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Abstract 

Phenomenological models of continuum mechanics applied on the rigid body are more or less 
idealized. Experimental measuring showed there is a plastic flow, respectively relaxation in real rigid 
bodies, i.e. stress is the function of strain, strain velocity and the higher time derivatives. The paper 
deals with the rheological models based on the Hook elastic and Newton viscous masses. 
The corresponding constitutive equations are described. 
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Abstrakt 

Fenomenologické modely mechaniky kontinua aplikované v tuhých telesách sú viac či menej 
idealizované. Experimentálne merania ukázali, že v tuhých telesách dochádza k dotvarovaniu, resp. 
relaxácii, t. j. že napätie je funkciou nielen deformácie, ale aj jej časových derivácií. Článok 
pojednáva o reologických modeloch, ktorých základom je Hookova pružná a Newtonova viskózna 
látka. Sú popísané aj príslušné konštitutívne rovnice. 

Klíčová slova 

Lineárna väzkopružnosť, relaxácia, dotvarovanie, diferenciálna a integrálna reprezentácia 
konštitutívnych rovníc v anizotropickom médiu, reologický model, Laplaceova transformácia. 

 1 INTRODUCTION 
Classical elasticity theory studies the mechanical response of the perfectly elastic body to the 

ambient acting, where according to the Hook’s law the stress is a linear function of the strain being 
independent on the deformation velocity. On the other hand in hydrodynamic problems, where 
Newtonian laws are valid, the stress is linearly proportional to the strain velocity, but independent 
from the strain itself [7, 8, 10]. 

Phenomenological models of continuum mechanics applied in mechanical and mathematical 
modeling by using boundary value problems are more or less idealized. Considering the experimental 
measuring [11, 12, 25, 29] it is easy to find out that in real rigid body the plastic flow, respectively 
relaxation of the stress is evident as the effect of the outer load. In another words, the stress can be the 
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function of not only strain and strain velocity, but also the higher order time derivative of the strain, 
e.g. [3, 28].  

The study of the materials, where both the rigid and the liquid properties are performed, is 
included in the visco-elasticity theory. [3, 13-15, 18, 20, 22]. The base of the visco-elasticity theory 
was introduced in the two last centuries in the papers of Maxwell [21], Boltzmann [2], Kelvin [32] 
and Voigt [35]. 

 2 CONSTITUTIVE EQUATION AXIOMS 

 Causal principle: The stage of the body   in the time t is determined by the only history and 
not by the future, e.g. [1,4] 

 Determinism principle: The stress in the particle X


in the time t is determined by the 
movement history 'x


of the movement of the body   until the time t  

 )),;','('(),( tXtXxtx
t




 Fσ  , (1) 

where F ”constitutive operator” is a general operator expressing admissible functions of the 
body movement. The operator has to fulfill the conditions of the invariance, e.g. [2, 4]. 

 Local effect principle: According to the determinism principle the movement of the particle 

Y


that is not situated “too near” the particle X


, YX


  can influence to the stress 

in the particle X


. In the sense of contact stresses definition, the stresses are determined by the 

interactions of the particles in the infinitesimal neighborhood of the point X


. In terms of this 

definition we can further neglect the movement of the particles of the finite distance from X


 
when calculating the stresses in the neighborhood of the point, i.e. [4] 

 )(,0,'),(' XNYsxsYx


  , (2) 

 where )X(N


is a neighborhood of the point X


so it is valid 

 )),,'(),,'( tXxtYx
t








 FF . (3) 

 Objectivity principle: In the phenomenological theory of modeling we presume the independence 
of the various strain measures and stress velocities on the position and movement of observer. 
Also it is valid that the material properties expressed by the constitutive operator are independent 
on the observer, accordingly they are objective. That means when we would like to describe the 
real behavior of the materials, the constitutive equations have to be objective, i.e. if it holds [2, 4] 

 ),);((),( tXtxtx
t




 Fσ . (4) 

 Then the constitutive operator has to read 
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 where x

 , σ are the quantities dynamically equivalent to x


and σ . 

 3 THE FUNDAMENTAL SUBSTANCES AND THEIR RHEOLOGICAL 
MODELS 
Obviously, we describe the rheological phenomenon by the working diagram which express 

the relationship between a two physical parameters;  ~ ,  ~ ,  ~ t,  ~ t. We often use also 
three dimensional working diagrams  ~ ~ t,  ~ ~ t, etc. 
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There are some essential rheological components [28]: solid material, flowable liquid, elastic 
material. By compounding of these components we can get more complex rheological models by 
using which we can concisely express the rheological properties of various real materials. In our case, 
we will start from the two basic rheological substances, (Fig. 1). 

 
Fig. 1: Rheological models of elastic substance and viscous liquid, a) Hook elastic material, b) 

Newton viscous liquid 

Working diagrams of both substances can be expressed by the known formulas 

 (H): εσ Ê    (6) 

 (N): εσ ̂ ,    (7) 

where σ, ε  are the stress and strain tensors, Ê elasticity module, ̂  viscosity coefficient (in 3D 

represented by tensor operators). The dot above the tensor stands as the time derivative sign of it. 

 4 CONSTITUTIVE EQUATIONS FOR ANISOTROPIC MEDIUM 
Let us consider a quasi static problem where we neglect the outer inertial loading influence on 

the infinitesimal strains of the body. In the case between the deformations and stresses there is a 
relation as follows: 

 εHσ ˆ , (8) 

where ijklHˆ H  is a tensor operator of the 4th order which is, according to the Onasger theory, 
symmetric for linear rheological models[24]. 

 ijkl klij klji lkjiH H H H     (9) 

and also positive definite – according to the 2nd thermodynamic law [5, 33]. The operator can be of 
three form of representation, e.g. [6, 7], integral, differential and integro – differential form. 

(a) In the case of differential representation of equation (8) it holds [5, 6] 

 εKσK (s)
(r) ˆ  (10) 

 respectively 

 σQεQ (s)
(r) ˆ ,  (11) 
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 are tensor operators, 00  nn ,  are inverse values of the relaxation time (plastic flow time). 

 Equations (10) and (11) represent a generalization of the Lee equations for isotropic viscoelastic 
 medium [5, 7, 20]. 

(b) In the case of integral representation of equation (8) we can write the equation (8) in the form, e.g. 
[6, 7] 
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where )t(Ĝ  is a tensor operator of relaxation functions and )t(Ĵ  is a tensor operator of the 

plastic flow (both tensors are of the 4th order for anisotropic media). By using the Laplace 
transformation to the formulas (8), (10), (11) we get 

 εHσ ~)p(
~
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where for classical Laplace transform (with homogenous initial conditions) it holds 
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 , p is the parameter of Laplace transform. Similarly, taking the Laplace transform 

of (16), (17) we get 

 εGσ ~)(
~
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 σJε ~p)p(
~
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 5 CONSTITUTIVE EQUATIONS FOR SOME RHEOLOGICAL MODELS 
Voigt rheological model 

Structural formula is: ( ) ( ) ( )V H N : (Hook’s substance) (Newton’s viscous liquid) in 

parallel connection; ijklEˆ E  is a tensor – operator of elastic modulus, ijklˆ η is a tensor – 

operator of viscous modulus. 

In this case, the constitutive equation of the rheological model is of a form 
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 εηEσ )
t
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 , (24) 

where stress and strain tensors read 

 εεσσσ HHNH ,  . (25) 

 
Fig. 2: Rheological model of Voigt material 

After applying of the Laplace transform we get 

  εηEσ ~)ˆpˆ(~   (26) 

and, after inverting  

 σAηEε ~)p()ˆpˆ(det~  1 , (27) 

where )p(A  is an adjoint p-matrix. Let us denote by the symbol )p( the expression 

)ˆpˆdet()p( ηE . By comparing (20) and (27) we get further 

 )p()p(ˆ),p()p( (s))r( FQQ   . (28) 

By the decomposition of the tensor operator in the equation (27) to the partial fractions we get 

 σAε ~)p/()p(ˆ
n

n
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 , (29) 

where 
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where )(dp/)p(d n
)(

p n
  

1  and n  are equal to the negative values of the roots of the 

determinant equation 0)p(  and they represent inverse values of the viscous flow time. When 

we extend Voigt model by the Hook mass and Newtonian viscous liquid in the serial connection, we 
can rearrange the formula (29) into the form 

 σγCAε ~ˆpˆ)p/()(~
n

nn 
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1

1 , (31) 

where 11   )ˆ(ˆ,)ˆ(ˆ ηγEC , and the corresponding structural formula will get the form 

 )}()]()[(){( NNHH  . (32) 

By similar attempt we can derive the constitutive equations for a model with the structural 
formula 

 )]}(...)()[(){( 21 mNNNH  . (33) 



184 

According to [3, 28] we can say that the process of the linear creep can by realized by a 
complex rheological model composed from the fundamental substances (H) and (N) with the 
following structure: 

 )}()](...)()[(){( 21 NVVVH m  , (34) 

where by the symbol )V( i we have denoted the i-th Voigt rheological model. By using the inverse 

Laplace transform -1 on the equation (29) we get a strain tensor in the form 
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When we compare the equations (17) and (35), we can see that (35) is an equation of the 
Boltzmann type with the plastic flow tensor in the form 

 
6

1

1

ˆ t [1 ]nt
n

n

e  



  nJ( ) A(λ ) . (36) 

Maxwell rheological model 

 
Fig. 3: Rheological model of the Maxwell type 

The structural formula (M) = (H) – (N): (Hook’s mass) – (Newton viscous liquid) in the serial 

connection; ijklCˆ C  is a tensor-operator of the elastic modules, ijklˆ γ  tensor-operator of the 

viscous modules. With respect to equation (11) we have  

 γCQ ˆ
t

ˆˆ,
t

Q )r( 







 . (37) 

In this case the constitutive equation of the rheological model will be of the form 

 σγCε )ˆ
t

ˆ(
t









. (38) 

The mechanical response of this model is the fact that resulting strain equals the sum of strains 
of the fundamental masses (H) and (N). The stresses in (H) and (N) are the same. Then 

 σCε ˆ
H   (39a) 

 σγεε ˆ
t NN 



  (39b) 

 εεε NH   (39c) 

 σγCεεε )ˆ
t

ˆ()(
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. (40) 

By using the Laplace transform we get 

 σγCε ~)ˆˆp(~p  . (41) 
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After inversing (41) we can express the stress tensor 

 εPγCσ ~)p(p)ˆˆp(det~  1 , (42) 

where )p()ˆˆpdet( M γC  is in general a polynom of the 6th degree of parameter p and )p(P  

is an adjoint matrix. 

 In the following we attempt likewise in the case of Voigt rheological model. It means we 

decompose the expression )p(/ MP  to partial fractions and get 
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and n  are negative values of the roots of the determinant equation ( ) 0M p   and they represent 

inverse values of the relaxation time. When we extend the Maxwell model by the Hook mass and 
Newton viscous liquid in the parallel connection, the relation (43) can be extended analogously as the 
relation (31), i.e. 
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and the corresponding extended rheological model structural formula will be of the form 

 )()()()]()[()()( NMHNHNH   (47) 

and after applying -1 on the (43) we get 
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which is the representation of the Boltzmann type equation for the Maxwell rheological model with 
the tensor function of relaxation in the form 

 t

n
n

ne)κ()t(ˆ 
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BG . (49) 

Zener rheological model 

 
Fig. 4: Rheological model of the Zener mass 
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From the analyses it is evident that though the Voigt model represents the creep process well, 
it does not reflect immediate response of the instantaneous deformations. This drawback can be 
avoided by the parallel connection of the Hook mass with Maxwell rheological model. By doing this 
we obtain Zener rheological model, Fig. 4. 

Structural formula )]()[()()( 221 NHHZ  : (Hook’s matter1) [ (Hook’s matter2) – 

(Newton viscous liquid2)]; 
ijkl

)()( Eˆ
11 E  is a tensor – operator of elastic modules, )(

ijkl
)( Cˆ 22 C  is a 

tensor – operator of elastic modules of the mass (M), )(
ijkl

)(ˆ 22 γ  is a tensor – operator of viscous 

modules of the mass (M). For mechanical response of the Zener model we have 

 εεσ,σσ 2121  , (50) 

where σ2  is stress, ε2  is strain in Maxwell model. Considering (41) for Laplace transform of the 

stress we get 

 εEγCσ (2)(2) ~]ˆ)ˆ([~
)1(

1  pp . (51) 

We can hereinafter rearrange the equation (51) in the sense of equation (43) and the first 
equation of (50) to the form 
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or after using -1 where we get the original for the stress tensor 
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is a relaxation tensor. Of course, it is possible to use also the other types of rheological models, 
the various types can be found e.g. in [28] as Poynting – Thompson model, generalized Maxwell 
model, Voigt model with a finite number of fundamental matters, complex visco-elastic masses with 
several Voigt and Maxwell groups, etc. 

While switch-over to the infinite number of fundamental masses the integro-differential 
models can be used. 

 6 CONCLUSION 
Solid phase rheology, and especially its branch visco-elasticity and visco-plasticity, e.g. [3-6, 

19, 23, 28] deals with deformation and stress analysis not only in steady state, but it observes also the 
time changes and time change velocities. It solves the relations between the stresses and strains, their 
time derivatives and time integrals. Various applications of the rheological process are synoptically 
presented in [19, 26, 34] where also the applications in industry, but also in medicine, in the 
diagnostic are introduced.  

 In this paper the differential operator form of constitutive equations are emphasized for 
linear visco-elastic anisotropic continuum with physical properties invariant in time. We focus to 
constitutive equations creation for material of so called 1st degree, where the stress tensor depends on 

the motion )t,X(x


 namely by means of strain gradients. Derived procedures are applicable for 

isothermal boundary value problems [16]. 
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 The weakness is the numerical realization of the inverse Laplace integral transform, which a 
lot of literature is devoted to [9, 25, 27]. We can mention [23], where transform perform the 
improved Schapery – Erdélyi method for analysis of layered half-space. 

 A special case, so called “time invariant aging theory” with application of the Schwartz 
distribution theory for linear problems was elaborated by Kovařík [18]. Suitable methods for visco-
elastic properties modeling of structures made from real materials is the application of “weakly 
singular kernels” elaborated e.g. by Koltunov [17], in Slovakia by Sumec and Lichardus [30], Sumec 
and Potúček [31], respectively for practical applications of space and planar building structural 
elements. 
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