2360

OPTICS LETTERS / Vol. 20, No. 23 / December 1, 1995

Derivation of weighting coefficients for multiplexed
phase-diffractive elements

E. Carcolé and M. S. Millan

Departament d’Optica, Escola Universitaria d’Optica de Terrassa, Universitat Politécnica de Catalunya,
c¢/. Violinista Vellsola No. 37, 08222 Terrassa, Spain

J. Campos

Department de Fisica, Universitat Autonoma de Barcelona, Edifici Cc, 08193 Barcelona, Spain

Received August 1, 1995

We mathematically analyze the phase-only hologram constructed by taking the phase corresponding to the

linear combination of two weighted phase functions.

We show that this phase-only hologram may be written
as a new linear combination for the original phase functions with new weights.

Expressions for the new

weights are developed to control the performance of the hologram. Also, some nondesired new terms appear

and are written in terms of the original phase functions.
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Diffractive optical elements are useful components
in optical information processing systems. Array
generators for optical interconnections, phase filters
for correlation systems, beam shaping, adaptive opti-
cal components, and three-dimensional displays are
common applications. Some of these applications
require multiplexed functions, such as matched filters
in pattern recognition and Fresnel lenses in optical
interconnections. Suitable two-dimensional functions
may be encoded in phase-modulating spatial light
modulators for implementation of reconfigurable
optical elements. Phase modulation has been shown
with magneto-optic spatial light modulators,! twisted-
nematic liquid crystals,? and transmissive matrix
addressed ferroelectric liquid crystals.> Research has
been done on the optical interconnection capability
of phase-only holograms corresponding to two multi-
plexed Fresnel lenses*® in which the output is a set of
two different spots with different weights. Weighted
multiplexed lenses forming different output images at
different focal lengths® or focusing in the same focal
plane at different positions’ have also been consid-
ered. In Ref. 4 it was experimentally shown that
the weights corresponding to hologram reconstruction
have a nonlinear relation with the weights of the
encoded linear combination, when the phase hologram
corresponds to the linear combination of two weighted
phase holograms. This problem forces one to use a
variety of numerical techniques to compensate for the
nonlinearities.> ! To our knowledge, no previous
work mathematically deduced the nonlinear relation
between the encoded weights and the resulting weights
in the hologram reconstruction.

In this Letter we mathematically analyze the
phase-only hologram constructed by taking the phase
corresponding to the linear combination of two
weighted phase functions. As a result, we show that a
hologram constructed in this way may be written as a
new linear combination of the original phase functions
with new weights. Expressions for these weights are
developed to control the performance of the hologram.
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The particular case of a bifocal lens is analyzed.

Some undesirable new terms appear and are written
in terms of the original phase functions. Then the
particular case in which the phase functions cor-
respond to Fresnel lenses is considered, and the
performance is analyzed. Finally, some conclusions
are drawn.

We consider a linear combination of two phase
functions exp(i¢) and exp(if) (¢ and 6 are two-
dimensional functions) with real weights A and B (we
assume that A2 + B2 = 1 throughout this Letter),
which defines a new function M exp(ia), where M is
the amplitude and « is the phase:

M exp(ia) = A exp(i¢p) + B exp(if). (D

If we need A and B to be complex numbers, we may
write A = A’ exp(iA”) and B = B’ exp(iB"), where A/,
B', A", and B" are real constants. Defining ¢' =
¢ + A" and 6’ = 6 + B”, we may write the linear
combination as A’ exp(i¢’) + B’ exp(i6’). This linear
combination has the same properties as the one in
Eq. (1). We need to perform some simple transforma-
tions in Eq. (1) to get a useful expression. By use of
the Euler identities it is easy to verify the following
equality:

M exp(ia) = [(A + B)cos((ZS ; 4

X sin(%)}exp(i(ﬁ ; 0)' (2

Writing the right-hand side of Eq. (2) in the polar
representation we obtain for M

M =[A? + B? + 2AB cos(¢ — 6)]"2 3)

"ol anctan] (=)
expjt arctan A+ B

% tan(£22)]} @
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and for exp(ia)

exp(ia) = exp(i ¢+
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where the arctan]...] function is assumed to give the
phase of the complex number (A + B)cos[(6 — ¢)/2] +
i(A — B)sin[(# — ¢)/2] in Eq. (2); thus arctan]...]
gives values in the range {0, 27}. Then exp(ia) is
the phase function to be encoded. The first part of
Eq. (4) is the average value of the arguments of the
original functions. The second part is a more complex
function that requires a further transformation for its
characteristics to be discovered. For simplicity, we
define a new function and a new argument

expliy(B)] = exp{i arctan[(i ; ?)tan(ﬁ)}},

B=——- (5

In Fig. 1 ¢(B) is plotted for different values of a =
A%, Note that the closer A or B is to zero, the more
linear the resulting function. For A — B = 0.5"2 the
limit function is a rectangle function. A key point
for our development is that (8) can be considered a
periodic function of B8, with period 27. This allows a
Fourier series expansion to be performed:

expliy(B)] = a, exp(infB), (6)

where the weights a,, can be written as

1 (2% .
an =5 f expli[y(B) — nBlidB. (7)
T Jo

The four main properties of the weights a, may be
noted here: (i) the weights a, are real, because from
Eq. (5) exp[iy(—B)] = exp[—ig(B)]. (i) From Eq. (7)
a, = 0 for n even. (iii) From Egs. (5) and (7) a, de-
pends only on (A — B)/(A + B) and n and is completely
independent of § and ¢. (iv) For B/A < 0.7, from
Fig. 1 we may write ¢(8) = B + &(B), where () is
a function with period 7 and a maximum value near
7/4. Then performing a first-order Taylor expansion,
we may write exp[ig(B)] = (iB)[1 + ie(B)]. Then
the integrand in Eq. (7) becames exp[i(l1 — n)B8] +
i expli(l1 — n)Ble(B). Note that a; takes a large
value. For n = —1, 3 the first part of the integrand
does not contribute. To evaluate the second part, we
may write (8) = —u sin(28), where u is a small con-
stant. Using this result we can write the integrand
as (—u/2){expli(8 — n)B] — exp[—i(1 + n)B]}. This
implies that as/a-; = —1. For B/A tending to 1,
¢(B) behaves as a step function, and the integral
in Eq. (7) can be analytically evaluated and we get
as/a-; = —1/3. We conclude that the higher-order
coefficients (n > 1, n < —1) are not negligible. Insert-
ing Eq. (6) into Eq. (4) and using the definition of 8
given in Eq. (5), we finally get

exp(ia) = Z an exp{i % [(A+ne¢ +(1 - n)ﬁ]}

= a1 exp(id) + a_1 exp(if) + a3 exp[i(2¢ — 0)]
+ a_s5 exp[i(20 — $)] + ... . (8)

This is the key result of this Letter. This means
that the phase hologram corresponding to two multi-
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plexed phase functions may be written as a new lin-
ear combination of the original functions (n = 1 and
n = —1) affected by the new weights a; and a_;. Un-
desired orders appear when other odd values of n are
considered.

To encode the multiplexed phase hologram, we need
to know the relation between the input ratio (A/B)?
and the desired ratio (¢1/a_1)?. This relation is plot-
ted in Fig. 2(a) [a; and a_; have been evaluated by
Eq. (7) with numerical techniques'?]. The diffraction
efficiency, defined as a? + d%,, is plotted as a func-

T l 1 T ™ T 7 17
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Fig. 1. (B) versus B in degrees for different values of
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Fig. 2. (a) Input ratio and (b) diffraction efficiency versus
the desired output ratio.



2362

g

°

b

&
1

ot
N
a

Intensity (i arbitrary, units)
: < b

0 -15 -10 -5 0 5 10 15 20
x (pizels)

(b)
Fig. 3. Binary representation of a bifocal lens designed for
(@1/a-1)?> =0.75: (a) hologram, (b) reconstruction.
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tion of the desired output ratio in Fig. 2(b). Note that
the efficiency is always greater than 0.8. To avoid nu-
merical calculations for the hologram construction, one
can perform an excellent sixth-degree polynomial fit-
ting on the dependence of (A/B)? on (a1/a-1)? by us-
ing standard numerical techniques.’> When we define
x = (a1/a-1)? and y = (A/B)? the polynomial is

y =0.000758498 + 3.90785x — 9.94724x2
+ 19.3746x3 — 24.4142x*
+ 16.9136x° — 4.83813x5. 9)

The maximum absolute error of y is less than 0.001.
This implies a fast and efficient way of obtaining the
weights for the multiplexed hologram and thus possible
real-time control of the weights.

The design of a bifocal lens is an example in which
two phase functions are multiplexed. Many possibili-
ties may be considered. We consider the particular
case of two Fresnel lenses (quadratic phases) with
the same focal length f, each shifted from the origin
by an amount *d/2 in the x direction and with
constant phase shifts of 6§y and ¢¢. In such a case
0 = (k/2f)[(x — d/2)* + y*] + 6 and ¢ = (k/2f)[(x +
d/2)? + y2] + ¢o, where k is the wave number. Using
this in Eq. (8), we may write the resulting bifocal lens
as

exp(ia) = ; an exp«{i Zk_f [(x + n%f i yzﬂ

X exp{i[ % (1 - n? ( % >2}
+ %(qﬁo + 6o) + %n(cﬁo - 00)}- (10)

Considering n = 1 and n = —1, we obtain the desired
shifted Fresnel lenses with the right phase shifts, 6,
and ¢¢. For other odd values of n, this expression
predicts that other focalizations will appear at the
positions x = nd/2 (n odd) with an amplitude given
by a,. This completely agrees with the experimental
results of Fig. 2(a) of Ref. 4. Note that the positions
of the new focalizations do not depend on the original
weights Aand B. A numerical example follows. Ifwe
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wish that x = (a1/a_1)? = 0.75, from Eq. (9) we get y =
(A/B)?2 = 0.937. This implies that A = 0.695 and B =
0.718. Using these values, we construct a bifocal lens
[a binary representation is shown in Fig. 3(a)] with
128 X 128 square pixels whose size is 75 um X 75 um
and d = 450 um (6 pixels) with f = 1.138 m for a
wavelength of 632.8 nm (He—Ne laser), as in Refs. 4-7.
A section of the reconstruction of this hologram in the
focal plane for plane-wave illumination is calculated by
addition of the diffraction pattern of each square pixel.
The result is shown in Fig. 3(b), which is in agreement
with the expected ratio. Note also that the location of
the peaks is nd /2 with d = 6 pixels, in agreement with
Eq. (10).

In conclusion, the phase hologram constructed from
the linear combination of two weighted phase func-
tions has been studied mathematically. This study
shows that the final hologram contains the linear
combination of the original phase functions affected
by new weights. Also, some undesirable additional
terms arise. These new weights depend only on the
original ones and not on the functions being multi-
plexed. A polynomial expression relating the desired
final weights and the original ones has been devel-
oped to permit real-time control of the hologram per-
formance. As a particular example, we studied the
codification of multiplexed Fresnel lenses to discover
their performance characteristics. It has been shown
that some extra focalizations occur, and their locations
have been determined. Finally, the method has a very
high diffraction efficiency (in excess of 80%).

We expect this work to be the first step in the
development of mathematical expressions for more
complex multiplexed holograms. This treatment is
also useful for the multiplexing of two arbitrary phase-
only filters for pattern recognition purposes.
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