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Resumo em Língua Portuguesa da Dissertação intitulada: “The role of SMN protein in 

microRNA biogenesis”  

A Atrofia Muscular Espinal (AME) é uma doença genética autossómica recessiva, caracterizada 

por degeneração dos neurónios alfa inferiores localizados no corno anterior da medula espinhal. 

Indivíduos com AME manifestam atrofia e paralisia muscular progressiva. Sendo uma das 

doenças mais comuns do sistema nervoso, e a principal causa hereditária de mortalidade infantil, 

esta doença foi classificada em 4 grupos clínicos: Tipo I (AME infantil – Werdinig-Hoffman), 

Tipo II (AME intermédia), Tipo III (AME juvenil – Kugelberg-Welander) e Tipo IV (AME 

adulta).  

 

Uma mutação homozigótica no gene Survival Motor Neuron-1 (SMN1) é a causa determinante da 

AME. O gene SMN1 está localizado numa dupla região invertida do cromossoma 5q11.2-13.3, 

onde é também possível encontrar uma cópia sua, bastante idêntica, designada SMN2. Uma 

transição C-T na posição +6 do exão 7 do gene SMN2 interfere com o seu processo de splicing, 

levando à exclusão deste exão. Assim, enquanto o gene SMN1 codifica na sua totalidade proteína 

Survival of Motor Neuron funcional (FL-SMN), o gene SMN2 produz 90% de proteína truncada e 

instável (SMNΔ7) e 10% de proteína funcional (FL-SMN), quantidade esta não suficiente para 

conferir protecção contra a severidade da doença. SMN é uma proteína de expressão ubíqua, com 

níveis de expressão particularmente elevados em órgãos como medula espinhal, cérebro e 

músculos. Em associação com 7 outras proteínas, denominadas Gemins (Gemin2-8), SMN forma 

um complexo – o complexo SMN. O complexo SMN está envolvido no processo de montagem 

das ribonucleoproteínas nucleares pequenas (small-nuclear ribonucleoprotein – snRNPs), sendo 

esta a sua principal função. snRNPs são um componente fundamental do spliceossoma, onde são 

responsáveis pelo reconhecimento da molécula de pré-RNA-mensageiro (pre-messengerRNA – 

pre-mRNA) e remoção de intrões. De igual forma, a proteína SMN desempenha um papel neuro-

específico, manifestado através da interferência na expressão e transporte de RNA mensageiro 

(mRNA) ao longo dos axónios e interferência na síntese proteica que ocorre nas neurites dos 

neurónios motores. 
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Os microRNAs (miRNAs) são moléculas endógenas de RNA, de cadeia simples e não 

codificantes, com importante função na regulação da expressão génica a nível dos processos de 

transcrição e pós-transcrição. Após a transcrição pela enzima RNA polimerase II, é gerada uma 

molécula primária (pri-miRNA) em forma de hairpin. Esta estrutura é especificamente 

reconhecida e clivada pela ribonuclease Drosha e o seu co-factor, DiGeorge syndrome critical 

region gene (DGCR8), originando no núcleo uma molécula precursora (pré-miRNA) de ~70 

nucleótidos. Seguidamente, esta molécula precursora é transportada pela Exportin5 para o 

citoplasma, onde ocorre uma segunda clivagem efectuada pela ribonuclease Dicer, que actuando 

juntamente com outros factores dá origem a um duplex miRNA/miRNA* com ~20 nucleótidos. 

Uma das cadeias deste duplex, a chamada cadeia guia, é incorporada na proteína Argonauta2 

(AGO2), enquanto a cadeira passageira será degradada. AGO2, carregada com a cadeira guia, é 

então incorporada no complexo RISC, onde por compatibilidade através da região 3’-

untranslated region (3’UTR), se liga ao mRNA alvo, levando ao seu silenciamento por clivagem 

ou repressão do processo de tradução. A estabilidade da molécula madura de miRNA é 

controlada por uma série de factores de actuação cis e trans, formação de complexos proteicos e 

exposição a nucleases. Em animais, o decaimento de miRNA maduro é controlado pelas 

exoribonucleases Xrn1 e Xrn2. 

 

Os miRNAs são moléculas expressas em elevado número no sistema nervoso, onde actuam em 

processos de desenvolvimento, especificação celular, modelação e plasticidade neuronal 

(plasticidade sináptica). Várias doenças neurológicas estão associadas a uma desregulação na 

expressão de miRNAs, incluindo AME. Gemin3 e 4 são duas das proteínas Gemin que, para além 

de constituírem o complexo SMN, estão também ligadas à proteína AGO2 e, consequentemente, 

ao complexo RISC. Igualmente, várias proteínas que interactuam com a proteína SMN estão 

envolvidas nos processos de biogénese e decaimento dos miRNAs.  

 

Recentemente foi demonstrada a importância da actividade dos miRNAs para a sobrevivência a 

longo termo de neurónios motores de medula espinhal in vivo. Além disto, foram detectadas 

alterações na expressão e distribuição de vários miRNAs, destacando-se um aumento constante 

na expressão do microRNA-183 (miR-183) causado pela perda da proteína SMN. 



The Role of SMN protein in microRNA biogenesis  Resumo da Dissertação

 

 vi Mestrado em Biologia Molecular e Genética                                 Inês do Carmo Gil Gonçalves 

 

Assim, uma vez que a proteína SMN actua na regulação e transporte de mRNAs para serem 

localmente traduzidos, foi colocada em questão uma possível interferência do complexo SMN 

nos processos de biogénese e decaimento dos miRNAs.  

 

Numa tentativa de compreender qual o mecanismo subjacente à desregulação dos miRNAs 

causada pela perda de SMN, medimos os níveis de expressão das formas primária e madura do 

miR-183. Sendo que este miRNA é transcrito de forma única a partir do cluster miR-

183~96~182, também a expressão das formas primária e madura dos miR-96 e miR-182 foi 

medida em medula espinhal isolada a partir de um modelo animal de AME, o qual inclui 2 cópias 

por alelo do gene SMN2 humano (FVB; P4, Smn
-/-

; SMN2
tg/0

). Os resultados obtidos através de 

real-time PCR (RT-PCR) mostraram não haver alterações na quantidade de transcritos primários 

dos 3 miRNAs que formam o cluster, enquanto a forma madura do miR-183 e miR-96 

apresentaram valores de expressão significativamente elevados. No entanto, miR-182 não revelou 

qualquer alteração nos seus níveis de expressão. Assim, estes resultados sugerem que existe uma 

regulação diferencial na biogénese dos miRNAs constituintes do cluster miR-183~96~182, e da 

mesma forma, confirmam que a perda de SMN leva a uma desregulação na biogénese dos 

miRNAs.  

 

Para perceber o mecanismo molecular através do qual a proteína SMN afecta a expressão dos 

miRNAs, caracterizámos o processo de biogénese destas moléculas, desde a sua transcrição 

primária até todos os passos seguintes de processamento de RNA. Para tal, através de RT-PCR 

quantificámos a expressão de transcritos dos genes envolvidos na biogénese e decaimento dos 

miRNAs em medula espinal de um modelo animal de AME. Curiosamente observámos uma 

diminuição na expressão de todos os genes em estudo, com excepção de Drosha e Exportin5, os 

quais não apresentaram alterações significativas nos seus níveis normais de expressão. 

Consequentemente, esta regulação negativa observada demonstra que a proteína SMN 

desempenha um papel na desregulação dos genes envolvidos na biogénese e estabilidade dos 

miRNAs. 

 

Tendo em conta o papel importante da proteína SMN no processo de splicing, analisámos este 

processo nos genes envolvidos na biogénese e decaimento dos miRNAs. Especificamente 
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pretendemos verificar se a perda de SMN provoca alguma alteração no processo normal de 

splicing dos genes em estudo, levando à ruptura de algum dos transcritos já conhecidos, ou 

criando um novo variante funcional ou não funcional. Assim, acedemos à plataforma 

EURASNET, a partir de onde recolhemos toda a informação disponível acerca do splicing 

alternativo e transcritos existentes para os genes em estudo. Consultando a estrutura genómica 

destes genes, escolhemos a região mais propícia a sofrer splicing, desenhando pares de primers 

primers específicos para os exões que flanqueiam a região determinada. Curiosamente, os 

resultados observados revelaram que o processo de splicing não sofre alterações devido à redução 

redução de SMN. Para confirmar este pressuposto, os fragmentos amplificados por PCR foram 

enviados para sequenciação. No entanto, apesar de não encontrarmos alterações no processo de 

de splicing, foi detectada uma redução na expressão dos fragmentos amplificados nas amostras de 

de SMA quando comparadas com os controlos. Redução que, através de análise estatística, 

confirmámos ser significativa para os genes Ago1, Exportin5 e Xrn2.  

 

Depois de demonstrar uma regulação negativa dos genes envolvidos na biogénese e decaimento 

dos miRNAs, confirmámos se o mesmo se verifica a nível proteico. Para tal, através da realização 

de Western Blot, medimos a expressão proteica dos genes em estudos. Semelhante ao verificado 

para a expressão a nível dos transcritos, genes como Dgcr8, Ago1 e Xrn1 apresentaram uma 

redução significativa nos seus valores normais de expressão. De igual modo, foi também 

verificada uma pequena redução na expressão dos restastes genes testados, com única excepção 

da Drosha. 

 

Em conclusão, este estudo demonstra que existe uma desregulação na expressão do cluster miR-

183~96~182 no modelo animal de AME, sendo provável que esta ocorra a nível pós-

transcricional, uma vez que a transcrição do agregado não apresentou alterações. Da mesma 

forma, observámos que a perda da proteína SMN interfere na expressão dos miRNAs através de 

uma desregulação dos genes envolvidos na biogénese, estabilidade e decaimento dos miRNAs. 

Assim, este estudo contribui para o enriquecimento do conhecimento acerca da relação 

mecanística entre a proteína SMN e os miRNAs, oferecendo informação adicional acerca do 

papel que os miRNAs desempenham na patologia AME.  
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RESUMO 

A Atrofia Muscular Espinal (AME) é uma doença neuromuscular caracterizada pela degeneração 

dos neurónios alfa motores inferiores, atrofia muscular e perda de função motora. AME é causada 

por uma mutação homozigótica ou deleção no gene Survival Motor Neuron-1 (SMN1). No 

entanto, é desconhecida ainda a razão pela qual a perda de função da proteína SMN afecta 

especificamente os neurónios motores inferiores. Os microRNAs (miRNA) são uma categoria de 

RNA não codificante expressos em grande quantidade no sistema nervoso. Foi demonstrado que 

desregulações na expressão dos miRNAs estão associadas a algumas doenças neurológicas, 

incluindo AME. Especificamente, detectámos um aumento na expressão do microRNA-183 

(miR-183) em neurónios com expressão nula da proteína SMN. Desta forma, como objectivo de 

estudo pretendemos descobrir quais os mecanismos que estão envolvidos na desregulação da 

expressão dos microRNAs causada pela perda de SMN. Uma vez estando o complexo SMN 

envolvido no processamento de RNA, foi posto em questão um possível envolvimento deste 

complexo na regulação da expressão dos microRNAs. Para testar esta hipótese, analisámos o 

processo de biogénese dos miRNAs desde a sua transcrição primária até aos restantes passos do 

processamento de RNA, em medula espinal de um modelo animal de AME. A análise de 

expressão feita ao cluster miR-183~96~182 mostrou uma desregulação na regulação do processo 

de biogénese deste cluster em neurónios onde a proteína SMN não é expressa. Da mesma forma, 

verificámos uma desregulação na expressão dos genes envolvidos na biogénese, estabilidade e 

decaimento dos miRNAs em medula espinhal de um modelo animal de AME. Assim, os 

resultados obtidos confirmam que a expressão dos miRNAs é alterada devido a níveis deficientes 

da proteína SMN. 

 

 

Palavras-chave: Proteína Survival motor neuron (SMN), microRNA, pathways de biogénese e 

estabilidade, expressão, desregulação  
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ABSTRACT 

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by degeneration of alpha 

lower motor neurons, muscle atrophy and loss of motor function. SMA occurs when SMN1 

(survival motor neuron-1) is homozygously mutated or deleted. However, it remains unclear how 

deficiency of SMN function mainly affects lower motor neurons. microRNA (miRNA) are a sub-

set of non-coding RNAs highly expressed in the nervous system. It has been reported that 

dysregulation of miRNA expression is associated to several neurological diseases including 

SMA. We found that expression of miR-183 is elevated in SMN deficient neurons. Therefore, we 

sought to uncover the mechanisms underlying the dysregulation of miRNA expression caused by 

SMN loss. Since the SMN complex plays a role in RNA processing, we hypothesize that this 

complex is involved in regulation of miRNA expression. To test our hypothesis, we analyzed 

miRNA biogenesis from primary transcript to down-stream steps of RNA processing in spinal 

cord of SMA mouse model. Analysis of the expression of miR-183~96~182 cluster suggests that 

the biogenesis process for this cluster is dysregulated in SMN deficient neurons. We found that 

the genes involved in miRNA biogenesis, stability and decay pathways are dysregulated in spinal 

cord of SMA mouse model. Our findings suggest that SMN deficiency causes dysregulation of 

miRNA biogenesis and decay pathways.  

 

 

Keywords: Survival of motor neuron protein (SMN), microRNA (miRNA), biogenesis and 

decay pathways, expression, dysregulation 
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INTRODUCTION 

Autosomal recessive proximal spinal muscular atrophy (SMA) 

Spinal muscular atrophies (SMAs) are a genetically and clinically heterogeneous group of 

neuromuscular disorders characterized by progressive degeneration of lower alpha motor neurons 

neurons in the anterior horns of the spinal cord.
1
 Affected individuals exhibit autosomal recessive 

recessive inheritance with proximal manifestation of muscle weakness and atrophy defined as 

autosomal recessive proximal spinal muscular atrophy (SMA).
2 

With an incidence of about 

1:6000 to 1:10000 newborns and a carrier frequency of 1:35, SMA is the leading hereditary cause 

cause of infant mortality.
3,4

 Due to the highly variable disease severity, four clinical types of 

SMA are classified based on the age of onset and achieved motor abilities: Type I SMA 

(Werdnig–Hoffmann), intermediate Type II SMA, mild Type III SMA (Kugelberg–Welander) 

and Type IV SMA (adult SMA).
2,4-8

 

 

Survival of motor neuron-1 (SMN1) is the disease-determining gene of SMA, leading to the 

disease due to a homozygous deletion or mutation.
9
 This gene is located on the chromosomal 

region 5q11.2-13.3 in a segment of ~500kb, which includes the telomeric SMN1 and the similar 

similar but slightly different centromeric SMN2.
10

 The human genome contains a copy of SMN1 

SMN1 and several copy numbers of SMN2 genes.
11

 With 99% of identity, the two SMN copies 

only differ in 5 base-pair exchange localized within the 3’ end of the genes.
9,12

 However, only the 

the C-to-T transition at position +6 of exon 7 (c.840C>T) is localized within the coding region.
13

 

region.
13

 Although it is a translational silent mutation, it severely affects the correct splicing of 

the exon 7 by disrupting an exonic splicing enhancer (ESE) and generating an exonic splicing 

silencer (ESS) instead. Therefore, an alternative spliced mRNA isoform that lacks this exon 

(SMN∆7) is produced.
12,14

 SMN1-derived transcripts produce full-length (FL) and functional 

SMN protein, while nearly 90% of SMN2-derived transcripts generate a truncated and instable 

protein (SMN2∆7). Although low amount of FL-SMN2 is also produced, which is equivalent to 

to ~10% of SMN1 levels, it is not enough to protect against disease development.
2,15

 Since the 

clinical severity of SMA depends on the amount of SMN protein, the copy numbers of SMN2 

directly impacts disease severity.
16-18
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Survival of motor neuron protein (SMN) and SMN complex 

The human SMN protein is a 38kDa protein with 294 amino acids, encoded by 8 exons.
9
 Is a 

ubiquitously expressed protein, with particularly higher levels in spinal cord, brain, kidney and 

liver. However, in individuals with Type I SMA was detected a 100-fold reduction of SMN 

levels in spinal cord when compared with the controls.
19

 Complete loss of SMN protein in 

animals causes embryonic lethality, pointing out the crucial role of this protein in early 

development.
20

 The SMN protein is localized in both the cytoplasm and the nucleus. With a 

disperse distribution in the cytoplasm, the nuclear SMN is found in structures called Gems, for 

“Gemini of the coiled bodies”, which are intimately associated with the nuclear coiled bodies 

(Cajal bodies).
19,21

 

 

SMN is tightly associated with its binding partners and forms the SMN complex. These proteins 

are named Gemins (Gemin 2-8) due to their localization in nuclear structures, Gems. SMN self-

oligomerization creates the backbone of the complex.
23,24

 Gemin2, Gemin3, Gemin5 and Gemin7 

directly interact with SMN, whereas Gemin4 and Gemin6 are connected with the complex 

through their interactions with Gemin3 and Gemin7, respectively. The direct binding of Gemin8 

with the SMN complex mediates its interaction with the Gemin6/Gemin7 heterodimer, which 

binds directly to UNR- interaction protein (Unrip).
23-25

 The most well characterized function of 

the SMN complex is the ATP-dependent assembly of the heptameric core of Sm proteins on 

Uridine-rich snRNAs (U-snRNAs), which are involved in the formation of the spliceosomal 

small nuclear ribonucleoproteins (snRNPs). SnRNPs are crucial factors within the spliceosome, 

playing an important role in the recognition and splicing of introns of pre-mRNA in the 

nucleus.
11,23,26,27

 An snRNP molecule consists in one U-snRNAs molecule, a common core 

comprising a ring of seven common Sm proteins, and several snRNP-specific proteins.
11,23,26

 

SMA animal models show a reduced U-snRNP assembly activity in the central nervous system, 

as well as signals of  motor axon degeneration due to impaired U-snRNPs assembly.
7,27

 

Immunocytochemical studies described an association between SMN and cytoskeletal elements 

in the axons and dendrites of neurons.
28,29

 Endogenous SMN and Gemin proteins co-localized in 

granules which exhibit rapid, active and bidirectional movement that extends throughout neurites 

and growth cones of cultured motor neurons.
30

 Local translation is known to be implicated in 
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SMA pathology. The SMN binding partner hnRNP is associated with the 3’ UTR of β-actin 

mRNAs, a well-known mRNA that undergoes local translation. SMN deficient motor neurons 

show alterations of β-actin protein and mRNA localization in axons and growth cones of 

developing neurons, which might explain the deficit in axonal actin cytoskeleton organization 

due to low SMN levels.
23,31

 Additionally, it was shown that SMN forms a complex with HuD that 

binds to the neuritin (cpg15) mRNA and is involved in the transport and deliver of mRNA in 

motor neuron axons to be locally translated.
32

 Thus, it is suggested that SMN plays a neuronal-

specific role in axonal mRNA expression/trafficking and local protein synthesis in the neurites 

21,32,33
 Likewise, it has been shown a neuronal specific role of SMN in axonal outhgrowth and 

pathfinding.
34,35

 Low SMN levels cause alteration in neuromuscular junctions (NMJ) 

morphology.
36,37

 SMN binds to others RNA binding proteins as Drosophila homologue of the X 

mental retardation protein (FMRP), KH-type splicing regulatory protein (KSRP) and 

FUS/TLS.
38-40

 

microRNAs (miRNAs) - biogenesis, stability and decay 

microRNAs (miRNAs) are endogenous non-coding single-stranded RNAs (ssRNA) molecules of 

~22 nucleotides that play important gene-regulatory roles in animals and plants through 

transcriptional and posttranscriptional regulation. miRNAs function via base-paring to the 3’-

untranslated region (3’-UTR) of messenger RNAs (mRNAs) from target protein-coding genes, 

leading to gene silencing by mRNA cleavage, translational repression and deadenylation.
41

 

Functional studies indicate that miRNAs participate in the regulation of a wide range of cellular 

cellular and developmental processes. Dysregulations of specific miRNAs related pathways are 

are associated with several human pathologies.
42,43

  

 

The majority of characterized miRNAs are transcribed by RNA polymerase II from independent 

genes or introns of protein-coding genes resulting in primary transcripts (pri-miRNAs), which 

fold into a hairpin structure.
42

 This structure is specifically recognized by the nuclear 

ribonucleaseIII (RNaseIII) enzyme Drosha, which together with its cofactor DiGeorge syndrome 

critical region gene 8 (DGCR8) comprises the microprocessor complex. DGCR8 is a double 

stranded RNA-binding domain protein that acts as a molecular anchor necessary for the 

recognition of pri-miRNA. Within this complex, Drosha cleaves the pri-miRNA into a ~70-
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nucleotide precursor hairpin (pre-miRNA).
44

 Afterwards, this precursor is translocated to the 

cytoplasm by exportin5 (XPO5) through the nuclear pore complex in a Ran guanosine 

triphosphate (RanGTP)-dependent process.
45

 Once in the cytoplasm, the pre-miRNAs are cleaved 

cleaved by a second complex comprising Dicer (RNaseIII enzyme) in association with the 

transactivation-responsive RNA binding protein (TRPB), and the protein activator of the 

interferon-induced protein kinase (PACT).
46,47

 This complex processes the pre-miRNA, 

generating a ~20bp miRNA/miRNA* duplex. One strand of this duplex is incorporated into the 

the Argonaute2/ Eukaryotic Translation Initiation Factor 2C (Ago2/Eif2c2) protein as a mature 

miRNA (guide strand/miRNA), whereas the other strand (passenger strand/miRNA*) is 

degraded.
42

 

Ago2/Eif2c2 is loaded with miRNAs through a specialized assembly called the RISC-loading 

complex (RLC), which comprises the proteins Ago2, Dicer, TRBP, PACT. Therefore, is induced 

induced the assembly of a ribonucleoprotein effector complex known as the RNA-induced 

silencing complex (RISC), which is responsible for the silencing of target genes.
48

. The 

functional core of RISC is mainly composed by members of the Argonaute family (PIWI1-4 and 

and EIFC2C/AGO1-4 subfamilies) and glycine-tryptophan protein of 182kDa (GW182). 

However, only Ago2/Eif2c2 shows intrinsic endonuclease enzymatic activity, being responsible 

responsible for the mRNA slicer activity in RISC. GW182 proteins act as downstream effectors 

effectors of repression.
42,43,49,50

 Ago2 has an additional independent function in miRNA 

biogenesis: it generates an intermediate miRNA precursor named Ago2-cleaved precursor (ac-

pre-miRNA).
51

 Additional proteins associated with RISC have been newly identified such as 

FMRP; members of the family of DExD/H RNA helicases, as MOV10 and RNA helicase A; 

R2D2; RNA-binding proteins as HuR; and Gemin3 and 4, which are thought to also have 

helicase activity.
52

  

Transcription, processing and decay of miRNAs are subject to sophisticated control. The multiple 

steps in miRNA biogenesis seem to be remarkably well coordinated, with the transcription being 

the major level of control responsible for tissue and development-specific expression of miRNA. 

Such regulation is carried out by several activators or repressors that interact either with Dicer or 

Drosha, or binding to pre-miRNA.
42,49,52,53

 The stability of mature miRNA is controlled by cis- 

and trans-acting modifications, protein complex formation and exposure to nucleases. AGO 
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proteins also play an important role in miRNA stabilization. miRNA decay is carried out by 

exonucleases named small RNA degrading nucleases (SDS) that catalyze 3’-to-5’ decay in plants, 

whereas in animals such function is performed by the 5’-to-3’ exoribonucleases1 and 2 (XRN1 

and XRN2). 
53,54

 

microRNA in the nervous system  

microRNAs are abundantly expressed in the nervous system, where its function affects a large 

number of neuronal genes. Changing levels of certain ubiquitous and brain-specific miRNAs 

shape the development and function of the nervous system. miRNAs are mainly involved in 

developmental process as cell specification, patterning and neuronal plasticity.
55

 The involvement 

involvement in the specification of cell types and maintenance of cell identity was additionally 

identified as miRNA function.
55

 Being expressed in dendrites and axons, miRNA are thought to 

to be involved in the control of synaptic plasticity and axonal pathfinding.
55

 Many miRNAs can 

can be detected in neurites of primary hippocampal and sympathetic neurons, which suggests an 

an involvement in the control of local mRNA translation in neurons.
55,56

 miRNA-mediated 

regulation seems particularly well suited in local translational control of synaptic plasticity.
57,58

  

plasticity.
57,58

  

 

 

microRNAs and spinal muscular atrophy 

Among the Gemin proteins that constitute the SMN complex, Gemin3 and 4 are also binding-

partners of AGO2/EIF2C2.
59

 Several miRNAs are reported as binding to Gemin3 in human and 

and murine neuronal cell lines.
60

 SMN binding partners as FMRP, FUS/TLS and KSPR are also 

also involved in miRNA biogenesis and function.
38-40

 Therefore, it is postulated that SMN protein 

protein plays a role in miRNA expression and distribution in neurons to regulate local translation. 

translation. Recent report shows that miRNA activity is essential for long-term survival of 

postmitotic spinal motor neuron in vivo. In fact, ablation of Dicer leads to a loss of ability to 

make functional miRNA, leading to manifestation of hallmarks characteristic of SMA. 

Additionally, embryonic stem cell derived motor neuron from a SMA mouse model show a 

specific down-regulation of miR-9 and miR9* expression.
61

 Such findings suggest miRNA 

dysregulation due to loss of SMN protein. However, cellular mechanisms involved in SMN 

mediated miRNA expression and functions are still unknown.  
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Aims 

Since SMN plays a role in the regulation of expression and/or trafficking of mRNAs that are 

locally translated, was hypothesized that this complex is involved in miRNA biogenesis and 

stability. To test this hypothesis, SMN expression was knocked down in neurons and the 

expression of 187 miRNAs was measured.
56

 Previous studies and preliminary data showed that 

that several miRNAs exhibit changes in their distribution and expression due to SMN deficiency. 

deficiency. The most constantly altered miRNA was miR-183; an increase in overall expression 

expression of miR-183 was reported in different cells and tissues such as embryonic cortical 

neurons, spinal motor neurons form SMA animal models and fibroblast cell lines derived from 

SMA patients (unpublished data).
56

 miR-183 is transcribed from a miRNA cluster miR-

183~96~182.     

 

The cellular mechanism behind the relationship between the SMN protein and miRNAs is not yet 

identified. Therefore, the aim of this work is to identify how miRNA expression is dysregulated 

in SMN deficient neurons: at the transcriptional level, in the biogenesis processes or at stability 

and decay levels. With this study we (1) measured the expression of primary and mature 

transcripts from the miR-183~96~182 cluster in spinal cord of 4-days old Taiwanese SMA mice 

model, which contains 2 copies of the human SMN2  per allele (FVB, P4, Smn
-/-

;SMN2
tg/0

)
62

; (2) 

measured the expression of major genes involved in miRNA biogenesis, specifically Drosha, 

Dgcr8, Dicer, Ago1/Eif2c1, Ago2/Eif2c2, Xrn1, Xrn2 and Expotin5/Xpo5 in spinal cord of the 

previously described SMA mouse model; (3) performed splicing analysis to test weather this 

process is dysregulated in miRNA biogenesis genes; and (4) analyzed the expression of the 

biogenesis and decay genes at the protein level, performing western blot to measure the protein 

expression of miRNA biogenesis from spinal cord of the SMA mouse model (FVB, P4, Smn
-/-

;SMN2
tg/0

).  
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METHODS 

Isolation of spinal cord and brain from mice 

Spinal cord and brain were isolated from the Taiwanese SMA mouse model (FVB; P4; Smn
-/-

; 

SMN2
tg/0

), produced in laboratory of Prof. Dr. Brunhilde Wirth.
62

 Both homozygous (FVB; Smn
-/-

; SMN2
tg/0

) and heterozygous (FVB; Smn
-/+

; SMN2
tg/0

) contain 2 copies of human SMN2 in their 

genome. The strain FVB/NJ was used as wild-type.
62

 4 days old mice were euthanized by carbon 

dioxide (CO2) in a closed chamber and, the spinal cord was isolated and stored at -20ºC. 

Genotyping 

For each animal used in this study, the genotype was checked using the Kapa
TM

 Mouse 

Genotyping Hot Start Kit (Peqlab Biotechnologies, PB), according to manufacturer’s protocol. A 

polymerase chain reaction (PCR) was performed using specific primer pairs to distinguish the 

homozygous from the heterozygous (oligo 5’-ataacaccaccactcttactc-3´, oligo 5’- 

gtagccgtgatgccattgtca-3’ and oligo 5’-agcctgaagaacgagatcagc-3’) and to confirm the transgene 

(oligo 5’-cgaatcacttgagggcaggagttt-3’ and oligo 5’-aactggtggacatggctgttcattg-3’). The PCR 

reaction was performed with the conditions recommended by the manufacturer. The PCR 

products were separated in 1% agarose gel electrophoresis and visualized using ethidium bromide 

(ApplyChem). Images were taken with ChemiDoc XRS Imaging system (Biorad). 

RNA isolation from brain and spinal cord  

Total RNA was extracted from spinal cord using the mirVana™ miRNA Isolation Kit (Applied 

Biosystems, AB) according to manufacturer’s instructions. Total RNA was quantified using the 

NanoDrop ND-1000 spectrophotometer (PB). The samples were immediately used, or stored at -

20ºC for future use. 

cDNA synthesis and real-time PCR for pri-miRNA and miRNA 

Real time PCR was performed to measure expression levels of individual primary and mature 

miRNA forms of miR-182, miR-183 and miR-96. 50ng of total RNA was reversed transcribed 

using the High Capacity cDNA Reverse Transcription Kit (AB). Pri-miRNA and miRNA 
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expression was measured by TaqMan
® 

RT-PCR following the same procedure as described 

before.
63

 The RT-PCR was performed with following conditions: an initial incubation stage at 

50ºC for 2min, denaturation at 95°C for 10 min and 40 cycles of detection (annealing/extension 

at 95°C for 15s and 60°C for 1min). All samples were analyzed in duplicated. Amplified signals 

were collected by 7500 System (ABI) and normalized with glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH). 

Primers for genes in miRNA biogenesis and stability pathways; expression and splicing                                                                                  

Primer pairs for genes in miRNA pathway were designed using Primer3Plus software and 

purchased from Metabion. The sequence of the each gene was obtained from NCBI nucleotide 

data-base. To check splicing variants, the genomic sequences were obtained from USCS genome 

browser and primer pairs were designed for the exons considered as likely to undergo splicing. 

Known information about splicing process in these genes was accessed through EURASNET - an 

alternative splicing network database.  

 

cDNA synthesis and real time PCR for mRNA  

100ng of total RNA was reversed transcribed using the High Capacity cDNA Reverse 

Transcription Kit with random primers (AB). PowerSYBR
®
 Green PCR Master Mix (AB) was 

used to amplify signals with 20ng of cDNA and 1µM of gene specific primers (Supplementary 

Table1). RT-PCR amplification conditions were: an initial incubation stage at 50ºC for 2min, 

denaturation at 95°C for 10 min and 40 cycles of detection (95°C for 15s, 60°C for 30s, and 72ºC 

for 40s). A final dissociation was performed to check if the amplification was correctly 

performed. All samples were analyzed at least twice. The RT-PCR was performed using 7500 

Real Time PCR System (AB). GAPDH was used as internal control. 

 

Polymerase Chain Reaction (PCR) for splicing characterization 

To characterize splicing process in the genes involved in miRNA biogenesis and stability, a PCR 

was carried out with 20ng/µL of cDNA isolated from spinal cord, and 1µM of each gene specific 

primer pair (Supplementary Table2). The amplification was performed with the enzyme Taq 

DNA Polymerase, Recombinant (Invitrogen) and the cycling conditions followed the 
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manufacturer instruction: an initial denaturation step of 3 min at 94ºC, followed by 43 cycles of 

45s at 94ºC, gene specific primer annealing temperature (Supplementary Table2) for 30s, and 

extension at 72ºC for 3min; followed by a final extension step of 10min at 72ºC (Thermocycler:  

DNA engine Tetrad2 from Mj Research). PCR products were separated in 1% agarose gel 

electrophoresis and visualized with ethidium bromide (ApplyChem). Images were taken using 

ChemiDoc XRS Imaging system (Biorad).  

 

Gel Extraction 

The DNA fragments amplified by PCR were excised from the agarose gel and extracted using the 

QIAquick Gel Extraction Kit (QIAGEN), following the manufacturer’s protocol. DNA 

concentration was quantified with the NanoDrop ND-1000 spectrophotometer (PB), and 

sequence was confirmed by sequencing (GATC Biotech). Sequencing results were analyzed 

using SeqMan Software (Lasergene®).  

 

Protein isolation from mouse tissue 

Mouse spinal cord was lysed in 400µL of Lysis Buffer (1M Tris-HCL, Triton X-100, 5M NaCl, 

100mM EDTA and ddH2O) containing protease inhibitor (in a 1:24 dilution). Homogenization 

was carried out using the T10 basic ULTRA-TURRAX homogenizer. Hereafter, the proteins 

were sonicated for 10min with the Bioruptor® Plus (Diagenode), and centrifuged (5415 R 

centrifuge, Eppendorf) for 15min at 13.000rpm and 4ºC. The protein-containing supernatant was 

collected for further analysis and stored at -20ºC.  

 

Protein quantification  

Pierce
TM 

BCA protein assay kit (Thermo Scientific) was used to determine the protein 

concentration and ensure equal sample loading. We followed manufacturer’s instructions for this 

procedure. The standard curve and concentration values were acquired using the NanoDrop ND-

1000 spectrophotometer (PB). 
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Western Blot 

Protein expressions were analyzed by western blots.
64

 Proteins were separated in 8% and 10% 

SDS gel electrophoresis and, transferred onto a polyvinylidene fluoride (PVDF) membrane 

(Millipore, pore size 0.45µm) equilibrated with Methanol. Ponceu staining (15s) was carried out 

to check protein transfer. The membranes were incubated in 5% milk solution for 1h at room 

temperature to reduce non-specific background bindings (blocking). Subsequently, the membrane 

was incubated with primary antibody, which the optimum incubation time and concentration 

were determined empirically: incubation in 5% milk overnight at 4ºC.  Before and after the 

secondary antibody incubation, the membrane was washed 15min in tris buffered saline with 

tween (TBS-T) buffer for 3 times. The membrane was incubated with secondary antibody for 2h 

at 4ºC. SuperSignal® West Pico Chemiluminescent Substrate (Thermo Scientific) was used to 

detected chemiluminescence signals. The signals were obtained and analyzed by the ChemiDOC 

XRS (Biorad) analysis software.      

Antibodies 

The following primary antibodies were used: goat anti-Drosha (ab58589, Abcam), rabbit anti-

Dicer (SAB4200087, Sigma-Aldrich), rabbit anti-XRN1 (SAB4200028, Sigma-Aldrich), rabbit 

anti- XRN2 (SAB4500893, Sigma-Aldrich), rabbit anti-Exportin5 (SAB4200003, Sigma-

Aldrich), rabbit anti-DGCR8 (SAB4200089, Sigma-Aldrich), rabbit anti-Argonaute (C34C6, Cell 

Signaling) and rabbit anti-GAPDH (14C10, Cell Signaling). The secondary antibodies used were 

donkey-α-rabbit-HRP and rabbit-α-goat-HRP.  

 

Statistical Analysis 

All image data was collected and analyzed using ImageJ (National Institutes of Health) and 

Quantity One 4.5.1 (densitometric analysis – Biorad). Statistical analysis was done with 

Microsoft Excel. The statistical significance was achieved applying the student’s t-test. (p<0.05 = 

*, p<0.01 = **, and p<0.001 = ***). 

 

http://en.wikipedia.org/wiki/National_Institutes_of_Health
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* 

* 

RESULTS 

Quantification pri-miRNA and miRNA expression of miR-183~96~182 cluster  

Our previous study showed that miR-183 expression is increased in SMN deficient cells, 

including spinal cord of  SMA mouse model and SMN knock down cortical neuron cultures.
56

 To 

To understand the mechanism how SMN deficiency causes the elevated miR-183 expression, we 

we measured the primary transcript of miR-183 in SMN deficient cells. Since miR-183 is 

transcribed as a single transcript from miR-183~96~182 cluster, we measured the expression of 

of all three mature miRNAs as well as primary transcripts in 4 days old SMA mouse model 

(FVB, Smn
-/-

; SMN2
tg/0

). Interestingly, while the expression of miR-183 and miR-96 were 

elevated in spinal cord of SMA mouse, the expression of miR-182 and primary transcripts did not 

not show any significant changes (Figure1). 

 

This data suggest that there is a differential regulation in the biogenesis process among miRNA 

in the miR-183~96~182 cluster. Likewise, these results suggest that SMN deficiency causes 

dysregulation of miRNA expression, affecting the biogenesis pathway rather than general 

transcription.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1. The expression of miR-183~96~182 cluster in spinal cords from SMA mouse model (FVB; Smn
-

/-
; SMN2

tg/0
) and control (FVB; Smn

+/-
; SMN2

tg/o
). In this experiment were used n=12 for SMA and n=8 

for control. Primary transcript does not show expression changes in any of the miRNAs. Expression of 

mature miR-182 does not show any difference, while expression of mature miR-96 and miR-183 have 

significantly increased. Statistical significance was determined by Student’s t-test:*, p<0.05; **, p<0.01; 

***, p<0.001. 
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Quantitative real time-PCR analysis of genes involved in miRNA biogenesis and decay 

pathways 

After confirming that miR-183 expression is upregulated in spinal cords from SMA mouse model 

(FVB, Smn
-/-

; SMN2
tg/0

), we asked how SMN deficiency caused dysregulation in miRNA 

expression. We postulated that SMN protein is involved in miRNA biogenesis or stability. To test 

this hypothesis, we characterized miRNA biogenesis pathway from primary transcription to 

down-steam steps of RNA processing in spinal cords from SMA mouse model. Therefore, we 

designed gene-specific primers for each gene involved in biogenesis and decay pathways of 

miRNAs and performed a RT-PCR to measure its transcript expression levels in spinal cord.  

 

Strikingly, mRNA expression of the many genes involved in the miRNA biogenesis pathway was 

significantly decreased in spinal cord of SMA mouse model. Only the expression of Drosha and 

Exportin5 was not altered (Figure2). Likewise, we observed a similar substantial reduction in the 

expression levels of Xrn1 and Xrn2, the exoribonucleases responsible for miRNA decay 

(Figure2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure2.  Graph shows the expression analysis of genes involved in miRNA biogenesis and decay 

pathways in SMA mouse model (FVB; Smn
-/-

; SMN2
tg/0

) and wild type (FVB; Smn
+/-

; SMN2
tg/o

). The error 

bars indicate the standard deviation (SD). Drosha and Exportin5 do not show any changes in expression, 

while a significant decrease is observed in the remaining genes. RT-PCR results show a dysregulated 

expression of genes responsible for miRNA decay and stability. Data are represented by mean ± SD. N= 

14 for SMA and n=10 for WT, except for Exportin5 with n=10 for SMA and WT (Student’s t-test: *, 

p<0.05; **, p<0.01; ***, p< 0.001). 

* 
* 

* 
* * 

* 



The Role of SMN protein in microRNA biogenesis  Results

 

 16 Mestrado em Biologia Molecular e Genética                                 Inês do Carmo Gil Gonçalves 

 

Taken together, these results showed that SMN deficiency changes the expression of the genes 

involved in biogenesis and stability of miRNAs. Accordingly, the observed downregulation 

intensely suggests that the SMN complex plays a role in miRNA expression through differential 

regulation of its processing and stability. 

 

Characterization of splicing in genes involved in miRNA biogenesis and decay pathways  

The most well characterized function of the SMN complex is its important role in the biogenesis 

of U-snRNPs complexes in the nucleus.
26

 These RNA-protein complexes are the major 

components of the spliceosome, where its main function is the recognition and removal of introns 

from pre-mRNA in the nucleus.
65

 Since SMN protein is strongly associated with splicing, we 

aimed to determine if SMN causes effects in splicing process of the genes involved in miRNA 

biogenesis, decay and stability pathways. Specifically, we intended to uncover whether SMN 

deficiency leads to a disruption of the gene transcript forms, or creates new 

functional/nonfunctional splicing variants. To test our hypothesis, we accessed to EURASNET 

and collected the available information about the alternative splicing events and transcripts of 

genes under study. Thereafter, according to this information and the genomic structure, we design 

gene-specific primers flanking the exons considered as likely to undergo splicing, and performed 

a PCR.  

 

Curiously, we observed that the splicing process was not dysregulated in the genes under test 

(Supplementary Figure1A-H). The amplified PCR-fragments were confirmed with Sanger 

sequencing. Although we did not find changes in the splicing process of these genes, we could 

detect significantly lower expression of some genes such as Ago1, Exportin5 and Xrn2 in SMA 

spinal cord (Figure3). 
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This data showed that SMN does not disrupt the splicing process of the genes involved in 

miRNA biogenesis and decay. However, the decreased expression of some genes confirms that 

SMN deficiency affects the genes involved in miRNA biogenesis and decay, supporting the 

hypothesis that SMN is directly involved in the regulation of these pathways.  

 

Analysis of gene expression involved in miRNA biogenesis and decay pathways in protein 

level 

Having demonstrated a downregulation of the genes involved in miRNA biogenesis and decay in 

the spinal cord of SMA mouse model, we decided to check the expression of these genes at 

protein level. Therefore we measured the protein expression levels of DROSHA, DGCR8, 

DICER, EXPORTIN5, AGO family, XRN1 and XRN2 in spinal cord of the SMA mouse model 

(FVB, P4, Smn
-/-

;SMN2
tg/0

) and wild type control using Western blots. 

 

As similar to mRNA expression the protein levels of some genes such as DGCR8, AGO and 

XRN1 were lower in spinal cord of SMA mice compared to the wild type control (Figure4 and 

and Supplementary Figure2). Among the biogenesis genes, while Drosha did not show any 

Figure3. Expression of genes involved in miRNA biogenesis and decay in spinal cords from SMA 

mouse model (FVB; Smn
-/-

; SMN2
tg/0

) and wild type (FVB; Smn
+/-

; SMN2
tg/0

). In this experiment were 

used n=9 for SMA and n=7 for WT, with exception of Drosha. For Drosha we used n=14 for SMA and 

n=14 for WT. The error bars indicate the SD. Significance was determined using the student’s t-test: *, 

p<0.05; **, p<0.01; ***, p<0.001. 

*** 

** 

* 
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alteration in its protein expression, the levels of the remaining proteins were slightly reduced in 

in SMA samples (Supplementary Figure2A-E). Specifically, the expression of DGCR8 and 

AGO proteins were significantly reduced (Figure4). Moreover, we found a highly significant 

decrease in the expression of XRN1, whereas expression of XRN2 was not changed by SMN 

deficiency (Figure4 and Supplementary Figure 2F-G).  

 

These findings confirm our hypothesis by showing that SMN deficiency decreases the expression 

of the genes involved in miRNA biogenesis and decay pathways at protein level. Consequently, 

such results support that SMN protein regulates miRNA expression via controlling their 

biogenesis and decay pathways.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure4. Quantification analysis of the protein expression levels of the genes involved in miRNA 

biogenesis and decay in SMA spinal cord. The error bars indicate SD. Significance was determined using 

the student’s t-test: *, p<0.05; **, p<0.01; ***, p<0.001. DROSHA: n=6 for SMA and n=8 for WT; 

DGCR8: n=3 for SMA and n=3 for WT; DICERr: n=7 for SMA and n=8 for WT; AGO: n=12 for SMA 

and n=12 for WT; EXPORTIN5: n=8 for SMA and n=7 for WT; XRN1: n=9 for SMA and n=6 for WT; 

XRN2: n=7 for SMA and n=5 for WT. Results from two independent experiments. GAPDH was used as 

internal control. 

 

* 

*** 
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DISCUSSION 

SMA is a devastating and lethal neuromuscular disease characterized by dysfunction/loss of 

alpha lower motor neurons in the anterior horns of the spinal cord.
1
 Motor neuron degeneration 

degeneration has been well documented in SMA. Recently, dysregulation of miRNAs such as 

miR-9 and miR-9* was reported in embryonic stem cells derived motor neurons harboring a 

mutation causing SMA.
56

 The goals of this study were (1) to uncover how SMN deficiency 

causes increased expression of miR-183 (2) to characterize miRNA biogenesis from primary 

transcription to down-stream steps of RNA processing in spinal cord of a SMA mouse model.   

 

In this study, we reported dysregulated expression of miR-183~96~182 cluster in spinal cord of 

SMA mouse model. The predominant mechanism for miR-183 dysregulation seems to be post-

transcriptional since the transcription of miR-183 cluster is not changed by SMN deficiency. 

However, the molecular mechanism underlying the role of SMN protein in the dysregulation of 

miRNA expression remains to be elucidated.  

 

The incorrect splicing of genes in miRNA biogenesis pathway could explain the aberrant miRNA 

expression. The major role of SMN protein in splicing and its involvement in the formation of 

RNPs complex raised the question whether its deficiency could have an impact on the splicing 

process and machinery.
24,74

 To test this hypothesis, we verified a downregulation in the 

expression of the genes involved in miRNA biogenesis and decay in SMN deficient cells; 

however its splicing process was not affected. Recently, it was reported an involvement of the 

SMN complex in the mRNA trafficking and delivery to the axonal compartment for axonal local 

translation.
32

 Thus, it is suggested that the SMN complex may play a role in the formation or 

trafficking of miRNA-RISC complexes and/or translational machinery. Taken together, we 

conclude that the SMN deficiency causes dysregulation of the miRNA expression through 

regulating the genes involved in miRNA related pathways.  

 

Whichever mechanisms are contributing to the dysregulation of miRNA expression, it appears 

that miRNAs are differentially regulated via their biogenesis and stability pathways. In this study 
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study we demonstrated that SMN deficiency altered miRNA expression through a dysregulation 

dysregulation of the genes involved miRNA biogenesis and decay pathways. 

 

As new strategies to uncover the molecular mechanisms underlying this dysregulation we suggest 

a promoter analysis of the genes involved in biogenesis and decay in SMN deficient cells. 

Additionally, we will investigate whether neuronal localization of these genes is affected by 

SMN loss. 

 

Our study provides further knowledge about the mechanistic relationship between the SMN 

protein and miRNAs, which helps us to understand the role of miRNA pathway underlying SMA 

SMA pathology.  
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Supplementary Table1. Primer sequences to measure the mRNA expression of the genes 

involved in miRNA biogenesis and stability in spinal cord from SMA mouse model.  

 

 

Supplementary Table2. Primer sequences to study the splicing of the genes involved in miRNA 

biogenesis and stability in spinal cord of SMA mouse model. 

 

Gene 5’ → 3’ forward primer 5’ → 3’ reverse primer Annealing/ 

Amplicon 

length (bp) 

mDrosha GGACCATCACGAAGGACACT GATGTACAGCGCTGCGATAA 55ºC/197 

mDGCR8 GAAACCATGGAATGGGTGAC CAGAGGTCTCCTGCTTGACC 58ºC/250 

mDicer GTGGAGGGAGACCAGTCAAA TGGGAAGCTATGGGTTCTTG 55ºC/250 

mEif2C1 TCGGAAGATTTCCAAGGATG GTTGCCATTCCCAAGAGTGT 53ºC/216 

mEIF2C2 AAGTCGGACAGGAGCAGAAA GAAACTTGCACTTCGCATCA 52ºC/182 

mXPO5 TTCCTGACTTCCGGCTTAGA TGGTTGATGACATGCCACTT 55ºC/160 

mXRN1 GAGATGAGCGTGGAGTGTCA CGCAGAAAGGAGAAATCAGG 55ºC/230 

mXRN2 TTGAGAAGCAGCGAGTCAGA CCAGGTGCACTAGCATCAGA 53ºC/217 

mGAPDH AACTTTGGCATTGTGGAAGG ACACATTGGGGGTAGGAACA 60ºC 

Gene 5’ → 3’ forward primer 5’ → 3’ reverse primer Annealing/ 

Amplicon 

length (bp) 

mDrosha CATCACATCCGGTACCATCA GAAGGAGTTGGATCATCTTGG 53ºC/308 

mDGCR8 AATCCAAGTGAGCCTTTTGGT GCTTCTCCTCAGAGGTCTGTTT 60ºC/154 

mDicer TGGGTCCTTTCTTTGGACTG GAACACGGTCCTTTTTGCAT 58ºC/183 

mEif2C1-a TCGGAAGATTTCCAAGGATG CGCTCATTCTTGTCAGCACA 55ºC/747 

mEif2C1-b CTGCCATGTGGAAGATGATG ACTTCCACCTTCAGGCCTTT 58ºC/184 

mEIF2C2-a CGCGTCGGGTAAACCTGT GATGCGATCTTTGCCTTCTC 53ºC/522 

mEIF2C2-b AAGTCGGACAGGAGCAGAAA TGAGATGGACTTCTGTACACTGG 53ºC/417 

mXPO5 ACCGGAAATGCTAACGAAAA GAGGTCCAAGGATGGGAGAT 58ºC/420 

mXRN1 TTGGGCTGCATTAGACAAAA CCAGGACTGGACTCCATGAT 55ºC/242 

mXRN2 TCTT CCTTCGGCTG AATGTC ATCCTCAACTTCACCAACTGC 53ºC/374 
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A Drosha B Dgcr8 

C Dicer D Exportin5 

E Ago1/Eif2C1 F Ago2/Eif2c2 
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Supplementary Figure1. Schematic representation of PCR results from the analysis of 

alternative splicing of genes involved in miRNA biogenesis and decay pathways. Exons are 

represented by boxes filled with the respective exon number, introns by yellow lines, patterns of 

alternative splicing by thin black lines, and arrows indicated the primer-pairs position. Exon 

skipping was not observed in any of the genes in study. Molecular weight marker size is 

indicated. (A) Drosha. Position of predicted alternative spliced products with exon 21, 22 and 23 

inclusion: 360 bp. (B) Dgcr8. Primer extension product predicted size is 170 bp (inclusion of 

exons 8 and 9). (C) Dicer. Amplified products have an expected size of 183bp for the inclusion 

of exon 1, 2 and 3. (D) Exportin5. Primer extension product predicted for intron 21, 22, 23 and 

24 incluision. (E) Ago1/Eif2c1. Amplified fragments with a predicted size of 720 bp (inclusion of 

exon 12, 13, 14, 15 and 16) (F) Ago2/Eif2c2. Position of predicted alternative spliced products 

with exon 8, 9, 10 and 11 inclusion: 417 bp. (G) Xrn1. Fragments amplified by PCR have with 

predicted size of 250bp (inclusion of exon 11, 12, and 13). (H) Xrn2. Position of predicted 

alternative spliced products with exon 10, 11 and 12 inclusion: 380 bp. 

 

 

G Xrn1 H Xrn2 
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Supplementary Figure2. Western blot analysis of the gene expression at protein level in spinal 

cord of SMA mouse model. 30μg/mL of protein lysate was loaded for all the samples tested. 

Primary antibodies were incubated with a 1:350 dilution factor, while secondary antibody was 

used in a 1:5000 dilution. The expected molecular weights are indicated in the schematic 

representation of each performed Western Blot. GAPDH was used as internal control to monitor 

loading efficiency. (A) DROSHA. (B) DGCR8. (C) DICER. (D) EXPORTIN5. (E) AGO. (F) 

XRN1. (G) XRN2.   
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