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Abstract—Image deblurring algorithms generally assume that the 

nature of the blurring function that degraded an image is known 

before an image can be deblurred. In the case of most naturally 

captured images the strength of the blur present in the image is 

not known. This paper proposes a method to identify the 

standard deviation of a Gaussian blur that has been applied to a 

single image with no a priori information about the conditions 

under which the image was captured. This simple method makes 

use of a property of the Gaussian function and the Gaussian scale 

space representation of an image to identify the amount of blur. 

This is in contrast to the majority of statistical techniques that 

require extensive training or complex statistical models of the 

blur for identification.   

Keywords-Gaussian blur, blur identification, blur estimation, 

scale space. 

I.  INTRODUCTION  

In almost all vision systems, biological or mechanical, the 
phenomenon of blur can be observed. Blur manifests itself as a 
degradation of spatial detail or high frequency visual 
information. This results in a reduction of edge sharpness and 
loss of the finer detail. There are many causes of blur but the 
most fundamental is the diffraction limit of a vision system that 
contains an aperture [1]. Some other causes of blur are defocus, 
motion during exposure, atmospheric turbulence and upscaling 
of images [1, 2, 3].  

Blurring is a distortion of an image that reduces the amount 
of information contained in that image. While it is impossible 
to build a physical system that can capture arbitrarily sharp 
images it is mathematically possible to reconstruct a portion of 
the lost information [4]. This process is called image 
deconvolution or image restoration and is essentially an inverse 
filtering process. The blurring effect is modelled as a 
convolution of the original image with a blurring kernel or 
Point Spread Function (PSF) with some additive white 
Gaussian noise as shown in the following equation [5].  

𝑖 𝑥, 𝑦 =  𝑓 𝑥, 𝑦 ∗ ℎ 𝑥, 𝑦 +  𝑛 𝑥, 𝑦 , (1)  

Where i(x,y) is the distorted 2D image with the 2 dimensions 

denoted by x and y, f(x,y) is the undistorted image, h(x,y) is the 

blurring function PSF which is convolved with the input 

image and n(x,y) is the additive white Gaussian noise present 

in the scene [5].  

 

Usually it is assumed that the PSF of the blurring distortion 
is known. An operation is then performed that is the inverse of 
that distortion to attempt to undo that distortion [4, 5].   

The image deconvolution problem has been explored quite 
thoroughly in the literature. The basic approaches of inverse 
filtering, least squares filtering and iterative filtering can be 
found in most image processing textbooks such as [5, 6]. More 
modern methods have also been discussed in [7, 8, 9] to name a 
few.  

When the parameters of the PSF of the blurring function is 
not known and has to be estimated from the input image the 
problem becomes known as a blind deconvolution problem [5]. 
Blur identification techniques need to be employed to estimate 
the nature of the blur in the observed image. Numerous 
approaches to this problem have been proposed in the 
literature. The vast majority of approaches make use of image 
statistics to provide an estimate of the blur. In [10] a maximum 
likelihood estimation technique is used, [3] uses an 
autoregressive–moving-average (ARMA) process and [11] 
uses a regularization approach. 

Non-statistical  approaches also exist, for instance in [12] 
the original unblurred image is estimated and used to estimate 
what blur was applied to result in the degraded image. The 
approach that most resembles ours is a parametric approach 
where the blur is considered to conform to an assumed blur 
model with a single parameter. A search space of possible blur 
parameters is traversed and the input image is deconvolved 
with each parameter value. A sharpness metric is used to 
determine which parameter results in the sharpest output 
image. In this case the sharpness metric used was kurtosis [13]. 

There are a variety of types of blur found in images but we 
will focus on Gaussian blur. This blur approximates the blur 
caused by upsampling an image fairly well and is a very good 
approximation of blur introduced to an image by capturing a 
scene through atmospheric turbulence [5]. 

The technique proposed in this paper focuses on identifying 
the standard deviation (σ) of a Gaussian blur applied to an 
input image. An interesting property of the Gaussian function 
is employed to identify the variance of the Gaussian blur in the 
input image by examining its scale-space representation [14]. 
The scale-space representation has been used previously in [15] 
to detect edges. In [15] edges are considered to be ideal step 
functions that have undergone blurring due to lighting and 
focal characteristics of the imaging system through which they 



were captured. These blurs were modelled as Gaussian blurs. 
Through analysis of the derivatives of an image at various 
scales in the scale-space it was possible to locate blurred edges 
and identify the degree to which they were blurred. 

The remainder of this paper will be structured as follows. 
Section II will present the theory employed in this algorithm. 
Section III will describe the algorithm itself. Section IV will 
present some experiments and discussion of their results and 
finally Section V will be the conclusion. 

II. BACKGROUND 

A. An Interesting Property of the Gaussian distribution 

In image processing the most common operations use kernel 

filters that are panned around the image. The Gaussian 

equation used to produce these types of kernels is considered 

to have a zero mean. Thus the one dimensional Gaussian 

equation we are using is defined as follows: 

𝐺 𝑥, σ2 =  𝑎𝑒
−𝑥2

2σ2 , (2)  

Where a is the amplitude of the curve and σ
2
 is the variance of 

the Gaussian and its square root σ is the standard deviation 

[14]. For generating kernels for image processing a is 

generally considered to be 1. 

The Gaussian equation exhibits self-similarity and thus the 

cascade property where if two Gaussians are convolved with 

each other they produce a new Gaussian as follows [14]: 

 

𝐺 𝑥, σ𝐴
2 ⊗ 𝐺 𝑥, σ𝐵

2  =  𝐺 𝑥, σ𝐴
2 + σ𝐵

2  , (3)  

 

In this paper we exploit an interesting feature of the Gaussian 

equation. Given a Gaussian with a constant standard deviation 

σ1, if we convolve this Gaussian with another Gaussian with 

standard deviation σ2  we get a resulting Gaussian with the 

standard deviation of  σ1
2 + σ2

2 . If we then subtract the 

resulting Gaussian from the original Gaussian with standard 

deviation σ1 and absolute the result we get a measure of the 

difference or error between the original Gaussian and the new 

Gaussian. This process is described in the equations below and 

figure 1. 

  

𝐸 =  𝐺 𝑥, σ1
2 − 𝐺 𝑥, σ1

2 ⊗ 𝐺 𝑥, σ2
2   , (4)  

𝐸 =   𝐺 𝑥, σ1
2 − 𝐺 𝑥, σ1

2 + σ2
2   , 𝑥 ∈  −𝐵; 𝐵  & 𝒁, (5)  

Where x is an integer that ranges between integer bounds 

defined by  -B and B. 

 

If you perform this process using a chosen value for σ1 and a 

range of values for σ2 and then plot the resulting errors you 

will find the response shown in figure 2. What is interesting is 

that the error curve contains a point of inflection where the 

concavity of the curve changes. To find the exact point of 

inflection we must look for extrema in the first derivative of 

the error curve which is shown in figure 3. 

 
Figure 1: Error between 2 Gaussians 

 
Figure 2: Error between a Gaussian with constant standard 

deviation σ1=11 and a second Gaussian with standard deviation 

 𝛔𝟏
𝟐 + 𝛔𝟐

𝟐 where σ2 is varied over a range. 

 
Figure 3: First derivative of the Error with respect to σ2 
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As can been seen from figure 3 the maximum value of the first 

derivative of the error corresponds to the point of inflection in 

the error curve. This also corresponds with the chosen value 

for σ1 which in this case was 11.  This shows that while the 

error is increasing monotonically when σ2 is smaller than σ1 

the error increases at a faster rate than when σ2 is larger than 

σ1. This phenomenon can be used to determine the value of σ1 

by only varying the value of σ2 and searching for the point of 

inflection on the error curve. 

B. The scale space 

Scenes in the world appear very different when viewed from 

varying scales. For example a tree viewed from 1 meter away 

would be made up of individual branches, a trunk and leaves 

while if it was viewed from 1 km away it would appear to be a 

single solid object. The fact that scale is so important in 

describing the structure of objects being observed has led to 

the development of multi-scale representations of images. 

Being able to isolate the structures contained in an image at a 

given scale is an immensely powerful tool in being able to 

extract useful information from an image [14]. 

 

A large number of multi-scale representation techniques have 

been proposed in the literature. One of the first was the quad-

tree representation which iteratively divides an image into 

smaller rectangles based on the information content inside 

each division [16]. Sampling pyramids have also been widely 

used. In these algorithms an image is recursively halved in 

size using a sub-sampling scheme and smoothed at each step 

to give a pyramid of images where each is half the size of 

level below. This approach is limited in the size of the steps at 

which its sampling size is reduced and thus objects at scales 

that exist between and levels of the pyramid are lost [14].  

 

The scale-space representation was proposed to combat this 

problem. The scale-space is a representation that comprises a 

continuous scale parameter and preserves the same spatial 

sampling at all scales. It is shown in [14] that the only kernel 

that can achieve this is the Gaussian kernel. This approach 

takes an input image and blurs the image with a series of 

Gaussian kernels, each with a larger variance than the last. As 

the image becomes more and more blurred the finer scale 

information is averaged out and the larger scale structures are 

all that are left. In this way we can produce a series of images 

that each contain a different scale of structures but we do not 

introduce any quantization noise. 

 

To take this representation a step further we can subtract each 

level of this multi-scale representation from the one below it 

to produce a Difference-of-Gaussian (DoG) representation of 

the image. This representation is essentially the second-order 

derivative of the images at each scale level. This multi-scale 

gradient information has been used in many feature detection, 

object detection and segmentation algorithms of which the 

most notable is probably the SIFT feature detector [17]. 

III. ALGORITHM DESCRIPTION 

The algorithm described in this paper starts with an input 

image which we assume has been blurred with a Gaussian 

kernel as shown in the following equation.  

 

𝐼 = 𝐹 ⊗ 𝐺 𝑥, σ1
2 , (6)  

Where I is the input image, F is the image without the blur and 

the function G is a Gaussian kernel with a standard deviation 

of σ1.  The goal of the algorithm is to identify the standard 

deviation of this blur with no a priori information about the 

conditions under which the image was captured.  

The next step is to construct a scale space representation of the 

input image I. This is done by blurring the input image I with 

a range of Gaussian kernels with increasingly large standard 

deviations. The range of standard deviations is calculated in a 

similar fashion to [17]. We start at a standard deviation of 1 

and we call each doubling of this initial value an octave of σ 

values. We choose how many levels to divide each octave 

into. The range is then constructed as described by the pseudo-

code in the following figure. This code assumes we want to 

construct 5 octaves of  σ  values with 10 divisions in each 

octave. 

 

 

 
Figure 4: Pseudo-code describing generation of 𝛔 values for the 

scale-space representation 

To construct the scale-space representation D we then 

convolve the input image with a Gaussian kernel with each of 

the σ values in the generated range. 

 

𝐷 σ2 = 𝐹 ⊗ 𝐺 𝑥, σ1
2 ⊗ 𝐺 𝑥, σ2

2 , (7)  

Where σ2 is the standard deviation from our generated range 

and σ1 is the standard deviation of the Gaussian kernel we are 

trying to detect. The next step is to find the absolute error 

between the input frame and the images in the scale-space 

representation. 

 

E(σ2) =  𝐹 ⊗ 𝐺 𝑥, σ1
2 −  𝐹 ⊗ 𝐺 𝑥, σ1

2 ⊗ 𝐺 𝑥, σ2
2  , (8)  

E(σ2) = 𝐹 ⊗  𝐺 𝑥, σ1
2 −  𝐺 𝑥, σ1

2 ⊗ 𝐺 𝑥, σ2
2  , (9)  

Due to the distributability of convolution it can be seen that 

the error E contains the equation 4 convolved with the 

unblurred image F. This implies that the same analysis of the 

error response of E can be applied to determine the value of 

σ1.  

octaveDivisions = 10  

numOfOctaves = 5 

scaleFactor = 2.0^(1.0/octaveDivisions) 

numOfLevels = octaveDivision*numOfOctaves+1 

sigma(1) = 1; 

 

For s = 2 to numOfLevels 

 Sigma(s) = sigma(s-1)*scaleFactor 

end 



 

Thus once we have the error response for all values of σ2 in 

our scale-space we find the first derivative of E with respect to 

σ2. We use the basic finite difference technique to estimate the 

derivative of the range of σ2 values and E as following set of 

convolutions. 

𝑑𝐸 = 𝐸 ⊗ [−1  1], (10)  

𝑑σ = σ2 ⊗ [−1  1], (11)  

Where the [−1, 1] term is a discrete kernel with two elements. 

The final step of the algorithm is to find the maxima of dE/dσ 

and the corresponding σ2 value. This value is the detected 

standard deviation of the blur that the input image contained. 

This process of blurring an image with a series of Gaussians 

with increasing standard deviations is also used to produce the 

scale space representation of an image. Thus this algorithm 

can be cheaply performed in tandem with algorithms that 

make use of the scale space representation of an image. 

We found that the algorithm was fairly sensitive to additive 

white noise and as such we introduced an iterative median 

filtering pre-processing stage to the algorithm to aid in 

suppressing noise. This stage consisted of applying two 

iterations of a 3x3 median filter to the input image before the 

above described process is performed. 

IV.    EXPERIMENTS 

To examine the performance of the algorithm at detecting 

unknown Gaussian blurs in natural images we performed the 

following experiments. Four test photographs were chosen and 

are shown as figures 5 through 8 below. 

Each image was degraded with a Gaussian blur with standard 

deviations ranging from 1 to 20. After each blur was applied 

an additive white Gaussian noise was applied resulting in a 

signal-to-noise (SNR) of 30 dB (strong noise) and 40 dB 

(milder noise). The algorithm was then used to measure the 

amount of blur in the image. The results of these experiments 

are displayed in figures 9 through 12. 

 

 

 
Figure 5: Aircraft test image 

 
Figure 6: City test image 

 
Figure 7: Bridge test image 

 
Figure 8: Forest test image 

As can be seen the algorithm successfully identifies the 

strength of the Gaussian blur applied to the images quite 

accurately in a range of standard deviations from 1 to 20 



which is a far wider range of sigma values than algorithms 

currently in the literature. The presence of noise does decrease 

the accuracy of the identification especially in the Aircraft 

image which has large areas of uniform colour where noise 

becomes very apparent but the iterative median filtering does 

make the algorithm fairly resistant to noise. 

 

It is interesting to note that in the Aircraft test image the 

strength of the identified blur does get over estimated. This is 

due to the large uniform coloured areas which have very little 

high frequency information content. This lack of high 

frequency content makes the images appear to be more blurred 

than they really are. In contrast the blur in the City test image 

is consistently underestimated due to the large amount of high 

frequency information present in the image. This over 

abundance of high frequency information makes the image 

appear to be less blurred than it is. 

 

 

 
Figure 9: Blur identification results for City and Aircraft test 

images with 30 dB of additive white noise 

 

 
Figure 10: Blur identification results for Bridge and Forest test 

images with 30 dB of additive white noise 

 
Figure 11: Blur identification results for City and Aircraft test 

images with 40 dB of additive white noise 

 
Figure 12: Blur identification results for Bridge and Forest test 

images with 40 dB of additive white noise 

A final test was performed where an image that contains 

natural blur due to atmospheric turbulence is used as an input 

image. The strength of the blur is identified and the image is 

deconvolved using a plain Wiener filter using the identified 

Point Spread Function (PSF) [5]. The results of this 

experiment can be seen in figure 13. It is apparent that the 

identified blur strength is correct and the deconvolution 

deblurs the image without introducing ringing artifacts 

associated with an incorrectly identified PSF. 

V. CONCLUSION 

In this work is was shown that it is possible to detect the 

standard deviation of a Gaussian blur that has been applied to 

an image with no a priori information about the conditions 

under which the image was captured. The method uses an 

interesting property of the Gaussian function. When a series of 

Gaussians with increasing standard deviations are convolved 

with the Gaussian to be identified an error is produced. The 

error response this process produces has an inflection point 
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where the standard deviations of the Gaussians coincide and 

allows us to identify the standard deviation of the Gaussian 

being analyzed. This process is shown to work with a 

Gaussian blur applied to natural images. This method of 

blurring an image with a series of Gaussians is also used to 

produce the scale space representation of an image and can be 

performed in parallel with any algorithm that uses a scale 

space representation of an image. 

 

The experiments show that in natural images with the presence 

of noise it is possible to identify Gaussian blurs with standard 

deviations that span a wide range without using any sort of 

statistical methods that require extensive training. It is also 

shown how this method can be used to identify the blur 

present in an image blurred naturally by atmospheric 

turbulence and allows one to deconvolve that image 

successfully using a basic Wiener filter.  

 

 
 

 
Figure 13: The standard deviation of the blur present in a real 

image blurred by atmospheric turbulence is identified and used 

to deconvolve the image using a basic Wiener filter. 
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