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Abstract 

The submitted contribution is focused on the model uncertainty related to shear resistance of 
reinforced concrete beams with special shear reinforcement considering available test results. 
Variation of the model uncertainty with basic variables is analysed and significant variables are 
identified for the section-oriented formula provided in EN 1992-1-1. Proposed probabilistic 
description of the model uncertainty consists of the lognormal distribution having the coefficient of 
variation of about 0.25 and the mean significantly varying with the strength of shear reinforcement. 
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Abstrakt 

Příspěvek se zaměřuje na modelové nejistoty smykové odolnosti železobetonových prvků se 
smykovou výztuží s využitím dostupných experimentálních dat. Analyzuje se závislost modelové 
nejistoty na základních veličinách pro výpočet smykové únosnosti podle EN 1992-1-1. Jsou 
identifikovány veličiny významně ovlivňující modelovou nejistotu. Pravděpodobnostní rozdělení 
modelové nejistoty je lognormální s variačním koeficientem 0.25 a různými průměrnými hodnotami 
závislými na odolnosti smykové výztuže. 
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 1 INTRODUCTION 
Previous studies [1–4] indicated that structural resistances can be predicted by appropriate 

modelling of material properties, geometry variables and uncertainties associated with an applied 
model. The effect of variability of materials and geometry is relatively well understood and has been 
extensively investigated. However, improvements in the description of model uncertainties are still 
needed [4]. 

For reinforced concrete structures flexural resistances are predicted with a reasonable accuracy 
while accurate prediction of the shear resistances is difficult due to the uncertainties in the shear 
transfer mechanism, particularly after initiation of cracks [5]. Recently the model uncertainties of the 
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shear resistance of beams without a special shear reinforcement have been analysed in several 
studies; an overview is provided in [6]. 

 
Fig. 1: General concept of the model uncertainty 

The presented study is focused on the model uncertainties of the shear resistance of beams 
with a special shear reinforcement (such as stirrups or inclined bars, hereafter referred to as “shear 
reinforcement” to simplify the text). Simple engineering relationship for shear resistance provided in 
EN 1992-1-1 [7] is considered. Obtained results are critically compared with available experimental 
data. 

 2 MODEL UNCERTAINTY 
According to [8] the model uncertainty is generally a random variable accounting for effects 

neglected in the models and simplifications in the mathematical relations. Model uncertainties can be 
related to: 

 Resistance models (based on simplified or complex models such as the Finite Element 
analysis), 

 Models for action effects (assessment of load effects and their combinations). 

The model uncertainty can be obtained from comparisons of physical tests and model results. 
Actual structural conditions not covered by tests should be taken into account if needed. Obviously 
the model uncertainty should be associated with a computational model under consideration. General 
concept of the model uncertainty applicable to both resistance and load effect models is indicated in 
Fig. 1. Significance of factors affecting tests, model results and actual structural conditions depends 
substantially on the analysed structural member or load effect. 

Only resistance models are addressed hereafter. Overview of factors affecting the uncertainty 
related to resistance models is given elsewhere [9]. 

In this study the model uncertainty θ is considered to be a random variable. The multiplicative 
relationship for θ is assumed in accordance with [8]: 

 R = θ Rmodel(X) (1) 

where: 

R  – denotes the response of a structure – actual resistance estimated from test results and 
structural conditions; 

Rmodel – model resistance – estimate of the resistance based on a model; and 

XT = (X1,…, Xm)  – vector of basic variables Xi. 

Note that an additive relationship or combination of the multiplicative and additive formulas 
may be used to assess the model uncertainty [8]. In more advanced analyses the model uncertainty 
may be represented by functions of several auxiliary random variables θ and variables X as 
considered e.g. in [5]. 
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Assuming lognormal distribution with the origin at zero (hereafter simply “lognormal 
distribution”) for R and Rmodel(·), the model uncertainty given by relationship (1) is also lognormal. Its 
characteristics can be assessed using the method provided in Annex D of EN 1990 [10]. When few 
experimental data are available, Bayesian approaches can be used to combine these data with expert 
judgements. 

The model uncertainty θ in general depends on basic variables X. Influence of individual 
variables on θ can be assessed by a regression analysis as described e.g. by [11]. It is also indicated 
that the model describes well the essential dependency of R on X only if the model uncertainty: 

 Has either a suitably small coefficient of variation (how small is the question of the 
practical importance of the accuracy of the model) or 

 Is statistically independent of the basic variables (X1,…, Xm). 

It may also be important to define ranges of the input parameters X for which the accepted 
model uncertainty is valid. Such intervals should be established on the basis of: 

 Admissible ranges of X for the model (for instance limits on reinforcement ratio) and 

 Simplifications in modelling of θ (for instance when θ is considered independent of Xi for 
a specified interval of the basic variable). 

 3 UNCERTAINTIES RELATED TO THE MODEL PROVIDED IN EN 1992-1-1 

 3.1 Model in EN 1992-1-1 
The model uncertainty should always be clearly associated with an assumed resistance model. 

In this section uncertainties related to the basic resistance model provided in EN 1992-1-1 [7] for 
beams with stirrups are considered: 

 Rmodel(X) = min1 ≤ cot ξ ≤ 2.5 [ρw bw z fyw cot ξ; αcw bw z ν1 fc / (cot ξ + tan ξ)] (2) 

where: 

ν1 – denotes the strength reduction factor for concrete cracked in shear, ν1 = 0.6 for fc ≥ 60 MPa 
or ν1 = max[0.5; 0.9 − fc / 200 MPa] otherwise. 

For the angle between concrete compression struts and the main tension chord, the symbol ξ is 
introduced here instead of θ used in EN 1992-1-1 [7] to avoid confusion with the symbol for model 
uncertainty. Notation of the basic variables is provided in Tab. 1. No axial compressive force is 
considered and actual concrete strengths instead of the characteristic value are applied in 
equation (2). 

 3.2 Database of experimental results 
Researchers at the University of Stellenbosch collected a database of 222 tests of beams with 

shear reinforcement [12]. For 22 tests information on ρw and fyw is missing and these test results are 
hereafter not considered. Overview of the experimental data is given in Tab. 1. The database covers a 
wide range of beams with low to high concrete strengths, shear reinforcement ratio, and effective 
depths. Beams with light, moderate and heavy longitudinal reinforcement are included. 

It is worth noting that the database contains seven specimens with the longitudinal 
reinforcement of yield strength fy = 820 MPa. Histogram of yield strengths in the whole database is 
shown in Fig. 2. Annex C of EN 1992-1-1 [7] indicates that the design rules of Eurocode are valid for 
reinforcement with the characteristic yield strength fyk between 400 to 600 MPa. Therefore, the values 
of 820 MPa seem to be exceedingly high and these seven specimens are excluded from the database. 
Since the yield strength is not included in equation (2), the other specimens for which fy is less 
significantly beyond the limits remain in the database for a statistical evaluation of the model 
uncertainty. 
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Tab. 1: Scatter of variables included in the database and parameters describing their influence on θ 

Variable Min. Max. 
ρ 

exp. (lin.) 
R2 

exp. (lin.) 

bw (mm) – smallest width of a cross-section in the 
tensile area 

76 457 0.14 (0.11) 0.02 (0.01) 

d (mm) – effective depth 95 1200 −0.01 (−0.04) 0 (0) 

s (mm) – stirrup spacing 48 600 0.03 (0.01) 0 (0) 

ρ1 = Asl/(bwd) ≤ 2 (%)– longitudinal reinforcement 
ratio 

0.5 4.54 0.07 (0.08) 0 (0.01) 

ρw = Asw/bws (%) – shear reinforcement ratio 0.07 1.19 −0.69 (−0.60) 0.48 (0.37) 

fc (MPa) – concrete compressive strength 12.8 125 0.16 (0.14) 0.02 (0.02) 

fyw (MPa) – yield strength of stirrups 182 820 0.09 (0.05) 0.01 (0) 

ρw fyw (MPa) – strength of shear reinforcement 0.21 2.62 −0.75 (−0.68) 0.56 (0.46) 

a/d – shear span-to-depth ratio 2.49 5.05 0.12 (0.11) 0.02 (0.01) 

Vfail (kN) – shear force at failure 15.6 1172.4 −0.02 (−0.04) 0 (0) 

 
 

 
Fig. 2: Histogram of fy for the whole database 
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Tab. 2: Sample characteristics of the model uncertainty 

Description of the sample m v 

Whole database, n = 200 1.32 0.34 

Lightly reinforced beams (ρwfyw ≤ 1 MPa), n = 147 1.56 0.26 

Moderately reinforced beams (1MPa < ρwfyw ≤ 2 MPa), n = 45 1.25 0.23 

Heavily reinforced beams (2 MPa < ρwfyw), n = 8 0.76 0.20 

 

 3.3 Statistical evaluation of the model uncertainty 
For each experiment the model resistance is assessed from equation (2) and the model 

uncertainty is evaluated from equation (1). Note that the first term in equation (2) is decisive for all 
the specimens. Sample characteristics of θ (mean m and coefficient of variation v), estimated for the 
whole database by the Annex D of EN 1990 [10], are given in Tab. 2. Limits for lightly, moderately 
and heavily reinforced beams are accepted from [13]. A lognormal distribution is accepted in 
accordance with [8]. 

To verify influence of basic variables (Tab. 1) on the model uncertainty, a simple sensitivity 
analysis as proposed in [12] is conducted for the present database. Trends in θ with a basic variable 
are assessed using: 

 The correlation coefficient ρ (correlation between θ and Xi), and 

 The coefficient of determination R2, a measure of the linear relationship between θ and 
Xi [14]. 

A combination of strong ρ (say, |ρ| > 0.5) and strong R2 (say, R2 > 0.5) indicates a significant 
linear relationship between θ and X whereas strong correlation with relatively weak R2 suggests a 
non-linear relationship. 

Regression analysis is based on a linear or exponential model described by the following 
relationships: 

 linear: θ(ρwfyw) = b0 + b1 ρwfyw (3) 

 exponential: θ(ρwfyw) = exp(b0 + b1 ρwfyw) (4) 

where: 

b0 and b1 – denote regression parameters determined by the Least square method. 

The results provided in Tab. 1 reveal strong correlations between θ and ρw or ρwfyw while weak 
correlations appear for the other shear parameters. The most influential parameter is strength of shear 
reinforcement ρwfyw (ρ = −0.68 and R2 = 0.46 for linear regression; ρ = −0.75 and R2 = 0.56 for 
exponential regression) as already recognised in [12,13]. For most of the shear parameters the 
exponential regression is a more appropriate model. 

A multiple linear regression with all the shear parameters yields R2 = 0.68 and somewhat 
improves the model of θ. However, the model uncertainty as a function of eight variables is 
impractical. Therefore, the influence of the longitudinal reinforcement ratio on θ is considered 
hereafter only. Fig. 3 shows the histogram of the strength of the shear reinforcement for the whole 
database. It appears that the database contains a sufficient number of the test results for light and 
medium reinforced beams while a limited amount of data is available for heavily reinforced beams 
(sample sizes are n = 147, 45 and 8, respectively). 
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Fig. 3: Histogram of ρwfyw for the whole database 

 
Fig. 4: Variation of θ with ρwfyw for the whole database 

Fig. 4 shows variation of the model uncertainty with the strength of shear reinforcement based 
on the exponential regression. The model uncertainty clearly decreases with an increasing strength 
and its differentiation with respect to ρwfyw is thus proposed. Similar observations have been already 
made in [15] with an argument that the truss model in EN 1992-1-1 [7] may be unconservative for 
highly reinforced concrete members (ρw fy > 2 MPa). 
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Sample characteristics of θ for light to heavy reinforced beams are provided in Tab. 2. 
It follows that the mean depends on the strength of shear reinforcement while the effect on the 
coefficient of variation is less significant. 

Statistical testing of outliers is conducted to exclude measurements obtained under 
significantly different conditions or affected by errors. For each data group Grubb’s test at 
a significance level of 0.05 [14] is performed; none of the 200 samples was excluded. 

Based on the results given in Tab. 2 the following stochastic characteristics of θ may be 
accepted as a first approximation for the shear resistance of the members with shear reinforcement: 

 lightly reinforced beams (ρwfyw ≤ 1 MPa): μθ ≈ 1.56; Vθ ≈ 0.26, 

 moderately reinforced beams (1 MPa < ρwfyw ≤ 2 MPa): μθ ≈ 1.25; Vθ ≈ 0.23, 

 heavily reinforced beams (2 MPa < ρwfyw): μθ ≈ 0.76; Vθ ≈ 0.20 (note that particularly these 
values are indicative since they are based on eight test results only). 

 4 MODEL UNCERTAINTY FACTOR FOR DETERMINISTIC RELIABILITY 
VERIFICATIONS  
For deterministic reliability verifications, EN 1990 [10] introduces the partial factor γRd to 

describe the uncertainty associated with the resistance model (“design value of the model 
uncertainty”). Fig. 5 illustrates the relationship between the probabilistic distribution of θ and 
factor γRd. As an example the lognormal distribution (mean μθ = 1.25 and coefficient of variation Vθ = 
0.25) and the relevant model uncertainty factor γRd = 1.08 (for β = 3.8) obtained from equation (6) 
(see the text below) are shown. 

The model uncertainty factor γRd for reinforced concrete structures can be obtained as a 
product of [16]: 

 γRd = γRd1 γRd2 (5) 

where: 

γRd1 – denotes the partial factor accounting for model uncertainty and 

γRd2 – partial factor accounting for geometrical uncertainties. 

  
Fig. 5: Probability density function of θ and the model uncertainty factor γRd 
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Fig. 6: Variation of the partial factor γRd with β for αR = 0.32 

EN 1992-1-1 [7] provides no specific recommendations concerning model uncertainties. 
EN 1992-2 [17] introduces the global safety format for a nonlinear analysis with the recommended 
model uncertainty factor of 1.06. However, it has been shown [4] that such a factor is rather low and 
should be increased in most cases depending on relevant failure mode (bending, shear, compression). 

γRd1 = 1.05 for concrete strength and γRd1 = 1.025 for reinforcement may be assumed in 
common cases [16]. However, larger model uncertainty needs to be considered for punching shear in 
the case when concrete crushing is governing. A value of γRd2 = 1.05 may be assumed for geometrical 
uncertainties of the concrete section size or reinforcement position. When relevant measurements of 
an existing structure indicate insignificant variability of geometrical properties, γRd2 = 1.0 may be 
considered. 

Alternatively, the partial factor γRd can be obtained from the following relationship based on a 
lognormal distribution: 

 γRd = 1/[μθ exp(−αR β Vθ)] (6) 

where: 

αR – denotes the FORM sensitivity factor and 

β – target reliability index according to EN 1990 [10].  

Considering the statistical characteristics of the model uncertainty given in Tab. 2, variation of 
the partial factor γRd obtained from equation (6) with the target reliability β for αR = 0.4 × 0.8 = 0.32 
(“non-dominant resistance variable”) is indicated in Fig. 6. 

It follows from Fig. 6 that the model uncertainty factor γRd increases with an increasing target 
reliability index β. For the considered range of β from 3.2 to 4.4 the model uncertainty varies 
approximately within the following intervals: 

 0.84–0.93 for lightly reinforced members (γRd ≈ 0.9 as a first approximation), 

 1.02–1.10 for moderately reinforced members (γRd ≈ 1.1 may be commonly accepted), 

 1.61–1.75 for heavily reinforced members (γRd ≈ 1.7 as a first approximation). 
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The selection of αR = 0.32 deserves additional comments. Leading and accompanying actions 
(with associated factors αE = −0.7 and αE = −0.4 × 0.7 = −0.28, respectively) are distinguished in 
Annex C of EN 1990 [10] while αR = 0.8 is recommended for resistance variables under the 
conditions specified in the Eurocode. When the model uncertainty factor γRd and material factor γm 
are assessed separately considering αR = 0.8, overly conservative designs may be obtained. Therefore, 
CEB bulletin [18] and ISO 2394 [19] considered the model uncertainty as a non-dominant resistance 
variable and accepted the reduction αR = 0.4 × 0.8 = 0.32. Note that the value αR significantly affects 
the partial factor γRd [9]. 

 5 CONCLUDING REMARKS 
It appears that description of uncertainties related to resistance and load effect models can be 

a crucial problem of reliability analyses. The present paper is particularly focused on the model 
uncertainties in shear resistance of beams with shear reinforcement; the following concluding 
remarks are drawn: 

 The model uncertainty should be related to test uncertainties, to actual structural conditions 
and computational model under consideration. 

 In common cases actual resistance can be estimated as a product of the model uncertainty 
and resistance obtained by the model. 

 Uncertainties related to models provided in EN 1992-1-1 [7] can be described by 
the following statistical characteristics and partial factors:  
– lightly reinforced beams (ρwfyw ≤ 1 MPa): μθ ≈ 1.6; Vθ ≈ 0.25 and γRd ≈ 0.9,  
– moderately reinforced beams (1 MPa < ρwfyw ≤ 2 MPa): μθ ≈ 1.25; Vθ ≈ 0.25 and γRd ≈ 
1.1,  
– heavily reinforced beams (2 MPa < ρwfyw): μθ ≈ 0.8; Vθ ≈ 0.2 and γRd ≈ 1.7 (particularly 
these values are indicative since they are based on eight test results only). 
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