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Laparoscopic surgery, also known as minimally invasive surgery (MIS), changed the face of 

surgery in the 1990s. With these procedures, surgeons use long, slender tools which pass through 

several small incisions. Performing surgery in this fashion has shown many benefits including 

reduced pain and recovery times, lower costs, and less scarring post-recovery.  

The use of surgical robotics has shown several key advantages over MIS techniques. Minimally 

invasive surgeries typically require unnatural movements, have limited visibility, greatly reduce 

dexterity, and provide little tactile feedback. Through robot kinematics and specialized sensors, 

surgical robots can resolve many of these limitations, especially in terms of creating intuitive 

controls that can be mastered quickly, without losing many of the benefits of MIS. Because of these 

properties and their relatively small size, surgical robots could be viable options for use during 

space flight emergencies. 

This thesis presents the design and assembly of a parabolic flight payload to evaluate these robots 

in microgravity where the robot performance and the operator capability is unknown. The structure 

supports all required hardware and is compliant with all NASA requirements and guidelines for 

microgravity research. Through future experiments using the payload, completion metrics such as 



 

 

 

 

experimental time-to-completion and robot positioning accuracy will be used to define the 

challenges with working in microgravity as well as propose possible solutions to create a surgical 

system for space. 
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Chapter 1: Introduction 

Availability of effective and standard healthcare during a space flight is vital. As the duration of 

spaceflight increases, timely evacuation of a medically-compromised individual back to earth may 

not be possible. As such, many technological developments are necessary prior to any long-distance 

spaceflight. Among these technologies to be developed are surgical systems to perform major 

surgeries in microgravity. 

For surgeries in a standard operating room, a transition from large, open incisions to smaller, less 

significant ones has occurred. Traditional open surgery offered surgeons excellent manipulation, 

visualization, and tactile feedback but was incredibly painful for the patient and required significant 

time to fully heal. Through these consequences of open surgery, minimally invasive techniques 

were perfected in the early 1990s. These surgical techniques offer significant benefits to the quality 

of care a patient receives including reduced pain, shorter hospital stays, less scarring, and even 

lower mortality rates [1-7]. Laparoscopy, the most well-known form of MIS in which several 

slender tools pass through small incisions in the abdomen, has become a routine technique to many 

surgeons [8]. In weightlessness, this technique would also have a great advantage over open surgery 

in the fact that minimal bodily fluids can escape the body cavity during operation. However, with 

these benefits come several consequences including unintuitive controls, the lack of depth 

perception, and the loss of any touch sensations. 

Recently, robotic systems have been developed to mimic laparoscopic techniques but with software 

packages to improve the surgeons experience. The most well-known system is the da Vinci® 

Surgical System which has been approved by the Food and Drug Administration (FDA) for a 

variety of surgeries [9-11]. This system, however, is far too large to be flown on any near-term 

mission.  
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Previous research in the Advanced Surgical Technologies Laboratory at the University of Nebraska 

has demonstrated technologies that show a viable option for major surgery in microgravity. This 

group has developed several two-armed multi-degree-of-freedom robots [12-14]. These robots are 

completely inserted through an umbilical incision and have been shown to be successful in 

performing colectomies, cholecystectomies, and a hysterectomy [15].  It has been proposed to 

evaluate these robots in a microgravity environment (Figure 1.1) in preparation for further research 

in the area of surgical robots for space applications. 

 

 
Figure 1.1. Miniature in vivo surgical robot as seen from experiment operator’s view 
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Presented in this thesis is the initial design of a parabolic flight payload to be flown aboard a 

modified 727, owned by Zero Gravity Corporation and contracted by NASA to evaluate the robot 

and operator performance in microgravity. Presented first is a background of current surgical 

technologies used on Earth as well as other methods that have been evaluated in microgravity. 

Next, the motivations for this microgravity experiment will be discussed. The design and 

development of the console will be described. Experimental procedures to evaluate the 

effectiveness of such robots and supporting systems will be listed. Lastly, future areas of 

improvement and research, for the payload as well as the robots, will be identified. 
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Chapter 2: Background 

Section 2.1: Minimally Invasive Surgery 

2.1.1 Standard Laparoscopic Surgery 

Through the late 1980s and early 1990s, a transition from traditional open surgeries to laparoscopic 

procedures occurred [16, 17]. Initially, this technological breakthrough was limited to simple 

procedures such as cholecystectomies. However, through specialized training and improved tools 

this technology has become synonymous with minimally invasive surgery.  

During a laparoscopic procedure, slender tools are introduced into the body cavity through several 

small incisions. During the operation, the body is insufflated with CO2 to increase the volume of 

the body cavity. Because of the positive pressure, a specialized port called a trocar is used to seal 

the incision against pressure loss.  Visualization is achieved through the use of a laparoscope. When 

laparoscopic methods are used, reductions in patient pain, recovery time, and infection rates have 

been realized [18] largely due to smaller incision size (5-10mm vs. 20 cm).  

However, these advances come with several costs. Firstly, range of motion and dexterity are largely 

reduced because each tool must pass through a specific point in the abdominal wall. Additionally, 

the motion of the tool tip is opposite to that of the surgeon’s hands and scales differently with 

various insertion depths due to a fulcrum effect at the incision. Tactile sensation is largely 

eliminated and visualization, particularly in regards to depth perception, is reduced. Some of these 

disadvantages can be solved with sophisticated instrumentation such as the 3D Tipcam® (Karl 

Storz, Tuttlingen, Germany) or equipment using vibration to provide force information [19]. 

Devices such as these have been shown to reduce task completion time [20]. 
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Many virtual reality (VR) training simulations are currently being developed to provide a better 

learning platform for MIS students as opposed to the traditional “see one, do one” apprenticeship 

model [21]. These simulations generate virtual renderings of the surgical environment and provide 

haptic feedback to mimic realistic sensations. They have been shown to increase the skills of a 

surgeon prior to actual surgery [22] and could be beneficial for training surgeons in dealing with 

microgravity [23]. 

2.1.2 Laparoendoscopic Single-Site Surgery 

A more modern approach to minimally invasive surgery is that of Laparoendoscopic Single-Site 

Surgery (LESS), also known as single-port surgery. LESS is achieved through a single 2-3 cm 

umbilical incision through which curved tools [24] are inserted. These tools typically cross each 

other at the insertion to provide better angles of attack. 

LESS has been shown to be feasible for cholecystectomies, appendectomies, splenectomies, 

nephrectomies, and colectomies [25, 26]. Delany [27] documented a reduction in the length of 

hospital stays from 4-6 days for an open colectomy to 1-2 days for a LESS procedure. LESS 

procedures are also branching out into other areas of medicine including urology [28] and 

gynecology [29, 30]. 

While performing surgery through a single incision with curved tools, triangulation, or the ability 

to approach a target from a desired angle, can be very difficult even for experienced surgeons. 

Additionally, many of the difficulties of laparoscopic surgery (visualization, scaling, mirrored 

movements, etc.) are present in LESS procedures as well. Specialized tools with articulating ends 

have helped alleviate some of these problems but much research and training is yet to come in this 

area of MIS. 
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Section 2.2: Robotic Surgery 

2.2.1 Surgical Laparoscopic Surgery 

As standard laparoscopic techniques progressed, researchers attempted to provide assistance to 

surgeons through the use of robotics. The first example was the Automated Endoscopic System for 

Optimal Positioning (AESOP) [31]. With AESOP, the surgeon was capable of controlling the 

endoscope with his voice. 

Since then, the process of automating laparoscopic tools has led to many versions of robotic 

laparoscopic surgery systems which have the potential to provide intuitive control and high 

precision without sacrificing the benefits of MIS [32]. These systems can combine highly scaled 

movements with magnified views to perform surgeries that would otherwise be extremely difficult.  

 
Figure 2.1. da Vinci® Surgical System 
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Currently, the da Vinci® Surgical System (Figure 2.1), developed by Intuitive Surgical, is the most 

advanced robotic system and is the only system approved by the FDA [33]. Competing platforms 

include Raven [34], CoBRASurge [35], MC2E [36], and MiroSurge [37]. These robots are smaller 

in size and cost significantly less but are less capable. Also, because these platform are not FDA-

approved, they are used mainly as research platforms to test a variety of new functionality including 

haptic feedback [38] and remote collaborative surgery [39]. 

2.2.2 Miniature in vivo Surgical Robots 

In contrast to the robotic laparoscopic systems, in vivo surgical robots are fully inserted into the 

body cavity. Though the body cavity is insufflated with CO2 to increase volume, the robots still 

must be very small. The robots can be either mobile or can be fixed relative to the operating table. 

An incision across the navel is a typical point of access similar to that of LESS surgeries.  

The Advanced Surgical Technologies Laboratory at the University of Nebraska has demonstrated 

several versions of such robots. These robots consist of two multi-DOF arms with either a grasper 

or monopolar cautery at the tooltip [12, 13, 15]. They pass through a special trocar inserted into an 

umbilical incision (Figure 2.2). They are then fixed to the operating table. Once inside the body 

cavity, these robots have shown capability in performing surgery in all four quadrants of the body 

cavity [14]. It is these such robots that are proposed for minimally invasive surgery in space and 

will be evaluated through NASA’s Reduced Gravity Program. 
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Figure 2.2. Miniature in vivo surgical robot concept 

 

Section 2.3: Surgery in Space 

As space technologies have increased, the possibility for a long-term space flight has also increased. 

With long-term space flight comes the potential for medical emergencies requiring intervention. 

However, no system yet has been shown to be a viable option for surgery in space.  

In the last decade, an attempt to transfer laparoscopic techniques to microgravity has been 

undertaken [42]. Panait [43] concluded that while task completion rates were reduced in 

microgravity, there is no barrier to effective laparoscopic surgery. Rafiq [44] studied microgravity 

effects of on fine motor control, determining that force control and movement accuracy were 

noticeably reduced. Lastly, Kirkpatrick [45] observed that visualization during MIS techniques in 

microgravity was actually improved due to bodily fluids and debris clinging to the abdominal wall 

through surface tension. One challenge of the MIS approach is that the operator must be sufficiently 

trained in order for the surgery to be successful. Given the difficulty of MIS in 1-g, virtual reality 

simulations of microgravity surgery have been proposed as training tools for astronauts who may 

not have had any prior experiences performing in weightlessness [23]. 

It has been proposed recently that robots developed at the University of Nebraska will be capable 

of performing surgery in weightlessness [46]. These robots have the advantage of an easier learning 
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curve. The kinematics of the robot take care of mismatched movements allowing the surgeon to 

concentrate on what he means to do instead of how he needs to move. Additionally, robots such as 

these are extremely small (under a kilogram in mass). Additionally, the operator of the robot can 

be seated and stabilized in an ergonomic and stable position away from the table instead of being 

required to be “leaning” over the operation. 
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Chapter 3: Motivation 

Section 3.1: Overview 

The performance of miniature in vivo robots needs to be evaluated in microgravity where several 

parameters of the robot as well as the operators will be studied. In analyzing the robot, accuracy 

studies will be the most influential. In standard gravity, any backlash in the robot will typically fall 

to a gravity-neutral position. In weightlessness, there is no forces to stabilize the joints and it may 

be realized that the tooltips will oscillate throughout the surgery. This can be solved by elastic 

compensation at the joints if these mechanics are realized through microgravity experiments. 

In analyzing the operators, task completion percentages and completion times will be used to infer 

performance. In microgravity, it has been documented that fine motor control is reduced [44]. This 

effect has yet to be seen when controlling a haptic device which is capable of providing reaction 

force. Additionally, methods to stabilize the operator can be determined for subsequent flights. 

Section 3.2: Experiments 

Throughout the flight a series of experiments can be performed. The main experiment to evaluate 

performance will be that of a stretch-and-dissect procedure. The stretch-and-dissect experiment 

(Figure 3.1) challenges the operator to grab one side of a marked rubber band. Once a successful 

grasp is achieved, he will cut along the mark, separating the two halves. In subsequent attempts, 

the operator may grasp the free end of a previously cut rubber band to stretch it and make a second 

cut. 

This experiment challenges the system in a variety of ways. Firstly, it tests the accuracy of grasping 

as well as cutting. In these attempts, depth perception may be challenging due to the two-

dimensional vantage point. Other visual cues such as shadows may be required. Secondly, once the 

cut is made the elasticity of the rubber band will provide insight into the rigidity of each arm as 
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well as the stability of the motor controllers. Lastly, attempting to grasp a free floating object will 

be challenging through the requirements of very fine movements and accurate positioning. Any 

attempts without these aspects will fail at grasping free-floating objects. 

 
Figure 3.1. Stretch-and-dissect experiment shown with EricBot 2,1 

Note: EricBot is described in Section 4.2.1 

 

The microgravity manipulation experiment (Figure 3.2) uses a standard laparoscopic training tool 

in microgravity. The challenge is to grab a foam sleeve, transfer the sleeve to the opposite hand, 

and place the sleeve on an unoccupied peg.  This experiment also challenges the ability to make 

fine, deliberate movements while maintaining accurate positioning. Because this task requires a 

grasper on each hand, this task is incompatible with robots that have dual graspers. 
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Figure 3.2. JackBot above peg transfer [14] 

Note: JackBot (JB1) was developed by Jack Mondry at the University of Nebraska in 2012. 
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Chapter 4: Parabolic Flight Payload Design 

Section 4.1: Overview 

The following section provides a basic description of the test equipment design requirements and 

guidelines that must be met for flight on NASA’s Reduced Gravity Aircraft. Compliance with these 

requirements is evaluated prior to flight at the Technical Readiness Review (TRR). Further details 

can be found in NASA documentation [47-50]. 

4.1.1 Structural Requirements 

Structural integrity of all equipment flown aboard NASA’s Reduced Gravity Aircraft must be 

verified. Factors of Safety (FS) of 2.0 or greater shall be applied to all structural elements. Any 

standard method of analysis can be used to verify structures. Material yield strengths are to be used 

as the maximum allowable throughout all design calculations per the requirements of NASA 

All test equipment including fasteners, individual components, frames, full assemblies, and 

enclosures must be designed to withstand the following g-loads during take-off and landing. 

 Forward: 9-g 

 Aft: 3-g 

 Down: 6-g 

 Lateral: 2-g 

 Up: 2-g 

Experimental equipment must also consider in-flight load cases. During the parabolic flight, the 

equipment will experience g-load transitions from 0-g up to 2-g. Additionally, equipment must be 

capable of withstanding inadvertent contact loads from floating individuals. 

. 
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Test equipment fastened to the floor using bolts must possess a frame or baseplate that matches the 

floor attachment grid in the aircraft test cabin. Floor attachment holes in the experiment base plate 

must be centered on a 20±0.05 inch square pattern with holes drilled using a recommended 

clearance hole. No more than four anchor points may be used per payload.  

4.1.2 Electrical Requirements 

Each experiment must have emergency shutdown capabilities. The preferred method is a single 

“kill switch” located in an easily accessible location. This “kill switch” must de-energize all 

components in the system to a safe state, including hardware powered by an auxiliary source or an 

Uninterruptible Power Supply (UPS). This capability must be demonstrated at the TRR. 

In the event of electrical power loss, all experiments must fail to a safe configuration. There will 

be a brief interruption of electrical power during engine startup and momentary interruptions of 

electrical power may occur during flight. Test equipment should incorporate protection devices 

such as a UPS to prevent data loss. 

Experiments must provide an electrical cable to reach a power distribution panel. All power cords 

should be 20 feet in length and have a descriptive tag secured to the end stating the voltage and 

maximum current required. Internal cabling must be restrained and clamped and the payload must 

be grounded to prevent electrical shock. The experiment should be self-protected with an 

incorporated circuit breaker or other current-limiting devices. 

4.1.3 Functional Requirements 

To evaluate UNL’s in vivo surgical robotics, several functional requirements were determined. 

Equipment descriptions will be found in the following sections. 

For the parabolic flight, two robot designs are to be tested – EricBot 2.0 (EB2.0) and EricBot 2.1 

(EB2.1), both designed at the University of Nebraska by Eric Markvicka [51]. The robots should 
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be isolated from the rest of the payload 1) to prevent any inadvertent contact with the robots during 

microgravity and 2) to contain any small free-floating components that are either from the 

experiment or are debris from a mechanical failure. The chamber is to be easily accessible if an 

individual needed to move a component or swap an experiment. 

During operation it is desired that two individuals are capable of controlling robots at the same 

time. This required four total haptic devices and two independent computer systems. It was decided 

to add a third system to assist the prior two during operation by monitoring diagnostic information 

and to assist troubleshooting potential problems. A KVM switch is used to provide mouse and 

keyboard support to all three systems from a single location. Live visual information was obviously 

required to view the robots. Two viewpoints were requested through which an HDMI matrix was 

used to manage the feeds. A schematic of data and connections similar to what is shown in the 

Figure 4.1 was used to select components and design the payload.  

 
Figure 4.1. System Schematic 
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Section 4.2: Equipment Descriptions 

4.2.1 Robots 

Two robots versions of EricBot (EB) are to be flown. Each version is of approximately equivalent 

size and weight. They both incorporate distributed motor control systems for brushless motors; the 

bulk of this hardware was developed by Bartels [41]. Each joint requires a small printed circuit 

board (PCB) including a microcontroller, motor driver, and feedback method. Each PCB is directed 

by a master board located elsewhere. This master board receives commands from the Robot 

Operating System (ROS) (see Section 4.2.3), directs them to each respective joint PCB, or slave, 

collects joint statuses, and returns this global robot status back to the Robot Operating System.  

From a mechanical standpoint, the two versions of Eric Bot, EB2.0 and EB2.1 are almost identical. 

The kinematic structures of each robot is identical and both are constructed from machined 

aluminum and plastic with stainless steel machine screws. EricBot 2.1 was designed with slightly 

larger motors in the body but arm motors are the same. 

In terms of electronics, the robots are more dissimilar. Circuit boards between the two are different 

in layout. EB2.1 uses more advanced cabling techniques such as flexible PCBs and custom 

flexcables. Small and robust Gecko connectors were also used and all circuitry was exposed. 

  
Figure 4.2. EricBot 2.0 (left) and EricBot 2.1 (right) 

Note: EB2.0 is not shown with wiring between joints. 
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4.2.2 Robot Chamber 

The robot chambers (Figure 4.3) are constructed with MakerBeam™ aluminum extrusions. These 

extrusions are similar to 80/20™ extrusions but are less than half the size. Joints are created through 

90° stainless steel plates and special M3 screws that slide within the extrusion. 

The chamber is sealed using 3mm clear polycarbonate panels that slide within the grooves of the 

extrusion. A hinged access door is available to insert and remove the robots and camcorders. Access 

holes are created where cable pass-throughs are necessary. With the exception of these cables, 

nothing will be able to enter or exit the chamber while the access panel is closed. 

Robots, camcorders, and experiments are all supported by an 80/20™ extrusion that passes through 

the chamber to provide more rigidity. The only loads applied to the MakerBeam™ structure are 

those generated from chamber’s own weight. 
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Figure 4.3. Robot Enclosure 

 

4.2.3 Computers 

The flight console will incorporate three identical 64-bit Ubuntu computers – two for robot 

operation and one for assistance and troubleshooting. A build table for these computers is shown 

in Table 4.1. All components are housed in 18 inch rack-mount computer cases (Figure 4.4) located 

towards the bottom of the payload to keep the center of gravity as low as possible. Each complete 

computer weighs 10 kg. 

  

Support Beam 

Access Door 
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Table 4.1. Computer Components 

Component Brand Description 

CPU Intel i7-4770k 

Motherboard ASRock Z87 Extreme6 

Memory G.SKILL Ripjaws X Series 16 GB 

Storage Samsung 840 Pro Series 128GB SSD, RAID 1 

Power Supply Antec EarthWatts 380W 

FireWire Card BYTECC BT-FW310LV 

Case Norco RPC-250 

 

 

 
Figure 4.4. Rackmount Computer Case 

  



20 

 

 

 

All computers and robots communicate through the Robot Operating System (ROS). In this fashion, 

robots are not necessarily installed to a single machine but instead are installed to a collective pool 

of computing power. This provides versatility against hardware and/or software problems by 

allowing control of any robot through any computer at any time.  

4.2.4 Monitors 

The flight system will incorporate a total of five Dell 1703FP LCD Monitors (Figure 4.5). These 

17 inch monitors weigh approximately four kilograms each and are rated for 55 watts of power. 

Each robot operator will have a pair – one for visual feedback to control the robot and a second to 

display live diagnostic information. The fifth monitor will be used by an assistant to help the 

operators with control, strategy, and troubleshooting mid-flight.  

Monitors will be mounted to the payload with a custom plate (Figure 4.6) that adapts the 100mm 

VESA mounting pattern located on the back of the monitor to an 80/20™ compatible pattern.  

 
Figure 4.5. Dell monitor with custom mounting plate attached 
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Figure 4.6. Mounting plate as attached to 80/20™ extrusion 

 

4.2.5 Physical Input 

To manipulate the arms of each robot, a total of four Phantom® Omni haptic devices are used – 

one for each arm of each operator. This 6-DOF physical input device captures the three-dimensional 

position and orientation of its stylus and provides 3-DOF haptic feedback in Cartesian coordinates 

to the operator’s hand. The devices do not provide rotational haptic feedback. A pair of momentary 

switches on the pen provide additional input. These are assigned to open and close the surgical 

robot grasper. 

 
Figure 4.7 Phantom Omni haptic device 
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The haptic functionality of the Phantom Omnis has been shown to be effective in constraining the 

user to the robot’s workspace [41]. Additionally, the movements of the operators can be scaled 

before being executed at the robot level. This can provide highly accurate positioning during the 

surgical procedure. Lastly, though not currently developed for either version of EricBot, software 

limits could be programmed in the future to prevent the arms from colliding with each other. 

Because these devices are meant to rest on a tabletop, a custom mounting solution was required. 

Modifications to prior brackets were made to provide compatibility with 80/20™ extruded 

aluminum profiles. With brackets installed, each device weighs 2.5 kg and is secured with four ¼-

20 countersunk steel screws. 

A Logitech K400 wireless keyboard was installed to provide traditional keyboard-and-mouse input 

to the computers. The K400 keyboard was chosen for its integrated track pad. This feature 

eliminated the need for a traditional computer mouse which would have been required to be free 

during operation but stowed for safety reasons when not in use – an unnecessary procedure which 

would have likely been performed several times throughout the flight. 

 
Figure 4.8. Logitech K400 Keyboard 
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Through an IOGear KVM (Figure 4.9), an assistant will able to bring up the diagnostic information 

presented on other monitors and control any computer using the single keyboard described above. 

The addition of a Monoprice HDMI matrix (Figure 4.9) allows all video feeds to be displayed on 

any monitor. This is switched by a technician through a simple button press. For any future flights, 

control of the matrix can be programmed into ROS through an RS485 connection. 

  
Figure 4.9. KVM Switch (left) and HDMI Matrix (right) 

 

4.2.6 Video Capture 

Five Panasonic HC-V110 digital camcorders (Figure 4.10) will be used to record footage of the 

experiment. Within the robot chamber, one camcorder will provide a downward view for each robot 

while a third and fourth will provide off-axis views to determine depth. Each camcorder will be 

supported by a ball socket camera bracket (see Figure 4.10). An additional camera will be placed 

outside the payload to capture in-flight footage of the crew. 

 
Figure 4.10. Panasonic Camcorder (left) and Universal Camera Bracket (right) 

Note: Images are not to scale 
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4.2.7 Power Supplies 

4.2.7.1 UPS 

An Uninterruptible Power Supply (UPS) is used for all components. In this fashion, transition 

periods during transportation of the console or interruptions of power during flight will not cause 

the system to forcefully power down. Also, because all components pass through the UPS, its power 

button becomes a system kill-switch in the case of an emergency. Electrical specifications will be 

described in Section 4.4. 

 It is possible through an RS485 or USM connection between the UPS and the Robot Operating 

System to command the computers to perform some actions based on the status of the UPS. For 

example, if no input power is present and the UPS is at a low capacity, the computers can be 

automatically signaled to safely shut down. These features have yet to be programmed but could 

be easily implemented for future flights. 

4.2.7.2 Robot Power 

Three power supplies will be used for the robots. These include 12V and 9V supplies for motor 

power and a 5V supply for logic power. The 12V and 9V supplies are passed through an emergency 

stop located within reach of either operator. The logic supply is not to be interrupted. The power 

supply package that was chosen was that of a standard laptop charger (Figure 4.11). These supplies 

are completely sealed and are thus immune to damage due to from floating debris during 

microgravity. 
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Figure 4.11. Robot Power Supplies 

Note: Objects are not to scale 

 

4.2.8 Additional Equipment 

Several additional components are required for operation. Firstly, a Belkin 12-Outlet Surge 

Protector (Figure 4.12) is used to expand the number of power outlets. This is located at the top of 

the structure near the monitors, haptic devices, and camcorders. All twelve outlets are used. A 

TRENDnet TEG-S50g gigabit network switch is used to network all computers together.  

 
Figure 4.12. Belkin Surge Protector 

 

An accelerometer attached to an Arduino Uno is used to measure acceleration. This data stream is 

passed through USB into the assistant computer. Within the ROS network, this data is published 



26 

 

 

 

for other nodes to use if necessary. Additionally, this acceleration is time stamped to match that of 

robot diagnostics. From the Arduino UNO, an LED within the robot enclosure will illuminate 

during microgravity. This allows the ROS data to be synced with the video footage during post-

analysis. 

 

Section 4.3: Structural Design and Verification 

4.3.1 Overview 

In designing the structure (Figure 4.13), several factors had to be considered. First, the locations of 

monitors and haptic devices were placed at a comfortable height. This set the height of the payload 

to be 36 inches above the floor. The haptic devices are secured to the bases through ten #8 screws 

while the base is secured to a double wide 80/20™ beam through four ¼-20 screws. Monitors are 

secured to 80/20™ beams through ¼-20 screws and a custom monitor support bracket. The beams 

supporting the angled monitors can be adjusted to meet the needs of various operator heights. The 

power supply is mounted on its own beam located between these monitors as seen in Figure 4.12.  

Through the dimensions of the robots and their workspaces, it was determined that eleven inches 

of chamber width was sufficient if the robots were orientated in the same direction as the operators. 

This is to say that the robots would face each other. As mentioned earlier, the cameras and robots 

are secured on an 80/20™ beam that passes through the chamber. This height of this beam is set 

three inches below the polycarbonate to provide clearance for the downward facing camcorders. 
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Figure 4.13. Basic dimensions of payload 

Note: All dimensions in inches 

 

The width of the monitors, haptic devices, and robot chamber set the width of the entire payload to 

50 inches. Because this is incompatible with the 20” x 20” repeating bolt pattern, it was decided 

that the depth must be compatible with the pattern while the location of the supports along the width 

of the payload would be adjustable. Custom floor supports (Figure 4.14) were machined from 7075-

T6 aluminum. The mounting surface is ½ inch from the centerline of the floor bolt. Therefore, the 

depth of the payload must be 39 inches to match the aircraft’s bolt pattern. Structural simulation of 

the floor support is found in following sections. 
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Figure 4.14. Floor Supports 

 

Double 80/20™ beams were used to mount the computers for two reasons. Firstly, the additional 

strength is need as the computers are some of the heaviest components in the payload. Secondly, 

this slightly recesses the computers in the payload, reducing the chance of accidental contact with 

power buttons. 

A diagonal beam was installed on each side to resist translational loads. As one will see in following 

sections, loads in this direction are most significant and these beams become integral to the rigidity 

of the payload. All other beams were designed to complete the structure through sufficient stiffness, 

strength, or mounting capability. Table 4.2 shows a summary of the payload, and an image of the 

assembled structure is shown in Figure 4.15. 

Table 4.2. Payload Summary 

Parameter Value 

Payload Area 13.54 ft2 

Working Area 50 ft2 (approx.) 

Height 46 in 

Weight  275 lb (approx.) 

Height of CG 18.70 in 

Aircraft Loading 18.5 lb/ft2 
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Figure 4.15. Assembled Payload Structure 

Note: The equipment installed on the structure is different than what is specified throughout this thesis. The 

structure, however, is identical and the casters are removed for the experiment 
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4.3.2 Assembly 

During assembly, 4-hole gusset connectors were used wherever high loads were experienced. 

Where possible, additional 2-hole gussets and anchors were used to create a very rigid joint. Joint 

information is shown in Table 4.3. 

 

Table 4.3. Joint Assemblies (See Figure 4.16 for Locations) 

A -  Anchor, DG – Double Gusset, SG – Single Gusset, 90P – 5 Hole 90° Plate, 45P – 4 Hole 45° Plate 

Joint Number X-Y Plane X-Z Plane Y-Z Plane 

1 1x A, 1x DG 1x SG 1x A, 1x DG 

2  2x SG  

3   2x 45P 

4 1x SG 1x A, 1x SG 1x A, 1x DG 

5 1x DG 1x SG 1x A, 1x DG 

6 1x 90P   

7 2x 90P   

8 1x DG 1x SG 1x DG 

9 1x SG 1x A, 1x SG 1x A, 1x DG 

10 1x SG 1x A, 1x SG  

11 1x DG 1x SG 1x A, 1x DG 

12 2x 45P   

13 2x SG   

14 2x SG 2x SG  

15  2x SG  

16  2x SG  

17 2x SG 4x SG 2x SG 

18  2x SG  

19   1x SG 

20 1x SG   
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Figure 4.16. Structure with Joint Numbers 

Note: The payload is symmetric about the Y-Z plane 

 

Using a digital torque wrench, all fasteners were tightened to five ft-lbf per manufacturer 

specifications. This torque is claimed to be high enough to preload the T-nuts into the 80/20™ 

extrusions while preventing the screws from vibrating loose. Torques higher than this create the 

potential of weakened threads or tool damage. At a load beyond five ft-lbf, a ball hex socket broke 

within the head of a button cap screw. A hacksaw was required to remove the tightened screw – an 

unnecessary consequence of over-tightening. 
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4.3.3 Mechanical Properties of 80/20™ Aluminum Extrusions 

Table 4.4. Acceptable Loading of 80/20™ Beams 

Beam Moment of Inertia (x10-9 m4) Allowable Moment (Nm) 1 

1010 18.40 174.8 

1020 
34.67 329.4 

128.12 608.6 
1 Maximum Moment was determined by solving the standard bending stress equation for the moment required 

to generate 50% of the yield stress. From [57], the yield stress for 80/20™ extrusions is 241.3 MPa (35,000 psi). 

 

Table 4.5. Acceptable Loading of 80/20™ Connectors 

Load Condition1 Anchor 
90° Joining 

Plate 

2 Hole Corner 

Gusset 

4 Hole Corner 

Gusset 2 

Allowable Shear Force  1112 N 389 N 723 N 1446 N 

Allowable Bending 

Moment 
70.7 Nm 14.2 Nm 62.2 Nm 124.4 Nm 

Allowable Torsion  10.2 Nm 28.2 Nm 14.7 Nm 29.4 Nm 
1 These are loads stress the connector to 50% of the load at which it would fail.   

2 Not provided by 80/20™ Inc. Loads are assumed double capacity as 2 Hole Corner Gusset. This should be 

valid for shear force and torsion while conservative for bending stress. 

 

4.3.4 Stress Calculation Methods 

In order to evaluate the structural integrity of the payload, the structure was simulated using 

SolidWorks Simulation (Figure 4.17). Through this simulation, the mass of monitors, haptic 

devices, robot chambers, computers, the UPS are considered. The values used are shown in Table 

4.6. Small components such as the keyboard, E-stops, power strips, and power supplies are not 

considered because their effect is negligible compared to the loads created by the larger 

components. Inertial loads of the 80/20™ structure are not considered. 
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Table 4.6. Component Weights Used for Structural Calculations 

Component Quantity Unit Mass (kg) 

Monitors 5 4.0 

Computer 2 11.0 

UPS 1 23.6 

Haptic Devices 4 2.6 

Robot Chamber 1 10.0 

 

 
Figure 4.17. SolidWorks Simulation 

 

Through SolidWorks simulation, peaks stress locations were realized. At these locations, the 

complex three-dimensional assembly was reduced to simple, conservative two-dimensional 

structures such as simply-supported and cantilevered beams. Through traditional hand calculations, 

these conservatively simplified structures are used to prove structural integrity of the entire 

structure. The hand calculations of the simplified beams are found in the following sections. 
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When hand calculations are not possible, SolidWorks Simulation was solely. This was required to 

verify the brackets used to support the monitors and the floor supports used to secure the entire 

chassis to the aircraft. 

 

4.3.5 Load Cases 

Five total load cases for the system are described – Forward, Downward, Lateral, Aft, and Upward. 

These are calculated by hand using conservative assumptions. The Upward and Aft load cases are 

not explicitly calculated because the Downward and Forward load cases, respectively, are similar 

in loading but are higher in magnitude. Because elasticity and strengths are assumed to be 

equivalent for both compressive and tensile loads, the resulting margins will be identical between 

a compressive load and an equal and parallel tensile load.  Therefore, the Downward and Forward 

load cases, which have loads in the same direction but with higher magnitudes, will pass the 

Upward and Aft load cases by default. Table 4.7 shows a summary of the margins. 

 

Table 4.7. Summary of Structural Margins 

Study Acceleration (g) Margin 

Forward 9.0 58.5% 

Downward 6.0 3.3% 

Lateral 2.0 -1.0% 

Floor Supports 9.0 -22.6% 

Monitor Supports 9.0 4.64% 
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4.3.5.1 Forward 

When installed in the aircraft, the forward direction is from the robot container towards the monitors 

or the positive-z direction as visualized in Figure 4.16. At 9-g this is the most challenging loading 

condition. 

The computers and UPS are loaded onto two beams through the use of standard rack-mount 

hardware. In this direction, the computers press against the plate. By summing the moments and 

forces (Figure 4.18), the resultant loads are easily calculated at 600N and 1895N per beam. A 

bending moment of 331.5 Nm can also be calculated. Referring to Table 4.4, the margin on the 

strength of the beam can be calculated as seen below. Note that the acceptable moment listed in the 

table was determined with a safety factor of two. An additional safety factor in the calculation of 

the safety margin would be redundant and has been removed. 

𝑴𝒂𝒓𝒈𝒊𝒏 =
608.6

331.5
− 1 = 𝟖𝟓% 

 
Figure 4.18. Mass and load location of computers and UPS 
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With the beam passing structurally, the next likely failure point is at the bottom connector. In this 

particular location, it is assumed that the connector will fail when the T-nuts constraining the 

connector fail. From Figure 4.19, one can see that five bolts – two in the front and three on the 

backside – are resisting this load. For clarity, these are circled in red in this figure. 

 
Figure 4.19. Lower brackets of left computer column beam 

 

In order to determine the failure load of the T-nuts, the shear area of the threads is used. From a 

screw chart, ¼-20 screws have a pitch diameter of 0.219” and a major diameter of 0.25”. Using the 

equation below, the shear area and ultimate fastener loads were calculated [52]. 

𝑨 =  𝝅𝒏𝑳𝑫 (
𝟏

𝟐𝒏
+ 𝟎. 𝟓𝟕𝟕𝟑𝟓(𝑫 − 𝑬)) 

𝑤ℎ𝑒𝑟𝑒 𝐸 = 𝑃𝑖𝑡𝑐ℎ 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑇ℎ𝑟𝑒𝑎𝑑 
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 𝐷 = 𝑀𝑎𝑗𝑜𝑟 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑇ℎ𝑟𝑒𝑎𝑑 

𝐿 = 𝐹𝑎𝑠𝑡𝑒𝑛𝑒𝑟 𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡, 𝑛 = 𝑇ℎ𝑟𝑒𝑎𝑑𝑠 𝑝𝑒𝑟 𝑖𝑛𝑐ℎ 

𝑨 = 𝟎. 𝟎𝟗𝟑𝟖𝟗 𝒊𝒏𝟐 

𝑭𝒖𝒍𝒕 = 0.0939 𝑖𝑛2 ∗ 33000 𝑝𝑠𝑖 ∗ 0.577 = 1787.95 𝑙𝑏𝑓 = 𝟕. 𝟗𝟓 𝒌𝑵  

When the bolts are preloaded to the specified 5 ft-lbf, a force of 3559 N (800 lbf) is achieved [53]. 

Subtracting this force from the ultimate load of the fasteners gives a working range of 4391 N. 

From this working range, the minimum number of equally distributed bolts required can be 

calculated below. For comparison, a margin is also calculated. 

𝑛 =
4391𝑁

2 ∗ 1895𝑁
= 1.15 

𝑀𝑎𝑟𝑔𝑖𝑛 =
7950𝑁

3559𝑁 + 2 ∗ (
1895

5
)

− 1 = 84%  

Note that while all five bolts are not likely to carry the load equally, the margin is sufficient to 

assume structural stability. 

During the 9g forward acceleration, the top of the structure will want to translate. With a total of 

40.4 kg (monitors, haptic devices, and robot enclosures) at the top of the structure, a force of 1783.5 

N per side is applied. When combined with the 600 N reaction from the computers and UPS, a total 

of 2383 N is experienced per side. 

To determine structural integrity against translation, the diagonal 80/20™ beam is assumed to carry 

all of the load. Using basic statics, the compressive load in this beam will be 3370 N. To ensure 

that the beam will not buckle, Euler’s column buckling equation and the Rankine-Gordon function 

for medium length beams are used below [53]. 
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𝐹𝐸𝑢𝑙𝑒𝑟 =
𝜋2𝐸𝐼

(𝐾𝐿)2
 𝑤ℎ𝑒𝑟𝑒 𝐾 = 0.65 (𝑓𝑖𝑥𝑒𝑑 𝑒𝑛𝑑𝑠) 

𝐹𝐸𝑢𝑙𝑒𝑟 = 24.98 𝑘𝑁 

𝐹𝑐 = 𝐴𝑟𝑒𝑎 ∗ 𝜎𝑦𝑖𝑒𝑙𝑑 = 68.18 𝑘𝑁 

𝐹𝑚𝑎𝑥 = (
1

𝐹𝐸𝑢𝑙𝑒𝑟
+

1

𝐹𝑐
)

−1

= 18.28𝑘𝑁 

𝑀𝑎𝑟𝑔𝑖𝑛 =
18.28

2 ∗ 3.37
− 1 = 171% 

At the connectors, 3370 N is also experienced. Because 80/20™ connectors will slip at this load, 

additional measures are taken. A 45° plate uses two fasteners. As calculated previously, these 

fasteners create a preload force of 3559 N each. From the coefficient of friction between two 

anodized aluminum surfaces (0.17 from [55]), a friction force of 605 N is available per fastener. 

Even when using two plates with four fasteners total, this connection will slip. 

To combat this, holes are drilled through the 80/20™ beams. This has the advantage of an increased 

preload (15702N from [54]) as well as a constrained linkage through the plates and the beam where 

only limited movement is possible even if slippage occurs. Using the rated preload for a standard 

socket cap screw (15702 N) with a full-size hex nut at the four contact points (two holes per plate, 

one plate on each side) 

𝐹𝑠𝑙𝑖𝑝 = 0.17 ∗ 15702 ∗ 4 = 10.68 𝑘𝑁 

𝑴𝒂𝒓𝒈𝒊𝒏 =
10.68

2 ∗ 3.37
− 1 = 𝟓𝟖. 𝟓% 

In addition to this margin is the fact that all other connectors were neglected. It is likely that these 

connectors will carry some portion of these loads as well, further increasing the margin. 
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4.3.5.2 Aft 

The calculations for this loading direction are the same as those used for the forward direction with 

the exception that the diagonal member is in tension instead of compression. Because the forward 

study passed, it can be safely assumed that the 3g study in the opposite direction passes as well. 

4.3.5.3 Downward 

Highlighted in blue in Figure 4.20 are the downward load areas of concern. The beam on the left is 

due to the complete load of the five monitors while the beam on the right is due to 50% of the 

weight of the computers and the UPS. Both of these loads cause bending in a 1” x 1” beam while 

most other loads are carried axially by vertical beams into a 2” x 1” 80/20™ beam. 
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Figure 4.20. Downward load case beams of concern 

 

In analyzing the effect from the monitors, it is assumed that the entire weight is carried down the 

two vertical columns into the lower beam. At 4kg per monitor in a 6-g environment, the total load 

in each vertical beam would be 588.6 N. The length of the horizontal beam is 940 mm while the 

spacing between the central axes of these columns is 533 mm. The equation for the peak moment 

within a simply supported beam with two symmetric loads is shown below [56]. 
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Figure 4.21. Two Symmetrically Spaced Concentrated Loads 

 

𝑀 = 𝑃 ∗ 𝑎, 𝑤ℎ𝑒𝑟𝑒 𝑎 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑡𝑜 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑙𝑜𝑎𝑑 

𝑀 = 588.6 ∗ 0.203 = 119.6 𝑁𝑚 

Through Table 4.4, 

𝑀𝑎𝑟𝑔𝑖𝑛 =
174.8

119.6
− 1 = 46.2% 

Half of the weight of the computers and UPS is carried by the second beam to study (the other half 

is carried by the double beams to which support the fronts). In summation, the computers and UPS 

have a total mass of 56.6 kg and it is assumed that the weight of these computers will be applied to 

the beams at the corners of the cases. By this assumption, the previous equation can also be used. 

𝑀 = 𝑃 ∗ 𝑎, 𝑤ℎ𝑒𝑟𝑒 𝑎 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑡𝑜 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑙𝑜𝑎𝑑 

𝑀 =
50% ∗ 56.6 𝑘𝑔 ∗ 9.81

𝑚
𝑠2 ∗ 6𝑔′𝑠

2
0.203 𝑚 = 169.24 𝑁𝑚  

𝑀𝑎𝑟𝑔𝑖𝑛 =
174.8

169.24
− 1 = 3.3% 



42 

 

 

 

4.3.5.4 Upward 

With the downward load passing sufficiently at 6-g, it can be assumed that the upward load case 

will also pass. Given that compressive and tensile elasticity and strengths are assumed equal, the 

margin will be greater than 200 % for an upward acceleration of 2-g. 

4.3.5.5 Lateral 

From monitors, haptic devices, and the robot enclosure, a total of 40.4 kg of equipment is located 

at the top of the structure. At 2-g this corresponds to 792.6 N. If the top connectors are assumed to 

have no rigidity, the problem can be simplified to ten cantilevered beams (neglecting diagonal 

members) which are fixed through the bottom connectors. At six of these lower joints, double 

gussets directly prevent angular deflection while the computer column beams are strengthened by 

a total of four 90° joining plates. In the remaining two joints, single gussets are used. There also 

exists anchor connectors located at Joints 8 & 11. These, however, are not explicitly rated for 

moment loads in this direction and are thus ignored. 

From the height of the equipment, a moment of 704.7 Nm is generated. The computers and the UPS 

would generate an additional moment of 230.3 Nm. Through Table 4.5, the summation of 

acceptable loads for six double gussets, two single gussets, and four 90° joining plates would be 

925.2 Nm. The margin on these connectors loaded in this fashion is shown below. 

𝑴𝒂𝒓𝒈𝒊𝒏 =
925.2

704.7 + 230.3
− 1 = −𝟏. 𝟎% 

 

Though this margin is negative, it was determined in a very conservative fashion. If the top of the 

structure were also considered rigid against rotation at the connectors, the strength in each joint 

would theoretically go up by a factor of four. Because the structure is not fixed against translation 

and the loading in each beam would not be equal, the strength would not increase by nearly this 
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much. However, it would increase my some amount. Furthermore, anchor connectors and diagonal 

members were ignored. Through these points, it can be safely assumed that the connectors satisfy 

the required safety factor of two. 

In analysis of the beams, each 1” x 1” member can carry a load of 174.8 Nm with the safety factor 

(Table 4.4). In these terms only 5.35 single wide beams would be required to carry this load if the 

load were distributed equally. In the designed payload, eight 1” x 1” beams and two 1” x 2” beams 

are used.  

4.3.5.6 Floor Supports 

The floor supports are milled from 7075-T6 aluminum. They accept four ¼-20 screws which are 

tightened into 80/20™ T-nuts within an extrusion. Four 3/8” hex cap bolts are then used to secure 

the supports to the floor. 

During the forward 9g load condition, the highest forces are applied to the structure. Because the 

center of gravity of the payload is above the supports, the weight of the console will induce a 

moment load in addition to the shear load of the structure. These two loads are set independently 

in SolidWorks Simulation and their values can be calculated as follows. 

𝑆ℎ𝑒𝑎𝑟 = 1112 𝑁 ∗ 9𝑔′𝑠 = 10008 𝑁 = 𝟐𝟓𝟎𝟎 𝑵 𝒑𝒆𝒓 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒐𝒓 𝒉𝒐𝒓𝒊𝒛𝒐𝒏𝒕𝒂𝒍𝒍𝒚 

𝑀𝑜𝑚𝑒𝑛𝑡 = 10008 𝑁 ∗ 0.5 (𝐶𝐺 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛) = 5000𝑁𝑚 = 2500𝑁𝑚 𝑝𝑒𝑟 𝑠𝑖𝑑𝑒 

𝑀𝑜𝑚𝑒𝑛𝑡 − 𝑖𝑛𝑑𝑢𝑐𝑒𝑑 𝐹𝑜𝑟𝑐𝑒 =
2500𝑁𝑚

1.016 𝑚
≈ 𝟐𝟓𝟎𝟎 𝑵 𝒖𝒑𝒘𝒂𝒓𝒅 𝒐𝒓 𝒅𝒐𝒘𝒏𝒂𝒓𝒅 

The results of this simulation are shown in Figure 4.22. During the simulation, the filleted edge 

shows stress that does not satisfy a safety factor of two. This is not likely realistic due to the 

simulated infinitely-rigid fixed surface nearby. Nevertheless, a margin is calculated below using 
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this value. It should be noted that only a small volume is stressed above the safety factor (Figure 

4.23) and nothing will yield. 

𝑴𝒂𝒓𝒈𝒊𝒏 =
505

2 ∗ 326.2
− 1 = −𝟐𝟐. 𝟔% 

 
Figure 4.22. Stress Simulation of Floor Supports 
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Figure 4.23. Simulation elements with negative safety margins 

 

4.3.5.7 Monitor Supports 

To verify the structural integrity of the adapter plates, a remote load equivalent to 9-g (353.16 N) 

was applied three inches off the face of the plate to account for the center of gravity of the monitor. 

For the worst case, force was transferred directly to the mounting holes via the rigid purple lines 

seen in Figure 4.24. The plate was secured by fixing the mating surface of the plate. A 0.75” circle 

was used for each bolt/washer combination.  

 
Figure 4.24. Simulation Loading for 80/20™ Monitor Supports 
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From the simulation a peak stress and corresponding moment were determined and are shown 

below. The stress distribution can be seen in Figure 4.25. 

𝑀𝑎𝑥 𝑆𝑡𝑟𝑒𝑠𝑠 = 131.4 𝑀𝑃𝑎 

𝑀𝑎𝑟𝑔𝑖𝑛 =
275

2 ∗ 131.4
− 1 = 4.64% 

 
Figure 4.25. Stress Distribution for Monitor Supports 
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Section 4.4: Electrical Analysis 

4.4.1 Load Analysis and UPS Selection 

As mentioned previously, a UPS was desired to prevent power fluctuations during operation. A 

CyberPower OR1500LCDRM2U was chosen as it was capable of supplying electrical loads 

displayed in Table 4.8. At full load (15A), six minutes of capacity are available while 18 minutes 

are available at half load. This UPS model has an easily accessible power switch on the front and 

is rack mountable. An LCD display provides quick status information while RS485/USB output 

can provide smart shutdown procedures if implemented. While some of the loads in Table 4.8 were 

measured experimentally, several are specified at the rated input of the power supply which is 

unlikely to be seen during operation. The overestimate of these components will provide a 

noticeable margin on the load capacity of this UPS.  

 

Table 4.8. Load Table, 120VAC 

Device Qty: Current (A) Total Current (A) 

Computers 3 0.87 2.61 

Monitors 5 0.44 2.20 

Phantom Omni 4 1.2* 4.8* 

Network Switch 1 1.0* 1.0* 

KVM Switch 1 0.5* 0.5* 

HDMI Matrix 1 0.5* 0.5* 

Camcorder 4 0.05 0.20 

12V Supply 1 1.0* 1.0* 

9V Supply 1 1.5* 1.5* 

5V Supply 1 0.5* 0.5* 

Total 14.81 

Note: Devices in Bold were experimentally measured using a Kill A Watt™ EZ electricity load meter at 

maximum conditions. Computers were run at 100% CPU for 5 minutes while current was measured. Monitors 

displayed a fully white screen. Camcorders were recording while charging. Values with an asterisk (*) were 

determined by the rated input of the power supply and will likely be much lower during operation. 
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4.4.2 Emergency Stops 

Two emergency stops will be available to flight members. The first will be an E-stop to kill motor 

power to the robots. In this fashion, the software systems on both on the robot microcontrollers and 

on the three Linux computers will not be interrupted. Both robots will be disabled if pressed. 

The second E-stop is provided through the power switch located on the front of the UPS. This 

switch will forcefully shut down all electronics. This will only be used in an extreme case. It should 

be noted that this does not de-energize the batteries in the UPS. 
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Chapter 5: Experimental Procedures 

This section describes several procedures that must take place prior to, during, and after the 

microgravity experiment. 

1. Ground Operations 

While on the ground, casters are to be used for easy movement. These are simply installed with 

four bolts per wheel. Prior to installation in the aircraft, the casters must be removed. Lift points 

(Figure 5.1) must be installed at the corners of the assembly. 

 
Figure 5.1. Lift point with handle 
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Because the payload exceeds 200lb, several components must be removed. These include the 

monitors and the UPS. The monitors are removed by unscrewing four M3 screws located on the 

back of each monitor. The UPS is removed through four #8 screws located on the front face of its 

enclosure. These components will be carried in individually and installed on the aircraft. 

While on the ground, the experiment will be set up. This includes placing marked rubber bands in 

the respective experiment tray, ensuring the robots are fixed securely, and angling cameras to 

appropriate targets. 

2. Loading/Stowing 

The experiment will be loaded onto the aircraft by forklift if possible. Once on the plane, the 

structure will be moved into position by four individuals located at the four corners of the payload. 

The orientation shown in Figure 5.2 is the orientation used for all directional loading calculations. 

The experiment will be properly secured to the aircraft floor through the use of four 3/8” steel bolts. 

Monitors and the UPS will be reinstalled and connected and lift points will be removed. A power 

cable will be run to the power panel. An extension cord may or may not be necessary. 

 

 
Figure 5.2. Preferred aircraft orientation 

Note: The box represents the 80/20™ frame, circles represent operators, and the triangle represents the off-

payload camcorder. 
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Because the stiffness of foam padding in the aircraft is unknown, the foot restraint bars (Figure 5.3) 

will need to be set to create sufficient downward pressure on the operator’s feet to ensure stability. 

This is accomplished by loosening the ¼-20 screws, sliding the bar downward to the desired level, 

and then retightening the screws.  

 
Figure 5.3. Foot Restraint Bar (looking downward) 

 

3. Pre-Flight 

During pre-flight, ROS will be started and a system initialization will take place. This process will 

load the communication protocol for the haptic devices and robots and set each device to its proper 

variable in the system. Camcorders will be turned on but will not be set to record yet. A quick 

monitor check should take place to ensure each monitor is receiving video from the proper source. 

4. Take-off/Landing 

During take-off and landing, no operations are required. 

5. In-Flight 

Prior to experimentation, the robots must be activated. If stowed for take-off, experiments must be 

loaded into the robot enclosures. Camcorders must be set to record. 
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While experimenting, one flyer monitors the ROS network through the lower assistant computer. 

Two operators will be in charge of manipulating the haptic devices to maneuver the robots. These 

members will be stabilized via the foot straps installed at the base of the payload. The fourth and 

final flight member will monitor the experiments and the mechanical status of the robots. He may 

advise the operators throughout the experiments if necessary. 

If at some point a crew member gets motion sickness or is injured, the experiment can be performed 

at full capacity with three people. The robot operator will take a dual role in this scenario. If a 

second member is incapable of assisting with the flight, both robots can be operated without 

assistance assuming that no troubleshooting is required. 

6. Post-Flight 

ROS information will be saved between parabolic flights but camcorders will not. Therefore, 

camcorders must stop recording and save data. The computers will be safely shut down. Once 

everything is off, the UPS master switch will cut power to everything it sources and the UPS will 

be unplugged from the aircraft.  

7. Off-Loading 

In preparation of unloading, monitors and the UPS will be removed from the structure and will be 

taken off the plane independently. Lift points will be reinstalled and the structure will be carried by 

four individuals to the exit. It will be removed from the aircraft via forklift. Casters will be 

reinstalled once the payload is on hard ground and the experiment will be rolled to the proper 

staging area. 

  



53 

 

 

 

Chapter 6: Summary 

Minimally invasive techniques have shown great capability over the last decade. Through the use 

of laparoscopic instruments, the quality of health care has greatly improved for the patient at the 

cost of increased difficulty for the surgeon. Robotic surgical devices assist the surgeon by solving 

several challenges such as using unintuitive tools and working without tactile feedback or proper 

depth perception. Whether the device is similar to the da Vinci® Surgical System or to the miniature 

in vivo surgical robots developed by the University of Nebraska and mentioned throughout this 

thesis, robotic surgical systems can greatly improve the medical experience for both the patient and 

the surgeon. 

Long-duration space flight will be attempted at some point in the future. Currently however, there 

are no viable options for major medical intervention in microgravity; applicants are thoroughly 

heath screened to prevent complications during short missions but this method becomes much less 

effective for long-duration missions. Through minimally invasive techniques and intuitive controls, 

surgical robotics show great promise for operation in microgravity environments and should be 

further developed to do so. 
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Figure 6.1. Parabolic Flight Payload with EB2.1 

 

Through NASA’s Reduced Gravity program, systems developed at the University of Nebraska will 

be evaluated in a microgravity environment. To carry the experiment, a parabolic flight payload 

has been developed and assembled (Figure 6.1) and is documented per the requirements of NASA’s 

Reduced Gravity Program [47-50]. The payload design and documentation required for this 

microgravity research is presented throughout this thesis. 

The payload was flown on April 25th, 2014 (Figure 6.2). Two back-to-back flights were completed 

consisting of 28 zero-gravity parabolas each. Data from these flights is currently being compiled 

and analyzed to determine if a future flight is necessary. If so, the results of this flight will be very 

important in developing the second round of experimentation. 
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Figure 6.2. Experiment performed on April 25th, 2014 

Note: Several modifications were made to the payload prior to this experiment 

 

Section 6.1: Future Work 

One factor that has inhibited the usability of the robots during in vivo testing in standard has been 

the method of insertion. Currently, the robots are manually inserted using a specialized two-

chamber port that maintains insufflation. During this process, a specific series of movements are 

required to prevent the robot from contacting the organs as it is inserted.  

One proposed solution is a gross positioning system with four DOFs about the insertion point – 

three rotations and one translation. This system would position the body of the robot during 

insertion prior to surgery, during surgery, and after surgery as the robot is removed. When added 

to robots with four-DOF arms, the total number of DOFs for the entire system approaches twelve. 

This creates a robot with six effective DOFs per arm without increasing the size of the in vivo 

portion of the robot. Though empirical analysis, this concept has been determined to provide a 
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sufficient range of tooltip orientations for any point within an equally sized workspace. This 

addition could greatly reduce the burden of any surgical assistants and would be beneficial in 

developing a viable system for surgical robots in space. 
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