, some of
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Table 2.1: Standard semantic web technologies used in the surveyed translational
medicine systems.

Medical domain Designation RDF OWL SPARQL
Pharmacology + + +

Cardiovascular diseases + + +
Diabetes mellitus Type II SESL + + +
Diabetes & hypothyroidism Mayo Clinic + +

Neuroscience Receptor Explorer + +
Hypercholesterolemia + + +

Cerebrovascular diseases +
Cervical cancer ASSIST +

Traditional Chinese Medicine TCM + +
Muscular dystrophy + +

Colon cancer MATCH +

This table lists the use of three semantic web standard technologies: RDF, OWL and SPARQL.

Table 2.2: Technical description of the surveyed translational medicine systems.

Medical domain Designation Use of Reuse of LinksOntologies
Pharmacology + +

Cardiovascular diseases + +
Diabetes mellitus Type II SESL + * +
Diabetes & hypothyroidism Mayo Clinic +

Neuroscience Receptor Explorer +
Hypercholesterolemia + +

Cerebrovascular diseases + +
Cervical cancer ASSIST +

Traditional Chinese Medicine TCM +
Muscular dystrophy +

Colon cancer MATCH +

This table shows the use of ontologies for knowledge representation, the reuse of ontologies for
both knowledge representation and data annotation (marked with *), and the use of mappings
between resources.
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which are part of the Linked Open Data cloud, namely DBpedia. It is through
this resource that the authors are able to exploit other resources in the Open
Data cloud, such as the NCBI’s Gene Database and Linked Clinical Trials. The
data can be accessed through the links between datasets and through a SPARQL
endpoint.

The muscular dystrophy system presented by Sahoo et al. (2007) was devel-
oped at the US National Library of Medicine as a contribution to the Biomedical
Knowledge Repository, and demonstrates data integration with RDF. It inte-
grates the Gene Ontology and the NCBI’s Gene Database, which were stored
locally and integrated through mappings at ID level. It is also through those
mappings that the Gene Database is connected with the Online Mendelian In-
heritance in Man knowledgebase (OMIM) (Hamosh et al., 2005), thus resulting
in an indirect integration with the other two resources. The system exploits the
use of inference rules over RDF to perform reasoning.

Rebholz-Schuhmann et al. (2013) describe SESL, a system integrating scien-
tific literature from several publishers, namely Elsevier and Nature Publishing
Group, as well as the following resources: the UniProt Knowledgebase (UniPro-
tKB) (The UniProt Consortium, 2007), the Gene Expression Atlas (GXA) (Ka-
pushesky et al., 2012), and OMIM. The resources were stored locally in RDF. In
terms of controlled vocabularies, the data in the GXA is annotated with the Ex-
perimental Factor Ontology (EFO) (Malone et al., 2010), which for this work was
mapped to the Disease Ontology (DO) (Schriml et al., 2012) in order to exploit
the existing mappings to the Unified Medical Language System (UMLS) (Boden-
reider, 2004). Mappings were also defined between the integrated resources and
external resources such as the Wikipedia1.

Pathak et al. (2012) present a system that integrates solely private data from
the Mayo Clinic Biobank. The integration is performed through the creation of
virtual RDF graphs, and the original relational schemas are mapped to several
existing ontologies such as the Translational Medicine Ontology (TMO) (Luciano
et al., 2011) and the Sequence Ontology (SO) (Eilbeck et al., 2005). Additionally,
the authors reused the Ontology for Biomedical Investigations (Brinkman et al.,
2010) and the Prostate Cancer Ontology (Min et al., 2009) to create new concepts

1http://www.wikipedia.org/

19

http://www.wikipedia.org/


2. STATE OF THE ART

and properties for the TMO, concepts that were subsequently mapped to the
National Cancer Institute Thesaurus (NCIt) (Sioutos et al., 2007).

The goal of data integration through the representation of formal semantics
was pursued in three systems: Colombo et al. (2010), Siddiqi et al. (2008), and
Chen et al. (2007).

Colombo et al. (2010) were interested in exploiting the potential of ontologi-
cal modeling to solve the interoperability difficulties associated with integrating
resources stored in different platforms, and according to different semantic rep-
resentations. The authors created the Neuroweb Reference Ontology, in OWL,
for that purpose, having established mappings between the ontology and external
resources. The access to the data is restricted, and is done through SQL queries
formulated based on the reference ontology.

The approach followed by Siddiqi et al. (2008) in the MATCH system consists
solely in the virtual integration of the data sources through the Colon Cancer On-
tology, developed in OWL. According to the authors, it enables them to explicitly
enunciate the domain knowledge and to aggregate and extract information from
disparate sources. The ontology models the medical domain and the analytical
methods used throughout the decision support process, and was used to create
the database schemas for each individual data repository maintained in relational
format.

Chen et al. (2007) implement a virtual integration of the TCM domain through
the TCM Ontology (Fikes & Kehler, 1985), developed in RDFS. For the authors,
the ontology allows them to model the domain with richer semantics, which is
necessary for the integration of the distributed resources. The data is maintained
in its original location, in relational format, but is exposed as if in RDF.

Finally, the systems developed for inference purposes were those created by
Coulet et al. (2008), Qu et al. (2007), and Agorastos et al. (2009).

The goal of Coulet et al. (2008) in the hypercholesterolemia system was to
exploit the inference capabilities of OWL to guide the selection of data (through
the identification of instances of classes) to further analyze with data mining
algorithms. To that end, all the integrated resources were converted to RDF
with the assistance of two ontologies: the SNP-Ontology1 and SO-Pharm (Coulet

1http://bioportal.bioontology.org/ontologies/39215

20

http://bioportal.bioontology.org/ontologies/39215


2.3 The semantic web in translational medicine

et al., 2006). Both ontologies were developed in OWL by the authors, the first for
the representation of genomic variations and the second for pharmacogenomics.
SO-Pharm is articulated with several external vocabularies through the reuse of
concepts. In addition to their role in the selection of patients, inference was also
used to perform consistency evaluations of the ontologies.

The purpose of Qu et al. (2007) was the identification of novel therapeutic
applications for drugs and of novel disease mechanisms implicitly represented in
the resulting RDF network of integrated resources. The Gene Ontology, one
of the resources integrated, was obtained already in RDF/XML format, but all
the other resources were converted to RDF. The integration and conversion of
the data was done with the assistance of the Disease-Drug Correlation Ontology
(already described for the system developed by Gudivada et al. (2008)). In order
to perform reasoning, the authors had to define their own set of inference rules,
since the triple store used did not provide support for direct inferencing over
OWL.

The interest of Agorastos et al. (2009) (ASSIST) to exploit the inference
capabilities of OWL resided in the possibility to automatically evaluate the disease
severity for individual patients, and to assist in the unification of the database
schemas of the participating hospitals. Inference was performed based on the
ASSIST Cervical Cancer Ontology and on sets of medical rules. The data was
converted to RDF and stored locally. The access was made available through a
tree-like hierarchical visualization of the concepts defined in the ontology.

2.3.3.2 Overview of the usage of semantic web technologies

The analysis of the eleven translational medicine examples permitted the identi-
fication of possible approaches to the problem of data integration and knowledge
representation with semantic web standard technologies, with focus on the aspects
of data and knowledge representation, use and reuse of ontologies, and definition
of mappings with external resources.

As referred in Section 2.3.1, RDF is the standard language for data repre-
sentation in the semantic web. If the resources to be integrated are already in
this format then no transformation is required, but if they are stored in other
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formats, such as relational or XML, a transformation is necessary. A third option
is possible for data originally maintained in relational databases, which consists
in exposing it as if in RDF, based on the mapping of the database schema to an
ontology in RDFS or OWL. This last option is very interesting since it avoids the
replication of the data, which is desirable to avoid different locations where it has
to be independently updated, the duplication of object identifiers, and the need
of extra storage space. The data can still be browsed and queried with SPARQL,
however, the translation of the mapping between RDF and the schemas has to
be done every time the data is accessed.

From the eleven systems described, eight use RDF (Table 2.2), of which five
use it as data storage format. The cardiovascular diseases system did not store
data in this format, but converted to RDF only the data necessary for an analysis.
Based on the advantages presented by the authors associated with the use of
semantic web technologies, and in particular RDF, it is possible to ascertain that
they were interested in benefiting from the graph-like topography of RDF, but
without converting all the data contained in their data sources of interest. In
the case of the TCM and the diabetes/hypothyroidism systems, RDF was used
to expose the integrated relational databases. In the TCM system, the results of
the queries posed to the databases were also presented in RDF.

The use of ontologies during the integration process facilitates the integration
itself by representing the domain knowledge in a formalized manner. When the
ontologies are developed in RDFS or OWL, the translation of the resources to
RDF (when such is necessary) is also facilitated, since a mapping is established
between a data element in its original format and the concept that represents it
in the ontology.

As referred in Section 2.3.2, the development of an ontology from scratch is a
non-trivial task. As such, ontologies should be reused whenever possible (ideally
ontologies widely accepted by the scientific community), since this improves the
level of integration with other systems. However, the process of reutilization is
not always straightforward: the ontology of interest can insufficiently represent
the knowledge required (under-coverage); it can model more knowledge than is
necessary (over-coverage); or it can model the knowledge not quite how we wish to
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convey it in our application. Three forms of ontology reutilization have been iden-
tified that help to deal with these shortcomings: in the case of under-coverage, it
is possible to reuse the whole ontology and add new concepts and relations; in the
case of over-coverage, it is possible to extract only portions of the ontology that
satisfy our needs (i.e., modules); if the ontology does not provide the necessary
representation, it is possible to consider just some of the concepts and relations
(thus ignoring hierarchical relations). It is important to stress out that this last
option is not suitable if one wishes to infer knowledge based on the hierarchical
organization of the ontology reused.

Seven systems use controlled vocabularies, three of which reusing existing vo-
cabularies: pharmacology, cardiovascular diseases, and hypercholesterolemia (Ta-
ble 2.2). This means that the remaining four created their own vocabulary, with
a representation of the domain knowledge not shared by any other researchers.
Despite the use of the standard technologies, this approach reduces significantly
the interoperability among applications. The developers of the cerebrovascu-
lar diseases system refer that they considered the reuse of existent resources,
namely SNOMED-CT and the Disease Ontology. However, they identified some
shortcomings: an unsuitable formulation of concepts in SNOMED-CT; and the
adoption by the Disease Ontology of a taxonomy that is different from the one
used by the clinicians participating in the project. SESL is the only system that
reuses an ontology solely for data annotation purposes.

Two other advantages of the use of ontologies are the possibility to reason
over the knowledge explicitly represented and to infer new knowledge, and to
evaluate the consistency of an ontology (i.e., verify if there are no contradictory
statements that can lead to incorrect logic assumptions). This is automatically
performed by reasoning engines over RDFS and OWL, but also over inference
rules (typically if-then clauses) that can be used either instead of RDFS/OWL
or in conjunction with it.

The use of OWL instead of RDFS enables a more expressive representation of
data, although with the possible cost of undecidability, which is the inexistence
of guaranties that any algorithm will be able to provide complete reasoning when
using complex ontologies and large knowledgebases. In order to deal with this
problem, a set of profiles was initially defined for OWL: Lite, DL and Full. Each
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of these sublanguages has increasing expressiveness over the previous one, and

consequently decreasing computational efficiency. With OWL 2, three more pro-

files have been defined: OWL EL, OWL QL and OWL RL 1. If OWL does not

convey the necessary expressiveness, inference rules can be defined to complement

it.

Another form of improving interoperability between applications is trough the

definition of mappings. They enable the explicit definition of connections between

data resources, stating for example the likeliness of resources, or between data

resources and controlled vocabularies through which data are linked with their

describing concepts. Mappings between data instances result in the disambigua-

tion of identifiers (URIs) by enabling the explicit indication of different identifiers

(URIs) as referring to the same data instance in different datasets. If such map-

pings are not done, those instances are treated as if referring to different things,

and cannot be automatically merged (a more detailed discussion on this topic was

done by Cheung et al. (2009)). All these types of mappings improve the access

to resources that have them, hence increasing the interoperability among appli-

cations that use those resources and the impact that those resources can have

in the knowledge discovery process. Despite these advantages, only five systems

exploited the use of mappings (see Table 2.2).

It is possible to have an idea of the importance of sharing resources, reusing

existing vocabularies and defining links between resources when considering that

some of the translational medicine systems already have the base work done for

a future integration with one another through the resources used. Figure 2.2

shows the data resources integrated by seven of the systems, indicating several

resources that are integrated by more than one of the systems. Additionally, the

cardiovascular system and the pharmacology system reuse the NCI Thesaurus

and SNOMED-CT2, resources that were mapped to the diabetes/hypothyroidism

system and to the cerebrovascular diseases system, respectively (Sioutos et al.,

2007).

1http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/
2http://www.ihtsdo.org/snomed-ct/

24

http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/
http://www.ihtsdo.org/snomed-ct/


2.4 Data exploration with ontologies

2.4 Data exploration with ontologies

Enrichment analysis is a technique extensively used for the functional analysis
of large lists of genes identified with high-throughput technologies, such as ex-
pression microarrays. It exploits the use of statistical methods over ontological
gene annotations to identify biological features that are represented in a gene set
under analysis more than would be expected by chance. Such biological features
are said to be enriched, or overrepresented, in the study set and are then used to
formulate a biological interpretation about it (Bauer et al., 2010; Lu et al., 2008;
Robinson & Bauer, 2011).

Enrichment analyses are normally divided in three categories: Singular En-
richment Analysis (SEA), Modular Enrichment Analysis (MEA) and Gene Set
Enrichment Analysis (GSEA). SEA works with a user-selected gene set and iter-
atively tests the enrichment of each individual ontology concept in a linear mode.
MEA builds upon the enrichment calculation made in SEA and incorporates net-
work discovery algorithms by considering the relationships between terms, which
evolves the analysis from a term-centric approach into a biological module-centric
approach. Finally, GSEA evaluates the terms individually but considering all the
genes in the experiment and not just a user-selected gene set (Huang et al., 2009).
While in all these three categories the final result is a list of ontology terms con-
sidered to be enriched, a fourth approach has been proposed that searches for the
optimal combination of terms that better explain the observed data in the user-
selected gene set. This fourth approach is a model-based approach that calculates
a score (or probability) for the entire set of ontology terms (Bauer et al., 2010;
Lu et al., 2008; Robinson & Bauer, 2011). Several tools have been developed
that implement one or more of the three main enrichment categories, such as
Ontologizer1 (Bauer et al., 2008), Onto-express (Khatri et al., 2002) and GSEA
(Subramanian et al., 2005).

SEA is the most commonly used category of enrichment analysis (Robinson
& Bauer, 2011). Its underlying statistic test is normally the Fisher’s exact test,
and the distribution considered when working with small datasets is the hyper-
geometric distribution. This distribution is applied to situations of sampling

1http://compbio.charite.de/contao/index.php/ontologizer2.html
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without replacement from a finite population when considering that the popula-
tion elements are in one of two possible states. Translating this to the enrichment
analysis, the goal is to evaluate if the genes in the population set are annotated
with a term t, which means that the two possible states for a gene are: being
annotated with the term, and not being annotated with the term. When drawing
a sample of genes from the population (thus forming the study set), the objective
is then to evaluate if the probability of annotation with term t is higher in this
sample than would be expected by chance. The expected frequency of annotation
is given by the knowledge of the population set, and if the frequency of annota-
tion in the sample is higher than in the population, then term t might be used
to explain the study set. In this type of analysis, what is being calculated is the
probability of observing at least n genes in the study set annotated with term t,
given the knowledge of: the size of the study set, the size of the population set,
and the number of genes in the population set annotated with t (Robinson &
Bauer, 2011). For a term to be considered enriched in the study set, the p-value
obtained from the Fisher’s test has to be lower than a significance level, which is
normally considered to be 0.05 or 0.1.

In terms of ontologies, the Gene Ontology is the most commonly used (Ash-
burner et al., 2000; Robinson & Bauer, 2011; Zhang et al., 2010). Other resources
that have also been explored in enrichment analysis are the Kyoto Enclycopedia of
Genes and Genomes (KEGG) (Kanehisa et al., 2012), the Medical Subject Head-
ings (MeSH)1, and the Human Disease Ontology (Gong et al., 2012; Hoehndorf
et al., 2012; LePendu et al., 2011; Schriml et al., 2012).

A fundamental aspect in any enrichment analysis is the existence of a back-
ground set of annotations, against which the enrichment is calculated. While this
background exists for resources such as the Gene Ontology (which is one of the
main reasons for its popularity) and KEGG, when dealing with clinical ontologies
this is frequently not the case. Tirrell et al. (2010) present a solution for this limi-
tation by exploiting two sets of automatically created annotations: a set obtained
by annotating the corpus of MEDLINE abstracts, and a set obtained by annotat-
ing public biomedical databases (the National Center for Biomedical Ontology’s
(NCBO) Resource Index). This approach uses any of the ontologies available

1http://www.nlm.nih.gov/mesh/
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through BioPortal, a repository currently containing more than 360 ontologies
(as of October 2013). LePendu and colleagues adopt a similar methodology, in
which they use the title and abstract of publications that originated manual Gene
Ontology annotations instead of the corpus of MEDLINE abstracts (LePendu
et al., 2011). In these publications are identified disease terms from the Human
Disease Ontology, terms that are thus associated with the genes annotated with
the Gene Ontology terms.

The terms tested in these analysis are not only those that directly annotate
the genes, but also their ancestors. Given the high number of tests that are
performed with resources such as the Gene Ontology (with more than 38,000
terms on January, 2013), a multiple-testing correction is necessary to reduce
the possibility of false-positive results. The most conservative multiple-testing
correction is the Bonferroni method, which is obtained simply by multiplying
the calculated p-value by the number of tests performed. The fact that it is a
very conservative correction means that some true-positives can be considered
as false-positives. In order to deal with this limitation, several other methods
have been developed that still provide the adequate control over the occurrence
of false-positives (Robinson & Bauer, 2011).
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Chapter 3

Knowledge representation for data
integration

In this chapter is described the methodology underlying the development of the

OWL semantic model that serves as a data integration framework for heteroge-

neous data collected in a translational medicine context.

As happens with an ontology, a semantic model is defined by axioms and is

represented in a formal language; it is evaluated in terms of consistency; and it is

evaluated by the domain experts. However, contrarily to ontologies, a semantic

model has not been subjected to a formal evaluation as proposed by Gangemi

et al. (2006) is terms of its structural, functional, and usability-profiling dimen-

sions.

3.1 Methods

The semantic model was developed in OWL to comply with the semantic web

standards and to take advantage of external resources published in the semantic

web. It was chosen over RDFS due to its increased vocabulary1, namely in terms

of property definition (e.g., Symmetric, Inverse) and of class property restriction

(e.g., AllValuesFrom, SomeValuesFrom).

1http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
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3.1.1 Semantic model development

The model was developed according to the guidelines presented in Section 2.3.2,
through the following steps:

1. Definition of the domain and the scope of the model.

2. Search for existing ontologies representing the defined domain and scope.

3. Identification of the concepts to represent in the model.

4. Representation in OWL Lite of the concepts and respective properties, in-
cluding hierarchical and non-hierarchical relations.

5. Identification of new concepts to represent in the model from existing on-
tologies.

6. Validation of the concepts and relations continuously done by the biomed-
ical experts.

7. Consistency evaluation of the model (i.e., confirmation that no syntactic or
semantic errors exist) periodically done with the reasoner HermiT1 available
in Protégé.

The identification of ontologies of interested was performed using BioPortal,
from the National Center for Biomedical Ontology (Noy et al., 2009). The con-
cepts initially identified in collaboration with the biomedical experts were used as
search terms. Given the translational medicine case-study, I searched for ontolo-
gies from the medical and molecular biology domains that contained the concepts
of interest, and that represented these concepts in a hierarchical organization in
accordance with the vision of the disease domain conveyed by the experts. The
adequacy of the ontologies was evaluated based on their scope, and the initial
list was narrowed down based on the number of concepts of interest the ontology
contained.

After the identification of the ontologies to reuse, these were processed in the
following manner:

1http://hermit-reasoner.com/
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1. The regions of interest in each ontology were identified.

2. The hierarchical structure of the semantic model was refined in accordance
with the ontology considered.

3. The concepts in the model were renamed in accordance to the ontology.

4. The concepts in the model were manually mapped to the equivalent concept
in the ontology, through a hasDbXRef property 1.

5. When the ontology provided a definition for the mapped concept, it was
added to the model.

Considering that the ontologies were also exploited to identify new concepts to
include in the model, they served the dual purpose of aiding in the development
of the model and providing mappings.

The development of the semantic model followed a combination development
process Noy & McGuinness (2001), in the sense that both a top-down and a
bottom-up approach were used: first a top-down, when defining with the domain
experts the concepts to consider; and afterwards a bottom-up, when identifying
generalizations for some of the concepts.

The Protégé-OWL editor (version 3.4.2)2 was used to create the model.

3.1.2 The hypertrophic cardiomyopathy semantic model

Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic disease
that may afflict as many as 1 in 500 individuals, and is the most frequent cause
of sudden cardiac death among apparently healthy young people and athletes
(Alcalai et al., 2008; Maron et al., 2009). It can manifest itself either in a sporadic
form or in a familial form, and in the latter case the first-degree relatives of the
patient may also be at risk.

Since the disease is characterized by a variable clinical presentation and onset,
its clinical diagnosis is difficult prior to the development of severe or even fatal

1http://www.geneontology.org/formats/oboInOwl#hasDbXref
2http://protege.stanford.edu/
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symptoms (Alcalai et al., 2008; Maron et al., 2009). Therefore, its early diagnosis
is extremely important.

Approximately 900 mutations in more than 30 different genes are currently
know to be associated with the disease 1 (Ho, 2010), and the existence of a single
mutation is sufficient for a positive diagnosis. However, the severity of HCM may
not be the same for two individuals, even if direct relatives, since the presence
of a given mutation can have a benign pattern in one individual and result in
sudden cardiac death in another (Alcalai et al., 2008; Brito et al., 2003; Maron
et al., 2009).

The domain of the semantic model was identified as the disease, HCM, and
the scope as the representation of the data necessary for the diagnosis and the
prognosis of HCM. No public existing ontology was found that corresponded to
these specifications.

Upon consultation with domain experts (that included a medical doctor and
molecular biologists working with HCM patients and patients’ samples, respec-
tively), the set of concepts to represent in the model was identified based on the
HCM characterization workflow shown in Figure 3.1.

Figure 3.1: HCM characterization workflow. Schematic representation of the activities
(semi-rectangular shapes) that characterize HCM and of the corresponding generated data ele-
ments (box-like shapes). Dashed lines connect activities with generated data elements, whereas
full lines connect data elements with the activities in which they are used. The symbols used
in this representation are based on the work developed by Constantine (2009).

1http://www.hgmd.org
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The following elements of Figure 3.1 were represented as sibling classes in the
semantic model:

• Clinical History (examples of clinical history elements are present and past
symptoms).

• Exams’ Results (e.g., electrocardiogram and echocardiogram).

• Biological sample, with Blood sample as subclass.

• Nucleic acid, with an associated property hasType to indicate if it is DNA
or RNA.

• Mutation, which includes the elements SNPs and Biomarkers. The differ-
ence between mutations and SNPs is the frequency of occurrence in the
population, which is indicated by an associated property hasFrequency.
Biomarkers, in the case of HCM, are the mutations associated with the
disease.

• Amplification fragment. This class represents segments of the genome to be
screened for mutations.

• Primers, represented as Amplification primer. Represents auxiliary labora-
tory elements used in the obtention of amplification fragments.

The concepts Muscle tissue sample and Transcript variant were not included
in the model (since they are not included in the scope of the model), and two ad-
ditional concepts were identified with the experts, which were represented also as
sibling classes: General Characterization of the patient (e.g., height and weight)
and Treatments (e.g., prescription of drugs).

All the possible elements of each class were identified at this stage. However,
their representation was not straightforward since three approaches were possible:
to represent them as properties, as instances, or as subclasses of the respective
main class. Neither of the first two options was the best solution since in that
format it was not easy to maintain semantic coherence, nor to directly relate each
individual data element with, for instance, a data value or a collection date. The
last option implied the existence of instances for those subclasses, which meant
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that it was necessary to define the lowest level of granularity to be considered in
the model. The option chosen was the last one, the representation as subclasses,
and considering that the patients are the central element of the HCM model, all
instances of all classes in the model represent a measurement of or a statement
concerning a patient.

After this decision, it was clear that the classes relative to the molecular bi-
ology analysis could not be represented as sibling of the remaining classes, since
they represent data elements concerning a laboratory procedure performed in a
sample from a patient. This resulted in the division of the model in two modules:
Clinical Evaluation and Genotype Analysis. A third module was added to the
semantic model to represent auxiliary medical information, Medical Classifica-
tions, which contains medical standards used to characterize clinical elements.
The module HCM Clinical Evaluation imports the two other modules, Genotype
Analysis and Medical Classifications.

The transition from a non-modular to a modular model corresponded to the
first major milestone in the development of the model. The second one was
the incorporation in the model of the knowledge represented in the following
ontologies, selected for the module Clinical Evaluation: SNOMED-CT (version
2010_01_31)1, NCIt (version 10.03) (Sioutos et al., 2007), and the Ontology of
Clinical Research (OCRe; version 0.95) (Sim et al., 2010).

SNOMED CT and NCIt were used in the reorganization of the clinical data
elements, which resulted in modifications such as the following: the General Char-
acterization class was considered as a subclass of Clinical History ; the Treatments
and Exams’ Results classes were considered as siblings under a parent class Pro-
cedure, represented as sibling of Clinical History. The classes in the Clinical
Evaluation module were also renamed according to the ontologies reused: the
class Clinical History according to Clinical history and observation findings from
SNOMED CT; and the class Procedure according to Intervention or Procedure
from NCIt.

A third and final milestone in the development of the model was a second phase
of ontology reuse, with extensive alterations in the model hierarchical structure
and the addition of new concepts, in particular to the module Genotype Analysis.

1http://www.ihtsdo.org/snomed-ct/
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In this iteration of the model the mappings to OCRe were removed due to the
deprecation of the respective concepts (e.g., Health care site), and two new on-
tologies were considered: the Gene Regulation Ontology (version 0.5, released on
04_20_2010) (Beisswanger et al., 2008), and the Sequence Ontology (released on
11_22_2011) (Eilbeck et al., 2005). Both ontologies were reused in the Genotype
Analysis module.

The Medical Classifications module does not contain mappings to ontologies,
but its concepts are linked to Web pages where their definition can be found.

In addition to the two major milestones indicated, the semantic model suffered
several rounds of adjustments.

3.2 Results

The HCM semantic model is composed by three modules:

• Clinical Evaluation - containing administrative concepts and clinical data
elements necessary for the prognosis of HCM patients.

• Genotype Analysis - containing concepts associated with the genetic testing
of biological samples.

• Medical Classifications - an auxiliary module containing medical standards
used in the characterization of clinical elements such as patient symptoms.

The following sections contain a detailed description of each module and of
the mappings established between the main module, Clinical Evaluation, and
the other two modules. The description of the modules is separated in the two
iterations corresponding to the milestones of external ontologies reuse.

3.2.1 First phase of ontology reuse

3.2.1.1 Module Clinical Evaluation

The main module of the HCM model comprises six high-level classes (see Table
3.1 for a complete characterization), two of which pertaining to administrative
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Table 3.1: Composition of the modules Clinical Evaluation, Genotype Analysis,
and Medical Classifications.

Module Iteration Top-level
concepts Total concepts Properties

Clinical 1 6 55 61
Evaluation 2 5 63 60
Genotype 1 6 7 39
Analysis 2 7 19 39
Medical Clas-
sifications 1 & 2 2 4 2

For each module is shown the number of top-level concepts, the total number of concepts, and
the number of data and object properties. The row marked Iteration 1 shows the composition
after the first phase of ontology reuse, whereas Iteration 2 after the second phase.

elements, Health Care Site and Clinician, and the remainder four to the subjects
and their clinical data: Subject, Clinical History, Procedure and Heart Disease.

Fig. 3.2 provides a visual representation of the high-level classes and their
direct subclasses. The non-hierarchical relations between classes are not repre-
sented.

The class Subject corresponds to a central concept in this model, and is related
to all the other concepts. It includes three subclasses: Patient(s) - individuals
diagnosed with HCM; Family Member(s) - direct relatives of Patient(s); and
Control(s) - individuals that do not suffer from HCM.

The classes Health Care Site and Clinician do not have subclasses. Health
Care Site refers to the institutions where the subjects receive health care services
and Clinician to the medical doctors involved in the assessment or administration
of treatment to a Subject.

The class Clinical History has five subclasses that refer to clinical elements
collected upon questioning or direct examination of the subject, namely: Cardio-
vascular Measurement, Cardiovascular Finding, Body Measurement, Resuscitated
Sudden Death and Death. The subclass Cardiovascular Measurement contains
the elements Blood Pressure and Pulse Rate. Cardiovascular Finding contains
six elements: Angina, Congestive Heart Failure, Cardiac Auscultation Finding,
Palpitations and Syncope. Body Measurement includesWeight and Height. While
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Figure 3.2: Graphical representation of the module Clinical Evaluation. The figure
shows the top classes of the module and their direct subclasses (when existent). It was obtained
with Jambalaya plug-in of Protégé Editor.

Resuscitated Sudden Death has no subclasses, Death has two: Sudden Death and
Non Sudden Death.

Regarding the class Procedure, its subclasses represent the different types
of procedures the subject can be subjected to, namely: Diagnostic, Laboratory
and Therapeutic Procedure(s). Diagnostic Procedure(s) include Cardiac Magnetic
Resonance Imaging, Echocardiography and Electrocardiographic Monitoring. Lab-
oratory Procedure(s) consist of tests carried out in biological samples, such as
blood, and those considered are the Biomarker Analysis (in particular Genetic
Marker Analysis) and the Hematology Test(s). Therapeutic Procedure(s) com-
prise the subcategories Prescription Of Drug and Cardiac Procedure, the latter
including Medical Device Implantation, Septal Ablation and Septal Myectomy.

The class Heart Disease contains cardiomyopathies (i.e., diseases of the heart’s
muscle), in particular Hypertrophic Cardiomyopathy and Dilated Cardiomyopathy.

For the classes Clinical History, Procedure and Heart Disease, the instances
are records of that clinical element pertaining to a Subject. Considering, for
example, the classes Pulse Rate and Dilated Cardiomyopathy, the instances are,
respectively, a pulse rate measurement for a given Subject and the Subject to
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which the disease was diagnosed.

3.2.1.2 Module Genotype Analysis

The design of the Genotype Analysis module was oriented to the maintenance
of data related to biological specimens and laboratorial activities, rather than of
Subject ’s records. It contains six high-level classes and a total of 39 properties
(see Figure 3.3 and Table 3.1). All classes are related to the process of identifying
genetic markers associated with HCM in biological samples.

Figure 3.3: Graphical representation of the module Genotype Analysis. The figure
shows the top classes of the module, namely: Biological Sample (with subclass Blood Sample),
Nucleic Acid, Amplification Fragment, Mutation, Gene and Amplification Primer. The figure
was obtained with Jambalaya plug-in of Protégé Editor.

The activities underlying a genotype analysis involve the manipulation of Bi-
ological Sample(s), from which Nucleic Acid(s) are extracted. From the latter
it is possible to obtain Amplification Fragment(s), which correspond to the seg-
ments of the genome to be screened for HCM-related Mutation(s). Each of these
Mutation(s) is located in a specific Gene. All these non-hierarchical relations are
represented in the model under the form of restrictions applied to the classes.

3.2.1.3 Module Medical Classifications

The module Medical Classifications is intended for the maintenance of data nec-
essary for the characterization of clinical elements. Such data can be either stan-
dards or guidelines, developed to provide some degree of uniformity in the de-
scription of medical observations made by medical practitioners.
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Figure 3.4: Concept Heart Failure Classification, from the module Medical Clas-
sifications. All the instances of this concept are shown, as well as its single sub-concept (New
York Heart Association). The properties of the instance NYHA_Class2 are also shown.

It contains two high-level classes (Table 3.1), Angina Classification and Heart

Failure Classification, referring to functional classification systems created to as-

sess the degree of severity of two Cardiovascular Finding(s), respectively angina

and heart failure. Both classes have one subclass: Angina Classification has the

classification system for angina created by the Canadian Cardiovascular Society1,

and Heart Failure Classification has the classification system for heart failure cre-

ated by the New York Heart Association (Criteria Committee of the New York

Heart Association, 1994).

Each classification system relates the onset of the symptoms to everyday activ-

ities of the patients. In the case of angina, the Canadian Cardiovascular Society

defined 5 degrees of severity, from Class 0 to Class 4. According to this classifica-

tion system, a Subject with angina CSS_Class1 feels chest pain associated only

with strenuous exercise, while other with angina CSS_Class4 feels chest pain at

any level of physical exertion, even at rest. CSS_Class1 and CSS_Class4 are

instances of the class Canadian Cardiovascular Society.

As an example of this module, Figure 3.4 shows the concept Heart Failure

Classification and the data properties for one of its instances, NYHA_Class2.

This module was not changed in the second phase of ontology reuse.

1http://www.ccs.ca/home/index_e.aspx
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3.2.1.4 Mapping between modules and with external ontologies

The mapping between the module Clinical Evaluation (ce:) and the modules
Genotype Analysis (ga:) and Medical Classifications (mc:) is done through the
following non-hierarchical relationships (here represented as triples, where the
central elements are object properties):

• ce:Subject ce:hasBiologicalSample ga:Biological Sample

• ce:Laboratory Procedure ce:performedInBiologicalSample ga:Biological Sam-
ple

• ce:Angina ce:hasAnginaClassification mc:Angina Classification

• ce:Congestive Heart Failure ce:hasHeartFailureClassification mc:Heart Fail-
ure Classification

Patients’ mutations can be identified through this relationship between Clin-
ical Evaluation and Genotype Analysis since in the latter module a Biological
Sample is connected with the mutations identified therein.

In terms of mappings to external ontologies, a total of 78% of the concepts in
the module HCM Clinical Evaluation were mapped, 6% of which to OCRe (see
Table 3.2). Regarding the latter, the mapped terms originate from its superclass
clinical:Role, specifically Subject, Clinician and Health Care Site. In respect to
the module Genotype Analysis, it contains only one link to OCRe occurring be-
tween the concept Biological Sample and the term clinical:Sample, a subtype of
clinical:Role.

In all iterations of the semantic model, new terms were considered only when
no ontology contained a suitable representation.

3.2.2 Second phase of ontology reuse

The main differences between the previous version of the model and the one shown
in this section are the structural organization of the module Clinical Evaluation
and the increased number of concepts in the module Genetic Analysis.
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Table 3.2: Percentage of concepts in the HCM semantic model mapped to external
ontologies.

Module Iteration Vocabulary (%) Total
SNOMED-CT NCIt OCRe SO GRO (%)

Clinical 1 44 27 6 - - 78
Evaluation 2 42.9 42.9 - - - 85.8
Genotype
Analysis 2 - 63.2 - 26.3 5.3 94.8

The percentages are indicated for the modules Clinical Evaluation and Genotype Analysis, and
for each individual ontology. SNOMED-CT and the NCI Thesaurus (NCIt) were considered in
both phases of ontology reuse, while OCRe only in the first (Iteration 1), the Sequence Ontology
(SO) and the Gene Regulation Ontology (GRO) only in the second (Iteration 2). In Iteration
1, the module Genotype Analysis had only one concept mapped to OCRe.

Figures 3.5 and 3.6 show the current version of the module Clinical Evaluation,
and Figure 3.7 of the module Genotype Analysis.

In this version of the module Clinical Evaluation, the class Subject was re-
named Person, which has two subclasses: Patient and Physician (previously
named Clinician). The class Clinical History was divided in two sibling classes:
Clinical Finding and Observable Entity. The first contains clinical elements ob-
tained either upon questioning or observation of the patient (e.g., Angina and
Cardiac Auscultation Finding), while the second only upon observation (e.g.,
Body Mesurement(s) such as Weight, and Pulse Rate). The class Procedure has
three new subclasses: Management Procedure (e.g., Precription of Drug); Surgi-
cal Procedure (e.g., Myectomy, which is the excision of a portion of muscle); and
Biomarker Analysis, which was previously represented under Laboratory Proce-
dure.

The module Genetic Analysis has a new class Protein, several new subclasses
of Mutation, and the class Amplification Primer was renamed to Primer, with
two new subclasses added.

As a result of the renaming of some of the classes, the mappings between the
modules Clinical Evaluation and Genetic Analysis are now represented by the
following relationships:

• ce:Patient ce:hasBiologicalSample ga:Biological Sample
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Figure 3.5: Hierarchical structure of the module Clinical Evaluation (Part I).
Three of the top-level concepts (Clinical Finding, Health Care Site and Observable Entity) are
shown, with all their sub-concepts visible.

• ce:Biomarker Analysis ce:performedInBiologicalSample ga:Biological Sam-
ple.

In terms of mappings to ontologies, SNOMED-CT was used in the Clinical
Evaluation module, the NCIt in the Clinical Evaluation and Genotype Analy-
sis modules, the Gene Regulation Ontology and the Sequence Ontology in the
Genotype Analysis module (see Table 3.2). More precisely, each vocabulary was
considered in the following top-level concepts:

• SNOMED CT: Clinical Finding and Observable Entity

• NCIt: Health Care Site, Person and Procedure (from Clinical Evaluation);
Biological Sample, Gene, Mutation and Protein (from Genotype Analysis)

• Gene Regulation Ontology: Nucleic Acid Molecule
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Figure 3.6: Hierarchical structure of the module Clinical Evaluation (Part II).
Two of the top-level concepts (Person and Procedure) are shown, with all their sub-concepts
visible. Defined classes (i.e., classes containing necessary and sufficient conditions) are indicated
with the symbol ≡.
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Figure 3.7: Hierarchical structure of the module Genotype Analysis. All seven
top-level concepts are shown, with all their sub-concepts visible. Defined classes (i.e., classes
containing necessary and sufficient conditions) are indicated with the symbol ≡.

• Sequence Ontology: Primer

The total number of properties shown in Table 3.1 for the modules Clinical
Evaluation and Genotype Analysis includes both Data Properties (see Figures 3.8
and 3.11) and Object Properties (see Figures 3.9 and 3.10 for the module Clinical
Evaluation, and Figure 3.12 for the module Genotype Analysis).

All the properties were defined in terms of domain and range, and were all
used in the definition of class restrictions.

Figure 3.13 shows a detailed example of the annotations and the description
of a class, HCM Patient.

3.3 Discussion

3.3.1 Modeling decisions

The HCM model was initially designed as a stand-alone module containing all
concepts necessary to characterize a patient in terms of the disease, based on the
activities involved in its prognosis. However, this approach was not compatible
with the integration of the clinical elements with the molecular biology elements
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Figure 3.8: Data properties of the module Clinical Evaluation.

of the biomarker analysis. On the one hand, this analysis is considered as an exam

by a medical doctor, and so it should be included under the concept Procedure.

On the other hand, it has several associated concepts (e.g., Gene and Mutation)

with information to be maintained, which are not used by the clinician. These

different views and characterization needs of the data resulted in the division of

the model in two modules: one comprising the data elements needed by a medical

doctor to evaluate a patient in terms of HCM (Clinical Evaluation); and another

one comprising the data elements needed by a molecular biologist to perform a

biomarker analysis in a Subject sample (Genotype Analysis). In this manner, the

latter data elements are suitably integrated with the clinical evaluation of the

disease, and at the same time maintained as laboratory elements that can be

managed independently of the Subject medical data.

The division of the model in modules results in three additional advantages:

it facilitates the reuse of the model as a whole and of its modules individually;
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Figure 3.9: Object properties of the module Clinical Evaluation (Part I).

it facilitates the extension of the model, either with concepts pertaining to the
same disease or any other; it permits different views of the data without added
effort, useful to the different types of end-user - medical doctors and molecular
biologists.

In respect to the reuse of existing ontologies, the first difficulty was the selec-
tion of which to use. The concepts of interest were searched in all the vocabularies
available in BioPortal, and this was a challenging task since several vocabularies
exist that fulfilled the requirement. After evaluating the most promising options,
the initial list was progressively narrowed down.

During the ontology selection phase, it was necessary to decide whether to use
one or more ontologies, and upon their selection, whether to reuse entire modules
or individual concepts. I opted to use more than one ontology for each module for
two reasons: (i) none of the vocabularies contained a complete list of the concepts
of interest; (ii) the representation of the concepts in the vocabularies was not
always the most suitable for my purposes. I opted to reuse individual concepts
since my goal was not to convey the most complete representation of the disease,
but rather to represent the concepts necessary for its prognosis, as well as include a
minimum set of concepts that would facilitate the mapping between the semantic
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Figure 3.10: Object properties of the module Clinical Evaluation (Part II).

model and the vocabularies. One of the concerns throughout the development of
the model was precisely to maintain it as simple as possible, in order to avoid
overwhelming the biomedical end-users with superfluous information.

The reuse of existing ontologies proved to be advantageous at more than
one level: it assisted in the identification of additional concepts and relations of
interest; and it will facilitate the future addition of concepts since they can be
searched in the vocabularies and easily integrated in their hierarchy.

The selection of the ontologies was based on their content and also on their
structural organization. I searched for structures similar to the representation in-
tended for the semantic model and that better conveyed the vision of the domain
experts. However, the adoption of these structures was not always straightfor-
ward, namely in the case of the classes Laboratory Procedure and Diagnostic
Procedure. In the first phase of ontology reuse, these classes were defined as sib-
lings rather than the first as subclass of the second, even though the procedures
considered under Laboratory Procedure can, in fact, be considered under Diag-
nostic Procedure(s). I advocate the organization proposed by NCIt insomuch as
it separates procedures that involve the manipulation of a biological sample (Lab-
oratory Procedure) from those that do not and are performed directly upon the
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Figure 3.11: Data properties of the module Genotype Analysis.

subject as a whole (Diagnostic Procedure).
In addition to previous issues, several others emerged during the development

of the model, as shown in the following list:

• Absent concepts: Inexistence of a concept of interest in the vocabulary.

• Complexity: Excess of concepts and of level of detail in general.

• Placement: Different possibilities concerning the placement of a concept
in the hierarchy of the model.

• Overlapping regions: Existence of overlapping concepts/regions of inter-
est on different vocabularies.

• Absent textual definitions: Inexistence of textual definitions for con-
cepts of interest.
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Figure 3.12: Object properties of the module Genotype Analysis.

The Absent concepts issue occurred in the modules Clinical Evaluation and
the Genotype Analysis. In the former module, a concept Cardiologist in charge
was needed to represent the cardiologist that is primarily responsible for the HCM
patient. According to the specifications of the biomedical experts guiding the de-
velopment of the model, this cardiologist is the only medical doctor associated
with the patient for this disease, and is responsible for every data element and
evaluation represented in the model. Neither SNOMED CT nor NCIt provide
such a representation, and the notion of “Physician” and of specific medical spe-
cialties such as “Cardiologist” are represented under Occupation, which can be
interpreted as a label rather than a representation of a person. In this situation,
I opted to use the concept Person from NCIt to aggregate Patient and Physician,
and added Cardiologist in Charge as a sub-concept of Physician. In the Genotype
Analysis module, it was necessary to represent the Translocation and Indel sub-
concepts of Mutation (as shown in Figure 3.7). While Mutation was mapped to
the NCIt, this vocabulary does not include the indicated sub-concepts, and thus
they were mapped to the Sequence Ontology.
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Figure 3.13: Class HCM Patient from the module Clinical Evaluation. All the
details of the class are shown, including annotation and description statements.

The solution followed to deal with the Complexity of the controlled vocabu-
laries, both in the form of number of concepts and detail of representation, was to
consider only the concepts necessary for the description of the disease and for the
structure of the model. The structure is particularly important for the mapping
of the HCM model to external resources and for the future addition of concepts.
An example of the complexity issue occurred with the concept Procedure. This
concept is mapped to Intervention or Procedure from the NCIt, which contains
thirteen sub-concepts, of which only five were considered. If all thirteen were
used, the level of complexity of the model would be increased without any benefit
for the end-users.

The Placement issue derived from the decision of not representing more than
one parent per concept (i.e. multiparenting), even at the expense of a possible
loss of detail. This decision was motivated by the intention of creating a model
that would provide a straightforward experience to the biomedical experts when
inputing or retrieving data, and thus avoid possible uncertainties due to multiple
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options. As such, I was occasionally forced to evaluate different possibilities
for the placement of a concept in the hierarchy of the model. This occurred
with concepts from SNOMED CT, in which situations I recurred to the NCIt
to help me identify a solution common to both vocabularies. One such case
occurred with Syncope, a Clinical Finding that is represented in SNOMED CT as
a sub-concept of three different concepts: Clinical history and observation finding,
Finding by site and Disease. In the HCM model are considered the concept
Clinical Finding and its sub-concept Disease, and the decision was whether to
place Syncope directly under the first-level Clinical Finding or the second-level
Disease. In NCIt the concept is represented directly under the concept Finding
and not under its sibling Disease or disorder, and consequently the choice made
was to place it under Clinical Finding in the HCM model. Similar decisions
were made for the concepts Angina and Congestive heart failure, which are sub-
concepts of Finding by site and Disease in SNOMED CT, and of Finding in
NCIt.

The Overlapping regions issue results from the existence of more than one
vocabulary describing the same domain of knowledge. According to the accepted
OBO Foundry Smith et al. (2007) principle named “clearly delineated content”
(FP0051), ontologies should be orthogonal to each other in order to enable the
utilization of two different ontologies to define complementary perspectives on
the same entities. In essence, I agree with this principle since the existence of
a single ontology for a given domain would mean that anyone wanting to reuse
it in an application semantic model would just have to follow it and consider
the necessary knowledge. On the other hand, in light of my experience with the
development of the HCM model, I consider that the availability of more than one
vocabulary can be positive when no vocabulary is accepted as the single reference
by the community.

An example of the overlapping regions in the Clinical Evaluation module
occurred with the concept Outcome, a Clinical Finding with possible examples of
outcomes being decreased pain and death. Clinical Finding and its sub-concepts
are mapped to SNOMED CT, but this vocabulary represents Death in a high-
level class Event, which is not necessary for the HCM model. Moreover, NCIt

1http://www.obofoundry.org/wiki/index.php/FP_005_delineated_content
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has a concept Outcome under Finding, which also includes several sub-concepts
relevant for the HCMmodel: Death, Cardiac death, Sudden cardiac death and Non
sudden cardiac death. In this situation the decision was to consider Outcome and
its sub-concepts from NCIt in the Clinical Finding concept, which is otherwise
mapped to SNOMED CT.

Two other examples of the overlapping regions issue in the Genotype Analy-
sis module involved the concepts Primer and Nucleic acid molecule. Primer is
represented in the NCIt under Drug, Food, Chemical or Biomedical Material and
without sub-classes. However, in the Sequence Ontology, a Primer is a Sequence
feature with the two sub-classes Forward Primer and Reverse Primer, which were
included in the HCM model. In the second situation, the concept Nucleic Acid
was intended to represent actual nucleic acid molecules extracted from biological
samples. While both the NCIt and the Sequence Ontology include the concept
Nucleic Acid, neither define it suitably for our purposes: the former defines Nu-
cleic acids as “A family of macromolecules”, whereas the latter defines Nucleic
acid as “An attribute describing a sequence consisting of nucleobases bound to
repeating units”. Consequently, I opted to use the Gene Regulation Ontology
exclusively for its concept Nucleic acid molecule, which is more suitably defined
as a “A complex, high-molecular-weight biochemical macromolecule composed of
nucleotide chains that convey genetic information”.

The overlapping regions issue is of particular importance given that using a
domain representation that is unfamiliar to the end-users of the HCM prognosis
framework may hinder significantly their acceptance of the framework.

The Absent textual definitions issue was perceived as a significant burden
to the reuse of the affected concepts, since there where situations in which their
intended use was not readily understandable. This was a common problem when
using SNOMED CT, as this vocabulary lacks definitions for most of its concepts.
For example when representing the concept Cardiologist in Charge, it was only
possible to interpret the intended use of the concept Cardiologist based on the
hierarchical organization of the vocabulary. By contrast, the NCIt has available
detailed descriptions for the majority of its concepts, which provides a greater
assistance when more complex decisions have to be made. This issue is not new,
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and has already been the subject of an OBO Foundry principle (FP 006 textual
definitions1).

An issue particular to the development of the Genotype Analysis module oc-
curred with the concepts Nucleic acid molecule, Gene and Protein. As repre-
sented in the Gene Regulation Ontology, these concepts are related with each
other: Gene is represented under DNA, which in turn is a Nucleic acid ; and
Nucleic acid and Protein are both Information biopolymer(s) (“macromolecules
that harbor biological information in their structures”). However, these relation-
ships could not be conveyed in the HCM because what we want to represent
under each concept is conceptually different: Nucleic Acid Molecule, the physical
molecules; Gene, the list of genes associated with HCM (not the physical genes);
and Protein, the list of proteins encoded by the genes associated with HCM (not
the physical proteins).

3.3.2 Participation in the semantic web

The semantic model was built to be a part of the semantic web. On the one
hand, it was built in accordance to the guidelines defined for ontologies (one of
the pillars of a semantic web approach) and with the same rigor, lacking only a
formal evaluation. This evaluation was not done solely because it was not one
of the objectives of this work, but rather a future work. On the other hand, it
was built in accordance to four principles that accelerate data integration and its
exploration, in particular when following a semantic approach (Machado et al.,
2013b):

1. Represent data and knowledge with technologies that serve as a standard
across the entire community.

2. Define mappings between resources.

3. Provide access to the resources so they can be integrated.

4. Share the effort of resource integration among data providers and data users.

1http://www.obofoundry.org/wiki/index.php/FP_006_textual_definitions
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The model was developed in OWL, and any data mapped to or modeled
according to this model is in the RDF format.

The two main modules were mapped to external resources, which permits that
both tools and people traverse from one resource to the other.

The model is available to the general public from https://sites.google.

com/site/hcmsemanticmodel/home-1. The actual data modeled is not available
since it is private data from patients. Since the model has open-access, anyone
can use it, as well as alter it to add more concepts, relations or mappings to
additional resources.

3.3.3 Integration of translational medicine data

The creation of a new semantic model was necessary in my work since no publicly
available ontology existed for the case-study.

The model fulfills the first objective of my thesis as it effectively represents
and integrates the clinical and genetic data necessary for the characterization of
a disease and its prognosis process, exploiting existing ontologies.

The representation of the data according to the model results in the following
advantages:

• The data is automatically converted to a language that is independent of the
original domain of knowledge. This facilitates the integration of heteroge-
neous data sources, and the integration with data from any other application
that uses the same language.

• The data is automatically integrated through the relations defined between
concepts, relations that also exist between the modules representing clinical
and genetic data.

In terms of the role the semantic model has in the improvement of the current
knowledge about a disease and its diagnosis and prognosis, it occurs essentially
at two levels: at the level of the knowledge explicitly stated; and at the level of
the inferred knowledge.

Knowledge explicitly stated is any declared information. Examples of de-
clared information are the following statements (written according to the model):
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“DC001 isA HCM Patient”; “DC001 undergoesDiagnosticProcedure P11”; “P11
isA Ecochardiography”. Based on this type of statement, it is possible to query
the modeled data to retrieve the mutations a patient has; if there is any relation
between certain mutations and any of the elements tested in a Hematology Test
(e.g., total cholesterol); if there is any relation between certain mutations and the
type or dosage of the prescribed drugs. Since the basic unit of the module Clinical
Evaluation is the patient and the basic unit of the module Genotype Analysis is
the genetic test performed in a patient’s biological sample, a query can be made
to test the relation between virtually any concept in the two modules.

On the other hand, inferred knowledge is any knowledge that is not explicitly
stated but that can be automatically inferred based on the knowledge explicitly
stated. Inference normally results in the attribution of a class to an instance,
which is only possible due to the explicit definition of the concepts, their prop-
erties and their relations with other concepts. One of the situations in which
inference is possible is when a class has a necessary and sufficient condition, that
is, when to be part of that class an instance has to absolutely verify that condi-
tion. In the module Clinical Evaluation, the class HCM Patient is an example
of such a situation, in which the condition is to be diagnosed with Hypertrophic
Cardiomyopathy (stated in “hasDiagnosedHCM some HypertrophicCardiomyopa-
thy”, see Figure 3.13). Based on this condition, the class HCM Patient is auto-
matically attributed to the subject “DC001” in the following explicit statement:
“DC001 hasDiagnosedHCM ObstructiveHCM” (note that “ObstructiveHCM isA
HypertrophicCardiomyopathy”). Another situation is when a property is defined
in terms of domain and range. In the HCM semantic model, the domain of the
property undergoesProcedure was defined as the class Patient, whereas the range
as the class Procedure. Based on this definition, the statment “DC001 undergoe-
sProcedure LaboratoryProcedure” results in the inference that “DC001” is of type
Patient and “LaboratoryProcedure” is of type Procedure.

Performing inference is a powerful tool. Since it was not one of my objectives
in this work, its capabilities were not thoroughly explored, which leaves ample
space for future work possibilities. Nonetheless, the consistency checks done
throughout the development of the model ensure that it can be used for inference
purposes in its current state.
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Whether the model is exploited in terms of explicit or inferred knowledge,
ultimately any advancement in the prognosis and diagnosis processes translates
itself in new knowledge about the disease.

The decisions made throughout the development of the model took into con-
sideration that the final model should be usable for diseases other than its case-
study, and consequently the methodology as well as the individual decisions can
also be exploited in other translational medicine contexts.

Despite the usefulness of the semantic model in all the aspects discussed, it
cannot itself mitigate the effects of problematic factors in the analysis of the mod-
eled data. Examples of those factors are a small number of instances, a small
amount of data collected, or the existence of missing values, all of which are
present in the dataset of the model. These factors are not uncommon on trans-
lational medicine datasets, and it was thus interesting to study if the enrichment
of a dataset with knowledge from ontologies with a greater range of information
could improve its quality for data exploration purposes.
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Chapter 4

Knowledge representation for data
exploration

This chapter describes the exploitation of ontologies for the improvement of trans-
lational medicine datasets.

At the center of the methodology developed to perform that exploitation is
the technique called enrichment analysis, which in this work was adapted from
the standard implementation in enrichment analysis tools, to be able to used data
from patients instead of genes.

The enrichment methodology presented in this chapter is the first step in
the development of a two-part prognosis approach, conceived to assist medical
doctors in the evaluation of patients in respect to the likelihood of suffering a
disease-related event or having a specific disease manifestation (see Figure 4.1).
The second part of the prognosis approach consists in performing a classification
step with the results obtained in the first to perform a prognosis prediction.

In this work, the use of classification algorithms serves a dual purpose: from
a medical perspective, it assists in the evaluation of the patients; and from an
informatics perspective, it evaluates if the inclusion of the enriched ontology terms
in the datasets improves their predictive capabilities.

Two datasets were used as case-study: one of patients with the disease hy-
pertrophic cardiomyopathy (HCM, presented in Chapter 3), with focus on the
occurrence of a specific event - sudden cardiac death (SCD); another of patients
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Figure 4.1: Schematic representation of the prognosis methodology. The prognosis
methodology has two parts. The first part (on the left-side), receives as input data from pa-
tients that is mapped to biomedical ontologies. It performs an enrichment analysis to identify
a list of ontology terms considered to be enriched, which are used to create profiles for individ-
ual patients. These profiles are then subjected to an evaluation step (the second part of the
methodology, on the right-side) that results in the evaluation of the prognosis for the patients.

with chronic obstructive pulmonary disease, with focus in one of the manifesta-

tions of the disease - emphysema. Both diseases are characterizable with clinical

and genetic data, and this data is analyzed in terms of the enrichment of ontology

terms. The clinical data in both datasets includes features such as symptoms and

measurements, whereas the HCM genetic data refers to the presence or absence

of mutations. The genetic data associated with chronic obstructive pulmonary

disease was not used in this work since it was obtained for groups of patients

instead of individual patients.

The rest of the chapter is divided in two parts: in the first is described the

work pertaining to the enrichment analysis; and in the second, the evaluation of

the enrichment results done with data mining algorithms.

4.1 Enrichment analysis

In this section is described the enrichment methodology designed to analyze ge-

netic and clinical data from patients (adapted from a Singular Enrichment Anal-

ysis approach), followed by the application of the methodology to the analysis

of the two datasets of patients: HCM, in respect to the occurrence of SCD; and

COPD, in respect to the presence of emphysema.
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4.1 Enrichment analysis

4.1.1 Methods

4.1.1.1 Genetic data analysis

Two enrichment analyses were devised for analysis of genetic data from patients:
an enrichment profiling and a differential enrichment.

Both patient analyses differ from the standard enrichment analysis in the two
following aspects:

• In the standard analysis, only one set of genes is analyzed, such as the
genome of an organism. In the patient analysis, several sets of genes are
taken into consideration, exactly one set for each patient.

• In the standard analysis, the frequency of annotation of a term is given by
the number of genes annotated with that term. In the patient analysis, the
frequency of annotation is given by the number of mutated genes annotated
with the term.

Enrichment profiling

The purpose of this analysis is to characterize the genotype of a group of
patients (e.g., the patients positive for a disease-related event), based on the
set of mutations they have. Since the knowledge of these mutations is normally
not available for the complete genome of a patient but only for a set of genes
associated with the disease under analysis, the characterization is performed by
comparing the information of the genes mutated in the patients with the complete
set of genes in the genome. Genes associated with the disease but not tested are
treated as genes without mutations just as happens with the genes not associated
with the disease.

Given a group of patients, for each of which is known his/her set of mutations,
and the set of Human protein-coding genes, the enrichment profiling analysis is
performed as follows:

• Define the population set as the union of the genes in the genome of all the
patients.
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• Define the study set as the union of the genes mutated in all the patients
(see Figure 4.2).

• Find all ontology terms annotating at least one gene mutated in the patients.

• Calculate the population set frequency of annotation (PFreq) of term t as
follows:

PFreq(t) =
n∑
1

count(gene(t)) (4.1)

where n is the total number of patients, and gene(t) is a gene annotated
with t (see Figure 2).

• Calculate the study set frequency of annotation (SFreq) of term t as follows:

SFreq(t) =
n∑
1

count(mut_gene(t)) (4.2)

where mut_gene(t) is a mutated gene annotated with t.

• Apply Fisher’s exact test to calculate the probability of enrichment of term
t.

• Perform a multiple-testing correction (e.g., Bonferroni) over the p-values
obtained.

• Consider term t as enriched in the study set if p-value(t) < α (e.g. 0.05 or
0.1).

In this methodology, the inputs are: the set of genes in the Human genome;
the set of genes mutated in the patients; and the set of ontology terms annotating
the genes. The output is the list of ontology terms and their respective p-values
(not corrected and/or corrected).
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Figure 4.2: Representation of the population and study sets in the enrichment
profiling analysis. The two sets of dots represent the genome of two patients, from the same
group (e.g., with SCD). The smaller, yellow set of dots, corresponds to the genes mutated in the
patient; the larger, white set of dots, corresponds to the entire genome of the patient: genes not
mutated (outside the yellow set) and genes mutated. In these sets of genes, blue dots represent
genes annotated with a term of interest (t); gray dots represent genes not annotated with t.
In the profiling analysis, the study set is the union of the genes mutated in all the patients;
the population set is the union of the genome of all the patients. The annotation frequency is
then calculated by counting the total number of genes annotated with the term in the study
set (study frequency) and in the population set (population frequency).

Differential enrichment

The purpose of this analysis is to identify differentiating features between a
group of patients with a particular characteristic, for example being positive for
a disease-related event, and all the patients with the disease. This analysis is also
based in the set of mutations the patients have, considering the mutations in the
study group vs. the mutations in all the patients.

Given a group of patients with a disease, a sub-group of those patients with
a study characteristic, and the set of mutations in each group:

• Define the population set as the union of the genes mutated in the group
of patients with the disease.

• Define the study set as the union of the genes mutated in the sub-group of
patients with the study characteristic.

• Find all ontology terms annotating at least one gene mutated in the sub-
group of patients.
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• Calculate the population set frequency of annotation (PFreq) of term t as
follows:

PFreq(t) =
n∑
1

count(mut_gene(t)) (4.3)

where n is the total number of patients with the disease, and mut_gene(t)
is a mutated gene annotated with t.

• Calculate the study set frequency of annotation (SFreq) of term t as follows:

SFreq(t) =
n∑
1

count(mut_gene(t)) (4.4)

where n is the number of patients in the sub-group with the study charac-
teristic.

• Apply Fisher’s exact test to calculate the probability of enrichment of term
t.

• Perform a multiple-testing correction (e.g., Bonferroni) over the p-values
obtained.

• Consider term t as enriched in the study set if p-value(t) < α (e.g. 0.05 or
0.1).

In this methodology, the inputs are: the set of genes mutated in the patients;
and the set of ontology terms annotating the genes. As before, the output is the
list of ontology terms and their respective p-values.

Genetic data analysis of HCM

Four enrichment experiments were performed, two enrichment profiling anal-
yses and two differential enrichment analyses, with the Gene Ontology. These
experiments are described below in accordance with the steps previously indi-
cated for each analysis.

Enrichment profiling for the group of patients positive for SCD:
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• Population set: 18,759 genes x 14 patients

• Study set: 16 mutated genes, corresponding to 4 distinct genes

• GO terms obtained for the previous 4 genes

• PFreq: number of genes annotated with t in the 14 patients

• SFreq: number of mutated genes annotated with t in the 14 patients

Enrichment profiling for the group of patients negative for SCD (from now on
referred to as no-SCD):

• Population set: 18,759 genes x 69 patients

• Study set: 100 mutated genes, corresponding to 7 distinct genes

• GO terms obtained for the previous 7 genes

• PFreq: number of genes annotated with t in the 69 patients

• SFreq: number of mutated genes annotated with t in the 69 patients

Differential enrichment for the HCM patients and the sub-group of SCD pa-
tients:

• Population set: 116 mutated genes, corresponding to the 7 distinct genes
mutated in the 83 patients

• Study set: 16 mutated genes, corresponding to the 4 distinct genes mutated
in the 14 SCD patients

• GO terms obtained for the 7 genes

• PFreq: number of mutated genes annotated with t in the 83 patients

• SFreq: number of mutated genes annotated with t in the 14 SCD patients

The differential enrichment for the HCM patients and the sub-group of no-
SCD patients differs only from that of the SCD patients in the two following
points:
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• Study set: 100 mutated genes, corresponding to the 7 distinct genes mutated
in the 69 no-SCD patients

• SFreq: number of mutated genes annotated with t in the 69 no-SCD patients

In all the analyses a Bonferroni correction was performed, and 0.1 was the
confidence level considered.

4.1.1.2 Clinical data analysis

The enrichment analysis devised for the clinical data corresponds to the differ-
ential analysis described above for the genetic data. As such, its purpose is the
identification of differentiating features between a group of patients with a par-
ticular characteristic and all the patients with the disease. The analysis is based
on the clinical features themselves in the case of boolean and numeric features,
and on the values of the features in the case of categorical features.

This clinical differential analysis differs from the standard enrichment analysis
in the form how each instance is identified to be annotated with a term: in the
standard analysis, the genes are directly annotated with the ontology term; in
the patient analysis, the patients are indirectly annotated with the ontology term
through their clinical features. More concretely, a patient is considered to be
annotated with a given term if at least:

• One Boolean feature annotated with that term has a positive value

• One value of a categorical feature is annotated with the term

• One numerical feature annotated with that term has a known value

Given a group of patients with a disease, a sub-group of those patients with
a study characteristic, and the set of clinical features in each group, the clinical
differential analysis is performed as follows:

• Define the population set as the group of patients with the disease.

• Define the study set as the sub-group of patients with the study character-
istic.
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• From the set of clinical features, exclude those used to define the classifica-
tion of the patients (i.e., the features used to verify if they are positive or
negative for the study characteristic).

• Find all ontology terms annotating at least one feature or one value of a
feature present in the set defined in the previous point.

• Calculate the population set frequency of annotation (PFreq) of term t as
follows:

PFreq(t) = count(patient(t)) (4.5)

where patient(t) is a patient with the disease annotated with t.

• Calculate the study set frequency of annotation (SFreq) of term t in the
same manner as PFreq, but only for the sub-group of patients with the
study characteristic.

• Apply Fisher’s exact test to calculate the probability of enrichment of term
t.

• Perform a multiple-testing correction (e.g. Bonferroni) over the p-values
obtained.

• Consider term t as enriched in the study set if p-value(t) < α (e.g. 0.05 or
0.1).

In this methodology, the inputs are: the set of patients, with their respective
values for each clinical feature; and the set of ontology terms annotating the
clinical features. As happened on the genetic analyses, the output is the list of
ontology terms and their respective p-values.

Clinical analysis of the disease datasets

A total of four clinical enrichment experiments was performed, conidering the
following datasets and the respective group of patients:
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• HCM and the sub-group of patients with SCD.

• HCM and the sub-group of patients without SCD.

• COPD and the sub-group of patients with emphysema.

• COPD and the sub-group of patients without emphysema.

The differential enrichment of the group of HCM patients and the sub-group
of SCD patients was performed as follows:

• Population set: 83 patients with HCM

• Study set: 14 patients with HCM and positive for SCD

• Ontology terms obtained for all the clinical features with known value for
at least one patient in the population set

• PFreq: number of patients in the population annotated with term t

• SFreq: number of patients in the study set annotated with term t

The other differential enrichments were performed in the same manner, but
considering the respective population and study set sizes: 83 and 69 for HCM and
the sub-group of patients with SCD; 155 and 32 for COPD and the sub-group of
patients with emphysema; 155 and 123 for COPD and the sub-group of patients
without emphysema.

4.1.1.3 Datasets

Hypertrophic cardiomyopathy

The HCM dataset is composed by clinical and genetic features characteriz-
ing 83 patients, which was previously collected from Portuguese hospitals and
molecular biology research laboratories. From these 83 patients, 14 are positive
for SCD and the remaining 69 are negative for SCD. Table 4.1 characterizes the
clinical dataset in terms of the distribution of features in the two classes of pa-
tients, Table 4.2 indicates the percentage of patients with known values for each
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Table 4.1: Characterization of the HCM clinical features in terms of their distri-
bution in the two patient classes: SCD and no-SCD.

Clinical feature Feature value SCD (%) no-SCD (%)

Sudden death (SD) True 5 (36) 0
False 9 (64) 69 (100)

Resuscitated SD True 3 (21) 0
False 8 (57) 69 (100)

Cardioverter defibrillator True 9 (64) 0
False 2 (14) 69 (100)

Non-sudden death True 0 0
False 14 (100) 69 (100)

Obstructive HCM True 4 (29) 8 (12)
False 1 (7) 17 (25)

Non-obstructive HCM True 1 (7) 17 (25)
False 4 (29) 8 (12)

SD family history True 3 (21) 1 (1)
False 2 (14) 25 (36)

HCM form Familial 9 (64) 32 (46)
Sporadic 2 (14) 37 (54)

Hypertrophy morphology

Apical 4 (29) 8 (12)
Septal 5 (36) 16 (23)

Concentric 0 3 (4)
Concentric/Septal 0 5 (7)

Blood pressure
Normal 4 (29) 22 (32)

Hypotension 0 1 (1)
Hypertension 0 5 (7)

Gender Male 6 (43) 41 (59)
Female 5 (36) 25 (36)

Age

[0,20] 0 5 (7)
]20,40] 2 (14) 11 (16)
]40,60] 3 (21) 15 (22)
>60 3 (21) 10 (14)

Indicated for each feature are its possible values, the number of SCD and no-SCD patients for
each value and the respective percentages.

feature, and Table 4.3 shows the number of SNOMED-CT and NCIt annotations

for each feature.
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Table 4.2: Characterization of the HCM clinical features in terms of the percent-
age of SCD and no-SCD patients with known values.

Clinical feature SCD no-SCD
Sudden death (SD) 100 100
Resuscitated SD 79 100
Cardioverter defibrillator 79 100
Non-sudden death 100 100
Obstructive HCM 36 36
Non-obstructive HCM 36 36
SD family history 36 38
HCM form 79 100
Hypertrophy morphology 65 46
Blood pressure 29 41
Gender 79 96
Age 57 61

From the total set of clinical features, the following three were used to define
which patients are positive for SCD: sudden death, resuscitated sudden death, and
cardioverter defibrillator. The first two indicate if the patient suffered a sudden
cardiac death, either resuscitated or not, whereas the third indicates if the patient
has an implanted cardioverter defibrillator. This device prevents the occurrence
of SCD by delivering an electric charge when cardiac arrhythmia is detected, and
it is implanted after a resuscitated sudden death occurred or when there is a very
high risk of SCD occurrence. Patients are then considered positive for SCD if
they are positive for at least one of the three features. Considering the three
features instead of just two resulted in an increase of 4 SCD positive patients.

The genetic features are the mutations associated with the disease, which are
represented as Boolean variables. From the total 569 mutations associated with
the disease, only 78 were found in the HCM patients. These occur in 7 distinct
genes (shown in Table 4.4), all of which are mutated in at least one no-SCD
patient. The SCD patients show mutations in only 4 of those 7 genes: MYBPC3,
MYH7, CSRP3, and TNNT2. The number of mutations identified per patient
ranges from 1 to 5, with an average of 1.8.

68



4.1 Enrichment analysis

Table 4.3: Characterization of the HCM clinical features in terms of their anno-
tation with SNOMED-CT and NCIt.

Clinical feature Feature value Annotations
Snomed CT NCI Thesaurus

Sudden death (SD) - 11 0
Resuscitated SD - 11 0
Cardioverter defibrillator - 6 0
Non-sudden death - 23 0
Obstructive HCM - 0 0
Non-obstructive HCM - 0 12
SD family history - 26 0

HCM form Familial 0 19
Sporadic 0 0

Hypertrophy morphology Apical 12 0
Septal 4 0

Concentric 7 0
Concentric/Septal 0 0

Blood pressure
Normal 18

0Hypotension 27
Hypertension 31

Gender Male 22 0Female 22
Age - 0 0

The genotyping of the patients was done in two manners: with a microarray
able to detect 508 mutations associated with HCM, and high-resolution melting
analysis (HRM) (Wittwer et al., 2003) followed by sequencing. The HRM anal-
ysis was used to analyze individual exons to identify the presence of mutations,
whereas the sequencing permits the identification of the exact mutation. Some of
the patients were analyzed with both techniques, whereas others with only one
of the techniques. HRM can be used to test for mutations not present in the
microarray and/or to confirm the results obtained with the microarray. One of
the reasons to use HRM instead of the microarray is that when patients are tested
after a family member was diagnosed, only the mutations found in this one are
searched for. Additionally, the identification of only one mutation is sufficient for
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Table 4.4: Genes used for the genetic characterization of the HCM patients.

Gene SCD no-SCD GO annotations
MYBPC3 4 25 202
MYH7 9 36 192
CSRP3 1 4 138
TNNT2 2 20 178
TNNI3 0 13 173
MYL2 0 1 133
MYH6 0 1 251

Indicated for each gene are the number of SCD and no-SCD patients with at least one mutation
in it, and the number of GO annotations.

a positive diagnosis, and the overall process is cheaper.

Chronic obstructive pulmonary disease

Chronic obstructive pulmonary disease (COPD) is a common disease charac-

terized by persistent airflow limitation. It is usually progressive and associated

with an enhanced chronic inflammatory response in the airways and the lung to

noxious particles or gases (such as cigarette smoke) (GOLD). Approximately 2.7

million deaths were caused by COPD in 2000, establishing this disease as the

fourth leading cause of death in the world (Alexandre, 2011).

The chronic airflow limitation characteristic of COPD is caused by a mixture

of small airways disease and emphysema. The latter is one of the several structural

abnormalities present in patients with COPD, and consists in the destruction of

the gas-exchanging surfaces of the lungs (alveoli) (GOLD).

COPD results from gene-environment interactions, being cigarette smoking

the best studied risk factor. Studies show that among people with the same

smoking history, not all will develop COPD due to differences in genetic predis-

position to the disease, or due to how long the person lives (since living longer will

allow a greater lifetime exposure to the risk factors). Additionally, these factors

may also be related in more complex and subtle ways. For example, gender may
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influence whether a person starts smoking or is subjected to specific occupational
or environmental exposures (GOLD).

The COPD dataset contains 155 patients, 32 positive for emphysema and 123
negative. For this analysis, only the clinical set of features was considered, since
it was the only one available for individual patients. Table 4.5 characterizes the
clinical dataset in terms of the distribution of the features in the two classes of
patients, Table 4.6 shows the percentage of patients with known values for each
feature, and Table 4.7 shows the number of SNOMED-CT and NCIt annotations
for each feature.

Table 4.5: Characterization of the COPD clinical features in terms of their dis-
tribution in the two patient classes: emphysema and no-emphysema.

Clinical feature Feature value Emphysema (%) no-Emphysema (%)

Gender Male 13 (41) 78 (63)
Female 19 (59) 45 (37)

GOLD stage

I 10 (31) 30 (24)
II 17 (53) 37 (30)
III 0 0
IV 0 0

Race

Black or African
American 3 (9) 5 (4)

Asian 0 1 (1)
Caucasian/White 29 (91) 117 (95)
American Indian
or Alaska Native 0 0

Smoker True 11 (34) 62 (50)
False 21 (66) 60 (49)

Emphysema True 32 (100) 0
False 0 123 (100)

In this table are shown only categorical and Boolean features. For each feature are indicated
its possible values, the number of patients with and without emphysema for each value and the
respective percentages. The total number of patients with emphysema and without emphysema
is 32 and 123, respectively.

From the features shown on Table 4.6, FEV1 stands for forced expiratory vol-
ume in one second (%) and FVC for forced vital capacity (%), which is the total
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Table 4.6: Characterization of the COPD clinical features in terms of the per-
centage of patients with and without emphysema with known values.

Clinical feature Emphysema no-Emphysema
Gender 100
GOLD stage 84 54
Race 100
Smoker 100 99
Emphysema 100
Age 100
Height 100
Weight 100
Pre-FEV1 100 99
Post-FEV1 100
Pre-FEV1/FVC 100 99
Post-FEV1/FVC 100
W_Aperc_Mean_Large 100
W_Aperc_Mean_Medium 100
W_Aperc_Mean_Small 100
W_Aperc_RAB 100
Frac_950 100
Frac_910 100
TNF_A_40 100
IL_6_12 100
IL_13_26 100
W1_Distance 100 99
CCP 99 99
SPD 100 100
NT_Pro_BNP 91 80
PRED_DLCO 100
Best_DLCO 100
BEST_PRED_DLCO 100
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amount of air blown out in one breath. The prefixes “Pre” and “Post” indicate
that the respiratory test was done, respectively, before and after the administra-
tion of a bronchodilator. The features Frac_950 and Frac_910 are measures of
the destruction of the pulmonary alveoli obtained from computed tomography
scans, and TNF_A_40, IL_6_12 and IL_13_26 are inflammation indicators.
W1_Distance is a measure of the distance the patient can walk per unit of time;
CCP stands for clara-cell protein 16, a protein that appears to protect the res-
piratory tract against oxidative stress and inflammation (Broeckaert & Bernard,
2000); SPD stands for pulmonary clara cell, a circulating surfactant protein; and
D_LCO is the carbon monoxide diffusion capacity, which is a measure of gas
transfer across the alveolar capillary membrane (Fitting, 2000).

Table 4.7: Characterization of the COPD clinical features in terms of their an-
notation with SNOMED-CT and NCI Thesaurus.

Clinical feature Feature value Annotations
Snomed NCIt

Gender Male 22 0Female 22

Race

Black or African American 4 0
Asian 4 0
Caucasian/White 13 0
American Indian or Alaska Native 4 0

Smoker 21 0
Emphysema 23 0
Height 0 3
Weight 0 4
Pre-FEV1 10 0
Post-FEV1 10 0
TNF_A_40 0 5
IL_6_12 33 0
IL_13_26 0 6
PRED_DLCO 15 0
Best_DLCO 15 0
BEST_PRED_DLCO 15 0

Features without annotations are not shown.
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4.1.1.4 Ontology annotations

A total of three ontologies were used to test the adaptation of enrichment anal-
ysis to translational medicine datasets: one genetic, the Gene Ontology (as of
the release of October 4th, 2012) (Ashburner et al., 2000); and two clinical,
the National Cancer Institute Thesaurus (as of the release of June 6th, 2013)
(Sioutos et al., 2007) and the Systematized Nomenclature of Medicine-Clinical
Terms (SNOMED-CT, as of the release of May 8th, 2013)1.

All these ontologies are available in BioPortal, and its Web service Annotator
was used to retrieve the ontology terms annotating the features in the dataset.
The service was used with the default settings2, with the exception of the fol-
lowing: levelMax, set to ’999’; longestOnly and isVirtualOntologyId, both set to
’true’. The first setting indicates that both direct and indirect annotations (up to
the root of the ontology) are retrieved. The second, longestOnly, indicates that
the annotations retrieved match the longest term matching phrase. In the exam-
ple of the query term ”concentric hypertrophy” this means that annotations for
“concentric” or “hypertrophy” are not retrieved. The last setting, isVirtualOntol-
ogyId, is recommended to be set to ‘true’, and specifies that the virtual ontology
identifier (stable across ontology versions) is used instead of the ontology version
identifier.

In the case of the genetic features, the query terms given to the Annota-
tor were the official gene names (according to the HUGO Gene Nomenclature
Committee3). In the case of the clinical features, the query terms used were their
labels, or the label of the feature values for categorical features. Since the original
labels can differ from the label or the synonyms of the terms in the ontology, and
in order to ensure that the Annotator retrieved annotations for the higher number
possible of features, the following measures were taken: a) a manual verification
of the labels and synonyms was made; and b) when there were discrepancies, the
original label of the feature was replaced by the label in the ontology.

1http://www.ihtsdo.org/snomed-ct/
2http://www.bioontology.org/wiki/index.php/Annotator_User_Guide#Annotator_

Web_Service_Parameters
3http://www.genenames.org/

74

http://www.ihtsdo.org/snomed-ct/
http://www.bioontology.org/wiki/index.php/Annotator_User_Guide#Annotator_Web_Service_Parameters
http://www.bioontology.org/wiki/index.php/Annotator_User_Guide#Annotator_Web_Service_Parameters
http://www.genenames.org/


4.1 Enrichment analysis

The clinical features used in the definition of the patients’ class (i.e., SCD or
no-SCD) were not considered in the enrichment analysis nor in the subsequent
data mining analysis.

The set of genes in the Human genome was obtained from the GeneCards
Database1 and the set of GO annotations from the GOA database (Barrell et al.,
2009), as of the releases of October 4th, 2012. From the total set of Human
protein-coding genes, only 18,759 were annotated with GO terms. All types of
GO annotations were considered, including inferred from electronic annotation.

The genetic enrichment analysis was performed for the three types of GO
terms: biological process, molecular function, and cellular component. In order
to filter out uninformative GO terms, we considered only terms with information
content (IC) above 60%. The IC of a term t is given by the expression (Resnik,
1995):

IC(t) = − log2
f(t)

f(root)
(4.6)

where f(t) is the annotation frequency of the term (i.e. the number of distinct
gene products it annotates) and f(root) is the frequency of annotation of the
root term of the GO (which corresponds to the total number of annotated gene
products). In this work, we used the annotations to Human genes to compute the
IC, including annotations with all evidence codes. In order to obtain a normalized
IC, we divided the IC values by the scale maximum (log2 f(root)).

4.1.2 Results

In this section are presented the results of the enrichment analyses performed
with the genetic data from HCM patients, and with the clinical data from HCM
and COPD patients.

4.1.2.1 Genetic data analysis

Enrichment profiling

1http://www.genecards.org/
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For SCD patients, the study set contains 16 mutated genes (total for the 14
SCD patients) and the population set contains 18,759 x 14 genes (the number
of GO annotated protein-coding Human genes multiplied by the number of SCD
patients). For no-SCD patients, the study set contains 100 mutated genes (total
for the 69 no-SCD patients) and the population set contains 18,759 x 69 genes (see
Table 4.8 for a compilation of the number of genes analyzed in both enrichment
analyses).

Table 4.8: Number of genes considered in the profiling and the differential en-
richment analyses.

Enrichment test Study set Population set

Enrichment profiling SCD 16 18,759 x 14
no-SCD 100 18,759 x 69

Differential enrichment SCD 16 116
no-SCD 100 116

Table 4.9: Number of enriched terms in each of the genetic analyses performed.

Number of enriched terms

Analysis
Profiling Differential

SCD no-SCD SCD vs.
no-SCD

no-SCD
vs. SCD

Bio.Proc. noCorr 30 39 0 2
Bonf 19 33 0 0

Mol.Func. noCorr 13 21 1 1
Bonf 11 19 0 0

Cel.Comp. noCorr 10 10 0 2
Bonf 10 10 0 0

Total noCorr 53 70 1 5
Bonf 40 62 0 0

For each enrichment analysis the table indicates the number of terms of each GO type (biological
process, molecular function and cellular component), with p-value below 0.1, when considering
no multiple-testing correction (noCorr) and with Bonferroni correction (Bonf).
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As shown in Table 4.9 (in the column Total), the enrichment profiling analysis
identified the following number of enriched terms (p-value < 0.1): 53 for SCD
and 70 for no-SCD, without multiple-testing correction; 40 for SCD and 62 for
no-SCD, with Bonferroni correction.

Tables 4.10, 4.11 and 4.12 show, respectively, the top 10 enriched biological
process (BP), molecular function (MF) and cellular component (CC) terms for
the SCD patients. The full set of results is available in Appendix A. The results
obtained with no-SCD differ from those obtained with SCD only in the 18 terms
shown in Table 4.13. The full set of results for no-SCD is available in Appendix
B.

Table 4.10: Top 10 enriched biological process terms (Gene Ontology), obtained
in the profiling analysis of SCD patients.

Name p-value p-Bonf SFreq PFreq
muscle filament sliding 7.7E-40 4.1E-38 94% 0.21%
actin-myosin filament sliding 7.7E-40 4.1E-38 94% 0.21%
ventricular cardiac muscle tissue morpho-
genesis 7.7E-40 4.1E-38 94% 0.21%

ventricular cardiac muscle tissue develop-
ment 2.4E-39 1.3E-37 94% 0.22%

actin-mediated cell contraction 6.8E-39 3.6E-37 94% 0.24%
regulation of heart rate 1.3E-31 6.9E-30 81% 0.26%
adult heart development 6.8E-25 3.6E-23 56% 0.07%
positive regulation of ATPase activity 2.9E-15 1.5E-13 38% 0.09%
regulation of ATPase activity 2.6E-14 1.4E-12 38% 0.12%
regulation of muscle filament sliding 1.0E-12 5.4E-11 25% 0.02%

p-value corresponds to the value without multiple-testing correction, whereas p-Bonf is the
corresponding value with Bonferroni correction; SFreq and PFreq are the annotation frequencies
in the study and population set respectively.
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Table 4.11: Top 10 enriched molecular function terms (Gene Ontology), obtained
in the profiling analysis of SCD patients.

Name p-value p-Bonf SFreq PFreq
structural constituent of muscle 2.9E-35 1.6E-33 88% 0.25%
actin-dependent ATPase activity 1.1E-26 6.1E-25 56% 0.05%
microfilament motor activity 1.8E-23 9.4E-22 56% 0.11%
myosin heavy chain binding 3.3E-11 1.8E-09 25% 0.04%
ATPase activator activity 9.1E-11 4.8E-09 25% 0.05%
titin binding 2.1E-10 1.1E-08 25% 0.06%
ATPase regulator activity 4.0E-10 2.1E-08 25% 0.07%
myosin binding 7.6E-09 4.0E-07 25% 0.14%
troponin C binding 5.3E-06 2.8E-04 13% 0.02%
troponin I binding 8.4E-06 4.4E-04 13% 0.03%

p-value corresponds to the value without multiple-testing correction, whereas p-Bonf is the
corresponding value with Bonferroni correction; SFreq and PFreq are the annotation frequencies
in the study and population set respectively.

Table 4.12: Top 10 enriched cellular component terms (Gene Ontology), obtained
in the profiling analysis of SCD patients.

Name p-value p-Bonf SFreq PFreq
muscle myosin complex 2.4E-37 1.3E-35 81% 0.10%
myosin filament 2.4E-37 1.3E-35 81% 0.10%
myosin II complex 1.1E-35 5.8E-34 81% 0.13%
stress fiber 4.1E-20 2.2E-18 56% 0.25%
actin filament bundle 7.3E-20 3.8E-18 56% 0.27%
C zone 9.2E-15 4.9E-13 25% 0.01%
striated muscle myosin thick filament 1.0E-12 5.4E-11 25% 0.02%
A band 4.7E-09 2.5E-07 25% 0.13%
troponin complex 2.2E-05 1.1E-03 13% 0.04%
striated muscle thin filament 6.6E-05 3.5E-03 13% 0.07%

p-value corresponds to the value without multiple-testing correction, whereas p-Bonf is the
corresponding value with Bonferroni correction; SFreq and PFreq are the annotation frequencies
in the study and population set respectively.
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Table 4.13: Enriched terms in the profiling analysis of no-SCD patients (genetic
data), not identified in the SCD patients.

Name p-value p-Bonf SFreq PFreq
Biological Process

regulation of systemic arterial blood pres-
sure by ischemic conditions 6.0E-41 4.4E-39 13% 0.00

neurological system process involved in
regulation of systemic arterial blood pres-
sure

3.4E-25 2.5E-23 13% 0.00

regulation of smooth muscle contraction 6.6E-19 4.9E-17 13% 0.00
visceral muscle development 5.3E-03 3.9E-01 1% 0.00
muscle cell fate specification 5.3E-03 3.9E-01 1% 0.00
atrial cardiac muscle tissue morphogenesis 2.6E-02 1.9E+00 1% 0.00
atrial cardiac muscle tissue development 2.6E-02 1.9E+00 1% 0.00
cardiac muscle fiber development 4.2E-02 3.1E+00 1% 0.00
muscle cell fate commitment 5.7E-02 4.2E+00 1% 0.00

Molecular Function
troponin T binding 9.9E-33 7.3E-31 13% 0.00
calcium channel inhibitor activity 1.9E-31 1.4E-29 13% 0.00
ion channel inhibitor activity 1.4E-23 1.0E-21 13% 0.00
channel inhibitor activity 1.4E-23 1.0E-21 13% 0.00
calcium channel regulator activity 4.9E-23 3.6E-21 13% 0.00
calcium-dependent protein binding 1.1E-19 8.1E-18 13% 0.00
actinin binding 5.6E-06 4.2E-04 4% 0.00
calcium-dependent ATPase activity 1.6E-02 1 1% 0.00
actin monomer binding 7.2E-02 1 1% 0.00

p-value corresponds to the value without multiple-testing correction, whereas p-Bonf is the
corresponding value with Bonferroni correction; SFreq and PFreq are the annotation frequencies
in the study and population set respectively.

Differential enrichment

A total of one term for SCD and five terms for no-SCD were identified as

enriched (p-value < 0.1, not considering multiple-testing correction), as shown

on Table 4.14.
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Table 4.14: Complete results of the two differential enrichment analyses per-
formed with genetic data: HCM patients and the sub-group of SCD patients;
HCM patients and the sub-group of no-SCD patients.

Sub-group Name p-value p-Bonf SFreq PFreq

SCD Molecular Function
structural constituent of
muscle 8.1E-02 1 88% 70%

no-SCD

Biological Process
negative regulation of AT-
Pase activity 8.1E-02 1 33% 30%

regulation of ATPase activity 9.1E-02 1 59% 56%
Molecular Function

troponin C binding 8.1E-02 1 33% 30%
Cellular Component

striated muscle thin filament 8.1E-02 1 33% 30%
troponin complex 8.1E-02 1 33% 30%

p-value corresponds to the value without multiple-testing correction, whereas p-Bonf is the
corresponding value with Bonferroni correction; SFreq and PFreq are the annotation frequencies
in the study and population set respectively.

4.1.2.2 Clinical data analysis

The enrichment analysis was tested with two sets of clinical data: HCM and
COPD.

The enrichment of the clinical HCM data resulted in the identification of 17
enriched terms in the sub-group of SCD patients (Table 4.15), and 14 enriched
terms in the sub-group of no-SCD (Table 4.16), with no terms in common between
the two sub-groups. These results were obtained considering no multiple-testing
correction and p-values < 0.1. No terms were identified with Bonferroni correc-
tion.

The enrichment of the clinical COPD data resulted in the identification of 8
enriched terms in the sub-group of patients with emphysema (Table 4.17) and 24
enriched terms in the sub-group of healthy patients (Table 4.18), with the two
sub-groups having no terms in common. These results were obtained considering
no multiple-testing correction and p-value < 0.1. Again, no terms were identified
with Bonferroni correction.

80



4.1 Enrichment analysis

Table 4.15: Terms enriched in the clinical analysis of the group of HCM patients
and the sub-group of SCD patients.

ID Name p-value SFreq PFreq
106227002 General information qualifier

1.4E-02 21.4% 4.8%

26636000 Sudden death
272379006 Event
392521001 History of
419620001 Death
51042001 History of (present illness)
C18772 Personal Medical History
C19332 Personal Attribute
C28389 NCI Administrative Concept
C42687 Concept History
C42698 Terminology Entity

C53787 Adverse Event Associated with
Death

C53814
Death Adverse Event Not As-
sociated with More Specific
CTCAE Term

C54625 History

C55285
Sudden Death Adverse Event
Not Associated with More Spe-
cific CTCAE Term

272099008 Descriptor 5.1E-02 64.3 41.0362981000 Qualifier value
Numeric IDs correspond to terms from SNOMED-CT, whereas IDs starting with ‘C’ correspond
to terms from NCIt; p-value corresponds to the value without multiple-testing correction; SFreq
and PFreq are the annotation frequencies in the study and population set respectively. CTCAE
stands for Common Terminology Criteria for Adverse Events.
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Table 4.16: Terms enriched in the clinical analysis of the group of HCM patients
and the sub-group of no-SCD patients.

ID Name p-value SFreq PFreq
404684003 Clinical finding 4.0E-03 100% 96.4%
123037004 Body structure 3.2E-02 97.1% 94.0%
362955004 Inactive concept

5.7E-02 95.7% 92.8%

363662004 Duplicate concept

365860008 General clinical state find-
ing

370115009 Special concept

429019009 Finding related to biological
sex

442083009 Anatomical or acquired
body structure

57312000 Sex structure
91722005 Physical anatomical entity
91723000 Anatomical structure
C20189 Property or Attribute
C27993 General Qualifier
C41009 Qualifier

Numeric IDs correspond to terms from SNOMED-CT, whereas IDs starting with ‘C’ correspond
to terms from NCIt; p-value corresponds to the value without multiple-testing correction; SFreq
and PFreq are the annotation frequencies in the study and population set respectively.

Table 4.17: Terms enriched in the clinical analysis of the group of COPD patients
and the sub-group of patients with emphysema.

ID Name p-value SFreq PFreq
1086007 Female structure

1.7E-02 19% 64%

139867007 Female
162600001 Female
248152002 Female
C16576 Female
C46108 Female, Self-Report
C46110 Female Gender
C46113 Female Phenotype

Numeric IDs correspond to terms from SNOMED-CT, whereas IDs starting with ‘C’ correspond
to terms from NCIt; p-value corresponds to the value without multiple-testing correction; SFreq
and PFreq are the annotation frequencies in the study and population set respectively.
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Table 4.18: Terms enriched in the clinical analysis of the group of COPD patients
and the sub-group of patients without emphysema.

ID Name p-value SFreq PFreq
10052007 Male structure

1.7E-02 78% 91%

139866003 Male
162599004 Male
248153007 Male
C20197 Male
C46107 Male, Self-Report
C46109 Male Gender
C46112 Male Phenotype

110483000 Tobacco user

6.6E-02 63% 74%

118228005 Functional finding
138008005 Smoker
160622001 Smoker (& cigarette)
225786009 Smoker

250171008 Clinical history and observation
findings

363660007 Ambiguous concept
365949003 Health-related behavior finding

365980008 Tobacco use and exposure - find-
ing

365981007 Tobacco smoking behavior - find-
ing

77176002 Smoker
844005 Behavior finding
C19332 Personal Attribute
C19796 Smoking Status
C67147 Current Smoker
C68751 Smoker

Numeric IDs correspond to terms from SNOMED-CT, whereas IDs starting with ‘C’ correspond
to terms from NCIt; p-value corresponds to the value without multiple-testing correction; SFreq
and PFreq are the annotation frequencies in the study and population set respectively.
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4.1.3 Discussion

From the four approaches of enrichment analysis presented in Section 2.4, only
those working with a study set are relevant for my work. This is due to the
medical objective of this part of the work, which is the evaluation of patients in
respect to the likelihood of suffering a disease-related event or having a specific
disease manifestation. This medical objective thus results in the existence of a
differentiating factor that separates the patients in positive and negative groups
for the study characteristic.

From the three enrichment analyses working with a study set, the Singular
Enrichment Analysis (SEA) was the one selected because it is the most commonly
used and was thus a good starting point.

4.1.3.1 Genetic data analysis

The first test with the adapted enrichment analysis was done with the genetic set
of features. Since all the patients share the same genome, it is through their indi-
vidual mutations that we can find differentiating features. However, information
regarding a patient’s mutations, when available, exists only for a few genes. In
the case of the HCM patients, the genetic data used in this analysis is precisely
the presence/absence of the mutations in the genes associated with the disease.

An oversimplified way to define the study set when analyzing, for example,
the SCD patients, would be to consider the list of genes mutated in at least one of
these patients. However, this would only be accurate if all the SCD patients had
a mutation in those genes, which might not be the truth. In order to maximize
the use of the available genetic information, the best option was to consider the
set of mutations each patient has, individually.

Two enrichment analyses were performed exploiting the patients’ mutations
data: a profiling analysis, where the total number of genes mutated in each group
of patients (with SCD and without SCD) was compared with all (protein-coding)
genes in the same group of patients; and a differential analysis, where the total
number of genes mutated in each group of patients (with SCD and without SCD)
was compared with the total number of genes mutated in all the HCM patients.
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Terms identified as enriched by the profiling analysis can be used to charac-
terize the genotype of patients with and without SCD, since they correspond to
specific functional aspects that are mutated in the patients. These functional
aspects, in turn, correspond to phenotypical traits expected to be altered. While
terms identified as enriched both in SCD and no-SCD patients can be interpreted
as associated with the disease, terms enriched differently can be interpreted as
associated with the occurrence of SCD. This profiling analysis is more directly
comparable with the application of enrichment analysis to gene expression data,
where a set of genes (e.g., overexpressed) can be analyzed against the whole
genome.

Analyzing the enriched terms identified in the profiling analysis, their rela-
tion with HCM can be confirmed. According to the biological process terms
enriched, the patients analyzed suffer from cardiac alterations (e.g. regulation of
heart rate, adult heart development), in particular in the ventricle (ventricular
cardiac muscle tissue morphogenesis and ventricular cardiac muscle tissue devel-
opment), and some of those alterations affect the contraction of striated muscles,
in which group the cardiac muscle is included (e.g. actin-myosin filament slid-
ing and actin-mediated cell contraction). HCM is indeed a cardiac disease, in
which the main anatomical manifestation is the thickening of the interventricular
septum, and the occurrence of a sudden cardiac arrest can be a consequence of
the malfunctioning of the heart contraction. Considering the molecular function
terms, several binding terms are enriched, namely myosin heavy chain binding,
titin binding, troponin C and troponin I binding. All of these terms refer to pro-
teins that participate in the contraction of the filaments that compose striated
muscles, and thus the HCM patients present alterations in the normal function
of this type of muscle. Finally, the cellular component terms confirm the pre-
vious observations that the alterations in HCM patients occur at the level of
striated muscle functioning, namely through the following terms: striated muscle
myosin thick filament, striated muscle thin filament, troponin complex, A band (a
component of the sarcomere) and C zone (a component of the A band).

The difference between SCD and no-SCD consists in a set of 18 terms identified
in the no-SCD patients and not in the SCD patients. These differences can be
explained by the fact that the number of no-SCD patients is considerably larger
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than the number of SCD patients (69 vs. 14) and consequently there are more
distinct genes mutated (7 vs. 4). However, there is also the possibility of a
biological explanation. On the one hand, it may not be correct to interpret
that when a function or process is altered the patients will not suffer a SCD
episode. On the other hand, dominant mutations (i.e., mutations that can have a
manifestation by affecting only one of the gene’s copies) may increase the activity
of a gene product, which can ultimately result in the prevention of a SCD episode
(Lodish et al., 2000). A more detailed analysis of the type of mutation that led
to these results is thus necessary in the future.

The purpose of the differential enrichment analysis was the identification of
the differences between SCD and no-SCD, and thus compare each, in turn, with
the complete set of HCM patients. Since this set is divided in SCD and no-SCD
patients, the comparison is basically between one group and the other.

For the purpose of prognosis, the most interesting terms are those identified
as enriched in SCD. Thus, the term structural constituent of muscle may have
potential for prognosis, given that it occurs more frequently in SCD patients than
in no-SCD patients. Nevertheless, the fact that the corrected p-value is above the
significance level and that the term is not particularly informative in respect to
HCM, limits the confidence with which this term can be used for that purpose.

The results obtained with the genetic data clearly show that, by itself, this
data is not sufficient to clearly separate SCD patients from no-SCD patients. This
may be due to the dataset tested, which has a small number of instances and is
not balanced in terms of positive and negative instances. It may also be due to
the event tested, since currently it cannot be predicted solely based on genetic
data. Additionally, it is also possible that the genetic data is not yet being fully
exploited. In this preliminary test, I considered only the presence or absence of
mutations in the genes, but not their type nor number. For example, it is known
that some mutations are associated with a benign outcome (i.e., no occurrence of
SCD) whereas others with a malignant outcome. It has also been reported that
the occurrence of mutations in some genes is associated with a higher incidence
of SCD than in others (Bos et al., 2009). All of these aspects can be taken into
consideration when calculating the frequencies of annotation or even be added as
features to the dataset. It is important to note, however, that I was not concerned
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with pleiotropic effects. It is known that some HCMmutations have different phe-
notypic manifestations in different patients, and different manifestations should
also be expected if a patient has multiple mutations. Nevertheless, the goal of
this analysis is to obtain profiles that provide a global characterization of the
patients in respect to an event, and not to perform a precise evaluation of each
patient in terms of his mutations. Regarding the genetic enrichment analysis,
that global characterization should be in terms of the functions and processes
most frequently affected in the event-positive patients

In terms of missing values, in the genetic dataset these are mutations asso-
ciated with HCM that were not tested. Due to the sparseness of the dataset, it
was not feasible to simply eliminate the mutations not tested or the patients with
mutations not tested. Consequently, we considered these mutations as having a
negative value, as if they were not present in the patient. This approach allowed
me to exploit all the available data and to obtain an informative characterization
of the patients. It is important to stress out that an evaluation of all the patients
for all the mutations is almost never done. More mutations tested might result,
on the one hand, in an increase in the number of genes analyzed, possibly leading
to an increment in the number of terms tested and, consequently, in the terms
found enriched. On the other hand, it might result in an increase in the frequency
of annotation of the terms in the study set of the enrichment profiling analysis,
and in both the study and the population sets in the differential enrichment anal-
ysis. In the profiling analysis, this increase would result in the strengthening of
the confidence in the results since we would increase the difference of annotation
frequency between the study set and the population set. In the differential anal-
ysis, the results might be more strongly altered, since both sets of annotation
frequencies would have to be recalculated.

4.1.3.2 Clinical data analysis

The enrichment analysis of the two disease datasets resulted in sets of terms
with a considerable number of high-level terms, which means that analyzing them
simply by their names does not permit an obvious interpretation of the case-study.
Another evident observation is that there are repeated terms, which results not
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only from the consideration of two clinical vocabularies but also from the existence
of terms with the same label (i.e., the term name) and different identifiers in the
same vocabulary.

In the SCD sub-group of HCM patients (see Table 4.15), all but one of the
enriched terms annotate the feature Sudden death family history, reflecting the
higher number of of SCD patients positive for this feature (3 to 1 no-SCD). The
term that annotates a different feature is Descriptor, which annotates two of
the values of the feature Hypertrophy morphology : Apical and Septal. In the
no-SCD sub-group (see Table 4.16), all of the terms annotate the two values of
the feature Gender, reflecting the higher number of no-SCD patients with known
gender (96% to 79% SCD). In both sub-groups, there are terms that annotated
more than one feature. In SCD, the term Qualifier value annotates Apical and
Septal in addition to Sudden death family history. In the no-SCD, the following
four terms annotated “gender” in addition to the features indicated:

• Body structure - annotates Concentric, a value of the feature Hypertrophy
morphology.

• Clinical finding - annotates the three values of Blood pressure: Normal,
Hypotension, and Hypertension.

• Property or Attribute - annotates Apical (Hypertrophy morphology) and
Sudden death family history.

• Qualifier - annotates Apical (Hypertrophy morphology).

In the healthy sub-group of COPD patients, the terms enriched annotate ei-
ther the value Male of Gender or the feature Smoker. Only one term annotates
non-related features, Ambiguous concept, which annotates O2 pressure, CO2 pres-
sure and Alfa1 antitrypsin deficiency in addition to Smoker. In the emphysema
sub-group, all the terms enriched annotate the value Female of Gender. The
terms enriched simply reflect the fact that the healthy sub-group has a higher
number of males and smokers, and the emphysema sub-group has a higher num-
ber of females. The lower number of smokers in the emphysema sub-group is
expected since this disease results in a poor respiratory capacity1.

1http://www.lung.ca/diseases-maladies/a-z/emphysema-emphyseme/index_e.php
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The enrichment analysis performed with the clinical data corresponds only to
a differential profiling since an enrichment profiling implies the need of a back-
ground set of annotations beyond the datasets tested. As referred in Section
2.4, approaches have been proposed to overcome this limitation associated with
patient datasets that retrieve the clinical annotations either from a corpus of
MEDLINE abstracts (Tirrell et al., 2010), or the publications that originated
manual Gene Ontology annotations (LePendu et al., 2011). Both approaches can
be adopted to improve the clinical enrichment profiling of patient datasets.

4.1.3.3 Study limitations

In respect to the tool Annotator, there are two aspects of its functioning that
might have had an effect on the annotations retrieved:

• Contrarily to what is indicated in the tool’s description, at least in one
case the definition of the setting longestOnly did not prevent that partial
matches were retrieved. In the clinical dataset, the feature Sudden death
history was directly annotated with terms such as Sudden death and Death.

• The order of the words in the query text is relevant. For example, search-
ing for Obstructive hypertrophic cardiomyopathy yields no results, whereas
Hypertrophic obstructive cardiomyopathy does.

Additionally, there are a few aspects of the use of ontologies that have to be
taken into consideration. By applying a methodology that relies on controlled vo-
cabularies, it is possible that we are working with incomplete annotations, as well
as with a set of ontology terms that might not provide the level of detail necessary
to fully characterize the patients. In respect to the possibility of incomplete an-
notations, I tried to deal with it by considering all types of annotation, including
inferred from electronic annotation in the Gene Ontology, even with the risk of
introducing some annotation errors. In respect to the possibility of an insufficient
level of detail, it can be overcome by considering more than one vocabulary for
the same domain of knowledge, which was already done for the clinical data and
can be done also for the genetic data. The Gene Ontology was chosen for the
preliminary implementation of the methodology since it is the most well studied
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application of enrichment analysis, but any ontology can be exploited provided
the existence of a background set of annotations against which the study set can
be compared.

The use of SNOMED in particular presented some hindrances. This vocab-
ulary contains more than one term with the same label, which means that the
terms represent the same real-world entity but are attributed different identifiers;
it contains in its hierarchy terms pertaining to the management of the vocabulary
itself, terms that were found enriched in my analysis (e.g., Inactive concept and
Ambiguous concept); and it contains terms representing the same entity but with
different labels (and identifiers). Neither of these aspects were found with the
Gene Ontology or the NCIt.

Finally, another relevant factor in the methodology is the enrichment analysis
approach followed. The results obtained with the Singular Enrichment Analysis
are interesting, but there are two other approaches worth exploiting: the Modular
Enrichment Analysis, and the model-based approach. The first because it takes
into consideration the existence of relations between the genes, and the second
because it does not analyze individual terms but rather aims to obtain the best
set of terms annotating the data.

4.2 Evaluation of the enrichment analysis with data
mining algorithms

In this section is described the evaluation of the results of the previous enrichment
analyses with data mining algorithms. For this purpose were considered the
results obtained in the differential enrichment of the HCM dataset (genetic and
clinical data), and in the differential enrichment of the COPD clinical data.

4.2.1 Methods

In the final prognosis methodology (shown in Figure 4.1), the terms identified
as enriched in each group of patients will be used as an annotation profile of
that group. New patients will then be assessed against these profiles in order to
predict their prognosis.
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The group profiles are used in the assessment of the prognosis by incorporating
their respective enriched terms as features in the disease dataset, which is then
subjected to a classification step. In order to evaluate if the incorporation of
the terms improved the predictive capability of the datasets, several classification
algorithms were tested with the following sets of features:

• Original dataset: clinical and genetic features

• Original dataset + Annotated terms

• Annotated terms

• Original dataset + Enriched terms

• Enriched terms

In all the sets containing ontology terms, these were added as Boolean features.
The values of the terms were obtained from the values of the original features
annotated with the term. For a term to be considered present in a patient, at
least:

• One original Boolean feature annotated with that term has a positive value

• One value of an original categorical feature is annotated with the term

• One original numerical feature annotated with that term has a known value

The terms added as features are those annotating the original features (the
annotated terms) and those resulting from the enrichment analyses performed
with the two groups of patients in each dataset (the enriched terms). In the case
of the HCM dataset the terms are those enriched for the SCD and the no-SCD
patients, and in the case of the COPD dataset the terms are those enriched for the
patients with and without emphysema. The patients considered as the instances
of the positive class are those in the SCD group and those in the emphysema
group, for HCM and COPD, respectively.

The only features, and respective terms, not considered in this data mining
evaluation were also not considered in the enrichment analysis, and correspond
to the features used to define the classification of the patients.
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Five classifiers were tested, all available through the tool Weka (version 3.7.5)
(Hall et al., 2009): J48 (decision trees) (Quinlan, 1993), Random Forest (Breiman,
2001), Naive Bayes (John & Langley, 1995), Bayesian networks (Bouckaert, 2004),
and K-nearest neighbors (Aha & Kibler, 1991). All classifiers were run with their
default parametrizations (detailed in Appendix D), and with a 10-fold cross-
validation.

The performance of the data mining methods was evaluated in terms of pre-
cision, recall, and F-measure. The precision measures the proportion of instances
classified as positive that are indeed positive, ranging from 0 when there are no
true positives to 1 when there are no false positives. The recall measures the pro-
portion of instances with positive class that are correctly classified as positives,
ranging from 0 when there are no true positives, to 1 when there are no false
negatives. Considering the number of true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN), the precision and the recall of a
binary classifier are calculated by the following expressions:

Precision =
TP

TP + FP
(4.7)

Recall =
TP

TP + FN
(4.8)

The F-measure is the weighted harmonic mean of precision and recall, calcu-
lated by the following expression:

F −measure = 2 ∗ Precision ∗Recall
Precision+Recall

(4.9)

4.2.2 Results

4.2.2.1 Hypertrophic cardiomyopathy

The results of the data mining tests performed with the SCD class of HCM
patients and the five different sets of features are shown in terms of F-measure
(Table 4.19), precision (Table 4.20), and recall (Table 4.21).
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Table 4.19: F-measure results obtained with the event-positive class (SCD) of
HCM patients.

Dataset Method
J48 RF NB BNet KNN

Original 0 0.235 0 0.273 0.37
Original +
Annotations 0.5 0.25 0.385 0.412 0.467

Annotations 0.571 0.32 0.323 0.424 0.385
Original + α=0.1 0.5 0.417 0.5 0.5 0.37
Enriched α=0.05 0.5 0.455 0.333 0.316 0.429

Enriched α=0.1 0.571 0.615 0.5 0.5 0.364
α=0.05 0.571 0.571 0.333 0.333 0.571

J48 corresponds to the decision tree learning algorithm, RF corresponds to Random Forest, NB
to Naive Bayes, BNet to Bayes Network and KNN to K-nearest neighbors. The highest values
obtained for each method are shown in bold, and the highest overall value amongst all methods
is shown in red.

Table 4.20: Precision results obtained with the event-positive class (SCD) of
HCM patients.

Dataset Method
J48 RF NB BNet KNN

Original 0 0.667 0 0.375 0.385
Original +
Annotations 0.833 0.3 0.417 0.35 0.438

Annotations 0.857 0.364 0.294 0.368 0.417
Original + α=0.1 0.833 0.5 0.6 0.6 0.385
Enriched α=0.05 0.833 0.625 0.75 0.6 0.429

Enriched α=0.1 0.857 0.667 0.6 0.6 0.5
α=0.05 0.857 0.857 0.75 0.75 0.857

J48 corresponds to the decision tree learning algorithm, RF corresponds to Random Forest, NB
to Naive Bayes, BNet to Bayes Network and KNN to K-nearest neighbors. The highest values
obtained for each method are shown in bold, and the highest overall value amongst all methods
is shown in red.
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Table 4.21: Recall results obtained with the event-positive class (SCD) of HCM
patients.

Dataset Method
J48 RF NB BNet KNN

Original 0 0.143 0 0.214 0.357
Original +
Annotations 0.357 0.214 0.357 0.5 0.5

Annotations 0.429 0.286 0.357 0.5 0.357
Original + α=0.1 0.357 0.357 0.429 0.429 0.357
Enriched α=0.05 0.357 0.357 0.214 0.214 0.429

Enriched α=0.1 0.429 0.571 0.429 0.429 0.286
α=0.05 0.429 0.429 0.214 0.214 0.429

J48 corresponds to the decision tree learning algorithm, RF corresponds to Random Forest, NB
to Naive Bayes, BNet to Bayes Network and KNN to K-nearest neighbors. The highest values
obtained for each method are shown in bold, and the highest overall value amongst all methods
is shown in red.

The most notable result obtained with the original dataset is that J48 and
Naive Bayes are unable to correctly classify the positive instances. It is also
evident that the inclusion of annotations or enriched terms lead to improved
results in terms of F-measure, precision and recall for all methods tested.

Regarding F-measure, the best result obtained with the original dataset was
0.37 (using K-nearest neighbors). By contrast, all methods produced an F-
measure of at least 0.5 with the addition or the exclusive use of annotated terms
(J48), the addition of enriched terms (J48, Naive Bayes and Bayes Network), and
the exclusive use of enriched terms (all the 5 classifiers). The best result over-
all (0.615) was obtained with Random Forest using enriched terms exclusively
(α=0.1).

With respect to precision, the best result obtained with the original dataset
was 0.667 (Random Forest). As observed for the F-measure, all methods improved
with the addition of ontology terms, obtaining precisions of at least 0.75. Overall,
the best result obtained was 0.857, with J48 (with annotations and with enriched
terms) and with Random Forest and K-nearest neighbors (both with enriched
terms). The recall results followed a similar pattern, with improved results for all
methods with the addition of annotations and enriched terms. The best result
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obtained with the original dataset was 0.357 (K-nearest neighbors), whereas the
best result overall was 0.571, obtained with Random Forests and enriched terms
(α=0.1).

Table 4.22 shows the F-measure results of the data mining tests performed
with the no-SCD class of HCM patients and the five different sets of features.
These results show that the classification of the negative instances is also improved
by the addition of ontology terms, and in particular enriched terms.

Table 4.22: F-measure results of the event-negative class (no-SCD) of HCM pa-
tients.

Dataset Method
J48 RF NB BNet KNN

Original 0.908 0.913 0.893 0.889 0.878
Original +
Annotations 0.932 0.873 0.886 0.848 0.882

Annotations 0.938 0.879 0.844 0.857 0.886
Original + α=0.1 0.932 0.901 0.915 0.915 0.878
Enriched α=0.05 0.932 0.917 0.919 0.912 0.884

Enriched α=0.1 0.938 0.929 0.915 0.915 0.903
α=0.05 0.938 0.938 0.919 0.919 0.938

J48 corresponds to the decision tree learning algorithm, RF corresponds to Random Forest, NB
to Naive Bayes, BNet to Bayes Network and KNN to K-nearest neighbors. The highest values
obtained for each method are shown in bold, and the highest overall value amongst all methods
is shown in red.

Table 4.23 shows the number of instances correctly classified when considering
the original dataset and when considering the best sets of features per method
(i.e., those that originate the highest number of correctly classified positive in-
stances) as detailed below:

• J48 - Enriched terms, without correction, α=0.1 and α=0.05; and annotated
terms.

• NB - Enriched terms, without correction, α=0.1; and original set of features
+ enriched terms, without correction, α=0.1.

• BNet - Annotated terms.
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• KNN - Original set of features + annotated terms.

• RF - Enriched terms, without correction, α=0.1.

Table 4.23: Number of instances correctly classified in the data mining tests with
the HCM dataset.

Dataset Method
J48 RF NB BNet KNN

Original dataset Pos 0 2 0 3 5
Neg 69 68 67 64 61

Best set of features
Pos 6 8 6 7 7
Neg 68 65 65 57 60

J48 corresponds to the decision tree learning algorithm, RF corresponds to Random Forest,
NB to Naive Bayes, BNet to Bayes Network and KNN to K-nearest neighbors. The best set of
features was the set that produced the best results for the data mining method, from among
the feature sets previously tested. The total number of positive instances is 14, whereas the
total number of negative instances is 69.

Out of the 14 total positive instances, the methods ranged from 0 (J48 and
Naive Bayes) to 5 (K-nearest neighbors) correctly classified instances with the
original dataset. With the best sets, the methods ranged from 6 (J48 and Naive
Bayes) to 8 (Random Forest) correctly classified instances.

4.2.2.2 Chronic obstructive pulmonary disease

The results of the data mining tests performed with the emphysema class of
COPD patients and the five different sets of features are shown in terms of F-
measure (Table 4.24), precision (Table 4.25), and recall (Table 4.26).

In the case of this dataset, only J48, Random Forest and K-nearest neigh-
bors showed improvement in F-measure over the original dataset with the use of
ontology terms. For all three methods, the best results were obtained with the
addition of enriched terms to the original dataset. The best result overall was
obtained for K-nearest neighbors (0.779), which was significantly higher than the
best result obtained with the original dataset (0.62 with Bayes Network).

In terms of precision, only J48 and K-nearest neighbors showed improved
results with ontology terms, with the former producing the best results when
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Table 4.24: F-measure results of the COPD patients with emphysema.

Dataset Method
J48 RF NB BNet KNN

Original 0.648 0.469 0.6 0.62 0.407
Original +
Annotations 0.667 0.51 0.548 0.514 0.4

Annotations 0 0 0.412 0.394 0
Original+ α=0.1 0.676 0.542 0.6 0.513 0.779
Enriched α=0.05 0.648 0.478 0.523 0.513 0.407

Enriched α=0.1 0 0 0.342 0.342 0
α=0.05 0 0 0.396 0.396 0

J48 corresponds to the decision tree learning algorithm, RF corresponds to Random Forest, NB
to Naive Bayes, BNet to Bayes Network and KNN to K-nearest neighbors. The highest values
obtained for each method are shown in bold, and the highest overall value amongst all methods
is shown in red.

Table 4.25: Precision results of the COPD patients with emphysema.

Dataset Method
J48 RF NB BNet KNN

Original 0.59 0.833 0.553 0.564 0.444
Original +
Annotations 0.622 0.684 0.488 0.474 0.429

Annotations 0 0 0.389 0.359 0
Original + α=0.1 0.615 0.813 0.5 0.435 0.667
Enriched α=0.05 0.59 0.786 0.411 0.435 0.444

Enriched α=0.1 0 0 0.295 0.295 0
α=0.05 0 0 0.297 0.297 0

J48 corresponds to the decision tree learning algorithm, RF corresponds to Random Forest, NB
to Naive Bayes, BNet to Bayes Network and KNN to K-nearest neighbors. The highest values
obtained for each method are shown in bold, and the highest overall value amongst all methods
is shown in red.

using all annotations and the latter producing the best results when using the
original dataset plus enriched terms. The best result overall was obtained with
the original dataset and Random Forest.

With respect to recall, J48, Naive Bayes and K-nearest neighbors all show
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Table 4.26: Recall results of the COPD patients with emphysema.

Dataset Method
J48 RF NB BNet KNN

Original 0.719 0.469 0.656 0.688 0.375
Original +
Annotations 0.719 0.406 0.625 0.563 0.375

Annotations 0 0 0.438 0.438 0
Original + α=0.1 0.75 0.406 0.75 0.625 0.938
Enriched α=0.05 0.719 0.344 0.719 0.625 0.375

Enriched α=0.1 0 0 0.406 0.406 0
α=0.05 0 0 0.594 0.594 0

J48 corresponds to the decision tree learning algorithm, RF corresponds to Random Forest, NB
to Naive Bayes, BNet to Bayes Network and KNN to K-nearest neighbors. The highest values
obtained for each method are shown in bold, and the highest overall value amongst all methods
is shown in red.

improved results with the addition of enriched terms to the original dataset, with
the overall best result (0.938) obtained with the K-nearest neighbors.

Table 4.27 shows the F-measure results of the data mining tests performed
with the healthy class of COPD patients and the five different sets of features.
In the case of this dataset, J48 and Naive Bayes showed improved results with
the addition of annotated terms to the original dataset, and Naive Bayes also
improved with the addition of enriched terms to the original dataset. The overall
best result (0.927) was obtained with the K-nearest neighbors with enriched terms
added to the original dataset.

Table 4.28 shows the number of instances correctly classified when considering
the original dataset and when considering the sets of features that originate the
highest number of positive instances correctly classified. Out of the 32 total
positive instances in this dataset, the data mining methods correctly classify from
12 (K-nearest neighbors) to 23 (J48) of them. In the case of Random Forest and
Bayes Network, the best results were obtained with the original dataset, whereas
the remaining methods had improved results with the addition of enriched terms
to the original dataset. The overall best result was obtained with K-nearest
neighbors, which correctly classified 30 positive instances.
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Table 4.27: F-measure results of the healthy class of COPD patients.

Dataset Method
J48 RF NB BNet NN

Original 0.895 0.923 0.883 0.887 0.861
Original +
Annotations 0.905 0.903 0.861 0.858 0.856

Annotations 0.885 0.873 0.835 0.82 0.877
Original + α=0.1 0.904 0.916 0.861 0.836 0.927
Enriched α=0.05 0.895 0.909 0.811 0.836 0.861

Enriched α=0.1 0.885 0.885 0.786 0.786 0.885
α=0.05 0.885 0.885 0.727 0.729 0.885

J48 corresponds to the decision tree learning algorithm, RF corresponds to Random Forest, NB
to Naive Bayes, BNet to Bayes Network and KNN to K-nearest neighbors. The highest values
obtained for each method are shown in bold, and the highest overall value amongst all methods
is shown in red.

Table 4.28: Number of instances correctly classified in the data mining tests with
the COPD dataset.

Dataset Method
J48 RF NB BNet NN

Original dataset Pos 23 15 21 22 12
Neg 107 120 106 106 108

Best set of features
Pos 24 - 24 - 30
Neg 108 - 99 - 108

J48 corresponds to the decision tree learning algorithm, RF corresponds to Random Forest,
NB to Naive Bayes, BNet to Bayes Network and KNN to K-nearest neighbors. The best set
of features was the original set with the addition of enriched terms (α=0.1), for all methods
except RF and BNet, in which the best results were obtained with the original dataset.
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4.2.3 Discussion

Given the biomedical goals of analyzing the patients in terms of a disease-related
event or condition, the number of positive instances correctly classified were con-
sidered as the most important improvement in the data mining results.

A preliminary evaluation of the enrichment methodology was done considering
only the enriched genetic terms obtained for the disease HCM (results not shown),
which did not yield good results.

However, the inclusion of the clinical information produced very interesting
results with both datasets, despite the fact that the enriched terms were not,
apparently, very informative by themselves.

In the HCM case-study, all the tested classifiers show an improvement in the
classification of the positive instances with the inclusion of the enriched terms.
This is readily apparent when analyzing the results in terms of F-measure and
precision.

It is interesting to note that some of the best precision results were obtained
with enriched terms with p-value < 0.05, whereas some of the best recall results
were obtained with p-value < 0.1. This is expected since the first set of terms
contains fewer terms, which were considered as enriched with more confidence,
resulting in more positive instances correctly classified. On the other hand, the
second set of terms contains more terms, possibly encompassing more information
albeit less specific, which results in the identification of a higher number of the
positive instances.

The inclusion of the whole set of annotations generally produced better results
than the original dataset, however the best classifiers were obtained with the
enriched annotations. The only exception occurred with the J48 algorithm, which
produced the best precision result with annotations and enriched terms alike.
These results demonstrate the importance of including knowledge from ontologies
in the original dataset, and the importance of filtering that knowledge to consider
only the more significant terms.

In the case of the COPD dataset, the improvement in the data mining re-
sults is not as evident and as disseminated by all the algorithms as with the
HCM dataset. Instead, only one of the classifiers shows clear improvements: the
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K-nearest neighbors. This classifier yielded the worst results with the original
dataset and the best results in terms of F-measure and recall with the set of
features plus enriched terms (p-values < 0.1). However, it is important to note
that these results were obtained considering only the clinical data.

The reason why the inclusion of the enriched terms leads to improvements in
the classification of positive instances might be related with how the information
is encoded. We saw that some clinical terms annotate more than one feature,
and this might provide more information for the data mining algorithm to work
with. In the case of the HCM dataset, this new encoding by itself provides the
best results, whereas in the COPD dataset the original features are still needed.
This is interesting to note since HCM has a higher number of terms annotating
distinct original features than COPD.

4.3 Exploration of translational medicine data

The data mining results validate the application of the enrichment methodology
to improve the prediction capability of translational medicine datasets.

However, further research still needs to be done to deliver the prognosis frame-
work. On the one hand, it is important to understand with the disease experts
if the enriched terms bear any relevance beyond what can be ascertained sim-
ply by their names, since it is possible that the combination of features under a
single term may shed additional insights about the disease. On the other hand,
it is essential to test the methodology with other ontologies, genetic and clini-
cal. We saw that SNOMED-CT annotates more features than NCIt, but that
vocabulary has also several limitations that might be hindering the quality of the
classification results.

Furthermore, it is important to bear in mind that the knowledge about a
disease might not be all encoded in vocabularies at a given time. However, it is
currently nearly impossible to ascertain automatically how much knowledge about
a disease is encoded in vocabularies. In order to do so, it would be necessary the
existence of relationship mappings between concepts from distinct vocabularies,
but the most frequently established mappings are those defining equivalence.
The former mappings define a relation other than hierarchical or of equivalence

101



4. KNOWLEDGE REPRESENTATION FOR DATA
EXPLORATION

(i.e., stating that two concepts have the same set of instances) (Machado et al.,
2013b), and would thus allow a search with a disease name to identify all the
concepts related with the disease. BioPortal has a service that performs such
type of search, but testing it for the diseases HCM and COPD yielded no results
in terms of relationship mappings.
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Chapter 5

Conclusions

The work presented herein is the first step in the creation of a disease analy-
sis framework intended to assist medical doctors in the diagnosis and prognosis
processes of a disease, eventually resulting in the advancement of the current
knowledge about that disease. This framework will comprise two individual com-
ponents: one for the representation and integration of patient data; and the
other for the exploration of the patient data, aiming at the identification of new
knowledge to assist in the diagnosis and/or the prognosis of a disease (Fig. 5.1).

Figure 5.1: Disease analysis framework. This framework comprises a data representation
and integration component, and a data enrichment and analysis component. The core of the
first component is a semantic model that provides the conceptual representation of disease
knowledge, which assists in the integration of heterogeneous data from patients. The second
component involves an enrichment analysis to identify overrepresented ontology terms that can
be used to profile the patients, and the use of these profiles by data mining algorithms to
identify genotype-phenotype association models. These models can then be used to predict the
diagnosis (or prognosis) of new patients.
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The disease framework contributes to advance the translational medicine do-
main since it will enable the integration of data from basic science research with
the clinical data, and its transformation into knowledge that can be used in the
clinical practice.

The thesis underlying the present work consisted in exploring the use of on-
tologies in the implementation of the two components of the disease analysis
framework and thus evaluate their role in the advancement of the knowledge
about a disease. The first objective of this thesis was to create an ontological
representation of the knowledge pertaining to a disease, exploiting semantic web
technologies and existing ontologies. The second objective was to evaluate if the
inclusion of knowledge from ontologies into translational medicine datasets would
improve the quality of the obtained data exploration results.

The first objective was accomplished in the form of a semantic model of hy-
pertrophic cardiomyopathy, a disease that benefits from a translational medicine
approach. The model represents two heterogeneous domains of knowledge, the
clinical and the genetic, and plays an important role in the integration of data
from both domains through the relations established between the modules com-
prising the model. The development of the model in OWL, the reuse of existing
vocabularies and the definition of mappings are all factors that facilitate the use
of the model by third parties. Despite the use of a case-study, the methodology
to create the model was planned so that it can be used for other diseases, as well
as the model itself.

My contributions in the first objective of this thesis are threefold: the method-
ology for the creation of a semantic model in the OWL language; a semantic model
of the disease hypertrophic cardiomyopathy; and a review on the exploitation of
semantic web resources in translation medicine systems.

The second objective of this thesis was also accomplished: a methodology
was devised that identifies enriched ontology terms associated with the genetic
and clinical features of a dataset of patients; and the inclusion in the dataset of
the enriched terms was evaluated with data mining algorithms. The complete
analysis was tested with two distinct datasets, and the results show that using
the enriched terms as features brings new knowledge into the dataset that results
in the improvement of the predictions made with it.
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My contributions in the second objective of this thesis are twofold: the adap-
tation of the standard enrichment analysis to use data from patients; and the
application of the adapted enrichment analysis to improve the predictions made
with a translational medicine dataset.

Overall, the work presented corresponds to a step forward in the use of knowl-
edge representations to improve the current knowledge about a disease and its
diagnosis and prognosis.

In order to promote the use of the semantic model, it can be subjected to a
formal evaluation such as is normally done for ontologies, a task that was outside
the goals of this work.

Additionally, further work should be done in both components of the disease
analysis framework, before it can be used by medical doctors. In respect to
the semantic model, it can be explored for the inference of new knowledge so
that it can be included in the second step, the data exploration. In respect to
the enrichment analysis, other enrichment approaches can be tested, namely the
Modular Enrichment Analysis and the model-based approach; additional genetic
ontologies can be considered, as well as vocabularies other than NCIt (due to
the low number of annotations) and SNOMED-CT (due to its intrinsic problems,
namely the representation of the same concept with more than one term).

Once the disease analysis framework is completed, its use can go beyond its
original purpose. For instance, it will be possible to exploit the integrated data to
construct risk prediction models for any number of factors, without burdening the
medical doctors with the need to input the data themselves and without making
pre-assumptions on the data that is more relevant to build the model.
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Appendix A

Complete results of the enrichment
profiling of SCD patients (HCM
dataset)

For each term is indicated: GO accession number (Acc), term name, p-value
without multiple-testing correction, p-value with Bonferroni correction (p-Bonf),
annotation frequency in the study set (SFreq), annotation frequency in the pop-
ulation set (PFreq), and information content (IC).

Table A.1: Complete set of biological process enriched terms (Gene Ontology),
obtained in the profiling analysis of SCD patients.

Acc Name p-value p-Bonf SFreq PFreq IC

GO:0030049 muscle filament slid-
ing 7.7E-40 4.1E-38 94% 0.21% 63%

GO:0033275 actin-myosin fila-
ment sliding 7.7E-40 4.1E-38 94% 0.21% 63%

GO:0055010
ventricular car-
diac muscle tissue
morphogenesis

7.7E-40 4.1E-38 94% 0.21% 63%

GO:0003229
ventricular car-
diac muscle tissue
development

2.4E-39 1.3E-37 94% 0.22% 62%

(continued on next page)
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Table A.1: (continued)

Acc Name p-value p-Bonf SFreq PFreq IC

GO:0070252 actin-mediated cell
contraction 6.8E-39 3.6E-37 94% 0.24% 61%

GO:0002027 regulation of heart
rate 1.3E-31 6.9E-30 81% 0.26% 60%

GO:0007512 adult heart develop-
ment 6.8E-25 3.6E-23 56% 0.07% 73%

GO:0032781 positive regulation of
ATPase activity 2.9E-15 1.5E-13 38% 0.09% 72%

GO:0043462 regulation of ATPase
activity 2.6E-14 1.4E-12 38% 0.12% 68%

GO:0032971 regulation of muscle
filament sliding 1.0E-12 5.4E-11 25% 0.02% 89%

GO:0031034 myosin filament as-
sembly 3.4E-12 1.8E-10 25% 0.02% 86%

GO:0031033 myosin filament or-
ganization 8.4E-12 4.5E-10 25% 0.03% 84%

GO:0030239 myofibril assembly 1.4E-10 7.6E-09 31% 0.20% 63%

GO:0060048 cardiac muscle con-
traction 4.2E-10 2.2E-08 31% 0.25% 61%

GO:0031032 actomyosin structure
organization 5.1E-10 2.7E-08 31% 0.26% 60%

GO:0045214 sarcomere organiza-
tion 6.5E-09 3.5E-07 25% 0.14% 67%

GO:0006942 regulation of striated
muscle contraction 5.8E-08 3.1E-06 25% 0.24% 61%

GO:0051764 actin crosslink for-
mation 3.0E-06 1.6E-04 13% 0.02% 89%

GO:0032780 negative regulation
of ATPase activity 5.3E-06 2.8E-04 13% 0.02% 86%

GO:0035995 detection of muscle
stretch 2.6E-03 1.4E-01 6% 0.02% 89%

GO:0035994 response to muscle
stretch 3.4E-03 1.8E-01 6% 0.02% 86%

GO:0055003 cardiac myofibril as-
sembly 1.4E-02 7.2E-01 6% 0.09% 72%

(continued on next page)
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Table A.1: (continued)

Acc Name p-value p-Bonf SFreq PFreq IC

GO:0002026
regulation of the
force of heart con-
traction

1.9E-02 9.9E-01 6% 0.12% 69%

GO:0014897 striated muscle hy-
pertrophy 2.1E-02 1 6% 0.13% 67%

GO:0003300 cardiac muscle hy-
pertrophy 2.1E-02 1 6% 0.13% 67%

GO:0050982 detection of mechan-
ical stimulus 2.2E-02 1 6% 0.14% 67%

GO:0014896 muscle hypertrophy 2.3E-02 1 6% 0.14% 67%

GO:0055013 cardiac muscle cell
development 2.9E-02 1 6% 0.18% 64%

GO:0055006 cardiac cell develop-
ment 3.1E-02 1 6% 0.20% 63%

GO:0001974 blood vessel remodel-
ing 3.4E-02 1 6% 0.21% 63%

Table A.2: Complete set of molecular function enriched terms (Gene Ontology),
obtained in the profiling analysis of SCD patients.

Acc Name p-value p-Bonf SFreq PFreq IC

GO:0008307 structural con-
stituent of muscle 2.9E-35 1.6E-33 88% 0.25% 61%

GO:0030898 actin-dependent AT-
Pase activity 1.1E-26 6.1E-25 56% 0.05% 78%

GO:0000146 microfilament motor
activity 1.8E-23 9.4E-22 56% 0.11% 70%

GO:0032036 myosin heavy chain
binding 3.3E-11 1.8E-09 25% 0.04% 80%

GO:0001671 ATPase activator ac-
tivity 9.1E-11 4.8E-09 25% 0.05% 78%

GO:0031432 titin binding 2.1E-10 1.1E-08 25% 0.06% 76%

GO:0060590 ATPase regulator ac-
tivity 4.0E-10 2.1E-08 25% 0.07% 74%

(continued on next page)
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A. COMPLETE RESULTS OF THE ENRICHMENT PROFILING
OF SCD PATIENTS (HCM DATASET)

Table A.2: (continued)

Acc Name p-value p-Bonf SFreq PFreq IC
GO:0017022 myosin binding 7.6E-09 4.0E-07 25% 0.14% 67%
GO:0030172 troponin C binding 5.3E-06 2.8E-04 13% 0.02% 86%
GO:0031013 troponin I binding 8.4E-06 4.4E-04 13% 0.03% 84%
GO:0005523 tropomyosin binding 7.6E-05 4.0E-03 13% 0.08% 72%
GO:0031433 telethonin binding 3.4E-03 1.8E-01 6% 0.02% 86%
GO:0042805 actinin binding 1.8E-02 9.4E-01 6% 0.11% 69%

Table A.3: Complete set of cellular component enriched terms (Gene Ontology),
obtained in the profiling analysis of SCD patients.

Acc Name p-value p-Bonf SFreq PFreq IC

GO:0005859 muscle myosin com-
plex 2.4E-37 1.3E-35 81% 0.10% 71%

GO:0032982 myosin filament 2.4E-37 1.3E-35 81% 0.10% 71%
GO:0016460 myosin II complex 1.1E-35 5.8E-34 81% 0.13% 68%
GO:0001725 stress fiber 4.1E-20 2.2E-18 56% 0.25% 61%
GO:0032432 actin filament bundle 7.3E-20 3.8E-18 56% 0.27% 60%
GO:0014705 C zone 9.2E-15 4.9E-13 25% 0.01% 100%

GO:0005863
striated muscle
myosin thick fila-
ment

1.0E-12 5.4E-11 25% 0.02% 89%

GO:0031672 A band 4.7E-09 2.5E-07 25% 0.13% 68%
GO:0005861 troponin complex 2.2E-05 1.1E-03 13% 0.04% 79%

GO:0005865 striated muscle thin
filament 6.6E-05 3.5E-03 13% 0.07% 73%
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Appendix B

Complete results of the enrichment
profiling of no-SCD patients (HCM
dataset)

For each term is indicated: GO accession number (Acc), term name, p-value
without multiple-testing correction, p-value with Bonferroni correction (p-Bonf),
annotation frequency in the study set (SFreq), annotation frequency in the pop-
ulation set (PFreq), and information content (IC).

Table B.1: Complete set of biological process enriched terms, obtained in the
profiling analysis of no-SCD patients.

Acc Name p-value p-Bonf SFreq PFreq IC

GO:0030049 muscle filament slid-
ing 2.3E-252 1.7E-250 96% 0.21% 63%

GO:0033275 actin-myosin fila-
ment sliding 2.3E-252 1.7E-250 96% 0.21% 63%

GO:0055010
ventricular car-
diac muscle tissue
morphogenesis

2.3E-252 1.7E-250 96% 0.21% 63%

GO:0003229
ventricular car-
diac muscle tissue
development

3.2E-249 2.4E-247 96% 0.22% 62%

(continued on next page)
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B. COMPLETE RESULTS OF THE ENRICHMENT PROFILING
OF NO-SCD PATIENTS (HCM DATASET)

Table B.1: (continued)

Acc Name p-value p-Bonf SFreq PFreq IC

GO:0070252 actin-mediated cell
contraction 2.7E-246 2.0E-244 96% 0.24% 61%

GO:0043462 regulation of ATPase
activity 1.1E-144 8.0E-143 59% 0.12% 68%

GO:0002027 regulation of heart
rate 2.1E-133 1.6E-131 62% 0.26% 60%

GO:0032781 positive regulation of
ATPase activity 1.8E-110 1.4E-108 45% 0.09% 72%

GO:0032780 negative regulation
of ATPase activity 2.8E-96 2.1E-94 33% 0.02% 86%

GO:0007512 adult heart develop-
ment 3.2E-89 2.4E-87 37% 0.07% 73%

GO:0060048 cardiac muscle con-
traction 1.1E-81 7.9E-80 42% 0.25% 61%

GO:0032971 regulation of muscle
filament sliding 6.6E-73 4.9E-71 25% 0.02% 89%

GO:0031034 myosin filament as-
sembly 1.3E-69 9.6E-68 25% 0.02% 86%

GO:0031033 myosin filament or-
ganization 4.3E-67 3.2E-65 25% 0.03% 84%

GO:0030239 myofibril assembly 1.5E-58 1.1E-56 31% 0.20% 63%

GO:0051764 actin crosslink for-
mation 2.5E-56 1.8E-54 20% 0.02% 89%

GO:0031032 actomyosin structure
organization 4.1E-55 3.0E-53 31% 0.26% 60%

GO:0045214 sarcomere organiza-
tion 2.6E-51 1.9E-49 26% 0.14% 67%

GO:0006942 regulation of striated
muscle contraction 4.0E-45 3.0E-43 26% 0.24% 61%

GO:0001980

regulation of sys-
temic arterial blood
pressure by ischemic
conditions

6.0E-41 4.4E-39 13% 0.01% 100%

(continued on next page)
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Table B.1: (continued)

Acc Name p-value p-Bonf SFreq PFreq IC

GO:0001976

neurological system
process involved in
regulation of sys-
temic arterial blood
pressure

3.4E-25 2.5E-23 13% 0.08% 72%

GO:0006940 regulation of smooth
muscle contraction 6.6E-19 4.9E-17 13% 0.25% 61%

GO:0035995 detection of muscle
stretch 2.5E-09 1.8E-07 4% 0.02% 89%

GO:0035994 response to muscle
stretch 7.8E-09 5.8E-07 4% 0.02% 86%

GO:0055003 cardiac myofibril as-
sembly 3.1E-08 2.3E-06 5% 0.09% 72%

GO:0002026
regulation of the
force of heart con-
traction

1.5E-07 1.1E-05 5% 0.12% 69%

GO:0055013 cardiac muscle cell
development 1.3E-06 9.4E-05 5% 0.18% 64%

GO:0055006 cardiac cell develop-
ment 1.9E-06 1.4E-04 5% 0.20% 63%

GO:0003300 cardiac muscle hy-
pertrophy 1.1E-05 8.2E-04 4% 0.13% 67%

GO:0014897 striated muscle hy-
pertrophy 1.1E-05 8.2E-04 4% 0.13% 67%

GO:0050982 detection of mechan-
ical stimulus 1.3E-05 9.6E-04 4% 0.14% 67%

GO:0014896 muscle hypertrophy 1.5E-05 1.1E-03 4% 0.14% 67%

GO:0001974 blood vessel remodel-
ing 6.9E-05 5.1E-03 4% 0.21% 63%

GO:0007522 visceral muscle devel-
opment 5.3E-03 3.9E-01 1% 0.01% 100%

GO:0042694 muscle cell fate spec-
ification 5.3E-03 3.9E-01 1% 0.01% 100%

GO:0055009 atrial cardiac muscle
tissue morphogenesis 2.6E-02 1 1% 0.03% 84%

(continued on next page)
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B. COMPLETE RESULTS OF THE ENRICHMENT PROFILING
OF NO-SCD PATIENTS (HCM DATASET)

Table B.1: (continued)

Acc Name p-value p-Bonf SFreq PFreq IC

GO:0003228 atrial cardiac muscle
tissue development 2.6E-02 1 1% 0.03% 84%

GO:0048739 cardiac muscle fiber
development 4.2E-02 1 1% 0.04% 79%

GO:0042693 muscle cell fate com-
mitment 5.7E-02 1 1% 0.06% 76%

Table B.2: Complete set of molecular function enriched terms, obtained in the
profiling analysis of no-SCD patients.

Acc Name p-value p-Bonf SFreq PFreq IC

GO:0008307 structural con-
stituent of muscle 1.7E-149 1.3E-147 67% 0.25% 61%

GO:0030898 actin-dependent AT-
Pase activity 1.8E-96 1.3E-94 37% 0.05% 78%

GO:0030172 troponin C binding 2.8E-96 2.1E-94 33% 0.02% 86%

GO:0000146 microfilament motor
activity 2.1E-83 1.6E-81 37% 0.11% 70%

GO:0032036 myosin heavy chain
binding 2.5E-66 1.9E-64 26% 0.04% 80%

GO:0001671 ATPase activator ac-
tivity 1.5E-60 1.1E-58 25% 0.05% 78%

GO:0031432 titin binding 2.5E-58 1.9E-56 25% 0.06% 76%

GO:0060590 ATPase regulator ac-
tivity 1.7E-56 1.3E-54 25% 0.07% 74%

GO:0031013 troponin I binding 9.8E-52 7.3E-50 20% 0.03% 84%
GO:0017022 myosin binding 6.9E-51 5.1E-49 26% 0.14% 67%
GO:0005523 tropomyosin binding 4.8E-42 3.5E-40 20% 0.08% 72%
GO:0031014 troponin T binding 9.9E-33 7.3E-31 13% 0.02% 86%

GO:0019855 calcium channel in-
hibitor activity 1.9E-31 1.4E-29 13% 0.03% 84%

GO:0008200 ion channel inhibitor
activity 1.4E-23 1.0E-21 13% 0.11% 70%

(continued on next page)
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Table B.2: (continued)

Acc Name p-value p-Bonf SFreq PFreq IC

GO:0016248 channel inhibitor ac-
tivity 1.4E-23 1.0E-21 13% 0.11% 70%

GO:0005246 calcium channel reg-
ulator activity 4.9E-23 3.6E-21 13% 0.12% 69%

GO:0048306 calcium-dependent
protein binding 1.1E-19 8.1E-18 13% 0.21% 63%

GO:0031433 telethonin binding 7.8E-09 5.8E-07 4% 0.02% 86%
GO:0042805 actinin binding 5.6E-06 4.2E-04 4% 0.11% 69%

GO:0030899 calcium-dependent
ATPase activity 1.6E-02 1 1% 0.02% 89%

GO:0003785 actin monomer bind-
ing 7.2E-02 1 1% 0.07% 73%

Table B.3: Complete set of cellular component enriched terms, obtained in the
profiling analysis of no-SCD patients.

Acc Name p-value p-Bonf SFreq PFreq IC
GO:0032982 myosin filament 9.0E-161 6.7E-159 62% 0.10% 71%

GO:0005859 muscle myosin com-
plex 9.0E-161 6.7E-159 62% 0.10% 71%

GO:0016460 myosin II complex 7.3E-153 5.4E-151 62% 0.13% 68%
GO:0014705 C zone 2.5E-86 1.8E-84 25% 0.01% 100%
GO:0005861 troponin complex 6.6E-86 4.9E-84 33% 0.04% 79%

GO:0005865 striated muscle thin
filament 1.0E-77 7.7E-76 33% 0.07% 73%

GO:0005863
striated muscle
myosin thick fila-
ment

6.6E-73 4.9E-71 25% 0.02% 89%

GO:0001725 stress fiber 1.4E-69 1.0E-67 37% 0.25% 61%
GO:0032432 actin filament bundle 1.4E-68 1.0E-66 37% 0.27% 60%
GO:0031672 A band 8.7E-50 6.5E-48 25% 0.13% 68%
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Appendix C

Complete results of the differential
enrichment analysis of SCD and
no-SCD patients (HCM dataset)

For each term is indicated: GO accession number (Acc), term name, p-value
without multiple-testing correction, p-value with Bonferroni correction (p-Bonf),
annotation frequency in the study set (SFreq), annotation frequency in the pop-
ulation set (PFreq), and information content (IC).

Table C.1: Complete results of the differential enrichment analysis obtained with
the HCM dataset and the sub-group of SCD patients.

Acc Name p-value p-Bonf SFreq PFreq IC
Molecular Function

GO:0008307 structural con-
stituent of muscle 8.1E-02 1 88% 70% 61%
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C. COMPLETE RESULTS OF THE DIFFERENTIAL
ENRICHMENT ANALYSIS OF SCD AND NO-SCD PATIENTS
(HCM DATASET)

Table C.2: Complete results of the differential enrichment analysis obtained with
the HCM dataset and the sub-group of no-SCD patients.

Acc Name p-value p-Bonf SFreq PFreq IC
Biological Process

GO:0032780 negative regulation
of ATPase activity 8.1E-02 1 33% 30% 86%

GO:0043462 regulation of ATPase
activity 9.1E-02 1 59% 56% 68%

Molecular Function
GO:0030172 troponin C binding 8.1E-02 1 33% 30% 86%

Cellular Component

GO:0005865 striated muscle thin
filament 8.1E-02 1 33% 30% 73%

GO:0005861 troponin complex 8.1E-02 1 33% 30% 79%
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Appendix D

Default settings of the data mining
algorithms

Figure D.1: Default settings of the J48 algorithm (decision trees).
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D. DEFAULT SETTINGS OF THE DATA MINING ALGORITHMS

Figure D.2: Default settings of the Random Forest algorithm (decision trees).

Figure D.3: Default settings of the Naive Bayes algorithm.
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Figure D.4: Default settings of the Bayes Network algorithm.

Figure D.5: Default settings of the K-nearest neighbors algorithm.
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