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Abstract

Life history parameters of valuable marine fish remain poorly studied worldwide. The

meagre (Argyrosomus regius) is a large sciaenid from European and North African waters

that, on its European range, supports regional small-scale and recreational fisheries and is

considered a promising candidate species for aquaculture. However, its fisheries and ecology

have remained poorly documented. The present work describes (1) progress made on raising

scientific and societal awareness on this fish resource, (2) research carried out on the

Portuguese fisheries targeting meagre and on the main biological parameters of the species

in Portuguese waters. The study of fish remains from archaeological sites showed that both

adult and juvenile meagre have been fished in Portuguese estuarine and coastal

environments since, at least, the Mesolithic period. Today, two main commercial fisheries on

meagre exist: one that targets meagre on the Western coast (within the Tagus estuary and off

Peniche); and the other that captures the fish as by-catch in the Southeastern coast of

Portugal. Using a new sampling methodology (commercial mark-recapture) a comprehensive

set of otoliths and gonads was collected. Analyses of these samples showed that meagre is

long-lived (up to 43 years old), displays fast juvenile growth and is reproductively active in

spring and summer both in estuaries (Tagus and Guadiana) and adjoining coasts.

Furthermore, it shows that both meagre males and meagre females display some signs of

precocious maturity and that the meagre females are asynchronous batch spawners that

likely have indeterminate fecundity. Moreover, microsatellite work showed that meagre

populations in Europe and North Africa are highly fragmented. Finally, a statistical time series

methodology is presented (SARIMA) that uses landings under a process control perspective

to provided baseline monitoring to fisheries resources currently found in data-poor situation.

Keywords: Meagre; Argyrosomus regius; fisheries; ecology; life-history; Portugal
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Resumo Alargado

A corvina-legítima, Argyrosomus regius (Asso, 1801), é um peixe ósseo pertencente à

família Sciaenidae. De entre as cinco espécies de Sciaenidae existentes em Portugal, a

corvina-legítima é a que atinge maior dimensão, maiores desembarques e valor comercial

mais significativo em águas europeias. Por outro lado, a corvina-legítima é uma das espécies

consideradas como promissoras para a diversificação e dinamização da aquicultura europeia.

Apesar da sua dimensão física e importância económica, a biologia, ecologia e pesca da

corvina-legítima em águas europeias encontravam-se à data de início dos trabalhos

conducentes à presente tese pouco estudadas, conduzindo à categorização da corvina como

espécie “pobre(s) em dados”. Esta situação levantava dificuldades consideráveis na gestão

pesqueira do recurso, na exploração do seu potencial aquícola, e sobretudo impedia uma

apreciação correcta da importância pesqueira e ecológica do recurso em águas nacionais e

europeias.

A presente tese, composta por 7 capítulos, pretende dar resposta a algumas das

deficiências de informação científica anteriormente mencionadas. Cada capítulo integra uma

ou mais publicações científicas. Os capítulos são precedidos por uma introdução geral e

sucedidos por uma discussão geral que integram, respectivamente, o trabalho a realizar e

realizado, no conhecimento científico existente. Na escrita da tese optou-se pela língua

inglesa como forma de operacionalizar a comunicação com uma das orientadoras dos

trabalhos e de permitir mais ampla divulgação dos seus resultados junto da comunidade

científica internacional bem como de potenciais leitores da área geográfica abrangida pela

espécie. Tendo isto em conta, foram objectivos dos trabalhos constantes nesta tese: (1)

contribuir para uma elevação da percepção da importância social e científica assumida pela

corvina-legítima em águas nacionais e europeias; (2) contribuir para a elevação do recurso e

suas pescarias da sua situação de “pobre(s) em dados” para uma situação mais

consentânea com a importância pesqueira e ecológica que possui e o potencial económico

que a sua produção aquícola exibe; e (3) executar uma primeira apreciação do estado do

manancial de corvina-legítima existente em águas nacionais e sugerir algumas medidas para

o melhoramento da sua gestão.

A corvina-legítima é um recurso explorado pelas comunidades humanas desde a pré-

história. Em alguns depósitos arqueológicos datados do Mesolítico foram encontrados

otólitos e vértebras de espécies de várias espécies de peixe, incluindo corvina-legítima.

Recorrendo a análises de regressão linear estabelecidas com base em otólitos e vértebras

de espécimes contemporâneos, estimou-se o número mínimo de indivíduos (e os seus

tamanhos) presentes em quatro sítios arqueológicos localizados na região costeira do centro

e sul do país. A análise revelou que a corvina-legítima é uma das espécies mais
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representadas nesses sítios sugerindo elevada importância da espécie para subsistência das

comunidades humanas do mesolítico. Em paralelo, as análises de regressão evidenciaram

que, à semelhança das comunidades piscatórias actuais, as comunidades mesolíticas

capturavam tanto indivíduos juvenis como indivíduos adultos.

A identificação e caracterização espacio-temporal das pescarias é um elemento

essencial à percepção da importância económica dos recursos e à gestão pesqueira.

Espécies como a corvina-legítima são particularmente difíceis de amostrar de forma

representativa em cruzeiros científicos o que leva a que a caracterização espacio-temporal

das pescarias e a identificação dos meses e locais em que é exercido esforço de pesca

dirigido a esta espécie se constituam como fontes de primordiais de informação ecológica.

Usando uma combinação de análises de séries temporais e estatística descritiva, analisou-se

a distribuição espacial e temporal das pescarias de corvina existentes na costa portuguesa,

verificando-se a existência de uma sazonalidade bem marcada e de pesca dirigida sobre

adultos e juvenis no Estuário do Tejo (entre Maio e Setembro), sobre juvenis na zona

costeira adjacente a este estuário (entre Setembro e Novembro), e a existência de uma

pescaria significativa, mas acessória, sobre os adultos desta espécie entre Junho e

Novembro na costa sueste do país. Em paralelo, as análises realizadas corroboraram a

existência de migrações de adultos e juvenis entre a zona costeira e o Estuário do Tejo no

final da Primavera e início do Verão, o retorno dos juvenis às zonas costeiras adjacentes

durante o Outono, bem como movimentações ao longo da costa algarvia de adultos em

estado pré-reprodutor (no início da Primavera) e reprodutor (no Verão).

Uma das principais dificuldades sentidas no estudo biológico de peixes marinhos de

grande dimensão e valor comercial reside na própria obtenção de amostras biológicas. No

presente trabalho foi desenvolvida e aplicada uma nova metodologia de amostragem - a

marcação e recaptura comercial (MRC) – que permitiu obter amostras de corvina a custos

mais comportáveis. A MRC consiste na colocação de marcas em indivíduos desembarcados

em lota que são posteriormente recuperadas conjuntamente com vísceras e otólitos junto de

intervenientes do circuito comercial. A aplicação desta metodologia à corvina-legítima

capturada no Sul de Portugal demonstrou que a MRC é altamente eficaz, permitindo recolher

elevado número de amostras biológicas representativas da população capturada

comercialmente. O sucesso obtido na aplicação da MRC à corvina-legítima torna expectável

que esta metodologia venha a ser aplicada futuramente noutras espécies de elevada

dimensão e valor comercial valor contribuindo decisivamente para o melhoramento das

informação biológica sobre elas disponível.

Um bom conhecimento da idade e crescimento e da reprodução dos peixes é essencial

à correcta gestão pesqueira e ao aprofundamento dos estudos ecológicos. No âmbito desta

tese foi elaborado e publicado um protocolo que permite a determinação de idade em

corvina-legítima a partir de secções finas de otólitos ou de impressões de escamas em

acetato. Este protocolo tem sido utilizado nas leituras de idade realizadas em Portugal,

Espanha e França, permitindo a comparação das estimativas de crescimento da espécie e
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comprovar, desde já o seu rápido crescimento e a elevada longevidade em águas nacionais

(idade máxima registada: 43 anos). Em paralelo, foram desenvolvidas e validadas

histologicamente escalas macroscópicas de maturação de machos e fêmeas de corvina-

legítima, e realizado o estudo do seu desenvolvimento ovárico e oocitário e do seu padrão de

fecundidade. A análise histológica revelou a existência de alguns indícios de maturação

precoce nos machos e fêmeas desta espécie que importa ter em conta na análise da sua

dinâmica reprodutiva e na estimativa de ogivas de maturação. Como consequência destes

estudos é hoje possível afirmar que a corvina-legítima possui desenvolvimento ovárico

assíncrono caraterizado por posturas múltiplas e parciais e fecundidade indeterminada e que

os Estuários do Tejo e Guadiana e as zonas costeiras adjacentes são zonas de reprodução

desta espécie entre Abril e Agosto.

O conhecimento da estrutura espacial dos mananciais pesqueiros é interessante do

ponto de vista evolutivo e importante para o correcto aconselhamento pesqueiro. Um estudo

genético envolvendo 11 microsatélites e realizado com amostras das zonas Oeste e Sul de

Portugal e de 10 outras zonas geográficas de cinco países (França, Mauritânia, Espanha,

Egipto e Turquia) indicou a existência de, pelo menos, duas regiões com populações de

corvina-legítima distintas: a região Mediterrânica e a região Atlântica. Por outro lado,

verificou-se que a corvina-legítima exibe um nível de diferenciação genética

consideravelmente elevado quando comparado com o nível de outros peixes marinhos.

Estes resultados encontram justificação provável em barreiras geográficas, em pulsos de

glaciação, e na existência de um número relativamente limitado de locais favoráveis à

reprodução e crescimento da espécie. Em paralelo, foram detectados indícios de separação

entre o manancial de corvina-legítima existente da costa ocidental portuguesa e o manancial

de corvina da costa sul e Golfo de Cádiz. A possível existência na costa portuguesa de

fragmentação populacional ao nível de um recurso pesqueiro com elevado potencial

migratório coloca dificuldades consideráveis à gestão do recurso, pelo que é de aconselhar o

aprofundamento dos estudos antes de tomadas de decisão de gestão desta espécie.

A larga maioria dos recursos pesqueiros actualmente explorados são, tal como a

corvina-legítima, "pobres em dados". Esta situação torna praticamente impossível a sua

avaliação analítica com os modelos matemáticos sofisticados usados nas pescarias

industriais. O último capítulo da presente tese apresenta uma metodologia de séries

temporais (SARIMA) cujas previsões, quando perspectivadas do ponto de vista do controlo

estatístico de processos, podem ser utilizadas na monitorização de recursos que

actualmente não são alvo de avaliação. A corvina-legítima é utilizada como caso de estudo e

os resultados obtidos indicam que os desembarques da espécie no estuário do Tejo se

encontram dentro do esperado pela variabilidade natural não evidenciando motivos para

alarme.

Palavras chave: Corvina-legítima; Argyrosomus regius; pesca; ecologia; ciclo de vida;

Portugal
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General introduction

Aims and importance

Thesis outline

1. General Introduction

Fisheries research and management have traditionally focused on resources with the

greatest landings and revenues (Scandol, 2005; Vasconcellos and Cochrane, 2005). Such

species and stocks are generally termed as “commercially important” and have the available

funds and expertise required to obtain a nearly complete understanding of their biology, ecology

and fisheries. However, that is not the case for the vast majority of fish species worldwide,

which are seriously data-deficient and remain subjected to limited (if any) assessment and

management (Mahon, 1997; Vasconcellos and Cochrane, 2005; Costello et al., 2012). The

latter have been collectively termed "data-poor fisheries" (or “data-deficient fisheries”) and their

target resources as “data-poor species” or "data-limited stocks" (Mahon, 1997; Scandol, 2005).

Among the world's data-poorest cases are nearly all fisheries and exploited resources in

developing countries but also many industrial fisheries in developed countries (Mahon, 1997;

Costello et al., 2012; ICES, 2012). Data deficiencies are, however, more severe for fisheries

that are primarily locally or regionally important as and contribute little to national totals of

overall capture production and revenues (NMFS, 2011). The meagre and its fisheries in

European waters are one such case.

The meagre (Argyrosomus regius, Asso 1801) is one of the world’s largest marine teleosts

and one of the five species from the Family Sciaenidae present in European waters (Chao,

1986). Its specimens present fast growth, high fecundity and may attain over 180 cm in total

length and 50 kg in weight, fetching over 200€ per specimen in ex-vessel price (Quéméner,

2002). These characteristics make the meagre particularly valuable for small-scale commercial

fishers and recreational fishers and add potential to its aquaculture development (Quéméner,

2002). However, the life-history characteristics of this species (e.g., longevity, large size and

age at maturity, large variability in annual recruitment, formation of spawning aggregations in

coastal waters and estuaries) pose significant management and conservation problems for it

making the meagre rank high among the world's most vulnerable species (Cheung et al., 2007).

The biology, ecology and fisheries of the meagre are poorly documented, particularly in

European waters, and only recently has interest in aquaculture production, management of

artisanal fisheries, and the conservation of data-poor fish resources resulted in some direct

scientific research on this species (Quéméner, 2002). The meagre is a coastal fish (<80 m deep)

whose current distribution extends from the English Channel to Senegal (including the Eastern

Mediterranean Sea and Black Sea) (Griffiths and Heemstra, 1995). North and southof its main
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distribution range, the meagre is relatively rare (Quéro and Vayne, 1987). However, in the past

the species was present and sometimes abundant in other areas such as the Central and

Western Mediterranean and the North Sea (Quéro, 1989; Wolff, 2000). At present, the main

meagre fisheries are located in Mauritania, Morocco, and Egypt where over 80% of the ca.

10 000 t world annual catch is taken by regional large-scale and small-scale fisheries (FAO,

2012a). In Europe, meagre fisheries are mostly small-scale and take place in very localized

areas of the Atlantic coasts of France, Spain and Portugal (Biais, 2002; Silva and Sobrino 2002;

Prista et al., 2008). Compared to its North African counterparts, the European fisheries are

smaller sized (France: ca. 800 t/year; Spain: ca. 150 t/year, Portugal: ca. 400 t/year) and mostly

characterized by large inter-annual variability in landings and fish supply to local markets

(Quéro and Vayne, 1987; FAO, 2012a; González-Quirós, 2011; Prista et al., 2011). This

variability in fish supply and increase in consumer demand for fish products, alongside the fast

growth rate and the good properties of the meat in meagre and putatively good biological

properties for growth in captivity (Quémener, 2002) led to a spark in aquaculture production in

France during the late nineties (Quémener, 2002; Monfort, 2010). At present, aquaculture

production of meagre has expanded to seven other southern European countries, including

Portugal, reaching 14 000 t/year and being worth nearly 48 million USD/year (FAO, 2012b).

Until the early 2000s, most studies addressing the meagre life-cycle and fisheries took

place in Northern Africa and the Southern Mediterranean (Rafail 1971; Tixerant, 1974;

Chakroun and Kthari, 1981; Rizk and Hashem 1981; Chakroun et al., 1982; Garcia, 1982;

Chakroun-Marzouk and Kthari, 1989; Hermas, 1995; Bebars et al., 1997). Additional research

had been carried out in France but it consisted mostly of landing analysis or synthesis of

available knowledge published in grey literature (Oliver and Lafon, 1981; Quéro and Vayne,

1987; Quéro, 1989; Quéro and Vayne, 1993). Consequently, existing biological knowledge on

meagre was mostly composed of older data, limited to North African waters, using mostly

outdated methodologies (Tixérant, 1974; Quéro and Vayne, 1987; Hermas, 1995). Such data-

deficiencies greatly contrasted the situation of other similarly sized sciaenids which fisheries

were being increasingly managed and for many of which aquaculture had already developed.

That was the case of A. coronus and A. japonicus in Southern Africa and Australia (Griffiths and

Hecht, 1995; Griffiths 1996, 1997a,b; van der Bank and Kirchner, 1997) and Pogonias cromis,

Sciaenops ocellatus and Atractoscyon nobilis in North America (e.g., Murphy and Taylor, 1989,

1990; Niedland and Wilson, 1993; Wilson and Niedland, 1994; Donohoe, 1997; Campana and

Jones 1998; Jones and Wells, 1998, 2001). However, even the limited studies in France and

North African waters did highlight the potential of the meagre for biological research and

aquaculture production, and indicated that the meagre as fast-growing, fairly fecund and long-

lived. Such studies were reviewed by Quéméner (2002) who highlighted the knowledge gaps,

pointed out conservation and management risks and stressed the potential of meagre for

aquaculture production in European waters.

The situation European research on meagre faced in the beginning of the 21st century

becomes clear when reading Quéméner (2002) work as it contains pratically no information on
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the presence of the fish in Iberian waters and no reference to spawning areas other than the

Gironde estuary, the Banc D'Arguin and the Nile Delta. However, Quéméner (2002) review

higlighted the research gaps that management and aquaculture production faced and drew

research attention to the species. As a consequence, an increasing amount of indirect

references and directed studies appeared in recent years that have significantly increased the

body of knowledge available on meagre. This research, to which the works presented in this

thesis have significantly contributed, now includes all southern European coasts, including the

Iberian Peninsula, and has addressed both captive stocks (Angelini et al., 2002; Jiménez et al.,

2005; El-Shebly et al., 2007; Jiménez et al., 2007; Grigorakis et al., 2011; Duncan et al., 2012;

Schiavone et al., 2012; Mylonas et al., 2013) and wild populations (Catalán et al., 2006;

Morales-Nin et al., 2010; González-Quirós et al., 2011, Morales-Nin et al., 2012, Gil et al., 2013)

covering all the major aspects of the species’ life-history.

2. Importance and Aims

At the start of the field work that led to this thesis no directed study on the meagre biology

and life-cycle had been carried out in European waters. This situation restricted the appraisal of

this species for aquaculture production and did not allow a full appreciation of its conservation

risks and the need to manage its fisheries. A literature review carried out at the time indicated

that in Portugal evidence on meagre abundance and distribution was largely restricted to

historical literature (e.g., Baldaque da Silva, 1891), presence/absence records in species lists

(e.g., Costa and Bruxelas, 1989; Bexiga 2002; Chícharo et al., 2006; Gonçalves et al., 2007)

and very fragmented ecologic and fisheries research (e.g., Cabral and Ohmert, 2001; Cabral et

al., 2001; Dias et al., 2001; Santos, Saldanha, and Garcia, 2002; Santos, Gaspar et al., 2002).

This literature provided only minimal information on meagre fisheries, ecology and biology.

Simple manifestations of the scientific, ecologic and economic impact of such data-limited

situation are exemplified in three situations that took place during the early 2000’s. For example,

there was considerable scientific surprise when in 2000–2002 abnormally high biomass of

meagre juveniles was detected in research surveys taking place in the Tagus estuary (Costa

and Bruxelas, 1989; Costa et al., 2005) because at the time it was not known that the species

spawned in Portuguese waters and the reproduction of marine species in estuarine was in

general deemed unlikely. Concurrently, considerable legislative changes took place in 2001 and

2002 (Portaria 27/2001 de 15 de Janeiro; Portaria 402/2002, de 18 de Abril) that resulted in a

18 cm decrease in the minimum landing size of meagre without any known record of

reproduction or growth studies of this fish. Finally, there was a generalized lack of interest for

aquaculture production of this fast native species despite the fact that production was already

taking place and proving profitable in other southern European regions (Quéméner, 2002; Costa

et al., 2008).

Within this context, the objectives of the PhD research portrayed in this thesis were to: (1)

contribute to scientific and society awareness of the historical and present significance of this
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species in Portuguese waters; (2) contribute to a sustained elevation of this European species

from a data-poor situation to a more data-rich situation; and (3) carry out a first appraisal on the

life-history of the Portuguese meagre and, if necessary, recommend fisheries management

actions. Meeting the objective (2) involved: (a) analyzing the available fishery dependent data

and extracting the best information possible from it; (b) developing methodologies that could

make biological sampling of this species financially possible; and (c) re-evaluating procedures

previously used in the analyses of biological data to ensure steps forward were done on solid

grounds.

3. Thesis Outline

This thesis narrates scientific progress made on the ecology and fisheries of meagre in

Portuguese waters. Overall, the thesis comprises 7 chapters that include 11 scientific

publications. These publications are published in international peer-reviewed journals (n=4), in

in conference proceedings (n=3), or in national peer-reviewed journals (n=1). One publication

has recently been accepted and two are currently being prepared for future publication.

Chapter 1 examines the significance of meagre fishery in pre-historic times by analyzing

meagre otoliths collected from Mesolithic sites and estimating the size of fish caught during that

period. Chapter 2 analyses modern day meagre fisheries by describing the seasonal and spatial

variability of landings made by the small-scale fleet along the Portuguese coast and the size

and seasonal structure of the catch from a tuna-trap located in the southeastern coast. The two

publications in this chapter explore how fishery dependent data helped to establish the main

migratory patterns of the species in Portuguese waters. Chapter 3 deals with the sampling

difficulties that have constrained the study of meagre and other large valuable fish and

describes a new sampling methodology that allowed the collection of a comprehensive set of

otoliths and gonads from the Portuguese fisheries. Chapters 4 and 5 explore these biological

samples, establishing guidelines for their correct processing and interpretation and providing

new information on the growth and reproduction of the meagre. Chapter 6 analyses the

population structure of meagre in European, Mediterranean and North African Waters, showing

its high genetic fragmentation and discussing its causes and consequences. Finally, Chapter 7

addresses the worldwide problem of providing data-poor species and fisheries with a minimal

degree of monitoring by exploring the use of statistical time-series methodologies to analyze

fisheries landings.

This thesis ends with a general discussion that pools together the main conclusions of

each chapter and highlights their contribution to science. A final set of remarks includes

suggestions for future research on this species and data-poor fisheries in general.
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Estimating meagre ( Argyrosomus regius) size from otoliths and vertebrae

Abstract: This study presents a method for predicting meagre (Argyrosomus regius) body size
(total length) from otoliths and vertebrae recovered from archaeological sites. The method
involves regression equations calculated from a reference collection of 36 meagre skeletons
and 113 meagre otoliths (sagitta) and allows the simultaneous estimation of original body size
and minimum number of individuals (MNI) from archaeological bone structures. We selected
the following measurements to predict meagre body size: greatest dorso-ventral height,
greatest mediolateral breadth, and greatest anteroposterior length of the vertebrae centra;
maximum anteroposterior length, medial anteroposterior length, and dorso-ventral height of the
sagitta. Our results show that the original body size of meagre can be accurately predicted
from many bone measurements (r2 range: 0.921-0.992). We exemplify the use of the
regressions in the assessment of size variation and MNI of meagre from four Portuguese
Mesolithic sites. We show that regression results provide additional insight into the significant
role that this fish played in the subsistence of coastal fisher-hunter-gatherers, who targeted
medium-sized animals but were also capable of acquiring rather larger specimens.

Keywords: Meagre, size estimates, regression analysis, otoliths and vertebrae, Argyrosomus
regius, Portugal, Mesolithic, aquatic resources

1. Introduction

Aquatic resources played an important role in Holocene cultures. Despite their importance

to the economy of past communities, few detailed studies of fish have been undertaken.

Because species lists are not informative about animal size and size can vary widely between

different fish of the same species (Casteel, 1976; Enghoff, 1989, 1991), studies generally resort

to estimates of fish size obtained from present-day fish-size vs. bone-size relationships (Zohar

et al., 1997; Smith,1995; Desse and Desse-Berset, 1994; Johnsson, 1994; Enghoff,1983;

Bèarez, 2000, Orchard 2003, 2005).

The meagre (Argyrosomus regius Asso, 1801) is one of the world’s largest sciaenids,

attaining over 180 cm in total length and 50 kg in weight (Quéméner, 2002; Costa et al. 2008). It

is a coastal fish (< 80 m deep) whose distribution extends from the English Channel to Senegal

(including the Mediterranean and Black Seas). Today, its largest fisheries are in Mauritania,

Morocco, and Egypt (Quéméner, 2002; FAO, 2009) but due to its large size, high ex-vessel

price, and high seasonal availability, the meagre still constitutes an important target species for

many local small-scale commercial and recreational fleets, particularly those operating in (or

near to) large European estuaries (Quéro & Vayne, 1987; Prista et al., 2008).

Meagre remains have been found in many archaeological sites in Portugal (Lentacker,

1986), Spain (Izquierdo & Muñiz, 1990), Greece (Reese et al., 2000), eastern Mediterranean

(Van Neer et al., 2004), Mauritania (Vernet & Tous, 2004), and the North Sea (Wolff, 2000). In

some cases, meagre is the most abundant species, dominating fish bone lists. However,
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ecological and archaeological interpretations of these data have been hampered by the

inexistence of concurrent body size information.

Here, we present a set of relationships between meagre bones (vertebrae), otoliths

(sagittae), and fish size (total length = TL) that will allow researchers to overcome these

shortcomings. As an example, we use them to carry out a first evaluation of meagre size

distribution at four Portuguese Mesolithic sites from the Atlantic period: Cabeço dos Morros

(CMRR. Rolão, 1999); Arapouco (ARA. Arnaud, 1987); Poças de São Bento (PSB. Arnaud,

1987; 2000), and Samouqueira-I (SAM-I. Soares, 1995; Lubell, 2007).

2. Materials and methods

2.1. Reference collection

We assembled a reference collection of meagre skeletons and otoliths. The bones were

collected between 2002 and 2007 and included vertebrae from 36 fish and otoliths from 113 fish.

The entire size range generally found in Portuguese and other European waters (rangevert = 14-

136 cm; rangeoto = 12-160 cm) was sampled. Skeletons and otoliths came from fishermen’s

donations, fish acquired at local markets and concurrent studies on the biology and fishery of

present-day meagre in Portuguese waters (Costa et al., 2008).

All fish were measured (TL to the lowest cm) and weighed (total weight, 0.001-0.1kg

precision). Sagittae were removed and cleaned according to Prista et al. (2009). Skeletons were

manually defleshed according to Lepiksaar (1989), cleaned in a solution of water and Neutrase

80L following (Davis and Payne, 1992), and vertebrae set apart for analysis. Other bones were

prepared but we restricted our analysis to vertebrae and sagittae because these are the most

frequent meagre remains found in our archaeological sites. Meagre skeletons are available at

the IGESPAR’s reference collection.

Otoliths: The meagre has a pair of robust and bilaterally symmetric sagittae (Prista et al.,

2009). A preliminary analysis of otoliths from n=30 fish indicated no significant differences

between left and right sagittae so measurements were taken on a randomly chosen sagitta from

each fish. On each otolith, three measurements were taken to nearest 0.1 mm: maximum

anteroposterior length (MAX_OL), medial anteroposterior length (MED_OL), and maximum

dorsoventral height (MAX_OH) (Figure 1) (Assis, 2000).

Vertebrae: Similarly, the meagre vertebral column is composed of 25 vertebrae. On each

vertebra, three measurements were taken to the nearest 0.01 mm - greatest dorso-ventral

height of the centrum (M1), greatest mediolateral breath of the centrum (M2), and greatest

craniocaudal length of the centrum (M3) (Figure2) - except on the urostyle where only M1 and M2

were measured (Morales & Rosenlund, 1979).
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Figure 1. Argyrosomus regius' otolith (sagitta). Figure indicates otolith measurements: maximum anteroposterior length

(OL), and maximum dorso-ventral height (OH).

Figure 2. Argyrosomus regius vertebrae. Figure indicates vertebral measurements: greatest dorso-ventral height of the

centrum (M1), greatest mediolateral breath of the centrum (M2), and greatest craniocaudal length of the centrum (M3).

Since identification of vertebrae position along the spine is a necessary prerequisite for

applying the regression equations to archaeological material, we describe the differences

between individual vertebrae of meagre.

Identifying individual meagre vertebrae to their position along the spine

The criteria used to identify individual meagre vertebrae include: body size proportions;

position, shape and orientation of fossae for the pleural ribs; as well as position, shape and

orientation of the hemal arch (Table 1). Additionally, attention was paid to individual variation

and (if relevant), size-related morphological changes.
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Meagre vertebrae vary anatomically within the species, depending on their position in the

vertebral column. Precaudal vertebrae are characterized by the presence of ribs and by the

absence of a hemal arch. These vertebrae bear neural zygapophyses for articulation with

adjacent elements. The 1st vertebra is smooth on the ventral surface. The 2nd through 5th

provide ventral attachment for internal organs (Figure 3).

Table 1. Distinction between individual vertebrae of meagre (Argyrosomus regius) based on the examination of 39
modern meagre vertebral spines (TLspecimens range = 14-136 cm)

V1 Exhibits a short, thick centrum, with a solid neural spine of autogenous origin. Neural spine’s bifurcated
base articulates with two depressions on the dorsal surface of the centrum. Anterodorsally, the
centrum broadens into two condylar surfaces which (with the concave face of the centrum below) form
the usual tricondylar attachment to the skull.
Its height is larger than its length.

V2 Is marked by an extended pair of prezygapophyses which expand above the posterior end of V1.
Laminae bridging these processes to the erect spine give the neural element a sail-like appearance in
profile. A pair of fossae accommodates the heads of the first pair of pleural ribs (F). These are placed
anterodorsally and about ⅓ of their area reach the laminae that bridge the prezygapophyses and the
erect spine. They are oval in shape (Figure 3).

V3 The prezygapophyses expand above the posterior end of V2. Paired dorsolateral fossae (F) of rather
large dimension extend to the heads of pleural ribs. These are positioned anterodorsally, the upper
outer area reaches the laminae that bridge the prezygapophyses and the erect spine. Fossae show
oval shape (Figure 3).

V4 The prezygapophyses expand above the posterior end of V3. Paired dorsolateral fossae of rather large
dimension extend to the heads of the pleural ribs (F). These are placed anterodorsally. Fossae are
oval-round, occupying about ½ of the centra: the lower edges of the fossae touch the middle of the
vertebral boddy (Figure 3).

V5 The prezygapophyses expand above the posterior end of V4. Paired fossae of rather large dimension
extend for the heads of pleural ribs (F). In V5 these are placed anteroventrally. Fossae have a ‘D’
shape, and occupy about ½ of the centra: the upper edge of the fossae touch the middle of the
vertebral body (Figure 3).

V6-10 Lack fossae for the heads of pleural ribs. Parapophyses first appear in V6.
V9 shows an osseous bridge between the parapophyses (not shown in the picture).
By V7, a lateral strengthening ridge appears (R). The strengthening ridge divides the lateral aspect into
dorso- and ventrolateral depressions. (Figure 3).

V11-20 The hemapophyses on which the haemal spine is based, originate well ahead of the origin of the
neurapophyses which form the base of the neural spine (Figure 3).

V15-19 Vertebrae are ventrally horizontal (h), and dorsally oblique (ho) (Figure 3).

V20 Vertebra is dorsally oblique (ho), and ventrally curved (c) (Figure 3).

V21-23 Vertebrae are dorsally and ventrally curved (c) (Figure 3).
The neurapophyses on which the hemal spine is based, originate next to the posterior edge of the
centra.

V22-23 The hemapophyses on which the haemal spine is based are placed closer to the posterior end of the
centra. The hemapophyses and the haemal spine are adjacent to the centra, narrowing the angle. The
angle is wider in V22 (Figure 3).

V23 The hemal spine is autogenous.

V24 The hemal spine is autogenous and compressed.

V25 Centrum is abbreviated and contains the upturned unipartite urostyle.
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Figure 3. Argyrosomus regius brain case (neurocranium) and vertebral column (top). The bottom figures represent the

precaudal and caudal zones, homologous to the identified archaeological material. The arrows point the ventral

attachment for internal organs. Key: F - fossae for insertion of the heads of the pleural ribs; PRZ – prezygapophyses;

R – strenghthening ridge; V – vertebrae; VPC – precaudal vertebrae; VC – caudal vertebrae, c – curved; h – horizontal;

ho – oblique.

Except for the first vertebra, the prezygapophyses (PRZ) are strongly developed, showing

their maximum size in the 2nd vertebra. The 2nd through 5th provide paired dorsolateral fossae of

rather large extension, to articulate with the heads of pleural ribs (F) (Figure 3). If preservation is

good, prezygapophyses and fossae can be observed in archaeological material.

Vertebrae are higher than long (M1>M3), the difference between these two measurements

becomes smaller in V4.

Caudal vertebrae are characterized by the presence of neural and complete hemal arches

and spines, formed by the convergence of the paired parapophyses. A strenghthening ridge (R)

divides the lateral aspect into dorso- and ventrolateral depressions. The last three vertebrae are

involved in caudal support (Figure 3).

The height of these vertebrae is smaller than their length (M1<M3) and the difference

between these two measurements becomes smaller from V21 onwards.

Hemapophyses and variable portions of the haemal spine may preserve in archaeological

material.

2.2. Prediction models

General linear models can be applied to reference collection data to generate prediction

models and estimate the original length of fish from vertebra and sagitta remains (Quinn &

Keough, 2002, Orchard, 2005) (the reference data for otolith and vertebrae are available in a

supplementary file provided online – see Appendix A).
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In meagre, we modelled the relationship between fish length and vertebrae measurements

as

iii xy εββ ++= 10

where yi is the total length of fish i, xi is bone measurement of fish i (VjMk, i, j=1,…,25, k=1,…,3),

β0 and β1 are regression coefficients and εi is an error term. We fitted this model to the raw (i.e.,

untransformed) data because variance of fish length was homogeneous along the range of the

bone measurements. Post-hoc residuals analysis indicated that the linear model adequately

described the relationships.

In contrast, we found fish size to be nonlinearly related to otolith measurements and the

variance of the relationships to increase with otolith size. Such non-linearity and heterogeneity

of variance is common in fish data (e.g., Hayes et al., 1995) and can be handled by fitting the

linear model to the log-transformed data (as opposed to raw data). Accordingly, our fish length

vs. otolith measurements model was

( ) ( ) ( ) iii xLnLnyLn εββ ++= 10

where ( )iyLn is the natural logarithm of the total length of fish i, ( )ixLn is the natural

logarithm of otolith measurement of fish i (MAX_OLi , MED_OLi, or MAX_OHi) and ( )0βLn and

β1 are regression coefficients and εi is an error term. This model corresponds to the usual

b
i xay = nonlinear allometric equation with multiplicative lognormal error, where ia )ln( 0β=

and 1β=b (Hayes et al., 1995). Post-hoc residuals analysis indicated adequate fit of this

model as well as a normal distribution of residuals.

2.3. Analysis of archaeological data

We used the prediction models to estimate the size and number of A. regius individuals

present at four Portuguese Mesolithic sites (ca. 6000 BP to 4500 BP). These sites are located in

the surroundings of two large estuaries - the Tejo [Cabeço dos Morros] and the Sado [Arapouco

and Poças de São Bento] – and in the adjacent Atlantic coast - Sines [Samouqueira] (Figure 4)

- and were coded as ARA, PSB, CMORR and SAM-I Substantial A. regius evidence has been

found at these sites (n=6 vertebrae, n=153 otoliths) but the number of specimens and their size

distribution was never estimated.



CHAPTER 1

19

Figure 4. Map of Portugal (southern regions) showing the sites mentioned in the text: 1) Cabeço dos Morros; 2)

Arapouco; 3) Poças de São Bento; and 4) Samouqueira-I.

To determine the number of specimens and the size distribution of meagre present at the

Portuguese sites we relied on the regression method proposed by Orchard (2005). Briefly, we

first estimated the mean length (and its 95% prediction interval) of each archaeological

specimen by applying the prediction models to the archaeological measurements data of each

site (Tables 2 and 3, and Appendix A). Then we separated otolith-derived fish length into two

distinct groups (left and right), sorted them in ascending order, and performed pairwise

comparisons among them, starting in the smaller fish. When the prediction intervals obtained

from otoliths of left and right groups were found to overlap, the otoliths were judged to belong to

the same fish, the fish with the smaller size being retained and its "opponent" removed and

replaced with the next fish of that group. In contrast, when the prediction intervals of left and

right groups did not overlap, the otoliths were judged to belong to different fish, both fish being

retained and comparisons advancing in both groups. The comparisons continued until all

otoliths were compared and a final set of otolith-derived fish lengths was found. Then, when

vertebrae were present, the set of otolith-derived lengths was compared to vertebrae-derived
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Table 2 . M1, M2, & M3 measurements for the 6 archaeological vertebrae by site

Site Layer Bone Measur. Total

ARA 2 V3 M1 14,4

M2 17,7

M3 10,8

PSB B/220-230 V4 Mean_M3 19,9

C/240-250 V2 M1 23,2

M2 32,2

M3 15,9

SAM1 C3a V2 M1 28,9

M2 30,0

M3 15,4

V5 M1 26,1

M2 35,1

M3 24,4

V22 M1 16,6

M2 19,2

M3 24,4

Table 3. Average otolith measurements (MAX_OL, MED_OL, MAX_OH) by site. Side: L= left; R= right

Site Layer Bone Side Measur._mean Total

ARA 1 Sagitta L 37

Mean OL_MAX 16,1

Mean OL_MED 16,0

Mean OH_MAX 9,0

Sagitta R 33

Mean OL_MAX 14,8

Mean OL_MED 19,5

Mean OH_MAX 9,2

2 Sagitta L 39

Mean OL_MAX 14,1

Mean OL_MED 14,8

Mean OH_MAX 8,2

Sagitta R 40

Mean OL_MAX 15,0

Mean OL_MED 15,2

Mean OH_MAX 8,1

3 Sagitta L 1

Mean OL_MAX 20,7

Mean OL_MED 20,3

Mean OH_MAX 11,3

CMORR 50-60 Sagitta L 1

Mean OH_MAX 16,1

PSB B/80-90 Sagitta L 1

Mean OL_MAX 16,2

C1/90-100 Sagitta L 1

Mean OL_MAX 13,9
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lengths in similar fashion to obtain a final Minimum Number of Individuals (MNI) and length

distribution at each site. This pairwise comparison strategy bears the advantage of objectively

evaluating the likelihood of different fish remains belonging to the same fish, providing a

conservative MNI estimate that is free of the major redundancies in the archaeological data

while avoiding being excessively conservative (Orchard, 2005). In fact, only when broken

(unmeasured) otolith and vertebra remains were present, did they have to be carefully

evaluated for side, type of vertebra, and size and a more subjective judgment made as to

whether (or not) to include them on the MNI estimate. In the meagre case, this happened in

ARA and we made no attempt to extrapolate on the size of the original fish based on such

incomplete data.

The total weight (TW) of meagre specimens was determined using a length-weight

relationship derived for the Portuguese coast (n=1459, BM=1.5x10-5TL2.869, r2=0.99) (Costa et

al., 2008). This relationship was applied to the estimated lengths of archaeological specimens in

order to obtain individual body mass estimates. Length distributions across sites were

compared using two-sample Kolmogorov-Smirnov tests.

All statistical analyses were performed in R 2.8.1. (R Development Core Team, 2008). The

determination of MNI and final fish lengths using Orchard (2005) methodology is cumbersome

and time consuming in large samples because a large number of pairwise comparisons are

involved. Accordingly, an automated R script was developed for this purpose. This script is

available from the authors upon request.

3. Results

The fits of the general linear models to the bone measurement and fish length data are

presented in Table 4. All relationships between vertebra and fish size were linear (Figure 5). On

the contrary, the otolith size vs. fish size relationships were better described by power curves

(Figure 6 and 7). Irrespective of these differences, all β1 coefficients were significantly higher

than 1 (P<0.001) and large r2 values were registered in all relationships (range: 0.921-0.992).

These results indicate a good fit of the general linear models to the meagre data and, most

importantly, that meagre size can be accurately predicted from vertebra or otolith

measurements using the equations in Table 4.



Table 4. Descriptive statistics and fish length (cm) vs. bone relationships (mm) of Argyrosomus regius. All models P<0.05

Bone Measur. n Mean X ± S.D. (Min-Max) Mean Y ± S.D. (Min-Max) Equation s.e. (β0) s.e. (β1) σ r2 F

V1 M1 35 10.877 ± 4.79 (2.30-21.81) 68.5 ± 29.2 (14-136) Y = 2.506+6.066X 1,401 0,118 3,300 0,988 2636,36

V1 M2 35 11.444 ± 5.264 (2.28-24.40) 68.5 ± 29.2 (14-136) Y = 5.812+5.476X 2,034 0,162 4,968 0,972 1144,39

V1 M3 35 8.901 ± 3.635 (2.48-17.42) 68.5 ± 29.2 (14-136) Y = -0.693+7.772X 3,460 0,361 7,644 0,934 464,39

V2 M1 36 12.090 ± 5.685 (2.38-25.47) 67.4 ± 29.6 (14-136) Y = 5.062+5.154X 1,631 0,122 4,116 0,981 1773,1

V2 M2 36 12.189 ± 5.856 (2.30-27.48) 67.4 ± 29.6 (14-136) Y = 7.825+4.886X 2,964 0,220 7,614 0,936 494,12

V2 M3 36 7.996 ± 3.462 (1.68-15.75) 67.4 ± 29.6 (14-136) Y = 0.255+8.394X 2,363 0,272 5,568 0,966 953,6

V3 M1 36 11.087 ± 4.663 (2.28-22.21) 67.4 ± 29.6 (14-136) Y = -0.735+6.143X 3,247 0,270 7,463 0,938 515,8

V3 M2 36 13.953 ± 6.987 (2.80-29.43) 67.4 ± 29.6 (14-136) Y = 10.074+4.107X 2,737 0,176 7,272 0,941 544,98

V3 M3 36 8.870 ± 3.736 (2.05-17.89) 67.4 ± 29.6 (14-136) Y = -1.326+7.746X 2,697 0,281 6,207 0,957 760,78

V4 M1 36 10.797 ± 4.484 (2.22-22.13) 67.4 ± 29.6 (14-136) Y = -1.563+6.385X 3,313 0,284 7,534 0,937 505,49

V4 M2 36 14.206 ± 7.178 (2.82-29.53) 67.4 ± 29.6 (14-136) Y = 9.851+4.049X 2,076 0,131 5,555 0,966 958,3

V4 M3 35 10.214 ± 3.922 (2.42-19.13) 67.4 ± 30.0 (14-136) Y = -7.749+7.353X 4,024 0,368 8,426 0,923 398,24

V5 M1 35 11.350 ± 4.907 (2.34-22.37) 67.4 ± 30.0 (14-136) Y = -0.824+6.007X 2,457 0,199 5,699 0,965 909,86

V5 M2 35 14.339 ± 7.054 (2.77-29.83) 67.4 ± 30.0 (14-136) Y = 7.213+4.195X 1,968 0,123 5,079 0,972 1153,85

V5 M3 35 11.657 ± 5.055 (2.87-23.02) 67.4 ± 30.0 (14-136) Y = -0.591+5.829X 2,475 0,195 5,756 0,964 891,22

V6 M1 35 11.497 ± 5.175 (2.36-23.71) 67.4 ± 30.0 (14-136) Y = 2.378+5.652X 2,838 0,226 6,810 0,950 627,32

V6 M2 35 13.784 ± 7.091 (2.73-29.45) 67.4 ± 30.0 (14-136) Y = 10.26+4.142X 2,332 0,151 6,238 0,958 753,8

V6 M3 35 12.603 ± 5.574 (3.10-25.10) 67.4 ± 30.0 (14-136) Y = 0.735+5.286X 2,440 0,177 5,767 0,964 887,5

V7 M1 35 11.910 ± 5.277 (2.57-24.24) 67.4 ± 30.0 (14-136) Y = 1.188+5.556X 2,746 0,211 6,501 0,954 691,44

V7 M2 35 13.700 ± 7.672 (2.59-31.05) 67.4 ± 30.0 (14-136) Y = 14.751+3.84X 2,031 0,130 5,806 0,964 875,19

V7 M3 35 13.237 ± 5.58 (3.14-25.36) 67.4 ± 30.0 (14-136) Y = -2.006+5.24X 3,015 0,210 6,844 0,950 620,6

V8 M1 36 12.144 ± 5.452 (2.57-24.83) 67.4 ± 29.6 (14-136) Y = 2.783+5.319X 2,436 0,183 5,916 0,961 840,97

V8 M2 36 13.786 ± 7.615 (2.57-31.35) 67.4 ± 29.6 (14-136) Y = 15.012+3.798X 2,188 0,139 6,279 0,956 742,62

V8 M3 36 14.387 ± 6.306 (3.46-28.31) 67.4 ± 29.6 (14-136) Y = 0.915+4.619X 2,186 0,139 5,204 0,970 1096,61

V9 M1 36 12.363 ± 5.67 (2.62-25.93) 67.4 ± 29.6 (14-136) Y = 4.54+5.082X 2,739 0,202 6,772 0,949 633,64

V9 M2 36 14.040 ± 7.845 (2.59-33.45) 67.4 ± 29.6 (14-136) Y = 15.531+3.693X 2,090 0,130 6,051 0,959 802,15

V9 M3 34 15.552 ± 7.18 (3.59-31.42) 67.7 ± 30.4 (14-136) Y = 2.641+4.183X 2,059 0,121 4,972 0,974 1204,07



Table 4 (Cont.). Descriptive statistics and fish length (cm) vs. bone relationships (mm) of Argyrosomus regius. All models P<0.05

Bone Measur. n Mean X ± S.D. (Min-Max) Mean Y ± S.D. (Min-Max) Equation s.e. (β0) s.e. (β1) σ r2 F

V10 M1 35 12.366 ± 6.059 (2.64-26.69) 67.6 ± 30.0 (14-136) Y = 7.968+4.819X 2,701 0,197 6,948 0,948 600,41

V10 M2 35 14.740 ± 8.339 (2.60-34.56) 67.6 ± 30.0 (14-136) Y = 15.383+3.54X 1,871 0,111 5,389 0,969 1019,86

V10 M3 34 16.448 ± 7.605 (3.68-34.24) 67.7 ± 30.4 (14-136) Y = 2.64+3.955X 1,936 0,107 4,679 0,977 1363,95

V11 M1 35 12.985 ± 6.864 (2.61-29.43) 67.6 ± 30.0 (14-136) Y = 11.787+4.295X 2,041 0,139 5,578 0,966 949,6

V11 M2 35 14.745 ± 8.598 (2.65-35.46) 67.6 ± 30.0 (14-136) Y = 17.144+3.419X 2,044 0,120 6,024 0,961 809,58

V11 M3 35 17.459 ± 8.623 (3.84-38.01) 67.6 ± 30.0 (14-136) Y = 7.915+3.416X 2,204 0,114 5,708 0,965 905,48

V12 M1 36 12.835 ± 6.525 (2.65-28.71) 67.4 ± 29.6 (14-136) Y = 10.192+4.455X 2,059 0,143 5,535 0,966 965,47

V12 M2 36 15.184 ± 8.357 (2.62-34.28) 67.4 ± 29.6 (14-136) Y = 14.28+3.497X 1,621 0,094 4,638 0,976 1389,19

V12 M3 35 17.985 ± 8.547 (4.15-39.84) 65.9 ± 28.6 (14-136) Y = 6.51+3.302X 1,951 0,098 4,895 0,972 1130,39

V13 M1 35 12.485 ± 6.18 (2.57-28.58) 65.9 ± 28.6 (14-136) Y = 8.915+4.564X 1,933 0,139 5,013 0,970 1076,23

V13 M2 35 14.086 ± 7.861 (2.68-34.38) 65.9 ± 28.6 (14-136) Y = 15.535+3.575X 1,949 0,121 5,557 0,963 869,73

V13 M3 35 18.790 ± 9.331 (4.29-41.53) 65.9 ± 28.6 (14-136) Y = 9.035+3.026X 1,854 0,089 4,822 0,972 1165,77

V14 M1 35 12.300 ± 6.163 (2.54-28.31) 65.9 ± 28.6 (14-136) Y = 9.696+4.57X 2,004 0,146 5,251 0,967 978,18

V14 M2 35 14.258 ± 7.983 (2.63-34.63) 65.9 ± 28.6 (14-136) Y = 15.68+3.522X 1,922 0,118 5,495 0,964 890,41

V14 M3 35 19.163 ± 9.48 (4.34-44.23) 65.9 ± 28.6 (14-136) Y = 9.166+2.961X 2,220 0,104 5,757 0,961 808,23

V15 M1 35 12.293 ± 6.294 (2.56-28.67) 65.9 ± 28.6 (14-136) Y = 10.984+4.467X 2,062 0,150 5,496 0,964 889,8

V15 M2 35 13.889 ± 8.017 (2.60-35.77) 65.9 ± 28.6 (14-136) Y = 17.38+3.493X 2,073 0,130 6,065 0,956 724,92

V15 M3 35 19.518 ± 9.906 (4.44-43.51) 65.9 ± 28.6 (14-136) Y = 10.892+2.818X 2,443 0,112 6,467 0,950 633,64

V16 M1 35 12.196 ± 6.21 (2.74-28.42) 65.9 ± 28.6 (14-136) Y = 10.621+4.533X 2,013 0,148 5,342 0,966 943,92

V16 M2 35 13.824 ± 7.887 (2.55-35.48) 65.9 ± 28.6 (14-136) Y = 16.854+3.548X 2,128 0,134 6,171 0,955 699,07

V16 M3 35 19.503 ± 10.108 (4.49-44.04) 65.9 ± 28.6 (14-136) Y = 12.207+2.753X 2,543 0,116 6,843 0,945 562,3

V17 M1 36 12.671 ± 6.555 (2.46-28.18) 67.4 ± 29.6 (14-136) Y = 10.735+4.47X 1,496 0,105 4,078 0,982 1807,61

V17 M2 36 14.189 ± 8.007 (2.52-34.07) 67.4 ± 29.6 (14-136) Y = 15.906+3.627X 1,942 0,120 5,664 0,964 920,29

V17 M3 36 20.009 ± 10.616 (4.40-45.45) 67.4 ± 29.6 (14-136) Y = 13.247+2.705X 2,582 0,114 7,181 0,943 559,75

V18 M1 36 12.390 ± 6.418 (2.38-27.35) 67.4 ± 29.6 (14-136) Y = 10.867+4.561X 1,578 0,113 4,306 0,979 1617,28

V18 M2 36 13.974 ± 7.742 (2.45-33.70) 67.4 ± 29.6 (14-136) Y = 15.088+3.742X 2,102 0,132 6,046 0,959 803,51

V18 M3 36 20.060 ± 10.639 (4.46-44.44) 67.4 ± 29.6 (14-136) Y = 13.059+2.708X 2,449 0,108 6,810 0,949 626,32



Table 4 (Cont.). Descriptive statistics and fish length (cm) vs. bone relationships (mm) of Argyrosomus regius. All models P<0.05

Bone Measur. n Mean X ± S.D. (Min-Max) Mean Y ± S.D. (Min-Max) Equation s.e. (β0) s.e. (β1) σ r2 F

V19 M1 36 12.316 ± 6.45 (2.38-27.76) 67.4 ± 29.6 (14-136) Y = 11.593+4.529X 1,703 0,123 4,688 0,976 1359,27

V19 M2 36 13.754 ± 7.776 (2.40-31.88) 67.4 ± 29.6 (14-136) Y = 16.005+3.735X 1,946 0,124 5,685 0,964 913,48

V19 M3 36 19.874 ± 10.321 (4.41-44.21) 67.4 ± 29.6 (14-136) Y = 12.102+2.781X 2,648 0,119 7,242 0,942 549,74

V20 M1 36 11.807 ± 5.701 (2.40-25.06) 67.4 ± 29.6 (14-136) Y = 6.984+5.115X 1,945 0,149 5,016 0,972 1182,88

V20 M2 36 12.788 ± 6.724 (2.32-29.90) 67.4 ± 29.6 (14-136) Y = 12.169+4.317X 2,087 0,145 5,763 0,963 887,99

V20 M3 36 18.104 ± 8.173 (4.29-37.46) 67.4 ± 29.6 (14-136) Y = 2.937+3.559X 2,222 0,112 5,422 0,967 1007,72

V21 M1 36 11.390 ± 5.354 (2.36-23.74) 67.4 ± 29.6 (14-136) Y = 4.78+5.495X 1,222 0,097 3,083 0,989 3188,08

V21 M2 36 11.779 ± 5.401 (2.27-25.95) 67.4 ± 29.6 (14-136) Y = 5.375+5.264X 3,352 0,259 8,284 0,924 412,14

V21 M3 36 16.213 ± 6.82 (4.02-31.45) 67.4 ± 29.6 (14-136) Y = -1.75+4.264X 2,394 0,136 5,503 0,966 977,07

V22 M1 36 10.602 ± 4.74 (2.35-22.32) 67.4 ± 29.6 (14-136) Y = 2.003+6.166X 1,901 0,164 4,601 0,976 1412,57

V22 M2 36 11.406 ± 5.279 (2.20-24.17) 67.4 ± 29.6 (14-136) Y = 4.839+5.483X 2,485 0,198 6,191 0,957 764,91

V22 M3 36 14.030 ± 6.16 (3.86-28.46) 67.4 ± 29.6 (14-136) Y = 1.332+4.707X 2,483 0,162 5,918 0,961 840,17

V23 M1 35 9.961 ± 3.945 (2.22-20.32) 67.6 ± 30.0 (14-136) Y = -5.079+7.295X 3,971 0,371 8,543 0,921 385,77

V23 M2 35 11.181 ± 5.284 (2.14-23.03) 67.6 ± 30.0 (14-136) Y = 4.405+5.651X 1,115 0,090 2,784 0,992 3909,46

V23 M3 35 12.182 ± 5.288 (3.3-25.49) 67.6 ± 30 (14-136) Y = 0.726+5.488X 3,279 0,247 7,632 0,937 491,77

V24 M1 35 9.551 ± 3.869 (2.06-20.02) 67.5 ± 30.0 (14-136) Y = -4.258+7.51X 3,464 0,337 7,599 0,938 497,06

V24 M2 35 10.276 ± 4.652 (2.07-22.43) 67.5 ± 30.0 (14-136) Y = 2.838+6.29X 2,801 0,249 6,752 0,951 638,44

V24 M3 35 10.221 ± 4.273 (2.58-21.58) 67.5 ± 30.0 (14-136) Y = -3.319+6.926X 2,215 0,200 4,992 0,973 1195,21

V25 M1 36 9.329 ± 4.018 (1.97-18.69) 67.4 ± 29.6 (14-136) Y = 0.373+7.182X 2,803 0,277 6,575 0,952 674,3

V25 M2 36 9.578 ± 4.041 (2.01-19.17) 67.4 ± 29.6 (14-136) Y = -1.194+7.159X 2,710 0,261 6,244 0,957 751,27

Sagitta MAX_OL 113 18.95 ± 5.89 (5.2-31.8) 77.6 ± 35.0(12-160) Ln (Y) = -0.150+1.516Ln(X) 0,051 0,018 0,069 0,985 7353,58

Sagitta MED_OL 113 18.73 ± 5.74 (5.2-31.4) 77.6 ± 35.0(12-160) Ln (Y) = -0.178+1.531Ln(X) 0,050 0,017 0,067 0,986 7917,30

Sagitta MAX_OH 112 10.97 ± 2.98 (3.9-17.7) 78.2 ± 34.7(12-160) Ln (Y) = 0.116+1.751Ln(X) 0,067 0,028 0,091 0,972 3855,04
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Figure 5. Relationship between fish total length (TL) and the greatest dorso-ventral height of the A. regius V-2 centrum

(M1). The dashed lines represent 95% prediction bands of the prediction model.

Figure 6. Relationship between fish total length (TL) and the maximum length of the A. regius sagitta (MAX_OL). Left

panel: fitted data. Right panel: back-transformed data. The dashed lines represent 95% prediction bands of the

prediction model.
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Figure 7. Relationship between fish total length (TL) and the maximum height of the A. regius sagitta (MAX_OH). Left

panel: fitted data. Right panel: back-transformed data. The dashed lines represent 95% prediction bands of the

prediction model.

The length details of meagres found at the four Mesolithic sites are summarized in Table 5

and the length distribution of the most represented site shown in Figure 8. Fish found at ARA

and in the upper layers of PSB were less than 1 m TL (~8 kg) while fish at other sites and layers

were essentially over 1.20 m (~14 kg) (Table 5). Layers 1 and 2 of site ARA presented fish of

overlapping length ranges and similar length compositions (Kolmogorov-Smirnov D: 0.2194,

P>0.05) (Table 5). Specifically, ARA layer 1 registered 83% of fish between 35 and 80 cm long

and layer 2 registered 92% of fish between 30 and 70 cm long. Remains belonging to fish in the

35-40 cm size class (~400–600 g) being the most abundant in both layers (Figure 8). The

largest individual was found at CMRR, measuring 146 cm (~24 kg).

Table 5. Estimated Minimum Number of Individuals (MNI) and total length (TL) of Argyrosomus regius found at

archaeological sites

Site Remains (n) MNI Estimated TL ± S.D. (Min-Max)

ARA1 sagitta (67) 37 55.5 ± 19.8 (29.3-102.2)

ARA2 sagitta (79), V-22 (1) 40 46.6 ± 14.1 (18.8-84.6)

ARA3 sagitta (1) 1 78.5 (---)

CMORR50-60 sagitta (1) 1 146.0 (---)

PSB B/80-90 sagitta (1) 1 58.9 (---)

PSB C1/90-100 sagitta (1) 1 46.7 (---)

PSB220-230 V-4 (1) 1 138.3(---)

PSB240-250 V-2 (1) 1 124.8 (---)

SAM1 C3a V-2(1), V-5 (1), V-22 (1) 2 122.9 ± 26.4 (104.2-141.6)
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Figure 8. Size distribution of individual A. regius found in Arapouco: layer 1 (upper panel); and layer 2 (lower panel).

Each size-class is 5 cm wide.

4. Discussion and final considerations

The importance of reconstructing fish body size from bones recovered in archaeological

sites has been largely discussed in the literature (Enghoff, 1983, 1989, 1991; Johnsson, 1994;

Desse and Desse-Berset, 1994, s/d; Smith,1995; Zohar et al., 1997; Bèarez, 2000; Orchard

2003, 2005). To date, several authors have referenced the presence of meagre bones among

archaeological remains (Arnaud, 2000; Roselló, 1989, Le Gall et al. 1994; to name a few) but

few have indicated length composition of meagre specimens captured by prehistoric

communities (Lentacker, 1986). As shown in Figures 6 and 7 there is substantial variability in

the relationship between otolith size and fish size. This makes it difficult to determine fish size

from otolith size in the absence of representative fish collections and mathematical models that

explicitly account for such variability. It also cautions against drawing conclusions derived from

earlier evaluations based on small reference collections (e.g., n=3 specimens, Lentacker, 1986).

The use of fish bone vs. fish size relationships to predict the size of fish captured by

prehistoric communities requires good bone preservation. In general, poor preservation of fish

bones will result in partial disappearance of bone from specimens and, thus, in biased, under-

estimates of fish. Potential sources of differential preservation of fish bone before and after

deposition include bone structure, processing, ingestion and subaerial weathering, chemistry of

the disposal context and other mechanisms of fish bone destruction (Butler and Charters, 1994;

Lubinsky, 1996; Nicholson, 1992). The material from the four sites is reasonably well-preserved,

allowing the determination of at least one measurement on each otolith and vertebra. This leads

us to believe that it should approximate well the original meagre size composition.

Our results for the Portuguese case-study indicate that Mesolithic communities not only

consumed small meagre (ARA), probably captured in large schools, but were also able to
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capture large fish weighing over 20 kg (CMORR, PSB, SAM-I). In the wider array of fish

identified in ARA (including the Tope shark Galeorhinus galeus, the European seabass

Dicentrarchus labrax, the Gilthead seabream Sparus aurata, to name a few) meagre minimum

number of individuals (MNI) represented 55% of fish found in layer 1 and 33% of fish found in

layer 2 (S. Gabriel, unpub. data). This evidence suggests that meagre may have made a

significant contribution to the subsistence of the Mesolithic communities of the Portuguese coast.

Bone sizes vs. fish size relationships greatly increase the range of interpretations of

zooarchaeology studies. In the case of the meagre, it is known that juvenile and adult fish

aggregate in Portuguese and French estuaries in spring and summer (Quéméner, 2002; Prista

et al., 2008). Assuming meagre behaviour has not changed since Mesolithic times, it is likely

that many of the Portuguese meagre remains belong to specimens caught in estuarine

environments during spring-summer. In the ARA case, the most likely place is the nearby Sado

estuary. In the Sado valley, several shell-middens are ground in a 30 km area surrounding the

inner estuary. These sites are highly variable in composition. Those situated closer to the river

mouth, such as ARA, are rich in fish remains and have few mammal bones; those further inland

are very rich in mammal bones. Following Arnaud (1987), this pattern can be interpreted as the

archaeological image of a collector settlement-subsistence system, where sites like ARA act as

specialized camps occupied in the framework of the procurement of resources (specifically fish).

Interestingly, today meagre is uncommonly caught in that estuary (N. Prista, pers. obs.) and

much more abundant in the Tagus estuary, ~40 km to the north. Further investigation (e.g., age

distributions and validation through isotopic analysis) may provide additional insights into the

seasonality of the human occupation of ARA and the reasons for possible temporal shifts in the

nursery and spawning grounds of meagre in the course of time.
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Inferring fish movements from small-scale fisheries data: the case of

Argyrosomus regius (Sciaenidae) in Portugal

Abstract: The life history of several marine resources remains scarcely known worldwide. This
is particularly the case of many marine fish exploited by small-scale artisanal fisheries for which
current fishery independent and fishery dependent sampling is limited. In some such data-poor
situations time series of regional landings may be available that may be used to infer fish life
history. The meagre Argyrosomus regius is one example of a valuable data-limited species,
exploited by small-scale local fleets off the European Atlantic coasts, for which distribution and
migration patterns are still scarcely known. We used time series techniques (periodogram
analysis, generalized non-linear harmonic regression and seasonal-trend decomposition based
on loess) to analyze 5-year datasets of monthly landings of meagre across 6 regions of
Portugal. We then correlated the time series results on the spatio-temporal distribution of the
landings with several descriptors of the fishery, including an analysis of the temporal evolution
of the fishing effort and the determination of the regions and months when target effort on the
species takes place. Our results indicate that the meagre fishery presents annual periodicity in
all regions of the Portuguese coast and that the landings periodicity is likely to be generated by
a determinist annual cycle associated with migrations of meagre juveniles from the estuary to
the coast. Meagre juveniles concentrate in the Tagus estuary from May to September and
migrate northwards and southwards along the Western coast in Autumn-Winter months. These
results demonstrate that if adequate time series analysis are used and some effort patterns are
considered, preliminary hypothesis testing on the spatial distribution and migratory behaviour of
scarcely known fish resources may be performed from relatively short and noisy time series of
landings such as the ones generated by small-scale artisanal fleets.

Keywords: small-scale artisanal fisheries, fisheries landings, time-series analysis, fishing
effort, target effort, meagre

1. Introduction

Fisheries research and assessment have traditionally focused on large stocks, exploited by

relatively well-characterized industrial fleets. In comparison, most small scale fisheries are

poorly documented and very data limited (Mahon, 1997; Vasconcellos and Cochrane, 2005;

ICES, 2007). When investigating the life history of fish exploited by small scale fisheries,

researchers frequently find that landings (eventually coupled to rough indicators of fishing effort)

are the only readily available data to conduct research and test hypothesis on life history

patterns. In such situations the use of statistical time series methods assumes relevance since

monthly landings data from small-scale fisheries typically present low mean values and the

identification in them of fish and fisheries cycles is confounded by substantial biologically-

induced, fisheries-induced and/or measurement induced correlated noise.

The meagre (Argyrosomus regius) fishery in Portugal is an example of small-scale fishery

in a data-poor situation. The meagre is one of the largest sciaenids in the world and presents

economic significance to local small-scale commercial fishing communities along the Atlantic

coasts of France, Spain and Portugal (Quéméner 2002; Silva et al., 2002; Prista et al., 2007).

Current knowledge on the distribution and migratory behaviour of the fish relies essentially on
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non-statistical analysis of fisheries patterns landings performed in the Bay of Biscay that predict

that both juveniles and adults migrate seasonally between the coastal and estuarine waters

(Quéro and Vayne, 1987; Quéro, 1989). However, this evidence is still unconfirmed and could

benefit from the application of statistical time series analysis and a more thorough consideration

of the possibility that fishing effort patterns might generate such patterns.

In this study we use time-series methods to estimate the periodicity of the small-scale

fishery on meagre in Portugal. We complement these results with temporal analysis of fishing

effort evaluating the likelihood of the patterns in fisheries landings being fisheries induced

and/or life cycle induced. In doing this, we provide the first statistical description of the spatio-

temporal dynamics of meagre in European waters and most importantly, provide a case study of

how statistical time-series methods and effort analyses can be combined to infer fish life history

from time series of fisheries landings.

2. Materials and methods

To study the seasonality of the meagre in Portugal we obtained various landings and fleet

data from the Portuguese General-Directorate for Fisheries and Aquaculture (DGPA): a) data

on total monthly landings (kg) of meagre per port and fleet segment (period: January-1991

through December-2007), b) data on the physical and gear characteristics of the vessels that

landed meagre (period: 2005), c) data on monthly species landings (kg) of the vessels that

landed meagre per port (period: 2005) and d) data on total monthly sales (number) of individual

vessels per port (period: January-2002 through December-2007). All data referred to landings

made by Portuguese vessels operating in ICES Subarea IXa but our analysis focused on the

“polivalente” segment of the fleet (90-98% of annual meagre landings), excluding the trawl and

seine fleets and a pound-net that operates in Southern coast (Prista et al., 2007). We restricted

our temporal analysis of landings to the period May-2002 to April-2007 (60 months) and

subdivided our spatial analysis into 6 non-overlapping regions: Northwest (NW), Central West

(CW), Lisbon-marine (Lm), Lisbon-estuarine (Le), Southwest (SW) and South (S) (Figure 1).
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Figure 1. Regions considered in the analysis of the meagre fishery in the Portuguese coast. NW – Northwest region

(ports from the Caminha maritime jurisdiction to the Douro maritime jurisdiction); CW – Central West (ports from the

Aveiro maritime jurisdiction to the Peniche maritime jurisdiction), Lm – Lisbon-marine (selected marine ports from the

Cascais, Sesimbra, Lisboa and Setúbal maritime jurisdictions); Le – Lisbon-estuarine (selected estuarine ports from the

Cascais, Sesimbra, Lisboa and Setúbal maritime jurisdictions); SW– Southwest (ports in the Sines maritime jurisdiction);

S – South (from the Lagos maritime jurisdiction to the Vila Real de Santo António maritime jurisdiction). Map credits:

José Loff.

Spatio-temporal analysis of meagre landings was based on statistical analysis of time

series of landings from the different regions of the coast (Figure 2). We transformed our data to

meet the stationary assumption of time series analysis (Figure 3) and used periodograms to test

the hypothesis that a deterministic cycle, of near annual periodicity, could be present in the data

(Wilks, 2006). We then used non-linear harmonic regression to test if this periodicity differed

from a purely annual periodicity and to compare the regional amplitudes and phase of the main

fisheries cycle (Bloomfield, 2000). Next we used seasonal decomposition based on lowess (STL)

to analyze the shape of the periodicity and better delimit the specific months of meagre landings

(Cleveland et al., 1990). Finally, to explore the possibility that the temporal patterns in landings

could be fisheries-induced we a) examined the correlation between meagre landings and a

rough fishing effort indicator (monthly number of daily fish sales), b) investigated cumulative

plots of landings to detect months of target/by-catch effort (Biseau, 1998), and c) compared the

composition of the landings of the vessels that landed meagre during the meagre season and

out of meagre season to evaluate if drastic differences in the fishing techniques and spatial

allocation of fishing effort could be generating the observed patterns in the landings data.
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Figure 2. Regional landings of meagre from the Portuguese polivalente fleet operating in Portuguese waters (period:

May-2002 through Apr-2007) (Source: DGPA). In each plot the y-axis presents the raw landings (x1000 kg) and the x-

axis presents time. Note the different scale used in the y-axis of region SW and S. Regional acronyms as in Figure 1.

3. Results and discussion

The log transformed regional time series showed no evidence of increased variance with

series mean or of trends in the landings, thus meeting the stationarity assumption of time series

analysis. Periodogram analysis revealed that frequencies (ω) near the annual cycle

(ω=1/12≈0.0833 equivalent to a 12-months period) account for most of series variance in all

regional data (Figure 4). The proportion of variance explained by this cycle and its first harmonic

was higher in the Northern Western and Central Western regions (NW to Le) than in the

Southern regions (SW and S). The hypothesis that the ordinate value of ω=1/12 might have

been generated stochastically (from a white-noise (WN), autoregressive (AR) or a moving

average (MA) process) was rejected with a level of significance α=0.05 in all regional series.

Accordingly, periodogram analysis indicated that a deterministic model involving a harmonic

component with frequency approximately 1/12 month-1 (i.e. periodicity ca. annual) and an

eventually correlated noise structure might be a good model for meagre landings in all regions.
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Figure 3. Transformed centered regional landings of meagre (period: May-2002 through Apr-2007). In each plot the y-

axis presents the transformed [X’=log10 (landings+1)] centered [X’- mean (X’)] landings (kg) and the x-axis presents time.

Mean of logarithmic data: NW – 2.42; CW – 3.15; Lm – 3.30; Le – 3.66; SW – 1.37; S – 2.73. Regional acronyms as in

Figure 1.

The generalized non-linear harmonic model with a variable single frequency fitted well the

regional landing time series (Table 1). The near annual periodicity detected in the periodograms

proved to be embedded in low order moving-average or autogressive noise in most regions and

did not differ significantly from 12 months (Table 1). These results refine the evidence obtained

from the periodogram analysis by improving the initially relatively low resolution of this analysis

(frequency intervals of 1/60 month-1) and establishing the meagre fishery as presenting a true

annual periodicity in all regions of Portugal. Final amplitude and phase measurements obtained

from fitting the regional data with a harmonic model with single fixed frequency (ω=1/12)

indicate substantial differences in the timing and power of the seasonality in the different

regions (Table 2, Figure 5). Amplitude estimates were higher but also more variable in NW and

CW evidencing large intra-annual and inter-annual variations in the landings of these two

regions (Table 2, Figure 5). On the other hand, the estimates of model phase indicated that the

annual cycle is centered in July in one region (Le), September-October in three regions (Lm,

SW and S) and in November-January in the two northern regions (CW and NW). These results

indicate that the meagre fishery takes place essentially in the second half of the year, and

landings occur essentially in the summer in the estuarine area (Le), early autumn in the



CHAPTER 2

39

adjoining coastal areas (Lm and SW) and in late autumn and winter in the Northern regions

(CW, NW).

Table 1. Estimates of the fit of an harmonic regression with a single variable frequency1 to the regional time series of

meagre landings (period: May-2002 through Apr-2007). The model was fitted independently to each region using

generalized non-linear least-squares (Pinheiro and Bates, 2000) implemented in R (R Development Core Team, 2007).

RSE is the residual standard error of the fit. The 95% confidence intervals (CI 95%) were computed using normal

approximation to the distribution of the maximum likelihood estimator of the parameters. The normalized residuals of all

models were uncorrelated (Ljung-Box tests) and normal (Shapiro-Wilks tests). Regional acronyms as in Figure 1

i iĈ iω̂
iΦ̂ i,1̂θ i,2̂θ i,1̂φ i,2̂φ RSE CI 95% ( iω̂ )

NW 0.702 (0.197) 0.0845 (0.0025) 4.670 (0.562) 0.486 ----- ----- ----- 0.834 [0.0795; 0.0895]

CW 0.508 (0.129) 0.0857 (0.0024) 4.432 (0.525) 0.393 ----- ----- ----- 0.567 [0.0809; 0.0904]

Lm 0.391 (0.071) 0.0870 (0.0017) 3.653 (0.377) 0.269 ----- ----- ----- 0.328 [0.0835; 0.0904]

Le 0.402 (0.072) 0.0850 (0.0015) 1.972 (0.340) ----- ----- 0.591 ----- 0.279 [0.0820; 0.0881]

SW 0.278 (0.076) 0.0860 (0.0026) 3.673 (0.572) ----- ----- ----- ----- 0.418 [0.0807; 0.0912]

S 0.271 (0.068) 0.0831 (0.0023) 2.623 (0.503) ----- ----- 0.235 0.288 0.311 [0.0784; 0.0877]

1 Regression model given by ( ) ( ) tiiiiti tCL ,,10 2cos1log εωπ +Φ−=+ , where tiL , are the landings in

region i at time t , and iC the amplitude, iω the frequency and iΦ the phase of the harmonic term. ti ,ε
represents an error term with AR structure ( i,1φ and i,2φ ) or MA structure ( i,1θ and i,2θ ).

The STL application to regional landings data confirmed in a non-parametric way the main

results of harmonic analysis. STL did not detect consistent temporal trends in landings data and

similarly to the harmonic models it evidenced the higher amplitude of the seasonality in NW and

CW. Monthly cycle subseries plots indicated that the meagre season is essentially unimodal in

all regions and takes place every year between May and September in region Le, September

and November in region Lm and SW, October and December in CW and between October and

February in region NW (Figure 6). In region S the meagre season was considerably wider taking

place between July and December. On the other hand, strictly negative seasonal coefficients

took place between June and August in region NW and CW and in December-March in Le

establishing these months as having comparatively reduced meagre available to the fishery.
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Table 2. Estimates of the fit of an harmonic regression with a single fixed frequency1 to the regional time series of

meagre landings (period: May-2002 through Apr-2007). The model was fitted independently to each region using

generalized non-linear least-squares (Pinheiro and Bates, 2000) implemented in R (R Development Core Team, 2007).

RSE is the residual standard error of the fit. The 95% confidence intervals (CI 95%) were computed using normal

approximation to the distribution of the maximum likelihood estimator of the parameters. The normalized residuals of all

models were uncorrelated (Ljung-Box tests) and normal (Shapiro-Wilks tests). Regional acronyms as in Figure 1

i iĈ iΦ̂ i,1̂θ i,2̂θ i,1̂φ i,2̂φ RSE CI 95% ( iĈ ) CI 95% ( iΦ̂ )

NW 0.695 (0.196) 4.445 (0.280) 0.488 ----- ----- ----- 0.829 [0.303; 1.087] [3.884; 5.006]

CW 0.494 (0.130) 3.984 (0.265) 0.402 ----- ----- ----- 0.568 [0.233; 0.755] [3.454; 4.515]

Lm 0.368 (0.075) 3.126 (0.205) 0.309 ----- ----- ----- 0.339 [0.217; 0.518] [2.715; 3.538]

Le 0.397 (0.073) 1.631 (0.179) ----- ----- 0.603 ----- 0.282 [0.251; 0.544] [1.272; 1.990]

SW 0.267 (0.077) 3.136 (0.286) ----- ----- ----- ----- 0.419 [0.114; 0.420] [2.562; 3.709]

S 0.271 (0.068) 2.666 (0.251) ----- ----- 0.236 0.289 0.308 [0.135; 0.406] [2.164; 3.167]

1 Regression model given by ( ) ( ) tiiiti tCL ,,10 12/2cos1log επ +Φ−=+ , where tiL , are the landings in

region i at time t , and iC the amplitude and iΦ the phase of the harmonic term. ti ,ε represents an error term

with AR structure ( i,1φ and i,2φ ) or MA structure ( i,1θ and i,2θ ).
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Figure 4 . Normalized periodograms of the regional meagre landings (period: May-2002 through Apr-2007). In each plot

the y-axis presents the normalized periodogram values and the lower x-axis presents frequency (ω). The upper x-axis

presents frequency converted to period. Black vertical lines indicate the value of the periodogram at each frequency.

The upper limit of the 95% confidence interval of the stochastic models used to test the significance of ω=1/12 were

calculated according to Box et al. (1994) and Wilks (2006), and are displayed in colored lines: Grey line – White noise;

Brown line – AR(1); Red line – AR(2); Violet line – MA(1); Blue line – MA(2). All confidence intervals were calculated

assuming a χ2 distribution with 2 df. Regional acronyms as in Figure 1.
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Figure 5. Estimates of the amplitude (A) and phase (B) of the annual period of regional meagre landings. These graphs

represent the results of the fit of the fixed frequency harmonic regression to the regional data (see Table 2). In plot A the

y-axis presents amplitude. In plot B the left y-axis displays phase values and the right y-axis the same phase values

converted to months. The x-axis of both plots presents regions. Black squares present the point estimates; Red

whiskers indicate the standard error of the estimate; Blue whiskers indicate the 95% confidence interval of the estimates.

Regional acronyms as in Figure 1.
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Figure 6. Regional seasonal cycle subseries plots (“monthplots”) of the meagre fishery (period: May-2002 through Apr-

2007). These results were derived from STL application on the transformed regional time series of landings and present

details on intra-annual and inter-annual variations in the seasonality of the each time series. In each plot the y-axis

presents the estimate of the seasonal component of the STL model and the x-axis the time (months). Horizontal black

lines –inter-annual average of the monthly seasonal coefficients; Vertical black lines – values of the annual monthly

seasonal coefficients in sequential order (also detailed in graph legend); Blue (red) full segments - months that

registered positive (negative) seasonal coefficients in all years; Blue (red) dotted segments - months that registered

positive (negative) average of seasonal coefficients but these were not positive (negative) in all years. Regional

acronyms as in Figure 1.

To infer on migratory behavior of meagre using the observed seasonality in fisheries

landings, the possibility that seasonality in fishing effort may be driving the annual seasonality of

the landings must be excluded. For this, we examined sequentially three hypotheses: I) a strong

seasonality in total polivalente fishing effort is inducing seasonality in the landings, II) the

development of target effort by some vessels of the fleet in very specific months generates the

observed patterns even under no effort-landings correlation of the overall fleet and III) seasonal

changes in the fishing techniques or spatial location of the polivalente fishery take place that

induce patterns on the fishery even under constant effort and no target effort. To evaluate

hypothesis I, we examined the correlation between an effort indicator of the polivalente segment

(monthly number of fish sales) and the meagre landings. Low correlation or even inverse

correlation between effort and meagre landings was observed in all regions, except region Le

(Figure 7). Accordingly, hypothesis I is likely to be rejected for all regions of the Portuguese

coast with the exception of the Lisboa estuarine area.
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Figure 7. Relationship between regional landings of meagre and the fishing effort of the polivalente fleet (period: May-

2002 through Apr-2007). In each plot, the left y-axis (and black line) present meagre landings (x1000 kg) and the right

y-axis (and red line) present a monthly fishing effort measure of the fleet (defined as the sum across vessels of the

number of fish sales registered each month by each polivalente vessel, red line). The x-axis presents time (in months).

Pearson’s correlation (r) and Spearman's rank correlation (rs) - NW: r=-0.25, rs=-0.43; CW: r=-0.14, rs=-0.26;

Lm: r=-0.15, rs=-0.12; Le: r=0.50, rs=0.46; SW: r=-0.17, rs=-0.09; S: r=0.08, rs=0.07. Regional acronyms as in Figure 1.

The regional plots of the proportion of meagre in vessels monthly landings against monthly

cumulative meagre landings indicate that in Le the meagre landing season is established by

targeted effort exerted by significant part of the fleet (Figure 8). On the contrary, in NW, CW and

SW meagre landings should result from by-catch of other fisheries. In region Lm and S an

intermediate graphical pattern indicates active targeting by only a reduced proportion of the

polivalente vessels. Accordingly, hypothesis II should be rejected in regions SW, CW and NW.
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Figure 8. Monthly target and by-catch plots of the polivalente fleet that landed meagre (period: Jan-2005 through Dec-

2005). In each plot, the y-axis presents the contribution of each vessel to the regional meagre landings (kg) and the x-

axis presents the proportion of meagre in the overall monthly landings performed by each vessel. Color of the lines is

related to the results of STL analysis (Figure 6): Blue lines correspond to months of the meagre landing season (blue

segments in Figure 6); Red lines correspond to months of reduced meagre landings (red segments in Figure 6); Black

lines correspond to months with intermediate landings (dotted segments in Figure 6). A sigmoidal or concave curve

indicates target effort by a substantial part of the fleet while a convex pattern evidences the fishery as by-catch. See

Biseau (1998) for more details on this type of plot. Regional acronyms as in Figure 1.

The main fish species landed by the vessels landing meagre in the different regions

differed but did not vary markedly between the annual period of higher meagre landings and the

annual period of lower meagre landings along the major landing areas of the Western coast of

Portugal (Table 3). In fact, the meagre fishery seems to overlap the pouting fishery in NW, the

pouting and ray fishery in CW and the hake and ray fishery in Lm. These resources constitute

the major fisheries of the vessels landing meagre in these areas both during and outside the

meagre season. These results give evidence for rejecting hypothesis III for the CW and NW

area.
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Table 3. Main species landed by the vessels polivalente fleet that landed meagre in the different regions (period: Jan-
2005 through Dec-2005). Values present the proportion of species (or species group) in regional landings during
meagre landing season (s) and outside the meagre landing season (ns). Seasonality was defined based on STL
analysis (see Figure 6). Months included in s registered positive seasonal coefficients in all years (blue segments in
Figure 6) and months included in ns registered negative seasonal coefficients in all years (red segments in Figure 6).
Highlighted values are >10%. Species not representing >10% of any region’s landings during the meagre landing
season were grouped into the “other” category. Regional acronyms as in Figure 1

Species or
group

NW CW Lm Le SW S

ns s ns s ns s ns s ns s ns s

conger eel 9.6 4.2 5.6 4.5 0.9 0.8 5.8 5.8 1.0 0.4 0.8 1.1

cuttlefish 0.4 1.0 2.9 2.1 3.2 2.7 11.0 1.7 4.9 11.2 13.6 4.3

gurnards 1.9 4.6 0.9 2.4 0.3 0.3 1.4 0.2 1.5 0.7 1.3 0.7

hake 8.0 4.3 1.4 0.9 8.6 8.0 3.5 5.1 1.0 1.0 2.0 4.0
horse
mackerel 3.4 2.9 8.3 2.2 3.7 5.0 1.0 4.8 4.3 4.6 2.1 12.1

mackerels 11.2 1.6 19.4 7.2 4.0 2.8 0.1 3.6 8.9 21.0 21.5 14.7

meagre 0.0 1.6 0.2 5.1 0.8 4.1 5.4 25.8 0.0 0.4 0.1 0.4

monkfish 2.0 1.4 2.5 0.0 1.6 0.0 0.1 0.1 8.3 0.0 2.2 0.2

octopus 9.7 21.6 10.5 26.5 13.8 10.7 35.0 8.9 21.1 16.0 16.2 15.6

plaice 0.6 6.1 0.3 0.8 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.1

pouting 22.4 21.2 9.1 11.6 0.9 1.2 1.8 1.8 2.1 2.6 1.7 1.0

rays 4.4 3.6 9.6 10.6 6.4 4.5 7.3 3.7 9.5 8.5 4.9 4.2

sardine 7.9 3.3 4.4 2.9 5.3 2.4 0.3 8.1 1.2 1.1 4.3 12.3

seabass 1.1 4.4 1.1 3.9 0.3 0.4 4.7 2.9 1.5 4.0 1.0 0.8

soles 2.3 4.8 3.1 3.5 5.6 7.1 9.6 9.4 13.6 3.6 7.5 3.5

sparids 1.6 2.7 3.5 4.4 2.6 4.1 1.2 3.3 6.7 16.2 12.8 13.6

other 13.4 10.7 17.1 11.5 42.0 45.8 11.6 14.6 14.3 8.9 7.7 11.2

Taking into consideration the results of the analyses on hypotheses I, II and III and the fact

that a) in region Le there is a plentiful array of observations attesting that vessels have adapted

their fishing practices to the exploitation of the resource, b) the meagre fishery in Le targets

adults and smaller sizes but mostly small sizes are landed during the main landing seasons in

CW and NW, and c) meagre juveniles are absent from estuaries north of the Tagus estuary, we

conclude that it is likely that the meagre juveniles present significant seasonal movements along

the Portuguese coast. According to our data these movements involve a concentration in the

Lisboa estuarine area from May to September followed in Autumn-Winter months by a

significant reduction of abundance in this area. This reduction is accompanied by a spreading

northwards (and eventually southwards) along the Western coast of Portugal during autumn

and winter. These results give extra statistical credibility to the overall juvenile distribution

pattern proposed by Quéro (1987) and Quéro and Vayne (1989) in the Bay of Biscay confirming

the generalization of the proposed juvenile migration to the western coast of Portugal. The

Southern coast evidences a somewhat distinct cycle that may be associated with larger

equitability of adult and juveniles landings of the species and does not seem to be related to the

western coast movements.
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4. Concluding remarks

Our results shed new light on the practical uses of readily available landings data in the

context of data-poor fish and fisheries. The combination of periodogram, harmonic regression

and STL can successfully analyze periodical patterns in time series of landings even when

landings are low in value and noisy in appearance as is the case of small-scale fisheries.

Additionally, data on fisheries landings also provides significant insight into the structure of the

fishing effort even when this is exerted by multi gear and multi species fleets. In the meagre

case, the combination of these two types of analyses presented sufficient power to evaluate

major hypotheses on its life cycle. The narrowing of the vast array of possible life history

patterns to the most relevant ones and the ability to identify the major patterns of small-scale

artisanal fisheries is of particular significance in both developed and undeveloped countries

since resources allocated to research on these fish and fisheries are generally reduced (Mahon,

1997). Given this, the set of techniques and analyses used in the study of the Portuguese

meagre may well contribute to the understanding of fish life history and fisheries dynamics in

the wider array of data-poor situations still existent worldwide.
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What can a Japanese tuna trap set off the coast of southern Por tugal tell

of the meagre Argyrosomus regius life-history?

Abstract: Argyrosomus regius is a large valuable sciaenid with scarcely known life history in
European waters. In Southern Portugal individual fish may be worth 100-300€ but even so are
not significantly targeted by the local fishing fleets that remain largely unaware of its temporal
and spatial distribution. Off the Southern coast of Portugal a Japanese model stationary
uncovered pound net (Teichi-ami) regularly catches A. regius and provides a unique
opportunity to study the species life-history in European coasts. We compiled 10 years (1995-
2004) worth of daily data on A. regius landings, capture dates, number of individuals and
individual size from this fishing gear and use this information to analyze the fish temporal
patterns and size structure of its schools. A. regius was caught year-round being most frequent
and abundant between June and October. Most individuals (99%) were adults. Solitary adults
were common throughout the year but exceptionally large schools were caught between June
and November. These schools included a wide range of fish sizes. These data constitute the
first evidence of systematic schooling of A. regius in European waters from early summer to
autumn. We discuss these and other results within the context of worldwide sciaenid life-
histories.

Keywords: fisheries landings, set net, size distribution, migration, meagre

1. Introduction

The meagre (Argyrosomus regius) is one of the largest sciaenids in the world. Its

distribution ranges from the English Channel to Senegal (including the Mediterranean Sea). In

Europe it attains large individual size and commercial value (up to 2 m and 50 kg; > 12 €.kg-1)

and presents economic significance to recreational and small-scale commercial fishers along

the Atlantic coasts of France, Spain and Portugal (Quéméner, 2002; Prista et al., 2008).

However, the meagre life-history in European waters including its seasonal distribution and

migratory patterns are still scarcely known (Quéméner 2002; Prista et al., 2008). Current

knowledge on the distribution and migratory behavior of the fish in Europe indicates that adult

and juvenile meagres form schools that migrate seasonally from coastal waters to estuarine

spawning and nursery grounds where the major fisheries take place (Quéro and Vayne, 1987;

Prista et al., 2008).

In comparison to estuaries, much less information exists on the distribution of meagres in

the marine environment (Quéro and Vayne, 1987; Quéro and Vayne, 1993). This is particularly

the case of Portugal where there is little commercial targeting of the meagre outside the Tagus

estuary (Prista et al., 2008). In this context, the operation off southern Portugal of a particular

gear (a tuna trap) where meagre is a frequent by-catch (Santos et al., 2002) provides an

opportunity to further investigate the marine part of the species life-cycle. In this study we

analyze the meagre seasonality and schooling behavior in coastal waters using 10-yr of detailed
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landings information from the tuna trap. We interpret the observed patterns in light of what is

currently known about meagre seasonal distribution and migratory behavior in European waters.

2. Materials and methods

The Portuguese tuna trap is a Japanese-design stationary uncovered pound net (teichi-ami)

operating off the port of Fuzeta in southeastern Portugal (Prista et al., 2007). It is located over

sandy bottoms at about 30 m deep. The trap is composed of two leader-nets (a full-time inshore

net and a seasonally placed offshore-net) that extend perpendicular to the coastline (from 20 to

60 m depth) and intercept fish moving along the coast. The leader-nets convey the fish to a

main-frame composed of playground, a slope-net and a bag-net (80-120 m long). Associated to

the bag-net are one to two sea-cages which are used for fish husbandry. The mesh size is

relatively large, varying between 60 and 90 cm in leader-nets and 9 and 15 cm in the bag-net.

Daily hauling of the bag-net provides the landings from this gear but, on some occasions, part of

the catch (including meagre) is redirected to the adjoining cages and the fish are landed a later

occasion (Prista et al., 2007). The overall geometry of the tuna trap has been suffered changes

throughout the years (e.g. the inshore leader-net has varied between 650 m and 1000 m in

length).

Date, catch in numbers and individual weights of all meagres landed daily between

November-1995 and December-2004 were retrieved from fish sales tickets and checked against

the company logbooks on a day-by-day basis. This allowed the identification of the accurate

dates when caged individuals were landed as-well as the determination of the gear soaking time

between hauls. The data (n = 10174 individual fish weights, dates and soaking times of

n = 1755 hauls) was logged into a databases and analyzed in terms of catch per unit effort

(CPUE), monthly frequency of occurrence (%FO) and size of schools caught. CPUE was

defined as number of fish per haul. Monthly %FO was defined as the number of hauls with

meagre over the total number of hauls carried out in each month. School type was defined as a

categorical variable with the following categories: isolated (1 fish in haul), small school (2–10

fish in haul); medium school (11–50 fish in haul), large school (>51 fish in haul). To investigate

the monthly size distribution of the catch, weight frequency analyses were carried out. In this

analysis 1 kg size classes were considered. Since preliminary data analysis indicated that soak

time had a small but positive effect on the daily catch, hauls with soak time >1 day were

excluded from the analyses involving school type. Similarly, to avoid probable effects of

husbandry on the weight of individual fish only non-caged individuals (i.e. of the fish landed

immediately after capture) were considered in weight frequency analyses.

3. Results

The meagre was present in the tuna trap catches throughout the year (Figure 1). From the

1755 fishing days recorded, in 1451 the bag-net had been checked the day before. These 1-day
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soak time hauls, registered 7515 of the 10174 meagres registered in the period. In seven fishing

dates more than 150 meagres were landed, six of them registering a soak time of only 1day.

Figure 1. Number of meagres landed from the tuna trap per hauling date. Total hauling dates (with or without meagre)

are represented by a “I” on the top of the graph.

The fishing effort and catch per unit effort varied throughout the year as did the meagre

occurrence in tuna trap landings (Figure 2). Fishing effort was lower in winter months when the

nets are frequently brought back for clean up and prevent damage from winter storms. Maximal

fishing effort took place in summer when the bag-net is hauled nearly everyday (Figure 2, left

panel). CPUE varied similarly with low catches in winter and high catches throughout the

summer and autumn. However, in spring CPUE remained low, registering a local minimum in

May (Figure 2, right panel).

Figure 2. Monthly effort (number of hauls, left panel) and catch per unit effort (meagre/haul, right panel) of the tuna-trap

during the 1995-2004 period. Full symbols represent all hauls. Open symbols represent hauls with 1-day soak time.

Minimum frequencies of occurrence were registered in winter and spring (November to

May) and maximum frequencies of occurrence in summer and early autumn (June to October)

(Figure 3). In all months, the vast majority (>80%) of hauls yielded no meagre or yielded it in
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small quantities (<10 individuals per haul). Large schools (max. 355 fish) were only captured

from June to October and in a very low number of hauls (1% of total hauls, <4% of monthly

hauls). Despite their scarcity, moderate and large schools accounted for 77% of the meagre

landings (Figure 3, right panel).

Figure 3. Frequency of occurrence (left panel) and number (right panel) of meagre in tuna trap hauls with 1-day soak

time. “Isolated” = 1 meagre in haul; “S school” = Small school (2–10 meagres); “M school” = Medium size school (11–50

meagres); “L school = Large size school” (>50 meagres). Numbers above bars represent number of hauls (left panel)

and number of meagres (right panel).

The fish landed from the tuna trap ranged 1–57 kg (average: 19 kg, median: 17 kg), over

80% of them being over 10 kg. Under-representation of fish smaller than 10 kg suggests these

that fish may not be fully recruited to the gear or that smaller sized meagres were not

significantly present in the fishing grounds. In all months, a relatively wide size range was

observed in all types of schools suggesting that school formation in meagre is not size specific.

Seasonal variations in median weight were observed across months that were relatively

consistent across school types and capture years. These variations involved higher median

weight in March-April (23 kg and 22 kg, respectively), followed by a sharp decrease in weight

during May (12 kg), a new rise in June, July and August (21 kg, 20 kg and 21 kg, respectively)

and a new sharp decrease in September, October and November (15 kg, 13 kg and 12 kg,

respectively). In winter (December–February) the tuna trap catches were increasingly

dominated by larger individuals (13 kg, 16 kg and 24 kg, respectively).
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Figure 4. Monthly size distribution of meagre schools caught by the tuna trap in hauls with soak time of 1day. The width

of the boxes is proportional to sample size. Dotted line indicates the overall median size of the 1995-2004 period

(17.7 kg). The dashed line represents monthly median size across the period. School sizes as in Figure 3.
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4. Discussion

The analysis of the tuna trap landings provides first evidence that meagre adults form large

schools during summer in the shallow coastal waters off southern coast of Portugal. These

schools seem to remain largely unnoticed by most local fishermen other than the tuna trap

(Prista et al., 2008). This might be due to lack of awareness by some fishers on the species

abundance in the area but is most likely a result of the daily unpredictability in the spatio-

temporal distribution of large schools. Even under the high commercial value of the meagre (a

20 kg fish may be worth over 250 €) this unpredictability probably rends unprofitable the use of

the specialized gears required to target it (e.g. large mesh gill nets) since they also imply a

lower chance of capturing smaller, but more predictable, species (e.g., sole, sea breams).

Furthermore, the analyses showed that meagre catches are seasonal in the southern coast of

Portugal. This seasonality may be related to seasonal variations in fish abundance in the area

or to seasonal variations in fish activity, both of which may condition the catches from the tuna

trap. The observed seasonality largely coincides with the distribution patterns and migratory

behavior previously described for the French Atlantic coast (Quéro and Vayne, 1987; Quéméner,

2002) that indicate adult movement towards estuarine spawning habitats in late spring. They

also strengthen the idea that the meagre adults are migratory and that migration patterns of

both juveniles and adults may be similar along the European coast (Prista et al., 2008). These

patterns should involve schooling of pre-spawning adults and late spring movement of schools

along the coast towards estuarine reproduction areas (Quéro and Vayne, 1987). Under this

hypothesis, a temporally distinct movement pattern of larger (earlier) and smaller (later) adults

may explain the drop in fish weight observed in May that largely exceeds weight losses resulting

from fish reproduction. Also assuming migration, the mass schools detected in June and July

may correspond to larger probably post-spawning fish migrating through the area and/or feeding

in the area. The lack of large schools in spring probably relates to different routes of pre-

spawning and post-spawning fish. More difficult to explain is the reduction in fish weight

observed during late autumn. One possible explanation is that smaller fish may lag behind the

bulk of larger adults in their movements towards deeper water overwintering grounds (Quéro

and Vayne, 1993). The tuna trap data supports this explanation by evidencing a decrease in

CPUE in late autumn and winter. However, this last result should be interpreted cautiously since

fishing effort was reduced in the winter.
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New methodology for studying large valuable fish in data poo r situations:

commercial mark-recapture of meagre Argyrosomus regius in the

southern coast of Portugal

Abstract: Life history parameters of several valuable marine fish remain unstudied in
European waters. Such situations frequently arise because fishery-independent sampling
methods are logistically difficult and/or costly to undertake initially given the scarcity of
available biological knowledge, and so adequate and cost-effective surveys cannot be
designed. In such cases, fishery-dependent sampling can provide representative samples
while simultaneously keeping the costs per sample low. We developed a new fishery-
dependent sampling methodology that combines representative sampling of fishery landings
with economically feasible market sampling, and thus is capable of providing life history
information on previously unstudied marine resources. This new methodology, termed
“Commercial Mark-Recapture”, involves tagging landed fish and the subsequent recapture of
their body parts in the marketplace. As a case study, we applied this method to meagre
(Argyrosomus regius), the largest and most expensive sciaenid landed from European waters.
Little is known about its age, growth and reproduction even though it is economically important
to local fleets of the Portuguese, Spanish, and French Atlantic coasts. Our results show that
“Commercial mark-recapture” is highly effective, allowing a significant number of samples to be
obtained, at low cost, with quantifiable spatial, temporal, size and gear coverage of landings.
The conditions and assumptions required for the successful application of this methodology are
discussed, as well as its applicability to the study of life history and fishery details of other
European marine fish.

Keywords: life history, fishery-dependent sampling, market sampling, Argyrosomus regius

1. Introduction

Surveys provide data on fish abundance indexes, population structure and fish life history

parameters that are used directly and indirectly in most fish stock assessments. Two types of

fisheries surveys are generally considered: fishery-dependent (sampling of commercial and

recreational fisheries) and fishery-independent (sampling during research surveys) (Hilborn and

Walters 1992; NRC, 2000).

Fishery-independent surveys rely mostly on expensive research cruises performed during

short periods of time. Survey data is considered of superior quality because they are

independent of management measures, standardized fishing procedures are used, and both

sampling statistics and biological information of target species are taken into consideration

during survey design (NRC, 2000). However, they generally present a high cost-per-sample and

a limited temporal duration that may compromise representative coverage of fish populations

yielding less precise and potentially biased estimates of biological parameters. This is

particularly the case of commercially significant stocks with high spatial and temporal variability

(migratory stocks) (NRC, 2000) and stocks where research survey catches are so scarce that

an adequate number of specimens cannot be easily obtained (ICES, 2007a).

Fishery-dependent surveys are useful in such cases. Along with providing age-length

composition of landings for incorporation in assessment models, they can also be the source of
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a significant number of biological samples destined to other studies. That is the case of

market/port sampling, the most frequently used fishery-dependent method (Hilborn and Walters,

1992). Market sampling for age and reproduction is generally considered a cost-effective

technique capable of comprehensive monthly coverage of fish populations despite several

recognized limitations (e.g. Hilborn and Walters, 2002; ICES, 2007a). These surveys generally

involve buying boxes of fish, either from the fishers or retail intermediaries. However, this is only

possible if fish are landed round and only cost efficient if individual boxes comprise reasonable

numbers of specimens and/or their acquisition costs are low. Where specimens attain large

weight and/or high prices at local markets, biological sampling, even at the market place, also

becomes sample-limited particularly if, under the need to maintain fish appearance and value,

extraction of body parts cannot take place on specimens to be sold (Fritsch, 2005; Pilling et al.,

2007).

We developed a market-based sampling methodology that allows biological samples from

large valuable fish to be obtained at low cost. The methodology, termed “Commercial Mark-

Recapture” (CMR), is based on models of capture-recapture studies used for closed

populations (Williams et al., 2001) and tackles the above mentioned sampling difficulties without

requiring specimen acquisition or direct manipulation of the fish being sold. CMR methodology

relies instead on obtaining the samples at the point of the fish commercial circuit where dressing

generally takes place and afterwards matching those samples to the original fish characteristics

collected at landing ports. In the present note the CMR methodology is described and

exemplified by application to sampling of otoliths and gonads of meagre (Argyrosomus regius),

the largest and most expensive sciaenid in the European coasts.

2. Materials and methods

2.1. Commercial mark-recapture (CMR) definition

Commercial mark-recapture is the individual tagging of fish specimens before 1st sale

followed by the recapture of body parts (biological samples) after being sold. Fish measurement,

weighing and tagging takes place as the fish are landed. Fish are tagged with visible

individually-coded tags attached to its body in a non-damaging way. After the sale, the persons

responsible for fish dressing are asked to return both tags and biological samples to

researchers that can then match samples to body measurements taken previously.

2.2. Case study: Meagre Argyrosomus regius

Fishery and landings

The meagre (Argyrosomus regius) is a large sciaenid that may attain 2 m total length and

50 kg weight (Quéméner, 2002). Age, growth and reproductive patterns of adult specimens (>70

cm) (Tixerant, 1974) are scarcely known in European coasts. In 2004 and 2005 the European

commercial fishery along ICES Subareas VIIIa, VIIIb and IXa (landings taken place in France,
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Spain and Portugal) registered ca. 800 t to 1700 t, respectively. Being a trophy fish adult

meagres are also subjected to significant recreational fishery along its distribution range

although no quantification of this component has ever been made. Along the Portuguese coast

a minimum landing size of 42 cm is enforced. All landings consist of round fish with ca. 68% of

them taking place in the Sesimbra-Peniche area (Western coast) and ca. 18% throughout

Algarve (South Coast) (Portuguese Fisheries General Directorate: 2005 data). Landings in the

Western Coast are composed of a mixture of juvenile and adult specimens, while in Algarve

larger specimens are frequently landed (Santos et al., 2002). Meagre supply to Southern

markets is mainly conducted by a single fishing gear – a setnet - operating near Olhão. This

gear lands fish between 60 cm and 180 cm (Santos et al., 2002) that averaged ca. 15 kg in

2004 (N. Prista, unpub. data). Husbandry of adult meagres in nearby cages is performed when

large schools are caught. At port, the setnet landings are frequently subjected to some degree

of size selection and distributed throughout several Algarve 1st sale (=ex-vessel) auctions,

namely Lagos, Quarteira, Olhão and Vila Real de Santo António (Figure 1). At the Olhão 1st

sale auction meagre prices averaged 10 € kg-1 in 2005 (Portuguese Fisheries General

Directorate: 2005 data) which caused most round specimens landed to cost over 100 € and

specimens >40 kg over 400 €. Southern Portugal is a tourist area and meagre prices remain

relatively stable year-round with minor fluctuations during the main landing period of meagre

adults of the western coast (May and June). After 1st sale, retail prices escalade with meagre

steaks found frequently at 16-24 € kg-1 in local fresh-fish markets.

Figure 1 . Geographical position of the setnet and main A. regius 1st sale auctions in Algarve region (South Portugal).

A. regius commercial circuit

Meagres landed from the setnet are generally auctioned in early morning (ca. 6:00 to 7:00).

Meagre specimens are shown to buyers before being auctioned and afterwards removed by

individual buyers to several Algarve fresh-fish markets. In some auctions, namely Vila Real de

Santo António, some fish are bought by Spanish dealers and exported to the Spanish market. In
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the remaining auctions meagres are generally bought individually (one fish = 1 box per buyer)

and sold to final consumers over the next 1-2 days in the buyers’ own market benches. In

Southern Portugal, fresh-fish markets are open from ca. 8:00 to 13:00. There is no dealer

specialization in meagre, with each dealer making available several fish species at his market

bench. The meagre marketing strategy of individual dealers adapts depending, amongst other

things, on specific orders, other fish species available, fish sold so far, or weekly planning based

on evaluation of current and future demand (weekends). Some buyers sell meagre to local

restaurants and hotels (round, gutted or dressed) but most are dressed at the markets and sold

as fish steaks. Large fish heads present variable commercial value and are generally sold

halved with the larger otoliths being kept as good-luck charms. During spring and early summer,

ripe female gonads also present commercial value, being sold at around 10 € kg-1 and weighing

between 1 kg and 4 kg. No commercial value is attributed to male gonads or less ripe female

gonads.

CMR adaptations and procedures under the A. regius commercial circuit

We obtained the cooperation of the setnet fishers and of company that runs the 1st sale fish

auctions prior to CMR application. This was necessary so that landings could be anticipated in a

few hours (allowing one or two staff members to travel to the Olhão port) and, so that caged and

catch-of-the-day fish would be kept separate once captured. After unloading, fish were

measured (total length, to lowest 0.01 m), weighed (round weight, to nearest 0.1 kg) and tagged.

The tags consisted of large bovine ear tags (PVC, 63x74x4 mm, 11 g, orange colour) imprinted

with an individual fish code on one side and contact information on the other (Figure 2A). A

loose cable tie was used to attach the tag around the 1st gill arch thus avoiding damage to the

fish skin and the fish’s fresh appearance. The tag was left visible, appearing slightly outside the

fish operculum (Figure 2B). After fish auctions, fish buyers are generally hurrying to return to

their markets to sell that morning. So immediately after the auction, we explained the purpose of

the tags to fish buyers and briefed them on the study objectives. If the fish was to be gutted

and/or beheaded they were asked to store the tag, along with viscera, gonads and one of the

otoliths in a given plastic bag. Sample recapture took place during the following hours at the

local markets after obtaining phone confirmation of fish dressing. Rewards for sample return

were non-monetary and study-related (sectioned otolith pictures, fish recipes, certificates of

participation in the study, information of fish names in foreign languages) with a minor

component of small but useful gifts being distributed at random occasions (lanyards, ball-point

pens). Occasionally we purchased fish gonads and tipped dealers’ employees (1-2 €) for setting

apart the samples during daily dressing procedures.



CHAPTER 3

62

A BA BA B

Figure 2 . Tag (material: PVC; dimensions: 63x74x4 mm; weight: 11 g) used for commercial mark-recapture operations

(A) and A. regius (LT: 94 cm, WT: 7.3 kg) with tag placed attached to the 1st gill arch (B).

2.3. Statistical design and analyses

External sexual dimorphism is not present in meagres, so sex identification was rarely

possible previous to gonad recaptures. Taking this into consideration, our main objective was to

recapture at least 10 males and 10 females per 10 cm size class (100 cm to 180 cm).

Accordingly, we intensified tagging operations during the main period of setnet adult landings

(June to September). In parallel, to study the adult seasonal reproductive cycle (and obtain

samples for age validation studies) we maintained CMR operations even in months of lower

setnet landings. In periods of higher adult landings (June to September) 10-12 fish per day were

generally landed at each auction. The selection of the auction(s) where fish were to be tagged

was made considering the personnel available (minimum 1 person per auction), the analysis of

size distribution destined to each auction and the length classes that remained below our

objectives. We tagged indiscriminately fish landed from cage and catch-of-the-day so that our

study would not influence their usually equal price. Generally a decision was made to tag at

least at Olhão auction and, if logistically possible and fish from specific size classes were

present, at others auctions (Lagos, Quarteira or Vila Real de Santo Antonio). Frequently, in

periods of lower captures when few fish are landed, these few are generally sold at Olhão

auction and were tagged.

In CMR statistical analyses, we considered a tagging operation the daily tagging of n fish

destined to a local auction. We modelled the probability of recapturing a tag (and sample) as the

parameter p of a binomial model with n being the number of fish (and samples) tagged. We

named ptag this probability. In this type of CMR model, the binomial distribution describes the

probability ptag of obtaining X number of tags (and samples) out of the n fish tagged. The daily

sampling is a census of tags where note is made on which ones are recaptured. Therefore,

“recapture” (or binomial success) is defined as the recovery of both tag and sample and “lost”

(or binomial failure) as the non-recapture of tag and sample. As a “sample” we define recapture

of at least i) one sagitta “intact-enough” for ageing, or ii) gonads “intact-enough” for sex

identification and weighing, or iii) gut “intact-enough” for stomach analysis. This last possibility

was rare in our study (3% of recaptures) being included as success for sake of overall model

simplicity. Our main interest was determining an estimate tagp̂ , which we did for Olhão auction
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data, that included the majority of tagging operations and tags placed. We used the additive

properties of binomials to pool tag results from distinct tagging operations at this auction and

estimated the 95% confidence intervals for tagp̂
using the normal approximation (Lindgren,

1993). Because under our sampling design i) no untagged fish is ever recaptured, ii) no

distinction between failure reasons is made (all eventual reasons are pooled within the failure

probability) and iii) no tag shedding occurs (i.e. recapture of samples with no tag code attributed

to them) the daily tagging operations can be considered as having a fixed size (i.e. being closed)

like the binomial model implicitly assumes. Additionally, by using the binomial model and then

pooling daily tagging operations it is also assumed that tags results are independent and that

their probability of recapture remains constant in each tagging operation (Lindgren, 1993).

The goodness of fit of the Olhão CMR binomial model was evaluated by applying our

estimate tagp̂ to the number of tags placed at each tagging operation and subsequently

comparing observed and expected recaptures with a Kolmogorov-Smirnov test. Finally, Chi-

square tests were used to test independence between otolith and gonad recapture frequencies

and assess the independence of each type of sample to fish size. We pooled size categories

into [80, 110[ cm, [110, 150[ cm and [150-180[ cm to increase sample size within each

contingency table cell (Quinn and Keough, 2002). Given the practical interest of providing

separate estimates for the probability of recapturing otoliths ( otop̂ ), gonads ( gonp̂ ) and otoliths

and gonads ( mixp̂ ), we estimated these quantities using a similar procedure. A value of α = 0.05

was used in all statistical tests and results for α = 0.1 also presented where relevant.

3. Results

A total of 378 fish were tagged in 69 tagging operations. Tagging operations took place

between June 2004 and May 2006, and accompanied the setnet landings with 84% of tagging

operations (85% of tags) taking place in June-September. Overall, 72% of tagging operations

(68% of tags) took place at Olhão auction and 20% (28% of tags) at Lagos auction. A mean of

5.5 fish (s.d.=3.8, min=1, max=18) was tagged per tagging operation and either one or two

persons participated in CMR operations depending on number of auctions and number of fish

tagged. The average length and weight of individuals tagged was 127 cm (s.d.=20, min=80,

max=178) and 16.2 kg (s.d.=8.0, min=3.7, max=45.0), respectively.

The result from all tagging operations was 259 tags (and samples) returned (69% of tagged

samples). The tags recaptured represented 239 gonads samples, 177 otolith samples and 166

samples comprising both otoliths and gonads. Only nine tags were returned with just guts

present. Recapture numbers of otolith and gonads followed the size (Figure 3A) and monthly

distribution of tagged fish (Figure 3B). Our aims of obtaining at least 10 otoliths of males and

females per 10 cm size class were fulfilled between 110 cm and 150 cm in females, and

between 100 cm and 140 cm in males, but we obtained at least two otoliths samples on all size

classes above 90 cm. In what concerns reproductive samples (excluding caged individuals),
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over 8 female gonads were collected monthly between June and September (6 in March and

November) and at least 6 male gonads were recaptured in June, August, September and

November (4 in March). Accordingly we obtained at least 2 male and female gonads in every

month we tagged except for April and October (1 male each).
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Figure 3. Distribution of fish tagged (black), fish recaptured (grey), gonad (striped) and otolith (dotted) samples obtained

during 2004-2006 commercial mark-recapture operations according to size class (A) and landing month (B).

The binomial model estimates for the Olhão auction reveal a recapture probability tagp̂ =0.75

(s.e.=0.03, C.I. (95%): 0.69 to 0.80) and a good fit of the binomial model (n, 0.75) in predicting

the number of tags obtained at each day (K-S test: D=0.18, p>0.05, n=50). Contingency table

analyses to recaptured and non-recaptured tags at Olhão did not present significant variation

with fish size (Chi-sq=0.91, d.f.=2, p>0. 05 n=378) (Figure 4).
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Figure 4. Estimates of probabilities of recapture ( tagp̂ ) (and 95% C.I.) per grouped size class (data: Olhão auction

house, 2004-2006 tagging operations; n[080-110[=77; n[100-150[=163; n[150-180[=16).

The recapture frequencies of gonads and otoliths were both independent from fish size

(Chi-sqgon=1.07, d.f.=2, p>0.05; Chi-sqoto=4.95, d.f.=2, 0.05<p<0.1; n=256) (Figure 5). However

there seems to be a slight trend towards lower frequencies of otolith recaptures in fish of smaller

sizes (Figure 5) that may be affected by the slight non-independence of gonad and otolith

recapture frequencies (Chi-sq=3.63, d.f.=1, 0.05<p<0.1) and the low sample size at the largest

class (n[80-110[=56; n[110-150[=121; n[150-180[=14).
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Figure 5. Proportion of recaptured tags presenting otoliths (dotted) and gonads (striped) per grouped size class (data:

Olhão auction house, 2004-2006 tagging operations) (n[080-110[=56; n[100-150[=121; n[150-180[=14).

The Olhão estimates of sample recapture probabilities were otop̂ =0.49, gonp̂ =0.68 and

mixp̂ =0.46. However since there was some evidence for dependence of otolith recaptures from

fish size and for non-independence of otolith and gonads recaptures, estimates otop̂ , gonp̂ and

mixp̂ should be viewed as merely indicative under the currently applied CMR design.
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4. Discussion

In the present study a new market-sampling based methodology, the “commercial mark-

recapture” (CMR) was tested on age and reproductive sampling of the meagre (Argyrosomus

regius), a large valuable fish of Northeast Atlantic waters. Like several other large valuable fish,

adult meagres are: a) long-lived and fecund apex predators, b) an important resource for

regional recreational and commercial fisheries and, c) present significant sampling difficulties

related to scarcity in surveys and high commercial price of biological samples (Quéro and

Vayne, 1987; Hermas, 1995; Quéméner, 2002). In the present study, with the application of

CMR, a first comprehensive set of adult A. regius otoliths and gonads was obtained with

associated costs being restricted to minor advertising, crew wages, and local travel expenses

related to recapturing the samples. The recaptured A. regius samples consisted of 259 fish

samples from 80 cm to 180 cm total length, amounting to 4.2 ton round fish weight. Similar fish

samples, from such a wide size spectrum, would be achieved with great difficulty using

conventional fishery-independent surveys that generally yield limited number of adult specimens

(Quéro and Vayne, 1987). On the other hand, assuming that all these samples had to be bought

at 1st sale, an investment of about 42 000 € would be necessary for regular market-sampling

these ≈250 fish. Such amount would most likely be unavailable to initial studies on this species

unless regional management problems and/or international economic relevance were identified.

The CMR methodology provides an additional possibility of circumventing the problem of

“no funding→ no research→ no funding” and so may prove beneficial to other preliminary

studies of large valuable species such as those on A. regius in other geographical areas.

The results obtained while applying CMR to the commercial circuit of A. regius in Algarve

provide insight into factors that may affect its application to other large valuable fish life history

studies. Underlining the efficiency of CMR in the presented case study was the assurance of

relatively stable recapture rates from fish dressing locations. In the case study presented, the

commercial circuit was simple - mostly developing locally within a ca. 50 km radius from each

auction house - and the fish auction buyers were both the final retailers and the ones

responsible for the fish dressing procedures. CMR can however be adapted to commercial

circuits involving multiple intermediaries, wider spatial distribution of tagged fish, and distinct

fish processing schemes as long as the fish dressing points in the commercial circuit are

identified and agree to cooperate in sample recapture. On the other hand, in the case study

presented, approximately two months of field work were carried out sometimes under high

variability in weekly landings. However, it is possible that, when applied to species with more

regular landings, CMR tagging procedures may become well-integrated within already existent

port-sampling plans of significant fish resources (Commission Regulations CR 1639/2001 and

CR 1581/2004). Several large valuable fish species whose regional studies are currently

plagued by low sample sizes and few resources allocated might benefit from these kinds of

CMR adaptations. Included in such resources are some that have recently been considered

within ICES working groups and whose life history parameters are still scarcely known in some

parts of their distribution range (ICES 2007b, ICES 2007c).
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In the present study, CMR estimates of proportion of tags recaptured (and their standard

errors) were obtained based on a binomial model. The Olhão binomial model presented a good

model fit so the estimated probability of recapture (ptag) seems to be reliable predictor of

recaptures obtained. However, the validity of this model in the CMR context relies on defined

assumptions: a) there are only two possible outcomes to each tag (success or failure); b) the

tags are independent; and c) the tags share the probability of success/failure. Of these, a) is

guaranteed by our case study design. However, a more detailed analysis of b) and c) may

prove beneficial in the context of broader CMR applications more subjected to the need of

obtaining truly representative samples from the landed population:

b) Independence of tags: in our study of Olhão auction, over 25 different dealers were

involved in A. regius buying but it was common practice that a core group of dealers would

make more systematic acquisitions then others. Additionally, some dealers would buy up to

3 fish in a single auction when higher numbers of fish were available and their individual price

was lower. These incidents of clustered tags generate lack of true independence. In a situation

where true independence is required, a more complex model accounting for such buying

behaviour stratification would be necessary to obtain a true random sample of the population,

particularly if dealers were found to actively select for fish size or other fish characteristics.

c) Unequal tag recapture probabilities: unequal probabilities issues in CMR can be divided

into two categories: i) those related to fish and ii) those related to study design. In what

concerns i) fish related probabilities it is known that wild mark-recapture or band-recovery

studies are frequently affected by size or sex-related biases (Williams et al., 2001). Our case

study results indicated that a slight size-related reduction in otolith recapture frequencies may

be present in lower size classes (Figure 5). One explanation for this is that smaller fish heads

are less frequently sliced (the fish being sold whole but gutted) thus inducing lower otolith

recaptures at smaller sizes. Carrying out a study to evaluate this hypothesis would implicate a

study-design that assured independence between otolith and gonad recaptures so that the

effective reduction on otolith recapture probability could be accurately estimated. In what relates

to sex-related biases, they were not tested for because there was no previous knowledge of sex

distribution. As most of the tags were placed out of the reproductive season and A. regius is

sexually monomorphic, sex-related biases in our recapture probabilities estimates should be

minor. However, a more comprehensive analysis of these effects would be necessary if we

were interested in estimating, for example, the sex-ratio of the population (thus requiring extra

certainty on the statistical coverage of our recaptures in relation to the tagged population). In

what concerns ii) study design, CMR ptag estimates may be vulnerable to differences in both

recapture effort and number of tags placed on each tagging operation. In Olhão auction the

maximum number of tags placed per day was 12 (in 4 tagging operations). However, it seems

reasonable that under a higher number of tags the probability of recapture of the last tags of a

tagging operation might change. Amongst other possibilities, this change in probability may

occur due to recapture effort limitations (e.g. with the same personnel sampling not all tags may

be recaptured), due to higher clustering when higher numbers of fish are present at auction (see
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above) or due to higher dealer unwillingness to cooperate (e.g. if tag return demands are

considered excessive by dealers). Again, as long as the un-recaptured group of each tagging

operation is a random sample in terms of the characteristics of interest (e.g. length or sex) this

reduction in individual probabilities of recapture should not implicate significant bias in the

sample obtained.

The major potential of CMR relies on the fact that a fish sample can be accurately matched

to original fish data (length, weight, scales, genetics, etc.) even if recaptured in a distinct

temporal and spatial framework. By doing so, CMR allows larger (and hence more precise)

biological samples to be obtained that could be difficult to obtain otherwise. As seen above,

besides eventual contribution to the knowledge of large fish species whose biology is still

scarcely known, the CMR may be applicable on a wider basis to the study of stocks traditionally

difficult to assess like tuna and billfish (Pilling et al., 2007). If the above mentioned assumptions

of the CMR model can be fulfilled (or their eventual biases quantified) and tagging is done

randomly, the recaptured samples matched to specific areas, gears, or months, will be

representative of the tagged population and hence of landings. If such can be guaranteed,

applicability of the CMR to a broader array of fisheries studies including sex-ratio, age-length

key, and maturity ogive determinations may become feasible, particularly on highly migratory

species whose market-sampling design is, due to necessity, less constrained to the significant

bias introduced by sole landing analysis (Pilling et al., 2007)
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Age determination in meagre Argyrosomus regius

Abstract: The meagre is one of the world’s largest sciaenids but its ecology, fishery, and
population parameters are scarcely known. In the project “Meagre, Argyrosomus regius –
biological data towards management and production of a finfish resource” (DGPA-MARE: 22-
05-01-FDR-00036), the Centro de Oceanografia of FCUL (Portugal) and the Center for
Quantitative Fisheries Ecology of ODU (VA, USA) investigated a set of methodologies to
improve meagre age determination along its distribution range. In this study, we provide
detailed protocols on the use of otolith thin sections and scale acetate imprints in determining
meagre age. For each hard part, we present textual and photographic descriptions of the
collection, preparation, and interpretation procedures, and report on the main difficulties met by
age readers during age interpretations. We also provide details on the calculations involved in
final age assignment to meagre specimens captured on the Portuguese coast. Finally, we
discuss the relative importance of scales and otoliths, and their different preparation methods
in routine meagre age determination and integrate the procedures into existing knowledge on
age determination of other sciaenid species.

Keywords: age determination, growth, meagre, Argyrosomus regius, otoliths, scales.
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1. Introduction

The meagre (Argyrosomus regius, Asso 1801) is one of the world’s largest sciaenids,

attaining over 180 cm in total length and 50 kg in weight (Quéméner, 2002; Costa et al. 2008). It

is a coastal fish (<80 m deep) whose distribution extends from the English Channel to Senegal

(including the Mediterranean Sea and Black Sea). Its largest fisheries take place in Mauritania,

Morocco, and Egypt, which together comprise over 80% of the ca. 10 000 t world annual catch

(Quéméner, 2002; FAO, 2009). In European countries, annual meagre landings are generally

below 500 t and the fish is of secondary importance in national capture production totals (FAO,

2009). Even so, due to its large size, high ex-vessel prices, and high seasonal availability in

inshore and nearshore waters, the meagre constitutes an important target species for many

local small-scale multi-gear multi-species commercial fleets and the recreational sector (Quéro

and Vayne, 1987; Quéméner, 2002; Silva et al., 2002; Prista et al., 2008). This importance is

underscored by the recent development of meagre aquaculture production and by the ecologic

value the species presents as a top marine predator in European coastal waters (Quéro and

Vayne, 1987; Quéméner, 2002; Jiménez et al., 2005). However, to date the biological

characteristics of the meagre have remained scarcely studied worldwide and its fisheries are yet

to be routinely monitored or assessed in African and European waters.

Determinations of fish age are an important step of fisheries research and stock

assessment because age data is a primary input in the estimation of population vital rates like

growth or mortality (e.g., Haddon, 2001). This is particularly so in long lived species where other

methods, e.g., length-based approaches, are difficult to apply (Sparre and Venema, 1998). Until

recently, the age of meagre had only been studied in North African waters where its long-lived

nature was established (maximum age: 15 to 31 years) and its growth first modeled (Tixerant,

1974; Hermas, 1995). However, past research relied on methodologies that were neither

detailed nor validated and that are currently considered outdated for sciaenid age determination

(namely, break-and-burn of otoliths and analysis of fresh scales). In fact, it is now widely

accepted that analysis of otolith thin sections is the most reliable method to determine sciaenid

age (Lowerre-Barbieri et al., 1994; Campana and Jones, 1998; VanderKooy and Guindon-

Tisdel, 2003; Liao et al., 2008) and that, if scales must be used, they should be imprinted prior

to observation to facilitate their interpretation (Matlock et al., 1993; Lowerre-Barbieri et al., 1994;

VanderKooy and Guindon-Tisdel, 2003). Furthermore, it is widely recognized that age

determinations of any fish species should be based on standardized and validated protocols

that assure the validity, replicability and comparability of results across studies and

geographical areas (Campana, 2001; Morison et al., 2005).

Recently, Costa et al. (2008) made a first evaluation of the main biological characteristics

of the meagre captured on the Portuguese coast. Costa et al. report was published in

Portuguese language and so was of limited availability to the international community; however,

it provided the first comprehensive analysis of the meagre growth and age structure in

European waters (e.g., new maximum age: 43 years) and involved the development and

validation of age determination criteria for meagre otolith thin sections. Nevertheless, because
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of the need to focus on the estimation of the biological parameters of the species and discuss

fisheries management and aquaculture production, the authors did not provide a full account of

the age determination protocols they used nor did they detail specifics of meagre otolith

interpretation; they also did not report on subsequent research carried out on the use of scale

acetate imprints to determine meagre age, which may be useful to assess meagre fisheries in

budget-limited situations (Prista et al., 2007).

In this study we provide detailed protocols on the use of otolith thin sections and scale

acetate imprints in meagre age determination. These protocols are the basis of the Costa et al.

(2008) report and present the methodologies currently used to determine the age of meagre on

the Portuguese coast. In the protocols, we provide in-depth detail on the specific procedures

required to collect, prepare and interpret each meagre hard part. Additionally, we report on the

most common difficulties met during meagre age interpretations and provide details and

examples on final age assignment. This work is considered important because it updates and

substantiates past literature on meagre age determination, promoting the training of hard part

readers across several European and North African countries, and contributing to a

standardization of age determination procedures across several fields of research, namely

fisheries, ecology and aquaculture.

2. Materials and Methods

The protocols are based on the observation of meagre otoliths (n = 748) and scales

(n = 362) collected from the Portuguese coast from 2000 to 2007. The sample comprised fish

from both sexes and included at least 10 otoliths and 10 scales from each month. The fish

ranged between 5 cm and 182 cm total length, thus spanning the size range of the species.

Otolith samples comprised at least 10 fish for each 10-cm size class between 0 cm and 180 cm,

fish over 180 cm being less well represented (n = 4). Scale samples comprised at least 10 fish

for each 10-cm size class between 20 cm and 180 cm, fish over 180 cm and fish below 20 cm

being less well represented (n = 3 and n = 6, respectively). More detailed coverage of the

sampling methodologies can be found in Prista et al. (2007) and Costa et al. (2008).

The terminology, methods and protocol structure were based on Pentilla and Dery (1988),

Schwarzhans (1993), Ericksen (1999), Assis (2000), Panfili et al. (2002), VanderKooy and

Guindon-Tisdel (2003) and Liao et al. (2008), with adaptations and additions as required by

meagre specifics. Preparation of the hard parts for observation was carried out according to

section 3.2 and section 4.2. Otolith thin sections were observed at 8–40x magnification on a

Leica MZ-12 stereomicroscope equipped with hand-adjusted light orientation, pointer unit, and

dark-field polarizing filter. Scale imprints were observed on a Bell and Howell R-735 microfiche

reader equipped with 20 mm and 29 mm lenses (20x and 32x magnification, respectively). The

primary criteria established for age interpretation (as well as any references made to the

precision of the age determination methods) resulted from randomized observations of hard-

part preparations. These observations were carried out with knowledge of month of capture but
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without knowledge of any collection detail. Additional interpretation criteria (sections 3.3.5.3 and

4.3.5.3) resulted from observations carried out with knowledge of fish size or after analyzing

size-at-age plots. Finally, in agreement with previous work that established the interpretation of

otolith thin sections as an accurate means of ageing long-lived sciaenids (Campana and Jones,

1998), a joint analysis of 77 otoliths and matching scales was carried out to check and refine the

scale interpretation criteria.

Digital pictures of thin sections (resolution: 150 ppi) were taken at 6.3–25x magnification on

a Leica MZ-6 stereomicroscope equipped with a Leica DFC 280 digital camera using Leica

Image Manager 500. Digital pictures of scales imprints (resolution: 800 ppi) were taken at 9–50x

magnification on a Minolta MS-7000 digital microfilm scanner using IrfanView. Image

processing after capture was carried out in Paint.net and was restricted to left–right flipping,

resizing and rotation, contrast and brightness adjustments, and minor background clean ups.

3. Otolith Protocol

3.1. Collection

The otoliths used for meagre age determination are the sagittae. In meagre, the simplest

method to collect these otoliths involves sawing off the top of the fish head (Figure 1 ). This is

accomplished by making two cuts on the fish head – one longitudinal and one transverse – that

expose the top part of the brain cavity. The cuts may be done with a strong knife (small

specimens) or an electric hand saw (large specimens). The longitudinal cut should run parallel

to the frontal plane of the fish and pass slightly above the eyes; the transverse cut should run

parallel to the transverse plane of the fish and pass near the insertion of the opercula

(Figure 1A ). After this, the top of the head should come off easily and the fish brain should be

exposed (Figure 1B–C). The sagittae are located in the posterior ventrolateral regions of the

brain cavity and can be removed with tweezers (Figure 1D ). The sawing off method is fast and

easy to integrate into schemes involving routine sampling of biometric and reproductive

variables. However, it severely damages the appearance of the fish, thus reducing its

commercial value.

When it is necessary to avoid loss of commercial value, the sagittae are better removed

using less damaging techniques (Figure 2 and Figure 3 ). In meagre, the otic capsules are

located at the base of the skull, underneath the pharyngeal teeth and near the dorsal insertions

of the first gill arches. In smaller meagre, the best way to reach the capsules is through the gill

cavity by pulling the operculum open (Figure 2A ) and making a small anteroposterior incision at

the dorsal insertion of the upper limb of the first branchial arch (Figure 2B ). The incision should

be just enough to loosen the arch without detaching it, leaving the capsule’s surface exposed

(Figure 2C ). Then, a small lid can be carved out of the capsule using a scalpel or a sharp knife

(Figure 2D, 2E) and the otoliths extracted. After the extraction, the bone lid, the gill arches, and

the operculum can be put back in their original positions, leaving the external appearance of the

fish intact for marketing purposes (Figure 2F ).
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Figure 1 – Otolith extraction by sawing off the top of the fish head. See explanation in text.
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Figure 2 – Otolith extraction through the gills (small fish). See explanation in text.
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In larger meagre, the opercula and the gill arches are stiffer, so reaching the otic capsules

without damaging the appearance of the fish becomes increasingly difficult. In such cases the

otic capsules are best reached through the top of the pharynx (Figure 3) than through the top of

the first gill arch (Figure 2 ). This is achieved by making a dorsoventral incision just posterior to

the fifth gill arch (Figure 3A ). The incision should extend from the dorsal to the ventral insertions

of the gill arches, loosening them without detaching them. After that, the gill arches can be lifted

against the operculum and a second cut is made around the upper pharyngeal tooth plates’ to

expose the otic capsules (Figure 3B ). An elliptical bone “lid” may then be carved out of the

capsule’s surface using a strong knife (e.g., an oyster knife) (Figure 3C–D ) and the otoliths

pulled out inside their sacs (Figure 3E ). After the extraction, the bone lid, gill arches, and the

operculum can be put back into position to preserve fish market value (Figure 3F ).

Figure 3 – Otolith extraction through the gills (large fish). See explanation in text

The meagre sagittae are large and robust, weighing up to 14 g each. Consequently, they

can be freely handled without much risk of breaking. Before storage, any remains of adherent

tissue should be removed from the otolith surfaces by scrubbing them with a soft toothbrush
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under running tap water. The clean otoliths can then be left to dry at room temperature for a few

hours and stored in plastic vials.

3.2. Preparation

The meagre otoliths are too thick for direct use in age determination. Consequently, thin

sections have to be obtained before they can be used to determine fish age. In meagre, otolith

thin sections are taken along a specific plane of the otolith body so some familiarization with

otolith’s external morphology is required to carry out the sectioning procedures.

Meagre sagittae present distinct morphological features on their proximal (or inner) and

distal (or outer) sides (Figure 4) . The most conspicuous features are a tadpole shaped sulcus

acusticus on the proximal side (further divided into an anterior ostium and a posterior cauda)

and a conspicuous protuberance termed “umbo” on the distal side1. When observed in proximal

view, left and right sagittae are easy to distinguish: left sagittae present the tip of the cauda to

the right of the observer, and right sagittae present it to his left (Figure 4) .

Figure 4 – External morphology of a right meagre sagitta. The dashed line circumscribes the sulcus acusticus.

To obtain thin sections, meagre otoliths are mounted, partially embedded in a clear

adhesive (e.g., Aremco Crystalbond 509), onto standard microscope slides. For age

determination, it makes no difference which otolith (left or right) is mounted but abnormally

crystallized otoliths should be avoided (section 3.3.5.3) . Otolith embedding in Crystalbond

adhesive requires previous softening of the originally solid adhesive sticks over a hot plate. In

doing this, care should be taken to keep the adhesive temperature just above its softening point

(71ºC) because higher temperatures may crack the otolith surface. Then, a bed of soft

Crystalbond is laid on the glass slide and the otolith is placed, distal side downwards,

embedded into the adhesive. While doing this, it is important to make sure the otolith is in tilted

1 Note: younger meagre present several protuberances instead of a single umbo. These protuberances represent the

internal primordia that in older fish appear fused into a single umbo (see Figure 6).
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position, i.e., both its anterior tip and its umbo should be in contact with the slide (Figure 5A) ,

because this improves section quality (see section 3.3.5.1) . It is also important to make sure

that the adhesive bed completely encompasses the distal side of the otolith (Figure 5A)

because this will confer robustness to the mount and reduce otolith breaking during sectioning.

Crystalbond adhesive takes a few seconds to harden and can be reheated if it is necessary to

readjust otolith position. After embedding, a dorsoventral pencil mark is drawn on the otolith’s

outer face. This marking should be located at one-third the distance between the posterior

margin of the ostium and the anterior margin of the cauda and indicates the sectioning plane

(Figure 5B) .

Figure 5 – Aspects of otolith preparation. A – embedded otolith; B – marked otolith; C – low speed sectioning; D –

overview of sectioned otolith and otolith thin section.

Meagre otoliths should be sectioned on a low speed saw (e.g., a Buehler IsoMet Low

Speed Saw) equipped with a fine-grit diamond-impregnated grinding wheel (e.g., a Norton

3-in diameter 0.006-in thick 1A1 Diamond Grinding Wheel). Given the large size of many

otoliths a “one-blade” saw setup is preferable to a “two-blade + spacer” saw setup. However,

the latter may still be used to provide faster sections of smaller otoliths. Under a “one-blade”

setup, the otolith slide is positioned so that the grinding wheel runs immediately posterior and

parallel to the pencil mark. The saw is then turned on and the otolith is slowly rested on the

wheel for sectioning (Figure 5C) . After a few turns, arm weights (up to 75 g) can be added to

speed up the sectioning. The first cut should stop when the wheel hits the adhesive bed. At that

time the arm is adjusted approximately 0.5 mm in anterior direction and the second cut is

performed. When the second cut finishes the thin section is ready and can be removed from the

adhesive after slight reheating of the glass slide (Figure 5D) . Overall, the preparation of meagre

thin sections may take between 5 and 90 minutes depending on the otolith size and the saw

speed and arm loads being used.

Thin sections of meagre otoliths are relatively robust and can be freely handled with

tweezers without risk of breaking. Before final mounting, the sections should be cleansed in tap
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water and any remnants of Crystalbond adhesive should be removed. In general, no further

preparation (e.g., polishing, baking or staining) is required. However, at this stage it is important

to check the quality of the sections, making sure it is not necessary to perform additional cuts

(see section 3.3.5.1. ). Final section mounting is carried out on clean microscope slides using,

e.g., Lerner Laboratories Flo-Texx mounting medium. Flo-Texx requires no cover slip and

improves section’s visual appearance while preserving it for long-term use. When Flo-Texx is

dry (≈12 hours), the glass slides can be labeled with a diamond scribing pen and stored into

their final slide boxes.

3.3. Reading

Fish age determination from otolith thin sections requires the interpretation (or reading) of

specific patterns occurring on section’s surface. This interpretation requires specific equipment

and knowledge of section morphology (section 3.3.1) and involves three main steps: annuli

interpretation and count (section 3.3.2 ), evaluation of the marginal increment (section 3.3.3 )

and data logging (section 3.3.4) . Similar to other fish species, knowledge and training on

specific difficulties of the meagre thin sections will improve the quality of final readings (section

3.3.5) and ultimately lead to better age determinations.

3.3.1. Equipment and terminology

Meagre otolith thin sections should be read on a stereomicroscope under transmitted light.

Under such circumstances, opaque structures will appear dark while translucent structures will

appear bright. In general, meagre sections are read under low magnification (8–10x), but higher

magnifications (20–40x) may be required to evaluate some specific features. As illumination

greatly influences the final perception readers get from a thin section, a microscope base that

allows manual control of the intensity and orientation of the light source is to be preferred (see

section 3.3.5.2) . Additionally, whenever possible, the stereomicroscope should also be

equipped with a pointer unit (that eases the interpretation of older sections) and a dark-field

polarizing filter (which enhances the contrast and improves overall image appearance).

The meagre otolith sections present several internal morphological features which

knowledge is required during the readings. Each section can be broadly divided into two main

regions: a distal region (that presents several outgrowths) and a proximal region (that presents

a conspicuous opaque / translucent banding). These two regions are separated at a

proximodistal interface that runs across the section in dorsoventral direction (Figure 6).
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Figure 6 – Regions of the meagre otolith thin section. D – dorsal subregion; S – sulcal subregion; V – ventral subregion.

The proximodistal interface is indicated by a white dashed line. Scale bars=1 mm, 8x.

The distal region mainly evidences the internal structure of the umbo (Figure 4 ). Its main

feature is a set of accessory primordia that appear as dark outgrowths extending away from the

proximodistal interface in distal direction (Figure 7) . In younger fish (less than 3 years old), the

primordia are well separated so the distal edge of the section appears bumpy. However, at

older ages the primordia appear fused and encompassed by a continuous overgrowth that

makes the distal edge appear smooth (Figure 4, Figure 7) . Overall, the usefulness of the distal

region of the section for age determination is low compared to the proximal region. However, at

lower magnifications, opaque bands can be observed that span continuously across the

primordia and that are related to the banded pattern observed in the proximal region. The most

central of these distal bands are sometimes useful to corroborate age interpretations made in

the proximal region of the section.

Figure 7 – Internal morphology of the meagre otolith thin section. Scale bars=1 mm, 8x.

The proximal region of the meagre otolith presents three main morphological features: the

sulcal groove, the sulcal edges, and the core (Figure 7) . The sulcal groove is located in slightly

dorsal position along the proximal edge of the section, and shows the concave profile of the
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otolith cauda (Figure 4) . The sulcal edges are two intersecting dark lines that prolong the sulcal

groove internally into the proximodistal interface. The core is defined by the intersection of the

proximodistal interface and the sulcal edges, and constitutes the region around which the otolith

grew. Overall, sulcal groove, sulcal edges, and core constitute the base, legs, and top vertex of

an upside-down isosceles triangle that divides the proximal region into three subregions: dorsal,

sulcal, and ventral (Figure 6) . Contrary to the distal part of the section, very conspicuous

opaque / translucent bands can be observed throughout the entire proximal region of the

section. It is the interpretation of these bands that constitutes the heart of the meagre age

determination process.

3.3.2. Annuli interpretation and count

Determination of fish age from otolith thin sections relies on the interpretation and count of

opaque bands that are assumed to form annually at a specific season. These annual opaque

bands are termed “annuli” (singular: annulus). The annuli of meagre otolith sections are

relatively easy to identify under transmitted light: they are visible in the proximal region, even at

low magnification, as continuous concentric opaque (dark) bands that are separated by more

translucent (bright) bands. In meagre, annuli exhibit a markedly conspicuous and parallel

structure showing up convex in the ventral subregion, concave in the sulcal subregion, and

concave to straight in the dorsal subregion. Frequently, central annuli (up to the fifth or sixth

from the core) can also be traced across the primordia of the distal region but this becomes

increasingly difficult in the peripheral annuli of older specimens.

Adequate interpretation of annuli for purposes of age determination requires the distinction

between opaque bands that form annually at a specific season (or “true annuli”) and other

opaque bands that may not be laid at annual frequency or that simply should be ignored during

age determination (broadly termed “false annuli”). In general, the true annuli of meagre sections

are strongly opaque and well-separated by translucent bands throughout the entire section

which makes them relatively easy to discriminate. Conversely, false annuli appear as thin

inconspicuous opaque bands that either cannot be discriminated throughout the whole proximal

area or are suspiciously close to nearby true annuli. In meagre otolith thin sections, false annuli

are rare. Consequently precise readings can generally be obtained by any reader that has

previously trained with the sections and that is aware of some specifics of their interpretation

(see section 3.3.5 ).

In meagre, true annuli (hereafter termed annuli for sake of simplicity) are counted in

outward direction from the core to the proximal margin along four predefined axes: the sulcal

groove axis (located in the middle of the sulcal subregion), the sulcal edge axis (located along

the ventral side of the ventral sulcal edge), the midventral axis (located near the middle of the

ventral subregion) and the ventral interface axis (located in the ventral subregion along the

proximal side of the proximodistal interface) (Figure 8) . Counts are occasionally performed
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along the dorsal interface axis (located on the dorsal subregion, along the proximal side of the

proximodistal interface) but essentially to corroborate readings obtained on other axes

(Figure 8) . The sulcal edge axis is generally found the most useful axis to count meagre annuli.

However, annuli should be routinely examined on all axes before a final annuli count is

assigned to the specimen (see section 3.3.5 ). In doing this, it is useful to have a pointer unit

coupled to the stereomicroscope because it eases the tracing of the putative annuli across the

different axes and facilitates the counting of the numerous annuli of older meagre. Some

examples of final meagre annuli counts are shown in Figures 9 and 10 .

Figure 8 – Axes of the otolith section where the annuli are counted. Scale bars=1 mm, 8x

Figure 9 – Annuli counts in younger meagre. A – 0 annulus; B – 1 annulus; C – 2 annuli; D – 3 annuli. The white dots

along the sulcal edge axis indicate the annuli. Scale bars=1 mm, 20x (A), 12.5x (B), 10x (C), 12.5x (D).
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Figure 10 – Annuli counts in older meagre. A – 14 annuli; B – 36 annuli. The white dots along the sulcal edge axis

indicate the annuli. Scale bars=1 mm, 6.3x.

3.3.3. Marginal increment analysis

The marginal increment (MI) is the distance between the last annulus and the margin of the

otolith. It corresponds to the otolith growth that took place between the time of the deposition of

the last annulus and the time of fish capture. In routine age determinations, the marginal

increments of the sections are evaluated qualitatively, but if necessary, corroboratory

measurements may be taken along the sulcal edge axis. The following categorical scale is

suggested for rapid evaluation of the marginal increment of the meagre otolith thin

sections (Figure 11) :

Type I – An annulus is clearly observable along the margin of all reading axes. No

translucent marginal increment is observed or, if so, it is inconspicuous (Figure 11A) .

Type II – A narrow translucent marginal increment is observed between the last annulus

and the otolith margin (Figure 11B) . The width of the marginal increment is generally <50%
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the width of the last annual increment (LAI), i.e., <50% the distance between the last

annulus and the previous one.

Type III – A wide translucent marginal increment is visible between the last annulus and the

margin (Figure 11C–D) . It is expected that a new annulus will form soon. The beginnings of

this new annulus may be visible along some reading axes but, if so, are inconspicuous. The

width of the marginal increment is generally >50% the width of the last annual increment.

Figure 11 – Marginal increment analysis of meagre otoliths. A – type I margin; B – type II margin; C – type III margin;

D – Measurements. The white dots indicate the annuli. Figure D displays the measurement axis (dashed line), the

marginal increment (MI), and the last annual increment (LAI). Scale bars = 1 mm, 25x.

3.3.4. Data collection and data logging

During routine age determinations, meagre otolith sections should be read in random order

without knowledge of fish size. Providing readers with knowledge of month of capture is optional

but will prevent unnecessary mistakes in marginal increment evaluations2. Data from otolith

readings can be entered into tables similar to Table 1 . During the readings, the “Age notation”

column is commonly filled immediately according to section 5.1 . Notes should always be kept

on doubtful section interpretations.

2 Note: knowledge of month of capture should not be provided to readers if the periodicity and season of annulus

deposition are being established at the same time as the age readings are done.
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Table 1 – Example of datasheet for logging otolith readings. Boldface indicates information available to reader. Italics

indicate the data entered during hypothetical readings. The “Age notation” column is filled according to section 5.1

Specimen
Month of
capture Annuli count Margin type Age notation Notes

036 8 4 II 4+4

198 2 18 III 18+19

… … … …

075 6 9 I 9 (9)

3.3.5. Difficulties in annuli interpretation

Compared to some other fish species, the annuli of well-prepared meagre thin sections are

clearly distinguishable against a well-lit background and therefore relatively easy to interpret.

Also, false annuli are rare and, when present, they can generally be readily distinguished from

true annuli based on aspects such as opacity, width, or continuity (see section 3.3.2 ).

Consequently, otolith readings tend to be precise even when older fish are included in the

sample. Even so, practice shows that substantial improvements to the accuracy and precision

of the final age determinations are be achieved with increased staff awareness and training on

specific aspects of the meagre thin sections. Three main aspects should be considered in that

training: a) preparation-related issues (section 3.3.5.1 ), b) observation-related issues (section

3.3.5.2), and c) more meagre-specific issues (section 3.3.5.3 ).

3.3.5.1 Preparation-related issues

Well-prepared sections are fundamental for accurate and precise readings. Consequently,

it is important to check the quality of the thin sections before mounting them into their final glass

slides. A well-prepared thin section is interpretable along all reading axes and presents clearly

outlined annuli and a sulcal subregion that accurately defines the otolith core (Figure 9,

Figure 10 ). Common preparation-related imperfections found in meagre thin sections are a)

excessive opacity or brightness, b) the presence of an ill-defined core, and/or c) the presence of

an ostium blotch:

a) Excessive opacity or brightness: Excessive opacity and excessive brightness impair

annuli identification by making it difficult to distinguish between opaque and translucent

bands. Excessive opacity occurs when meagre thin sections are cut wider than 0.5 mm

and to correct it the section must be polished until a ≈0.5 mm width is attained. Most

frequently, the grinding can be done manually over a flat surface using, e.g., 3 µm

Buehler Fibrmet discs. Conversely, excessive brightness occurs when meagre thin
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sections are cut narrower than 0.5 mm. Excessive brightness is rarer than excessive

opacity because narrow sections often break during sectioning. To solve it a new thicker

section must be made. In doing it, care should be taken not to obtain a section that

presents other ill-preparation issues such as an ill-defined core or a large ostium blotch.

b) Ill-defined core: The presence of an ill-defined core usually impairs the identification of

more central annuli of the section. This is particularly the case of the first and the

second annulus which are located nearer to the core. Two types of core ill-definition

may take place: a “blunt sulcal tip” (i.e., the sulcal vertex appears rounded instead of

sharp and ends before the proximodistal interface) or a “tornado sulcal tip” (i.e., the

sulcal vertex appears twisted in ventral direction and does not directly intercept the

proximodistal interface) (Figure 12) . In general, only one type of ill-definition will be

found in a section and most frequently, it will be detectable only on one of its sides.

When so, the section can be mounted with the best-prepared side facing upwards as

reliable interpretations can still be drawn from it. However, if that is not the case, core ill-

definition is indicative that the sectioning took place at a wrong location of the otolith

surface (Figure 5B ) and a new section must be prepared. In doing this, evidence may

be gathered from the ill-prepared section that will help determine the position of the new

section: if a “blunt sulcal tip” was present, the new section should be taken further away

from the ostium (i.e., closer to posterior edge of the otolith); if a “tornado sulcal tip” was

present, the new section should be taken closer to the ostium (i.e., closer to anterior

edge of the otolith).

c) Ostium blotch: A common problem found in meagre thin sections is the presence of a

broad dark blotch in the ventral subregion (Figure 12 ). The blotch is caused by the

section cutting across the internal extension of the ostium, a region that presents

different light transmission properties from adjoining areas. Most frequently, the

presence of this blotch impairs age interpretations along the sulcal edge and midventral

axes, but the extent of this impairment generally depends on the effective position and

tilt of the sectioning plane. There are two possible causes for the ostium blotch: it may

be caused by insufficient tilting of the otolith when originally embedded in Crystalbond

(Figure 5A ) or it may result from the pencil marking having been misplaced on the

otolith surface (Figure 5B ). When the former happens, and readings are judged to be

severely impaired, it is necessary to prepare the other sagitta. When the latter happens,

the blotch is generally found associated to a “blunt sulcal tip” (Figure 12 ) and a new

section, taken from a slightly posterior position, is generally sufficient to improve

readability (see “ill-defined core”).
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Figure 12 – Quality checking of otolith thin sections. A – blunt sulcal tip and ostium blotch; B – tornado sulcal tip; C –
well-prepared otolith section. Inset drawings show the position of the tip relative to interface. Scale bars = 1 mm, 12.5x
(A), 10x (B), 12.5x (C).

3.3.5.2 Observation-related issues

Two main observation-related issues must be considered when reading meagre otolith thin

sections: parallax errors and issues related to the orientation of the transmitted light. Both these

issues impact the readability of the sections by changing the final image that readers observe

through the stereomicroscope lens. To prevent or ameliorate them it is important to include

specific practices into the reading routines.

Parallax errors: The 0.5 mm thickness of meagre otolith sections is important to obtain

nicely contrasted annuli but it also makes annuli counts more susceptible to parallax errors.

Parallax errors occur because a reader observes a section as combination of three-dimensional

details that are present across the section’s width and not just the details present on the

section’s upper surface. As a consequence, the image obtained from the section is highly

dependent on the observation angle and so are the annuli counts and the marginal increment

evaluations made. In fact, when readings are done at directions not parallel to the width of the

annuli, the latter tend to look wider than they really are and may even appear fused to adjoining

annuli. Additionally, it is also common that marginal increment evaluations done at directions

that are oblique to otolith surface become confounded by the margins’ own width, revealing an

opaque margin when in fact the margin is translucent. To avoid these types of parallax errors,

readers must search for a reading plane that is as parallel as possible to the plane of the annuli
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and to the plane of the margin before performing the final annuli counts and marginal

evaluations. That plane is section-specific and very dependent on the exact tilt and positioning

of the sectioning plane. Consequently, the best way to find it requires readers to observe each

section tilted at different angles while looking for the orientation that provides them with the

narrower annuli, wider interannuli spaces, and the narrower otolith margin.

Transmitted-light orientation: Transmitted-light microscope bases may provide for a fixed-

light orientation or allow for hand-adjusted control of light orientation. Different light orientations

provide for different directions from which the light waves interact with the three-dimensional

structure of the otolith sections. These different directions can change the reader’s perception of

the section by, e.g., making annuli less apparent or providing emphasis to false annuli, and

consequently interfere with age interpretation. Because of this, it is preferable to read meagre

otolith sections on a microscope base that allows for hand-adjusted control of light orientation

since this will allow readers to obtain crispier images. Additionally, it is also advantageous to

have a dark-field polarizing filter attached to the stereomicroscope objective. Dark-field

polarizing filters confer a dark appearance to the bright background of transmitted-light

observations, substantially reducing glare and enhancing the image contrast, thus enhancing

overall section readability (Figure 13 ).

Figure 13 – Effect of dark-field polarization on otolith section readability. A – without filter; B – with filter (a Nikon dark-

field polarizing filter was used). Scale bars = 1 mm, 30x.

3.3.5.3 Other issues

Three types of difficulties are generally reported by readers when they are first introduced

to meagre otolith thin sections: a) difficulties in the identification of the first annulus, b)

difficulties related to annulus splitting, and c) difficulties related to abnormal otolith crystallization:

a) Difficulties in first annulus identification: To the less experienced reader, the

identification of the first annulus is the main difficulty met when interpreting meagre

sections. In many specimens the first annulus is difficult to discriminate along the sulcal

groove axis because it is close to the core and appears masked by the filamentous

appearance of the sulcal subregion. Often, this is not a major difficulty because the
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annulus will still show up sufficiently opaque and distant from the proximodistal interface

along the remaining axes to be clearly outlined (e.g., Figure 9) . However, cases exist

where first annulus identification remains troublesome along the remaining axes. When

this happens, three main issues are found to be the cause:

- Annulus “brightness”: In some specimens, the first annulus appears brighter than

usual and presents little contrast to adjacent translucent bands (Figure 14) . Usually,

this happens along the sulcal edge axis or midventral axis, and is particularly

noticeable when an ostium blotch, even of small size, is present near the core (see

section 3.3.5.1) . In these cases, to verify if an annulus effectively exists near the

core, the ventral interface axis should be examined: if present, the annulus will

show up as a strongly opaque bend backwards that penetrates the distal region; if

not, the bend will not be observed and the annulus should be searched for farther

away from the otolith core (Figure 14) .

Figure 14 – First annulus “brightness”. The white dot indicates the first annulus. The white arrow

indicates the bend of the annulus towards the distal region. Scale bars = 1 mm, 12.5x (left), 20x (right).

- Annulus “rippling”: In some specimens, a set of concentric opaque “ripples” occurs

near the otolith core which causes the first annulus to be mistaken as several

distinct annuli (Figure 15) . In most such cases, the first annulus will remain clearly

identifiable along the ventral interface axis and readings can proceed. However,

even if not, practice shows that the first annulus can be confidently assigned to the

entire set of ripples and that regular counts should be resumed at the second

annulus.
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Figure 15 – First annulus rippling. The white dot indicates the first annulus. The white arrows indicate

the ripples. Scale bars = 1 mm, 8x (left), 20x (right).

- “Dent”: In some specimens, a dark mark similar to a dent occurs near the otolith

core. To inexperienced readers this dent resembles a very early first annulus

(Figure 16) . However, the dent results from sectioning imperfections generated at

the interception of the sectioning plane with the internal structure of the ostium.

Consequently, it should not be counted as the first annulus and readers should look

farther away from the core for better evidence of this annulus.

Figure 16 – Dent. The white dot indicates the first annulus. The white arrow indicates the dent.

Scale bars = 1 mm, 10x (left), 25x (right).

b) Difficulties due to annulus splitting: In meagre, split annuli are relatively frequent

between the third and the ninth annulus (Figure 17 ). Annuli are generally found to split

into two distinct branches near the ventral sulcal edge. The two branches then run

parallel to each other – separated only by a thin translucent band – throughout the

ventral subregion and rejoin only near the ventral interface axis. Because annulus

splitting does not usually extend to all reading axes, it is generally detected when annuli

counts from different axes are compared. However, to completely resolve the issue,

readers should trace down the branches of each putative split annulus to check if they

effectively rejoin at the ventral interface axis. In doing this, it is particularly

advantageous to have the stereomicroscope equipped with a pointer unit because this

will ease the tracking down of the split branches across the large ventral subregion.
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Once all split annuli have been identified, readers should obtain the final counts by

doing some “jumping around” between the different axes, i.e., by counting each annulus

at the axis (or axes) where the annulus was not observed to split.

Figure 17 – Annulus splitting. The white dots indicate regular annuli. The white arrows indicate four annuli

that split near the ventral sulcal edge. Scale bars = 1 mm, 6.3x (left), 20x (right).

c) Abnormal otolith crystallization: Some meagre otoliths evidence abnormal crystallization

in one (or both) of the otoliths. Abnormal crystallization is caused by major

crystallization of calcium carbonate as vaterite crystals (instead of the usual aragonite

crystals) and results in otoliths that are lighter than usual, externally very irregular, and

internally very translucent (Figure 18 ). When abnormal crystallization occurs, it

generally extends from a specific point in the interior of the section all the way to its

periphery, and it is clearly noticeable on the otolith surface (Figure 18A ). To circumvent

it, it is advisable to select for sectioning the normal (or the less impacted) sagitta.

However, if necessary, an attempt may still be made at sectioning abnormal otoliths

because their annuli are generally still interpretable along some of the reading axes

(Figure 18B ). When sectioning abnormally crystallized otoliths, lower saw speeds and

lighter arm loads should be used because the otoliths are brittle and break easily if too

much pressure is exerted on them.

Figure 18 – Abnormal crystallization in meagre otoliths. A – whole otolith;

B – otolith section. A and B were taken from different fish. Scale bars = 5 mm (A), 1 mm (B), 6.3x (B).
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4. Scale Protocol

4.1. Collection

Meagre scales are generally collected from the left side of the fish from the region located

between the first dorsal fin and the lateral line (Figure 19) . In general, 10 to 15 scales are

collected from each fish. In meagre, the scales are tightly embedded in the dermis so they are

not easy to release from the fish body. The simplest method to collect scales involves rubbing a

knife over the skin surface, in successive posterior to anterior movements, while exerting

pressure to insert its blade underneath the scales. This method releases many scales, making

them “jump” out of the skin, but also damages the external appearance of the fish. In many

cases, the latter has to be avoided because specimens will enter the commercial circuit. When

so, scales should be collected one-by-one with tweezers (Figure 19) . Collecting scales with

tweezers takes more time but causes no loss of commercial value because the fish skin can be

brought back to its original appearance with a gentle rub in posterior direction.

Figure 19 – Aspects of the collection of meagre scales. The shaded rectangle indicates the area of collection.

During field sampling, meagre scales are commonly put inside labeled paper envelopes

without much cleaning. Back in the lab, they should be cleaned before being stored. For this,

scales are first immersed in water for a few minutes to soften and separate and then rubbed

individually between the thumb and the index finger to remove dirt and adherent tissues. If

necessary, a soft toothbrush may be used but excessive pressure should be avoided because it

will scratch the scale surface. Once clean, meagre scales may be left to dry at room

temperature until stored into their final paper envelopes.

4.2. Preparation

Meagre scales are frequently too thick to be directly evaluated under a stereomicroscope

or microfiche reader. Consequently, their external surface should be imprinted into acetate

slides before readings take place. Before imprinting, some preliminary sorting and selection of

scales is generally required. In sorting and selection, preference should be given to scales that
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present continuous margins and a roughly similar shape and size. Rectangular scales, slightly

wider than longer, are common in the collection area and among the easiest to interpret.

However, most importantly, the scales selected for imprinting must not present signs of

regeneration (Figure 20) . In general, regenerated scales can be distinguished from

nonregenerated scales before being pressed on the basis of their extreme flexibility and their

inconsistent microstructure when observed under a common lens. Flexibility and microstructure

are, however, hard to evaluate in smaller scales or when regenerated portion is small.

Consequently, besides careful sorting, it is good practice to always imprint a larger number of

scales than the number necessary to determine the fish age (3–5 scales) as this will ensure that

enough nonregenerated scales are present on the final slides.

Figure 20 – Scale regeneration. A – nonregenerated scale, B – regenerated scale (same fish). Scales were imprinted

into acetate slides. Scale bars = 1 mm, 50x.

Meagre scales may be imprinted onto transparent cellulose acetate slides (25 mm x 75 mm

x 0.5 mm) using a heated press (e.g., a Carver Laboratory Heated Press Model C) (Figure 21A) .

Scales of older fish tend to be large and thick and consequently require larger and thicker

acetate slides to be imprinted (e.g., 30 mm x 75 mm x 1 mm). In general, between 2 and 10

scales can be imprinted on each slide and between 1 and 4 acetate slides can be pressed at

each press operation. Before pressing, the scales should be aligned with their external side (i.e.,

the side that appears rougher and less reflective to light) kept in contact with the acetate slide

(Figure 21B) . Then, the slides are inserted between a pair of portable platens and

transparency-film coverslips and put to press (Figure 21C ). Under such a setup, the standard

conditions for pressing meagre scales involve pressing for 7 min., at a pressure of 109.5 MPa,

and temperature of 75°C. However, slight adjustments to time, pressure, and temperature may

be required to achieve adequate imprints across the entire thickness range of the meagre

scales (see section 4.3.5.1 ).



CHAPTER 4

96

Figure 21 – Aspects of scale preparation. A – Carver Laboratory Heated Press Model C; B – meagre scales ready to be

pressed (photo courtesy of Christina Morgan); C – pressing setup; D – meagre scale imprints ready for storage.

After pressing, meagre scales are generally found adhered to the acetate slide. Gentle pulls

with tweezers can be used to release them as long as care is taken not to scratch the imprint

with the tweezers’ tips. Then, before storage, it is good practice to perform a preliminary quality

check on the imprints to guarantee that all scales have been adequately pressed (see section

4.3.5.1). At this time, if necessary, new scales can be readily imprinted and future delays

avoided. However, because previously pressed scales tend to be brittle, curved up, and/or

cracked, a new set of scales must be prepared. When imprint quality is found appropriate, final

scale slides are labeled with a permanent marker and stored inside microscope slide boxes until

readings are done (Figure 21D ).

4.3. Reading

Age determination from fish scales involves the interpretation (or reading) of a set of

markings on the scale surface that are faithfully depicted on the acetate imprints. Interpreting

those markings requires specific equipment and knowledge of scale morphology (section 4.3.1)

and involves three main steps: the interpretation and counting of annuli (section 4.3.2), an

evaluation of the marginal increment (section 4.3.3) and data logging (section 4.3.4) . Meagre

scales, particularly from older fish, are difficult to interpret even to experienced readers.

Consequently, adequate scale collection and preparation, and full awareness and training on

specific patterns and details of the meagre scales, are fundamental to the age determination

process (section 4.3.5 ).

4.3.1. Equipment and terminology

Acetate imprints of meagre scales are read on a microfiche reader. Common microfiche

readers work on transmitted light and the acetate imprints show up inverted on a screen.

Because the meagre scales exhibit a large variability in size, the microfiche reader should be
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equipped with lenses that provide for somewhat different magnifications in the range of 10x to

30x.

Well-prepared acetate imprints faithfully depict the morphology of the external surface of

the scales. When an imprint is observed at low magnification, the thicker areas of the original

scale (namely its center portion) appear darker and the thinner areas (namely its periphery and

margins) appear brighter. At higher magnification, the crests and ridges of the original scale

appear as dark lines, whereas the grooves show up as bright lines. In the body region where

samples are collected, the scales are ctenoid and their margins show up undulated (anterior

margin), straight (lateral margins), and prickly (posterior margin). Four main regions can be

defined on the scale surface – a “posterior field”, two “lateral fields” (dorsal and ventral) and an

“anterior field” (Figure 22) .

Figure 22 – Morphology of the meagre scale. The anteroposterior interface is indicated by a white dashed line.

Scale bars = 1 mm, 40x.

The posterior field presents a spiny appearance and corresponds to the part of the scale

that is directly exposed to the environment. This field is separated from the remaining fields of

the scale by an interface (the “anteroposterior interface”) that broadly divides the scale into a

posterior region and anterior region (Figure 22) . The spiny appearance of the posterior field

results from long segmented tube-like structures (the “ctenii”) that extend from the interface to

the posterior margin of the scale (Figure 23) .

The lateral and anterior fields are both located in the anterior region of the scale. Both

fields exhibit a markedly parallel appearance and correspond to parts of the scale that, while in

the fish body, are largely concealed underneath neighboring scales. The lateral and anterior

fields present thin concentric ridges (the “circuli”) which run from one lateral field to the next

across the anterior field. In meagre, all circuli are centered in the same region (the “focus”) that

is located in medial position near the anteroposterior interface (Figure 23) . Even so, the
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appearance of circuli changes drastically from the lateral to the anterior fields: in the lateral

fields, circuli run in anteroposterior direction and are continuous; in contrast, in the anterior field,

circuli run in dorsoventral direction and are divided into numerous segments (the “platelets”) by

a set of radial grooves that stem outwards from the focus towards the anterior margin (the “radii”)

(Figure 23) . For simplicity of this protocol, we termed the part of a circulus that appears

segmented on the anterior field as “segmented circulus” and its nonsegmented part, located

along each lateral field, as “continuous circulus” (Figure 23) .

Figure 23 – Morphology of the meagre scale. Each segment of a “segmented circulus” is termed a “platelet”.

Scale bars = 1 mm (main figure), 0.1 mm (details), 40x (all).

4.3.2. Annuli interpretation and count

The use of scales in age determination relies on the interpretation and count of specific

scale markings that are assumed to form at annual intervals (termed “annuli”). Ctenoid scale

annuli are relatively narrow continuous concentric bands that extend across the lateral and

anterior fields of the scale. In meagre, scale annuli encompass small groups of homogenous-

looking circuli that can be discriminated from adjoining, closely-resembling, nonannulus circuli

using specific structural criteria (termed “primary criteria”). The primary criteria used to identify
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annuli in meagre scales are: a) circuli “disruption”, b) circuli “straightening out”, and c) circuli

“compaction” (Figure 24) 3:

a) Circuli “disruption”: The vast majority of continuous circuli do not suffer any significant

interruption. However, the continuous circuli that belong to an annulus present

disruptions to their continuity which resemble small strings, or aggregations, of white

spaces within the continuous parallel pattern of the lateral fields (Figure 24A) .

Figure 24 – Aspects of primary criteria used in annuli interpretation. White arrows in central picture indicate

annuli position. White arrows in lateral pictures indicate disruption (A), straightening out (B) and compaction

(C). Scale bars = 1 mm (main figure), 0.1 mm (details), 40x (all).

b) Circuli “straightening out”: The vast majority of segmented circuli are composed of

concave platelets. However, at an annulus, the platelets of one or more circuli become

straight (or, in older fish, highly irregular) instead of concave, which causes the annulus

to resemble a string of whitish nodules extending across the anterior field (Figure 24B) .

c) Circuli “compaction”: At an annulus, both continuous and segmented circuli appear

more compact than in adjoining areas due to a reduction in inter-circuli distances. In the

lateral fields, this compaction is generally noticed as a band of continuous circuli that

looks somewhat darker and more compact than the surroundings areas (Figure 24C) .

In the anterior field, circuli compaction generally takes place immediately before and / or

after the straigtening out of segmented circuli and also provides a contrasting darker

appearance to the annulus region when compared with adjacent regions (Figure 24B) .

3 Note: the meagre “circuli disruption” and “circuli straightening out” bear some resemblance to the “cutting over” marks

(also known as “crossing over” marks) observed in, e.g., summer flounder and striped bass scales (Pentilla and

Dery, 1988; Liao et al., 2008).
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In meagre scales, a group of circuli is considered an annulus when it matches all primary

criteria and can be traced throughout the lateral and anterior fields of the scale. If these two

characteristics (criteria match and traceability) are not met, then the group of circuli belongs to

an interannuli region or to some other type of distinct scale feature that should be ignored for

effects of age determination (broadly termed “false annulus”). In meagre scales, false annuli are

relatively frequent but can generally be distinguished from true annuli because they match only

one criterion and they cannot be traced throughout the anterior regions of the scale. However,

despite their apparent objectivity, the use of primary criteria and traceability to identify scale

annuli is not always clear-cut. The reason for this is that some criteria are easier to observe in

some parts of the scale (or in some annuli) than others. That is the case of, e.g., circuli

compaction (that is sometimes easier to verify in the lateral fields than in the anterior field) and

circuli disruption (which is more evident in central annuli than in peripheral ones). To circumvent

these and other annuli identification difficulties, it is generally acceptable to extend the annulus

definition to any group of circuli that meets, at least, two primary criteria while remaining

traceable throughout the scale. However, should this broader definition be used and annulus

identification must be supplemented with a few corroboratory criteria to reduce the increased

risks of assigning true annuli to false annuli (see section 4.3.5.3).

In meagre scales, annuli are counted from the focus to the periphery along specific axes

(Figure 25) . Because some criteria are more observable along some reading axes than along

other, some “jumping around” between different axes may be necessary as counts proceed,

particularly in older scales. In general, the anteroposterior axis and the two anterolateral axes

are the most useful to count meagre annuli, but the final count of each scale should be based

on a consensus among the counts obtained on the different axes. Finally, the annuli count of

each specimen is based on a consensus among the counts attained in at least three scales

among the several imprinted for that particular fish. In the selection of the latter set of scales, it

is important to exclude regenerated scales (because they may not show all annuli) and scales

which counts differ markedly from the remaining (because they may have originated from

different fish) (see section 4.3.5.1) .
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Figure 25 – Axes of the meagre scale where the annuli are counted. Scale bars = 1 mm, 40x.

Some examples of final annuli counts in meagre scales are shown in Figures 26 and 27 .

Figure 26 – Annuli counts in younger meagre. A – 0 annulus; B – 1 annulus; C – 2 annuli; D – 3 annuli. The white dots

along the anterodorsal axis indicate the annuli. Scale bars=1 mm, 50x (A), 50x (B), 25x (C), 30x (D).
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Figure 27 – Annuli counts in older meagre. A – 9 annuli; B – 13 annuli. The white dots along the anterodorsal axis

indicate the annuli. Scale bars=1 mm, 11x (A), 9x (B).

4.3.3. Marginal increment analysis

The marginal increment (MI) is the distance between the last annulus and the margin of the

scale. It corresponds to the scale growth that took place between the time of the deposition of

the last annulus and the time of fish capture. In routine age determination, the marginal

increment of meagre scales is evaluated qualitatively, but if necessary corroboratory

measurements may be taken along the anteroposterior axis. The following categorical scale is

suggested for evaluating the marginal increment of the meagre scales (Figure 28) 4:

Type I – the last annulus is located at the scale margin or very near to it. It is not expected

that a new annulus will form soon. The marginal increment is <25% the width of the last

annual increment (LAI), i.e., <25% the distance between the last annulus and the previous

one.

Type II – the last annulus is located relatively distant to the margin. The marginal increment

width is 25%–75% of the last annual increment width.

Type III – the last annulus is located very distant to the margin. It is expected that a new

annulus will form soon. The marginal increment width is >50% of the last annual increment

width.

4 Note: in this classification, the overlapping percentages of type II and type III margins reflect some inherent difficulties

of meagre scale interpretation in the Portuguese coast (compare with section 3.3.3 on meagre otoliths). Amongst other,

these difficulties are related to a large variability in the interannuli distances and to a long annulus deposition period

(section 5 ).
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Figure 28 – Marginal increment analysis of meagre scales. A – type I margin; B – type II margin; C- type III margin; D –

measurements. The white dots indicate the annuli. Figure D displays the measurement axis (dashed line), the marginal

increment (MI) and the last annual increment (LAI). Scale bars=0.1 mm (A-C), 1 mm (D), 50x (A), 40x (B-D).

4.3.4. Data collection and data logging

During routine age determinations, meagre scale imprints should be read in random order

without knowledge of fish size. Providing readers with knowledge of month of capture is optional

but will prevent unnecessary mistakes in the marginal increment evaluations5. The final

consensus on annuli counts and margin evaluations may be entered into tables similar to

Table 2 . During the readings, the “Age notation” column is commonly filled immediately

according to section 5.1 . Notes should always be kept on doubtful scale imprint interpretations.

5 Note: knowledge of month of capture should not be provided to readers if the periodicity and season of annulus

deposition are being established at the same time as the age readings are done.
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Table 2 – Example of datasheet for logging scale readings. Boldface indicates information available to reader. Italics

indicate the data entered during hypothetical readings. The “Age notation” column should be filled according to section

5.1

Specimen
Month of
capture Annuli count Margin type Age notation Notes

036 10 4 II 4+4

078 2 18 III 18+19

… … … …

011 8 9 I 9 (9)

4.3.5. Difficulties in annuli interpretation

When interpreting meagre scales it is frequent for disagreements to occur at within-sample

level (i.e., between the several scales pressed for a specific fish), at within-reader level (i.e.,

between readings obtained by a single reader on different occasions), and at between-reader

level (i.e., between readings obtained by multiple readers). Additionally, it is not infrequent for

annuli counts obtained from scales to be substantially different from annuli counts obtained from

the otolith sections of the same fish. This is so, even when experienced readers are involved

and results essentially from difficulties in standardizing scale preparation and in objectively

applying the primary criteria used in meagre scale annuli identification (see section 4.3.2 ).

Even so, practice shows that the final age estimates obtained at all reading levels can be much

improved, particularly in younger fish, if the personnel involved in meagre scale collection,

preparation and interpretation is given training on specific issues of the meagre scales. This

training should cover: collection- and/or preparation-related issues (section 4.3.5.1 ),

observation-related issues (section 4.3.5.2 ), and more meagre-specific issues (section 4.3.5.3 ).

4.3.5.1 Collection- and/or preparation-related issues

Contrary to otoliths, scales are external structures that can easily detach from the fish body

and “contaminate” nearby fish. Consequently, if scale collection is careless there is a high

probability that each paper envelope will contain scales from more than one fish. If that occurs,

it will become increasingly difficult to establish a consensus between the readings of the several

scales imprinted for each fish and the quality of age determinations will decrease. To avoid

sample contamination, field personnel should always clear the fish skin from already detached

scales before collecting the samples. Additionally, the scales should always be collected in

large numbers as this will reduce the proportion of alien scales in each sample. These two
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practices are relatively obvious but should be routinely stressed to field samplers as this will

prevent unnecessary errors in the final ages.

Scale interpretations become increasingly difficult when dealing with acetate slides that contain

imprints of scales of markedly different size, shape, or thickness. The main reason for this is

that imprints on such slides tend to show up unevenly pressed. Additionally, it is generally hard

to achieve consensus among differently-shaped scales. Most of these difficulties can be

avoided with increased standardization of the collection and preparation procedures. The size

and shape of the imprints can be made more homogeneous if large samples are collected and

scales are removed from the target area instead of regions too close to the dorsal fin or the

lateral line. Additionally, during preparation it is important to take time to carefully select the

most similarly-looking scales from each sample. Stressing such simple practices will seem

unnecessary to many field and lab technicians and implementing them will generally increase

the time spent in collection and preparation of the scales; however, these will be largely

rewarded with less reading time and an overall improvement of the age determinations.

The quality of final age determinations is highly dependent on the quality of the acetate imprints.

Consequently, before acetate slides are stored into their final slide boxes it is good practice to

carry out a preliminary check on the quality of the imprints. A well-prepared scale imprint

presents well-resolved circuli (both at the center and periphery), clearly defined anterior and

lateral margins, and no cracks (e.g., Figure 26, Figure 27 ). If that is not the case, the imprint

should be considered unsatisfactory and pressing should be repeated in a new set of scales

with readjusted press settings. In doing this, lower temperatures, shorter pressing times, and

lower pressures will provide for lighter markings; however, if excessively low, they will also

cause insufficient pressing of the margins and lead to imprints with heterogeneous appearance

(Figure 29 ). In contrast, higher temperatures, longer pressing times, and higher pressures will

provide for stronger markings and clearer marginal contours; however, if excessively high, they

will also cause cracks and/or blurred circuli thus troubling annuli interpretations (Figure 30 ). In

meagre, adequate pressing is particularly hard to achieve in larger and thicker scales, which

frequently do not show up well-pressed at the first attempts. Consequently, particularly at the

beginning of a study, it is important to collect a larger-than-average number of scales from the

bigger fish (e.g., over 20 scales) in order to ensure that enough scales are available to obtain

good imprints. Later on, with increased technician expertise, this number can generally be

dropped down to the 10 to 15 scales typical of the routine collection protocol (section 4.1 ).
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Figure 29 – Aspects of a badly-prepared scale imprint due to insufficient temperature, pressure and time. Scale

bars = 1 mm, 16x

Figure 30 – Aspects of badly-prepared scale imprints due to excessive temperature, pressure and time. A – cracks, B –

blurred center. Scale bars = 1 mm, 9x (A), 16x (B).

4.3.5.2 Observation-related issues

The annuli of meagre scale imprints are searched for within a high-resolution grayscale

image that bears hundreds of similarly looking concentric circuli. Analyses of this type of images

are difficult and tiresome to the human eye making scale annuli counts susceptible to optical

illusions and eye-weariness biases. Two simple practices may be adopted that reduce these

negative impacts by aiding in pattern recognition, reducing eye weariness, and/or helping to

maintain reader’s motivation during scale readings. The first practice involves readers routinely



CHAPTER 4

107

alternating between focused and unfocused images, and between close-up observations

(e.g., 30 cm from screen) and more distant observations (e.g., 1 m from screen), as doing this

will help reveal obscure annuli and reduce effort and time spent in annuli search. The second

practice involves readers taking frequent breaks during the reading sessions (e.g., every 1–1.5

hours) because this helps reducing eye weariness and sustaining reader’s motivation,

improving consistency across the usually long periods of exposure to microfiche reader

illumination.

4.3.5.3 Other issues

The major difficulties met in reading meagre scales cannot be directly avoided because

they are related to the long life span of the fish, to the slow growth of its scales at older ages,

and to the large thickness of the scales collected from older specimens. In fact, the annual scale

increments of meagre older than 10 years are small (frequently less than 0.5 mm), which

causes the most peripheral annuli to appear very compact (“crowded”) near the scale margin.

This crowding effect takes place throughout the whole anterior field of the scale and makes

primary criteria like circuli compaction and circuli disruption difficult to evaluate. Additionally, the

scales of older meagre tend to be very thick (commonly over 0.30 mm, up to 0.75 mm) making it

particularly difficult to obtain good imprints (see section 4.3.5.1 ). Altogether, these aspects lead

to increased subjectivity in the discrimination of scale annuli from younger to older fish. In fact,

readers commonly report objective scale readings only up to the tenth annulus. Thereafter,

scale annuli counts are deemed increasingly subjective and frequently found to underestimate

otolith-derived ages up to a factor of 2, even if readers relax the application of the primary

criteria and, e.g., begin to count every straightening-out region visible in the anterior field.

Even if the difficulties of reading older meagre scales cannot be avoided, the

interpretations of scales of younger fish can be made precise and comparable to otolith-derived

ages. However, for this to happen it is important that readers are aware of some specific

patterns of the meagre scales. One such pattern is annulus splitting. Annulus splitting involves

the branching of single annulus into two (or, more rarely, three) distinct branches and if

unaccounted for can lead to an overestimation of the annuli counts of younger fish. Splitting

generally takes place in the anterior field of the scale and shows up as a set of distinct

straightening-out and compaction areas that are very close to one another and resemble

different annuli (Figure 31 ). However, a closer look at these putative annuli generally confirms

that they are distinct branches of a single annulus that effectively rejoin in the lateral fields of the

scale. Consequently, the only effective way to prevent the errors caused by undetected annulus

splitting is through increased practice and training in the analysis of meagre scale patterns. In

doing this, it is particularly important to ensure that the habits of systematically tracing annuli

across the entire anterior region and systematically comparing the readings obtained from

different axes are well-included into the reading routines.
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Figure 31 – Annulus splitting. The arrows indicate a doubled annulus. The white dots indicate the actual annuli. Scale

bars = 1 mm, 16x (above), 30x (bottom).

To counteract the major difficulties felt in applying the primary criteria of annulus identification, a

set of secondary (or corroboratory) criteria exists. These criteria are not to be used singly to

assign annuli but along with the primary criteria have been found to improve the reliability of the

scale interpretations, particularly when the primary criteria are not met by all annuli or along the

entire course of every single annulus. The corroboratory criteria used in meagre readings can

be broadly divided into a) criteria used to identify the first annulus and b) other criteria used in

annulus identification:

a) Criteria used to identify the first annulus: The segmented circuli of the first annulus are

frequently too narrow and compact for the straightening-out effect to be clearly

observable. Additionally, the center portion of the thicker scales frequently appears dark

and blurred, troubling annuli identification in that part of the scale. In such cases, three

types of evidence have been found to aid in first annulus identification. The first

evidence comes from the observation that the circuli compaction tends to be much

larger before the first annulus than immediately after it, particularly in the anterior field.

This difference in circuli compaction creates a contrast between the region located just

before the first annulus and the region immediately after it that can be used to

corroborate the annulus when primary criteria are not conclusive (Figure 32) . The

second evidence comes from a similar observation but in the posterior field of the scale,

where the first annulus is frequently evidenced by a semicircular band of lighter ctenii

that contrasts the darker appearance of more peripheral regions (Figure 32) . Finally, it

has also been observed that the first annulus is found along the anteroposterior axis of

the scale at a distance of 1.3–2.6 mm from the focus (average: 1.9 mm). Consequently,
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taking some measurements along the anteroposterior axis is frequently useful in

narrowing the region where circuli are inspected for primary criteria match.

Figure 32 – Aspects of corroboratory evidence for the first annulus. The white dot indicates the first annulus.

The white arrow indicates center compaction. The black arrow indicates the lighter posterior band. The first

annulus is at a distance of 2.5 mm from the focus. Scale bars = 1 mm, 20x (left), 40x (right).

b) Other criteria used in annulus identification:

- “Dark margin”: An annulus forming at the margin of the scale is generally difficult to

ascertain because it is rarely observable along the whole anterior and lateral fields of

the scale and because primary criteria like circuli “straightening out” or “circuli

disruption” are hard to apply without comparing circuli appearance to more peripheral

regions. In those cases, practice shows that if a) a large marginal increment is observed

beyond the last clearly observed annuli, b) there are some signs of circuli straightening

out along the anterior margin, and c) a very dark circulus can be seen outlining the

lateral fields of the scale, then an annulus should be assigned to the scale margin

(Figure 33 ).

Figure 33 – Aspects of corroboratory evidence for marginal annulus. The white dot indicates the last clearly

visible annulus. The white arrow points to the dark margin that evidences that a new annulus is just forming.

Scale bars = 1 mm, 20x (left), 50x (right).

- “Annulus protrusion”: At the anteroposterior interface, most continuous circuli halt their

course and do not penetrate the posterior region of the scale. However, at an annulus
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they are frequently observed to protrude into the posterior field, traversing the interface

as straight dark lines (Figure 34) . Practice shows that such “annulus protrusion” into the

posterior field is useful for corroborating intermediate annuli when primary criteria do not

verify along the full extent of the anterior region of the scale.

Figure 34 – Aspects of other corroboratory evidence for meagre annuli. The white arrows indicate annulus

protrusion areas. Scale bars = 1 mm, 11x (left), 40x (right).

- Within-sample “scale regularities”: Several regularities occur in the annuli structure of

scale imprints taken from a single meagre specimen. The most important of these is

that the imprints – even if presenting slightly different sizes and shapes – tend to have

correlated interannuli distances and/or split annuli at similar locations. Consequently,

when reading meagre scales it is good practice to start by taking an overall look at the

several imprints to identify the main scale patterns before carrying out more detailed

analyses on individual scales.

- Between-sample “scale regularities”: The absolute annual growth of both meagre and

its scales is very variable. Consequently, it is generally incorrect to assume that an

annulus (other than the first) should sit at any specific distance from the scale focus.

However, similar to other fish, there is an overall trend toward successively shorter

interannuli distances from the center to the periphery of the scales. Considering this

radial trend may be useful to corroborate some doubtful annuli interpretations: e.g., if a

peripheral annuli is thought to sit very far from a previous one, it is probable that one or

more annuli may have been missed; conversely, if a central annuli sits very close to a

previous one, it is possible that it is a split branch and not a true annuli6.

6 Note: it is important to bear in mind that despite the long-term decrease in interannuli distances, large variability in

interannuli distances still occurs in the short-term. An example of this is that, in meagre, it is not infrequent for the third

annuli to be found very close to the second. For this reason, annuli corroboration based on interannuli distances should

be used only in scales that bear at least 10 annuli and, particularly, never as a sole criterion to assign the most marginal

annuli.
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5. Age Assignment

The information required to determine the final age of meagre is: a) hard part reading data

(annuli counts and marginal increment evaluations), b) stock-specific information (annulus

deposition periods and spawning season), and c) sample-specific information (date of capture).

In Portugal, marginal increment analyses indicate that otolith annuli are laid down from March to

June and scale annuli are laid down from April to September (Costa et al., 2008, N. Prista,

unpub. data). Additionally, reproductive studies indicate that the meagre spawns from March to

July with a peak in May and June (Costa et al., 2008). Using this information, three types of

age-related results can be calculated for each meagre specimen: age group (section 5.1 ), year

class (section 5.2 ), and biological age (section 5.3 ).

5.1. Age group

The age group of a fish is the number of calendar years the fish lived until it was captured.

To determine age group, data on hard part readings (annuli counts and marginal increment

evaluation), on the month of capture, and on the annulus deposition season of the hard part

under analysis are required. The meagre age groups are determined using January 1 as a

standard birth date (i.e., a fish born in May 2000 will be assigned to age group 0 if captured until

December 2000, to age group 1 if captured during 2001, to age group 2 if captured in 2002, and

so on). The following procedure is used to determine age group:

- Fish captured between January 1 and the beginning of the annulus deposition season:

The fish are generally assigned an age notation of x + (x + 1), where x is the number of

annuli in the otolith or scale. Their age group is x + 1.

Examples (Portuguese coast):

Otoliths: Any fish captured between January 1st and February 28/29th with three
annuli and a translucent margin (type II/III), should be assigned an age notation
3 + (3 + 1), i.e., 3 + 4. The fish is age group 4.

Scales: Any fish captured between January 1st and March 31st with five annuli and
type II/III margin, should be assigned an age notation 5 + (5 + 1), i.e., 5 + 6. The
fish is age group 6.

- Fish captured between the end of the annulus deposition season and the end of the

year: The fish are generally assigned an age notation of x + x, where x is the number of

annuli counted in the otolith or scale. Their age group is x.

Examples (Portuguese coast):

Otoliths: Any fish captured between July 1st and December 31st with three annuli
and a translucent margin (type II/III), should be assigned an age notation of 3 + 3.
The fish is age group 3.
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Scales: Any fish captured between October 1st and December 31st with five annuli
and a type II/III margin, should be assigned an age notation 5 + 5. The fish is age
group 5.

- Fish captured during the annulus deposition season: The fish are assigned an age

notation x (x), x + x, or x + (x + 1), depending on the development of the hard-part

margin: if an annulus is visible at the margin (type I), the notation is x (x) and the fish

age group is x; if little growth has taken place beyond it (type II), the notation is x + x

and the fish age group is x; if substantial growth is visible beyond the last annulus (type

III) the notation is x + (x + 1) and the fish age group is x + 1.

Examples (Portuguese coast):

Otoliths: A fish captured between March 1st and June 30th with three annuli: if the
last annulus is on the edge (type I) or there is little growth beyond it (type II) the
fish should be assigned an age notation 3 (3) or 3 + 3, respectively, and belongs
to age group 3; if, however, significant growth occurred beyond the last annulus
or a new annulus is anticipated to be forming soon (type III) the fish should be
assigned an age notation 3 + 4 and belongs to age group 4.

Scales: A fish captured between April 1st and September 30th with five annuli: if
the last annulus is on the edge (type I) or there is little growth beyond it (type II)
the fish should be assigned an age notation 5 (5) or 5 + 5, respectively, and
belongs to age group 5; if, however, significant growth occurred beyond the last
annulus and a new annulus is anticipated to be forming soon (type III) the fish
would be assigned an age notation 5 + 6 and belongs to age group 6.

5.2. Year class

The year class is the year when the fish was born (e.g., 1997 year class). Year class (YC)

is calculated as YC = CY – AG, where CY is the year of capture and AG is the age group:

Example: a fish captured in 2004 and age group 3 is from the 2004 – 3 = 2001 year
class.

5.3. Biological age

Biological age is the time elapsed from fish birth to fish capture. To determine biological

age, information on the fish age group and capture date is required. Furthermore, it is

necessary to assume a common birthday for all fish in the stock (June 1 in Portuguese waters).

Biological age (BA) is generally expressed in months and calculated as BA = 12 x AG – (BD –

CD), where AG is the age group, BD is the month of birth and CD is the month of capture, with

minor corrections being needed only in larval fish:

Example (Portuguese coast):

A fish belonging to age group 4 and captured in February is 12 x 4 – (6 – 2) = 44
months.
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5.4. Examples

In Table 3 , readings and final age assignments are presented for all otolith sections and

scales imprints displayed in the current study.

Table 3 – Full set of readings and age assignments of the otolith and scales depicted in sections 3 and 4. Fish total

length is provided for indicative purposes.

Figure Specimen ID
Total

length
(cm)

Struct. Date of
capture Annuli Margin Age

notation

Age
group
(years)

Year
class

Biological
age

(month)

6–8, 12C CORV_0194 92 Otolith 01-07-2005 5 II 5+5 5 2000 61

9A CORV_1846 17 Otolith 03-09-2003 0 III 0+0 0 2003 3

9B CORV_0913 41 Otolith 10-01-2005 1 III 1+2 2 2003 19

9C CORV_0123 61 Otolith 23-08-2004 2 II 2+2 2 2002 26

9D CORV_1769 41 Otolith 20-06-2006 3 II 3+3 3 2003 36

10A CORV_0334 157 Otolith 01-08-2005 14 II 14+14 14 1991 170

10B CORV_0216 182 Otolith 13-10-2005 36 II 36+36 36 1969 436

11A, 13 CORV_0072 35 Otolith 07-03-2002 2 I 2 (2) 2 2000 20

11B CORV_1672 59 Otolith 19-07-2006 2 II 2+2 2 2004 25

11C, 11D CORV_1401 81 Otolith 16-02-2006 2 III 2+3 3 2003 32

12A CORV_0257 126 Otolith 17-08-2005 8 II 8+8 8 1997 98

12B CORV_0188 152 Otolith 13-10-2005 12 III 12+12 12 1993 148

14 CORV_0092 38 Otolith 11-01-2005 1 III 1+2 2 2003 19

15 CORV_1658 86 Otolith 15-05-2006 3 III 3+4 4 2002 47

16 CORV_1657 51 Otolith 15-05-2006 1 III (a) 1+2 2 2004 23

17 CORV_1231 148 Otolith 09-07-2005 13 II 13+13 13 1992 157

18B CORV_0435 161 Otolith 20-06-2005 13 II 13+13 13 1992 156

20 CORV_0749 39 Scale 18-04-2005 1 III 1+2 2 2003 22

22–25, 28B,
28D CORV_1764 53 Scale 20-06-2006 3 II 3+3 3 2003 36

26A CORV_0607 22 Scale 28-10-2000 0 III 0+0 0 2000 4

26B CORV_0768 42 Scale 13-10-2004 1 III 1+1 1 2003 16

26C CORV_0599 59 Scale 13-08-2004 2 II 2+2 2 2002 26

26D CORV_1772 51 Scale 20-06-2006 3 II 3+3 3 2003 36

27A, 34 CORV_0024 144 Scale 19-06-2004 9 II 9+9 9 1995 108

27B CORV_0334 157 Scale 01-08-2005 13 III 13+14 14 1991 170

28A CORV_0843 71 Scale 23-08-2004 4 I 4 (4) 4 2000 50

28C CORV_0064 79 Scale 06-06-2004 3 III 3+4 4 2000 48

29 CORV_1203 100 Scale 25-04-2005 4 III 4+5 5 2000 58

30A CORV_0004 162 Scale 06-08-2005 12 II 12+12 12 1993 146

30B CORV_0368 109 Scale 08-11-2005 4 II 4+4 4 2001 53

31 CORV_1446 95 Scale 17-05-2006 5 III 5+6 6 2000 71

32 CORV_0036 61 Scale 22-08-2004 2 II 2+2 2 2002 26

33 CORV_0338 111 Scale 10-08-2005 6 I 6 (6) 6 1999 74

(a) Note: the observation plane does not account for parallax errors making the section look like a margin I.
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6. Discussion

The European meagre has recently become the focus of increased scientific attention. On

the one hand, the species is considered a promising species for European aquaculture (Angelini

et al., 2002; Quéméner et al., 2002) and there has been increased interest in studying the

biology of its wild populations to optimize aquaculture production (Quéméner, 2002; Jiménez et

al., 2005; Costa et al., 2008); on the other hand, some concerns have been raised on the

conservation status of the meagre populations in France, Spain, and Portugal, which have

sparked research on the meagre fisheries and population parameters (Quéméner, 2002; Muñoz

et al., 2006; Prista et al., 2007; Costa et al., 2008; Prista et al., 2008). Concomitantly, appendix

VII of Council Decision 2008/949/EC recently established minimum age-sampling requirements

for the European meagre (50 fish per 1000 t landed) which, given the geographic distribution of

the species, will prompt routine sampling of commercial meagre landings along ICES Subareas

XIa and VIIIa–c. Similar efforts and concerns have also taken place in Northern Africa – namely

in Egypt, Mauritania, Senegal, and Morocco – where the species constitutes a more significant

resource for local economies and also represents a promising candidate for aquaculture

production (Hermas, 1995; Bebars et al., 1997; Quéméner, 2002; El-Shebly, 2007). Altogether,

these aspects make relevant the existence of validated standardized protocols for age

determination of the species as only these will provide the quality and comparability of results

required for progress in research, assessment and management at both national and

international levels. The otolith and scale protocols presented in this study constitute a first step

towards that faster progress as they detail the procedures involved in the collection and

preparation of the meagre hard parts, specify the criteria used in the readings, and highlight

many aspects and difficulties that should be addressed in reader’s training across the species

geographical range.

Sampling meagre hard parts for age and growth determination is a difficult task. In Europe,

adult meagres are absent or rare in most marine fishery-independent surveys (Quéro and

Vayne, 1987, Fátima Cardador, INRB/IPIMAR, pers. comm.) and commercial landings are low,

seasonal, and size specific (Quéméner, 2002; Prista et al., 2008). Additionally, the meagre is

marketed round at local ports (i.e., neither beheaded nor gilled or gutted) and presents a high

commercial value (large specimens may cost over 400 € ex-vessel) which makes otolith

collection expensive and scale collection a delicate task (Quéméner, 2002; Prista et al., 2007).

Such situations markedly contrast those of other large sciaenids in, e.g., the Eastern United

States, whose carcasses (and body parts) can be obtained from commercial and recreational

fisheries at relatively low cost (Liao et al., 2008); they also largely justify the comparative

scarcity of meagre age and growth research in European waters and the need to consider

alternative sampling techniques and alternative hard parts in determining the age of European

meagre.

In Portugal, Prista et al. (2007) have shown that it is possible to obtain representative

samples of meagre otoliths from the fishery, at low cost, by means of commercial mark-
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recapture. However, given to the large geographical extent of the Portuguese meagre fisheries

(Prista et al., 2008) and the large size range of its landings (42–184 cm), it is unlikely that

commercial mark-recapture can solely provide for routine long-term samples unless the meagre

fishery becomes a management priority. Scales have long been used in fish age determination

for an array of reasons, including the fact that they are easier to collect, can be collected without

jeopardizing the fish commercial value, and generally present lower costs and preparation times

than otolith thin sections (VanderKooy and Guindon-Tisdel, 2003). However, unlike otoliths, fish

scales suffer from regeneration, erosion, or resorption, all of which complicate and bias age

interpretations (Ericksen, 1999; VanderKooy and Guindon-Tisdel, 2003). Additionally, scale

patterns are in general much harder to interpret (Lowerre-Barbieri et al., 1994; Liao et al., 2008)

and much more prone to underage older fish than otolith thin sections (Lowerre-Barbieri et al.,

1994; Panfilli et al., 2002; VanderKooy and Guindon-Tisdel, 2003). The latter is the case of

scales from meagre and other long-lived species (e.g., striped bass Morone saxatilis), where

annuli must be searched for within visually complex circuli patterns, and where substantial

annuli crowding takes place at the periphery of older scales (Lowerre-Barbieri et al., 1994; Liao

et al., 2008). However, even if suboptimal, scales may be worth considering in the sampling of,

at least, some segments of the fishery and/or size classes.

A detailed comparison between scales and otoliths as hard parts used for meagre age

determination was beyond the objectives of the current study and will be addressed elsewhere.

Otolith thin sections are indubitably the most valid and effective method of determining sciaenid

ages across the entire size range of the species (Beckman et al., 1989; Lowerre-Barbieri et al.,

1994; Griffiths and Hecht, 1995; Campana and Jones, 1998; VanderKooy and Guindon-Tisdel,

2003; Liao et al., 2008). However, readings of scale imprints have generally been considered

sufficiently reliable to age the younger fish of the stock (Matlock et al., 1993; Lowerre-Barbieri et

al., 1994). In meagre, even if more expensive to sample and time consuming to prepare, otolith

thin sections should also be preferred to scale acetate imprints on basis of their easier

interpretation and better performance in older fish. However, scales may constitute a valid

alternative for meagre age determination if the research or assessment context involves

samples composed of smaller fish (e.g., recruitment studies). In fact, a reasonable agreement

(>90%) between otolith and scale readings is generally observed in fish younger than 4 years

and smaller than 60 cm, even if underestimations of over 10 annuli are common in fish older

than 10 years and larger than 160 cm (N. Prista, unpub. data).

In the current study, we obtained transverse thin sections of meagre otoliths and observed

them under transmitted light without further processing. In doing this, we adapted the standard

protocols used to determine sciaenid ages in the Eastern USA (Beckman et al., 1989; Lowerre-

Barbieri et al., 1994; Campana and Jones, 1998; VanderKooy and Guindon-Tisdel, 2003; Liao

et al., 2008), but departed from other existing studies on meagre (Tixerant, 1974; that used the

break-and-burn technique and reflected light) and other Argyrosomus (e.g., Griffiths and Hecht,

1995; that used longitudinal thin sections and reflected light). These departures were motivated

by preliminary analyses carried out on different preparation procedures, where aspects such as
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sectioning speed (low speed vs. high speed), sectioning plane (longitudinal vs. transverse), and

postsectioning enhancement procedures (polishing and baking) were examined in terms of the

relative improvement they brought to the readability and processing times of the otolith thin

sections (N. Prista, unpub. data). The outcomes of these analyses indicated that, even if lower-

speed single-otolith setups presented longer sectioning times (e.g., when compared to high-

speed multiple-otolith setups), they provided for a better control of the sectioning plane and

yielded easier to interpret sections that required no postsectioning enhancement. Additionally,

they also indicated that readings obtained from longitudinal and transverse sections were alike

and, consequently, that no readability advantage occurred in longitudinal sections that could

justify the longer times they take to prepare. Quite on the contrary, it was found that transverse

sectioning, when properly carried out, actually minimized the ostium blotch which is found

limiting the interpretation of longitudinal sections (e.g., Griffiths and Hecht, 1995) thus providing

an improvement to the overall readability of the otolith thin sections.
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Reproductive phase determination in male meagre ( Argyrosomus regius,

Sciaenidae): testis development and histologic corrobora tion of a gross

anatomical scale

Abstract: Reproductive stage determination of male gonads has received sparse attention in
fish biology literature with few studies detailing the building of gross anatomical- and histologic
scales. The meagre (Argyrosomus regius) is one of the world’s largest sciaenids and supports
a significant regional fishery in European and North African waters whose reproductive patterns
are yet to be fully investigated. In the present study, we derive a macroscopic grading system
for meagre testis using semi-quantitative graphs that feature the testis variability along the
species size range and time of the year. We then describe the histological stages and
reproductive phases of male testes and determine the extent to which they corroborate the
anatomical scale. Our results indicate that gross anatomical analyses are accurate in
assessments of the meagre spawning season but may not accurately distinguish the testes of
well-mature fish and first spawning virgins. Furthermore, we show that milt expression varies
widely with size and misclassifies as immature many smaller fish in spawning-capable
condition. We discuss these findings in terms of their contribution to the understanding of
testes development and the uncertainties involved in determining the size-at-maturity of male
fish using gross anatomical scales.

Keywords: histology, testes, reproduction, males, validation, Argyrosomus regius

1. Introduction

The meagre (Argyrosomus regius, Asso 1801) is one of the world’s largest sciaenids,

attaining over 180 cm in total length and 50 kg in weight (Quéméner 2002). Its distribution

ranges from the English Channel to Senegal (including the Mediterranean Sea and the Black

Sea). Most of the year the meagre occurs in coastal waters (<80 m deep) but in spring and

summer it migrates to shallow coastal waters and/or large European estuaries that it uses as

spawning and nursery grounds (Quéro and Vayne 1987). The largest meagre fisheries take

place in Mauritania, Morocco, and Egypt, which together comprise over 80% of the ca. 10000 t

world annual catch (Quéméner 2002, FAO 2009). In Europe, national meagre landings are

generally below 500 t/year (FAO 2009) but due to its large size, high ex-vessel prices and

seasonal availability in inshore and nearshore waters, it is an important target species for local

small-scale commercial and recreational fleets (Quéro and Vayne 1987, Quéméner 2002, Prista

et al. 2008). This importance is underscored by the recent development of meagre aquaculture

production and by the ecological significance of the meagre as a top marine predator in

European coastal waters (Quéro and Vayne 1987, Quéméner et al. 2002, Schiavone et al.

2012). However, to date the biological characteristics of the meagre have remained scarcely

studied worldwide and its fisheries have yet to be routinely monitored or assessed in both

African and European waters (Prista et al. 2011).

Studies of gonad morphology at both anatomical and histological levels have long been

done by fish biologists to identify reproductive cycles, spawning seasons and breeding areas, or
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to determine size-at-maturity (Hunter and Macewicz 2003). In fisheries science, the

determination of the reproductive state of a fish population in a specific area, time, and/or size

class plays a vital role because these parameters are closely related to stock productivity and

are the basis of many regulatory measures (e.g. minimum landing size) (Hunter and Macewicz

2003). Until recently, the reproduction of meagre had only been studied in North African waters

on the basis of macroscopic observations of fish gonads and the monthly evolution of

gonadosomatic indexes (Tixerant 1974, Hermas 1995). From 2000 onwards increased interest

in aquaculture production and concern with data-poor regional fisheries sparked research and

led to a new array of studies (e.g. González-Quirós et al. 2011, Prista et al. 2011, Abou

Shabana et al. 2012, Morales-Nin et al. 2012, Schiavone et al. 2012, Gil et al. 2013). Among

these are descriptions of the meagre life cycle in the Gulf of Cádiz (González-Quirós et al. 2011,

Morales-Nin et al. 2012), two studies of meagre reproduction in aquaculture facilities (Schiavone

et al. 2012, Gil et al. 2013), and one study that analyses the reproduction of males of wild

meagre but with a very limited sample size (Abou Shabana et al. 2012).

Macroscopic maturity scales (also known as the gross anatomical grading systems) of fish

ovaries and testes are among the most frequently used indexes in assessments of fish

reproductive condition (West 1990, Hunter and Macewicz 2003). The use of these methods is

rooted in historical fish biology literature and their inexpensiveness and fast applicability—along

with proven capabilities to detect major reproductive events (namely spawning season)—has

built them into routine research protocols of nearly every fisheries survey in the world. However,

several authors have warned of their imprecision and biases in assessments of reproductive

parameters that require fine resolution (e.g. size-at-maturity). Such flaws can be circumvented

through validation studies in which independent histological observations (assumed to

accurately reflect the internal development of fish gonads) are used to fine tune the anatomical

scales and estimate their biases (West 1990, Hunter and Macewicz 2003, Brown-Peterson et al.

2011).

Historically, the vast majority of histological studies concerning fish reproduction have

addressed female reproduction, with less information being available on male reproduction

(Grier et al. 1987, Parenti and Grier 2004, Lowerre-Barbieri et al. 2011, Brown-Peterson et al.

2011). However, the recent fish reproduction literature in ecology, fisheries and aquaculture has

increasingly noted the importance of fully understanding male reproductive patterns (Parenti

and Grier 2004, Brown-Peterson et al. 2011) because males may have different reproductive

parameters from females such as a different span of spawning seasons and a different size-at-

maturity (Grau et al. 2009, Lowerre-Barbieri et al. 2011). Pin-pointing and understanding such

differences is biologically significant and important for fisheries because they constitute the

supporting evidence underlying frequently adopted management measures (e.g. minimum

landing size).

In this study we provide the first detailed description of meagre testis development at

macroscopic (anatomical) and microscopic (histologic) level. In doing this, we describe the size-

related and seasonal variability of macroscopic and microscopic characteristics and use these
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to build an anatomical scale and a histological scale. Then, we the compare histological and

macroscopic information and use these results to corroborate the anatomical scale, identify its

main biases and discuss how they can be minimized. To our knowledge, these results constitute

the first comprehensive reproductive study of testes from wild meagre in European waters and

also one of the first attempts at the step-by-step construction and histological corroboration of

an anatomical grading system for fish testes.

2. Materials and methods

2.1. Sampling methodology

A total of 2418 meagres were sampled from 2003 to 2007 during a large-scale study that

targeted the meagre fishery and biology on the Portuguese coast. Detailed coverage of the

sampling methodologies, the fisheries and areas covered can be found in Prista et al. (2007,

2008) and Costa et al. (2008). Biological sampling was carried out monthly in two geographical

areas that encompass the main meagre fisheries in Portugal: the Tagus estuary (central-

western coast) and the coast of Olhão (southern coast). Monthly sampling goals were set at 10

males per 10-cm size class following the requirements of a concurrent age and growth study

with effectively achieved goals largely dependent on the seasonal availability of the fish in the

two geographical areas. In general, all meagre specimens were measured (total length) and

weighed (total weight), and had their abdomen slightly squeezed for expressible milt or roe.

Whenever possible, the individuals were gutted and sexed, and their gonads were weighed (to

the nearest 1 g), checked for the presence of the large-bodied female nematodes of the genus

Philometra (Moravec et al. 2007) and analysed for macroscopic characteristics and/or

preserved for histology. In general, otoliths were removed and later processed for data

determination following Prista et al. (2009).

2.2. Macroscopic analysis

Meagre testes were subjected to macroscopic classification with respect to a set of pre-

defined characteristics (Table 1). The set included characteristics reported in previous meagre

studies (Tixerant 1974) and in studies of other large sciaenids (Murphy and Taylor 1990,

Griffiths 1996, Farmer 2003), and two characteristics that were found varying with fish size

and/or season: a) the presence/absence of a groove running longitudinally along the proximal

side of each testicle which makes this side appear concave (hereafter termed the proximal

groove) and b) the presence/absence of striae, generally over two centimetres long, running

longitudinally on the ventral surface of spent testicles (hereafter termed ventral striae).

Objectively defined levels were set for each morphological feature with no a priori judgment of

gonad maturity being made. To make the observation of each morphological feature more

objective and reduce observation biases, the laboratory protocol involved the observation of the

several features, one at a time, across the several fish from each sample, and only in the end
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were the gonads photographed and coarsely graded as to their overall macroscopic appearance.

A final anatomical grading system was later obtained from analysis of variations in the

frequency of occurrence of each macroscopic characteristic across size (within the peak

spawning season) and months (in mature fish). In these analyses, the peak spawning season

was considered to be May and June (Costa et al. 2008) and fish were assumed to be mature

fish at 80 cm (Tixerant 1974).

Table 1. Main characteristics used in the macroscopic analysis of meagre testes

Characteristic Classification levels

Coloration White; Yellow; Orange; Red; Brown

Overall shape of gonad lobe
(in ventral view)

Rectangular; Triangular; Lozenge; Too thin to characterize; Other

Shape of gonad cross-section Rectangular; Triangular I (acute triangle; generally equilateral); Triangular IIa
(rectangular; generally isosceles); Triangular IIb (rectangular; generally isosceles;
with proximal sulcus on proximal side of testicle); Too thin to characterize

Fullness Turgid (full); Not turgid (“half” full); Flaccid (empty-looking)

Thickness of gonad wall Thin; Thick

Presence of ventral striae Present; Absent; Gonad too thin to characterize

Reaction to abdominal
pressure

Positive (leaks semen upon thumb-rubbing); Negative (no leakage of semen upon
thumb-rubbing)

Reaction to pressure Ruptures immediately; Offers resistance; Does not rupture (“rubberish”)

Presence of blood “dots “ Present and conspicuous; Absent or inconspicuous

2.3. Histological analysis

Male gonads were fixed and preserved in 4% buffered formaldehyde (buffer: Na2HPO4 and

NaH2PO4*H2O) and stored in plastic boxes. Good preservation of large testes was assured by

carefully injecting a small amount of fixative through the gonad wall with a syringe. When testis

volume was too large, only the left lobe was preserved. Histological procedures were carried out

on small pieces of meagre gonad (about 0.125 cm3) taken from the ventral periphery of the

medial region of the lobe. In general, the pieces included a full cross-section of the testes (from

the periphery to the lumen); in larger testes, however, only the periphery and middle regions

were represented. Histological preparation of gonads involved successive alcoholic

dehydratations, infiltration, sectioning, mounting and staining. Technovit 7100 resin (Heraeus

Kulzer) was used as the embedding medium and a Leica RM2155 micrometer was used to

obtain thin sections (3–5 µm thick). The sections were stained with toluidine blue, a basophilic

metacromatic stain. Three replicate sections were mounted in each slide. Permanent

preparations were obtained using Neomount and Neoclear (Merck). Microscopic analyses were

carried out at 40-400x magnification on a Zeiss stereomicroscope equipped with the Axioplan 2

imaging system. Digital pictures of histological slides were taken at 200–400x magnification with

an AxioCam and processed and measured using AxioVision 4 (Zeiss). Image processing after

capture was restricted to resizing, contrast and brightness adjustments, and minor background

clean-ups.
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The description of male gametogenesis follows Parenti and Grier (2004) and Dadzie and

Abou-Seedo (2004), along with the recently proposed unifying terminology of Brown-Peterson et

al. (2011). Slides were examined after randomizing slide boxes in order to minimize bias in

structure identification. The final histological grading system developed for male meagre was

based on a) overall testis structure, b) the relative abundance of the several germinal epithelium

(GE) developmental stages, c) the continuity or discontinuity of the GE, d) abundance of

spermatozoa in the lobule lumen, and f) the thickness of the testis wall (Dadzie and Abou-

Seedo 2004, Brown-Peterson et al. 2011). Overall testis appearance was graded as “compact”,

“compact(at periphery)->tubular(closer to core)” and “tubular”. The development stages of the

GE included primary and secondary spermatogonia, primary and secondary spermatocytes,

spermatids, and spermatozoa. The relative abundance of each GE stage and spermatozoa was

graded as “++” (very abundant), “+” (abundant), “-“ (scarce) and “0” (absent), based on a

consensus between the replicates on each slide. The continuity of the GE was graded as

“compact”, “continuous”, “discontinuous” and “regenerating” (spermatogonia regeneration). Wall

thickness was classified as “very thin”, “thin”, “thick” and “very thick”. Cell diameters reported on

descriptions of spermatogenesis stages were obtained from measurements of five cells per

individual in each of five individuals randomly sampled from within the ones known to carry

cysts of each developmental stage. Final testis development phases follow the recent

standardization proposed by Brown-Peterson et al. (2011), whose conceptual model considers

“immatures” (fish that never spawned), “developing” (fish whose testes are beginning to grow

and developing), “spawning-capable” (fish that are developmentally and physiologically able to

spawn in the current year), “regressing” (sexually mature fish that have finished spawning) and

“regenerating” (sexually mature fish that are reproductively inactive). A full account of the

histological details of each development phase can be found in Brown-Peterson et al. (2011).

2.4. Histological corroboration of the anatomical scale

To evaluate the extent to which the gross anatomical scale reflects the histological

structure of testes in male meagre specimens and corroborate the use of the anatomical scale

in routine sampling of meagre in the field, the results of the anatomical scale were compared

with the ones obtained from histological analysis using the subset of testes in which both scales

had been applied. These comparisons considered the histological classification to represent the

“truth” because histology is widely regarded as the most accurate staging method for fish

gonads (Hunter and Maciewicz 2003, Costa 2009, Ferreri et al. 2009).
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3. Results

3.1. Anatomical classification scale

A total of 242 testes were subjected to macroscopic analyses. These included 234 testes

taken from the monthly-length stratified sampling of sexed individuals and gonads from eight

immature fish whose sex could not be macroscopically determined. Testes subjected to

macroscopic analyses came from fish captured in estuarine (n=123) and coastal (n=114) fishing

grounds from both the western (n=130) and the southern (n=112) Portuguese coasts. For five

fish the type of fishing ground was unknown. The sample comprised more than three testes

from each month and more than four testes from each 10-cm fish size class found in the size

span of male meagre on the Portuguese coast (up to 178 cm). Exceptions to this were testes

from the December to February period (when a single fish was sampled), testes from fish larger

than 170 cm (two samples only) and testes from fish smaller than 30 cm (no sample).

The reproductive system of meagre males consists of a pair of elongated testes which lie

within in the body cavity against the fish swimbladder. Upon dorsal observation, testes are

rectangular in shape but variations occur between lozenge (middle part wider) and triangular

(anterior part wider). The cross-section is generally triangular, with the base of the triangle fitting

dorsally against the swimbladder and its tip oriented towards the belly. The surface of the testis

is smooth and has two vascularized hili running along its dorsal surface. These hili fuse

posteriorly to form a single sperm duct that opens to the genital pore.

The testes of mature meagre are creamy white to rosy between March and July, turning

brownish thereafter. They appear full or half-full, filling the majority of the body cavity and easily

rupturing upon handling or pressing from March to July, and become empty-looking and

“rubberish” from August onwards (Figure 1A). In spring and early summer the hili are generally

occluded underneath the swollen dorsal surface, becoming visible thereafter. From May

onwards many testes exhibit a marked proximal groove and ventral striae. Positive reaction to

abdominal pressure increases from March (50% of testes) to May (95% of testes) and

decreases thereafter (Figure 1B). In late summer and autumn, residual milt is still observed in

testis sections from fish showing no previous reaction to abdominal pressure, thus evidencing

prolonged sperm storage in time.

Within the putative spawning season (May and June) the macroscopic appearance of

meagre testes changes markedly with size (Figure 2). Fish <40 cm all have very thin thread-like

testes with barely any width. From 40 to 80 cm the testes widen and thicken rapidly but remain

empty-looking and relatively thin in many fish (Figure 2A, B). Over 80 cm no thin testes are

observed and full to half-full gonads dominate (Figure 2A). The testes of fish <70 cm did not

display ventral striae but these became apparent in fish >70 cm and were present in all

individuals above 110 cm (Figure 2B). A positive reaction to abdominal pressure was not

observed in fish below 40 cm, but took place in 40% of individuals between 40 and 70 cm, and

in 85% of the fish larger than 70 cm (Figure 2C).
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Nematodes from the genus Philometra were found in the testes of 22 out of 101 males

checked for these parasites. The parasites were most frequently observed along the sperm duct

and were easier to observe when gonads were less turgid. All testes with parasites were

sampled on the southern coast, where the monthly prevalence reached 91% in September.

Based on the previous macroscopic characteristics, the gross anatomical grading system

derived for meagre testes is displayed in Table 2 and Figure 3.

Figure 1. Monthly variations in the macroscopic appearance of testes of mature meagre (>80 cm; Tixerant 1974). y-axis

represents the proportion of monthly samples that registered each feature. A) Fullness; B) Reaction to abdominal

pressure. Numbers above bars are sample size.

.

Figure 2. Size-related variations in the macroscopic appearance of testes of meagre during the putative spawning

season (May and June). y-axis represents the proportion of samples that registered each feature. A) Fullness; B)

Presence-absence of ventral striae (“too thin” indicates gonad so thin that identification of ventral striae could not be

carried out); C) Reaction to abdominal pressure. Numbers above bars are sample size.

A B

A B

C
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Table 2. Gross anatomical grading system derived for the meagre testis. Wg, weight of gonad; TL, total length

(mean±s.e.); A, age (mean±s.e.); M, month(s) of occurrence. GSI (%) is calculated as (gonad weight/fish total

weight)*100 (mean±s.e.).

Anatomical class Macroscopic features Other notes

0
Very thin thread-like lobes (transparent and with barely any width or
thickness); sex of fish cannot be identified by naked eye.

Wg≈0 g (n=6);
GSI(%):0.04±0.00 (n=6);
TL(cm):37.3±1.5 (n=6)
A(years):2.3±0.7 (n=3)
M, June

I

White to rose or brown thread-like testes (translucent to opaque with small
but measurable width and thickness); reduced thickness makes the
observation of ventral striae and median cross-section very uncertain; no
reaction to abdominal pressure.

Wg<4 g (n=39);
GSI(%): 0.10±0.01 (n=39)
TL(cm): 55.9±2.0 (n=39)
A(years): 2.6±0.1 (n=37)
M: April–July, October,
December

II

White to rose opaque thread-like testes; median cross-section triangular or
domed; no conspicuous ventral striae; robust to handling; some sperm may
be present in the sperm duct; positive reaction to abdominal pressure but in
reduced amount.

1 g<Wg<34 g (n=25);
GSI(%): 0.29±0.03 (n=25)
TL(cm): 64.0±2.2 (n=25)
A(years): 3.4±0.2 (n=19)
M: April–July, October

III

White to rose testes, sometimes reddish with increased vascularization;
testes widen and increase in volume, becoming tubular in appearance;
ventral striae usually present; triangular median cross-section (I or II), very
turgid, the sperm duct occluded underneath the swollen surface; ruptures
easily when handled, tearing itself up under its own weight; positive
reaction to abdominal pressure, abundant semen throughout the gonad.

15 g<Wg<1420 g (n=84);
GSI(%): 3.27±0.17 (n=84)
TL(cm): 96.8±2.0 (n=83)
A(years): 6.1±0.2 (n=58)
M: March–July

IV

Brownish white to dark brown testes with much-reduced volume; median
cross-section generally triangular with a pronounced proximal sulcus;
conspicuous ventral striae in larger individuals; flaccid appearance with
visible sperm duct; highly resistant to handling; some semen is visible in
sectioned testes, particularly when they are squeezed; little or no reaction
to abdominal pressure.

3 g<Wg<707 g (n=89);
GSI(%): 0.60±0.06 (n=89)
TL(cm): 117.3±3.6 (n=88)
A(years): 8.8±0.8 (n=66)
M: March, May–
November

3.2. Histological classification scale

A total of 136 testes were subjected to histological analysis. These testes were selected at

random from the pool of testes collected each month, but the selection was constrained to the

overarching objective of obtaining good coverage of a) the size classes sampled, b) the main

macroscopic types observed in the field and c) the main fishing grounds for the species. The

final sample included at least four testes from each 10-cm fish size class between 40 cm and

170 cm and at least three testes from each month, with the exception of September (n=1) and

November through February (n=0), when the meagre is scarce in Portuguese fisheries (Prista et

al. 2008). Furthermore, testes from both estuarine (n=87) and coastal (n=31) fishing grounds

and from both the western (n=99) and the southern (n=37) Portuguese coasts were represented.

For 18 fish the fishing ground was unknown.

The internal structure of male testes is of lobular unrestricted type (sensu Parenti and Grier

2004). Active spermatogenesis occurs throughout the testis within spermatocysts that contain

synchronously developing cell clones. Six developmental stages are present in male meagre

germ epithelium: a) primary spermatogonia (Sg1), b) secondary spermatogonia (Sg2); c)

primary spermatocytes (Sc1); d) secondary spermatocytes (Sc2); e) spermatids (St); and f)

spermatozoa (Sz).
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Primary spermatogonia (Sg1) are oval-shaped cells, 7-22 µm in diameter, that appear

isolated or in small groups. Both the nucleus and cytoplasm of Sg1 are slightly basophilic (light

blue). The nucleus frequently occupies over 2/3 of the cell surface and may have a conspicuous

strongly basophilic nucleolus at the centre (dark blue). Sg1 are frequently accompanied by

smaller Sertoli cells ~4-7 µm in diameter (Figure 4A).

Secondary spermatogonia (Sg2) are polygonal cells, 4-7 µm in diameter, that appear

densely packed in nests with 8 to 35 cells. The nucleus has intermediate basophily (deep purple)

and occupies nearly the entire cell. Cytoplasm is acidophilic and very reduced. No nucleoli are

visible (Figure 4B).

Primary spermatocytes (Sc1) are polygonal to round cells, 4-8 µm in diameter, that appear

more loosely clustered (frequently over 50 cells) and in larger numbers than Sg2 (Figure 4C).

The nucleus of Sc1 is circular and strongly basophilic (dark blue), with no nucleolus visible. The

cytoplasm has low basophily (light purple) and unlike Sg2 is clearly distinguishable under light

microscopy.

Secondary spermatocytes (Sc2) are similar in appearance and numbers to Sc1 but smaller

(3-6 µm), more basophilic (both nucleus and cytoplasm) and more densely packed (Figure 4C).

Sc2 are a relatively brief developmental stage that are abundant only in 30% of spawning-

capable individuals.

Spermatids (St) are markedly smaller than the previous spermatogenic stages, their

nucleus remaining strongly basophilic and the cytoplasm has intermediate basophily. Their

overall size (2-4 µm) is low compared with Sc2. They appear in very dense nests that may

contain several hundred cells (Figure 4C, D).

Spermatozoa (Sz) first appear with their heads and tails aligned within recently burst St

cysts in “parachute” form (Figure 4D). Their heads are tiny (1-3 µm) and strongly basophilic

(dark blue), their tails being long and mildly basophilic (light purple). During spawning, they are

released to the lumen of the lobules where they form very dense aggregations (Figure 4C).
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Figure 3. Macroscopic appearance of meagre male gonads [TL, total length in cm; M, month of capture; P, Place of

capture, Southern Coast (SC) or Tagus Estuary (TE); H, Histological stage]. A) Anatomical class I [TL, 66; M, May;

P, SC; H, Developing]; B) Anatomical class I [TL, 59; M, June; P, TE; H, spawning capable (virgin)]; C) Anatomical class

II [TL, 76; M, July; P, TE; H, Developing]; D) Anatomical class II [TL, 69; M, June; P, TE; H, spawning capable (virgin)];

E) Anatomical class II [TL, 59; M, May; P, SC; H, spawning capable (mature)]; F) Anatomical class III [TL, 59; M, June;

P, TE; H, spawning capable (virgin)]; G) Anatomical class III [TL, 100; M, May; P, TE; H, spawning capable (mature)]; H)

Anatomical class IV [TL, 148; M, June; P, SC; H, regressing]; I) Anatomical class IV [TL, 144; M, October; P, SC; H,

regenerating]; J) Close-up of live parasites from genus Philometra.
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Figure 4. Histological stages of meagre spermatogenesis A) Primary spermatogonia (Sg1); B) Sg1 and secondary

spermatogonia (Sg2). Black arrow, Sg1 in mitotic division; C) Primary (Sc1) and secondary (Sc2) spermatocytes,

spermatids (St) and spermatozoa (Sz); D) Bursting St in “Parachute” form (P). Connective tissue (C), Lobule lumen (L),

Sertoli cell (Se). Scale bar, 10 µm, 400x.

The testes of mature meagres display a tubular appearance throughout the year, active

spermatogenesis taking place from March to June. During this period Sg1 are rare and the GE

changes from continuous to discontinuous and then again to continuous but with Sg1 only

(=regenerated) (Figure 5A) suffering significant developmental changes. Among these are a

rapid reduction in Sg1 and Sg2 (Figure 5B) that gives rise to sustained high levels of Sc1 and St

and abundant Sz both in the outer and inner lobules (Figure 5C-E). As the season progresses,

the testis wall (tunica albuginea) and lobule connective tissue thicken (Figures 5F and 6A-D)

and Sg1 start to increase abundance, lining up the naked lobule walls (Figure 5B). From July

onwards, testes displaying Sg2, Sc1, Sc2 and St become increasingly rare, and Sg1 proliferate

forming cords that line up the internal walls of the lobules, giving them a characteristic

regenerated appearance (Figure 5A). Sz are still abundant but now concentrated mostly in the

inner lobules and sperm duct, becoming more rare in peripheral lobules (Figure 5E).

A B

C D
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Figure 5. Month-related variations in the histologic characteristics of the testes of mature meagre (>80 cm; Tixerant

1974). y-axis represents the proportion of monthly samples that showed each feature. A) Germinal epithelium structure

(cont.=continuous; discont.=discontinous; regen.=regenerated); B) primary spermatogonia; C) primary spermatocytes; D)

spermatids; E) spermatozoa; F) tunica thickness. "+", abundant or very abundant, "-", not abundant or absent. Numbers

above bars are sample size.
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Figure 6. Details of month-related and size-related variability in the testes of meagre [TL, total length in cm;

M, month of capture; P, place of capture, southern coast (SC) or Tagus Estuary (TE); H, Histological stage]. A) Thin wall

during spawning months [TL, 140; M, April; P, SC; H, spawning-capable]; B) Thick wall characteristic of post-spawning

[TL, 148; M, June; P, SC; H, regressing]; C) Thin connective tissue forming the lobular walls [TL, 144; M, March; P, SC;

H, developing]; D) Thickened connective tissue [TL, 177; M, June; P, SC; H, Regressing]; E) Compact appearance with

no sperm present [TL, 56; M, June; P, TE; H, developing]; F) Compact appearance with sperm present [TL, 44; M, June;

P, TE; H, spawning-capable]. Scale bar, 20 µm, 200x.

The peripheral lobules of most fish <70 cm are generally compact, with relatively narrow

lumina and a GE where Sg1 and Sg2 are abundant alongside more developed

spermatogenic stages (Figure 7A, B). On the other hand, the testes of fish >80 cm all have a

tubular appearance, with GE continuous to discontinuous, dominated by Sc1, St and Sz
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(Figure 7C-E). Thick testis walls appear only in fish >70 cm (Figure 7F). Interestingly, some

fish smaller than 50 cm already show signs of spermatogenic activity, displaying small inner

lobules filled with Sz even if their testes are relatively small (Figures 6F and 7E). Despite the

ongoing spawning season, it was noticed that some large fish sampled from coastal marine

grounds already evidenced some signs of regeneration, namely Sg1 proliferation (Figure 7B).

Figure 7. Size-related variations in the histologic characteristics of the testes of meagre during its putative spawning

season (May and June). y-axis represents the proportion of samples that registered each feature. A) Overall testis

structure (comp., compact; grad, gradient (compact at periphery, tubular at core); tubul, tubular); B) primary

spermatogonia; C) primary spermatocytes; D) spermatids; E) spermatozoa; F) tunica thickness. "+", abundant or very

abundant; "-", not abundant or absent. Numbers above bars are sample size.

Based on the previous characteristics the histological development of the meagre testis

was divided into five main phases (Table 3, Figure 8). A subdivision of testes in spawning-

capable phase into "spawning capable (virgin)" and "spawning capable (mature)" warrants a

A B

C D

E F



CHAPTER 5

136

separation between younger and smaller spawning-capable fish that still show signs of

immaturity (namely abundant Sg1 and Sg2) and older and larger fish that do not display such

signs (Table 3).

Table 3. Histological grading system of the meagre testis. Sg, spermatogonia; Sc1, primary
spermatocytes; Sc2, secondary spermatocytes; St, spermatids; Sz, spermatozoa; GE, germinal epithelium; Wg, weight
of gonad; GSI, Gonadosomatic index (calculated as in Table 2; mean±s.e.); TL, total length (mean±s.e.); A, age
(mean±s.e.); M, month(s) of occurrence

Phase Main Histological features Other notes

Immature Compact appearance; only Sg1 and Sg2 present. Wg<1 g (n=4)
GSI(%): 0.07±0.01 (n=4)
TL(cm): 48.5±2.0 (n=4)
A(years): 3.0±0.0 (n=4)

M: March, June

Developing Thin tunica; Lobular appearance (small compact lobules in
developing virgins); continuous GE with spermatocysts in all stages;
little or no Sz.

Wg<157 g (n=26)
GSI(%): 0.36±0.11 (n=26)
TL(cm): 67.6±4.4 (n=27)
A(years): 3.9±0.4 (n=27)

M: March–July

Spawning
capable

Thin to intermediate width tunica; lobular appearance; wider lobules,
very elongated in internal regions; GE of lobules ranging from
continuous to totally discontinuous; Sc1 and St predominant; Sz
very abundant in the internal regions and frequently also at
periphery.

Spawning capable (virgin): Sg1 and Sg2 present and abundant;

Spawning capable (mature): Sg1 absent; GE progresses from
continuous in all lobules (early subphase) to discontinuous in all
lobules (late subphase); Sc1 are present in large amounts
(early subphase) and decrease over time, becoming rare (late
subphase); St present in large amounts (early subphase) and
decreasing to moderate amounts (late phase); a few late
subphase individuals may show signs of Sg1 proliferation
during the late subphase.

Spawning capable (all)
1<Wg<1422 g (n=77)

GSI(%): 2.19±0.21 (n=77)
TL(cm): 85.7±2.7 (n=79)
A(years): 5.0±0.2 (n=78)

M: April–July

Spawning capable (virgin)
1<Wg<173 g (n=34)

GSI(%), 0.60±0.10 (n=34)
TL(cm), 59.5±3.1 (n=34)
A (years), 3.6±0.2 (n=33)

M: April–July

Spawning capable (mature)
58<Wg<1422 g (n=43)

GSI(%): 3.45±0.22 (n=43)
TL(cm): 100.9±2.1 (n=45)
A(years): 6.0±0.2 (n=45)

M: April–June

Regressing Lobular appearance; intermediate to thick tunica; wide lobules; GE
increasingly continuous composed of proliferating Sg1 (in cords)
and a few scattered Sc1 and St; Sz may still be abundant in internal
lobules and sperm duct, but decrease in abundance towards
periphery.

1<Wg<412 g (n=23)
GSI(%): 0.51±0.09 (n=23)
TL(cm): 109.7±8.4 (n=24)
A(years): 9.5±1.5 (n=22)

M: May–October

Regenerating Lobular appearance. Sg1 and Sg2 proliferate throughout the testis,
thickening the GE and thinning the lobular lumen; later stages of
spermatogenesis may be present but in reduced amounts (Sc1,
Sc2, St); no Sz. Tunica still thick, becoming thinner.

86<Wg<90 g (n=2)
GSI(%): 0.35±0.01 (n=2)
TL(cm): 143.0±1.5 (n=2)

A(years): 12 (n=1)
M: October

3.3. Histological corroboration of the anatomical scale

A comparison of the results obtained in 104 testes subjected to both macroscopic and

histologic analysis is presented in Table 4. A good correspondence was found between

anatomical class 0 and histological phase immature, between the anatomical class II and the

histological spawning-capable (virgin) phase, between anatomical class III and the histological
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spawning-capable (mature) phase, and between anatomical class IV and the histological

regressing phase, with 11%-16% error in one-to-one histological assignment of these

Figure 8. Histological phases of the meagre reproductive cycle. [TL, total length in cm; M, month of capture; P, place of

capture, southern coast (SC) or Tagus Estuary (TE); Ma, Macroscopical phase]. A) Immature [TL, 51; M, March; P, TE;

Ma, not determined]; B) developing [TL, 70; M, April; P, TE; Ma, not determined]; C) spawning-capable (virgin) [TL, 59;

M, June; P, TE; Ma, Anatomical class I]; D) spawning-capable (mature) [TL, 100; M, May; P, TE; Ma, Anatomical class

III]; E) regressing [TL, 127; M, September; P, SC; Ma, Anatomical class IV]; F) regenerating [TL, 144; M, October; P, SC;

Ma, Anatomical class IV]. Scale bar, 20 µm, 200x.

anatomical classes. Testes classified as anatomical class I were found to be in histological

developing phase or in spawning capable (virgin) phase, with a lower proportion being

regressing or immature (Table 4). Alongside the evidence obtained for anatomical class II and
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the covariate data displayed in Tables 2 and 3, the latter results indicate that smaller and

younger meagres with inconspicuous testes and histological signs of immaturity already display

a seasonal maturation cycle in testes development with minor spermatozoa production.

Gross anatomical scales and milt production are frequently used to assess size-at-maturity

during the spawning season. Restricting the results displayed in Table 4 to the peak spawning

season (May and June) indicates that all testes assigned to anatomical classes II, III and IV

corresponded to individuals that were either in the spawning-capable phase or in the regressing

phase and can therefore be safely assumed to be mature. In anatomical class I, one individual

(7%) was immature and five individuals (33%) were still in the developing phase during the peak

spawning season, being unlikely to spawn in the current season. This finding indicates that

some error may be introduced into maturity ogives if class I individuals are assumed mature

without a complementary histological analysis. The probability of being mature while expressing

milt was 100% but 50% of spawning-capable virgins and nearly all regressing fish did not

express milt and could therefore be classified as immature in analyses that consider milt

expression to be the only maturity indicator (Table 5).

Table 4. Histological corroboration of the gross anatomical scale. Numbers displayed are percentages of column totals

Anatomical class

Histological phase 0
(n=1)

I
(n=17)

II
(n=18)

III
(n=43)

IV
(n=25)

Immature 100 6 – – –

Developing – 47 11 – 8

Spawning-capable (virgin) – 35 89 16 4

Spawning-capable (mature) – – – 84 –

Regressing – 12 – – 84

Regenerating – – – – 4

Table 5. Meagre reaction to abdominal pressure during peak spawning season. Numbers are specimens

Milt upon abdominal
pressure?

Histological phase No Yes

Immature 2 0

Developing 5 0

Spawning-capable (virgin) 14 14

Spawning-capable (mature) 1 29

Regressing 5 1

Regenerating 0 0
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4. Discussion

This paper presents the first detailed study of the male reproductive characteristics of wild

Argyrosomus spp. across the species size span. It is also one of the few available studies

detailing testis histology of a large-sized sciaenid (but see Grier et al. 1987) and, to our

knowledge the first detailed attempt at corroborating a gross anatomical scale of male gonads

with histological evidence.

The testes of mature meagres belong to the unrestricted spermatogonial type, with

spermatogonia appearing in both distal (peripheral) and proximal (core) regions. However, in

the testes of developing younger fish the density of spermatogonia and Sertoli cells appears to

be larger in peripheral regions than in proximal regions. Almeida et al. (2008) described the

existence of a germinative zone at the periphery of Gadus morhua testes where higher

spermatogonial concentrations took place. Grier et al. (1987) also described higher

concentrations of spermatogonia in the recovering testes of Sciaenops ocellatus. Both authors

suggest that these spermatogonia concentrations are linked to testis enlargement through

lobule elongation. Other authors have considered the possibility that these asymmetries could

reflect an intermediate form of (partially) restricted testis organization (Schulz et al. 2011). Our

sample size of developing mature fish was low but it confirms that in meagre some highly dense

nests of spermatogonia and Sertoli cells do take place in more peripheral lobules, thus building

evidence towards the participation of these cells in testis enlargement.

Spermatogenesis is the process whereby diploid spermatogonia proliferate and evolve to

form haploid spermatozoa (Schulz et al. 2011). Similar to other fish, the basic functional units of

the meagre testes are the spermatocysts, i.e. envelopes of dynamic Sertoli cells that harbour

clusters of synchronously developing cell clones (Schulz et al. 2011). Spermatocyst

development is asynchronous throughout the testis with different spermatocyst development

stages being present in each lobule during the developing and spawning-capable phases.

Similar to descriptions of other species (e.g. Grier et al. 1987) and the currently accepted

conceptual models for teleost testis development (Brown-Peterson et al. 2011, Schulz et al.

2011), in meagre the germinal epithelium is subjected to marked seasonal variation. Mitotic

proliferation of primary spermatogonia takes place right after (sometimes overlapping) the end

of the spawning period (Figure 4A). Then secondary spermatogonia (Sg2) evolve from mitotic

divisions of scattered primary spermatogonia (Sg1) (Figure 4B) and undergo the first meiotic

division to form primary spermatocytes (Sc1). Sc1 are the most frequent stage of

spermatogenesis (Figures 4C), probably due to the long duration of the first meiotic prophase

(Schulz et al. 2011). Final “parachute” formation of spermatozoa has been reported in Otolithes

ruber, Liza carinata and Perca flavescens but does not appear to be a widespread phenomenon

among teleosts (Dadzie and Abou-Seedo 2004). Overall, the maximum potential annual sperm

production of large mature meagre appears to be fully determined at the end of the developing

phase, since from then onwards spermatogonia become rare in mature individuals as a result of

their evolution through spermatogenesis to form spermatozoa (Grier 2002). We predict that

annual sperm production in meagre likely results from interactions between size and age, since
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large spawning capable fish can carry testes with more than 10 times the weight of those from

smaller spawning capable fish. Further studies on the histology of this species should help to

clarify such issues.

Historically, macroscopic classifications of gonad development have constituted the

methodological basis for most reproductive studies of fish, particularly in male reproduction.

This is the case of meagre and other large-sized sciaenids, in which anatomical scales with four

levels (Hermas 1995), five levels (Tixerant 1974), six levels (Abou Shabana 2012), seven levels

(Griffiths 1996) and eight levels (Farmer 2008, Gil et al. 2013) have been previously used in

describing the male reproductive cycle. In such species, the few studies that used histology

sections to assess reproductive parameters did not detail the histological results (e.g. Murphy

and Taylor 1989, 1990), were based on aquaculture observations of small young fish (Gil et al.

2013), used a very limited sample size (<30 individuals; Abou Shabana 2012) or did not report

on the macroscopic appearance of male gonads (Grier et al. 1987). To our knowledge, the only

comprehensive studies that reported on the histological features of meagre males were carried

out with essentially juvenile fish (fish up to 84 cm in length and 62 months old) in aquaculture

facilities and also did not provide information on macroscopic versus histological correlations of

meagre testis (Schiavone et al. 2012, Gil et al. 2013).

The meagre results underscore the importance of carrying out validation studies of the

gross anatomical scales before using them to routinely assess male reproductive status or

establish management measures (Hunter and Maciewicz 2003). They also demonstrate how an

objective gross anatomical scale can be developed from raw observational data using semi-

quantitative graphical displays (Figures 5 and 7). Such displays helped to highlight objective

characteristics to be used in the anatomical scale and the success of the final validation

success might be explained by that in part. We have also shown that the final gross anatomical

scale adopted for meagre provided a relatively reliable proxy for the main reproductive

development phases of male gonads. Specifically, anatomical classes II and III both correspond

to spawning-capable fish and can therefore be used to assess spawning season and determine

size-at-maturity. Whether or not classes I and II should be fully considered mature in building

maturity ogives used for advising managers is left open to discussion, since the reproductive

output of spawning-capable virgins is likely much lower than that of adult fish. Additionally, we

have shown that gross anatomical class IV adequately reflects the end of spawning season

(regressing phase). We did not find a gross macroscopically level that accurately reflected the

histological developing phase, probably because we did not find a fishery targeting such large

individuals in the late autumn and winter months. Most importantly, we have shown that, though

relatively accurate maturity data on males can be obtained from the use of gross anatomical

scales, these are not objective enough and precise enough to resolve all the vital information for

management that is provided by concurrent histological results. The latter is particularly

noticeable in the significant proportion of small-sized fish that can be classified as reproductively

active by some macroscopic criteria (e.g. milt extrusion) but not by all criteria (e.g. cross-section
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shape) and in the fact that some testis classified as spawning-capable showed a quite distinct

external appearance, gonad weight and gonadosomatic index (GSI) level.

Gross anatomical grading systems can be improved by reducing the number of classes

and focusing on the most reliable characters (Hunter and Macewicz 2003). However, even in

simpler systems, a frequent flaw is the confounding of fish that have just spawned and have

regressing gonads with fish that are developing and yet to attain first maturity. In meagre males,

we found that anatomical class IV rightly classifies most gonads as regressing with little overlap

with developing fish. However, we note that ca. 3/4 of our samples were collected at the onset

or during the fish spawning season, a time of the year that maximizes the classification success

of anatomical grading systems (Hunter and Macewicz 2003, Lowerre-Barbieri et al. 2011).

Another cause of concern with anatomical scales is the presence of skip spawners, i.e. fish that

have already matured once but fail to spawn in a specific year. Existing knowledge of skip-

spawning in male fish is very limited but these are generally identified as fish large enough to be

mature that, during the spawning season, have a low GSI, a thick testicular wall and no sign of

spermatogenic activity (Rideout and Tomkiewicz 2011). In our study, we found two mature fish

(>80 cm) caught in the spawning season that had a thick wall and low GSI (<1%). Both these

fish showed signs of active spermatogenesis, namely a few (but not many) spermatocysts in

multiple developmental stages. Consequently, they likely belonged to fish at the end of the

spawning season (regressing) and not to skip spawners. Even so, we caution that our samples

are not fishery-independent and that we cannot exclude the possibility that some skip-spawning

fish may spend the spawning season in areas away from the main fishing grounds (González-

Quirós et al. 2011).

To date, the large sciaenid fisheries literature has frequently reported smaller size-at-

maturity (L50) in males than in females, with discrepancies ranging between a few cm and nearly

30 cm (e.g. Murphy and Taylor 1989, 1990, Nieland and Wilson 1993, Wilson and Nieland 1994,

Griffiths 1996, 1997). Some of these studies have used milt extrusion as indicative of maturity

(e.g. Wilson and Nieland 1994), others have applied gross anatomical scales (Hermas 1995,

Griffiths 1996, 1997), and yet others have carried out histological analysis of gonads,

considering sperm presence as indicative of maturity and not including a subclass of first

maturing spawning-capable fish (e.g. Murphy and Taylor 1990). We have shown that milt

expression is an unreliable indicator of maturity in meagre, because it wrongly classifies as

immature 50% of spawning-capable virgins and 83% of testes in regressing condition (Table 5).

This situation probably extends to males of other sciaenids and warns against the use of

ripeness as a maturity indicator in building maturity ogives in sciaenid species. Implicitly

acknowledging some of the problems associated with categorizing very small fish as mature,

Griffiths (1997) categorized some small milt-extruding males of Argyrosomus inodorus as

immature based on supplemental anatomical criteria, namely the presence of disproportionally

small testes and the absence of drumming muscles. This author came to assume that these fish

made a low contribution to the total reproductive output of the population. As for Argyrosomus

regius, neither Tixerant (1974) nor Hermas (1995) reported mature males <70 cm, but in the
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Gulf of Cadiz González-Quirós et al. (2011) noted that 26% of male meagres <70 cm were

mature and suggested such precocious maturation could represent a reproductive strategy (e.g.

sneaker small-sized males) or be revealing of different fish populations with lower size-at-

maturity (e.g. Farmer 2008). While researching first maturation of aquacultured meagre,

Schiavone et al. (2012) found puberty to be reached at two years and 26.8 cm (920 g) with still

increasing GSI and hormone levels and Gil et al. (2013) determined the male length and age at

50% maturity to be 49.3 cm and 32.3 months, respectively. The growth rates of these fish were

markedly different from those of wild populations (2 years old, 46 cm, 940 g) (Prista unpublished

data) but Schiavone et al. (2012) also report a few one-year old males producing expressible

milt.

Our histological analysis of meagre testes objectively confirmed the occurrence in wild

populations of some small fish (<60 cm) with inconspicuous testes (low weight, low GSI) in

spawning-capable condition that may (or may not) extrude milt upon squeezing. In histological

terms these fish are considered to have reached maturity since they have spermatozoa and are

therefore capable of participating in reproduction (Brown-Peterson et al. 2011). Whether or not

these fish contribute significantly to the overall male reproductive output of the population and

the exact extent of the implications for management of considering them as mature will be dealt

with elsewhere. Here, we have shown that these fish have a mixture of adult and juvenile

characters (non-tubular appearance and spermatogonia abundance throughout the year), being

not only small-sized but also young. These fish are unlikely to have come from a different

population and most likely represent virgin fish experiencing first maturation. We have also

shown that these first maturing wild fish likely develop, spawn and regress despite being far

from attaining their full reproductive potential. These results concur with those reported by

Schiavone et al. (2012), which showed increasing levels of estradiol, testosterone and 11-KT

plasma levels between the first and second spawning seasons, evidencing that hormonal

control is not yet fully stabilized after the first reproductive event. In the wild, both meagre

juveniles and meagre adults visit inshore and estuarine waters in spring and summer, so we

hypothesize that hormonal control of testes development becomes increasingly coupled to the

photoperiod variations and other environmental clues (e.g. temperature, turbidity) experienced

by the fish during their seasonal presence in estuarine nursery areas and future spawning

grounds (Prista et al. 2008) and that in the wild meagres may also display increasing levels of

hormonal control as they migrate back-and-forth between coast and estuaries during their first

years of life.

Overall, the evolutionary advantage of precocious maturity in wild fish remains unresolved.

In aquaculture production, precocious maturity is considered detrimental because it diverts

energy from growth to reproduction (Taranger et al. 2010) but it is possible that in wild

populations the selection pressure on such precocious maturity is not very large since young

meagres have fast growth rates (González-Quirós et al. 2011) and are able to quickly reach a

size that protects them from most marine predators. If so, some adverse effects that precocious
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maturity may have on growth might be counter-balanced by the advantages collected from a

more precise environmental control of spermatogenesis.
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Reproductive phase determination in female meagre Argyrosomus

regius: histological development and corroboration of a gross ana tomical

scale

Abstract: The meagre (Argyrosomus regius) is one of the world’s largest sciaenids and
supports regional fisheries and aquacultural interests in European and North African waters.
However, its reproductive patterns are yet to be fully investigated. In the present study, we
used semi-quantitative analyses to clarify the seasonal and size-related variability of the
macroscopic appearance of meagre ovaries. We describe the histological stages and the
reproductive phases of meagre females and determine the extent to which they corroborate a
macroscopic scale. Our results indicate that the macroscopic scale is sufficiently accurate to be
used in assessments of the meagre maturity. Additionally, we show that the development of
meagre ovaries displays a well marked follicle stage characterized by lipid droplets and cortical
alveoli and that a group of females does not proceed to spawning in the year their oocytes first
acquire cortical alveoli and lipids. Finally, we show that consideration of ovarian wall structure
and thickness alongside fish size aids to the accurate distinction of immatures and
regenerating/developing mature females. We discuss these findings in terms of their
contribution to the understanding of ovarian development within the sciaenid family and the
importance of histologically corroborating macroscopical scales in reproduction analyses.

Keywords: histology, macroscopy, female, reproduction, Argyrosomus regius, validation

1. Introduction

The meagre, Argyrosomus regius (Asso, 1801), is one of the world’s largest sciaenids,

attaining over 180 cm in total length and 50 kg in weight (Quéméner 2002). Its distribution

ranges from the English Channel to Senegal (including the Mediterranean Sea and the Black

Sea). Most of the year the meagre occurs in coastal waters (<80 m deep) but in spring and

summer the fish migrates to shallow coastal waters and/or large European estuaries that it uses

as spawning and nursery grounds (Quéro and Vayne 1987). The largest meagre fisheries take

place in Mauritania, Morocco, and Egypt, which together comprise over 80% of the ca. 10000 t

world annual catch (Quéméner 2002, FAO 2009). In Europe, national landings are generally

below 500 t/year (FAO 2009) but due to its large size, high ex-vessel prices and seasonal

availability in inshore and nearshore waters, it is an important target species for local small-

scale commercial and recreational fleets (Quéro and Vayne 1987, Quéméner 2002, Prista et al.

2008). This importance is underscored by the recent development of meagre aquaculture

production and by the ecological significance of the meagre as a top marine predator in

European coastal waters (Quéro and Vayne 1987, Quéméner et al. 2002). However, to date the

biological characteristics of the meagre have remained poorly studied worldwide and its

fisheries have yet to be routinely monitored or assessed (Prista et al. 2011).

Studies of gonad morphology at anatomical and histological levels are required to identify

reproductive cycles, spawning seasons, spawning areas, and to determine size-at-maturity

(Hunter and Macewicz 2003). In fisheries science, determinations of the reproductive state of a
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fish population in a specific area, time, and/or size class, are the basis of several regulatory

measures (e.g. minimum landing size, area closures) (Hunter and Macewicz 2003). Until

recently, the reproduction of meagre had only been studied in North African waters and based

on macroscopic observations of fish gonads and the monthly evolution of gonadosomatic

indexes (Tixerant 1974, Hermas 1995). Recent interests in aquaculture production and

concerns with data-poor regional fisheries and depleted local resources have sparked research

and led to an array of studies some of which have addressed the reproduction of the species in

captivity (Duncan et al. 2012, Schiavone et al. 2012, Gil et al. 2013, Mylonas et al. 2013a,b),

and other in the wild (González-Quirós et al. 2011, Abou Shabana et al. 2012, Gil et al. 2013).

Macroscopic maturity scales (also known as the gross anatomical grading systems) of fish

ovaries and testes are among the most frequently used indexes of fish reproductive condition

(West 1990, Hunter and Macewicz 2003). The use of these methods is rooted in historical fish

biology literature and their low cost and ease of applicability has resulted in integration into

routine research protocols of many species (Kjesbu et al. 2003). However, many authors have

pointed out the imprecisions and inaccuracies of macroscopical maturity scales in, e.g.,

assessments of size-at-maturity (Murua et al. 2003, Lowerre-Barbieri et al. 2011). Such flaws

can be minimized through validation and corroborative studies in which histological observations

are used to fine tune the macroscopic observations and identify its biases (West 1990, Hunter

and Macewicz 2003, Brown-Peterson et al. 2011).

In this study we provide a detailed description of macroscopic (anatomical) and

microscopic (histologic) ovarian development in wild meagre. First, we describe the variability of

macroscopic features with fish size and season and use that information to build a macroscopic

scale. Then we describe follicle development and derive histological reproductive phases for

meagre. Finally, we compare the two and evaluate to what extent the macroscopical scale can

be used to assess the reproductive phase of meagre. We discuss these results in terms of the

progress achieved in the understanding of meagre reproduction in European waters.

2. Materials and methods

2.1. Sampling methodology

A total of 2418 meagres were sampled from 2003 to 2007 during a large-scale study that

targeted the meagre fishery and biology on the Portuguese coast. Detailed coverage of the

sampling methodologies, the fisheries and areas covered can be found in Prista et al. (2007,

2008) and Costa et al. (2008). Biological sampling was carried out monthly in two geographical

areas that encompass the main meagre fisheries in Portugal: the Tagus estuary (on the central-

western coast) and the coast of Olhão (on the southern coast). Monthly sampling goals were set

at 10 females per 10-cm size class following the requirements of a concurrent age and growth

study but the achieved goals largely depended on the seasonal availability and size span of the

fish commercially available at each sampling occasion. In general, all meagre specimens were

measured (total length) and weighed (total weight), and had their abdomen slightly squeezed for



CHAPTER 5

150

expressible milt or roe. Whenever possible, the individuals were gutted and sexed, and their

gonads were weighed (to the nearest 1 g), checked for the presence of the large-bodied female

nematodes of the genus Philometra (Moravec et al. 2007), analyzed for macroscopic

characteristics, and photographed (in dorsal and ventral view). Whenever possible otoliths were

removed and age determinations were carried out according to Prista et al. (2009).

2.2. Macroscopic analysis

Fresh meagre ovaries were subjected to macroscopic classification with respect to a set of

pre-defined morphological features (Table 1 ). The set included anatomical features that had

Table 1. Main characteristics used in the macroscopic analysis of meagre ovaries

Characteristic Classification levels

Coloration White; Yellow; Orange; Red; Brown

External vascularization (in
dorsal view)

Present and active (conspicuous vessels, colored red with frequent ramifications); In
resorption (less conspicuous vessels, colored gray, that give the gonad a scarred
appearance); Absent or inconspicuous

Overall shape of gonad lobe
(in ventral view)

Rectangular; Triangular; Lozenge; Too thin to characterize; Other

Shape of gonad cross-section Circular; Ellipsoidal; Triangular (generally equilateral); Rectangular; Too thin to
characterize

Fullness Full (with eggs); 1/2-full; Empty; Turgid (but not full with eggs); Too thin to
characterize

Thickness of gonad wall Thin; Thick

Transparency of gonad wall Transparent; Translucent; Opaque

Visibility of oocytes Externally visible; Only internally visible; Not visible (externally and internally)

Opacity of oocytes No translucent oocytes; <25% Translucent; >25% Translucent

Reaction to abdominal
pressure

Positive (leaks eggs upon thumb-rubbing); Negative (does not leakage eggs)

been reported in previous studies of meagre and other large sciaenids (Tixerant 1974, Griffiths

1996, Wells 2002, Farmer 2003). To make the macroscopic analysis objective and reduce

observation biases, different classificatory levels were set for each morphological feature after a

preliminary analysis of the data obtained during the first year of the study. Additionally, the

observations where carried out, one feature at a time, across the several fish sampled at each

occasion, and only in the end were the gonads coarsely graded with regards to their overall

macroscopic appearance.

2.3. Histological analysis

Meagre ovaries were fixed and preserved in 4% buffered formaldehyde (buffer: Na2HPO4

and NaH2PO4*H2O) and stored in plastic boxes. Good preservation of large ovaries was

assured by injecting a small amount of fixative through the ovary wall with a syringe. When

ovary volume was too large, only the left lobe was preserved. Histological procedures were
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carried out on small pieces of gonad (about 0.125 cm3). As the meagre ovaries can be

particularly large (up to 2 kg a piece), there was a need to select which part of the ovary would

be prepared. A preliminary study involving comparisons of oocyte development stages across

ovary locations (anterior, median, posterior; ventral, dorsal, lateral; ovarian wall, lumen)

indicated no differences, so pieces of gonad were collected from ventral periphery of the median

region of the left lobe. Histological preparation involved successive alcoholic dehydrations,

infiltration, sectioning, mounting and staining. Technovit 7100 resin (Heraeus Kulzer) was used

as the embedding medium and a Leica RM2155 micrometer was used to obtain thin sections

(3–5 µm thick). The sections were stained with toluidine blue, a basophilic metacromatic stain

(Sridharan and Shankar 2012). Three replicate sections were mounted in each slide. Permanent

preparations were obtained using Neomount and Neoclear (Merck). Microscopic analyses were

carried out at 40-400x magnification on a Zeiss stereomicroscope. Digital pictures of histological

slides were taken at 40–630x magnification with an AxioCam. Image processing and

measurements were carried out in AxioVision 4 (Zeiss). Image processing was restricted to

resizing, contrast and brightness adjustments, with only minor background clean-ups.

Ovarian development involves a series of morphological changes that take place at the

level of follicles complexes, connective tissues, blood vessels and the ovarian wall (or tunica

albuginea) (Brown-Peterson et al. 2011). We studied these changes using a two-step approach.

First we carried out an overall descriptive study on the morphology of the follicle complexes and

defined a staging scheme. Then we carried out an analysis of the entire set of histological

preparations and for each one recorded a set of ovarian characteristics we found useful in the

characterization of the reproductive phase in meagre.

In our identifications and interpretations of the development of follicle complexes in meagre

we used a simplified version of the staging scheme used by Grier (2012) in the study of follicle

development in the cofamiliar red drum (Sciaenops ocellatus). According to Grier (2012) the

follicle complex is composed of the oocyte itself, the surrounding follicle cells, a basement

membrane and a theca. Oogenesis is the oocyte formation and folliculogenesis is the formation

of the follicle. After follicle formation, the main stages of development are primary growth (PG),

secondary growth (SG), oocyte maturation (OM) and ovulation (OV). Folliculogenesis and

oogenesis are difficult to observe under light microscopy (Grier 2012) so we assumed that

oogonia and oocytes in chromatin nucleolar stage were our initial follicle development stage and

then assigned stages to follicle complexes based on a) oocyte shape, b) oocyte size, c)

ooplasm basophilly, d) relative volume of the germinal vesicle, e) overall appearance of the

zona pellucida, follicle cells and theca, and f) the abundance, size and basophilly of different

ooplasm inclusions (lipid droplets, cortical alveoli, yolk granules) (Wallace and Selman 1981,

West, 1990, Brown Peterson et al. 2011, Grier 2012). In addition to follicle complexes, we also

analyzed the appearance of post-ovulatory follicle complexes (POCs), atretic stages of yolked

oocytes and the ovarian wall. To our knowledge there is no established chronology on the

degeneration of POCs and yolked oocytes in meagre. Consequently, we carried out our

analysis of POCs degeneration based on the characteristics pointed out in the degeneration
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chronologies presented by Hunter and Macewicz (1986), Fitzhugh and Hettler (1995) and

Roumillat and Brouwer (2004) and defined atresia chronology after considering Barbieri et al.

(1994) and Miranda et al. (1999). Ovarian wall was characterized based on Morrison (1990) and

Ravaglia and Maggese (2002).

Routine analysis of the bulk of histological sections of meagre included the determination of

the most advanced follicle complex (West 1990, Grier 2012) alongside observations on features

that are relevant to the interpretation of the reproductive phases in teleosts, namely a) the

relative density of healthy vitellogenic oocytes, b) the presence/absence of POCs, c) the

presence/absence of atretic yolked follicles and their prevalence, d) the appearance and

thickness of the ovarian wall, e) the relative compactness of PG stages, and f) an overall

relative appreciation on the degree of regeneration of lamellar lining, the development of

muscles bundles and capillaries in the interfollicular space, and level of oogonia proliferation

(West 1990, Hunter and Macewicz 2003, Brown-Peterson et al. 2011, Grier 2012, Gil et al.

2013). In order to make our analysis more objective, histological scale slides were examined

with no reference to fish size or month and several observations were registered in categorical

scale. The latter was the case of the density of vitellogenic oocytes and PG stages (levels: very

dense and compact, few dispersed), POCs and atresia presence (levels: yes or no), atresia

intensity (levels: high intensity ≥5 cells affected, low intensity <5 cells affected), atresia

prevalence (levels: all yolked stages affected, some healthy yolked stages remain, no yolked

stages affected), and ovarian wall structure (<3 layers of muscle or capillaries, ≥3 layers of

muscle or capillaries).

All measurements were carried out in AxioVision image processing software (Zeiss) in

digital capture of photographs of histological slides. Oocyte diameters reported in descriptions

were obtained from measurements of five cells per individual in each of five randomly sampled

individuals found to carry the stage. In histological and microscopical analysis, oocyte diameter

was considered to be length of the major axis of cell cut through the nucleus (West, 1990). The

size of the germinal vesicle was measured parallel to the axis of cell size measurements. The

ovarian wall width was taken as the minimum width found in the slide. The relationship of wall

thickness to fish size and gonad reproductive phase was modeled using analysis of covariance

(Quinn and Keough, 2002) and AICc model selection (Hurvich and Tsai 1989, Burham and

Anderson 2002) using gonad thickness as response variable and fish length and reproductive

phase as predictors. The models were fit in R 2.15.1 (R Development Core Team, 2012) and

the general linear model assumptions checked according to Faraway (2002). The response

variable was transformed (logarithm) to meet the assumption of homogeneity of variances.

2.4. Anatomical classes and histological reproductive pha ses

Anatomical and histological grading systems should reflect the major structural changes

observed in the ovaries across the immature/mature gradient and the monthly maturation cycle

(mature fish only). In our derivation of anatomical and histological reproductive scales for the
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meagre ovary, we analyzed the variations in the frequency of occurrence of macroscopic and

histological features across size (within the peak spawning season) and months (in mature fish).

In these analyses, the peak spawning season was considered to be May and June (Costa et al.

2008) and fish were assumed to be mature fish at 90 cm. Final histological development phases

of the meagre ovary follow the recent standardization proposed by Brown-Peterson et al. (2011)

that classifies ovaries into “immature” (fish that never spawned), “developing” (fish whose

ovaries are beginning to grow and developing), “spawning-capable” (fish that are

developmentally and physiologically able to spawn in the current year), “regressing” (sexually

mature fish that have finished spawning) and “regenerating” (sexually mature fish that are

reproductively inactive). Following Brown-Peterson et al. (2011), specific subphases were

considered for meagre specific aspects (e.g., "developing immature","developing mature").

2.5. Histological corroboration of the anatomical scale

To evaluate the extent to which the anatomical grading system reflects the histological

development stage of the meagre ovary we compared the results from macroscopy and

histology using the subset of gonads where both scales had been applied. In this comparisons

we considered the histological classification to represent the “truth” because histology is widely

regarded as the most accurate staging method for fish gonads (Hunter and Macewicz 2003,

Costa 2009, Ferreri et al. 2009).

3. Results

3.1. Anatomical classification scale

A total of 351 ovaries were subjected to macroscopic analyses. These included 340 ovaries

categorized as females in the field and gonads from 11 immature fish whose sex could not be

macroscopically determined. The gonad sample comprised 6—92 ovaries from each month and

10—38 ovaries from each 10-cm fish length class with exceptions of January (no samples), fish

smaller than 30 cm (two samples) and fish larger than 180 cm (three samples). The fish

sampled were captured in both estuarine (n=154) and coastal (n=162) fishing grounds in both

the western (n=166) and southern (n=185) regions. However, due to asymmetries in

commercial fishing effort, local fishing traditions and the fish own migratory nature (Prista et al.,

2008), the majority of fish sampled came from the western estuarine fishery (43%) and the

southern coastal fishery (46%) with only two fish sampled on the western coast and only three

in southern estuaries. Furthermore, 80% of western samples were collected in May and June

from fish between 29 cm. and 148 cm while the southern samples were available year-round

and respected to fish between 49 cm. and 182 cm. In 35 fish the geographical area was known

but not the exact type of fishing ground (estuarine or coastal).

Meagre females have a pair of elongated ovaries which lay within in the body cavity against

the fish swimbladder. The two ovaries connect posteriorly and open to the exterior at the genital
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pore. Left and right ovaries are similar in width and shape with rare malformations (e.g., one

ovary much larger than the other). The surface of the ovaries is smooth and vascularized

particularly on the dorsal surface where a long blood vessel runs longitudinally. In general, the

ovaries present similar width on the anterior and medial regions and narrow a bit on the

posterior region. The cross section at mid-ovary is circular to elliptical depending on gonad

fullness.

The ovaries of mature meagre were found to be reddish-orange to pale yellow from

February to June and adopt reddish-brown tonality thereafter. In the first half of the year, the

cross section is frequently elliptical and the ovaries are wide and thick, occupying nearly all

available space in the abdominal cavity. During this period, ovaries are commonly found full

(Figure 1A) and highly vascularized displaying conspicuously branching blood vessels on the

dorsal surface that extend sideways across the flanks to the ventral side. The ovary wall is

frequently thin and transparent (Figure 1B-C) and oocytes are visible externally in nearly all

ovaries (Figure 1D), translucent oocytes being observed in May and June in a small proportion

of the gonads (less than 40%) (Figure 1D). Only n=16 fish were found to react to abdominal

pressure by extruding roe and this also took place only in May and June. From June onward,

the gonads become increasingly flat and flaccid, and the ovary wall thickens becoming

translucent or opaque (Figure 1A-C). The vascularization is much less pronounced and

assumes a grayish tonality, blending into the background as it is resorbed. During this period

oocytes are rarely visible from the outside, being present in low numbers, and appearing

opaque scattered through the gonad (Figure 1D).

Figure 1. Monthly variations in the macroscopical appearance of ovaries of mature meagre (>90 cm). A) Fullness; B)

Wall thickness; C) Wall transparency; D) External visibility of oocytes (T:<25% = less than 25% of translucent oocytes;

T:>25% = more than 25% translucent oocytes). Numbers above bars are sample size.

A B
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During the spawning season the macroscopical appearance of meagre ovaries changes

markedly with fish size. Up to 40 cm, thin thread-like transparent ovaries are relatively common

and the sex of fish cannot generally be determined (Figure 2A). From 40 to 70 cm, ovaries are

orange in color, appearing turgid (Figure 2A) and circular in cross-section and displaying a

transparent wall with fine vascularization. From 60 cm upwards, the proportion of ovaries that

appear full or half-full increases steadily, the cross-section becomes increasingly elliptical and

the wall more vascularized. In fish larger than 80 cm gonads are nearly always full or half-full,

displaying thin transparent or thicker opaque walls, through which oocytes were generally visible

(Figure 2B-D). Roe extrusion was observed in a minor proportion of fish 80—150 cm collected

from the western estuarine fishery (22%).

Figure 2. Size-related variations in the macroscopical appearance of ovaries of meagre during the peak spawning

season (May and June). A) Fullness; B) Wall thickness; C) Wall transparency; D) External visibility of oocytes

(T:<25% = less than 25% of translucent oocytes; T:>25% = more than 25% translucent oocytes). Numbers above bars

are sample size.

Some geographical differences were noticed in mature fish (across seasons) and across

the size gradient (within the spawning season). Ovaries from mature fish collected in the

southern coastal were generally full in March and April and half-full from May onward while in

the Tagus estuarine grounds displayed full gonads in May and June (only 3% half-full).

Additionally, during peak spawning season, full gonads generally displayed thinner transparent

walls and opaque oocytes being mostly sampled from the Tagus estuary fishery. A minor

proportion of these gonads displayed translucent oocytes (Figure 2D). On the contrary, half-full
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gonads generally had thicker translucent (or opaque) walls (Figure 2B-C) and lower densities of

oocytes and were sampled essentially from large fish from the coastal waters of the southern

coast. In the latter gonads oocytes were opaque (Figure 2D) and frequently seen only after a

second look at the gonad.

Philometra was found in the ovaries of 29 out of 130 fish checked for the parasite. Parasite

infections took place all year-round and both large and small size fish were infected.

Interestingly, 93% of the fish infected were collected from southern waters where 34% of

gonads carried the parasite.

Based on the macroscopic characteristics an anatomical grading system with seven

classes (0 to VI) was derived for meagre ovaries. The main macroscopic features of this system

are displayed in Table 2 and Figure 3.

3.2. Histological classification scale

A total of 286 ovaries were subjected to histologic analyses. The gonad sample comprised

4—70 ovaries from each month and 5—35 ovaries from each 10-cm fish length class with

exceptions of January (no samples), fish smaller than 30 cm (no samples) and fish larger than

180 cm (two samples). Fish samples were captured both in estuarine (n=122) and coastal

(n=137) fishing grounds and in the western (n=130) and southern (n=156) region. However, due

to asymmetries in commercial fishing effort, local fishing traditions and the fish own migratory

nature (Prista et al., 2008), the majority of the ovaries came from fish sampled in the western

estuarine fishery (42%) and the southern coastal fishery (48%) with only one fish sampled on

the western coast and one fish sampled in southern estuaries. Furthermore, 80% of western

samples were collected in May and June from fish between 36 cm and 148 cm while the

southern samples were available year-round and respected to fish between 52 cm and 182 cm.

In 26 ovaries the geographical area was known but not the exact type of fishing ground

(estuarine or coastal). A single fish was caught offshore.

The meagre ovary is of cystovarian type. In mature fish, ovarian lamellae display several

stages of follicle complex development during the spawning season. Four main development

stages were observed in the histological sections of meagre: 1) Oogonia (OG) and Chromatin

Nucleolar (CN), 2) Primary Growth (PG), 3) Secondary Growth (SG) and 4) Oocyte Maturation

(OM) (Figure 4). These stages (and their substages) form a continuum of follicle development

with changing follicle characteristics and increasing oocyte diameter that, alongside post-

ovulatory follicle complex (POCs) formation, atresia of yolked oocytes and the thickness of the

gonad wall, constitutes the corner-stone for understanding ovarian maturation in meagre.
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Table 2. Gross anatomical grading system derived for the meagre ovaries. Wg = weight of gonad (g); TL = Fish total

length (mean±s.e.); AG = age group (mean±s.e.); M = month(s) of occurrence. GSI (%) is calculated as (gonad

weight/fish total weight)*100 (mean±s.e.)

Anatomical
class Macroscopic features Other notes

0 Very thin thread-like ovaries (transparent and with barely any width or
thickness); sex of fish cannot be identified at naked eye.

Wg<1 (n=7)
GSI(%):0.0±0.0 (n=7)
TL(cm):33.8±1.9 (n=7)
AG(years):2±0.6 (n=3)
M: Mar, May, Jun

I Thread-like translucid ovaries; orange to reddish color; a few inconspicuous
blood vessels may be present.

Wg≤2 (n=27)
GSI(%):0.1±0.0 (n=27);
TL(cm):45.9±1.4 (n=27)
AG(years):2.5±0.1 (n=27)
M: Mar—Jul, Dec

II

The ovaries occupy a small space within the abdominal cavity; orange to
reddish opaque lobes, turgid with circular cross-section; thin transparent
ovary wall; no oocytes externally visible at naked eye; no vascularization
scars.

1≤Wg≤22 (n=75)
GSI(%):0.2±0.0 (n=75)
TL(cm):62±1.2 (n=76)
AG(years):2.8±0.1 (n=56)
M: Feb—Oct, Dec

III

The ovaries occupy most of the abdominal cavity; orange to pale yellow
opaque lobes (at times slightly reddish in the posterior part); full in
appearance with elliptical to circular cross-section; thin transparent
membrane delicate to touch; opaque oocytes distinctively visible through
the ovarian wall; generalized conspicuous vascularization displaying high
degree of branching in both dorsal and ventral surfaces.

41≤Wg≤4040 (n=70)
GSI(%):4.8±0.3 (n=68)
TL(cm):113.6±2.8 (n=71)
AG(years):7.7±0.6 (n=62)
M: Feb—Jul

IV

The ovaries occupy most of the abdominal cavity; pale-yellow to rose
opaque lobes (at times slightly reddish in the posterior part); full to very full
appearance with elliptical to circular cross-section; very thin transparent
ovarian wall sensitive to the touch; translucent oocytes visible as lighter
dots among a background of opaque yellow oocytes; vascularization
displaying high degree of branching in both dorsal and ventral surfaces.

156≤Wgv2292 (n=28)
GSI(%):7.5±0.5 (n=28)
TL(cm):106.9±3.4 (n=28)
AG(years):6.8±0.5 (n=26)
M: May, Jun

V

The ovaries occupy a relatively reduced volume within the abdominal
cavity; yellowish translucent lobes; less full with elliptical cross-section;
thick translucent ovarian wall very robust to handling; many opaque oocytes
externally visible through the ovarian wall; conspicuous vascularization but
with less branching than level III and IV; gonads occupy a median volume
in body cavity.

49≤Wg≤1370 g (n=55)
GSI(%):1.7±0.1 (n=53)
TL(cm):152.1±2.8 (n=54)
AG(years): 17.0±1.5 (n=44)
M: May—Oct

VI

The ovaries occupy a relatively reduced volume within the abdominal
cavity; brownish, dark orange or red opaque lobes; empty looking with
elliptical cross section; ovarian wall thick, translucent to opaque, and robust
to touch; no externally or internally visible oocytes; the vascularization is
reabsorbed leaving a scarred pattern with grayish tone. Orange color more
frequent in smaller individuals (66—126 cm) and red more frequent in
larger individuals (98—172 cm).

4≤Wg≤831 (n=86)
GSI(%):0.7±0.0 (n=86)
TL(cm):105.6±2.9 (n=87)
AG(years):6.4±0.6 (n=58)
M: Feb—Dec
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Figure 3. Macroscopical appearance of meagre ovaries [TL – total length in cm; M - month of capture; P - Place of

capture: Southern Coast (SC), Tagus Estuary (TE); H – Histological stage]. A) Class I [TL: 41; M: June; P: TE; H:

Immature] ; B) Class II (I) [TL: 49; M: June; P: TE; H: Developing immature], C) Class III [TL: 165; M: March; P: SC; H:

spawning capable early, D) Class III, detail of oocytes [TL: 165; M: March; P: SC; H: spawning capable early, E) Class

IV [TL: 100; M: June; P: TE; H: spawning capable actively spawning, F) Class IV, detail of oocytes [TL: 100; M: June; P:

TE; H: spawning capable actively spawning, G) Class V [TL: 158; M: June; P: SC; H: spawning capable advanced], H)

Class V, detail of oocytes [TL: 158; M: June; P: SC; H: spawning capable advanced], I) Class VI [TL: 130; M: November;

P: SC; H: Developing mature], J) close-up of Philometra in class VI ovary.
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Oogonia (OG) and chromatin nucleolus (CN)

Oogonia (OG) are oval shaped cells, 7—11 µm in diameter (n=11), that appear isolated

or grouped in clusters with little or no basophilly. The nucleus occupies a large

proportion of the cytoplasm (N/C: 39—72%) and displays one basophilic nucleolus.

Chromatin nucleolus oocytes (NC) are oval shaped cells similar to OG but slightly larger

(10—17 µm in diameter, N/C: 42—79%, n=10) and with chromatin threads in their

nucleus.

Primary growth phase (PG)

Primary growth follicles are characterized by oocytes with a strong basophilic ooplasm

and no yolk granules. Two sub-phases of primary growth can be distinguished and

these can be distinguished by the presence/absence of oil droplets and cortical alveoli.

Follicles in primary growth sub-phase 1 (PG-1) are smaller and more basophillic, do not

have any lipid droplets or cortical alveoli and have rather indistinct follicle cells

(=granulosa) and zona pellucida. Follicles in primary growth sub-phase 2 (PG-2) are

larger and less basophillic, always carry lipid droplets and/or cortical alveoli, and their

granulosa and zona pellucida are generally visible.

Primary growth sub-phase 1 (PG-1)

Early primary growth follicles sub-phase 1 (PG-1a): the oocytes are roundish to

slightly polyhedric, 12—46 µm in diameter (n=23). The cytoplasm is strongly

basophilic (dark blue) and homogeneous in coloration. The germinal vesicle is

central and large (N/C: 40—69%) and has moderate basophilly (violet). Frequently,

many nucleoli can be observed in the germinal vesicle, either dispersed or closer to

the periphery; Concentric filaments with reduced basophilly (=nuage) appear in the

ooplasm surrounding the germinal vesicle.

Late primary growth follicles sub-phase 1 (PG1-b): the oocytes are polyedric, 52-118

µm in diameter (n=26). The cytoplasm is strongly basophilic (dark blue) and the

germinal vesicle has moderate basophily (violet). However, compared to PG-1a the

germinal vesicle takes up smaller volume in the ooplasm (N/C: 25—50%) and the

nucleoli are nearly always at its periphery. Nuage is frequent and patches of less

basophillic material (=Balbiani bodies) appear in the ooplasm.
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Figure 4. Stages of oogenesis an oocyte development in the meagre. A) Oogonia (Scale bar: ~20µm, 630x); B)

Chromatin Nucleolar (Scale bar: ~20µm, 630x); C) Early primary growth follicles sub-phase 1 (PG-1a) (Scale bar:

~20µm, 630x); D) Late primary growth follicles sub-phase 1 (PG1-b) (Scale bar: ~50µm, 400x); E) Early primary growth

follicles sub-phase 2 (PG-2a)(PG1-b) (Scale bar: ~50µm, 400x); F) Mid primary growth follicles sub-phase 2 (PG-2a)

(Scale bar: ~100µm, 200x); G) Late primary growth follicles sub-phase 2 (PG-2a) (Scale bar: ~100µm, 200x); H) Early

secondary growth follicles (SG-a)(Scale bar: ~100µm, 200x); I) Late secondary growth follicles (SG-b)(Scale bar:

~200µm, 100x); J) Early oocyte maturation follicles (OM-a)(Scale bar: ~200µm, 100x); K)Late oocyte maturation follicles

(OM-b)(Scale bar: ~500µm, 40x); L) Overview of ovary section (Scale bar: ~500µm, 40x).

Primary growth sub-phase 2 (PG-2)

Early primary growth follicles sub-phase 2 (PG-2a): oocytes are polyhedric, 87—157

µm in diameter (n=19). The overall coloration is similar to PG-1b. The germinal

vesicle has moderate size (N/C: 25—53%) and displays many peripheral nucleoli.

The germinal vesicle envelope is smooth and conspicuous. Folicular cells are now

distinct (namely the granulosa) but the zona pellucida is not yet visible. In PG-2a two
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characteristic inclusions appear in the ooplasm: lipid droplets and cortical alveoli.

Lipid droplets (=oil droplets sensu Grier 2012) appear in the ooplasm, either

dispersed or aggregated closer to the germinal vesicle. The lipid droplets appear as

white vacuoles in the ooplasm and grow quickly in volume (reaching rapidly more

than 3 µm in diameter). Cortical alveoli are similar in shape and color to lipid droplets

but are generally smaller (less than 3 µm in diameter) and display basophilic content.

Initially, both structures appear scattered in the ooplasm but are present in very small

numbers so it is frequent that only type is observed.

Mid primary growth follicles sub-phase 2 (PG-2b): the oocytes are polyhedric to

roundish, 139—204 µm in diameter (n=16). The ooplasm suffers a large decrease in

basophilly. The germinal vesicle is moderately sized (N/C 30—49%) and becomes

irregular. The nucleoli are oval-shaped and located in peripheral position. Lipid

droplets and cortical alveoli increase in number and size. The former become

increasingly aggregated closer to the germinal vesicle while the latter move closer to

the ooplasm periphery. The granulosa cells are now conspicuous.

Late primary growth follicles sub-phase 2 (PG2-c): the oocytes are polyhedric to

roundish, 216—356 µm in diameter (n=11). Their coloration is similar to PG-2b. The

germinal vesicle is moderately sized (N/C 25—55%) with and inconspicuous and

irregular contour. The nucleoli are irregularly oriented at germinal vesicle periphery.

Lipid droplets become extremely obvious in the cytoplasm forming one or two

continuous concentric strings centered around on the germinal vesicle. The cortical

alveoli become less conspicuous and are discernible only at the periphery of the

ooplasm. The granulosa and the zona pellucida are conspicuous with the latter being

clearly visible as a thin single layer band with strong marine-blue coloration.

Secondary growth phase (SG)

The secondary growth follicles are characterized by the appearance of strongly

basophilic granules (yolk granules) in the ooplasm accompanied by a large increase in

oocyte volume and the enlargement of the zona pellucida. Early and late SG follicles

(SG-a and SG-b, respectively) can be distinguished based on the abundance and size

of yolk globules, the size of the cell and the appearance of the zona pellucida.

Early secondary growth follicles (SG-a): the oocytes are round, 282—465 µm in

diameter (n=10). The germinal vesicle is moderately sized (N/C 22—46%) and presents

an inconspicuous and irregular envelope.The ooplasm coloration is not much different

from PG-2c follicles but yolk globules with strong marine-blue coloration start appearing

in the outer and middle cortex. Lipid droplets continue to increase in size and cortical

alveoli are now at periphery of the ooplasm; the zona pellucida thickens gradually.

Late secondary growth follicles (SG-b): the oocytes are round, 477—725 µm in

diameter (n=15). The germinal vesicle is smaller relative to cell diameter (N/C: 22—36%)

with its contour becoming smooth but remaining relatively inconspicuous. Yolk granules
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proliferate and increase in size. Lipid droplets continue to increase in volume at the

periphery of the germinal vesicle; Cortical alveoli become increasingly inconspicuous at

the oocyte periphery. The overall coloration of the oocyte approaches marine blue,

greatly contrasting the violet and dark-blue that characterized the PG-1, PG-2 and SG-b.

The zona pellucida becomes very thick and conspicuous, with clearly distinct internal

and external areas.

Oocyte maturation phase (OM)

Oocyte maturation groups the final steps of follicle development prior to ovulation. In

meagre this involves the coalescence of lipid and yolk droplets, the migration of the

germinal vesicle to the animal pole and the progressive hydration of the oocyte. Early

and late oocyte maturation (OM-a and OM-b, respectively) can be distinguished based

on the overall appearance of the ooplasm and the size of the cell.

Early oocyte maturation follicles (OM-a): oocytes are round, 619—836 µm in diameter

(n=10). The basophilly of ooplasm decreases drastically relative to previous stages. The

yolk granules, the nucleoli and the zona radiata are now the most strongly stained

structures. At the start of the OM-a stage the germinal vesicle is located central to the

ooplasm and surrounded by lipid droplets. The lipid droplets then start to coalesce an

form larger lipid droplets while polarity is established in the cell with the germinal vesicle

appearing progressively closer to the animal pole. As maturation progresses, the cell

hydrates and yolk globules coalesce with lipid droplets originating larger lighter blue

globules. The germinal vesicle envelope becomes progressively more irregular and

starts to disintegrate. The zona pellucida remains conspicuous.

Late oocyte maturation follicles (OM-b): occur just before ovulation and have fully

hydrated oocytes. The oocyte is now very large with no germinal vesicle and

homogeneous intracellular content of reduced basophilly (pink). Approximate oocyte

diameter range 821—1108 µm (n=13) Yolk granules are no longer visible. The zona

pellucida remains strongly basophilic but now appears as a single layer with marked

invaginations into the ooplasm.

Ovulation (OV)

When follicle development is completed, ovulation takes place. Ovulation encompasses

the parting of the germinal epithelium, basement membrane and follicular cell layer

required for the release of the hydrated oocyte into the ovary lumen (Grier 2012). We

have not observed signs of ovulation other than the presence of post-ovulatory

complexes (POC) that we assumed to be indicative that had recently taken place.

Additional ovarian features that were found relevant to the interpretation of histological slides of

the meagre ovaries during specific phases of the reproductive cycle are displayed in Figures 5,
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6, and 7. From these, particular relevance is detained by post-ovulatory follicle complexes,

atresia and the ovarian wall.

Post-ovulatory follicle complexes (POC)

Post-ovulatory follicle complexes (POC) are the remnants of the follicle that stay in the

ovary after ovulation. These remnants include the basement membrane, the granulosa

and the theca. In meagre, the POCs can be recognized by the convoluted appearance

assumed by the granulosa cells after the ovum is released. Similar to other species a

degenerative process of the POC structure gradually takes place. In our observations of

meagre POCs we have distinguished between two types of POCs: early POCs and late

POCs (Figure 5A). In early POCs the granulosa cells hypertrophy and convolute

forming a continuous cord with their nuclei similarly oriented. Late POCs are smaller,

the outer granulosa cells detaching from the theca and the inner granulosa cells loosing

their linear arrangement and oriented nuclei and parting from each other to form an

increasingly unstructured vacuolar mass (Figure 5B). Early and late POCs are

morphologically similar to POCs reported by Hunter and Macewicz (1986) for skipjack

tuna Katsuwonus pelamis kept at ~23ºC, 0 and 12 hours after spawning, respectively.

Figure 5. Post-ovulatory follicle complexes and vitellogenic atresia in the meagre ovary; A) Early post-ovulatory follicle

complex (POC); B) Late post-ovulatory follicle complex. Note the smaller size and disorganized appearance of the

granulosa relative to the early stage; C) Early vitellogenic atresia (α-atresia); D) late vitellogenic atresia. Note the

conspicuous vacuoles and absence of yolk granules relative to α-atresia. Scale bar: ~100µm, 200x.

Atresia of yolked oocytes

Atresia is the process of degeneration and removal of the ovarian follicles from the

ovary. In meagre atretic stages of unyolked oocytes were rarely observed but two

stages of vitellogenic atresia were observed: α-atresia and β-atresia. Α-atresia starts
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with a proliferation of the blood vessels in the theca and the disintegration of the

germinal vesicle. Then the contents of yolk granules and lipids start dissolving into the

ooplasm (Figure 5C). Finally, the zona pellucida and olonema break, and yolk granules

and lipids continue to coalesce and dissolve. Resorption of the cellular content

continues until basophilly is definitively lost giving rise to a disorganized mass of

vacuoles (Figure 5D). Atretic stages of unyolked oocytes were only rarely observed.

Ovary wall

The ovary wall of meagre is mildly basophillic and highly muscular varying widely in

thickness and structure with both fish size and reproductive stage. The core structural

components of the ovary wall are the squamous epithelium, smooth muscle fibers,

nerves and blood vessels. In immature individuals the wall is thin and displays one to

three layers of smooth muscle, capillaries and nerves (Figure 6A). In mature individuals,

the wall displays several more such layers. As the spawning season approaches and

the ovarian content increases in volume, capillaries become filled with erythrocytes and

the muscle fibers become progressively more parallel as they stretch. During oocyte

maturation, the different layers are completely compressed and barely distinguishable

(Figure 6B). Then, as the ovary empties the wall layers become visible once more, with

muscle fibers becoming highly disorganized. During this period, blood cells within

capillaries loose basophilly and degenerate and the wall thickens (Figure 6C). A

relationship appears to exist between the number of muscle and vessel layers and fish

age, that may justify the increase in thickness with fish size.

Figure 6. Ovarian wall in meagre. A) Thin wall in developing immature; B) Thin wall in spawning capable fish; C) Thick

wall in regressing fish. Scale bar: ~500µm, 40x.

From February to July the most advanced follicle complex of the vast majority gonads of

mature meagre area in SG phase (Figure 8A). OM follicles were observed between April and

July but only in a minor proportion of females. Hydrated follicles (OM-b) were observed in May

and June (Figure 8A). POCs were found from May to August (Figure 8B). Occasional

vitellogenic atresia was present throughout the year but higher levels were only registered

between June and October and always in a minor proportion of ovaries (Figure 8C). High

density of healthy SG-b follicles took place essentially from February to June and low density

from June to October. Nearly all mature individuals displayed a complex ovarian wall, with three
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or more layers of capillaries, nerves and muscles. Wall thickness and vitellogenic oocyte density

varied inversely, i.e., thinner walls being present when vitellogenic oocyte density was higher

and thicker walls when the density of vitellogenic oocytes was lower or null (Table 3). From

August until December the most advanced follicle displayed cortical alveoli and lipid droplets but

no yolk granules (PG-2) (Figure 8A). No samples were obtained in January and February but

PG-2 follicles were essentially loose (i.e., non compact) in ovaries collected from June to

November becoming compact thereafter (Figure 8D). Muscle bundles (Figure 7C) co-occurred

with the mass atresia in the end of summer but were found in nearly all mature individuals until

the end of the year. Signs of regeneration in the lamella lining (Figure 7D) were noticed in

individuals caught between August and November. PG-1 phase was observed in all slides but

was never the most advanced stage in mature fish.

Figure 7. Additional features used to assign reproductive phase to meagre ovaries. A) High density of vitellogenic

oocytes (Scale bar: ~500µm, 40x); B) Low density of vitellogenic oocytes (Scale bar: ~500µm, 40x); C) Muscle

Bundle(Scale bar: ~50µm, 400x); D) Recovery of the germinal epithelium and lamella lining. Note the proliferation of

pre-follicle and PG-1 follicles and capillaries (Scale bar: ~100µm, 200x); E) compact PG-1 and PG-2 follicles in

developing mature fish (Scale bar: ~500µm, 40x); F) non-compact PG-1 and PG-2 in regenerating mature (Scale bar:

~500µm, 40x).
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Figure 8. Monthly variations in the histological features of ovaries of mature meagre (>90 cm). A) Follicle development

stage, B) Post-ovulatory follicle complexes, C) Vitellogenic atresia, D) Compactness of PG-2 stages in ovaries with PG-

2 as the most advanced follicle stage. Numbers above bars are sample size.

Within the spawning season, the most advanced follicle of all ovaries from fish with

length <40 cm was in PG-1 stage (Figure 9A). In fish lengths 40 cm to 70 cm PG-1 stage

remained dominant but PG-2 follicles were detected in some ovaries. From 70 cm upwards,

ovaries with most advanced follicle in SG and OM stage increase in frequency becoming

dominant in fish >80 cm (Figure 9A). Along the size gradient, the first ovary in OM stage

belonged to a 68.5 cm fish and displayed low vitellogenic density. Other than this specimen, in

ovaries of fish <70 cm no other ovary containing yolked oocytes was observed. POCs were only

observed in fish >70 cm (Figure 9B) and vitellogenic atresia was only detected in fish >60 cm

with intense levels registered in mostly fish >100 cm (Figure 9C). The wall of fish <80 cm

generally had at most two muscle and capillary layers and its thickness was below the thinnest

walls registered in mature fish (Table 3).

Table 3. Wall thickness (µm) of the meagre ovary with follicles in different developmental stages. TL = Fish Total Length

Most advanced
follicle stage

Specifics n Mean (± s.e.) Range Type of wall

OM-a --- 6 357±73 222—684 Thin, 3 or more layers

SG-b high density
SG-a 38 383±27 147—950 Thin, 3 or more layers

SG-b
medium or
low density
SG-b

32 1067±67 418—1702 Thick, 3 or more layers

PG-1 or PG-2 TL >90 cm 43 633±47 201—1468 Thick, 3 or more layers

PG-1 or PG-2 TL ≤ 90 cm 98 262±10 88—582 Thin, less than 3 layers

A B

C D
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Figure 9. Size-related variations in the macroscopical appearance of ovaries of meagre during the peak spawning

season (May and June). A) Follicle development stage; B) Post-ovulatory follicle complexes; C) Vitellogenic atresia.

Numbers above bars are sample size.

Geographical differences were noticed in the histological sections of mature fish (across

seasons) and across the size gradient (within the spawning season). In mature fish, OM follicles

were observed in fish collected in both the western and southern regions but hydrated follicles

(OM-b) were observed only in May and June and in fish sampled from the Tagus estuary fishery

(western coast). POCs were found from May to August in both western and southern fisheries in

ovaries collected from both estuarine or coastal waters. Late summer samples of large fish, with

thick wall and low vitellogenic density were common in southern coast. During the spawning

season, the ovaries of a few individuals between 100 and 140 cm had their most advanced

follicle in stage PG-2. These fish showed signs of vitellogenic atresia and were all caught in the

southern coast fishery with individuals of similar sizes of the western estuary displaying yolked

stages. The only sample of >100 cm fish caught in estuarine waters of the southern coast was

caught in late June. The ovary displayed follicles in SG-b stage with low density of vitellogenic

oocytes, thin wall (418 µm thick) and no atresia. The only sample from fish >100 cm from the

western coastal waters was caught in late November and displayed loose PG-2 follicles with no

POCs or atresia. Finally, we note that only four individuals were observed with most advanced

follicle in stage PG-2c and only two individuals with most advanced follicle in stage SG-a.

Based on the previous characteristics the histological development of the meagre ovaries

can be divided into 5 main phases (Figure 10, Table 4). The width of the ovarian wall displayed

significant linear relationship to fish length and reproductive phase (Figure 11). Final AICc

A B

C
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selected model indicated no coincident slopes and no interaction (parallel lines). In mature

individuals ovarian wall thickness displayed a clear relationship to reproductive phase with

thinner walls being registered in actively spawning and early spawning capable individuals. The

wall thickened as spawning progresses achieving its maximum in advanced spawning and

regressing individuals. Immatures and developing immatures displayed thinner walls than

developing/regenerating matures (Table 4, Figure 11).

Figure 10. Histological development phases of meagre ovaries. A) Developing Immature; B) Developing Mature; C)

Spawning Capable Early; D) Spawning capable advanced; E) Regressing; F) Regenerating. Scale bar: ~500µm, 40x.

Figure 11. Relationship between ovarian wall width and fish length in the different reproductive phases of meagre. The

straight lines are the values predicted from the linear model. Dev = Developing, Sc = Spawning capable. Note the y-axis

in log-scale. Thickness in µm.

A B C

D E F
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Table 4. Histological grading system of the meagre ovaries. PG – Primary Growth, SG – Secondary Growth, OM -

Oocyte maturation, POCs – Post-ovulatory follicle complexes; Wg – weight of gonad. TL = Total length; AG = Age

group; Wall = Thickness of the ovarian wall; M = Months of occurrence. Gonadosomatic Index (GSI, %) calculated as in

Table 2

Phase Main Histological features Other notes

Immature PG-1 is the most advanced follicle stage; low follicular density; abundant interfollicular
tissue; no vitellogenic atresia or POCs; thin ovarian wall.

0≤Wg≤7 (n=42)
GSI(%):0.1±0 (n=42)
TL(cm):50.7±1.3 (n=42)
AG(years):2.6±0.1 (n=41)
Wall(µm):249±16 (n=40)
M: Mar—Jun, Sep, Oct

Developing
(immature)

PG-2 are the most advanced follicle stage; compact follicles with little interfollicular tissue
(86%); no vitellogenic atresia or POCs; thin ovary wall with <3 layers.

2≤Wg≤21 (n=35)
GSI(%):0.3±0 (n=35)
TL(cm):63.5±1.7 (n=35)
AG(years):2.8±0.1 (n=32)
Wall(µm):236±13 (n=35)
M: Feb—Jul, Oct, Dec

Developing
(mature)

PG-2 or SG-a are the most advanced follicle stages; compact follicles (95%); no
vitellogenic atresia or POCs; lamellae highly organized with smooth lining practically
without blood vessels; muscle bundles absent; thin ovary wall with ≥3 layers and active
blood vessels.

9≤Wg≤163 (n=22)
GSI(%):0.6±0 (n=22)
TL(cm):92.9±3.7 (n=22)
AG(years):4.1±0.2 (n=14)
Wall(µm):400±56 (n=18)
M: Feb—Apr, Sep—Dec

Early developing: PG-2 are the most advance follicle stage. 9≤Wg≤163 (n=20)
GSI(%):0.6±0 (n=20)
TL(cm):93.7±4.1 (n=20)
AG(years):4.2±0.3 (n=12)
Wall(µm):413±62 (n=16)
M: Feb—Apr, Sep—Dec

Late developing: SG-a is the most advance follicle stage. 41≤Wg≤53 (n=2)
GSI(%):1±0.1 (n=2)
TL(cm):85±3.5 (n=2)
AG(years):4±0 (n=2)
Wall(µm):294±36 (n=2)
M: Mar—Apr

Spawning
Capable

SG-b or OM are the most advanced follicle stages; follicles of all developmental stages
may be present; vitellogenic atresia absent or in low levels; POCs may be present; ovarian
wall thin to thick.

80≤Wg≤4040 (n=120)
GSI(%):4.4±0.2 (n=119)
TL(cm):124.9±2.7 (n=120)
AG(years):10.4±0.8 (n=113)
Wall(µm):607±45 (n=90)
M: Feb—Ago, Oct

Early spawning capable: SG-b is the most advanced stage and is present in high
density; minor vitellogenic atresia frequent (39%); thin ovary wall; POCs frequent
(30%).

95≤Wg≤4040 (n=57)
GSI(%):4.9±0.2 (n=57)
TL(cm):115.7±3.1 (n=57)
AG(years):8±0.7 (n=54)
Wall(µm):358±22 (n=40)
M: Feb—Jul

Late spawning capable: SG-b is the most advanced stage being present in low
density; vitellogenic atresias frequent (58%), sometimes in high number(44%), but
some healthy SG-b oocytes still remain; muscle bundles and blood vessels start
appearing; very thick ovary wall, particularly in larger individuals; POCs frequent
(31%).

80≤Wg≤1325 (n=36)
GSI(%):1.8±0.1 (n=35)
TL(cm):154.7±3.3 (n=36)
AG(years):17.3±1.8 (n=33)
Wall(µm):1064±65 (n=33)
M: Apr, May—Ago, Oct

Actively spawning subphase: OM is the most advanced developmental stage; very
thin ovary wall; POCs frequent (30% of slides).

124≤Wg≤2292 (n=27)
GSI(%):6.9±0.5 (n=27)
TL(cm):104.8±3.6 (n=27)
AG(years):6.6±0.5 (n=26)
Wall(µm):308±40 (n=17)
M: Apr—Jul

Regressing PG-2 is the most advanced stage; intense folliculogenesis and oogenesis; vitellogenic
atresias always present and affecting all remaining SG oocytes ; lamellae disorganized
with irregular lining and extensive blood vessels and muscle bundles; non-compact follicles
(76%); POCs rare (12%); ovary wall with intermediate thickness and ≥3 layers; many
inactive vessels in ovarian wall, namely at its periphery.

16≤Wg≤404 (n=42)
GSI(%):0.8±0 (n=42)
TL(cm):119.3±4.2 (n=43)
AG(years):8.4±0.8 (n=25)
Wall(µm):604±58 (n=30)
M, Apr—Dec

Regenerating PG-2 are the most developed stage; intense folliculogenesis and oogenesis; No
vitellogenic atresia or POCs; non-compact follicles (75%) ;Lamellae more organized with
smoother lining and many blood vessels; Muscle bundles present; ovary wall with
intermediate thickness and ≥3; Inactive vessels in ovarian wall.

12≤Wg≤387 (n=24)
GSI(%):0.7±0.1 (n=24)
TL(cm):106.9±4.7 (n=24)
AG(years):5.4±0.8 (n=16)
Wall(µm):498±62 (n=20)
M: Jul—Nov
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3.3. Correspondence between macroscopic and histological scales

The results obtained from the application of histological and macroscopical scales to 264

ovaries are displayed in Table 5. Ovaries classified macroscopically as class I and II largely

corresponded to juvenile fish that were not spawning in the current annual cycle (immatures or

developing immatures). Ovaries classified as class III, VI and V (and to a lesser extent also VI)

all corresponded to mature fish. Table 6 displays conditional probabilities of interest for fisheries

studies on meagre calculated based on data displayed in Table 5 (or seasonal subsets) and

assuming the sample is representative of the population. It is noticeable that the macroscopical

scale performs well in assessments of maturity but that it is difficult to identify actively spawning

fish based on macroscopy.

Table 5. Histological corroboration of the macroscopic scale of meagre ovaries

Gross anatomical class

Histological phase 0 I II III IV V VI Total

Immature 21 20 1 42

Developing 30 4 34

Developing (mature) 2 2 14 18

Spawning capable (early) 52 5 57

Spawning capable (actively
spawning) 7 19 1 27

Spawning capable (late) 2 32 34

Regressing 0 0 6 26 32

Regenerating 1 1 18 20

Total 0 21 53 63 24 40 63 264

Table 6. Accuracy of the gross anatomical scale when classifying meagre ovaries. Values calculated for "all year" were

directly derived from table 5. These data assumes the meagre sample is representative of the population

Conditional Probability: Probability (%)

Mature if III-VI 97

Mature if III-VI & Apr-Jul 98

Mature if III-VI & May+Jun 99

Immature if I-II 96

Immature if I-II & Apr-Jul 98

Immature if I-II & May+Jun 100

Actively Spawning if III 11

Actively Spawning if IV 79

Actively Spawning if V 2



CHAPTER 5

171

4. Discussion

The present details the reproductive characteristics of wild meagre Argyrosomus regius

females across the species size span and in different seasons of the year. The reproductive

cycle of meagre has recently become the focus of significant research interest because of the

potential the species exhibits for aquaculture diversification and difficulties in obtaining natural

spawning in captivity (Duncan et al. 2012, Schiavone et al. 2012, Mylonas et al. 2013a,b). To

date, few studies directly addressed the reproduction of wild meagre in European and

Mediterranean waters. González-Quirós (2011) studied the life-history of meagre in the Gulf of

Cadiz but covered larger females only from March to August and did not present histological

results. Abou Shabana et al. (2012) analyzed 30 meagre ovaries from Egyptian waters but also

with very limited seasonal and size span (few individuals >90cm). Gil et al. (2013) analyzed 37

wild females >100 cm from the Gulf of Cadiz but only between April and August. One additional

work, provided histological and macroscopic details on the reproductive cycle of meagre but

focused singly on male reproduction (Prista et al., 2014). This scarcity of information extends to

meagre populations from other geographical areas (Mauritania, Morocco) but also to

Argyrosomus from the southern hemisphere (Tixerant 1974, Hermas 1995, Griffiths 1996,

Farmer 2008, Silberschneider et al. 2009). As such, most of the information on ovarian histology

that can be directly compared to the current results comes from the reproductive studies of

american cofamiliars (e.g., Fitzhugh et al. 1993, Wells 2002, Wells and Jones 2002, Grier 2012).

Probable causes for the shortage of studies on Eastern North Atlantic sciaenids (but see Grau

et al. 2009) are difficulties reported in the acquisition of fresh samples from large highly valuable

fish, particularly when they are migratory and have poorly characterized fisheries of essentially

small scale artisanal or recreational nature (Prista et al. 2007).

Asynchronous ovarian development, batch spawning and indeterminate fecundity are

common reproductive patterns in the Sciaenidae family, both in large-sized (Fitzhugh et al. 1993,

Grier 2012) and smalle-sized species (Barbieri et al. 1994). In meagre, all development stages

are present in ovaries of mature fish during the spawning season indicating this species has

asynchronous ovarian development. Additionally, post ovulatory follicle complexes are found in

meagre ovaries alongside healthy secondary growth follicles and/or oocytes undergoing

maturation indicating the fish is also a batch spawner. This conclusion is further confirmed by

information on multiple spawns associated to decreasing density of vitellogenic oocytes as the

spawning season progresses registered in wild populations (Table 4, Figure 7A,B; Chapter 5C)

and in captivity (Mylonas et al. 2013a). Finally, whole oocyte size frequencies of mature meagre

were analyzed during the spawning season and no hiatus between pre-vitellogenic and

vitellogenic oocytes was found (Chapter 5C). Alongside the high intensity atresia in late

spawning capable ovaries and regressing ovaries (Table 4), these findings further corroborate

the idea that meagre is a species with indeterminate fecundity (Hunter et al. 1992).

Follicle and ovarian development has been thoroughly studied in teleosts (Wallace and

Selman 1981, Tyler and Sumpter 1996, Lubzens et al. 2010). The terminology and features

used to describe the successive stages of oocyte formation vary with author and species but the
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overall oocyte stages and reproductive phases initially proposed have been broadly maintained

(Brown-Peterson et al. 2011). In mature meagre all main types of follicle stages can be found

and we have grouped them into primary growth, secondary growth and oocyte maturation as

recently suggested by Brown-Peterson et al. (2011). A comparison of our results with the recent

morphological work carried out in the cofamiliar red drum Sciaenops ocellatus (Grier 2012)

indicates that the structures observed and sequence of development match reasonably well

with what has been observed in red drum descriptions with only minor differences being

noticeable. However, some aspects of the meagre histology deserve highlighting because they

contrast with recent standardization proposals (namely Brown-Peterson et al. (2011)) and

because they have implications on studies of comparative histology and life-history across the

members of the Sciaenid family and teleosts in general.

To date, oocyte stages defined by the presence of lipid droplets have been infrequently

reported in sciaenid literature and it is not clear if they are absent or have not been

noticed/reported in previous studies (but see Wells 2002, Berois et al. 2004, Grau et al. 2009

and Grier 2012). In histological sections of meagre we have found abundant lipids droplets that

appear and proliferate in the oocyte at about the same time as cortical alveoli which has led us

to consider a mixed lipid droplet and/or cortical alveoli substage (PG-2a-c) (Figure 4). Given the

significance of lipids in the meagre gonads and gonads of other perciforms (Mayer et al. 1988,

Grau et al. 1996, Holland et al. 2000, Abascal and Medina 2005) it would seem likely that lipid

stages would have been more alluded to in reproductive studies of teleosts. Lipid droplets

appear in routine histology slides as empty vacuoles because they loose their content during

the alcoholic dehydrations and require histochemical or ultrastructural studies to be fully

evidenced (Mayer et al. 1988, Grau et al. 1996, Abascal and Medina 2005, Grier 2012). Given

their vacuolar appearance and their initial location in the cortex of the oocyte, it is possible that

lipid droplets have been misidentified as cortical alveoli in some previous literature. However, it

is also possible that authors have noticed lipids but preferred to continue to use the more

familiar term "cortical alveoli" when referencing to the oocyte stage where lipid droplets

frequently appear (Mayer et al. 1988, Selman and Wallace 1989, Brown-Peterson et al. 2011).

The exact positioning and significance of cortical alveoli and lipids within follicle

development is currently under debate. Brown-Peterson et al. (2011) have advocated towards

the inclusion of cortical alveoli stages at the beginning of secondary growth on grounds of

evidence that relates cortical alveoli formation to gonadotropin dependent processes (Lubzens

et al. 2010). Lowerre-Barbieri et al. (2011) also recommended using the cortical alveoli stage to

identify maturity unless species have a long developmental rate and reproductive cycles longer

than 1 year or skip spawning by arresting oocyte development while in cortical alveoli stage

(e.g., Junquera et al. 2003). Conversely, Grier (2012) has emphasized that cortical alveoli

synthesis and vitellogenesis are different processes that may (or may not) be coincident in time

(Mayer et al. 1988, Abascal and Medina 2005). In his study of Sciaenops ocellatus he opted for

a "staging compromise" considering that secondary growth starts with the appearance of yolk

globules under light microscopy. Similarly, Abascal and Medina (2005) have opted for not
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considering a cortical alveoli stage in Thunnus thynnus but rather a transitional lipid stage

between primary and secondary growth on grounds of marked lipid presence but cortical alveoli

being "scarce in, if not absent" in bluefin tuna oocytes. Lipid droplets are absent from some

teleosts (Wallace and Selman 1981) but preponderant in others (Mayer et al. 1988, Grau et al.

1996, Abascal and Medina 2005, this study) and like cortical alveoli are also considered to be

related to gonadotropins and vitellogenesis (Holland et al. 2000, Lubzens et al. 2010) thus being

categorized as secondary growth.

In meagre we have opted to categorize follicles with lipids and cortical alveoli stages (and

no yolk) within a final substage of primary growth. We base our decision on two main lines of

evidence. On the one hand juvenile ovaries generally display stage PG-2b (or lower) follicles

year-round (Table 4) which indicates cortical alveoli are present long before the fish are

effectively mature and fully integrate the annual spawning cycle. On the other hand the ovaries

of mature fish show no evidence of arrested oocyte development at cortical alveoli stage and

display an annual cycle that involves progressing from a cortical alveoli stage (PG-2) towards

yolked stages (SG) during the first semester and a regression back to cortical alveoli stages

during late summer and autumn. In this annual cycle we have found a scarce number of ovaries

with PG-2c and SG-a as the most advanced follicle (Figure 9) and it is likely this scarcity

resulted from vitellogenesis in wild populations being a relatively fast process as has been

described for meagre in captivity (2 months; Mylonas et al. 2013b). These two results indicate

that if gonadotropin dependent vitellogenesis is actually taking place in PG-2a,b follicles then it

is likely to be happening at a much slower rate than it happens annually in adult fish. Because

secondary growth is frequently associated to fish maturity and used as threshold in the annual

building of maturity ogives (Brown-Peterson et al. 2011, Lowerre-Barbieri et al. 2011) we found

it better to follow Grier's (2012) compromise and for the time being consider cortical alveoli

within a final substage of primary growth and accept the presence of yolk as the proof of

significant vitelogenesis and upcoming maturity.

Our results consubstantiate the existence in meagre of a group of young females that

display some signs of maturity (e.g., cortical alveoli, lipid droplets) but that do not yet develop

yolk globules on an annual basis. Holland et al. (2000) have reported similar results in striped

bass Morone Saxatilis where secondary growth appears to be initiated but not completed within

a year. Some similar precocious maturity signals have been identified in wild male juveniles of

meagre which at 3-4 years of age develop spermatozoa in very small amounts but do not

appear to contribute significantly to spawning biomass (Prista et al. 2014). The adaptative value

precocious maturity signs in meagre is difficult to envision as it represents an expenditure of

energy that is diverted from fish growth (Taranger et al. 2010) and is thus likely to increase

mortality in wild populations. One possibility is that it is a natural consequence of a progressive

entrainment of the response of the brain-pituitary-gonad system to environmental clues that

thrigger adult maturity (Lowerre-Barbieri et al. 2011). The fact that meagre juveniles co-occur

with adults in estuarine grounds during the same seasons might be seen to corroborate this

hypothesis (Prista et al. 2008). Recently, Campbell et al. (2006) studied cortical alveoli and lipid
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formation in Coho salmon Onchorhynchus kisutch suggesting that growth achieved at a specific

time of the year might dictate the evolution (or no-evolution) of ovaries towards ovulation.

Considering the large energetic investment that is probably associated to gonad production on

meagre it seems likely that a such a threshold in size exists and must be attained before the fish

effectively proceed towards definitive vitellogenesis.

In meagre we have been able to distinguish between developing immatures (with PG-2

follicles) and regenerating/developing adults (also with PG-2 follicles) on grounds of the ovarian

wall thickness of each phase. The importance of ovarian wall in distinguishing mature fish and

immature fish has been frequently alluded to but present literature on the ovarian wall of

teleosts is very fragmented and consists mostly of morphological studies (Takano 1968,

Morrison 1990, Ravaglia and Maggese 2002). To the best of our knowledge, no detailed studies

exist that directly analyze and quantify the seasonal- or size-related variations in wall thickness

and wall structure in marine teleosts (but see Yamamoto 1963 in Takano 1968) and a single

study has used quantitative measurements of wall thickness to separate reproductive phases

within the Sciaenid family (Berois et al. 2004). One reason for this apparent scarcity may be

difficulties in standardizing measurements of wall thickness (Lowerre-Barbieri et al. 2011) but in

meagre we have found annual variability that is noticeable at the naked eye (Figure 3) and that

appears to be well above imprecisions in measurement (Figure 11). Furthermore, a direct

relationships appears to exist between microscopic features related to regression (resorption of

capillary content, occlusion of older capillaries) (Figure 6C) and macroscopic features like the

grayish vascular patterns characteristics of macroscopical class VI (Figure 3). The reason why

thickness variations and macroscopical features were so noticeable in the meagre case may

have to do with the large size/age span of the meagre and the large variations in size its ovaries

experience throughout the year, but it may also be species specific. In the medaka Oryzias

latipes the ovary wall is thought to have a secretory role and produce fluid that facilitates the

extrusion of eggs (Takano 1968) and Bills et al. (2008) have recently suggested the contraction

of ovarian wall musculature could play a significant role in ovulation helping the fish to extrude

the eggs (Bills et al. 2008). During field work, local estuarine fishers reported us that the meagre

rubs its belly on the estuarine bottom while spawning. This observation matches our own

observations of numerous "reddish bellies" in meagre captured during spawning season in the

Tagus estuarine grounds. This evidence is purely anecdotal but it does point out that the egg

shedding may be difficult for meagre (this is mentioned by the fishers themselves) and that its

highly muscled ovarian wall may be part of a set of physical adaptations and behaviors that

facilitate egg extrusion.

Historically, macroscopic classifications of gonad development have constituted the

methodological basis of most reproductive studies of fish. This is the case of meagre but also of

other large sciaenids for which anatomical scales with five levels (González-Quirós et al. 2011),

six levels (Hermas 1995, Potts et al. 2010), seven levels (Tixerant 1974, Griffiths 1996) and

eight levels (Murphy and Taylor 1989, 1990, Farmer 2008, Silberschneider et al. 2009) have

been previously designed and used with no apparent quantitative validation. Comparisons
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between the histologically corroborated macroscopical scale presented in Table 5 and these

prior macroscopic scales highlights some previously unnoticed features. As an example,

Australian and South African studies (Griffiths 1996, Farmer 2008, Silberschneider et al. 2009)

have assumed that flaccid gonads with a few opaque oocytes were "spent". Histological work as

shown that in Argyrosomus regius those macroscopical characteristics reflect a "late spawning

capable stage" characterized by low GSI, low density of vitellogenic oocytes and POCs,

alongside atresia and a thick ovary wall (Table 4). Similar drastic reductions in vitellogenic pool

have been noticed by Mylonas et al. (2013a) in ovary comparisons from captive fish before and

after inducing spawning with an agonist of gonadotropin-releasing hormone (GnRHa).

Considering some "spent" gonads as being in fact spawning capable is likely to expand the

areal extent of spawning grounds and prolong reproductive seasons both of which have

consequences in conservation efforts.

Gross anatomical scales used in fisheries research are not always validated histologically

(Hunter and Macewicz 2003). In many species it is difficult (if not impossible) to distinguish

macroscopically between developing immatures and regenerating/developing mature females,

which is a key issue in fisheries reproductive studies (Lowerre-Barbieri et al. 2011). Several

authors have cautioned on the use of non-validated macroscopic scales and/or defended a

reduction in the number of macroscopic classes considered (West 1990, Hunter and Macewicz

2003, Kjesbu et al. 2003) as-well as the limitation of maturity ogives to samples collected within

the spawning season to reduce the risk of such misidentification (Murua et al. 2003, Lowerre-

Barbieri et al. 2011). If necessary, the macroscopic scale proposed in Table 2 can be simplified

to a more conservative approach as has been suggested by Hunter and Macewicz (2003).

However, we note that the semi-quantitative analysis of the size and month-related variability of

meagre ovaries presented in this study conforms the major requirements set out for the

development of macroscopical scales (Kjesbu et al. 2003) namely being able to reasonably

discriminate hydrated oocytes into a separate class, having a set of class with clearly visible

yolked oocytes (III-V), being able to separate the immatures and being independent of color.

Altogether, even if we note that we have not conducted a formal validation of the accuracy of

macroscopic scale because our sample was far from random and our macroscopical scale was

not in fact independently validated but rather corroborated with histological results, it appears

that, for the time being, these results strengthen reproductive phase interpretations in meagre to

the point that they may be useful in the cutting down of sampling costs required to bring this

European species to a more data-rich situation.
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Ovarian development and fecundity type in meagre ( Argyrosomus regius)

Abstract: The meagre (Argyrosomus regius) is one of the world’s largest sciaenids and
supports regional fisheries and aquaculture interests in European and North African waters.
However, its reproductive development patterns have remained scarcely studied, particularly in
what concerns wild populations. In the present study, we used histological and whole oocyte
size frequency analyses to determine the ovarian development and fecundity type of meagre in
Portuguese waters. We show that during the reproductive season, all stages of oocyte
development are present in the ovaries and that the whole oocyte size frequency is continuous,
displaying no discrete modes and no hiatus between pre-vitellogenic and vitellogenic oocytes.
Additionally, we show that final oocyte maturation occurs in batches. We conclude that the
meagre has asynchronous ovarian development and indeterminate fecundity and discuss
these results in light of existing literature in the ovarian development of sciaenids and the
importance of using stereological methods or the disector principle in analyses of oocyte size
frequencies of asynchronous ovaries.

Keywords: oocyte frequency, histology, fecundity, reproduction, Sciaenidae

1. Introduction

Descriptive analyses of reproductive development are central to the understanding of fish

biology and fish population dynamics (Murua and Saborido-Rey 2003, Brown-Peterson et al.

2011). Among these, the determination of the type of ovarian development organization, the

spawning pattern and the type of fecundity assume major importance because they constrain

how sampling and estimation should be carried out when estimates of annual fecundity need to

be obtained (Murua et al. 2003). Such estimates are key-aspects in, e.g., determinations of

stock biomass with the egg production method (Stratoudakis et al. 2006, Armstrong and

Witthames 2011), interpretations of fish life-history (Lowerre-Barbieri et al. 2011) and

investigations into the aquaculture potential of new species (Duncan et al. 2012).

To date, three major types of ovarian development organization have been recognized in

marine teleosts: synchronous, group-synchronous and asynchronous (Wallace and Selman

1981, Murua and Saborido-Rey 2003). In synchronous ovaries, all oocytes develop and mature

at the same time. Consequently, the ovaries are dominated by a single oocyte stage that

evolves as the spawning season approaches. In group-synchronous ovaries, at least two

populations of oocytes occur in the ovary as the spawning season approaches: one population

of more advanced oocyte stages that evolves towards maturation (called a "clutch"); and a

population of less developed oocyte stages (generally in primary growth) that is observed all

year-round. In asynchronous ovaries, oocytes in several stages of development forming a

continuum with no dominant populations or clear clutches except, eventually, a clutch of

oocytes that undergoes final maturation.
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Independently of the type of ovarian organization, oocytes grow in size as they proceed

from oogenesis to final maturation and, in general progress towards maturation is assumed to

take place when the oocytes enter vitellogenesis (West 1990, Grier 2012). Consequently,

understanding the dynamics of ovarian development in terms of both oocyte staging and oocyte

diameter is crucial for annual fecundity estimation (Murua et al. 2003). In fecundity studies fish

species have been categorized as having "determinate fecundity" (when the total number of

yolked oocytes is considered fixed prior to the spawning season) or "indeterminate fecundity"

(when the total number of yolked oocytes cannot be considered fixed prior to the spawning

season, i.e., when continuous recruitment of vitellogenic oocytes from the pre-vitellogenic pool

takes place while the fish spawns). Correct identification of the type of fecundity is important

because different sampling methods are applied in the estimation of individual annual fecundity

of determinate and indeterminate spawners. If fecundity is determinate it is generally sufficient

to quantify the number of vitellogenic oocytes present in the ovary before the start of the

spawning season as long as one is able to appropriately select the time for sampling and

estimate atretic losses (Kurita et al. 2003, Thorsen et al. 2006). However, if fecundity is

indeterminate a more complex procedure is required that involves not only the estimation of the

number of oocytes each female sheds per spawning event (batch fecundity) but also the

estimation of the spawning interval (time period between two consecutive spawning events) and

the estimation of the duration of the duration of the individual spawning season (Murua et al.

2003, Lowerre-Barbieri et al. 2011).

The meagre (Argyrosomus regius, Asso 1801) is one of the world’s largest sciaenids and

the only representative of the large sciaenid group in European waters. The meagre is a coastal

fish (<80 m deep) that attains over 180 cm in total length and 50 kg in weight (Quéméner, 2002)

and whose distribution extends from the English Channel to Senegal (including the

Mediterranean Sea and Black Sea). Its major fisheries take place in Mauritania, Morocco, and

Egypt, which together comprise over 80% of the ca. 10 000 t world annual catch (Quéméner

2002, FAO 2009). Similar to many of its co-familiars, the large size of meagre, its high ex-vessel

prices, and its high seasonal availability in shallow waters, make it an important target species

for local small-scale commercial fleets and the recreational sector (Quéro and Vayne 1987,

Quéméner 2002, Prista et al. 2008). These characteristics alongside its fast growth rate and

good quality of its meat have led to the recent development of aquaculture production and to

increasing interest in its life-history patterns and life cycle (Quéméner et al. 2002, Prista et al.

2009, González-Quirós et al. 2011, Duncan et al. 2012, Schiavone et al. 2012, Gil et al. 2013,

Prista et al. 2014).

Recent work on the ovarian cycle of meagre was inconclusive in what concerns the type of

ovary development organization and the type of fecundity. Duncan et al. (2012) and Abou

Shabana (2012) have categorized the meagre as a group-synchronous batch spawner but Gil et

al. (2013) considered it to be an asynchronous batch spawner with determinate fecundity. To

date other sciaenids have largely been considered as batch spawners, with both group-

synchronous or asynchronous ovary development, and their fecundity has been estimated using
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indeterminate fecundity procedures (Nieland and Wilson 1993, Barbieri et al. 1994, Wilson and

Nieland 1994, Wells and Jones 2002, McDowell and Robillard 2013).

In this study, we present results from histological and whole oocyte analyses carried out in

five wild meagre ovaries collected at the beginning, middle and end of the spawning season and

determine the ovarian organization and fecundity type of meagre. We then discuss how this

novel evidence changes the current interpretation on the type of ovarian organization and

fecundity in this species. In doing this, we revisit published literature in other sciaenid species

and discuss the possibility that non-standardized methodologies and terminologies may have

given rise to some biased conclusions on ovarian development organization and fecundity type.

2. Materials and methods

We investigated ovarian development using a combination of histologic analysis and

analysis of whole oocytes (West 1990).

Ovaries were obtained from a large scale study that addressed the life-history of meagre in

Portuguese waters between 2004 and 2007. Details of field sampling and histological

procedures are given in Chapter 5B. Briefly, fish were obtained from commercial landings,

measured and weighed. Then, ovaries were removed and fixed in 4% buffered formaldehyde.

Histologic procedures involved the collection of small pieces of gonad (about 0.125 cm3)

from the ventral periphery of the medial region of the left lobe and their embedding in Technovit

7100 resin (Heraeus Kulzer). Thin sections (3–5 µm thick) were obtained using on a Leica

RM2155 micrometer, stained with toluidine blue and definitively mounted on glass slides. Final

microscopic analyses were carried out at 40-400x magnification on a Zeiss stereomicroscope.

Among other, the following information was scored for each slide: the oocyte stages present

(Table 1), the presence/absence of post-ovulatory follicle complexes (POCs), the incidence of

vitellogenic atresia, and the diameters of the vitellogenic oocytes (Figure 1A, Chapter 5B).

Table 1. Oocyte stages considered in the analysis of histological slides from meagre ovaries (see Chapter 5B). Mean

diameters and size range refer to maximum cell diameters through the nucleus. All measurements in µm

Stage Substage Main features n Mean diameter (s.e.) Size ran ge

Primary

growth

(PG)

PG-1a No cortical alveoli or lipids, large germinal vesicle 23 26 (1) 12—46

PG-1b No cortical alveoli or lipids, large germinal vesicle 26 77 (4) 52—118

PG-2a Few cortical alveoli and lipids 19 116 (5) 87—157

PG-2b Many cortical alveoli and lipids; lower basophilly 16 173 (5) 139—204

PG-2c
Concentric strings of lipid droplets and cortical

alveoli
11 258 (14) 216—356

Secondary

growth

(SG)

SG-a Small yolk granules appear 10 342 (17) 282—465

SG-b Large yolk granules, thick zona pellucida 15 621 (15) 477—725

Oocyte

maturation

(OM)

OM-a
Lipid-yolk coalescence; progressive hydration,

nucleus migration to animal pole
10 756 (26) 619—836

OM-b
Fully hydrated; homogeneous low basophilly

ooplasm, no germinal vesicle
13 977 (24) 821—1108
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From all the ovary slides analyzed in Chapter 5B, we selected subset of five mature females

and determined its whole oocyte frequency. In the Portuguese coast the meagre is

reproductively active (i.e., displays ovaries with healthy vitellogenic oocytes) from February to

August and spawning (as indicated by the presence of hydrated oocytes and post-ovulatory

follicles) takes place from May to August (Chapter 5B). We chose our five females so that our

final sample represented ovarian development of meagre at the beginning, middle and end of

the reproductive period (Table 2). For whole oocyte analysis we took ca. 1 cm3 of ovarian

content from the mid-ventral peripheral region of left ovary and carefully separated the oocytes

from adjoining tissue into a gridded petri dish (Figure 1B). We then took digital pictures of all

squares in the grid using a Leica MZ12 lens system equipped with a Leica DFC280 digital

camera and measured the maximum diameter of whole oocytes in AxioVision image processing

software (Zeiss) (Figure 1B). Initial trials revealed that some oocyte size classes represented

less than 5% of the total number of oocytes in the petri dish grid. To assure detection and

representativeness of whole oocyte measurements, we randomly selected digital photographs

and measured all the oocytes in the successive selected squares until we reached a preset

minimum of 500 oocytes. When that number was reached we completed the measurements in

that square and stopped. During our whole oocyte measurements we did not distinguish

between vitellogenic and non-vitellogenic oocytes so to investigate if the proportion of

vitellogenic oocytes in the ovary decreased as the reproductive season progressed we

estimated it as

tot

vit

N

N
vitprop =)(

where Nvit is the number of whole oocytes with diameters in the range of diameters vitellogenic

stages and Ntot is the number of oocytes larger the 50 µm detection threshold. Because the size

of vitellogenic oocytes increases as the fish approach the spawning season and the final full-

grown size is likely be dependent on fish size or fish age (West 1990), the range of diameters

used to identify vitellogenic oocytes in each oocyte frequency was obtained from concurrent

measurements of maximum diameters (through the nucleus) in the histological slides.

Figure 1. Example of oocyte counts and histological section (ovary R_553). A) Histological section with all oocyte
stages visible (bar: 200 µm); B) Oocyte count (square area:1cm2). Red lines represent measurements of maximum
diameters.

A B
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Table 2. Characteristics of the meagre ovaries. Reproductive phase assigned according to Brown-Peterson at al. (2011);

Oocyte stages as in Table II; VAt - Vitellogenic atresia, POCs - Post-ovulatory follicle complexes, GSI - Gonadosomatic

index, TL - Total length, TW - Total weight, AG - Age group. Sc - Spawning capable; "0" = absent, "-" = few; "+" = many.

GSI calculated as (gonad weight/fish total weight)*100

Fish

ID

Date Location
Reproductive

phase
Oocytes VAt POCs

GSI

(%)

TL

(cm)

TW

(kg)

AG

(yr)

R609 2005-03-28 Olhão coast Sc - early PG-1a to SG-b - 0 4.2 139 21.5 8

R553 2005-05-15 Tagus estuary Sc - spawn PG-1a to OM-a 0 0 8.5 120 15.7 8

R345 2004-05-31 Tagus estuary Sc - early PG-1a to SG-b 0 - 4.9 143 24.5 15

R348 2004-05-31 Tagus estuary Sc - spawn PG-1a to OM-b - - 10.5 118 12.8 9

R439 2005-08-30 Olhão coast Regress PG-1a to PG-2b + - 1.1 140 16.7 ---

3. Results

Oocyte size frequencies of the meagre ovaries are displayed in Figure 2. During the

spawning season all 20-µm size classes below 800 µm were found in the meagre ovary, i.e. no

hiatus was observed in the oocyte diameters that might be separating non-vitellogenic from

vitellogenic oocytes. No discrete modes were observed but two clear non-discrete modes were

present: one at ~100 µm corresponding to primary growth oocytes (PG-1b and PG-2a) and one

at ~600-700 µm that corresponded to secondary growth oocytes (SG-b) (Figure 2). Not so clear

modes occurred at ~400 µm and 500 µm in some specimens and these may correspond to SG-

a oocytes recruited from primary growth. In the three specimens whose ovaries contained

oocytes larger than 800 µm, one/two detached modes appear at those larger sizes: these

modes occur at ~900 µm and ~1000 µm (R_348 only) and corresponded to batches of oocytes

undergoing final oocyte maturation.

The relative proportion of vitellogenic oocytes decreased substantially as the reproductive

season progressed but mean diameters of the vitellogenic oocyte stages did not vary

significantly between specimens or dates as observed by overlapping standard errors (Table 3).

4. Discussion

In recent years increasing concern has been expressed for the need to standardize

terminologies and methodologies used in describing and assessing the reproductive strategies

of fish (Hunter and Macewicz 2003, Murua and Saborido-Rey 2003, Murua et al. 2003, Brown-

Peterson et al. 2011, Lowerre-Barbieri et al. 2011). Such standardization has been mainly

advocated by those involved in fisheries and ecological research that frequently find the need to

compare results of reproductive studies across geographical areas, stocks or species. However,

some caution with such standardization should be considered when differences found in

detailed analyses of individual species are important (Grier 2012).
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Figure 2. Oocyte size frequencies in the five meagre ovaries analyzed. Dashed lines indicate the range of secondary
growth oocytes (SG-a and SG-b) measured in each ovary histological section. No secondary growth oocytes were
observed in the histological slides of ovary R_439. Bins: 20 µm

Table 3. Mean diameters of vitellogenic oocytes SG-a and SG-b. Measurements taken from histological sections (µm)

Fish

ID
Month/Day

Mean size SG-a

±2*s.e.

Mean size SG-b

±2*s.e.

Proportion of

vitellogenic

oocytes

R609 03/28 378±26 (n=4) 603±30 (n=14) 28%

R553 05/15 418±32 (n=8) 628±26 (n=14) 35%

R345 05/31 372±28 (n=11) 621±28 (n=27) 20%

R348 05/31 414±24 (n=12) 603±24 (n=16) 13%

R439 08/30 None observed None observed 1%
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According to currently accepted definitions of ovarian development organization and

spawning types (Murua and Saborido-Rey 2003), the present results indicate that the meagre

ovary has an asynchronous development pattern. This is revealed by the diversity of oocyte

stages found in the histological slides during the spawning period which include all oocyte

stages and substages from primary growth to oocyte maturation (Figure 1B, Table 2).

Furthermore, the meagre should also be considered a batch spawner since vitellogenic oocytes

do not undergo final maturation all at the same time but rather do it in batches, one batch per

spawning event. The latter is evidenced by the signs of previous spawning events found in

actively spawning females, namely the presence of post-ovulatory follicle complexes (POCs) in

hydrated ovaries (Table I), and in the discrete mode (and concomitant hiatus) that is present

when oocytes undergo final maturation (Figure 2).

Regarding the type of fecundity, the present results suggest that meagre has indeterminate

fecundity. It would be thus impossible at the onset of the spawning season to identify and

quantify the group of oocytes that will undergo final maturation, i.e., potential annual fecundity

cannot be considered fixed before the onset of spawning because de novo vitellogenesis may

still take place (Hunter et al. 1992, Murua et al. 2003). Our sample size is small but this

categorization finds evident support in our data as they conform three out of four lines of

evidence currently accepted for indeterminate fecundity (Hunter et al. 1992, Murua and

Saborido-Rey 2003), namely a) the absence of a discrete hiatus between vitellogenic and non-

vitellogenic oocytes at the start of the spawning season (Figure 2), b) the sustained size of

vitellogenic oocytes throughout the season (Table 3) and c) the increase in prevalence of

vitellogenic atresia at the end of season as the remaining yolk oocytes are resorbed (illustrated

in Table 2 and further confirmed in Chapter 5B). In additional support of these lines of evidence

we add that we have never observed mass atresia of PG-2 or SG-a oocytes in a wider array of

fish examined (Chapter 5B) as would be expected from the resorption of intermediately sized

oocytes. However, our meagre data does meet at least one line of evidence commonly

accepted as indicative of determinate fecundity, namely the progressive reduction in the

proportion of vitellogenic oocytes (Hunter and Macewicz 1992). This reduction is observed in

Figure 2 and along side observations of reductions in the density of healthy vitellogenic oocytes

suggests that de novo vitellogenesis may reduce significantly (or even stop) in mid-season. We

have not examined females collected in June or July so we cannot confirm the eventual

formation of a within-season hiatus. Such hiatus was reported by Grau et al. (2009) in their

analysis of histological size frequencies in brown meagre Sciaena umbra and may be a

reflection of the continuum that effectively exists between indeterminate fecundity and

determinate fecundity (Ganias 2013). However, we stress that both PG2-c and SG-a are

present in histological slides of meagre way into its spawning season so it is likely that de novo

vitellogenesis continues and that fecundity should indeed be considered indeterminate for most

practical purposes.

Our conclusions on the indeterminate fecundity of meagre are in line with those obtained

by Duncan et al. (2012) and Abou Shabana (2012) that also observed a continuous size
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distribution with two main modal classes in the ovaries of meagre. To our knowledge no

histological work has been performed in South African Argyrosomus species but indeterminate

fecundity was also reported by Farmer (2008) for Argyrosomus japonicus in Western Australia.

These results are however substantially different from the ones reported by Gil et al. (2013) in

Argyrosomus regius from the Gulf of Cadiz who concluded on determinate fecundity and

estimated annual fecundity using gravimetric counts of total cortical alveoli and vitellogenic

oocytes present in ripening/running females. The latter authors report oocyte size diameters

with relatively low sample size (between 75 and 490 oocytes per ovary) obtained from

histological counts of mature females and, most importantly, report not having used

stereological correction factors in their counts because their aim was to "compare relative

oocyte size-frequency distributions between individuals and not to quantify oocyte abundances".

From a brief literature review we have found that whole-oocyte measurements or proper

stereological methods have rarely been used in assessing oocyte size frequencies of sciaenid

ovaries (but see Barbieri et al., 1994 and Wells and Jones 2002) and that authors frequently

rely on transect counts of histological slides with their only concern being the measurement of

diameters in cells sectioned through the nucleus. If one considers the large differences in

nucleus size between pre-vitellogenic and vitellogenic oocytes (Chapter 5B), it is probable that

under such methodological settings the larger oocytes have been disproportionally enumerated

because larger cells with larger nucleus will be disproportionally represented in simple counts of

histological slides, biasing down the estimates of smaller oocyte size classes (Peterson 1999;

Murua et al., 2003). As an example, Kurita et al. (2003) compared regular profile counts with

counts obtained using the more appropriate disector principle in an evaluation of the relative

intensity of atresia in Atlantic herring. They found that because atresia reduces the cell size,

underestimation occurs and a correction factor of 1.27 needs to be applied to relative intensity

(i.e., proportion) of atretic stages estimated from profile counts.

In the meagre case, we were not able to compare whole oocyte size frequencies to

histologically derived ones so we cannot be certain that stereological biases are the cause of

the different perception on the existence of a hiatus in oocyte frequencies that we obtained.

However, we note that Barbieri et al. (1994), Wells and Jones (2002) and Duncan et al. (2012)

all have used whole oocyte measurements and their oocyte size frequency graphs display

continuous patterns with all stages and size classes represented. In the medical world, the use

of quantitative histology involving proper stereological methods or the disector principle has

been subject of great endorsement given the consequences associated to biased estimates of,

e.g., malignant cells in biopsies (Mayhew and Gundersen 1996, Peterson 1999). Similar calls

for more rigorous methodologies have been made in fisheries science (Andersen 2003, Kurita

et al. 2003) suggesting that oocyte size frequency results previously obtained from profile

counts of histological slides should be interpreted with caution.
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Meagre Argyrosomus regius (Osteichthyes) as host of a gonad-infecting

species of Philometra (Nematoda: Philometridae) off the Atlantic coast of

Portugal

Abstract: Subgravid females (up to 439 mm long) of the nematode Philometra sp. were found
in meagre Argyrosomus regius (Asso, 1801) (Sciaenidae: Perciformes) off the southern Atlantic
coast of Portugal in 2006. The general morphology of these nematodes somewhat resembles
that of Philometra lateolabracis (Yamaguti, 1935), but the gravid females of the species from A.
regius are apparently much longer. This is the first documented record of a gonad-infecting
species of Philometra in marine fishes off the Atlantic coast of Europe. The possible
importance of the gonad-parasitizing Philometra spp. as pathogens of marine fishes is
stressed.

Keywords: life history, fishery-dependent sampling, market sampling, Argyrosomus regius

1. Introduction

Species of the nematode genus Philometra Costa, 1845 parasitic in the gonads of

numerous marine fishes are widely distributed mainly in the tropical and subtropical regions of

the Atlantic, Indian and Pacific Oceans (Moravec 2006). The ovoviviparous females are large-

sized, with a body length from a few centimetres up to about 1 m in different species, whereas

the conspecific males are generally of much smaller size, usually from 2 to 4 mm long. To date,

17 nominal species of the gonad-infecting Philometra spp. are known from marine fishes

(Moravec 2006, Moravec et al. 2006a, Moravec & Salgado-Maldonado 2007) but the males

remain unknown for many Philometra species, which makes the identification of these

nematodes difficult. In Europe, the gonad-infecting Philometra spp. have been reported from

marine, mainly perciform fishes in the Mediterranean region and the Black Sea (e.g. Rudolphi

1819, Willemoes-Suhm 1871, Stossich 1896, Janiszewska 1949, López- Neyra 1951, Kovaleva

& Khromova 1967, Petter & Radujkovic 1986, 1989, Moravec et al. 2003, 2006b, Merella et al.

2004, Moravec & Genc 2004, Moravec 2006). However, to date Philometra have remained

unreported in marine fish caught off the European Atlantic coast.

Meagre Argyrosomus regius (Asso, 1801) (Sciaenidae: Perciformes) is a large marine and

brackish water fish (attaining over 180 cm and 50 kg total weight) whose distribution extends

from Iceland to the Gulf of Guinea (including the Mediterranean and Black Seas) being regularly

present between France and Senegal (and in the eastern Mediterranean) (Quéméner 2002).

The fish supports minor (although lucrative) local fisheries, both recreational and commercial,

throughout the European coasts and has become increasingly important to European

aquaculture in recent years (Quéméner 2002, Costa et al. 2006). The species reproduction has

so far only been thoroughly studied in Mauritania (Tixerant 1974) and Morocco (Hermas 1995)

with only minor descriptions being made of the parasites found on A. regius gonads.
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2. Materials and methods

Recent parasitological examinations of wild Argyrosomus regius captured off the

Portuguese coast in 2006 revealed the presence of female Philometra specimens. The fish

specimens, 1 male and 1 female, were mature individuals captured in March and June in Vila

Real de Santo António and Olhão (male: total length = 144 cm, total weight = 19.0 kg; female:

total length = 158 cm, total weight = 33.0 kg). The parasite specimens were collected from the

fish gonads after being macroscopically detected from the exterior and were fixed and

preserved in 96% ethanol. During this study, most of the specimens obtained were body

fragments of subgravid Philometra; however, 2 complete specimens were also recovered. The

specimens have been deposited in the Institute of Parasitology, BC ASCR, České Budějovice,

Czech Republic (Cat. No. N-70).

3. Results and discussion

The bodies of the 2 fixed, complete subgravid nematode females (Figures 1 and 2) are

brown, 180 and 439 mm long and 585 to 843 µm maximally wide, respectively, somewhat

tapering towards both ends; the posterior part of the body is distinctly narrower than the anterior

part. The ratio of the maximum body width to the body length is 1:521−585. The cuticle is

smooth. The cephalic end is rounded, 135 to 150 µm wide; cephalic papillae are very small and

indistinct when viewed laterally under the light microscope. Scanning electron microscopy

revealed the presence of 4 submedian pairs of minute papillae of the external circle and 1 pair

of minute lateral papillae of the internal circle (Figure 1D), encircling the circular oral aperture;

the mouth bottom is formed by the flat surfaces of the 3 oesophageal sectors. The oesophagus

is narrow, somewhat swollen near the mouth to form a distinct inflation 63 µm long and 75 to

78 µm wide, which is not separated from the posterior cylindrical part of the oesophagus. The

overall length of the oesophagus is 2.09 to 2.52 mm, representing 0.6 to 1.2% of the body

length; the dorsal oesophageal gland extends anteriorly to the level of the nerve ring and

posteriorly to the small ventriculus, which measures 30 × 81 µm in the larger specimen. The

nerve ring is 340 to 394 µm from the anterior body end. The intestine is dark brown; its posterior

end is atrophied, forming a ligament attached ventrally to the body wall near the posterior

extremity (Figure 1G). The posterior end of the body is rounded, 109 to 136 µm wide, with 2

outlined lateral minute papilla-like caudal protrusions, found only in the larger specimen. The

vagina and vulva are absent. The 2 ovaries are rather long and thin and are situated near the

anterior and posterior ends of the body. The uterus occupies most of the body and is filled with

eggs and developing embryos.
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Figure 1. Philometra sp. from gonads of Argyrosomus regius, subgravid female. Anterior end of (A) larger (439 mm long)

and (B) smaller (180 mm long) specimens. Cephalic end of (C) larger and (E) smaller specimens, lateral views. (D)

Cephalic end, apical view (reconstructed from SEM micrograph). (F) Outline of caudal end of smaller specimen, lateral

view. (G) Caudal end of larger specimen, lateral view. Scale bars: (A,B) = 500 µm, (C,E) = 100 µm, (D) = 30 µm,

(F,G) = 300 µm.

Figure 2. Philometra sp. from gonads of Argyrosomus regius. SEM micrographs of cephalic end of subgravid female.

(A) Dorsal and (B) apical views.
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The general female morphology of these nematodes is similar to that of Philometra

lateolabracis (Yamaguti, 1935), a widespread, gonad-infecting parasite of many species of

marine fishes, reported from different parts of the world. However, the maximum body length of

the gravid (larvigerous) female of P. lateolabracis is only 230 mm (Moravec 2006), whereas one

of the subgravid (ovigerous) females in the present study is nearly double that length (439 mm).

Accordingly, conspecific gravid females with larvae can be expected to be even longer. Since

the conspecific males are not yet known, the exact species identification of these Portuguese

nematodes will only be possible when new material from this fish species, including better

preserved specimens, both males and gravid females, is collected.

The Philometra specimens now collected from Argyrosomus regius represent the first

detailed record of this nematode presence in perciforms from the North-Eastern Atlantic. Santos

(1996) reports on ‘a viviparous nematode 8 cm long’ (probably a Philometra female) found in

the body cavity of the European seabass, Dicentrarchus labrax (Linnaeus) (Moronidae) off the

Portuguese coast. However, its location in the host suggests that it belonged to a different

species than nematodes found in the present study (Moravec 2006). ‘Very long nematodes’

parasitic of A. regius have been reported in the gas bladder, stomach-walls and ovaries of fish

caught off Mauritania (Tixerant 1974) but no such evidence was observed in the current

specimens. On the other hand, Hermas (1995) presents a photograph a photograph of a

similarly ‘long nematode’ found in male and female A. regius gonads off Agadir on the

Moroccan Atlantic coast. Her work does not, however, provide detailed description of such

specimens, so their taxonomic identification to family or genus is impossible. However,

Philometra has been recorded in gonads of wild A. japonicus captured off the Western

Australian coast where its prevalence was over 50% in mature specimens of both sexes

(Farmer 2003). In the present work histological analysis of parasite gonads was not performed,

so effective parasite damage to fish gonads could not be assessed. However, severe infections

by these pathogenic parasites sometimes cause serious damage to the fish ovaries and thus

may affect reproductive output at individual and population levels (Hine & Anderson 1982,

Sakaguchi et al. 1987, Moravec et al. 2003, Clarke et al. 2006).

The exact identification of the Philometra species, its prevalence and eventual deleterious

effects on Argyrosomus regius reproduction remain unknown. Given that (1) species of

Philometra may prove to be significant pathogens in fish cultures, (2) A. regius is increasingly

popular in Southern European aquaculture, and (3) mature A. regius female gonads are

frequently used for human consumption throughout its distribution range, the authors suggest

that a further, more detailed taxonomic and ecological study of this nematode parasite should

be attempted in the near future.
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Very high genetic fragmentation in a large marine fish, the m eagre
Argyrosomus regius (Sciaenidae, Perciformes): Impact of reproductive

migration, oceanographic barriers and ecological factors

Abstract: The meagre Argyrosomus regius is a large sciaenid fish known to reproduce in the
eastern Atlantic and Mediterranean Sea in just five distinct and restricted geographic areas:
along the Mauritanian coast and at estuary openings (Gironde, Tagus, Guadalquivir and Nile).
The biological traits of A. regius (high dispersal capabilities, high fecundity, long larval phase,
overlapping generations, reproduction until 40 years of age) are, in principle, favourable to high
gene flow, which should lead to genetic homogeneity over large geographic scales.
Nevertheless, the high geographic distances between the few reproductive areas leads one
ask whether there is genetic differentiation in this species. In the present study, the genetic
differentiation of the wild A. regius was investigated across most of its natural range from the
Atlantic Ocean (France, Portugal, Spain, Mauritania) to the Mediterranean Sea (Egypt, Turkey),
using 11 microsatellite markers previously identified in another Sciaenid, the red drum
Sciaenops ocellatus. At least two very distinct groups could be identified, separated by the
Gibraltar Strait. Genetic divergences (FST values) were intermediate between the Atlantic
samples (0.012–0.041), high between Egypt and the Atlantic (0.06–0.107) or Aegean Sea
(0.081) and extremely high between the Aegean Sea and the Atlantic (0.098–0.168). A. regius
exhibited a very high level of genetic differentiation rarely reported in marine fishes. These
results also demonstrate the existence of a sixth independent reproduction area in the Aegean
Sea. Factors potentially involved in this very high genetic fragmentation are discussed,
including physical barriers, glaciation pulses and biological traits.

Keywords: Argyrosomus, Sciaenidae, genetic variation, genetic fragmentation, microsatellites,
Umbrina, Pseudotolithus

1. Introduction

Marine fishes generally exhibit limited genetic differentiation across large geographic

distances (> 1000 km). This pattern has been attributed to their high rates of dispersal and

movement during both nektonic and planktonic phases (Gyllensten, 1985; Ward et al., 1994).

The level of within-species differentiation also depends on physical or biological barriers such

as hydrology, oceanic fronts, geomorphology, historical sea-level variation and animal

behaviour, which interact with complex species-specific life history traits. Therefore, within-

species differentiation is difficult to predict even if such pattern is known for other closely related

conspecific or confamilial species (Naciri et al., 1999; Patarnello et al., 2007).

The meagre Argyrosomus regius (Asso, 1801) is one of the world’s largest Sciaenids,

attaining over 1.80 m length and 50 kg body weight (FishBase, 2010). This coastal semi-pelagic

species is distributed in the eastern Atlantic Ocean, from the Bay of Biscay to the coast of

Senegal, and across the Mediterranean Sea, Black Sea and Gulf of Suez. Planktonic eggs (990

µm diameter) are spawned in open water and hatched within 48 h. Mouth opening is observed

2-3 days post hatch and yolk sac absorption within 7 days post hatch (Tixerant, 1974).

Planktonic larvae develop in shallow lagoons and over mudflats when the temperature exceeds

20 °C (Quéro and Wayne, 1987). Juveniles migrate and spread toward deeper waters in their

second year (60-200 m, 12 °C). A. regius reproductive biology combines several specific
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reproductive traits (Tixerant, 1974; Quéro and Vayne, 1987; Hermas, 1995; Prista et al., 2009).

Adults migrate to coastal reproductive areas (10-15 m deep with high water flow associated with

estuaries and/or tides) to spawn when temperatures reach 13 to 23 °C. The species exhibits

also very high fecundity, late first reproduction (7 years old), long generation interval (> 40

years), overlapping generations, aggregation and schooling migration in nearshore waters.

More over, only five restricted coastal spawning areas have been documented to date in the

Lévrier Bay and the Banc d’Arguin (Mauritania) and at the opening of the Gironde (France), the

Tagus (Portugal), the Guadalquivir (Spain) and the Nile (Egypt) estuaries (Tixerant, 1974; El-

Hehyawi, 1974; Costa, 1986; Quéro and Vayne, 1987; Quéro, 1989a and b; González-Quirós et

al., 2011). Most of the abovementioned reproductive traits favour low or absent genetic

differentiation, while the high geographic distances between the only five reproduction areas

would act in the opposite direction. However, no genetic information has been reported to date

for A. regius.

The objective of this study was thus to characterise the genetic variability of A. regius

across its native range, using microsatellite nuclear markers previously isolated from another

Sciaenid, the red drum Sciaenops ocellatus (Renshaw et al., 2006). Two further Sciaenid

species that live sympatrically with A. regius were also genotyped with the same markers to

assess potential misidentification: the shi drum Umbrina cirrosa (Linnaeus, 1758) sympatric in

the Mediterranean Sea and the law croaker Pseudotolithus senegallus (Cuvier, 1830) sympatric

along the west coast of Africa. The results are expected to provide useful information for the

preservation of wild stocks, improvements in fishery management and initiation of breeding

programs for A. regius aquaculture.

2. Materials and methods

2.1. Sample collection

Fin clips from 378 wild A. regius were collected from twelve different locations in the

Atlantic Ocean and eastern Mediterranean Sea (Table 1 and Figure 1) by experimental fishery

(in F1 and F2) or obtained from catches landed by local fishermen (in P1, P2 and M1 to M4) or

from fish farms rearing wild fish (S1, E1, E2, T1). Further information is given per site of

collection:

1) Sites F1 and F2 (France): Fish from two year classes (2 years of age for F1 and 3 years

of age for F2) were captured in 2008 in the Gironde estuary at Mortagne (F1) and at St

Seurin d’Uzet (F2) using the CEMAGREF research vessel “L’Esturial” equipped with a

bottom trawl (mesh size: 40 mm).

2) Site S1 (Spain): Wild fish from 4 years of age were collected in 2008 in the FMD

hatchery (Oléron Island, France). These fish were captured at 5-10g in the Guadalquivir

estuary in the summer 2005 by PIMSA fish farm (Seville, Spain).

3) P1 and P2 (Portugal): Fish came from two commercial landing areas located along the

western (Tagus estuary and Peniche) and southern coasts (Quarteira to Vila Real de
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Santo António) of Portugal. Samples from both sites included juveniles and adults

collected from 2005 to 2007.

4) Sites M1 to M4 (Mauritania): Fins were collected in 2008 at commercial landing sites

located at Nouakchott and Nouadhibou fishing harbours and in Nouamghar and Arkais

Imragen villages (Parc National du Banc d’Arguin). The samples consisted of adult fish

except in M4.

5) Sites E1 and E2 (Egypt): The samples were collected in 2009 from two fish farms

located along the Manzalla Lake, close to Port Said. The fish consisted of wild juveniles

captured as described by Sadek et al. (2009) between February and March 2008 along

the Mediterranean coast between Alexandria and Port Said.

6) Site T1 (Turkey): Fins were collected in 2009 from wild fish reared in captivity in the

Egemar Su Ürünleri A.Ş. fish farm (Akbük-Didim, Aydın, Turkey). Fish consisted of

mature individuals grown in the fish farm since their capture at 5-10 g in the lagoons of

the Menderes Delta, south of Izmir during July and August 2000.

The shi drum samples were collected in Turkey (n = 31) in the same geographical area as

the A. regius samples. The law croaker samples were collected in Mauritania in Nouadhibou

(n = 14) and in Arkais (n = 3), on the same days as the A. regius samples.

Mauritania

M1

M4
M3
M2

F1
F2

France

Egypt
E1

E2

W. Portugal P1
TurkeyT1

S.W. Iberia
P2

S1

Mediterranean sea

Atlantic 
Ocean

Mauritania

M1

M4
M3
M2

F1
F2

France

Egypt
E1

E2

W. Portugal P1
TurkeyT1

S.W. Iberia
P2

S1

Mediterranean sea

Atlantic 
Ocean

Figure 1. Geographic locations of the twelve collection sites (abbreviation: F1, F2, etc…) and populations (full

name: France, etc…) of meagre Argyrosomus regius samples. Abbreviations, localities and coordinates are given in

Table 1.



Table 1. Description of the twelve Argyrosomus regius collection sites by geographic origin, locality, coordinates, abbreviation, size, date of collection, mean standard body length (± SD), known or

estimated (in bracket) age according to Hermas (1995) and Prista et al. (2009), and origin (E = experimental fishery; F = fisheries landings; A = aquaculture of wild fish).

Geographic origin Locality Coordinates Abbreviation n Date of collection Standard body length (cm) Age (years) Origin

Atlantic Ocean Gironde estuary, Mortagne, France 45°27’ N and 52°34’ W France-1 (F1) 35 25/06/2008 19.8 cm ± 2.2 2 E

Gironde estuary, St Seurin sur Dizet, France 45°29’ N and 55°23’ W France-2 (F2) 37 26/06/2008 35.6 cm ± 1.2 3 E

Tagus estuary and Peniche, Portugal 39°21' N and 9°22' W Portugal-1 (P1) 37 09/2005 to 05/2007 83.3 cm ± 30.9 2-12 F

South coast (Algarve), Portugal 37°11’N and 7°24’ W Portugal-2 (P2) 30 08/2005 to 01/2007 84.9 cm ± 40.5 2-23 F

Guadalquivir estuary, Spain 36°57’ N and 6°14’ W Guadalquivir (S1) 30 09/02/2009 Data not available 4 A

Nouakchott, Mauritania 18°06’ N and 16°01’ W Mauritania-1 (M1) 12 19/05/2008 142 cm ± 7.9 (> 15) F

Nouadibou, Mauritania 20°54’ N and 17°02’ W Mauritania-2 (M2) 9 21/05/2008 138.8 cm ± 13.1 (> 14 ) F

Nouamghar, Mauritania 19°21’ N and 16°30’ W Mauritania-3 (M3) 12 22/05/2008 144.8 cm ± 12.8 (> 14) F

Arkais, Mauritania 20°07’ N and 16°15’ W Mauritania-4 (M4) 29 23/05/2008 82.6 cm ± 14.8 (> 6) F

Eastern Mediterranean

Sea

Port Said (Farm 1), Egypt 31.21’ N and 32°02’ E Egypt-1 (E1) 30 12/10/2009 28.5 cm ± 2.9 0 A

Port Said (Farm 2), Egypt 31.21’ N and 32°02’ E Egypt-2 (E2) 30 12/10/2009 33.7 cm ± 2.8 0 A

Menderes Delta, Turkey 37.32’ N and 27°10’ E Turkey (T1) 30 07/03/2009 115 cm ± 10 10 A
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2.2. PCR amplification and microsatellite typing

All samples were stored in 95 % alcohol and genotyped using 14 red drum microsatellites

(Renshaw et al., 2006) combined to make two new panels: Soc11, Soc140, Soc400, Soc416,

Soc423, Soc428, Soc592, Soc593 in panel 1 and Soc35, Soc44, Soc156, Soc410, Soc412,

Soc432 in panel 2. PCR amplifications were performed in a final volume of 10 µl using a

Qiagen® Multiplex PCR Kit and 50-100 ng of template DNA. Reactions were run for 30 cycles in

an MJ thermal cycler (Model PTC-200). The PCR amplifications included an initial activation

step at 95 °C for 15 minutes, denaturation at 94 °C for 30 seconds, primer annealing at 60 °C

for 90 seconds, extension at 72 °C for 1 minute and final extension at 60 °C for 30 minutes.

After PCR amplification, an Applied Biosystems 3730xl DNA Analyser with GeneMapper

Analysis software (Applied Biosystems) was used to analyse the fluorescently tagged fragments

for length polymorphisms.

2.3. Data analysis

2.3.1. Genetic variability and departure from Hardy-Weinb erg equilibrium

The mean number of alleles per locus (NA) and the observed (Hobs) and unbiased

expected (Hexp) heterozygosity (Nei, 1978) were computed for each collection site and locus

using Genetix 4.05.2 (Belkhir et al., 2004). The departure of genotypic frequencies from the

expectations of Hardy-Weinberg equilibrium (HWE) was estimated within each site by the

inbreeding coefficient or Wright’s fixation index (FIS) using Weir and Cockerham’s (1984)

f-estimator. The significance of the FIS greater than zero (i.e. consistency with the null

hypothesis on HWE) was estimated after 10000 random allelic permutations and using simple

Bonferroni procedure (Rice, 1989) to correct for multiple testing and avoid type-1 errors (Rice,

1989). In A. regius, the presence of null alleles or other scoring errors were estimated for all loci

and collection sites using the MICRO-CHECKER program version 2.2.3. (Van Oosterhout et al.,

2004). The program uses the Monte Carlo simulation method to generate expected allele size

difference frequencies and to compare the estimated null allele frequency using four different

methods.

2.3.2. Genetic differentiation between populations and ph ylogenetic

relationships

The differentiation between collection sites was estimated using Weir and Cockerham’s

(1984) global fixation index (FST) estimator. FST were computed between sites of collection using

Genetix 4.05.2 (Belkhir et al., 2004). Study-wide significance levels across collection sites were

adjusted using 10000 permutations on individual genotypes for the simple Bonferroni procedure.

The twelve collection sites were grouped into six new collection sites on the basis of the

lack of significant pair-wise FST values between some of them and to increase the number of

fish per site to 50 as recommended by Ruzzante (1998). The Mauritanian sites were pooled and

treated as one population because of the limited number of samples per collection site, their
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close geographic proximity and their lack of genetic differentiation (though M4 was significantly

different from M3 it had no transitivity with M2 and M1). The six new collection sites that were

thus recognised were “Egypt” (E1+ E2), “France” (F1+F2), “Mauritania” (M1+M2+M3+M4),

southwest Iberia (named “S.W. Iberia”; S1+P2), west Portugal (named “W. Portugal”; P1) and

“Turkey” (T). These groupings were used in all further analyses and comparisons.

The same genetic estimators (He, Hobs, NA, number of alleles, number of fish genotyped,

FIS, FST) and statistical tests were then computed. Allelic richness (AR), representing a measure

of the number of alleles independent of the sample size, was estimated using Fstat 2.9.3.2.

(Goudet, 1995). Difference in mean allelic richness and heterozygosity among the 6 collection

sites were estimated using Friedman non-parametric test. The phylogenetic tree was drawn in

MEGA 4.0 (Tamura et al., 2007) based on the DReynolds genetic distances and using the

Neighbour-Joining algorithm (Saitou and Nei, 1987).

Different methods exist to estimate effective population size (or Ne) based on heterozygote

excess, temporal variation, linkage disequilibrium or the Bayesian method and can produce

different results. As the estimation of Ne was not the main objective of the present work,

estimation was only made based on non-random gametic linkage disequilibrium using LDNe

software (Waples and Do, 2008). Minimum allelic frequency was fixed at 0.05, as the less

biased frequency reported and putative 95% confidence intervals calculated with parametric or

jackknife methods.

3. Results

3.1. Genotyping of markers in each species

Pseudotolithus senegallus: Three of the 14 genetic markers did not amplify (Soc35,

Soc416, Soc428) and 4 markers were monomorphic (Soc140, Soc156, Soc400, Soc592). The

last 7 markers could be amplified and had a maximum of 4 alleles per marker (Soc11, Soc44,

Soc410, Soc412, Soc423, Soc432, Soc593). Soc410 exhibited 4 alleles not observed in A.

regius. Four of the seventeen fish sampled did not amplify at any locus. The FIS was not

estimated for this species due to the low number of alleles observed per fish.

Umbrina cirrosa: Three markers did not amplify (Soc423, Soc428 and Soc593) and 3 were

monomorphic (Soc 44, Soc140, Soc400). Four markers exhibited more than 3 alleles (Soc416,

Soc35, Soc156 and Soc432). A new allele not reported in A. regius was observed for each

marker. The four last markers showed a good capacity for amplification and also 1 to 3 alleles

not observed in A. regius: Soc11 (3 new alleles), Soc410 (2 new alleles), Soc412 (1 new allele)

and Soc592 (3 new alleles). The FIS values calculated for each marker indicated an excess of

homozygotes for most of the markers (data not shown).

Argyrosomus regius: The marker Soc416 amplified badly and the markers Soc 400 and

Soc410 were monomorphic. These markers were not used in the genetic analysis of A. regius.

One specimen collected in Mauritania that identified as Pseudotolithus senegallus based on its

genotype characteristics was discarded from the data analyses.
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Overall, eleven of the fourteen red drum microsatellites used in this study proved useful for

further genetic investigations in A. regius: Soc11, Soc140, Soc423, Soc428, Soc592, and

Soc593 from panel 1; and Soc35, Soc44, Soc156, Soc412 and Soc432 from panel 2.

3.2. Genetic variability of A. regius

The number of alleles per locus varied from 3 to 31 (Table 2). Soc593 and Soc156

exhibited the lowest number of alleles (3 and 4 respectively), and Soc11, Soc35, Soc44,

Soc412 and Soc428 the highest (14, 31, 17, 24, and 25, respectively).

The genetic characteristics (He, Hobs, NA, FIS) and the number of fish genotyped in the

twelve collection sites are presented in Table 3 (upper section). The mean number of alleles per

site varied from 4.09 in T1 to 8.63 in M4, with a mean for all sites of 6.28 ± 1.15 (mean ± SD).

Hobs within site for all markers varied from 0.47 ± 0.28 in T1 to 0.67 ± 0.19 in M3 and Hexp varied

from 0.46 ± 0.24 in T1 to 0.65 ± 0.20 in M1.

Null alleles were only detected for the loci Soc44 in F1 and E1, Soc423 in T1 and E2 and

Soc 412 in E1. Only the E1 (p < 0.001) and M4 (p < 0.05) collection sites showed departure of

genotypic frequencies from the expectations of HWE equilibrium.

FST pair-wise comparisons revealed no significant differences between: F1 and F2,

Mauritanian sites (except between M3 and M4), S1 and P2 or between E1 and E2 (Table 4).

Table 2. Mean number of alleles per microsatellite marker (± SD) scored in meagre Argyrosomus regius, law croaker

Pseudotolithus senegallus and shi drum Umbrina cirrosa genotyped in this study, taking the red drum Sciaenosp

ocellatus genotyped by Saillant et al. (2009) as a reference. * = marker not used for genotyping by Saillant et al., (2009).

Argyrosomus
regius

Pseudotolithus
senegallus

Umbrina
cirrosa

Sciaenops
ocellatus

Soc11 14 3 7 10

Soc35 31 - 5 *

Soc44 17 2 1 24

Soc140 6 1 1 4

Soc156 4 1 4 5

Soc412 24 3 5 25

Soc423 6 3 - 18

Soc428 25 - - 28

Soc432 8 4 3 9

Soc592 7 1 7 *

Soc593 3 2 - *

Number of fish sampled 361 17 31 45
Mean number of alleles per locus for all
markers 13.2 ± 9.7 2.2 ± 1.1 4.1 ± 2.4 15.4 ± 9.6
Mean number of alleles per locus with only the
Saillant et al. (2009) common markers 13.2 ± 9.7 2.4 ± 1.1 3.5 ± 2.3 15.4 ± 9.6



Table 3. Genetic variability and FIS estimates at 11 microsatellites loci in twelve Argyrosomus regius collection sites (upper panel) or the same samples pooled into six populations (lower panel). N =

number of individuals; NA = mean number of alleles per locus; AR = Allelic richness estimated for n = 27; Hexp = Nei’s (1987) gene diversity (across-locus standard deviation in brackets); Hobs =

observed heterozygosity; FIS = heterozygote deficiency within collection site (upper part of the Table) or within population (lower part of the Table) for all loci or per locus. Significant levels after

Bonferroni correction (Rice, 1989) are shown in bold: * P < 0.05; ** P < 0.01; ***P < 0.001 FIS values with null allele are underlined.

N NA ArR He Ho Multilocus FIS P-value Soc11 Soc35 Soc44 Soc140 Soc156 Soc412 Soc423 Soc428 Soc432 Soc592 Soc593

All sites

Egyp-t1 (E1) 30 5,81 0.54 (0.23) 0.49 (0.22) 0,114 <0.001 - 0.035 0.096 0.444*** 0.275* - 0.074 0.191* 0.069 - 0.050 0.117 0.116 - 0.094

Egypt-2 (E2) 30 5.72 0.54 (0.25) 0.53 (0.27) 0,032 0.147 0.104 - 0.078 - 0.081 0.073 0.151 0.084 0.335** 0.106* - 0.167 - 0.031 - 0.035*

Spain (S1) 28 7.72 0.61 (0.20) 0.61 (0.23) 0,005 0.448 0.118 - 0.087 - 0.026 0.112 - 0.058 - 0.024 - 0.059 - 0.119 - 0.070 0.176* 0.142

France-1 (F1) 35 6.27 0.64 (0.16) 0.61 (0.22) 0.041 0.095 - 0.026 - 0.111 0.299** 0.004 0.413* - 0.031 - 0.185 - 0.011 0.072 0.283** - 0.084

France-2 (F2) 37 6.45 0.63 (0.18) 0.66 (0.21) - 0.031 0.863 - 0.072 0.114* - 0.172 - 0.083 - 0.102 - 0.075 0.004 - 0.100 0.040 - 0.040 0.254*

Mauritania-1 (M1) 12 6.72 0.65 (0.20) 0.66 (0.21) - 0.052 0.865 - 0.038 - 0.038 - 0.052 0.262* - 0.100* - 0.094 - 0.308 - 0.051 0.009 - 0.213 0.009

Mauritania-2 (M2) 9 6.36 0.63 (0.19) 0.61 (0.22) 0.058 0.141 0.138 0.096 0.130 0.158 - 0.067 - 0.142 0.094 0.085* - 0.191 - 0.032 0.400*

Mauritania-3 (M3) 12 5.63 0.62 (0.19) 0.67 (0.19) - 0.041 0.761 - 0.151 0.034 0.2090 - 0.054 - 0.158 - 0.234 0.172 - 0.073 0.074 - 0.222 - 0.200

Mauritania-4 (M4) 29 8.63 0.63 (0.21) 0.61 (0.20) 0.051 0.037 0.094 0.067 0.000 0.029 - 0.120 0.119* - 0.206 0.118* 0.075 - 0.006 0.263*

Portugal-1 (P1) 28 5.36 0.60 (0.19) 0.59 (0.21) 0.031 0.189 0.197** 0.018 0.087 - 0.103 0.286* 0.160* - 0.175 - 0.085 0.033 - 0.046 0.044

Portugal-2 (P2) 25 6.63 0.59 (0.21) 0.61 (0.21) - 0.008 0.571 0.226** 0.033 0.058 - 0.163 - 0.095 - 0.065 - 0.155 0.029 - 0.061 0.010 - 0.116

Turkey (T1) 27 4.09 0.46 (0.24) 0.47 (0.28) 0.003 0.464 0.198* 0.070 0.118 - 0.040 - 0.106 - 0.027 0.546*** - 0.206 - 0.097 - 0.138 - 0.083

Pooled sites

Egypt (E1 + E2) 60 6.45 5.69 0.55 (0.24) 0.51 (0.24) 0.073 0.002** 0.033 0.021 0.185** 0.174* 0.059 0.135* 0.195** 0.033 - 0.027 0.039 - 0.067

S.W. Iberia (P2 + S1) 53 7.72 7.17 0.61 (0.20) 0.61 (0.23) 0.003 0.455 0.177* - 0.033 0.020 - 0.021 - 0.084 - 0.041 - 0.102 - 0.052 - 0.055 0.102 0.091

France (F1 + F2) 72 7.27 6.13 0.64 (0.17) 0.64 (0.20) 0.006 0.399 - 0.047 0.003 0.045 - 0.036 0.159* - 0.043 - 0.087 - 0.056 0.051 0.141* 0.082

Mauritania (M 1 to M4) 62 11.00 8.72 0.65 (0.20) 0.64 (0.19) 0.022 0.131 0.068 0.064 0.058 0.071 - 0.140 - 0.038 - 0.099 0.038 0.016 - 0.028 0.140

W. Portugal (P1) 28 5.36 5.33 0.60 (0.19) 0.59 (0.21) 0.032 0.196 0.197** 0.018 0.087 - 0.103 0.286* 0.160* - 0.175 - 0.085 0.033 - 0.046 0.044

Turkey (T1) 27 4.09 4.09 0.46 (0.24) 0.47 (0.28) 0.003 0.464 0.198* 0.070 0.118 - 0.040 - 0.106 - 0.027 0.546*** - 0.206 - 0.097 - 0.138 - 0.083
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The genetic characteristics (He, Hobs, NA, AR and FIS) and the number of fish genotyped in

the six collection sites are presented in Table 3 (lower section). The mean number of alleles per

site varied from 4.09 in “Turkey” to 11.00 in “Mauritania”, with a mean for all sites of 6.98 ± 2.37

(mean ± SD). The allelic richness differed significantly between sites (P < 0.001) and varied

from 4.09 to 8.72. It was highest for the sites in “Mauritania” and “S.W. Iberia”, intermediate in

“France” and “W. Portugal” and the lowest in “Egypt” and “Turkey”. He differed significantly

between sites (P > 0.002), and within-site Hobs for all markers varied from 0.47 ± 0.28 in T1 to

0.64 ± 0.20 in G, and Hexp varied from 0.46 ± 0.24 in T1 to 0.65 ± 0.20 in M.

Heterozygote or homozygote excesses are given in Table 3 (lower section). When all

markers were considered, only the Egyptian site showed a significant heterozygote deficiency.

Null alleles were detected for Soc423 in Egypt and Turkey, for Soc11 in S.W Iberia and for

Soc44 in Egypt.

Highly significant FST differentiations (P < 0.002) were observed between all 6 collection

sites (Table 5, above the diagonal). The lowest FST values were found between the Atlantic

samples (values from 0.012 < FST < 0.041). Differentiation was more moderate between the

“Egypt” sample and all other populations (0.061 < FST < 0.107). The highest FST values were

found between “Turkey” and all other sites (0.081 < FST < 0.168), the highest of these being

observed between “Turkey” and “W. Portugal”. Within the Mediterranean, despite a relative

geographical proximity, high genetic differentiation was also observed between the two samples

from “Egypt” and “Turkey” (0.081). The phylogenetic tree (Figure 2) illustrates the subdivision of

A. regius populations into two distinct groups: Atlantic and Mediterranean.

Estimates of effective population size (Ne) are given in Table 6. Upper Ne values could not

be differentiated from infinity (under the 95 % confidence interval) for the populations from

France, W. Portugal and S.W. Iberia. The population from Mauritania showed a more limited Ne

value of 111.0 (61.6 < Ne < 330.3). Only the population from Turkey presented a very low Ne of

17.4 (10.3 < Ne < and 33.6).

Turkey

W. Portugal
Mauritania

France
S.W. Iberia

Egypt

0.01

Turkey

W. Portugal
Mauritania

France
S.W. Iberia

Egypt

0.01

Figure 2. Evolutionary relationships of the six Argyrosomus regius populations. The optimal tree is inferred by

Neighbour-Joining with a sum of branch length. The tree is drawn to scale, with branch lengths in the same units as

those of the evolutionary distances used to infer the phylogenetic tree. Phylogenetic analyses were conducted in

MEGA 4.



Table 4. Pair-wise estimates of FST values among the twelve Argyrosomus regius collection sites: Weir and Cockerham (1984) θ above the diagonal and significance below the diagonal after simple

Bonferroni correction (Rice, 1989).

France-1 (F1) France-2 (F2) Portugal-1 (P1) Portugal-2 (P2) Spain (S1) Mauritania-1 (M1) Mauritania-2 (M2) Mauritania-3 (M3) Mauritania-4 (M4) Egypt-1 (E1) Egypt-2 (E2) Turkey (T)

France-1 (F1) 0.003 0.021 0.023 0.035 0.021 0.026 0.033 0.038 0.112 0.108 0.159

France-2 (F2) 0.186 0.033 0.020 0.033 0.019 0.024 0.029 0.038 0.090 0.089 0.137

Portugal -1 (P1) 0.004 < 0.001 0.015* 0.014 0.044 0.019 0.044 0.034 0.109 0.011 0.168

Portugal.-2 (P2) 0.002 < 0.001 < 0.011 0.008 0.019 0.019 0.038 0.025 0.062 0.055 0.119

Spain (S1) < 0.001 < 0.001 < 0.011 0.076 0.034 0.030 0.039 0.039 0.096 0.081 0.146

Mauritania-1 (M1) 0.019 0.009 < 0.001 0.017 0.002 0.007 0.001 0.006 0.068 0.065 0.113

Mauritania-2 (M2) 0.016. 0.009 0.005 0.039 0.006 0.693 0.023 0.009 0.057 0.061 0.118

Mauritani-3 (M3) 0.008 < 0.001 < 0.001 < 0.001 < 0.001 0.449 0.053 0.042 0.093 0.079 0.126

Mauritania-4 (M4) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.169 0.874 0.002 0.063 0.065 0.115

Egypt-1 (E1) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.001 0.093

Egypt-2 (E2) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.506 0.075**

Turkey (T) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Table 5. Pair-wise estimates of FST values among the six Argyrosomus regius populations: Weir and Cockerham (1984) θ above the diagonal and significance below the diagonal after simple

Bonferroni correction (Rice, 1989)

France W. Portugal Mauritania S.W. Iberia Egypt Turkey

France 0.026 0.026 0.025 0.099 0.140

W. Portugal <0.001 0.041 0.012 0.107 0.168

Mauritania <0.001 <0.001 0.024 0.061 0.098

S.W. Iberia 0.003 <0.001 <0.001 0.073 0.126

Egypt <0.001 <0.001 <0.001 <0.001 0.081

Turkey <0.001 <0.001 <0.001 <0.001 <0.001
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Table 6. Effective population size (Ne) estimates for the 6 Argyrosomus regius populations based on linkage

disequilibrium estimated with parametric and jackknife methods (Waples and Do, 2008). Ne = mean effective population

size; Upper and lower 95 % confidence interval are shown; * Negative value estimated by LDNe suggests Ne is not

different from infinity.

Population Ne
Parametric Jackknife

Lower Upper Lower Upper

France -634.1* 394.1 Large 281.3 Large

W. Portugal -117.5* 250.2 Large 136.0 Large

S.W. Iberia -722.1* 182.5 Large 99.3 Large

Mauritania 111.0 68.7 237.2 61.6 330.3

Egypt 531.5 292.3 Large 151.6 Large

Turkey 17.4 10.7 31.8 10.3 33.6

4. Discussion

4.1. Genetic structuring

Genetic characterisation was made with microsatellite markers isolated from another

species. The very limited number of null alleles in A. regius confirms the potential for cross-

amplification between Sciaenids (Turner et al., 1998) and ability to identify U. cirrosa and

P. senegallus species. Incidentally, A. regius presents a lower mean number of alleles per locus

per population than the red drum (Saillant et al., 2009).

The non significant FST values between different collection sites justified their pooling into

six distinct new sites. Among the Mauritanian sites, a sampling artefact can be suspected for

sample M4, as it is differentiated from one Mauritanian sample but not the other two. A

hierarchical Analysis of Molecular Variance could have been performed to account for regions

and collection sites within regions, but we estimated that genetic differentiation was so high that

any type of statistical method would give the same kind of results. Similarly, we did not estimate

the effect of geographic distance on genetic differentiation since the geographic distances

between sites are so great and different that this effect is obvious.

A. regius can be divided into at least two very distant genetic groups: Atlantic and

Mediterranean. Our results reveal the existence of a previously unknown sixth distinct

reproductive area for the species in the Aegean Sea, at the mouth of the Menderes river delta in

Turkey. Interestingly, the S.W. Iberia population is somewhat intermediate between the Atlantic

and Mediterranean, which is in accord with its geographical location. Reproduction has been

also suggested in Morocco (Hermas, 1995) and in several other cryptic areas (JL Costa, pers.

comm.; Champagnat and Domain, 1978; Dieuzeide, 1929; Quéro, 1989b; Chakroum et al.,

1983).

4.2. Why such high genetic differentiation?

A. regius FST values are very high and in the highest ever reported in marine fish from this

the same geographic area (Bonhomme et al., 2002; Nielsen et al., 2003; Nielsen et al., 2004;
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Alarcớn et al., 2004; Kotoulas et al., 2006; Maggio et al., 2009; Gallarza et al., 2009; González-

Wangüemert et al., 2010) or in smaller Sciaenids (Lankford et al., 1999; Gold et al., 2001; Ward

et al., 2007; Zhiqiang et al., 2008; Xiao et al., 2009). Such FST values have only been previously

reported for coastal marine species strongly affected by post-glacial recolonization (Wilson and

Veraguth, 2010) or for populations separated by the Atlantic ocean (Ball et al., 2007) or by the

Indian ocean for another Argyrosomus species (the mulloway A. japonicus) (Archangi, 2008).

Geographic and hydrological barriers were advocated to explain genetic differentiation in

marine fish. The Cape Sagres separates the two Portuguese populations, which are less than

200 km apart. The Gibraltar Strait-Alboran Sea zone and the Siculo-Tunisian Strait limit genetic

exchanges between the Atlantic Ocean and the southeast Mediterranean Sea (for further

examples see Barhi-Sfar et al. (2000), Naciri et al. (1999) and Patarnello et al. (2007)). In the

northern waters of the Aegean Sea, the lowest salinity and the coolest temperature induce a

cyclonic circulation, causing its isolation from Egypt (Barhi-Sfar et al., 2000). These barriers may

have played an important role in the recent past of the species.

The subdivision into the two Atlantic and Mediterranean groups and the lower allelic

richness and effective sizes of the Mediterranean populations could be due to the effects of

vicariance, limited introgression after secondary contact, and/or population expansion following

the successive coolings and warmings of the Mediterranean Sea during previous interglacial

phases of the Quaternary (Borsa et al., 1997; Bianchi and Morri, 2000; Patarnello et al., 2007).

Even though the present results do not demonstrate the impact of Pleistocene glaciation per se,

these glaciations could have also restricted A. regius area in the Atlantic to a more southern

part than its present distribution. Crowley (1981) estimates very low summer temperature (9.2

°C) in northern Portuguese waters at the time of the 18 000-year B.P. glacial maximum. Such a

low temperature makes the reproduction of A. regius in the Tagus and the Gironde estuaries

theoretically impossible at this time. These northern populations could, therefore, result from a

recent expansion in the North Atlantic Ocean, which is in agreement with their lower allelic

richness. In the Atlantic, this result confirms the early Tixerant (1974) hypothesis of

differentiation between France and Mauritania based on differential otolith growth. In the

Mediterranean Sea, the genetic differentiation between the two populations is in agreement with

the two biogeographic areas defined by Bianchi and Morri (2000) as “North Aegean” and “Gulf

of Gabes to Levant Sea”.

Biological factors have also been put forward to explain the genetic differentiation of marine

organisms. However, early life-history traits (egg type, pelagic larval duration, and inshore-

offshore spawning) have a limited involvement in the genetic differentiation of marine fishes

(Gallarza et al., 2009). For A. regius, Tixerant (1974) and Quéro (1989a) pointed out factors that

varied between Mauritania, Egypt and France, such as the difference in water salinity. They

also identified differences in the duration and the time of reproduction (3 weeks in early June in

the Gironde, the 2 months of February and March in Egypt, and 9 months from October to June

in Mauritania). But among all the biological factors, reproductive migration is probably the most

important factor limiting adult movement and, therefore, limiting gene flow between reproductive
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areas. This factor is reinforced by two others. The first is the limited number of potentially

favourable sites for A. regius reproduction and for long term settlement. The need for an actual

estuary was questioned by Tixerant (1974), as there is no estuary in Mauritania. A site

favourable for reproduction would require intermediate temperature (14 °C to 23 °C), with an

optimal window (19 °C to 21 °C) for reproduction and successful larval recruitment (Quéro and

Vayne, 1987; Quéro, 1989a), high water flow and minimal water depth for spawning (> 10-15 m).

The second requirement is the need for extensive mudflats (in the Atlantic) or lagoons (in the

Mediterranean) habitats close to the reproduction sites to provide a suitable environment for

larval recruitment and juvenile growth (Quéro and Vayne, 1987). The Gironde, Tagus,

Guadalquivir and Menderes estuaries, the sea areas at the opening of the Nile river delta and

the large mudflats in the Banc d’Arguin in Mauritania fulfil these basic requirements.

4.3. Potential biases

In this study, temporal variation in allele frequencies may be confounded with spatial

variation because samples were composed of very different year classes among and within

sites. However, the magnitude of the divergence between regions is so large that some noise

due to temporal genetic variation is unlikely to have a great impact on the observed patterns of

population structure reported here.

Bias could potentially arise from rearing wild fish in captivity by artificial selection for

survival even if we estimate genetic variability of neutral markers. Only the population from

Egypt had a significant heterozygote deficiency when all loci were considered. Inbreeding can

be excluded, as heterozygote deficiency was not the case at all loci. As heterozygote deficiency

was also estimated before the pooling of the two collection sites, Wahlund effect (presence of

different genetic stocks in a single sample) seems improbable as such a hypothesis would imply

that each of the two Egyptian stocks would have been composed of different origins in the same

ratio. Assortative mating can also be excluded as A. regius is a mass spawner (Tixerant, 1974).

An effect of artificial selection during captivity would require a strong association between the

potentially neutral loci and survival, which is unrealistic with the limited number of markers used.

Only a more detailed investigation on wild captured cohorts among different Egyptians coastal

lakes could allow conclusions about these factors. In any case, the heterozygote deficiency

observed in the Egyptian samples does not interfere with the general conclusion that there is

very high geographic differentiation.

4.4. Effective population sizes

The estimations of population size differ greatly: from infinity (France, W. Portugal, S.W.

Iberia) to very limited (Turkey). Several factors need to be considered for the interpretation of

these results.

Ne estimates were obtained from populations composed of different year classes (W.

Portugal, SW Iberia and Mauritania), a single year class (Egypt, Turkey) or two year classes

(France). If estimates in the former three populations represent approximations of Ne (effective
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size for the generation), the Ne estimates from the latter three populations most probably reflect

Nb (effective number of breeders having produced the sample) than Ne (Waples, 2005). It can

then be argued that the assumption of the statistical models based on discrete generations is

severely violated as A. regius reproduces with overlapping generations until fourty years of age.

The long generation interval and overlapping generations are also factors that could cause

genetic disequilibrium between year classes and underestimation of the true effective number of

parents (“sweepstake recruitment hypothesis”; Hedgecock, 1994). Preliminary results from F1

and F2 yearly cohorts do not provide much if any support for this hypothesis as the two cohorts

collected from the same population exhibited neither genetic differentiation nor heterozygote

deficiency (caused in this case by temporal Wahlund effect).

High temporal heterogeneity in effective population size was also associated with a very

low ratio of individuals producing new young-of-age year class to adult census population size

in another large Sciaenid, the red drum Scianops ocellatus (Turner et al., 2002). The high

variation in A. regius captures (i.e. from 350 T in 1992 to 12200 T in 2001 in Mauritania or from

35 T in 1985 to 1356 T in 2006 in France ; FAO data) could also result and/or create unequal

reproductive success and fluctuation in population size between cohorts (Hedrick, 2005).

Finally, all populations show very limited lower bounds of effective size, inferior to 500

(Table 6), which is very low for a marine fish and may indicate a population risk for long term

viability (Franklin and Frankham, 1998). Among the six populations identified, Turkey and

Mauritania had a finite upper estimate of Ne effective (33.6 or 330.3). For the population from

Turkey, that is also the less variable and the more genetically differentiated, the actual small

surface of the Menderes delta, and its shallow lagoons for the juvenile development, could

explain the limited annual captures (< 50 T, K. Gamzis, pers. comm.). The Holocene sea-level

variations (Ergin et al., 2007; Kazanci et al., 2009) are also factors that have greatly restricted

the Menderes delta surface and potentially limited reproductive capacities and therefore Ne.

The high genetic variation of the population from Mauritania is opposite to its limited Ne estimate.

Since the Mauritanian “sample” combined small numbers of fish collected at four locations, the

Ne estimate could be biased downward by mixture disequilibria from a two-locus Wahlund effect

(see discussion in 4.3. about FST values and genetic differentiation between Mauritanian sites)

and underestimate the real Ne, which should be considered higher.

More generally, the meagre shares several biological factors with the ten other large

Sciaenids already threatened and for which the protection of seasonal aggregation areas and

nursery grounds has been advocated (Cisneros-Mata et al., 1995; Sadovy and Cheung, 2003;

Liu and Sadovy de Mitchel, 2008). The limited values of Ne and the very long distances known

between reproduction areas should be considered in the meagre management, as recent river

water pollution, modification of water flow and overfishing at 1+ year of age were reported as

factors associated with decreases in meagre abundance (Bebars et al., 1996; Oczkowski and

Nixon, 2008; Kazanci et al., 2009; Sourget and Biais, 2009; Morales-Nin et al., 2012).
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5. Conclusion

This study provides the first genetic characterisation of A. regius across most of its natural

range. The species is genetically highly structured, with a degree of differentiation rarely

reported in a marine fish. The high genetic fragmentation highlights the genetic originality of

each population and the need to consider their management regionally. This work also

demonstrates the existence of an as yet unknown sixth reproductive area in the Aegean Sea.

Future studies, including the genetic characterisation of fish from other areas (Morocco,

Balearic Islands…) or other cryptic populations using microsatellite markers or mtDNA could

offer further insight about A. regius ecology, biodiversity and recent evolution. These data will

be useful for its preservation and for its exploitation by fisheries and aquaculture.
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Use of SARIMA models to assess data-poor fisheries: a case st udy with a
sciaenid fishery off Portugal

Abstract: Research on assessment and monitoring methods has primarily focused on fisheries
with long multivariate data sets. Less research exists on methods applicable to data-poor
fisheries with univariate data sets with a small sample size. In this study, we examine the
capabilities of seasonal autoregressive integrated moving average (SARIMA) models to fit,
forecast, and monitor the landings of such data-poor fisheries. We use a European fishery on
meagre (Sciaenidae: Argyrosomus regius), where only a short time series of landings was
available to model (n=60 months), as our case-study. We show that despite the limited sample
size, a SARIMA model could be found that adequately fitted and forecasted the time series of
meagre landings (12-month forecasts; mean error: 3.5 tons (t); annual absolute percentage
error: 15.4%). We derive model-based prediction intervals and show how they can be used to
detect problematic situations in the fishery. Our results indicate that over the course of one
year the meagre landings remained within the prediction limits of the model and therefore
indicated no need for urgent management intervention. We discuss the information that
SARIMA model structure conveys on the meagre life-cycle and fishery, the methodological
requirements of SARIMA forecasting of data-poor fisheries landings, and the capabilities
SARIMA models present within current efforts to monitor the world’s data-poorest resources.

Keywords: Seasonal ARIMA models; data-poor fisheries; fisheries monitoring; time series
analysis; statistical process control; meagre

1. Introduction

Research, assessment, and management have traditionally focused on fisheries with the greatest

landings and revenues (Scandol, 2005; Vasconcellos and Cochrane, 2005). Such fisheries are generally

data-rich and have available the funds and expertise required to complete stock assessments and provide

state-of-the-art advice to management. However, that is not the case for the vast majority of fisheries

worldwide, which remain subjected to limited (if any) assessment and management (Vasconcellos and

Cochrane, 2005). The latter have been collectively termed "data-poor fisheries" and are characterized by

a low diversity and quantity of data, limitations in funding and expertise, and an overall shortage of

assessment methods (Mahon, 1997; Scandol, 2005). Among the world's data-poorest fisheries are nearly

all fisheries in developing countries, but also most fisheries in developed countries, namely the smaller-

scale or less valuable commercial and recreational ones (NRC, 1998; Berkes et al., 2001; EEA, 2005;

Vasconcellos and Cochrane, 2005; ICES, 2008; Worm et al., 2009; OSPAR, 2010).

Assessment of data-poor fisheries requires a significantly different approach from their data-rich

counterparts. For data-poor fisheries, many deterministic multivariate stock assessment models cannot be

used (e.g., NRC, 1998) and more pragmatic assessment methods must be put in place, particularly when

fishery-independent data are not available and fishing effort cannot be quantified (Berkes et al., 2001;

Scandol, 2003; ICES, 2008). In many countries, the most readily available fisheries data are commercial
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landings because of their connection to the economy and business (Vasconcellos and Cochrane, 2005).

Commercial landings result from complex interactions between the environment, the fishing fleet, and the

stocks, and therefore do not directly reflect the status of exploited populations. However, landing records

contain valuable information that can be useful to managers if routine monitoring, rather than stock

assessment, is established as a management objective (Scandol, 2003). In fact, even if they provide

suboptimal indications on the status of the stocks, statistical analyses of landings can lead to the timely

detection of phenomena such as sudden increases in fishing effort or marked population declines that

could otherwise remain undetected (Caddy, 1999). Such detection is important — particularly within

multispecies, budget-limited, management contexts — because it allows the prioritization of research and

management actions toward the subset of fisheries and stocks most likely to be depleted (Scandol, 2003).

Autoregressive integrated moving-average (ARIMA) models are simple time series models that can

be used to fit and forecast univariate data such as fisheries landings. With ARIMA models data are

assumed to be the output of a stochastic process, generated by unknown causes, from which future

values can be predicted as a linear combination of past observations and estimates of current and past

random shocks to the system (Box et al., 2008). In fisheries, ARIMA models (and their seasonal

multiplicative version, SARIMA) have a long record of successful application that extends from modeling

(e.g., Hare and Francis, 1994; Fogarty and Miller, 2004) to short-term forecasting of a variety of variables

and resources for both data-rich and data-poor fisheries (Table 1). Specifically, SARIMA models, which

are applicable to many already-available landings data sets, have been found to provide both annual and

monthly forecasts that are comparable to, or even better than forecasts from many multivariate models,

including some with fishing effort among the predictors (Stergiou et al., 1997).

The good record, flexibility, and simplicity of SARIMA models have made them natural candidates for

the modeling of data-poor fisheries (Rothschild et al., 1996). However, to date, SARIMA models in

fisheries have only been applied in detail on relatively long time series (≥120 months) (Table 1), and a

single study has provided a few (but not detailed) results from shorter series (Lloret et al., 2000). Such

emphasis of previous SARIMA modeling on long time series finds little support in statistical literature

where 50 months is generally regarded as the minimum sample size for model application (e.g., Pankratz,

1983; Chatfield, 1996a). Additionally, most literature to date has focused on SARI-MA models as tools to

generate accurate forecasts of future landings. However, in addition to good forecasting, these models

also possess significant capabilities for monitoring landings that have remained unexplored. These

capabilities become apparent when SARIMA models are approached from a statistical process-control

perspective and it is made known that SARIMA model forecasts include the assumption of persistence

(through time) of the process that generated the data (Box et al., 2008; Mesnil and Petitgas, 2009). Briefly,

good landing forecasts are only attainable as long as significant changes do not take place in the fishery;

therefore large forecast errors can be regarded as indications that can be changes in the fishery process

took place that may require management intervention (Pajuelo and Lorenzo, 1995; Georgakarakos et al.,

2006; Box et al., 2008).



Table 1 – Primary fisheries literature that presents seasonal autoregressive integrated moving-average models. Only studies with quantitative forecast results are displayed. "No." is the

number of series, "Freq" is the sampling frequency (W=weekly, M=monthly, A=annual), "n" is the sample size of the fitting period (what is the unit of measurement? Here it is absolute. Units

are established in the "Freq" column), "F" is number of forecasts, "models" indicates the type of models compared, and "PI" indicates if prediction intervals were presented (yes, no). "/"

separates annual and monthly data sets when both were analyzed. "sp" = species, "nsp groups" = nonspecific groups, "Rel." = relative, “CPUE” = catch per unit of effort, “LPUE” =

landings per unit of effort

Reference Species Variable No. Freq n F Modelsa PI

Saila et al. (1980) Jasus edwardsii CPUE 1 M 144 12 1,5 n
Mendelssohn (1981) Katsuwonus pelamis catch/effort 1 M 180 12 12 n
Fogarty (1988) Homarus americanus catch/CPUE 3/1 A/M 41–58/216 1/12 12 n
Jeffries et al. (1989) Pseudopleuronectes americanus Rel. abundance 2/3 A/M 27/156;324 2/12 –– y
Stergiou (1989) Sardina pilchardus catch 1 M 204 12 –– n
Noakes et al. (1990) Oncorhynchus nerka total returns 2 A 24 8 1,10,12,19,20 n
Stergiou (1990a) Engraulis encrasicolus catch 1 M 252 24 –– n
Stergiou (1990b) Mullidae catch 1 M 252 24 –– n
Campbell et al. (1991) Homarus americanus catch 4 A 61–97 10 12 n
Molinet et al. (1991) Penaeus spp., Lutjanus synagris landings/LPUE 2 M 132;180 24 –– n
Stergiou (1991) Trachurus sp. catch 1 M 252 12 1,8 n
Tsai and Chai (1992) Morone saxatilis harvest 1 A 27 4 3,4,12 n
Pajuelo and Lorenzo (1995) 1 nsp group catch 1 M 131 24 –– y
Stergiou and Christou (1996) 4 sp; 12 nsp groups catch 16 A 24 2 1–9 n
Stergiou et al. (1997) 4 sp; 12 nsp groups catch 16 M 288 24 1–5,7–9 n
Park (1998) Theragra chalcogramma landings 1 M 264 24 –– n
Lloret et al. (2000) 30 sp; 36 nsp groups catch 66b M 51–200 12 –– y
Georgakarakos et al. (2002, 2006) Loligo vulgaris, Todarodes sagittatus landings 2 M 174 12 11,15,16 y
Pierce and Boyle (2003) Loligo forbesi LPUE 1 A/M 27/324 3/36 3, 12 y
Stergiou et al. (2003) Xiphias gladius catch 1 M 180 12 8,13 n
Zhou (2003) Oncorhynchus tshawytscha spawner density 2 A 11 4 1, 15 n
Hanson et al. (2006) Brevoortia tyrannus, B. patronus landings 2 A 57;63 10 3,14,15 n

Koutroumanidis et al. (2006) E. encrasicolus, Merluccius
merluccius, Sarda sarda

landings 3 M 216;252 12 17,18 n

Czerwinski et al. (2007) Hippoglossus stenolepis CPUE 1 W 107 31 15 n

Tsitsika et al. (2007) Total pelagic, E. encrasicolus, S.
pilchardus, T. trachurus CPUE 4 M 180 12 11 y

a models compared: 1- Naïve, 2- Linear regression (LR), 3- Multiple LR, 4- Multiple LR with correlated errors, 5- Harmonic LR, 6- Fox surplus-yield, 7- Model combination, 8- Exponential,

9- Vector autoregressive, 10- Periodic autoregressive, 11- Multivariate ARIMA, 12- Transfer function noise, 13- X-11, 14- State space models, 15- Artificial neural networks, 16- Bayesian

dynamic modeling, 17- Genetic modeling for optimal forecasting, 18- Fuzzy expected intervals, 19- Stock-recruitment, 20- Sibling;
b includes 12 series with 51–64 months.
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In this study, we report the first detailed application of SARIMA models for monitoring of

data-poor fisheries landings. We use data from a previously unassessed Portuguese fishery on

meagre (Sciaenidae: Argyrosomus regius) as our example. The meagre is a valuable top

predator from European coastal waters but its stocks have not been analytically assessed

because of limitations in data, personnel, and funding existing at the national level. At the time

of our analysis only a short time series of monthly landings (60 months) was available for this

fishery, a situation that replicates conditions found in many other data-poor fisheries worldwide.

We show that the short time series was not a problem for SARIMA modeling and forecasting

and that prediction intervals from SARIMA models can be used to provide this fishery with basic

monitoring. We suggest that SARIMA models should be more widely considered to extend the

cover-age of monitoring to all exploited marine resources.

2. Materials and methods

2.1. Meagre (Argyrosomus regius) and its fisheries

Meagre is one of the world’s largest and most valuable sciaenids (up to 180 cm, 50 kg, and

with a US$ 15 per kg exvessel price). It ranges from France to Senegal, and the largest

fisheries take place off Mauritania, Morocco, and Egypt. In Europe, the meagre constitutes a

prized trophy-fish for anglers and an important income for small-scale commercial fishermen

along the Atlantic shores of France, Spain, and Portugal. Its biology and life cycle remain

scarcely documented, but recent concerns about the overexploitation of juveniles and interests

in aquaculture production have sparked some research. Currently, the fish is known to be fairly

long-lived (up to 44 yr) (Prista et al., 2009), to present fast juvenile growth (Morales-Nin et al.,

2010) and to spawn at 3–4 yr old (N. Prista, unpub. data). Data on adult growth and

reproduction have not been published, but preliminary reports indicate a life-cycle characterized

by fast growth, high fecundity, and a long reproductive span, and that the estuaries of the

Gironde (France), Tagus (Portugal), and Guadalquivir (SW Spain) rivers constitute the main

spawning habitats (Quéméner, 2002; Prista et al., 2008; N. Prista, unpub. data). Marked

seasonal variations in landings linked to juvenile and adult migrations have been identified in

local fisheries (Quéro and Vayne, 1987; Prista et al., 2008). Overall, adults are thought to come

inshore from spring to early summer to spawn but their overwintering grounds are still unknown;

juveniles are thought to use estuaries as nursery areas during the warmer months and

overwinter in adjoining coastal grounds (Quéro and Vayne, 1987; Quéméner, 2002; Prista et al.,

2008; N. Prista, unpub. data).

Recently, substantial conservation risks have been identified in European meagre fisheries

that are related to the overexploitation of juvenile and adults schools in estuaries and nearby

coastal areas (Quéméner, 2002; Prista et al., 2008). To protect juveniles, precautionary

management measures have been put in place (namely minimum landing size regulations) but

the actual status of the meagre stocks was never assessed. This lack of assessment mainly



CHAPTER 7

228

results from a lack of sufficient multivariate time-series data and because national assessment

priorities, funding, and expertise are generally allocated to the largest national and transnational

fisheries instead of the less-significant, albeit numerous and regionally important, ones. The fish

being largely absent from routine fishery-independent surveys (Quéro and Vayne, 1987; F.

Cardador, personal commun. 2008. INRB, I.P./IPIMAR, Av. Brasília, 1449-006 Lisboa, Portugal)

and difficulties related to its sampling at port and the estimation of fishing effort (Prista et al.,

2007, 2008) further contribute to its unassessed status. In this type of setting, if simple methods

are not put in place that can, at least, detect the most alarming signals in the landings data it is

likely that stock collapses can occur without being detected.

2.2. Data set and data transformations

The Lisboa region in Central West Portugal (henceforth termed “Lisboa region”) (38°25′N to

38°59′N lat., ~9°15′W long.) is the main fishing area for meagre off the Iberian Peninsula

(between 29% and 45% of annual landings of meagre, all gears combined, in 2001−05). In this

region, most of the catch is associated with the Tagus estuary and its adjoining coastal area.

The catch derives essentially from a small-scale artisanal fleet in which gillnets, trammel nets,

and longlines are used to catch meagre during its spawning and nursery season (Prista et al.,

2008). To minimize overfishing of juvenile fish, a minimum landing size of 42 cm was

established in 2002 that complements an array of other gear-related and effort-related

management regulations that are not specific to meagre.

To test SARIMA models in the monitoring of the Lisboa meagre landings, we obtained a

time series of meagre monthly landings from the Portuguese General Directorate for Fisheries

and Aquaculture (DGPA). The landings data resulted from mandatory reports of fish sales

obtained at all ports of the Lisboa region (N = 14) from May 2002 to April 2008 (i.e., 72 monthly

values) as part of a routine data collection program (Figure 1). We used the first 60 months to fit

the SARIMA models and the last 12 months as a hold-out period to evaluate forecasting

performance and to monitor the fishery. Some previous data were available on this fishery, but

those data were found to be unreliable because of contamination with landings from Portuguese

vessels operating off North African waters. No significant management interventions occurred

on the fishery during the course of our study.

Before fitting a SARIMA model, the time series must be checked for violations of the weak

stationarity assumption of the models (Brockwell and Davis, 2002; Box et al., 2008). In SARIMA

models, trend and seasonal nonstationarities are handled directly by the model structure so that

only the nonstationarity of variance needs to be addressed before model fitting. The meagre

time series (xt, t = 1,...,60) was seasonal and exhibited no trend (Figure 1A), but annual

variance-mean plots indicated an increase in variance with the series mean. To correct this, we

evaluated Box-Cox transformations (Box and Cox, 1964) and found that a log10 transformation

successfully stabilized the variance of the series. Accordingly, we log-transformed the data,
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subtracted its mean, and then used the mean-centered log-trans-formed data set (yt, t = 1,...,60)

as input to the SARIMA analyses (Figure 1B).

Figure 1. Time series of monthly meagre (Argyrosomus regius) landings, in tons, in the Lisboa region of the Portuguese

coast (May 2002 to April 2008). The dashed vertical line is the forecast origin (April 2007) and separates the fitting

period (May 2002 to April 2007, left) from the hold-out period (May 2007 to April 2008, right). (A) Raw data. (B) Log10-

transformed mean-centered data.

2.3. Data modeling

We fitted SARIMA models to the meagre data using a semi-automated approach based on

a combination of the Box-Jenkins method with small-sample, bias-corrected Akaike information

criteria (AICc) model selection (Rothschild et al., 1996; Brockwell and Davis, 2002). This

approach involved three major steps: 1) selection of the candidate model set; 2) estimation of

the model and determination of AICc; and 3) a diagnostic check. Details on the notation and

model selection procedures used to fit SARIMA models to short time series are given in

Appendices 1 and 2.

Selection of the candidate model set was carried out by first analyzing sample estimates of

the autocorrelation function (ACF) and partial autocorrelation function (PACF) in order to select

the three major orders of the SARIMA models: d, D, and S. In the meagre case, we concluded

that a configuration with d=0, D=1, and S=12 should be adopted (see Results section).

Consequently, a SARIMA(p,0,q)×(P,1,Q)12 was selected as the basic model structure of the

candidate set, with p, q, P, and Q left to vary. There is no a priori method to determine the

maximum value that p, q, P, and Q can take, but the maximum orders of the models are

obviously restricted by sample size. In our analysis, we conditioned p, q, P, and Q to the upper



CHAPTER 7

230

boundary max(p+q+SP+SQ)=24 and p+q≤12 (Table 2), which caused the maximum possible

term of any SARIMA model to be xt-36 and the maximum possible number of parameters to be

13. We found this procedure to provide a good compromise between model complexity and the

convergence of estimation algorithms.

Table 2 – Candidate set of seasonal autoregressive integrated moving-average models. The “rule” column displays the

mathematical expression used to determine the autoregressive components (p) and moving-average components (q) of

the candidate models. “Max AR term” and “Max MA term” columns display the maximum autoregressive (AR) and

moving-average (MA) lags included in the model equations, with respect to the original (xt) and 12-month differenced

log10-transformed mean-centered data (wt =
1
12∇ yt =

1
12∇ (log10xt−4.022)), respectively

Model structure No. of
models Rule Max AR term Max MA term

(p,0,q)×(0,1,0)12 325 q<25–p; p≤24 wt−24; xt −36 zt −12

(p,0,q)×(1,1,0)12 91 q<13–p; p≤12 wt −24; xt −36 zt −12

(p,0,q)×(0,1,1)12 91 q<13–p; p≤12 wt −12; xt −24 zt −24

(p,0,q)×(1,1,1)12 1 q=0; p=0 wt −12; xt −24 zt −12

Model estimation was carried out by using maximum likelihood methods, after conditional

sum of squares estimation of the starting values (Brockwell and Davis, 2002). Given the large

number of models requiring estimation (Table 2), we developed a semi-automated software

routine in R, vers. 2.5.1 (R Development Core Team, 2007) that estimated the models and

output their AICc values. This routine used several functions incorporated in the R packages

“stats” (R Development Core Team, 2007), “tseries” (Trapletti and Hornik, 2007), and “FinTS”

(Graves, 2008). After estimation, the model with the minimum AICc was selected for further

analysis.

Diagnostic checks on the AICc-selected model involved the following steps: 1) verification

of the resemblance of residuals to white noise (ACF plots, Ljung-Box test, cumulative

periodogram test); 2) tests on the normality of residuals (Jarque-Bera and Shapiro-Wilks tests);

and 3) confirmation of model stationarity, invertibility, and parameter redundancy (Shapiro et al.,

1968; Ljung and Box, 1978; Jarque and Bera, 1987; Box et al., 2008). All tests were carried out

at a significance level of α=0.05. The variance explained by the model was determined as

22 /ˆ1
tyσσ− (Stergiou, 1990a).

2.4. Forecasts and model performance

We evaluated 12 months of model forecasts, using the last month of the fitting data set as

the forecast origin (i.e., April 2007). Forecasts were obtained in the mean-centered transformed

scale ( hŷ , h=1,...,12) and in the original scale of the data ( hx̂ , h=1,...,12), after correcting for

back-transformation bias (Pankratz, 1983). SARIMA model performance was assessed by
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comparing h-step forecasts ( hx̂ and hŷ ) with monthly landings observed between May 2007

and April 2008 (xh and yh). This was done by evaluating monthly forecast errors (e.g., eh= hx̂ − xh)

and then considering a set of accuracy measures: 1) annual root mean-square error (RMSE); 2)

mean error (ME); 3) absolute percent error (APEh ); 4) mean absolute percent error (MAPE);

and 5) annual percent error (PE) (Mendelssohn, 1981; Hyndman and Koehler, 2006). From

these, RMSE was evaluated in the transformed scale to allow its comparison to σ̂ , and all

others were computed in the more user-friendly original scale of the data. Additionally, we

compared the forecasting performance of the SARIMA model against two simple naïve

forecasting models (naïve model 1 or NM1, and naïve model 2 or NM2) (Noakes et al., 1990;

Stergiou et al., 1997). The latter represented ad hoc forecasting models likely to be used in

data-poor fisheries with short time series of landings: with NM1, future landings were assumed

to be equal to the landings registered in the previous year; and with NM2, future landings were

assumed to be equal to the average monthly landings registered in the fitting period. We also

evaluated the Kitanidis and Bras (1980) coefficient of persistence (P) that summarizes

forecasting results by comparing them with those of a naïve model where landings at time t+1

are assumed equal to landings at time t. This coefficient takes values smaller than or equal to 1,

with P=1 representing perfect model forecasts.

2.5. Monitoring of fisheries

SARIMA models predict the future on the assumption that the statistical properties of the

process generating the data remain the same over time (Box et al., 2008). When framed within

the perspective of statistical process control (e.g., Scandol, 2005; Box et al., 2008; Mesnil and

Petitgas, 2009), this characteristic allows the predictions of well-developed SARIMA models to

be used as “guidelines” to monitor future observations. When a SARIMA model is found that

appropriately fits the landings data, a significant departure of its forecasts from future

observations can be seen as an indication that changes in the underlying fishery process have

occurred (=out-of-control situation). In contrast, if such a significant departure does not take

place, then there is no indication for such changes (= in-control situation). From a data-poor

fisheries perspective, such a distinction means that if funding is limited and multiple fisheries

require assessment, research and management efforts should be allocated to fisheries

displaying out-of-control decreasing trends in production rather than to fisheries that remain

stable or display in-control increasing trends (Scandol, 2003, 2005).

The distinction between in-control and out-of-control landings requires a set of detection

limits. To date, process-control detection limits for fisheries indicators have been derived mostly

from historical reference data (Scandol, 2003; Mesnil and Petitgas 2009; Petitgas, 2009).

However, most fisheries have only a few years of collected data and consequently historical

limits are difficult to estimate. In such situations, model-based detection limits like the prediction

intervals (PIs) of SARIMA models (Chatfield, 1993; Box et al., 2008) provide easy-to-compute



CHAPTER 7

232

detection limits that explicitly take into account the correlation structure of the data. SARIMA PIs

resemble confidence intervals for model forecasts and consist of upper and lower boundaries

that encompass a 1−α probability region for future forecasts (Chatfield, 1993). Their main use is

to convey the uncertainty around forecasts (De Gooijer and Hyndman, 2006). However,

because prediction intervals encompass only future observations, as long as no structural

changes take place in the underlying process (Chatfield, 1993), their boundaries can be used to

monitor univariate data such as fisheries landings.

To date, the prediction intervals (PIs) from SARIMA models have seldom been reported in

fisheries literature and, when they have, with little detail and discussion (Table 1 ). To monitor

the landings of the meagre fishery we used two types of PIs: single step PIs (PIss,h ) and

multistep PIs (PIms,h). Single step PIs refer to a single monthly forecast (e.g., h=3) and are useful

for determining whether a specific monthly observation is an outlier at a given significance level

α. Multistep PIs encompass a 1−α prediction region that is a simultaneous PI for all

observations registered up to a certain h-step and are useful in detecting systematic departures

from historical patterns. We calculated PIss,h as hdfh PMSEty 2/,ˆ α± where PMSEh is the

expected mean squared prediction error at step h and df=N−DS−d−r (Chatfield, 1993; Harvey,

1989). In the calculation of multistep PIs, we used a conservative approach based on a first-

order Bonferroni inequality, whereby PIms,h is given as hhdfh PMSEty 2/,ˆ α± and joint

prediction intervals of, at least, 1−α around the point forecasts are obtained (Chan et al., 2004).

3. Results

3.1. Data modeling

Large autocorrelations were recorded for lags 1, 2, 11, 12, 23, and 24 with values 0.68,

0.32, 0.44, 0.46, 0.28 and 0.31, respectively (Figure 2). The sharp decrease in autocorrelation

values after lag 2 (0.07 at lag 3) indicated no evidence of a long-term trend; consequently, there

was no need to include a first-lag difference term in the SARIMA model structure (d=0). In

contrast, large autocorrelation values were registered at annual lags (and its multiples) which

indicated the need to include a 12-month difference term in the models (S=12, D=1) (Figure 2).

The ACF and PACF plots of the differenced series provided further support for these

conclusions (Figure 2). Accordingly, a SARIMA(p,0,q)×(P,1,Q)12 was selected as the basic

structure of the SARIMA candidate set.
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Figure 2. Sample autocorrelation function (ACF) and partial autocorrelation function (PACF) of the transformed meagre

(Argyrosomus regius) landings. ACF/PACF plots for log10-transformed mean-centered data (yt, far left), lag-1 differenced

series ( 1
1∇ yt), lag-12 differenced series ( 1

12∇ yt), and lag-1 and lag-12 differenced series ( 1
1∇ 1

12∇ yt, far right) are

displayed. Horizontal dashed lines represent the 95% confidence limits valid under the null hypothesis of white noise

error structure.

Out of all models in the candidate set, a SARIMA(0,0,5)×(1,1,0)12 was selected as the best

model for the meagre data (−2 ln (L)=−26.32, n=48, r=7, AICc=−9.52). This model had the

following equation:

(1+0.65{.10}B12) 1
12∇ yt= (1+0.63{.19}B+0.56{.15}B2+0.51{.17}B3+0.93{.18}B4+0.60{.21}B5)zt,

with a noise variance estimate of 2σ̂ =0.025 and where yt = the mean-centered log-transformed

meagre series (i.e., yt=log10xt−4.022) and the values in { } are the standard errors of the

estimates.

Diagnostic checks indicated that the SARIMA model was stationary and invertible and did

not have redundant parameters. The residuals were white noise (Ljung-Box Q=3.35, P-

value>0.05) and passed asymptotic normality tests (Shapiro-Wilk W=0.97, P-value >0.05;
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Jarque-Bera LM=4.91, P-value >0.05) indicating the model fitted the data and errors were

normally distributed. The model explained 78.2% of the variance of the series.

The final process equation selected for the meagre data was

log10 Xt = 0.35log10Xt−12+0.65log10Xt−24+Zt+0.63Zt−1+0.56Zt−2+ 0.51Zt−3+0.93Zt−4+0.60Zt−5 ,

where Zt ~ N (0, 0.025).

3.2. Model forecasts and performance

The model forecasts presented two local maxima (May 2007 and September 2007)

followed by a four-month period of low landings (December 2007 through March 2008) and an

increase in the last month (April 2008) (Figure 3, Table 3). This pattern in forecasts matched the

one in observed landings and the only deviations were that the actual maxima took place one to

two months later and the winter trough was sharper than that predicted by the model (Figure 3).

RMSE during the hold-out period (0.234) was ≈1.5 times the RMSE of the fitting period. Eight of

the 12 forecasts registered negative errors, but the low ME and PE indicated that

underestimation was minor in global terms. APE was large in August, September, December,

and April, reflecting the delay in cessation of the 2007 fishing season and the hastening of the

2008 fishing season. Maximum APE coincided with the lowest landings (February), and the

minimum APE with the first month forecasted (May) (Table 3). MAPE was 40.3%, reflecting the

lagged seasonality and the low landings observed during the winter period.
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Figure 3. Forecasts and forecast prediction intervals (PIs) of meagre (Argyrosomus regius) landings. The dashed

vertical line is the forecast origin ("Fo", April 2007). The gray circles and line represent the monthly forecasts. The black

circles and line represent observed monthly landings. The dashed gray lines represent the upper and lower 75%, 95%,

and 99% prediction intervals. (A and B) Single step prediction intervals (PIss,h) of transformed centered landings and

back-transformed landings, respectively. (C and D) Multistep prediction intervals (PIms,h) of transformed centered

landings and back-transformed landings, respectively.

As with SARIMA forecasts, naïve model predictions also lagged observed values by one or

two months. However, the SARIMA forecasts registered the best performance in all accuracy

measures, resulting in a 10% to 18% reduction in RMSE, 49% to 60% reduction in ME, 6% to

10% reduction in MAPE, and ≈15% reduction in PE (Table 3). The coefficient of persistence of

the SARIMA model was also better (P=0.46) than the one registered by NM1 (P=0.23) and NM2

(P=0.03).

Table 3 – Forecasts of meagre (Argyrosomus regius) landings (May 2007 to April 2008). Observed landings (xh),

forecasted landings (
hx̂ ), monthly forecast errors (eh), monthly absolute percent error (APEh), mean error (ME), and

mean absolute percent error (MAPE) are displayed for the two naïve models (NM1 and NM2) and the seasonal

autoregressive integrated moving-average model (SAR). Annual root mean-square error of the mean-centered
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transformed data (RMSE) and annual percent error (PE) for NM1, NM2 and SAR were 0.261 and 30.2%, 0.285 and

38.9%, and 0.234 and 15.4%, respectively

Month
Step
(h)

Obs
(xh)

Forecasts (
hx̂ ) Forecast errors (eh) APEh

NM1 NM2 SAR NM1 NM2 SAR NM1 NM2 SAR

May-07 1 37.1 29.9 21.0 36.4 –7.2 –16.1 –0.7 19.4 43.5 1.8

Jun-07 2 41.5 27.2 18.1 26.6 –14.3 –23.4 –14.9 34.4 56.5 35.8

Jul-07 3 23.0 17.9 14.7 26.1 –5.2 –8.3 +3.1 22.4 36.2 13.3

Aug-07 4 15.7 25.9 18.4 25.8 +10.2 +2.8 +10.1 65.3 17.6 64.7

Sep-07 5 20.8 24.2 26.3 31.4 +3.4 +5.5 +10.6 16.3 26.2 51.1

Oct-07 6 30.6 15.3 21.9 23.0 –15.2 –8.7 –7.6 49.8 28.5 24.9

Nov-07 7 32.9 10.2 13.3 19.0 –22.7 –19.6 –13.9 69.0 59.5 42.2

Dec-07 8 16.1 6.8 6.8 6.0 –9.3 –9.2 –10.1 57.7 57.5 62.8

Jan-08 9 7.5 5.0 4.8 5.7 –2.5 –2.7 –1.8 32.8 35.7 24.5

Feb-08 10 3.2 5.4 5.2 6.1 +2.1 +2.0 +2.9 66.6 61.9 90.7

Mar-08 11 8.0 5.8 4.1 6.5 –2.2 –3.9 –1.5 27.3 48.6 19.0

Apr-08 12 34.1 15.2 10.8 16.3 –18.9 –23.4 –17.9 55.5 68.4 52.4

Mean 1:12 22.5 15.7 13.8 19.1 –6.8 –8.8 –3.5 43.1 45.0 40.3

Sum 1:12 270.5 188.8 165.4 228.9 –81.7 – –41.6 – – –

3.3. Monitoring of fisheries

During the hold-out period, observed landings remained entirely within the 95% prediction

intervals of the SARIMA forecasts (Figure 3), indicating that the observed forecast errors were

within the range of values expected from random variability. Consequently the time series for

meagre landings may be described as having remained in-control during the forecasting period.

The PIs were symmetrical in the log-transformed scale (Figure 3, A and C), but asymmetrical in

the original scale of the data (Figure 3, B and D). This pattern was expected from predictions of

log-transformed data and indicates that sudden increases in monthly landings (positive forecast

errors) are considered “more acceptable” than sudden decreases (negative forecast errors).

Individual forecast errors that could have signaled an alarm ranged from 4.3 to 23.0 t (negative

errors) to 13.5–68.3 t (positive errors). In relative terms, alarms would have been triggered by a

higher than 54–75% drop, or by a higher than 105–238% increase, in monthly landings (Table

4). Compared to monthly PIs, multistep PIs were wider as a result of the increasing number of

comparisons performed (Table 4). Even so, it is noticeable that such widening took place mainly

on their upper boundary, and only a 12% increase was observed on their lower boundary.
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Table 4 : Prediction intervals of meagre (Argyrosomus regius) landings (May 2007 to April 2008). Point forecasts (
hx̂ )

and 95% boundaries of the single step (PIss,h) and multistep (PIms,h) prediction intervals are displayed. The prediction

boundaries are given as absolute errors (|eh|) and absolute percent errors (APEh) in each monthly forecast step (h). In

each cell, the left and right values represent the lower and upper boundaries, respectively

Month
Step
(h) hx̂

PIss,h PIms,h

|eh| APEh |eh| APEh

May-07 1 36.4 19.7–38.4 54–105 19.7–38.4 54–105

Jun-07 2 26.6 16.2–35.8 61–135 17.5–45.0 66–169

Jul-07 3 26.1 16.9–40.5 65–155 18.8–58.0 72–222

Aug-07 4 25.8 17.3–43.7 67–169 19.6–68.8 76–266

Sep-07 5 31.4 23.0–68.3 73–217 25.9–120.0 82–382

Oct-07 6 23.0 17.3–54.7 75–238 19.5–103.6 85–451

Nov-07 7 19.0 14.3–45.2 75–238 16.2–89.7 85–472

Dec-07 8 6.0 4.5–14.2 75–238 5.1–29.4 86–491

Jan-08 9 5.7 4.3–13.5 75–238 4.9–28.8 86–509

Feb-08 10 6.1 4.6–14.6 75–238 5.3–32.2 87–525

Mar-08 11 6.5 4.9–15.5 75–238 5.7–35.1 87–539

Apr-08 12 16.3 12.3–38.7 75–238 14.2–89.9 87–553

4. Discussion

4.1. Interpretation of the models

Univariate SARIMA models based on landings do not have explanatory variables, but

several studies have found the mathematical formulation in the models to correlate well with fish

life history and fleet dynamics (Stergiou, 1990b; Stergiou et al., 1997; Lloret et al., 2000). In

Europe, adult and juvenile meagre are thought to perform spring–summer migrations to major

estuaries, remaining there until mid-summer (adults) and autumn (juveniles). These migrations

are well known to local fishermen that actively target the meagre schools while they reside in

estuarine grounds (Quéro and Vayne, 1987; Prista et al., 2008). Such interactions between fish

migrations and directed fishing effort are likely the cause of the strong seasonal component of

the SARIMA model because target effort tends to intensify the natural seasonal signal

generated by fish migrating through a fishery (Lloret et al., 2000; Prista et al. 2008). In the case

of central Portugal, such intensification is likely modulated at an interannual level by the

expectations created for local fishermen by catches obtained in pre ceding years (represented

in the seasonal autoregressive term) and, at an intra-annual level, by random environmental

and anthropogenic perturbations occurring on the fishery system (represented in the set of

nonseasonal moving-average terms).

4.2. Model fit and forecast performance

The univariate SARIMA model presented a good fit to the short time series of meagre

landings, explaining most of its variance and adequately modeling the seasonality and
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correlation structure of the data. Similar results were obtained in other studies of short and long

time series: up to 68% (Lloret et al., 2000, series ≤64 months), 75% (Saila et al., 1980), 77%

(Stergiou et al., 2003), 84–96% (Stergiou, 1989, 1991; Stergiou et al., 1997), and 93% (Pajuelo

and Lorenzo, 1995). Taken together, these results indicate that SARIMA models should be

adequate for data sets of monthly landings in general, and not just those with larger sample

sizes. Bearing in mind that the minimum series length usually stated for SARIMA model fitting is

50 (Pankratz, 1983; Chatfield, 1996b), such generalized applicability may make SARIMA

models particularly useful for fisheries with less reliable historical records or where only recently

landings have been sampled.

In addition to a good fit, the SARIMA model also provided good short-term forecasts of

meagre landings. The fact that all observed values were located within the predicted intervals of

the model, and that naïve forecasts presented similarly lagged seasonality, indicates that the

main forecast errors more likely resulted from natural variations in the timing of fish migrations

and fishing seasons (Quéro and Vayne, 1987; Prista et al., 2008) or from specifics of SARIMA

forecasts and accuracy measures (namely, correlation and APE sensitivity to near-zero

observations) (Hyndman and Koehler, 2006; Box et al., 2008) than from model misspecification.

At the annual level, the 15% error achieved is comparable to results previously obtained in

larger data sets and well within the 10–20% range considered acceptable for market-planning

and fisheries management (e.g., Mendelssohn, 1981; Pajuelo and Lorenzo, 1995; Hanson et al.,

2006). Additionally, SARIMA forecasts clearly outperformed naïve forecasting in all accuracy

metrics, underscoring the large benefits of using these models instead of simpler alternatives

(Saila et al., 1980; Stergiou, 1991; Stergiou et al., 1997). Considered together with the overall

good forecasting performance reported by Lloret et al. (2000) in their shorter series, these

results build confidence that SARIMA models are useful for forecasting short time series of

landings and thus can substantially contribute to the planning and management of many data-

poor fisheries.

4.3. Use of SARIMA models to forecast landings of data-poor f isheries

SARIMA models forecast future landings by directly handling the seasonality and

autocorrelation structure of the data and assuming the continuity over time of past time series

behavior (Box et al., 2008). These models are known to be well adapted to forecast highly

seasonal and autocorrelated data (Stergiou et al., 1997; Georgakarakos et al., 2006).

Additionally, some authors have reported better SARIMA forecasting performances in fisheries

with lower interannual variability, namely those that target benthic and demersal long-lived

species (Lloret et al., 2000). The data for meagre are autocorrelated and present a relatively

stable seasonal pattern. Also, the meagre is long-lived and a targeted fish in central Portugal

(Prista et al., 2009; Prista et al. 2 ). Therefore, it is possible such features contributed to the

good forecasts obtained from the SARIMA model. However, we note that the landings of many

short-lived pelagic species and species with variable seasonal patterns have also been well
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forecasted with SARIMA models (Stergiou, 1990a; Stergiou et al., 1997; Georgakarakos et al.,

2006; Tsitsika et al., 2007) and that the meagre landings also display substantial annual and

monthly stochasticity Therefore, such general patterns should not be considered as strict

limitations to SARIMA forecasting. More importantly, we note that SARIMA models can forecast

well only if they have been adequately identified and estimated, and always under the

assumption that the future is behaving like the past (Chatfield, 1993). Consequently, factors like

data quality, presence of outliers, and model selection criteria are also very important for model

performance. We discuss these next.

The quality of the input data for SARIMA models is determined mainly by the temporal

stability of the statistical properties of the fisheries process and the consistency of its sampling

over time. Consequently, although accuracy is required for some model applications (e.g., Zhou,

2003), data inaccuracies do not necessarily undermine SARIMA forecasts as long as factors

such as fishing practices, regulatory measures, or data collection practices can be assumed to

remain constant. When dealing with shorter series, a careful check whether these assumptions

hold becomes particularly important because model identification and estimation are very

dependent on the few observations available (Hyndman and Kostenko, 2007) and statistical

techniques used to incorporate the effects of process changes in the models (e.g., Fogarty and

Miller, 2004) are difficult to implement. In the case of meagre, the use of a short and recent time

series better supported the assumption that data collection procedures, fishing techniques,

fishery regulations, unreported landings, discards, and law enforcement practices did not

change over time. In contrast, it is probable that these assumptions were not met in some less

successful applications of the model to longer time series (e.g., Park, 1998).

Outliers are known to cause trouble in time series model identification, estimation, and

forecasts—an effect that is amplified in shorter time series (Chatfield, 1993; Trívez and Nievas,

1998). The effects of outliers on forecasting performance are most disastrous when they occur

near the forecasting origin because there they not only condition model structure and parameter

estimates but are directly incorporated into the forecasts (Chatfield, 1993). The meagre data set

presented no apparent outliers and this likely contributed to the good fit and forecasting

performance achieved. If outliers were present, specific modeling techniques could have been

used to estimate their influence, smooth them, or incorporate them into the model (e.g., Chen

and Liu, 1993; Lloret et al., 2000). We note, however, that any outlier during the hold-out period

could still have changed our perception of model performance, even if it did not compromise the

overall adequacy of the SARIMA model to forecast the landings.

In time series analysis, adequate model specification is considered the most important

driver of forecasting accuracy (Chatfield, 1996b). The difficulties of specifying an appropriate

model increase for data sets with lower information content, such as those of highly variable

short time series from more complex processes (Hyndman and Kostenko, 2007; Appendix 2).

To date, fisheries applications of SARIMA models have essentially relied on Box-Jenkins (BJ)

model selection procedures to specify a model, and models with p≤2 and q≤2 have generally

been selected (e.g., Mendelssohn, 1981; Pajuelo and Lorenzo, 1995; Lloret et al., 2000).



CHAPTER 7

240

Compared to these, the model for meagre seems overparameterized, but we note that all of its

parameters are statistically significant and that the low RMSEforec. to RMSEfit ratio indicates an

excellent correspondence between fit and forecasting performances (Chatfield, 1996b). In fact,

although reduced model parameterization is considered beneficial to accuracy in forecasting,

the most important aspect of time series analysis is not the number of parameters, but the

degree to which the model approximates the statistical process underlying the data and whether

or not it achieves the forecasting objectives (Chatfield, 1996b; Burnham and Anderson, 2002).

In the case of meagre, had Box-Jenkins procedures been used, the selected models would be

simpler and would still adequately fit the data: (1,0,0)×(1,1,0)12 or (0,0,1)×(0,1,1)12 . However,

they would have performed worse than our AICc-selected model in most performance metrics

(RMSE: 0.245 and 0.302, APE: 1.7–92.7% and 20.6–72.4%, MAPE: 44.1% and 44.0%, PE:

13.7% and 31.7%, respectively). These results show the impact that different model selection

techniques may have on forecasting performance with SARIMA models and stress the

importance of considering objective data-driven criteria like AICc for circumventing the

subjectivities of model selection in smaller data sets (Hurvich and Tsai, 1989; Burnham and

Anderson, 2002).

5. Conclusions

5.1. Use of SARIMA models in monitoring fisheries

From a strictly forecasting perspective, SARIMA models have often been criticized for the

excessive reliance on past time series behavior and their difficulty in predicting future structural

changes (Georgakarakos et al., 2002; Koutroumanidis et al., 2006). Our results show that these

drawbacks can become major advantages when SARIMA models are used for monitoring

fisheries. At present, none of the European meagre fisheries is subjected to routine analytical

assessment. By fitting SARIMA models to already available landings data we were able to carry

out a first baseline evaluation of one such fishery, using limited funds and minimal time.

Our study provides a first example of how SARIMA models can be used to monitor data-

poor fisheries. In the case of meagre, the data displayed no trend and the 95% SARIMA

prediction intervals fully encompassed all monthly landings, thus indicating a stable “in-control”

fishery. Note that by stating this, at no point do we suggest that the meagre fishery is

sustainable long-term because landings do not necessarily reflect stock abundance and our

study was limited in time. We suggest only that, since no motive for alarm exists in landings

data, and because funds, personnel, and expertise are limited at the national level, attention

should be allocated to fisheries that, contrary to the meagre, display decreasing trends or out-

of-control situations. Similar types of pragmatic reasoning are generally of great help to fisheries

managers handling multiple data-poor fishery scenarios because they help them prioritize

management actions for the subset of “problematic” resources in a statistically sound way

(Scandol, 2003, 2005).
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Underlying the usefulness of SARIMA models in monitoring the meagre fishery and other

data-poor fisheries is the use of prediction intervals as reference points to signal alarming

trends or sudden level shifts in the fisheries process (Caddy, 1999; Scandol, 2003; Mesnil and

Petitgas, 2009). SARIMA PIs have been previously reported in the literature (Table 1), but their

use in monitoring was not explored or formalized. These intervals are currently the focus of

much statistical research on how to deal with their tendency toward “over-optimism,” i.e., the

fact that nominal 95% prediction intervals generally contain less than 95% of future

observations (Chatfield, 1993). Fortunately, from a fisheries conservation perspective such

over-optimism does not constitute a major problem because narrower PIs will be more sensitive

to changes in the fisheries process.

Statistical process control (SPC) monitoring of univariate fisheries indicators has become

the focus of increased research attention (Scandol, 2003, 2005; ICES, 2008; Mesnil and

Petitgas, 2009; Petitgas, 2009). The use of SARIMA PIs is similar to that of SPC control-charts,

which makes them interesting candidates for the simultaneous monitoring of multiple fisheries

and fisheries indicators (Caddy, 1999; Scandol, 2005; Petitgas, 2009). For such cases, SARIMA

PIs offer the advantage of being model-based and do not require extensive historical reference

data. They are also free from the assumption of statistical independence that frequently troubles

the estimation of SPC detection limits (Mesnil and Petitgas, 2009). The simulation framework

proposed by Scandol (2003, 2005) for SPC charts provides a means whereby SARIMA PIs can

be calibrated toward specific detection rates and management goals. Such calibration was

beyond the objectives our study but constitutes an interesting research route for those in charge

of more holistic fisheries management.

5.2. SARIMA models in assessments of data-poor fisheries

Formal stock assessment has traditionally been considered as the starting point of any

fisheries assessment (Mahon, 1997; Berkes et al., 2001). Such an approach is highly desirable

but will not be implemented easily, nor quickly, in the many existing data-poor fisheries

(Vasconcellos and Cochrane, 2005). In fact, NRC (1998) estimated that 16% of U.S. stocks are

not subjected to assessment; and the European Environmental Agency (EEA, 2005) estimated

that, depending on the region considered, 20–90% of commercial stocks exploited in the

Northeast Atlantic and Mediterranean are not routinely assessed. These figures are much

worse in developing countries and when discard and bycatch species are included in the

estimates (Vasconcellos and Cochrane, 2005). Addressing such situations requires increased

focus on alternative stock indicators and assessment methods that can be used to monitor more

fisheries by using available (or easily obtainable) data, funds, and human resources (e.g.,

Caddy, 1999; Scandol, 2005; Mesnil and Petitgas, 2009; OSPAR, 2010; ICES 1 ). Univariate

time series models fitted to landings data may be, for some time longer, the best possible

approach to extend assessment and management coverage to many of these unassessed

resources.
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SARIMA modeling and process-control schemes do not constitute alternatives to analytical

stock assessment models. Rather, whenever possible, they should be seen as statistical tools

to support expert judgment, funding allocation, and management decisions in the most data-

limited and assessment-limited settings (Scandol, 2003; 2005). SARIMA modeling and model-

based monitoring have a range of characteristics that make them worthy of future exploration in

data-poor contexts. Among these are their appropriateness to numerous resources and

variables, their strong statistical background and ecological plausibility, their good forecasting

performance and easy-to-estimate detection limits, and their applicability to both long and short

time series. Furthermore, SARIMA models can also be used to model the nonspecific groupings

that dominate many landings data sets, or can be upgraded if multivariate data become

available (Stergiou et al., 1997; Vasconcellos and Cochrane, 2005). Finally, the availability of

SARIMA models in open-source software packages and their routine use in sectors other than

fisheries (e.g., sales, economics, engineering) (Brockwell and Davis, 2002; Box et al., 2008)

may be decisive advantages in budget-limited and expertise-limited countries.
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Appendix 1

ARIMA and SARIMA models

An extensive review of ARIMA and SARIMA models can be found in, e.g., Box et al. (2008)

and Brockwell and Davis (2002). A mean-centered time series xt can be modeled as an

ARIMA(p,d,q), where p, d, q are nonnegative integers, if it can be adequately fitted with the

process equation

φ(B)(1−B)dXt= θ(B)Zt ,

where for a time interval T, (Xt) t ∈ T is a sequence of random variables, B is a backshift

differencing operator BhXt=Xt−h (h nonnegative integer), (1−B)dXt=
d
1∇ Xt is stationary, φ(B) and

θ(B) are linear filters defined as φ(B)=1− φ1B− φ2B2−...− φpBp and θ(B)=1+ θ1B+ θ2B2+...+ θqBq

and (Zt)t∈ T is a sequence of uncorrelated random variables with zero mean and variance σ2

(termed white noise). In ARIMA models the orders p, q, and d define the structure of the model,

by specifying the autoregressive (AR) and moving average (MA) components of an

autoregressive–moving average process (ARMA[p,q]). d is the degree of differentiation (d≥1)

required for Xt to become stationary. This differentiation involves the loss of d observations in

the series.

The SARIMA (p,d,q)×(P,D,Q)S models, where P, D, Q, and S are nonnegative integers,

extend the modeling capabilities of ARIMA(p,d,q) models to seasonal processes. The SARIMA

process equation is given by

φ(B)Φ(BS)(1−B)d(1−BS)DXt=θ(B)Θ(BS)Zt ,

where Xt, Zt, φ(B) and θ(B) are defined as above, (1−B)d(1−BS)DXt=
D
S

d∇∇1 Xt is stationary, and

Φ(BS) and Θ(BS) are seasonal linear filters defined as Φ(BS)=1−Φ1BS−Φ2B2S−...−ΦPBPS and

Θ(BS)=1+Θ1BS+Θ2B2S+...+ΘQBQS. In SARIMA, P defines the seasonal autoregressive

component of the model (SAR) and Q the seasonal moving average component of the model

(SMA). S represents the seasonal period (e.g., 12 months) and D is the degree of seasonal

differentiation. Together, S and D account for seasonal nonstationarity in Xt through a data

transformation that involves the loss of DS observations in the series.

Appendix 2

Selection of ARIMA and SARIMA models

ARIMA and SARIMA models are usually fitted by using a sequence of three general steps

collectively known as the Box-Jenkins (BJ) method: 1) identification of the model; 2) estimation

of the model; and 3) a diagnostic check of the model (Box et al., 2008). In the identification

stage, a model structure (p,d,q)×(P,D,Q)S is selected by comparisons of sample ACF and PACF

with theoretical ACF/PACF profiles of AR, MA and ARMA processes. In the estimation stage,
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the model structure is fitted to the data and its parameters are estimated, generally by using

conditional sum of squares or maximum likelihood methods. In the diagnostic check stage, the

goodness-of-fit and assumptions for the model are evaluated and, if necessary, the BJ

procedure is repeated until a suitable model is found. This model is then used to forecast future

values (Box et al., 2008). In-depth theoretical coverage of the BJ method is given in Box et al.

(2008) and extensive practical applications are provided in Pankratz (1983) and Brockwell and

Davis (2002).

The model identification stage of the BJ method is widely considered its most subjective

step because it relies primarily on graphical interpretations of ACF/PACF estimates obtained

from a single sample. This interpretation requires substantial analytical expertise and

knowledge of the time series (both of which are problematic in data-poor scenarios) and is

troublesome when complex ARMA processes have generated the data (Harvey, 1989;

Shumway and Stoffer, 2006). Furthermore, it can also be confounded by existing correlations

among ACF/PACF estimates (Box et al., 2008). The minimum sample size generally advised for

SARIMA model fitting is 50 observations (Pankratz, 1983; Chatfield, 1996b), but see Hyndman

and Kostenko (2007) for an absolute lower limit. When sample size is large (e.g., n ≥100),

ACF/PACF estimates have lower variability and are more likely to approximate the theoretical

ACF/PACF estimates of the underlying process. In such cases, less subjectivity exists in

identification of the model. However, when sample size is small, the interpretation of ACF/PACF

patterns becomes increasingly confounded by the large variance of the sample estimates,

particularly at larger lags (≥n/4) (Box et al., 2008). This variability substantially increases the

subjectivity of the model identification stage of the BJ method and is the main issue to be dealt

with when analyzing shorter time series.

AIC approach

To circumvent the subjectivity of the identification of the model with the BJ method and to

aid in the determination of the final orders of the ARMA processes a wide variety of model

selection criteria have been developed (De Gooijer et al., 1985). The most frequently used are

Akaike’s information criteria (AIC) (Akaike, 1974) and its small-sample, bias-corrected

equivalent, AICc (Hurvich and Tsai, 1989). Contrary to the Box-Jenkins method, AIC/AICc

selection of a model involves the a priori estimation by maximum likelihood methods of a set of

model structures (here termed the candidate set). This estimation is followed by the

determination of the AIC/AICc values for each individual model. The model with minimum

AIC/AICc is then selected as the model that is closest to the statistical process “generating” the

data. In SARIMA models, AIC is calculated as

AIC=−2ln(L)+2r ,

where ln(L) is the log-likelihood of the model, r=p+q+P+Q+1, and the AICc is given by

AICc=−2ln(L)+2r+2r(r+1)/(n−r−1) ,
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where n=N−DS−d is the number observations used to fit the model. AIC/AICc constitute

objective methods to achieve model parsimony through a trade-off between the variance

explained by the model and penalty terms caused by excessive model parameters. Both of

them are well founded in the principles of information and likelihood theory and have been

applied extensively in time series, fisheries, and ecological literature (e.g., Brockwell and Davis,

2002; Burnham and Anderson, 2002; Hanson et al., 2006). Burnham and Anderson (2002)

suggest AICc is used when n/r ≤40, which prompts the consideration of this small-sample, bias-

corrected version of AIC in studies of short time series
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4. General discussion

The scientific work presented in this thesis aimed at (1) increasing scientific and societal

awareness about the historical and present significance of the meagre in Portuguese waters; (2)

contributing to the sustained elevation of this European data-poor species to a more data-rich

situation; and (3) carry out a first appraisal on the life-history of the Portuguese meagre and, if

necessary, recommend fisheries management actions.

The meagre has been an important fishery in the Iberian Peninsula since prehistoric times.

This fact is confirmed by abundant osteological remains found at archaeological sites

(Lentacker, 1986; Izquierdo & Muñiz, 1990). The work presented in Chapter 1 (Gabriel et al.,

2012) showed that otoliths are the main meagre bone structure present at those sites. The

abundant presence of this calcified structure is not surprising if one considers the size and

robustness of typical Sciaenid otoliths (Schwarzhans, 1993). However, the results in Chapter 1

demonstrated that meagre fished by Mesolithic communities included both juveniles and adults,

and indicating that meagre fishing has been carried out in estuarine environments since

prehistoric times. Considering the significant anthropogenic pressure that occurs in today's

estuarine systems, including in the Tagus and Sado estuaries (Costa and Cabral, 1999), the

presence of meagre in both current and prehistoric estuarine environments appears to indicate

that the overall environmental conditions required by the fish have not changed so dramatically

that its natural migratory rhythms are drastically affected.

Accurate knowledge of the spatio-temporal distribution of fisheries is essential to fisheries

management and the conservation of marine species. Current meagre fisheries in Portugal

were described in detail for the first time in Chapter 2 (Prista, Jones et al., 2008; Prista, Santos

et al., 2008). In Portugal, adult meagres are actively targeted by local a local small-scale fleet

that operates within the Tagus estuary (Prista, Jones et al., 2008) and a significant by-catch of a

tuna trap that operates in the Southern coast near the mouth of the Guadiana River (Santos et

al., 2002; Prista, Santos et al., 2008). This exploitation pattern is similar to the one verified in the

Gulf of Cádiz where meagre is caught by an artisanal fleet operating in the vicinities of the

Guadalquivir entrance (González-Quirós et al., 2011) and in France where large meagres are

caught in the Gironde Estuary during the fish spawning season (Quéro and Vayne, 1987;

Lagardère and Mariani, 2006). Adult meagres are also fished along shallow coastal areas of the

Banc d’Arguin (Tixerant, 1974) and in coastal lagoons of the Nile Delta (Rizk and Hashem, 1981;

Bebars et al., 1997).
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Studies on the growth and reproduction of meagre and other large valuable fish like tuna or

swordfish have always been constrained by difficulties in obtaining biological samples with

sufficient sample size at reasonable costs (e.g., Pilling et al., 2006–2009). In the case of

Argyrosomus, the high ex-vessel prices of adult specimens and the absence of the fish from

fishery-independent surveys have proven the most significant challenge to biological studies.

Examples of the latter include: (1) Quéro and Vayne (1987) who report on only 920 meagre

collected during research cruises in Bay of Biscay from 1965 to 1987; (2) Costa et al. (2005)

who did not capture adult specimens in otter trawl surveys carried out in Tagus spawning

grounds; and (3) the generalized absence of meagre from IPIMAR coastal surveys in

Portuguese waters (F. Cardador, INRB/IPIMAR, pers. comm., 2008). Similar difficulties were

reported from other geographical areas including South Africa (Griffiths, 1996) and Australia

(Farmer, 2008). Research described in Chapter 3 (Prista et al., 2007) addressed these

difficulties by seeking a collaborative strategy with market dealers and developing a new

sampling methodology, termed Commercial Mark-Recapture (CMR), that successfully

decreased sampling costs while ensuring a large unbiased sample. During meagre sampling in

Portugal the application of commercial mark-recapture (CMR) in the Southern coast was

coupled to a collaboration with Western coast retailers (that supplied adult fish from the Tagus

spawning ground) and specimens from juvenile fishery independent surveys carried out by

other colleagues, thus assuring the collection of a significant amount of biological material from

all size classes (Costa et al., 2008). Other large valuable fish species from Portuguese waters

may come to benefit from the application of the CMR. Among these are other data-poor species

(e.g., Polyprion americanus, wreckfish) and some internationally-exploited marine resources

(e.g., Xiphias gladius, swordfish; Thunnus thynnus, bluefin tuna).

Age and growth studies constitutes a major source of information for fisheries scientists

and are of fundamental importance in modern-day fish population modeling and management

advice (Campana, 2001). The age and growth of European meagre was described for the first

time using otolith thin sections in Chapter 4 (Prista et al., 2009). Previous studies involving

meagre age determination used methodologies that, although sophisticated at the time, are

presently considered inaccurate (Tixerant, 1974; Hermas, 1995). Using otolith thin sections the

previous maximum lifespan of meagre (31 years, Tixerant, 1974) was updated to 43 years old

(Prista et al., 2009) and two companion papers are presently being prepared that demonstrate

the validity of the age determination criteria and present data on the growth of Portuguese

meagre. For the time being, Prista et al. (2009) appears to have been accepted as standard

reference in age determinations carried out in southern Spain and the coast of France

(González-Quirós et al. 2011; Morales-Nin, 2012; N. Prista, unpub. data). Such standardization

of procedures is expected to increase the comparability of results, contributing significantly to a

better understanding of the meagre life-cycle in this geographical area.

To date the reproduction of wild meagre from European waters was only studied in the Gulf

of Cádiz (González-Quirós et al., 2011). Most other studies refer to aquaculture production (e.g.,

Schiavone et al., 2012; Duncan et al., 2012) or to different geographical areas and were based
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on gross anatomical scales of gonad maturity and GSI analyses (Tixerant, 1974, Hermas, 1995).

Notable exceptions are the work of Lagardère and Mariani (2006) who report on passive

acoustic recordings made in the Gironde estuary. Most previous research indicated that the

meagre spawned only in the Gironde and Nile estuaries and in the Banc d’Argin (Quéméner,

2002). The research included in Chapter 5 (Prista et al., 2014, Chapters 5B and 5C) and other

unpublished evidence including data from passive acoustic recordings carried out in the Tagus

estuary (N. Prista and M.C.P. Amorim, unpub. data) show that this estuary is a spawning

ground for the species. The presence of late spawning capable fish with post-ovulatory follicle

complexes in the Southern Tuna trap during early summer is indicative that spawning may also

take place in that area. Anecdotal reports of incidental captures of large schools of adult meagre

by Spanish purse-seiners operating at the Guadiana river mouth (N. Prista, pers. obs.), the

presence of juveniles inside the Guadiana estuary (Bexiga, 2002; Chícharo 2006; N. Prista,

pers. obs.), and the considerable chorusing activity registered inside this estuary during

spawning months (N. Prista and M.C.P. Amorim, unpub. data) also indicate that the Guadiana

estuary (and most probably also its adjoining coastal area) is a spawning ground for this

species. Other possible spawning grounds are the Mira estuary and the Sado estuary. On the

Mira estuary commercial and recreational fisher’s report adults catches during the reproductive

season (J.L. Costa, CO-FCUL, pers. comm., 2008). However, in the Sado there seems to be no

account of its present fishery. North of the Tagus, no adult spawning ground or estuarine

nursery has been identified, including in the regularly monitored estuarine environments of the

Mondego and Douro rivers (Costa et al., 2004; Costa et al., 2005).

One important component of reproductive studies is the determination of size-at-maturity of

fish populations. Size-at-maturity estimates for male meagre were provided by González-Quirós

et al. (2011) (males only) and by Costa et al. (2008) for male and females. The estimates

presented by the latter study are currently being revised based on the new histological work

presented in Chapter 5 and will be published in a companion paper that is currently being

prepared. However, it is worth mentioning that Costa et al. (2008) reported 50% male maturity

at 53.5 cm and 50% female maturity at 82.0 cm. These estimates were derived from combined

macroscopical and histological observations and considered sperm production as an indication

of male maturity. Similarly, González-Quirós et al. (2011) estimated size at maturity of males to

be 61.6 cm. This size is also much smaller than females (all females <76 cm total length were

found to be inactive or immature). The latter authors reference Micale et al. (2002) and Wallace

and Selman (1981) as protocols for their histological work but left unclear the specific criteria

they used to assess male maturity and did not provide data on the gonadossomatic index or

gonad appearance. The results of Chapter 5A are in concordance with the existence of small

males (<60 cm) that produce sperm. However, the histological analyses and the covariate age

data indicated that these males are young, display several histological signs of immaturity, and

produce little sperm, being unlikely to contribute significantly to the annual reproductive output

of the population. Evidence collected from females (Chapter 5B) appears to corroborate such

view with young females displaying some maturity signs (cortical alveoli) but not proceeding
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towards spawning in the current season. Altogether, these set of results suggests that in fish

with a large size range, long lifespan and fast growth, direct interpretation of maturity based on

standardized rules of thumb like sperm production (in males) or presence of cortical alveoli (in

femailes) can be troublesome and that detailed studies of reproductive development should be

made before management measures can be appropriately supported.

Adequate knowledge of stock structure is an important subject for fisheries management

and an interesting subject from both an ecological and evolutionary perspective. Presently,

meagre captures are considerably higher off Morocco, Mauritania and Egypt than off most

European fishing grounds, namely Portugal (FAO, 2012a). Under a single stock situation

overexploitation of the meagre in Northern African waters would likely have direct impact on the

European meagre populations, compromising both capture production and conservation efforts

in Portugal, Spain and France. The genetic evidence presented in Chapter 6 (Haffray et al.,

2012) indicates that Mediterranean and Atlantic meagre stocks are quite distinct and that

substantial population structure may also exist within the Atlantic range of the species. The

possibility that fish from these regions might constitute different stocks had already been noticed

by Tixerant (1974) who reported on substantial differences in the internal and external

morphology of otoliths colllected in Mauritania, France and the Eastern Mediterranean. During

the course of the present study similar evidence was collected from otolith thin sections with

some fish caught off Morocco displaying an annuli pattern markedly distinct from the one

displayed by Portuguese meagre (N. Prista, unpub. data). On the contrary, fish from the

western and southern Portugal are not distinguishable based on such gross analysis to their

internal structure. The study of Haffray et al. (2012) indicates that the meagre populations in

Europe are likely to be much more fragmented than previously thought. It also indicates that

populations from Western and Southern coast of Portugal may in fact be spatially segregated.

Such separation of the Iberian populations into a Western and Southern component was also

suggested by González-Quirós et al. (2011) that considered the Southern Portugal and Gulf of

Cádiz meagre to form a continuum. Such a separation finds further support in the incidence of

Philometra reported in Chapters 5A, 5B and 5D as this parasite was overwhelmingly associated

to fish gonads collected from the Southern coast. The currently planned reanalysis of Costa et

al. (2008) growth and reproduction data and future tagging studies on meagre (B. Quintella,

CO-FCUL, pers. comm., 2013) will likely contribute to clarify this issue. For the time being,

considering the relatively small size of the fisheries involved and the gaps that still remain on

our knowledge of the distribution of meagre in Iberian waters, the iberian meagre fisheries are

probably better-off managed as a single Iberian stock.

Meagre management was approached from a data-poor fisheries perspective in Chapter 7

(Prista et al., 2011). The statistical process control technique used monitor meagre in that

chapter requires only monthly landings data. No prior biological knowledge on meagre stock

structure or its biological properties is necessary. This study indicated that the meagre fishery in

the Tagus was stable from a statistical process control perspective. However, as mentioned by

Prista et al. (2011) its intent was to provide a completely un-assessed data-poor stock with
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some degree of monitoring and not to make an assessment on the status or the sensitivity to

fishing of the meagre population that spawns in the estuary. In respect to the latter, the yield-

per-recruit models developed by Jones and Wells (2001) and González-Quirós et al. (2011)

likely provide for a much better approach.

5. Final Remarks

Prior to this research, the meagre was large valuable fish hardly known to European

science and aquaculture. Presently, the fish and its fisheries have left their originally data-poor

situation and been broadly characterized not only in Portugal but also in several other European

countries. Additionally, its aquaculture production has started in Portugal and other

Mediterranean countries and is currently expanding (FAO, 2012b). The fish is still fished mostly

by small-scale local fisheries and recreational anglers and continues to be expensive and hard

to sample. Consequently it is expected that the meagre will continue to be a data-poor resource

for some time longer and that it will remain difficult to monitor it or assess it at the levels

practiced in other commercial species exploited at industrial level. To those interested in

pursuing research on meagre and/or wishing to draw from its fishery and life-cycle

interpretations that may generalize to other species, a few research lines can be suggested. On

the one hand, there seems to be great potential in the further exploration of comparisons

between present day otoliths and those found in archaeological remains. Under some

assumptions, such studies could provide interesting evidence into the growth parameters of the

meagre populations when they were experiencing much lower fishing effort but also insights into

the impact of climate change and other anthropogenic pressures on fish communities. An

additional line of research that is suggested involves the study of the migration of adult and

juvenile meagre. Such developments would not only be important for the fisheries management

but also provide a background for validating its high level of genetic differentiation. Furthermore,

to date, the overwintering grounds of meagre remain a mystery and restricted to sparse records

of huge schools of adult fish being caught in purse-seines (by mere chance) extremely far from

currently known spawning grounds (Quéro and Vayne, 1993). Discovering the overwintering

grounds of the meagre will prove to be an interesting methodological challenge whereby

different tactics such as interviews with fishers across a large geographic range, passive

hydroacoustics, and sophisticated tags may have to be combined.
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