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The greatest diversity of Cenozoic crocodilians occurred during the Miocene in equatorial 

South America. However, the origin of this high diversity and its relationship to 

environmental factors are poorly understood. Most described species come from localities 

assigned to Laventan (13.8-11.8 Ma) and Huayquerian (9.0-6.8 Ma) South American land 

mammal ages (SALMAS), whereas the record is sparse in the early to middle Miocene 

and after the latest Miocene and Pliocene. Field research in the Castilletes (early 

Miocene-Pliocene) Formation in the High Guajira Peninsula of Colombia provides new 

fossil data on the origin of Neotropical crocodylian diversity. The Castilletes Formation 

crops out most extensively in the Cocinetas Basin, and represent depositional 

environments consisting of deltaic and shallow marine systems in the lower Castilletes 

and predominately fluvial environments in the upper Castilletes. Crocodilian fossils from 

the Castilletes Formation include gavialoids, alligatoroids and crocodyloids. Gavialoid 

remains have been recovered from both terrestrial and shallow marine deposits in the 

lower Castilletes. Remains of the specialized caimanines Purussaurus and Mourasuchus 

extend the temporal range of both lineages into the early middle Miocene (15-16 Ma). 

These records suggest that high diversity crocodilian assemblages were already 

established by the early Miocene or late Oligocene.  



 

Fossils from the upper Castilletes Formation include cranial elements identified as a non-

tomistomine crocodyloid, some of them assigned to cf. Crocodylus. These records 

indicate that by the Pliocene, endemic assemblages were extinct, at least in the northern 

parts of the continent, allowing the establishment of Crocodylus. The pattern of 

crocodilian diversity in the Neogene of equatorial South America suggests that diversity 

was highly linked to hydrographic conditions. The development of high diversity 

assemblages developed in a time of greater connections among river drainages and mega-

wetland systems. The isolation of river drainages and disappearance of mega-wetlands are 

correlated with the extinction of most crocodilian lineages. Aridity in peripheral drainages 

may have caused local extinctions outside Amazonia. The change from wetland to 

riverine conditions has been proposed as the cause of crocodilian extinctions in the 

western Amazon, but this remains to be tested. 
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INTRODUCTION 

 

The greatest diversity of crocodilians during the Cenozoic occurred during the middle and 

late Miocene of Equatorial South America (Fig. 1, A). Our knowledge of this diversity is 

based on fossil assemblages found in Peru (Fitzcarrald), Colombia (La Venta), Brasil 

(Acre) and Venezuela (Urumaco). In these localities at least seven species have been 

described (Riff, et al, 2009; Scheyer et al, 2013), whereas the highest number of extant 

species from the same region is four (e.g., Marioni et al, 2013). The fossil assemblages 

were composed of a diverse array of caimanine alligatoroids and gavialoids, together with 

the putative tomistomine crocodyloid Charactosuchus (Langston, 1965; Souza Filho, 

1991; Souza Filho and Bocquentin-Villanueva 1989; Souza Filho et al, 1993). Terrestrial 

sebecid crocodiliforms were also present in middle Miocene localities (Langston, 1965; 

Busbey, 1986; Salas-Gismondi et al, 2007). Taxonomic diversity was accompanied by a 

high diversity of feeding ecomorphologies, including not only longirostrine, 

“generalized” (Brochu, 2003) and blunt-snouted forms present in modern crocodilians, 

but also extreme variations such as gavialoids with snouts longer than those of modern 

longirostrine crocodilians (Sill, 1970; Kraus, 1998; Brochu and Rincón, 2004); 

durophagous caimans (Scheyer et al, 2013), and Mourasuchus, a caiman with a broad, 

flat, elongated rostrum and a slender jaw (Price, 1964; Langston, 1966; Bocquentin-

Villanueva, 1984). The range of size was also greater than in modern communities, with 

estimated lengths of 8 to 10 meters for representatives of the caiman Purussaurus 

(Langston, 1965; Bocquentin-Villanueva, 1989; Aguilera et al, 2006) and the gavialoid 

Gryposuchus (Riff and Aguilera, 2008). 



2 

 

In contrast with the high diversity of middle and late Miocene localities, the diversity of 

South American crocodilians is poorly known for the early–middle Miocene and the 

Pliocene. High diversity crocodilian assemblages of the middle and late Miocene are also 

geographically and stratigraphically disparate, and the most continuous record comes 

from the Urumaco sequence in Venezuela, ranging from the latest middle Miocene to the 

lower Pliocene (Scheyer, et al, 2013). The lack of a long, continuous, and geographically 

constrained record of crocodilian diversity for the Neogene of tropical South America 

limits the ability to infer the origins of New World crocodilian diversity, its relationship to 

environmental factors (climate, hydrography and faunal composition), and the timing and 

mode of the origin of modern crocodilian faunas. 

 

Field research in a stratigraphic section encompassing the early Miocene through early 

Pliocene in the High Guajira Peninsula of Colombia (Fig. 1 B) has produced several 

crocodilian-bearing levels. This long and continuous record provides a unique perspective 

on histories of crocodilian diversity and faunal change in equatorial South America. 

Crocodilians representing the three living lineages (Alligatoroidea, Crocodyloidea, 

Gavialoidea) were collected at different levels of the sequence (Fig. 2). In this work I 

describe these specimens and discuss their significance in terms of the evolution of 

crocodilian communities during the Neogene. 

 

Institutional abbreviations— STRI-CTPA: Center for Tropical Paleoecology and 

Archaeology, Smithsonian Tropical Research Institute, Panama; UCMP: University of 

California Museum of Paleontology. 
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Geological Setting— The Castilletes Formation crops out in the Alta Guajira Peninsula 

of Northern Colombia (Renz, 1960; Rollins, 1965; Irving, 1972). It is characterized by 

marly limestones, clays, calcareous and non-calcareous sandstones, and conglomerates. 

Toward the base of the formation, the limestones are coarse textured, marly, argillaceous, 

sandy fossiliferous, and fairly indurated. The clays are silty, brown to buff, gray, greenish-

gray and reddish, with some sandy zones. Towards the top, the reddish-yellow sandstones 

and conglomeratic sandstones are more common, poorly sorted and with matrix supported 

in channel lenses. The unit rests conformably on the Jimol Formation and the upper 

contact is not exposed. The Castilletes Formation is ~340 m thick in the study area. The 

unit was deposited in a very shallow marine environment (Rollins, 1965) intermixed with 

continental facies produced by fan delta progradation and fluvial deposits. The Castilletes 

Formation is rich both in marine and terrestrial fossils including plants, bivalves, 

gastropods, crabs, fishes, turtles, crocodilians and mammals. Renz (1960) suggested an 

early Miocene age for the basal sediments based on the foraminiferan Miogypsina antillea 

(Cushman, 1919). Bürgl (1960) estimated a middle Miocene age based on invertebrate 

fossils, and Rollins (1965) proposed Miocene to Early Pliocene based upon its 

stratigraphic position between the middle Miocene Jimol formation and the overlaying 

Quaternary deposits. Additional age estimates are based on strontium isotope data taken 

from mollusks in the coquinas and shell beds of the Castilletes Formation. Strontium 

isotopes indicate an age of 17.5-10.0 Ma for the lower Castilletes, and 5-2.7 Ma for the 

upper Castilletes (Jaramillo et al., unpub. data). 
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Crocodilian fossils have been recovered from five localities representing different levels 

within the stratigraphic section (Fig. 2). Locality 390091 (Big Croc Locality), is 

approximately 8.7 km NW of Puerto Lopez. The section at this locality begins with 

approximately 1 m of fine grained sandstones representing the top of the Jimol 

Formation. The base of the Castilletes Formation is marked by a thin coquina with sandy 

matrix, which is overlain by grey, slightly laminated mudstone bed six meters thick that 

contains some trace fossils. These mudstones are overlain by a thick oyster bed, laterally 

grading to coquinas. On top of this layer there are four meters of highly bioturbated, 

massive, muddy, fine grained sandstones, overlain by a coquina that has an erosive base 

with horizontal trace fossils. Disarticulated vertebrate remains were found washed on top 

of this bed that is overlain by six meters of badly exposed grey mudstones and a coquina 

with sandy matrix of middle thickness.  The 1.5 meters of this section overlaying the 

coquina are covered and overlain by another coquina and a 1 meter thick bed of medium-

grained sandstone. Strontium isotopes of shells from the upper coquina yielded age 

estimates of 17.19 and 17.45 (Jaramillo et al., unpub. data). 

 

Locality 390092 (Gharial Locality) is approximately 9 km NW of Puerto Lopez. At the 

base of this part of the section there is a coquina layer interposed between two light grey 

layers of sandy mudstone. Strontium isotopes of shells from this coquina yielded age 

estimates of 17.33 and 17.45 Ma (Jaramillo et al., unpub. data). Thin (<1 m) 

conglomeratic lenses are found on top of these layers, overlain by a 7 m bed of badly 

exposed grey mudstones. On top of these mudstones there is a set of layers made of 

conglomeratic, coarse grained sandstones with trough cross-bedding that contains 
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calcareous lenses with abundant mollusks. Cranial fragments of a gavialoid crocodilian, 

the only vertebrate specimen recovered from this part of the section, come from one of 

these lenses. The sandstone is overlain by another 7.5 m of grey mudstones. The top of 

the section at this locality there is a thick (approximately 1.8 m) bed of fossiliferous fine 

grained sandstone and coquina. 

 

Locality 390090 (La Tienda) is approximately 8 km NW of Puerto Lopez. At this locality 

there is a 9 meter thick sequence of slightly laminated gray mudstones with intercalations 

of yellowish and reddish coquinas that can be continuous or forming lenses. The coquinas 

are thinner in the lower half of the section, being thicker towards the top. The thickest and 

uppermost coquina has calcareous concretions containing abundant portunid crabs. Shark 

and ray teeth are abundant in this locality, and isolated bone fragments can be also found. 

The concretions in the upper coquina contain more complete disarticulated bones. 

Strontium isotopes of shells from coquina levels yield age estimates between 16.89 and 

17.51 Ma (Jaramillo et al., unpub. data). 

 

Locality 390094 (Patajau Valley 1) is approximately 5.7 Km NW of Puerto Lopez. 15 m 

of yellowish and reddish mudstones comprise the lower and middle part of the section at 

this locality. These mudstones form the low topography at the center of the valley. Thin 

layers with abundant mollusk remains can be found interspersed with the mudstones 

higher in the section. These shell layers show lateral variation, with abundant oysters at 

some points and local concentrations of freshwater bivalves and gastropods. The top of 

the section at this locality is marked by a thick coquina with abundant mollusk remains. 



6 

 

Vertebrate fossils, including fish, turtles and mammals, are abundant in this locality. Both 

partial, disarticulated skeletons and isolated bones were found within the concentrations 

of fresh water mollusks. Strontium isotopes of shells from the vertebrate-bearing levels 

yield age estimates between 16.07 and 16.33 (Jaramillo et al., unpub. data). 

 

Locality 390085 (Kaitamana Cemetery) is 6 Km NE of Castilletes and 1.2 km north of the 

Venezuelan border. In this locality, packages of reddish grey fossiliferous mudstone 2 

meters thick alternate with coquinas 10-40 cm thick. The mudstones have abundant 

invertebrate remains and gypsum veins. Near the base of the lowermost mudstone there 

are elongate concretions with shells and isolated bones. A thin coquina separates this layer 

from the mudstone where crocodilian remains were found. The stratigraphic position 

relative to the contact with the Jimol Formation, marker beds, and fossil invertebrates 

indicate that the Kaitamana beds correlate with those in the Patajau Valley (Jaramillo et 

al., unpub. data). 

 

The upper Castilletes crops out in Locality 390075 (Police Station), near the Venezuelan 

Border and north of Bahía Cocinetas. The lower part of this section is characterized by 

conglomeratic, coarse grained sandstone and conglomerates with subangular cobbles, in 

layers with planar and trough cross-bedding. Fish, reptile and mammal fossils, 

represented by disarticulated bones and teeth, occur in this part of the section. The 

conglomeratic layers grade into medium-grained sandstones with ripple-mark lamination 

and climbing ripples, and to mudstones with thin intercalations of very fine grained 

sandstones. The sandstones are arranged in fining-upward sequences 3 to 5 meters thick, 
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with erosive bases and channel geometries. Towards the top of the outcrop there is a 

thick, massive layer of coquina with an erosive base and ichnofossils. Strontium isotopes 

of shells from this coquina indicate an age of 5.0-2.7 Ma. 

 

SYSTEMATIC PALEONTOLOGY  

CROCODYLIA Gmelin, 1789  

GAVIALOIDEA Hay, 1930 

Gen. et sp. indet. 

 

Materials—STRI-CTPA-16561: portions of the maxillae, nasals, frontal, prefrontals, 

lacrimals, jugals and palatines (Fig. 3A-B). STRI-CTPA-16567: Rostrum fragment of 

longirostrine crocodilian (Fig. 3 C-F). STRI-CTPA-16791: isolated axis and odontoid 

(Fig. 3 G-H).  

 

Localities and Horizons— STRI-CTPA-16561was collected in locality 390092 “Gharial 

Locality”, approximately 9 km W of Puerto Lopez. Lower Castilletes Formation (17.4 to 

16.8 Ma; Jaramillo et al., unpub. data). 

 

Description— This specimen includes fragments of the rostrum, the interorbital space, 

and the region just anterior and lateral to the orbits. Two fragments correspond to parts of 

the anterior half of the rostrum on the left side. Another, more posterior, section of the 

rostrum is preserved on both sides, and the portion of the rostrum closer of the orbits is 

represented by three additional fragments. The preserved fragments indicate that the 
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rostrum was long and slender. The surface of the rostrum was smooth, without ridges or 

elevated portions. 

 

Maxilla— There are eight preserved fragments of the maxillae in STRI-CTPA-16561. 

The maxillae formed an elongated, slender rostrum as in other gavialoids. In dorsal view, 

the lateral surfaces of the maxillae are festooned with the laterally protruding rims of the 

alveoli. This festooning is more pronounced in two fragments, suggesting they were more 

anterior in the rostrum. There is no festooning on the lateral surfaces of those fragments 

that articulate with the jugals. The suture with the nasals is anteromedially inclined in a 

very acute angle relative to the midline. In lateral view, the alveolar edges are higher than 

the palatine surface, as in other gavialoids (Singh and Bustard, 1982; Hua and Jouve, 

2004; Jouve et al, 2008). In ventral view, the preserved alveoli are all of similar size, and 

more closely spaced in the posterior fragments.  

 

Nasals— Three fragments of the nasals are preserved, all of them in articulation with 

fragments of the maxillae. In dorsal view these fragments are long and slender, indicating 

that the nasals had long, slender anterior processes separating the maxillae in the midline 

in at least the posterior portion of the rostrum. 

 

Frontal— Part of the anterior process of the frontal is preserved in STRI-CTPA-16561. 

In dorsal view the preserved portion of the frontal can be seen as a subrectangular, 

elongated element, slightly tapering towards its anterior end. The anterior process of the 

frontal extended far anterior to the anterior margin of the orbit. The section corresponding 
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to the interorbital space is narrow as in Ikanogavialis (Sill, 1970), Piscogavialis (Kraus, 

1998), and Siquisiquesuchus, and unlike the broad plate seen in Gryposuchus and 

Gavialis (Sill, 1970; Kraus, 1998; Brochu and Rincón, 2004; Langston and Gasparini, 

2007). 

 

Prefrontals— In dorsal view, the preserved portions of the prefrontals are articulating on 

both sides of the frontal. The prefrontals are triangular, and longer than wide in dorsal 

view. The sutures with the frontal are almost parallel, whereas the lateral suture with the 

lacrimal is strongly inclined anteromedially. The tapering anterior portion of the 

prefrontals indicates that they were shorter than the frontal. Part of the orbital rim can be 

seen as a thickened ridge on the anteroposterior border of the right prefrontal. 

 

Lacrimal— Portions of the lacrimals are preserved lateral to both prefrontals in STRI-

CTPA-16561. In dorsal view, the preserved portion of the right lacrimal is roughly 

trapezoidal and inclined with respect to the midline. The left lacrimal is represented by a 

small, square fragment in dorsal view. The preserved contact with the prefrontal on the 

right side indicates that the lacrimal was longer than the prefrontal.  

 

Jugals— The jugals preserved small portions of the anterior processes, articulated with 

the maxillae and lacrimals in the posterior portion of the rostrum. The preserved 

fragments indicate that the jugals were slender in the region close to the orbits, as in other 

longirostrine crocodilians. 
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Palatines— Portions of the palatines are preserved on the posterior fragment of the 

rostrum of STRI-CTPA-16561. In ventral view they are rectangular, longer than wide. 

The palatines comprise more than half the width of the ventral surface of the rostrum at 

this point. The lack of a lateral suture with the maxillae suggests that the anterior border 

of the suborbital fenestrae was anterior to the orbits. 

 

Rostrum fragment from La Tienda locality— This is a small fragment of a rostrum at 

the level of the tooth row, preserving one complete alveolus and the interalveolar spaces 

anterior and posterior to it (Fig. 3 C-F). The lateral surface of STRI-CTPA-16567 is flat 

and inclined relative to the tooth row. The fragment is elongated and roughly rectangular 

in external view. The lateral surface is flat and inclined, with small neurovascular 

foramina. The lateral margin is festooned, as the alveoli are laterally extended relative to 

the interalveolar spaces. In lateral view the buccal surface is elevated, indicating that the 

tooth rows were lower than the buccal surfaces, as in gavialoids (Singh and Bustard, 

1982; Hua and Jouve, 2004; Jouve et al, 2008). In ventral view the buccal surface is 

curved and continuous with the surface of the interalveolar spaces. Two nutrient foramina 

are found on this surface, medial to the tooth row. One is on the posterior interalveolar 

space, and other medial to the anterior rim of the preserved alveolus. In medial view, 

internal portions of the alveoli can be seen. These are anterolaterally oriented. A long 

cylindrical cast of sediment on the medial surface, just medial to the alveoli, could 

represent the passage for the meckel's cartilage or the trigeminal nerve. 
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Isolated axis and odontoid— The axial centrum and odontoid are complete, but the 

neural arch only preserves small portions attached to the centrum (Fig. 3 G-H). The 

external surface is worn. The odontoid is fused to the axial centrum. In dorsal view the 

element is roughly hourglass-shaped, with a wider anterior portion formed by the 

odontoid diapophyses. There is an elongated foramen on the floor of the neural canal. In 

lateral view the centrum has a roughly rectangular outline, with anterior and posterior 

prominences formed by the odontoid process and the posterior end of the centrum. In 

lateral view the odontoid process slopes downwards, and near the dorsal margin the 

neurocentral suture can be seen. In ventral view the anterior portion of the centrum lacks 

a prominent keel formed by the hypapophysis. It has instead a shallow depression, 

laterally bordered by two low crests that extend by approximately half the length of the 

centrum. This divided, or forked hypapophysis is characteristic of both gavialoids 

(Brochu, 1997) and the giant caiman Purussaurus neivensis (Langston, 1965; Brochu, 

1999). However, the hypapophyseal crests in P. neivensis are more projected ventrally, 

forming two prominent knobs on the ventral surface of the centrum. Also, the fused 

odontoid in STRI-CTPA-16791 suggests this is a mature individual (Brochu, 1996), and 

this axis is smaller (axis and odontoid length 66.04 mm) than this element is in the giant 

caiman Purussaurus (126 mm; Langston, 1965). 

 

ALLIGATOROIDEA Gray, 1844  

ALLIGATORIDAE Cuvier, 1807 

Gen. et sp. indet (Fig. 4) 
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Materials— STRI-CTPA-17145: fragment of right maxilla (Fig. 4A-F), frontal? (Fig. 

4G-H), and four incomplete vertebrae (Fig. 4I-P) 

 

Localities and Horizons— STRI-CTPA-17145 was collected in Locality 390091, 

approximately 9 km NW of Puerto Lopez. Lower Castilletes Formation (approximately 

7.4 Ma; Jaramillo et al., unpub. data), approximately 13 meters above the contact with the 

underlying Jimol Formation. 

 

Maxilla— This element comprises part of the right posterior process. It preserves part of 

the lateral and palatal surfaces of the maxilla. In dorsal and ventral views this element is 

roughly rectangular. The dorsal surface is worn; near the posterior side there is an opening 

that represents the passage for the maxillary ramus of the trigeminal nerve. In lateral and 

medial view the maxilla fragment has a roughly square outline. The posterodorsal and 

anteroventral corners of the fragment are projected so that the anterior and posterior 

margins are oblique in lateral and medial view. The lateral surface is curved and shows 

several foramina for the small nerves of the Integumentary Sense Organs (e. g. Jackson, et 

al, 1996; Soares, 2002; Leitch and Catania, 2012). The ventral surface includes five 

alveolar rims, of which the first and fifth are incomplete. The alveoli are filled with 

sediment, closely spaced and become smaller towards the posterior end. Only the first 

alveolus preserves part of the original tooth. There are four nutrient foramina on the 

palatal surface, medial to the septa separating alveoli. The alveoli are completely 

surrounded by the palatal surface of the maxilla, which is wide medial to the tooth row. 

This maxillary shelf separating the toothrow from the ectopterygoid, is a synapomorphy 



13 

 

of Alligatoroidea (Brochu, 1999). The passage for the maxillary branch of the trigeminal 

nerve can be seen again in posterior view, as an opening on the broken surface of the 

maxilla, just lateral to the last alveolus. 

 

frontal─ A partial frontal is preserved in STRI-CTPA-17145. In dorsal view it is roughly 

trapezoidal, with a concave margin as part of the orbital rim and a convex posterior 

margin that represents the suture with the parietal. This border indicates that that the 

frontoparietal suture was entirely on the surface of the skull table, as in alligatorids 

(Brochu, 1999). In ventral view this element has a shallow, elongate depression 

representing the groove for the olfactory tract.  

 

Vertebrae─ Remains of four vertebral centra are preserved in STRI-CTPA-17145. All of 

them are worn and external surfaces are not discernible. Two of them comprise only the 

concave anterior end of centra, and two others are incomplete centra with portions of the 

neural arches. All preserved vertebrae have unfused neurocentral sutures, indicating a still 

inmature animal. The most complete centrum (Fig. 4I, J) is 90.35 mm long. 

 

CAIMANINAE Brochu, 1999 

Cf. PURUSSAURUS sp. Barbosa-Rodrigues, 1892 

(Fig. 5A-Q) 
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Materials— STRI-CTPA-16800, tooth fragment. STRI-CTPA-16802, isolated tooth. 

STRI-CTPA-16803, isolated tooth. STRI-CTPA-16804, Small incomplete osteoderm. 

STRI-CTPA-16806, incomplete osteoderm. 

 

Localities and Horizons— All specimens come from locality 390094, Patajau Valley, 

approximately 5.7 km NW of Puerto Lopez. Middle Castilletes Formation  (16.3 to 15.5 

Ma; Jaramillo et al., unpub. data). 

 

Teeth— Referred teeth are thick, blunt, and their basal section is round. The basal 

diameter is approximately 0.8 times the crown height for STRI-CTPA-16802 and STRI-

CTPA-16803. STRI-CTPA-16800 is represented only by the upper half of the crown. The 

preserved portions of enamel have a wrinkled surface, which is more marked near the tip 

of STRI-CTPA-16800. This wrinkling becomes less marked towards the base, where only 

a fine striation is present. There are two main carinae on the mesial and distal sides of the 

teeth, but the enamel on the labial and lingual surfaces is not fluted to form secondary 

carinae. The mesial and distal carinae have an appearance superficially similar to that 

seen in ziphodont teeth (Langston, 1975). However, the carinae have thin perpendicular 

crests rather than true denticles. These crests are anastomosed and continuous with the 

wrinkles on the labial and lingual surfaces. These teeth can be better described as false-

ziphodont teeth (Legasa et al, 1994; Prasad and Broin, 2002; Andrade and Bertini, 2008). 

The overall morphology of these teeth is indistinguishable of that described for the 

caimanine Purussaurus (Langston, 1965; Aguilera et al, 2006).  The teeth of Purussaurus 

mirandai have been previously described as having “denticles” on their carinae surfaces 
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(Aguilera et al, 2006). These structures most likely correspond as the perpendicular crests 

of false-ziphodont teeth, as those on the teeth of Purussaurus neivensis.  

 

Osteoderms— In external view, these osteoderm fragments have flat, linear broken 

surfaces. The preserved outline is roughly semicircular in STRI-CTPA-16804 and 

trapezoidal in STRI-CTPA-16806. The external surface is smooth and has small foramina, 

but lacks the ornamentation pits typical of crocodilian osteoderms (Buffrenil, 1982). Both 

specimens are very thick compared to crocodilian osteoderms of similar size. There are 

no sharply defined keels, the external surface is raised in the middle and slopes to the 

sides in an angle of 20-25°. The ventral surface is flat in STRI-CTPA-16804, whereas 

there is a soft concavity in STRI-CTPA-16806. 

 

These osteoderms are similar to those described for specimens of Purussaurus 

brasiliensis, P. neivensis and P. mirandai (Mook, 1921; Langston, 1965; Scheyer and 

Moreno, 2010). The lack of ornamentation pits on the external surface of these 

osteoderms has been interpreted by previous authors as an artifact of preservation (Mook, 

1921; Langston, 1965). However, the pitting pattern is not evident in a thin section of a P. 

mirandai osteoderm (Scheyer and Moreno-Bernal, 2010), indicating that thick, 

unornamented osteoderms are diagnostic for the genus Purussaurus. 

 

Cf. MOURASUCHUS sp. Price, 1964. 

(Fig. 5R-W) 
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Materials— STRI-CTPA-16558: maxillary fragment and associated lacrimal. 

 

Localities and Horizons— This specimen comes from locality 390085 (Kaitamana), 4.5 

Km west of Castilletes and 1.2 km north of the Venezuelan border. Middle Castilletes 

Formation  (16 Ma; Jaramillo et al., unpub. data). 

 

Description— This specimen comprises a small fragment of a maxillary and a lacrimal; 

both found less than 5 cm away from each other.  

 

Maxila— This fragment comprises a small section of the tooth row region preserving a 

complete alveolus and a small portion of a second. The lateral and medial surfaces can be 

distinguished, whereas the orientation of the fragment along the anterior-posterior axis is 

uncertain. In dorsal view, the fragment is elongated and roughly rectangular with one 

concave end formed by the rim of the incomplete alveolus. The complete alveolus is 

straight and vertically oriented. Lateral to this alveolus there is a narrow groove that 

represents the passage for a neurovascular foramen. The lateral surface is trapezoidal, 

vertically parallel to the alveoli and ornamented with tiny foramina. The interalveolar 

spaces are elevated with respect to the level of alveolar rims. In medial view the fragment 

has a roughly triangular shape. The surface medial to the tooth row is less vertical than 

the lateral surface. In medial view the space between the two preserved alveoli is elevated 

only on the lateral side, the medial portion of the interalveolar space being lower than the 

alveolar rims. In ventral view the fragment has the same roughly rectangular outline as in 

dorsal view. The complete alveolus is 5 mm wide and 6 mm long and interalveolar space 
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is 5 mm long, almost as long as the preserved alveolus. The alveoli are vertically oriented 

unlike the oblique, overlapping alveoli of some longirostrine crocodilians, making 

impossible to distinguish the anteroposterior orientation of the fragment. There is a 

shallow semicircular pit in the interalveolar space. This pit is more medially placed than 

both alveoli; its lateral rim is thicker and higher than the medial one. 

 

Lacrimal—  The lacrimal preserves most of the dorsal surface, including parts of the 

orbital rim and the lateral contact with the maxilla and jugal. The anterior process and the 

medial contact with the nasal and prefrontal are broken. Most of the ventral surface is 

lacking in this element. In dorsal view the lacrimal is triangular, with a posterior concave 

margin formed by the orbital rim. The dorsal surface has a thick longitudinal canthus on 

its medial portion. This canthus lays entirely on the Lacrimal, as the surface medial to it is 

flat, and is posteriorly continuous with the raised orbital margin. The lateral portion of the 

dorsal surface has a C-shaped, laterally open concavity bordered by the canthus and the 

orbital margin. The dorsal surface is ornamented with pits that are rounder and smaller on 

the canthus and the orbital rim, becoming bigger and more oval in the low surfaces. 

 

In lateral view the lacrimal has a roughly triangular outline. The dorsal margin is almost 

flat near the orbital margin, and becomes steeper anteriorly. The orbital margin is higher 

medially and slopes laterally and posteriorly. The ventral margin is horizontal in lateral 

view. The lateral contact with the maxilla and jugal is a thin horizontal slit that is 

internally divided by a thin, diagonal posterior crest. This crest may represent the site 

where the maxilla and jugal meet on the lateral margin of the lacrimal. The thin lamina 
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ventral to the slit is broken. This broken lamina likely represents the lateral portion of the 

Lacrimal that is overlapped by the maxilla and jugal in crocodilians (Busbey 1997). In 

medial view the dorsal and ventral margins of the lacrimal are posteriorly parallel, 

converging anteriorly as the dorsal margin slopes down. The surface of the canthus is 

almost vertical, and the broken surface of the lamina medial to it is horizontal.  

 

In anterior view this element is roughly triangular, with a broad base and a flattened upper 

angle. The orbital rim is elevated, and slopes laterally, unlike gavialoids, in which the 

lateral portion of the lacrimal orbital rim is raised. In anterior view the broken surface of 

the anterior process and the lateral contact of the lacrimal meet on the ventral margin. 

There is a ventral concavity that represents the anterior opening of the nasolacrimal duct. 

In posterior view the outline is also triangular as in anterior view. The posterior opening 

of the nasolacrimal duct can be seen on the internal surface of the orbit. There are three 

smaller foramina on the internal surface of the orbit. Two of these foramina lay dorsal to 

the nasolacrimal duct opening, and one lateral to it. Part of the articulation with the 

prefrontal can be seen as a notch on the medial portion of the ventral margin. 

 

In ventral view the lacrimal is roughly triangular with a concave posterior margin, as it is 

in dorsal view. The ventral surface is broken, exposing part of the nasolacrimal duct, 

which is tear-shaped, with straight, anteriorly converging lateral margins and a rounded, 

convex posterior margin. Part of the contact with the maxilla and jugal can be seen on the 

lateral margin of the ventral surface. Medial to the nasolacrimal duct the ventral surface is 
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transversely concave, lateral to it the surface is broken anteriorly. Part of the articulation 

with the prefrontal can be seen on the posteromedial portion of the lateral surface. 

 

CROCODYLIDAE Cuvier, 1807 

Gen et sp. indet  

(Fig. 6) 

 

Materials— STRI-CTPA-12939: partial premaxila (Fig. 6A-C). STRI-CTPA-16180, 

skull and mandible fragments including portions of the frontal, parietal, supraoccipital, 

right postorbital, right squamosal, left jugal, left dentary, left angular, left surangular, and 

four partial osteoderms (Fig. 6D-R).  

 

Localities and Horizons— Both specimens come from Locality 390075, near the border 

with Venezuela. They were collected in fluvial sandstones of the Upper Castilletes 

Formation. Early Pliocene (5 to 2.7 Ma; Jaramillo et al., unpub. data). 

 

Partial premaxilla— STRI-CTPA-12939 comprises part of a right premaxilla preserving 

part of the narial rim and parts of the third, fourth and fifth alveoli. The anterior, medial 

and posterior portions of the premaxilla are lacking, as well as most of the palatal surface 

medial to the alveoli. In dorsal view, this element is roughly semicircular, with a truncated 

anterior margin. The lateral border is curved and convex, with a short but deep posterior 

concavity that represents a notch for the fourth mandibular tooth. The medial margin of 

the dorsal surface is concave in the first two thirds of the element, following the narial 



20 

 

opening rim. The narial rim is flush with the dorsal surface of the premaxilla. Part of the 

palatal process of the premaxilla can be seen projecting medially inside the narial 

opening. Posterior to the narial rim the premaxilla is broken. The dorsal surface of the 

premaxilla is worn and ornamentation pits are not discernable on the surface. 

 

In lateral view the dorsal margin is linear on the anterior portion of the narial rim, 

becoming higher posterior to it. The ventral border is convex and undulated in most of the 

element, becoming strongly upturned near the posterior end, where the notch for the 

fourth mandibular tooth is placed. Above this notch, only a small part of the premaxilla is 

preserved. The lateral surface is marked by a row some neurovascular foramina close to 

the alveolar margin. In medial view the premaxilla the internal surfaces of the fourth 

alveolus and the narial opening. A deep cylindrical cavity, projects anterodorsally from 

the rim of fourth alveolus and may represent the internal cavities of both the third and 

fourth alveolus. The internal cavity of the narial opening can be seen in medial view as 

concave surface, with an anteriorly truncated margin. The preserved narial cavity is 

bounded dorsally by the narial rim, ventrally by the palatal process and posteriorly by the 

broken base of the ascending process. Ventral to the narial cavity, the palatal process of 

the premaxilla slopes lateroventrally. 

  

The palatal surface medial to the tooth row is broken and the incisive foramen rim is not 

preserved. A small cavity portion preserved on the anterolateral portion of the element 

may represent either the posterlateral rim of the third alveolus or an occlusal pit. Posterior 

to this cavity, the fourth alveolus preserves the lateral, posterior and most of the medial 
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rim. The fifth alveolus is complete. Between the fourth and fifth alveolus there is a deep 

occlusion pit that is placed very close to the lateral margin of the premaxilla, indicating 

that tooth occlusion was interdigitating. The lateral margin is broken and worn 

immediately posterior to the fifth alveolus, on the anterior side of the notch for the fourth 

mandibular tooth. The palatal surface preserved medial to the alveoli is broken and does 

not extend to the midline. The palatal surface is smooth, with some nutrient foramina 

medial to the alveoli. 

 

Fragments of skull and mandible— STRI-CTPA-16180 is comprised of several 

associated fragments with ornamentation patterns consistent with skull or mandibular 

fragments. It includes portions portions of the frontal, parietal, supraoccipital, right 

postorbital, right squamosal, left dentary, left angular, left surangular, two osteoderm 

fragments and five indeterminate fragments. 

 

 Frontal—  The frontal is almost complete, lacking the tip of the anterior process and part 

of the ventral processes. In dorsal view, the preserved portion of the anterior process is 

narrow with subparallel margins, and the portion between the orbital rims is expanded 

and roughly trapezoidal. The suture with the prefrontals is convex and marks the 

transition between the anterior process and the interorbital plate. The frontal is wider than 

long between the orbital rims. The posterior suture with the postorbitals and parietal is 

concave. The dorsal surface of the frontal is gently concave and covered by 

ornamentation pits, which are larger towards the midline. There is a short sagittal crest, 

bordered by aligned ornamentation pits, between the orbit rims. The orbital rims have a 
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smooth surface but they are not particularly thickened. In ventral view there is a groove 

for the olfactory tract. 

 

Jugal—  A portion of the left jugal is preserved in STRI-CTPA-16180. The preserved 

portion represents part of the infraorbital arcade. Part of the lateral surface is broken, 

together with the ventral, anterior and posterior margins. All the remaining surfaces are 

worn. In dorsal view the jugal fragment has an hourglass-like outline. Part of the orbital 

rim is preserved as a longitudinal crest that becomes wider posteriorly. The orbital rim 

separates a flat lateral surface and a concave medial surface. This crest represents the 

orbital rim is wider near the posterior end of the jugal. 

 

Postorbital—  A fragment of the dorsal plate, posterior to the right postorbital bar is 

preserved. The preserved portion of the postorbital has a roughly square outline in dorsal 

view. The lateral border is worn and sinuous. The smooth, concave medial border 

represents the lateral rim of the supratemporal fenestra. The anterior margin is truncated 

and the posterior border is convex. The dorsal surface is ornamented with pits that 

become more elongated posteriorly. In lateral view the dorsal surface of the postorbital is 

flat. The postorbital ventral margin is anteriorly convex and posteriorly concave. In 

medial view the rim of the supratemporal fenestra can be distinguished as a smooth 

vertical surface. In anterior view the broken surface is anteriorly inclined and the ventral 

margin is convex. The posterior surface of the postorbital has a series of intercalating 

grooves and crests representing part of the contact with the squamosal. 
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Parietal— The preserved portion of this element comprises the dorsal surface of the 

posterior plate, and a short portion of the interfenestral bar. The anterior process is not 

preserved. The ventral surface is partially worn, and details such as the passage for the 

temporoorbital artery are not visible. In dorsal view the posterior plate of the parietal is 

roughly square. The posteriomedial rim of both supratemporal fenestrae is preserved. The 

rims are not very thickened; they rise above the surface of the parietal. The supratemporal 

fenestrae rims are curved and do not show the overgrowth typical of caimans (Brochu, 

1999). The parietal plates are anteroposteriorly broad posterior to the supratemporal 

fenestrae, indicating that the posterior edges of the fenestrae were thick (Jouve, 2004).  

The posterior margin of the parietal is curved and posteriorly convex, with a triangular 

notch in the midline where the supraoccipital is articulated. The dorsal surface of the 

parietal has large ornamentation pits, separated by slender crests. In ventral view, the 

parietal is worn, exposing the internal structure. Near the posterior border there is a small 

ovoid cavity, likely representing the mastoid atrium. This cavity does not continue 

anteriorly into an expanded parietal sinus as in alligatorids and gavialoids (Brochu, 1997). 

  

Squamosal—  The dorsal surface of the right squamosal is preserved. In dorsal view the 

anterior portion of the squamosal is a roughly rectangular, with a triangular posterolateral 

projection formed by the squamosal prong.  On the anteromedial corner a smooth, 

concave internal surface represents the lateral rim of the supraoccipital fenestra. The 

lateral margin of the squamosal is laterally bowed, indicating that the skull table was 

posteriorly wide. The posterior margin, medial to the squamosal prong, is concave. The 

squamosal is ornamented with deep pits in most of the dorsal surface. Near the margins 
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the surface is smooth, particularly on the lateral margin, which is thickened and dorsally 

convex. 

 

Supraoccipital—  A fragment of the dorsal process of the supraoccipital is wedged on the 

posterior margin of the parietal. In dorsal view the supraoccipital is small and roughly 

triangular. The supraoccipital does not exclude the parietal from the posterior border of 

the skull table. 

 

Dentary— Part of the posterolateral surface of the left dentary is preserved. The fragment 

is anteroposteriorly elongated, with broken margins. The dorsal margin has an anterior 

elevation that includes the lateral border of an enlarged alveolus (probably the eleventh 

alveolus). Posterior to this alveolus, the dorsal margin of the dentary slopes upwards. The 

margins of other alveoli are not preserved as the dorsal margin is worn. The lateral 

surface of the dentary is vertically oriented and laterally convex. The lateral surface of the 

dentary has several neurovascular foramina of different sizes that open on the worn 

internal surface. Foramina on the posterior portion of the lateral surface have their 

posterior margin expanded into a groove.  There are some elongated ornamentation pits 

near the posteroventral portion of this element.  

 

Surangular—  A fragment of the lateral surface of the left surangular, comprising part of 

the rim around the glenoid fossa and the lateral surface ventral to it, is preserved in STRI-

CTPA-16180. In dorsal view, the surangular fragment is long and narrow, with an 

irregular outline. The dorsal surface slopes laterally, becoming higher posteriorly where 
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part of the dorsal process of the surangular is preserved. A shallow longitudinal groove, 

with a row of ornamentation pits on its bottom, lies just lateral and anterior to the dorsal 

process. Some foramina also lie on the bottom of this groove. The dorsal surface of the 

surangular is smooth, excepting for the foramina and pits on the lateral groove. 

  

In lateral view this element has an irregular outline, with broken ventral, anterior and 

posterior margins. The dorsal margin becomes progressively elevated in the two anterior 

thirds. On the posterior third of the dorsal margin a shallow depression separates the 

anterior elevation from a higher one that represents the beginning of the dorsal process of 

the surangular. The ventral portion of this element is a flat plate heavily ornamented with 

pits of different sizes. In medial view, the surface of the surangular is rough and marked 

by neurovascular foramina that open externally on the dorsal groove. This configuration 

is similar to that seen in Neotropical species of Crocodylus, and almost identical to the 

same region in STRI-CTPA-16211. 

 

Angular— A small piece of bone is interpreted here as a fragment of the lateral surface of 

a left angular. This element has a roughly ovate outline, with broken, festooned margins.  

Approximately one third of its surface is covered by ornamentation pits of different sizes; 

the rest of the element is smooth. The ornamented and smooth surface slope in opposite 

directions and meet at a very open angle. This configuration is similar to that on the 

lateral surface of the angular, where a diagonal ridge separates an ornamented anterior 

surface of a posterior smooth surface in some crocodilians (e. g., Iordansky, 1976).  
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Osteoderms—  STRI-CTPA-16180 preserves four osteoderms, they are broken and their 

surfaces are worn. Their preserved borders indicate that these elements were 

subrectangular and had well defined keels. On the external surfaces of two of them there 

are circular ornamentation pits between 5 and 10 mm.  

 

Discussion— STRI-CTPA-16180 lacks the parietal sinus found in alligatoroids and 

gavialoids. This feature is a synapomorphy of Crocodyloidea (Brochu, 1997). Other 

features, even though not diagnostic, are consistent with those found in crocodyloids. The 

supratemporal fenestrae have well defined rims, unlike most caimans, in which the 

supratemporal fenestrae are closed by the overgrowth of skull table bones (Brochu, 1999). 

The dorsal exposure of the supraoccipital is very small, unlike the large element seen in 

caimans (Brochu, 1999). The parietal plates are anteroposteriorly broad posterior to the 

supratemporal fenestrae, unlike those of South American gavialoids and Gavialis (Jouve, 

2004). The robusticity of the dentary fragment relative to other elements of STRI-CTPA-

16180 indicates that STRI-CTPA-16180 does not represent a longirostrine form.  

 

Cf. CROCODYLUS sp. Laurenti, 1769  

(Fig. 7) 

 

Materials— STRI-CTPA-17702: posterior fragment of a right mandibular ramus (Fig. 7). 

Localities and Horizons— This specimen comes from Locality 390075, near the border 

with Venezuela. It was collected in fluvial sandstones of the Upper Castilletes Formation. 

Early Pliocene (5 to 2.7 Ma; Jaramillo et al., unpub. data). 
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Description— STRI-CTPA-17702 is the posterior portion of a right mandibular ramus, 

posterior to the mandibular external fenestra, and including the tip of the retroarticular 

process.  It comprises portions of the articular, surangular and angular. 

 

Surangular— The surangular is incomplete posterior to the external mandibular fenestra. 

In lateral view, the surangular is elongated, with parallel dorsal and ventral margins, 

lateral to the glenoid fossa. The surangular tapers posterior to the glenoid fossa, sending a 

slender process that extends almost to the end of the retroarticular process. The dorsal 

process of the surangular in STRI-CTPA-17702 is truncated, and a portion of the articular 

can be seen laterally, as in Crocodylus and Voay robustus (Brochu, 2000, 2007). In dorsal 

view, the surangular-articular suture is strongly bowed laterally within the glenoid fossa, 

as in other crocodyloids. The lingual foramen for the articular artery and alveolar nerve is 

located on the suture between articular and surangular, as seen in Alligator, Crocodylus 

and Osteolaemus, and unlike the condition seen in the Caimaninae or Gavialis (Brochu, 

1999).  

 

Articular— This element is almost complete, missing only part of the anterior process 

and the medial flange of the retroarticular process, and part of the glenoid fosa posterior 

rim. The dorsal surface of the glenoid fossa is divided by a diagonal elevation into two 

hemifossae, of which the lateral one is larger. The foramen aerum is located in the medial 

margin or the articular, just posterior to the glenoid fossa, in contrast to the dorsally 

shifted position seen in all alligatoroid crocodilians (Brochu, 1999). The retroarticular 
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process of STRI-CTPA-17702 is posterodorsally projected and higher than the posterior 

edge of the articular fossa. The anteroposterior crest on the dorsal surface of the 

retroarticular process is not as tall and sharp as it is in Gavialis (Langston and Gasparini, 

1997; Brochu and Rincón, 2004). In lateral view, a portion of the articular, posterior to the 

glenoid fossa, can be seen above the truncated dorsal process of the surangular. In medial 

view, the ventral tip of the articular is broken. The medial surface of the articular is 

extended dorsally to the lingual foramen for the articular artery, as in osteolamines and 

Crocodylus (Aoki, 1992; Brochu, 1997).  

 

Angular— In lateral view, the ventral margin of the angular is broadly convex. Posterior 

to the glenoid fossa, a tapering process extends onto the retroarticular process. The lateral 

surface of the angular is rugose anteriorly and smooth on the retroarticular process. In 

medial view, the articular is a pointed, thin exposure wedged ventral to the articular. This 

 

 medial surface of the angular is narrow and does not extend to the tip of the retroarticular 

process. The angular is slender ventral to the articular in medial view, unlike the 

dorsoventrally high exposure seen in alligatorids (Mead, et al 2005). 

 

Discussion— STRI-CTPA-17702 has several characters found in Crocodyloidea. The 

surangular-articular suture laterally bowed on the glenoid fossa is a crocodyloid character, 

and a process dorsal to the lingual foramen for the articular artery and alveolar nerve is 

found both in Crocodylus and osteolamines. The position of the lingual foramen on the 

surangular-articular suture is also shared by Alligator. However, the foramen aerum in 
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STRI-CTPA-17702 is located in the medial margin or the articular, and not dorsally 

shifted as in all alligatoroids (Brochu, 1999). The dorsal process of the surangular in 

Osteolaemus is not truncated and the articular is not visible in lateral view, thus 

discarding the assignment to this last genus. The combination of characters of STRI-

CTPA-17702 is also found in Voay robustus (Brochu, 1999). However, the retroarticular 

process in STRI-CTPA-17702 is more curved and higher than the edge of the articular 

fossa in lateral view. This is unlike the condition in V. robustus, where the retroarticular 

process is shorter, less curved, and lower than the posterior edge of the articular fossa 

(Brochu, 2007). 

 

EUSUCHIA Huxley, 1875 

Incertae Sedis  

 (Fig. 8) 

 

Vertebrae— Ten isolated postaxial vertebrae have been recovered from different levels 

of the Castilletes Formation (Fig. 8). six vertebrae are dorsals, three are cervicals, one is a 

caudal and two are represented only by centra. All vertebrae have strongly procoelus 

centra and represent eusuchian crocodilians. A posterior cervical (STRI-CTPA-16422) 

from locality 390085 and an anterior dorsal (STRI-CTPA-16789) from locality 390094, 

both of similar size (centrum length: 35.89 and 37.41 mm, respectively) have completely 

fused neurocentral sutures. Fusion of neurocentral sutures in crocodilians is a reliable 

indicator of maturity (Brochu, 1996), and its presence in vertebrae from the anterior 

portion of the body of relatively small crocodilians indicates the presence of small, still 
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unidentified taxa. A larger vertebral centrum (STRI-CTPA-16788) collected in locality 

390094 has an open, rugose sutural surface (Fig. 8 W-X). 

 

Most crocodilian vertebrae from locality 390075 are cervicals (STRI-CTPA-16167, 

16296) or anterior dorsals (STRI-CTPA-16203). All of them have completely fused 

neurocentral sutures. Three anterior dorsals (STRI-CTPA-17704) were found articulated. 

A smaller dorsal vertebra (STRI-CTPA-16320) has unfused neurocentral sutures. The 

largest vertebra from locality 390075 has a long transversal process (STRI-CTPA-19554), 

and may represent a posterior dorsal or a lumbar element. 

 

Cf. EUSUCHIA Huxley, 1875 

Gen et sp. indet. 

(Figs. 9-10) 

  

Indeterminate skull fragments— A rostrum fragment (STRI-CTPA-16334), including 

the external half of an alveolus, was found in locality 390085 (Fig. 9A-C). This fragment 

is narrow and elongate; the anterior and posterior ends are truncated by oblique fractures. 

In dorsal view the lateral margin is straight, without festooning. In lateral view the 

external surface is ornamented with pits and foramina. In medial view the alveolar cavity 

is strongly inclined in anterolateral direction. In ventral view there is a shallow depression 

laying slightly lateral to the alveolar rim. This depression likely represents an occlusion 

pit. This rostrum fragment most likely represents a longirostrine crocodilian. 
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 Additional skull fragments representing crocodilians of several sizes, were collected in 

the early Pliocene Police Station locality (Fig. 9). An isolated fragment (STRI-CTPA-

13109) includes portions of the left lacrimal and jugal (Fig. 9 D-F). In dorsal view this 

fragment is of irregular outline and preserves a short curved portion of the orbital rim 

near its posteromedial margin. The suture between the lacrimal and the jugal is straight. 

In ventral view the lacrimal surface is marked by an elongated depression corresponding 

to the nasolacrimal duct. A small fragment (STRI-CTPA-16352) likely represents the 

posterolateral corner of the right squamosal, including a small portion of the dorsal plate, 

the fossa for the ear flap and the squamosal prong (Fig. 9G). An irregular, elongated 

fragment (STRI-CTPA-16240) has a very ornamented and convex external surface. It 

represents the lateral surface of the rostrum either on the maxilla or the infraorbital arcade 

of the jugal (Fig. 9H). 

 

Teeth— Crocodilian teeth from different levels of the Castilletes Formation are similar in 

size and shape to those of modern crocodilians. These include both broad and more 

slender, pointed forms (Fig. 9K-Y). An isolated tooth (STRI-CTPA-17158) from locality 

390094 is distinct from the blunt teeth collected in the same level and described here as 

cf. Purussaurus. This tooth is very slender and curved, with a rounded basal section. Its 

basal diameter (7 mm) is approximately a fifth of its length (36 mm).  The carinae on the 

mesial and distal sides of the tooth are sharp, with smooth surfaces devoid of serrations or 

striations. The enamel on the labial and lingual surfaces is flutted, which forms thin 

secondary carinae. These carinae are parallel and regularly spaced at approximately 1 mm 

of each other, and 2 mm from the mesial and distal carinae. This tooth likely belongs to a 
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longirostrine crocodilian. Similar teeth have been described for South American 

gavialoids such as Gryposuchus (Langston and Gasparini, 1997) and Piscogavialis 

(Kraus, 1998). A small, isolated tooth (STRI-CTPA-16554) from locality 390085 is also 

of the slender and pointed type (Fig. 9O-P). However, the secondary carinae on this tooth 

are very marked and almost as prominent as the main carinae. Similar teeth are found in 

specimens of the alligatorid Mourasuchus atopus (UCMP 3812; UCMP 40177).  

 

Most teeth from the Upper Castilletes locality 390075 are broad and pointed, with labial 

and lingual surfaces strongly fluted (Fig. 9Q-S). This fluting produces secondary carinae 

that are more separated near the base of teeth, converging near the tip of the tooth. The 

enamel surface in these teeth has fine microscopic wrinkles. Teeth with this 

ornamentation have varying width/length proportions, suggesting different positions in 

the jaw. Other teeth from the same locality have smooth enamel and less marked 

secondary carinae (Fig. 9T-Y). This ornamentation pattern is present only in teeth that are 

more slender and curved, suggesting that these teeth may come from a more homodont, 

perhaps longirostrine form. 

 

Coracoid— A partial crocodilian coracoid (STRI-CTPA-16189) was collected in locality 

390075 (Fig. 10 A-B). This element preserves the glenoid process, most of the shaft, and 

the posterior portion of the blade. In lateral view, this element is relatively wide compared 

to other crocodilians. The contact with the scapula is not preserved and it is not possible 

to discern if a scapulocoracoid synchondrosis was present (Brochu, 1995). 
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Ilium— A small isolated left ilium (STRI-CTPA-16781) was collected in locality 390094 

(Fig. 10C-D). The lateral surface and its borders are well preserved, only a little part of 

the border between the ischiadic articular processes, and a section below the posterior 

process, are broken. The internal surface is worn near the dorsal edge, and the anterior 

and posterior sacral articular surfaces are broken. In lateral view, the anterior ischiadic 

process is dorsoventrally wide. The ischiadic articular surface is ventrally, rather than 

anteroventrally oriented. The anterior edge of the iliac blade is almost vertical above the 

ischiadic process, lacking the anterior process found in gavialoids (Brochu, 1997). The 

supraacetabular crest is dorsoventrally thin. The dorsal edge of the ilium is convex and 

has a modest indentation on its posterior portion. The posterior process is shorter than in 

other eusuchians, comprising less than a third of the ilium. The ventral surfaces of 

anterior and posterior ischiadic surfaces are both horizontal and lie on almost the same 

level. 

 

Osteoderms— four small osteoderms (STRI-CTPA-16336, 16424, 16415, 16426) were 

recovered from locality 390085. They are roughly rectangular, being longer than wide 

(Fig. 10E-H) and flat to slightly convex. Two of these osteoderms have low, thin keels on 

the posterior half of the dorsal surface. Lateral surfaces have irregular projections, 

suggesting that they were articulating with other elements. 

 

Osteoderms collected in locality 390075 are similar to those of large size (>3 m) living 

crocodilians (Fig. 10 I-O). They are flat to slightly convex, with a sharply defined keel 

running through most of the length of the osteoderm. These elements are ornamented with 
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circular and oval pits in a radiating pattern from the keel. Some of these osteoderms 

(STRI-CTPA-16240, 17136, 20337, 20432) are wider than long, roughly square or with a 

straight medial and convex lateral margins (Fig. 10 I-M). These probably represent 

elements of the dorsal shield. Other osteoderms (STRI-CTPA-16215, 19620) have a 

rounded outline with irregular margins, and can be interpreted as lateral elements (Fig. 10 

N-O). 

 

DISCUSSION 

 

Miocene faunas of the lower and middle Castilletes Formation— The number of 

described South American crocodilians is higher for the Miocene than for any other epoch 

of the Cenozoic (Riff, et al, 2009); however, most species come from four high diversity 

assemblages assigned to the middle Miocene Laventan (13.8-11.8 Ma) and the late 

Miocene Huayquerian (9.0-6.8 Ma) South American Land Mammal ages (SALMAS) 

(Fig. 11A). Older crocodilian records such as those from the Parangula Formation 

(Paolillo and Linares, 2007) or the Castillo Formation (Brochu and Rincón, 2004) are less 

well known, each with only one described species (Fig. 11A). An additional monospecific 

record is that of Piscogavialis, from the latest Miocene of Pisco in Peru (Kraus, 1998). 

Among high diversity assemblages, those from La Venta and Fiztcarrald are Laventan 

(Guerrero, 1997; Antoine, et al, 2007), whereas the Acre fauna is considered Huayquerian 

(Cozzuol, 2006). In the Urumaco sequence both SALMAs are represented by the 

Laventan Socorro Formation and the Huayquerian Urumaco Formation (Linares, 2004; 

Quiroz and Jaramillo; 2010; Scheyer et al, 2013.). There are similarities between 
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Laventan and Huayquerian assemblages. For example, species of the gavialoid 

Gryposuchus and the specialized caimanines Purussaurus and Mourasuchus are present 

in all four localities, whereas the putative tomistomine Charactosuchus has been reported 

in La Venta, Urumaco, and Acre (Riff et al, 2009). The presence of these taxa in 

geographically disparate localities of Laventan and Huayquerian age indicates that these 

lineages persisted for at least seven million years, and occupied a wide geographic range. 

The gavialoid Ikanogavialis, present in both the Socorro and Urumaco formations (Sill, 

1970; Scheyer, et al, 2013), represents another long lived taxon, although one with a more 

geographically restricted record.  

 

Localities in the early Miocene portion of the Castilletes Formation are also characterized 

by both gavialoids and caimanine alligatoroids. Gavialoid remains from localities 390090 

(La Tienda) and 390091(Gharial Locality) were found in shallow marine deposits, which 

is consistent with the evolutionary history of the group. The oldest gavialoids come from 

marine deposits, suggesting that they lived in coastal and estuarine environments (e. g. 

Troxell, 1925, Delfino et al 2005, Brochu, 2004, 2006a, 2006b; Hua and Jouve, 2004; 

Jouve et al, 2006, 2008). The oldest records of Neotropical gavialoids are latest Oligocene 

or earliest Miocene in age. These records come from marginal marine deposits in 

Antillean, Atlantic and Caribbean localities (Velez-Juarbe et al, 2006; Brochu and Rincón, 

2004; Moraes-Santos et al, 2011). All these records, together with the presence of the 

gavialoid Piscogavialis in latest Miocene Pacific coastal deposits of Peru indicate that, 

even though living Gavialis is a freshwater species, gavialoids have been occupying 

marine habitats for most of their history. 



36 

 

 

Fossil caimans from the Paleogene are small, comparable in size to living species of 

Caiman and Paleosuchus (e. g. Brochu, 2010, 2011; Bona, 2007; Pinheiro et al, 2012), 

and small species are present through the whole history of caimaninae (e g, Patterson, 

1936; Sousa-Filho, 1987; Sousa Filho and Bocquentin-Villanueva, 1991). Larger forms, 

some of them exceeding the maximum size of modern species were known only from the 

middle and late Miocene. The size of alligatorid remains from locality 390092 indicates 

that large caimanine taxa were already present by the early Miocene. 

 

Remains of the caiman Purussaurus from Patajau Valley locality and Mourasuchus from 

the Kaitamana Cemetery locality represent taxa already known for Laventan and 

Huayquerian Faunas. However, these localities are at least two million years older than 

the earliest records of Fitzcarrald, La Venta, and the Socorro Formation in the Urumaco 

Sequence (Langston, 1965; Salas-Gismondi et al, 2007; Scheyer et al, 2013). These 

records extend the temporal range of two specialized lineages into the early middle 

Miocene. The presence of gavialoids in the same locality as Purussaurus remains 

indicates further similarities with Laventan and Huayquerian faunas, suggesting an early 

Miocene or Oligocene establishment of diverse gavialoid-caimanine assemblages. In this 

scenario, early middle Miocene records are also expected for other middle-late Miocene 

lineages, such as the gavialoids Gryposuchus and Ikanogavialis. 

 

Crocodilians from the upper Castilletes— Fossils of Crocodylus in the Neotropics are 

scarce and restricted to the Plio-Pleistocene. A complete skull from the state of Rondonia, 
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Brazil (Fortier et al 2007), and remains of Crocodylus rhombifer from the late Quaternary 

of the Antilles (Morgan and Albury, 2013) indicate that in the recent past the genus had a 

greater distribution within the Neotropics. Unequivocal fossils of Crocodylus have been 

reported from the Plio-Pleistocene in Costa Rica (Mead et al, 2006). A jaw from the late 

Pliocene of Mexico, attributed to Crocodylus moreleti (Miller, 1980), is based on more 

ambiguous material. The oldest Neotropical representative of the genus is Crocodylus 

falconensis from the Pliocene San Gregorio Formation of Venezuela (Scheyer, et al, 

2013). This taxon is based on an almost complete skull, and a phylogenetic analysis 

places it as the sister taxon of all living new world Crocodylus (Scheyer, et al, 2013). 

Some crocodilian specimens from the upper Castilletes formation can be identified a non-

tomistomine crocodyloid taxon, likely representing an early record of neotropical 

Crocodylus. The ocurrence of cf. Crocodylus from the upper Castilletes Formation is an 

additional record of the lineage in the Pliocene of South America, expanding the 

geographical range of the genus in the continent. 

 

Both morphological and recent molecular analyses provide support for a monophyletic 

clade of New World Crocodylus, closely related to the African lineage (Brochu, 2000, 

2003; Meredith et al, 2011; Oaks, 2011; Hekkala et al, 2011). The relationships of African 

fossil Crocodylus are still greatly unresolved, however, because of poor morphological 

support for clades within Crocodylus (Brochu, 2000), and insufficient character data for 

some taxa (Brochu and Storrs, 2012). The only character that unites all known 

Neotropical Crocodylus is the presence of a medial elongated boss on the rostrum 

(Brochu, 2000). This medial boss is also seen in C. falconensis from Venezuela and 
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Crocodylus checchiai, from the Miocene of East Africa, (Maccagno, 1947; Delfino, 2008, 

Scheyer et al, 2013). Molecular analyses place the divergence time of African and New 

World Crocodylus near the Miocene-Pliocene boundary (Hekkala et al, 2011; Oaks, 

2011). C. falconensis was collected in the San Gregorio Formation of the Urumaco 

sequence, which is middle to late Pliocene in age (Hambalek et al, 1994; Rey 1997), and 

younger than the proposed divergence time of African and New World Crocodylus. The 

age of the upper Castilletes where cf. Crocodylus remains were collected is still not well 

constrained. Some mammals from the same deposits, currently under study, suggest 

affinities with the latest Miocene-earliest Pliocene Montehermosan SALMA (6.8 – 4.0 

Ma). If a Montehermosan age is confirmed for the upper Castilletes, specimens described 

here would represent a record even closer to the divergence time of African and New 

World Crocodylus. 

 

Crocodilian faunas and environmental change— The Neogene was a time of great 

climatic and hydrographic change in equatorial South America (Fig. 11B). Many of these 

changes are related to the isolation of drainage basins caused by Andean uplift 

(Wesselingh et al, 2009). Prior to the late Miocene, the western Amazon basin had 

restricted connections to the Caribbean Sea through the Orinoco basin, but was isolated 

from the eastern Amazon basin by the Purus Arch. Peripheral drainages such as those in 

the Magdalena and Maracaibo basins had extensive connections with the Amazon and 

Orinoco (Lundberg, et al 1998). These connections explain the presence of shared taxa 

among Miocene crocodilian assemblages in equatorial South America. The presence in 

the Lower Castilletes Formation of two caimanine taxa (Purussaurus and Mourasuchus) 
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shared with other Miocene assemblages suggests that drainage connections extended to 

the northernmost portion of the continent. In the early late Miocene, (11-7 Ma) the uplift 

of the Vaupes arch isolated the Orinoco and Amazon basins, closing the main connection 

between the Amazon and the Caribbean (Hoorn et al. 1995; Diaz de Gamero 1996; Mora 

et al, 2009).  Contemporaneous Huayquerian crocodilian assemblages include those from 

Acre in the Amazon basin and Urumaco in the northern South America. The presence of 

taxa common to both assemblages indicate that, despite the isolation of the Orinoco and 

Amazon, connections with the Caribbean were still present, perhaps through the 

Magdalena basin. 

 

During the latest Miocene and Pliocene (7.0-2.5 Ma), the  accelerated uplift of the 

northern Andes led to the separation of the Orinoco and Amazon systems and the 

complete isolation of peripheral drainages (Magdalena, Maracaibo, and coastal 

Venezuela) previously connected to Amazonia (Lundberg et al, 1998). In some of these 

new basins, aridity increased by the generation of rain shadows (Mora et al, 2009; 

Bookhagen and Streecker, 2009), leading to the disappearing of rain forests and the local 

extirpation of several groups of fishes (Lundberg, et al, 2009). The extinction of many 

lineages typical of Laventan and Huayquerian faunas has been attributed to these climatic 

and hydrographic changes (Riff, et al, 2009; Scheyer, et al, 2013).  In the Urumaco 

sequence, for example, crocodilians are absent in the Late Miocene-Early Pliocene 

Codore Formation, when climates become more arid and rain forests disappeared in the 

region. The presence of fossil mammals and birds in this interval indicates that the 
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absence of crocodilians is a result of local extinction, rather than preservational bias 

(Scheyer et al, 2010).  

 

From the Late Miocene onwards, there was a marked decrease in global crocodilian 

diversity, coincident with high latitude cooling and aridification of continental interiors 

(Markwick, 1998). It is during the late Miocene and Pliocene when Crocodylus disperses 

into several continents, filling the voids left by local extinctions (Brochu, 2003; Oaks, 

2011). The occurrence of cf. Crocodylus in the upper Castilletes Formation and 

Crocodylus falconensis in the San Gregorio Formation of the Urumaco Sequence 

indicates that the extinction of endemic crocodilian lineages had left vacant habitats for 

the establishment of immigrant taxa by the Pliocene, at least in the northern part of the 

continent. 

 

Increasing aridity may explain local extinction of crocodilian taxa in peripheral drainages. 

However, the wet Amazonian climates basin have been present since the late Oligocene-

early Miocene (Salati & Vose, 1984; Vonhof & Kaandorp, 2009; Sepulchre et al, 2009), 

and most of Amazonia remained wet and forested during the ice ages of the Quaternary 

(Colinvaux & Oliveira, 2000; Maslin, et al 2012). This leads to wonder why most 

lineages got extinct also in the Amazon drainage, where climatic conditions have not 

experienced drastic change.  During the late Oligocene-early Miocene (24-11 Ma), an 

extensive mega-wetland system (Pebas System) was established in the Andean foreland 

basin (Wesselingh and Salo, 2006; Wesselingh et al, 2006 a, 2006b, 2009).  Mega-wetland 

conditions remained through most of the Miocene, first as a “Pebas system” with 
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restricted connections to the Caribbean, and later as an “Acre system” in which the 

connection with the Caribbean was lost, and transcontinental drainage that connected it to 

the Atlantic Ocean. During the latest Miocene and Pliocene (7.0-2.5 Ma), Andean uplift 

increased, and the filling of the eastern foreland basins resulted in the establishment of a 

fully developed Amazon River drainage. Mega-wetlands have been interpreted as the 

extensive, long term environment that allowed the development of high diversity 

crocodilian assemblages (Salas-Gismondi, et al 2007). The shift from wetland to riverine 

conditions has also been suggested as a cause for crocodilian extinctions in Amazonia 

(Riff et al, 2009). High crocodilian diversity in some localities; however, also occurs in 

localities with riverine deposits (La Venta) or coastal habitats (Urumaco), and the effect 

of mega-wetlands in crocodilian diversity remains as a potential, still untested hypothesis. 

 

Conclusions — The age of crocodilian fossils from the lower Castilletes Formation is 

early to early middle Miocene, whereas crocodilians from the upper Castilletes Formation 

come from Pliocene deposits. These new records provide new data on poorly known 

intervals of crocodilian evolution in equatorial South America. Both gavialoids and 

caimanines were present in the early Miocene. The occurrence of Purussaurus and 

Mourasuchus in the early middle Miocene Patajau and Kaitamana beds represent early 

records for lineages previously known from younger Laventan and Huayquerian faunas. 

These records expand the temporal range of high diversity gavialoid-caimanine 

assemblages into the early middle Miocene. The Castilletes Formation record also 

expands the geographic range of Miocene endemic crocodilian faunas to latitudes 

equivalent to those of Central America. 
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Crocodilian diversity during the Neogene in equatorial South was highly linked to 

hydrographic conditions. The connections between hydrographic basins and the 

development of mega-wetland systems in equatorial South America allowed the long 

persistence of several lineages over an extensive geographical range. The extinction of 

gavialoids and specialized caimanines in equatorial South America was likely caused by 

the isolation and aridification of peripheral basins, together with the disappearance of 

mega-wetlands. The presence of cf. Crocodylus in the upper Castilletes Formation 

extends the geographical range of Neotropical Crocodylus in the Pliocene, and represents 

an immigrant taxon that occupied the hydrographical basins after the extinction of 

Miocene assemblages. 
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FIGURE CAPTIONS 

Figure 1. A, Map of equatorial South America showing the geographical position of 

Neogene and Quaternary crocodilian localities; B, Geographical position of the Cosinetas 

basin in the Guajira Peninsula of Colombia. Abreviations: 1, late Oligocene-early 

Miocene Castillo Ftion, Falcón State, Venezuela; 2, Middle Miocene Parángula 

Formation, Barinas State, Venezuela; 3, Middle Miocene Fitzcarrald Fauna, Ipururo 

Formation, Madre de Dios Department, Peru; 4, Middle Miocene La Venta Fauna, Honda 

Group, Huila Department, Colombia; 5, Acre Fauna, late Miocene Solimões Formation, 

Acre State, Brazil; 6, middle Miocene-Pliocene Faunas in the Urumaco sequence, Falcón 

State, Venezuela; 7, Miocene-Pliocene Castilletes Formation, Guajira Department, 

Colombia; 8, late Pliocene Pisco Formation Montemar level, Arequipa Department, Peru; 

9, Pleistocene Mesa Formation, Breal de Orocual, Monagas State, Venezuela; 10, Late 

Pleistocene Rio Madeira Formation, Rondonia State, Brasil. 

 

Figure 2. Stratigraphic Section for the Castilletes Formation in the Cosinetas basin 

(Jaramillo et al., in prep.), showing the stratigraphic position of crocodilian samples. 

 

Figure 3. Gavialoids from the lower Castilletes Formation. A and B, STRI-CTPA-16561, 

portions of the maxillae, nasals, frontal, prefrontals, lacrimals, jugals and palatines in 

dorsal and ventral views. C-E, STRI-CTPA-16567 Rostrum fragment of longirostrine 

crocodilian in Lateral, medial, anterior and posterior views. F and G, STRI-CTPA-16791, 

partial axis in lateral and ventral views. Abreviations: al, alveolus; f, frontal; hy, axial 
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hypapophyses; j, jugal; l, lacrimal; mx, maxilla; n, nasal; pal, palatine; trig?, possible 

passage for the trigeminal nerve.  

 

Figure 4. Alligatoroidea gen et sp indet, STRI-CTPA-17145. A-F, fragment of posterior 

left maxilla in ventral (A), dorsal (B), medial (C), lateral (D), posterior (E), and anterior 

(F) views. G-H, partial frontal in dorsal (G) and ventral (H) views. I-P Partial vertebrae 

in anterior (I, K, M, O) and lateral (J, L, N, P) views. Abreviations: al1, anterior 

alveolus; al5, posterior alveolus; ec-mx, suture with the ectopterygoid; ncs, neurocentrum 

suture; olf, groove for the olfactory tract; trig, passage for the trigeminal nerve. Scale = 

50 mm. 

 

Figure 5.  Caimanine alligatoroids from the lower Castilletes Formation. A-I, cf. 

Purussaurus, isolated tooth in labial; lingual; and lateral views: STRI-CTPA-16800 (A-

C); STRI-CTPA-16802 (D-F); STRI-CTPA-16803(G-I). Scale = 10 mm. J, detail of teeth 

in STRI-CTPA-16800 in lateral view, showing the wrinkled ornamentation of the enamel. 

Scale = 5 mm. K, Purussaurus neivensis, UCMP , detail of teeth in labial view, showing 

the wrinkled enamel surface. L-Q, cf. Purussaurus, incomplete osteoderms in dorsal, 

lateral and ventral views: STRI-CTPA-16806 (L-M); STRI-CTPA-16804 (O-Q). Scale = 

5 mm. R-W, cf. Mourasuchus, STRI-CTPA 16558. R-U, lacrimal in ventral (R); dorsal 

(S); lateral (T); and posterior (U) views. V-W, maxilla fragment in dorsal (V) and ventral 

(W) views. Abbreviations: 1acd, lacrimal duct; lacf, lacrimal foramen; preo, preorbital 

canthus; ocp, oclussal pit. Scale = 10 mm. 

 



52 

 

Figure 6. Crocodyloids from the upper Castilletes Formation. A-C, STRI-CTPA Partial 

premaxila in dorsal (A); ventral (B); and lateral (C) views. D-O, STRI-CTPA , fragments 

of skull, mandible, and osteoderms. D, frontal in dorsal view; E, frontal in ventral view; 

F-G, Parietal and supraoccipital in dorsal (F) and ventral (G) views. H, partial right 

squamosal. I-J, partial right postorbital in dorsal (I) and ventral (J) views. K, partial left 

jugal. L-O, partial osteoderms in dorsal view. P, fragment of right dentary in lateral view. 

Q, fragment of right surangular in lateral view. R, angular fragment in lateral view. 

Abbreviations: al, external rim of eleventh? alveolus; nar, narial rim; not, notch for the 

fourth mandibular tooth; ocp, occlusal pit; olf, groove for the olfactory tract; orb, orbital 

rim; so, supraoccipital; stf, supratemporal fenestrae rim. Scale = 50 mm. 

 

Figure 7. cf. Crocodylus from the upper Castilletes Formation. A-C, STRI-CTPA-17702, 

posterior fragment of right mandibular ramus in dorsal (A); lateral (B); and medial (C) 

views. D, detail of glenoid fossa in dorsal view. E, detail of surangular-articular suture in 

medial view. Abbreviations: an, angular; ar, articular; faan, foramen for articular artery 

and alveolar nerve; fae, foramen aerum; sa, surangular. 

 

Figure 8. Eusuchian vertebrae from the Castilletes Formation. All in anterior and right 

lateral views, unless otherwise stated. A-B, STRI-CTPA-16422, posterior cervical 

vertebra from the locality 390085 (Cemetery). C-I, vertebrae from locality 390094 

(Patajau Valley). C-D, STRI-CTPA-16789, anterior dorsal vertebra. E-G, STRI-CTPA-

16788 isolated centrum in anterior (E), dorsal (F), and right lateral (G) views. H-I, STRI-

CTPA-1 caudal centrum. J-X, vertebrae from locality 390075 (Police Station). J-K, 
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STRI-CTPA-16167, cervical vertebra. L-N, STRI-CTPA-16203, anterior dorsal in 

anterior (L), lateral right (M), and lateral left (N) views. Q-R, STRI-CTPA-16296, 

cervical vertebra. S-V, articulated series of 3 vertebrae, the posterior element (S-T) was 

detached from the other two (U-V) during collection. W-X, dorsal or lumbar vertebra. 

Scale = 50 cm. 

 

Figure 9. Crocodilian skull fragments and teeth from the Castilletes formation. A-C, 

STRI-CTPA-16334, rostrum fragment from locality 390090 (La tienda) in medial (A), 

lateral (B), and occlusal (C) views. Scale = 10 mm. D-J, skull fragments from the upper 

Castilletes Formation, locality 390075 (Police Station). D-F, STRI-CTPA13109, 

articulated lacrimal and jugal fragments in dorsal (D) and ventral (E) views, and 

undetermined skull fragment (F). Scale = 50 mm. G, STRI-CTPA-16352, partial 

squamosal in dorsal view. Scale = 10 mm. H-J, STRI-CTPA-16240, partial jugal or 

maxilla in lateral view (H) and indeterminate skull fragments (I, J). Scale = 50 mm. K-Y, 

crocodilian teeth from the Castilletes Formation. K-M, STRI-CTPA-17158, slender, sharp 

tooth from locality 390094 (Patajau Valley) in labial (K), lingual (L), and lateral (M) 

views. N, detail of STRI-CTPA-17158, showing thin, parallel secunday carinae. O-P, 

STRI-CTPA-16554, slender tooth from locality 390085 (Kaitamana) in internal (O) and 

lateral (P) views. Q-S, STRI-CTPA-****, tooth from locality 390075 (Police Station) in 

labial (Q), lingual (R), and lateral (S) views. T-Y, STRI-CTPA-16277 (T-V) and STRI-

CTPA-16278 (W-Y), slender teeth from locality 390075 (Police Station) in labial (Q), 

lingual (R), and lateral (S) views.  
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Figure 10. Crocodilian poscranials and osteoderms from the Castilletes Formation. A-B,  

STRI-CTPA-16189, partial coracoid from locality 390075 (Police Station) in lateral (A) 

and medial (B) views. Scale = 50 mm. C-D, STRI-CTPA-16781, ilium from locality 

390094 (Patajau Valley) in lateral (C) and medial (D) views. Scale = 50 mm. E-H, 

osteoderms from locality 390085 (Kaitamana): STRI-CTPA-16336 (E), STRI-CTPA-

16424 (F), STRI-CTPA-16415 (G), STRI-CTPA-16426 (H). Scale = 10 mm. I-O, dorsal 

and lateral osteoderms from locality 390075 (Police Station). I-J, STRI-CTPA-20432, 

complete dorsal osteoderm in dorsal (I) and posterior (J) views. Scale = 50 mm. K-M, 

incomplete dorsal osteoderms: STRI-CTPA-16240 (K), STRI-CTPA-17136 (L), STRI-

CTPA-20337 (M). Scale = 50 mm. N-O, lateral osteoderms: STRI-CTPA-19620 (N), 

STRI-CTPA-16215 (O). Scale = 50 mm. 

 

Figure 11. Crocodilian faunas and hydrographic change in equatorial South America 

during the Neogene and Quaternary. A, crocodilian assemblages through time. Individual 

taxa names from Riff, et al (2009) and Scheyer et al (2013). Locality numbers are as in 

figure 1. B, history of hydrographic systems during the Neogene of South America. The 

upper bar represents different hydrographic systems (Pebas, Acre, Amazon)  in the 

western Amazonian basin. Shorter bars indicate the approximate establishment of 

separate peripheral basins (Orinoco, Magdalena, Maracaibo) after isolation from the 

western amazon. Abbreviations 1. Siquisiquesuchus venezuelensis; 2, Barinasuchus 

arveloi; 3, Purussaurus sp; 4, Mourasuchus sp.; 5, Caiman sp.; 6, Paleosuchus sp.; 7, 

Gryposuchus sp.; 8, Sebecidae gen et sp indet.; 9, Purussaurus neivensis; 10, 

Mourasuchus atopus, 11, Eocaiman sp; 12; Caiman cf. lutescens; 13, Gryposuchus 
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colombianus; 14, Charactoschus fieldsi; 15, Langstonia huilensis; 16, Purussaurus 

brasiliensis; 17, Mourasuchus amazonicus, M. nativus, and M. arendsi; 18, Caiman 

niteroiensis; 19, Caiman brevirostris; 20, Gryposuchus jessei; 21, Hesperogavialis sp.; 

22, Charactosuchus mendesi; 23, Ikanogavialis gameroi; 24, cf. Thecachampsa; 25, 

Purussaurus mirandai; 26, Mourasuchus arendsi and M. nativus; 27, Melanosuchus 

fisheri; 28, Globidentosuchus brachyrostris; 29, Gryposuchus arendsi; 30, 

Hesperogavialis cruxenti; 31, Charactosuchus mendesi and C. sansoai; 32, Crocodylus 

falconensis; 33, Alligatoridae gen et sp indet; 34 Gavialoidea gen et sp indet; 35, cf. 

Crocodylus; 36, Piscogavialis jugaliperforatus; 37, Caiman venezuelensis; 38 Crocodylus 

sp. 
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