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Abstract: We report the results of a calculation of the normal boiling points of a 
representative set of 200 organic molecules through the application of QSPR theory. For 
this purpose we have used a particular set of flexible molecular descriptors, the so called 
Correlation Weighting of Atomic Orbitals with Extended Connectivity of Zero- and 
First-Order Graphs of Atomic Orbitals. Although in general the results show suitable 
behavior to predict this physical chemistry property, the existence of some deviant 
behaviors points to a need to complement this index with some other sort of molecular 
descriptors. Some possible extensions of this study are discussed.   

 
Keywords: Boiling point – Flexible Molecular Descriptors – Correlation Weighting of 
Atomic Orbitals.  

 
 
Introduction 
 

One of the topics of continuing interest in structure-property studies is to arrive at simple 
correlations between the selected properties and the molecular structure. For such considerations the 
molecular structure is often represented as a simple mathematical object, such as a number, sequence, 
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or a set of selected invariants of matrices, generally referred to as molecular descriptors. Multiple 
regression analysis is usually used in such studies in the hope that it might point to structural factors 
that influence a particular property. Of course, regression analysis does not establish a causal 
relationship between structural components and molecular properties. Nevertheless, it may help one in 
model building and assist in the design of molecules with prescribed desirable properties, which is an 
important goal in drug research. In chemistry, anything that can be said about the magnitude of the 
property and its dependence upon changes in the molecular structure depends on the chemist’s 
capability to establish valid relationships between structure and property. In many physical-chemistry, 
organic, biochemical and biological areas, it is increasingly necessary to translate those general 
relations into quantitative associations expressed in useful algebraic equations known as Quantitative 
Structure-Activity (-Property) Relationships (QSAR/QSPR). To obtain a significant correlation, it is 
crucial that appropriate descriptors be employed, whether they be theoretical, empirical or derived 
from readily available experimental features of the molecular structures. Many descriptors reflect 
simple molecular properties and thus they can provide some meaningful insights into the physical-
chemistry nature of the activity/property under consideration. 

Chemical graph theory [1] advocates an alternative approach to QSAR/QSPR studies based on 
mathematically derived molecular descriptors. Such descriptors, often referred to as topological 
indices [2], include the well-known Wiener index W [3], the Hosoya index Z [4], and the connectivity 
index χ [5]. The last three decades have witnessed an upsurge of interest in applications of graph 
theory in chemistry. Constitutional formulae of molecules are chemical graphs where vertices 
represent the set of atoms and edges represent chemical bonds [6]. The pattern of connectedness of 
atoms in a molecule is preserved by constitutional graphs. A graph G = [V,E] consists of a finite 
nonempty set V of points together with a prescribed set E of unordered pairs of distinct points of V [7]. 

The correlation and prediction of physical-chemistry properties of pure liquids and of mixtures, 
such as boiling point, density, viscosity, static dielectric constant, and refractive index, is of practical 
(process design and control) and theoretical (role of the molecular structure in determining the 
macroscopic properties of the solvent) relevance to both chemists and engineers. Traditionally, 
procedures for estimating these properties have been based either on theoretical relationships often 
making use of empirical parameters that have to be fitted or on empirical relationships derived from 
additive-constitutive schemes based on atomic groups or bonds contribution within the molecule [8-
12]. More recently, the QSPR approach has been applied especially to predict boiling points (BPs), 
partition coefficients, chromatographic retention indexes, surface tension, critical temperatures, 
viscosity, refractive index, thermodynamic state functions and static dielectric constant, among other 
properties. The use of calculated molecular descriptors in QSPR analysis has two main advantages: (a) 
the descriptors can be univocally defined for any molecular structure or fragment; (b) thanks to the 
high and well-defined physical information content encoded in many theoretical descriptors, they can 
clarify the mechanism relating the studied property with the chemical structure. Furthermore, QSPR 
models based on calculated descriptors help understanding of the inter- and intramolecular interactions 
that are mainly responsible for the behavior of complex chemical systems and processes. 

The normal BP (i.e. the boiling point at 1 atm) is one of the major physical-chemistry properties 
used to characterize and identify a compound. Besides being an indicator for the physical state (liquid 
or gas) of a compound, the BP also provides an indication of its volatility. In addition, the BPs can be 
used to predict or estimate other physical properties, such as critical temperatures, flash points, 
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enthalpies of vaporization, etc. [13-15]. The BP is often the first property measured for a new 
compound and one of the few parameters known for almost every volatile compound. Normal BPs are 
easy to determine, but when a chemical is unavailable, as yet unknown, or hazardous to handle, a 
reliable procedure for estimating its BP is required. Furthermore, the rapid and nearly explosive 
growth of combinatorial chemistry, where literally millions of new compounds are synthesized and 
tested without isolation, could render such a procedure very useful.   

A large number of methods for estimating BPs have been devised and numerous QSPR 
correlations of normal BPs have been reported and detailed reviews have been given elsewhere [15-
22]. The aim of this study is to present the results derived from the use of a particular sort of flexible 
molecular descriptors to estimate the BPs of a representative set of organic molecules, in order to seek 
better ways of calculating physical-chemistry properties. Some previous experience with this issue has 
shown the convenience of resorting to this special sort of molecular descriptor. 

The paper is organized in the following way: the next section deals with the basic methodology, 
presenting some general properties of flexible molecular descriptors and some previous uses of the 
same. Then, we describe the calculation strategy, after which we give and discuss the results. Finally, 
our conclusions are presented together with some possible future further extensions of the method. 
 
Molecular Descriptors 
 

The basic algebraic expression of the fundamental principle governing the QSAR/QSPR, i.e. the 
quantitative formula representing the structure-activity/property relationship, is 

   P = f({d})          (1)     

where P stands for the activity/property, {d} is a set of molecular descriptors and f is an arbitrary 
function. The commonest and simplest cases are those where {d} is reduced just to one variable and f 
is a linear function, i..e. 

  P = a + bd                                                                                                      (2)  

with a,b ∈ ℜ, and real numbers a, b are determined by a standard least squares procedure. 
Since there are too many possibilities to choose the set of molecular descriptors and besides they 

can be highly interrelated, this leads to a nasty situation which is termed the nightmare of the 
regression analysis. Some of these drawbacks include how to make the selection of descriptors, as 
well as ambiguities of the criteria used to select optimal descriptors and uncertainties when choosing 
the order in which descriptors are to be orthogonalized. Naturally, none of these difficulties exists for 
simple regression based on a single molecular descriptor, particularly if the regression is linear. This is 
one of the major reasons why researchers are striving to find or to design novel descriptors that would 
produce good correlation for a single molecular property of a set of compounds. However, not many 
molecular properties can be sufficiently well described by a single descriptor [23].  

A quite interesting alternative to surmount these difficulties was proposed long ago by Randic [24] 
and it consists on defining {d} as a function of one or several variables that are determined during the 
search for the best correlation. Thus, in contrast to the traditional topological indices, which one can 
calculate after selecting a set of compounds to be studied and then proceed with statistical analysis, the 
variable indices are initially non-numerical. Hence, they cannot be calculated in advance for the set of 
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compounds. Instead, one starts with an arbitrary set of values for the yet undetermined variables and, 
through an iterative procedure, one varies these initial values seeking optimal values that will produce 
the smallest standard error for the property under consideration. It is clear that the use of variable 
descriptors (also called flexible descriptors) can only improve correlations over the use of simple 
indices because if all variables take on a zero value (which is very unlikely), we would obtain the 
results that coincide with the results based on he traditional rigid molecular descriptors. Current 
literature shows that the use of variable molecular descriptors dramatically improved regression 
statistics [23].    

Among the different alternatives of choosing flexible molecular descriptors, one of us (A.A.T.) has 
presented the so called Optimization of Correlation Weights of Local Graph Invariants (OCWLGI) 
procedure which has proved to be a rather suitable way to apply the method to calculate several 
biological activities and physical-chemistry properties [25-34]. The OCWLI may be based on the 
labeled hydrogen filled graph (LHFG) [35] and the graph of atomic orbitals (GAO) [36]. The OCWLI 
based upon the LHFGs yield reasonable good models of enthalpies of formation from elements of 
coordination compounds [37]. Besides, OCWLI based on LHFG have been used to model the Flory-
Huggins polymer-solvent interaction parameters [26]. The OCWLI based upon the GAOs give rather 
good results to predict stability constants of amino acids complexes [36].  

Molecular descriptors DCW are calculated by means of the following relationship 

DCW =     Σ    CW(aok)  +     Σ   CW(1ECk)                   (3) 
              all vertices                            all vertices 

where CW(aok) and CW(1ECk) are correlation weights of the atomic orbitals that are image of the k-th 
vertex in the GAO and correlation weights of Morgan extended connectivity of first order that have a 
k-th vertex in the GAO. The Monte Carlo method is then applied to determine optimum correlation 
weight values which produce the largest possible values of the correlation coefficient between the 
physical property as a function of the descriptor computed via Eq. (3). Numerical data of the GAO 
local invariants are listed in Table 1 and an illustrative example is reproduced in Table 2. 
 

Table 1. Correlation weights for calculating DCW0 and DCW1 
 

DCW0 

 

1s1      -0.246 
1s2       0.165 
2s2      -0.556 
2p2       1.780 
2p3       3.738 
2p4       2.722 
2p5      -4.591 
2p6      -0.726 
3s2      -0.437 
3p2       1.760 
3p3      -2.030 
3p4       5.491 
3p5       4.532 
3p6       0.093 
3d10      0.551 
4s2       2.873 



Molecules 2004, 9 
 

1023

Table 1. Cont. 
 

4p5       0.193 
0003      0.626 
0004      1.648 
0005      0.475 
0006      0.175 
0007      1.159 
0008      0.623 
0009      1.758 
0010      0.546 
0011      1.198 
0012      0.463 
0013      1.247 
0014      3.437 
0015      1.877 
0016     -0.404 

 
DCW1 

 

1s1       0.939 
1s2       0.155 
2s2       0.104 
2p2       0.704 
2p3       4.943 
2p4       0.748 
2p5      -2.191 
2p6       0.222 
3s2      -0.183 
3p2       0.827 
3p3       4.546 
3p4       5.322 
3p5       0.939 
3p6       8.663 
3d10      9.470 
4s2       8.444 
4p5       8.422 
0012      5.903 
0015     -2.827 
0018      0.150 
0020      0.376 
0021      1.669 
0024     -0.381 
0027      2.112 
0030      1.574 
0033      2.507 
0035      0.685 
0036      1.462 
0038      1.577 
0039      0.219 
0042      0.224 
0045      0.033 
0048      1.204 
0050      0.071 
0051      1.528 
0053      1.086 
0054      1.323 
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0057   1.983 
0059   0.574 
0060   0.469 
0062   0.669 
0063  -0.236 
0066  -0.161 
0069   0.737 
0070  -2.190 
0075   3.355 
0078   3.944 
0079   0.582 
0080   0.582 
0081   2.970 
0082   0.904 
0084   0.646 
0086  -0.466 
0087     -0.007 
0089      0.376 
0090      2.254 
0091      4.903 
0094     -0.955 
0096      2.028 
0097     -1.506 
0098      4.564 
0099      1.506 
0100      5.589 
0101      3.285 
0102     -5.967 
0103      1.738 
0105      1.969 
0108      0.273 
0109      4.121 
0110      2.223 
0111      2.796 
0112      1.653 
0116      4.641 
0120     -2.254 
0122      0.616 
0124      1.832 
0134      1.828 
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Table 2. Calculation of the DCW1 for 1,1,3,3-tetramethyldisilazane (DCW1 = 8.39793) 
 

atom     Nat   EC1 ao     Nao   EC1     CW(V)    CW(LI) 
Si       1    12 1s2      1    86     0.155    -0.466 
   2s2      2    86     0.104    -0.466 
   2p6      3    86     0.222    -0.466 
   3s2      4    86    -0.183    -0.466 
   3p2      5    86     0.827    -0.466 
N        2     9 1s2      6   103     0.155     1.738 
   2s2      7   103     0.104     1.738 
   2p3      8   103     4.943     1.738 
H        3     4 1s1      9    50     0.939     0.071 
H        4     3 1s1     10    33     0.939     2.507 
C        5     7 1s2     11    59     0.155     0.574 
   2s2     12    59     0.104     0.574 
   2p2     13    59     0.704     0.574 
H        6     4 1s1     14    24     0.939    -0.381 
H        7     4 1s1     15    24     0.939    -0.381 
H        8     4 1s1     16    24     0.939    -0.381 
C        9     7 1s2     17    59     0.155     0.574 
   2s2     18    59     0.104     0.574 
   2p2     19    59     0.704     0.574 
H       10     4 1s1     20    24     0.939    -0.381 
H       11     4 1s1     21    24     0.939    -0.381 
H       12     4 1s1     22    24     0.939    -0.381 
Si      13    12 1s2     23    86     0.155    -0.466 
   2s2     24    86     0.104    -0.466 
   2p6     25    86     0.222    -0.466 
   3s2     26    86    -0.183    -0.466 
   3p2     27    86     0.827    -0.466 
H       14     4 1s1     28    50     0.939     0.071 
C       15     7 1s2     29    59     0.155     0.574 
   2s2     30    59     0.104     0.574 
   2p2     31    59     0.704     0.574 
H       16     4 1s1     32    24     0.939    -0.381 
H       17     4 1s1     33    24     0.939    -0.381 
H       18     4 1s1     34    24     0.939    -0.381 
C       19     7 1s2     35    59     0.155     0.574 
   2s2     36    59     0.104     0.574 
   2p2     37    59     0.704     0.574 
H       20     4 1s1     38    24     0.939    -0.381 
H       21     4 1s1     39    24     0.939    -0.381 
H       22     4 1s1     40    24     0.939    -0.381 

 
Since the complete and detailed description of these flexible descriptors has been given before, we 

refer the reader interested in further minutiae to the specific papers where these details were largely 
reported [25-34]. 
 
Results and Discussion 
 

We have chosen a representative set of 200 organic molecules of varied composition to study their 
normal boiling points (NBPs). These molecules, with both linear and cyclic structures, comprise 
ketones, acids, esters, aldehydes, nitriles, amines, alcohols, and hydrocarbons and a wide variety of 
atoms, such as C, H, O, N, Si, Cl, Br, F, P, S. The list of molecules is given in Table 3, together with 
their NBPs and the extended connectivity of zero- and first-order descriptors in the GAOs (DCW0 and 
DCW1, respectively). 
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Table 3. Organic molecules, experimental NBPs (Celsius degrees) and DCWs. 

 
n       CAS              Molecule                                                   DCW0 DCW1 NBPexp 
1 15933-59-2 1,1,3,3-Tetramethyldisilalazane                   5.460 8.398  99.000 
2 105-54-4 Butanoic acid, ethyl ester                           5.543 11.949 120.000 
3 623-27-8 1,4-Benzenedicarboxaldehyde                         16.537 18.618 245.000 
4 7212-44-4 1,6,10-Dodecatrien-3-ol, 3,7,11-trimethyl          14.389 17.084 68.000 
5 705-86-2 5-Hydroxydecanoic acid lactone                      8.596 13.405 117.000 
6 620-22-4 Benzonitrile, 3-methyl-                              12.826 16.075 99.000 
7 621-33-0 3-Ethoxyaniline                                     12.735 25.122 248.000 
8 150-76-5 Mequinol                                            14.584 23.498 243.000 
9 109-52-4 Pentanoic acid                                      9.042 14.320 185.000 
10 75-55-8 Aziridine, 2-methyl-                                  1.529 9.325 66.000 
11 586-39-0 3-Nitrosostyrene                                    21.317 14.385 56.000 
12 224-41-9 Dibenz[a,j]anthracene                               39.917 53.421 531.000 
13 105-05-5 Benzene, 1,4-diethyl-                                11.384 19.030 184.000 
14 110-42-9 Decanoic acid, methyl ester                          8.330 13.914 108.000 
15 111-69-3 Hexanedinitrile                                     6.906 8.394 295.000 
16 1112-55-6 Silane , tetraethyl-                                 10.654 11.853 130.000 
17 1719-57-9 Silane, chloro(chloromethyl)dimethyl-               5.129 10.177 115.000 
18 123-31-9 Hydroquinoline                                      18.082 28.959 285.000 
19 100-02-7 Phenol, 4-nitro-                                     23.197 25.692 279.000 
20 2548-87-0 2-Octenal, (E)-                                     7.837 15.141 84.000 
21 6166-86-5 2,4,6,8,10-Pentamethylcyclopentasiloxane           10.191 15.986 168.000 
22 2031-79-0 1,1,3,3,5,5-Hexaethylcyclotrisiloxane              5.493 10.852 117.000 
23 3862-73-5 Trifluoroaniline                                   4.605 2.796 92.000 
24 15980-15-1 1,4-Oxathiane                                     3.112 11.780 147.000 
25 108-41-8 Benzene, 1-chloro-3-methyl-                          11.575 16.747 160.000 
26 78-81-9 1-Propanamine, 2-methyl                               2.006 6.152 64.000 
27 7087-68-5 Diisopropylethylamine                              6.556 12.133 127.000 
28 17477-29-1 Propyldimethylchlorosilane                        3.718 9.954 113.000 
29 75-35-4 Ethylene, 1,1-dichloro-                               5.812 -4.704 30.000 
30 91-64-5 Coumarin                                             17.928 20.526 298.000 
31 328-87-0 4-Chloro-3-cyanobenzotrifluoride                    6.405 11.573 210.000 
32 616-25-1 1-Penten-3-ol                                       6.438 12.844 114.000 
33 75-85-4 2-Butanol, 2-methyl-                                  4.231 9.165 102.000 
34 138-86-3 Limonene                                            10.367 10.009 170.000 
35 333-41-5 Diazinon                                            4.486 6.708 83.000 
36 15570-12-4 meta-Methoxybenzenethiol                          16.490 22.256 223.000 
37 198-55-0 Perylene                                            37.005 50.768 495.000 
38 192-97-2 Benzo[e]pyrene                                      37.005 50.768 492.000 
39 205-99-2 Benzo[b]fluoranthene                                37.005  52.659 481.000 
40 218-01-9 Chrysene                                            32.121  45.048 448.000 
41 217-59-4 Triphenylene                                        32.121  47.211 425.000 
42 611-32-5 Quinoline, 8-methyl-                                 16.427  22.665 143.000 
43 76783-59-0 Ethyl-3-trifluoromethylbenzoate                 6.641  15.738 101.000 
44 76-86-8 Triphenylchlorosilane                                28.953  39.379 378.000 
45 1241-94-7 Phosphoric acid, 2-ethylhexyldiphenylester         26.200  33.929 375.000 
46 2943-75-1 N-octyltriethoxysilane                             9.043  15.458 98.000 
47 594-72-9 Ethane,1,1-dichloro-1-nitro-                        11.751  11.958 124.000 
48 62-73-7 Dimethyl-2,2-dichlorovinyl phosphate                 10.283  20.471 140.000 
49 123-15-9 Pentanol, 2-methyl-                                  4.196  8.437 119.000 
50 6640-27-3 Phenol, 2-chloro-4- methyl-                          16.248  19.546 195.000 
51 537-92-8 N-(3-tolyl)acetic acid amide                        17.896  30.207 303.000 
52 105-99-7 Hexanedioic acid, dibutyl ester                      13.754  22.346 305.000 
53 77-35-2 Phenanthrene, 9,10-dihydro-                           22.529  27.241 168.000 
54 2713-33-9 3,4-Difluorophenol                                 9.143  13.615 85.000 
55 111-83-1 Octane, 1-bromo-                                     5.899  14.924 201.000 
56 101-68-8 Benzene, 1,1'-methylene bis(4-isocyanato)-            26.548  29.352 200.000 
57 597-49-9 3-Ethyl-3-pentanol                                  5.346  14.104 141.000 
58 18395-90-9 di-tert-Butyldichlorosilane                       10.980  18.381 190.000 
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Table 3. Cont. 
n       CAS              Molecule                                                   DCW0 DCW1 NBPexp 
59 107-12-0 Propanenitrile                                      2.677  5.531 97.000 
60 1825-62-3 Silane, ethoxytrimethyl                         3.096  5.122 75.000 
61 56-55-3 Benz[a]anthracene                                    32.121  40.882 438.000 
62 243-17-4 2,3-Benzofluorene                                   30.666  38.282 402.000 
63 57-11-4 Octadecanoic acid                                    16.287  21.581 183.000 
64 98-03-3 Thiophenecarboxaldehyde                              10.468  15.608 198.000 
65 605-39-0 2,2'-Dimethylbiphenyl                               20.976 28.363 258.000 
66 831-91-4 Benzene, [(phenylmethyl)thio]                        19.804 23.867 197.000 
67 761-65-9 Formamide, N,N-dibutyl-                              11.705 17.359 120.000 
68 348-54-9 Benzeneamine, 2-fluoro-                              8.870 14.610 182.000 
69 136-77-6 Hexylresorcinol                                     21.636 31.606 333.000 
70 100-53-8 Benzenemethanethiol                                 16.543 18.999 194.000 
71 191-30-0 1,2,9,10-Dibenzopyrene                              44.801 59.414 595.000 
72 109-73-9 1-Butanamine                                        3.292 6.593 78.000 
73 100-69-6 Pyridine, 2-ethenyl-                                 10.659 13.058 79.000 
74 1712-70-5 1-Chloro-4-isopropenylbenzene                      14.368 18.139 214.500 
75 95-56-7 Phenol, 2-bromo-                                      18.076 25.834 195.000 
76 2984-50-1 Oxirane, hexyl-                                     4.137 8.771 63.000 
77 100-43-6 Pyridine, 4-ethenyl-                                 10.659 8.905 62.000 
78 919-31-3 Propanenitrile, 3-(triethoxysilyl)-                  8.813 13.961 224.000 
79 874-60-2 4-Methylbenzoic acid chloride                         15.476 24.765 225.000 
80 80-62-6 2-Propenoic acid, 2-methyl-, methyl ester              6.665 5.278 100.000 
81 645-49-8 (Z)-Stilbene                                        22.354 27.371 307.000 
82 103-84-4 Acetamide, N-phenyl-                                 17.128 27.646 304.000 
83 106-49-0 para-Toluidine                                         11.770 24.079 200.000 
84 90-90-4 Methanone, (4-bromophenyl)phenyl-                     28.011 30.846 350.000 
85 519-73-3 Triphenylmethane                                    29.768 34.483 359.000 
86 832-69-9 Phenanthrene, 1-methyl-                              25.093 35.107 359.000 
87 60-29-7 Ethoxyethane                                         1.085 5.886 35.000 
88 539-74-2 Propanoic acid, 3-bromo-ethyl ester                  7.978 16.094 135.000 
89 598-31-2 2-Propanone, 1-bromo-                                6.456 13.853 137.000 
90 571-61-9 Naphthalene, 1,5-dimethyl-                           18.065 25.165 265.000 
91 1885-14-9 Carbonochloridic acid, phenyl ester                 15.117 17.640 74.000 
92 754-05-2 Silane, ethenyltrimethyl-                            3.945 3.490 55.000 
93 238-84-6 1,2-Benzofluorene                                   30.666 42.448 407.000 
94 99-08-1 Benzene, 1-methyl-3-nitro-                            11.770 23.077 230.000 
95 7209-38-3 1,4-bis(3-Aminopropyl)piperazine                   19.905 11.808 150.000 
96 1558-33-4 Silane, dichloro(chloromethyl)methyl-               5.349 10.947 121.000 
97 65-85-0 Benzoic acid                                         17.310 21.998 249.000 
98 132-64-9 Dibenzofuran                                        21.822 26.034 154.000 
99 213-46-7 Picene (benzo[a]chrysene)                                          39.917 57.587 525.000 
100 191-07-1 Coronene                                            46.773 57.883 525.000 
101 287-92-3 Cyclopentane                                        2.787 2.793 50.000 
102 2782-91-4 Thiourea, tetramethyl-                              15.021 29.789 245.000 
103 109-07-9 Piperazine, 2-methyl-                                5.612 11.565 155.000 
104 7005-72-3 Benzene, 1-chloro-4-phenoxy-                        21.923 31.152 284.000 
105 532-27-4 Ethanone, 2-chloro-1-phenyl-                         15.937 19.618 244.000 
106 91-57-6 Naphthalene, 2-methyl-                                17.298 22.531 241.000 
107 109-01-3 Piperazine, 1-methyl-                                5.461 12.701 138.000 
108 591-35-5 Phenol, 3,5-dichloro-                                17.553 23.380 233.000 
109 454-89-7 Benzaldehyde, 3-(trifluoromethyl)-                   4.909 10.983 83.000 
110 99-04-7 Benzoic acid, 3-methyl-                               18.077 24.559 263.000 
111 120-72-9 Indole                                              14.205 20.915 253.000 
112 109-86-4 Ethanol, 2-methoxy-                                  4.991 10.296 125.000 
113 617-84-5 N,N-Diethylformamide                                9.476 14.478 176.000 
114 129-00-0 Pyrene                                              29.210 36.066 360.000 
115 86-74-8 Carbazole                                            22.000 31.584 355.000 
116 79-06-1 Acrylamide                                           6.990 8.215 125.000 
117 589-18-4 Benzene methanol, 4-methyl-                          14.733 21.268 217.000 
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Table 3. Cont. 
n       CAS              Molecule                                                   DCW0 DCW1 NBPexp 
118 123-07-9 Phenol, 4-ethyl-                                     14.733 23.994 218.000 
119 75-78-5 Silane, dichlorodimethyl-                            3.553 5.152 70.000 
120 120-80-9 1,2-Benzenediol                                     18.082 24.434 245.000 
121 123-92-2 1-Butanol, 3-methyl-, acetate                         5.371 8.225 142.000 
122 626-39-1 Benzene, 1,3,5-tribromo-                             22.739 27.936 271.000 
123 89-99-6 Benzenemethanamine, 2-fluoro-                        9.428 10.347 73.000 
124 366-18-7 2,2'-Dipyridine                                     17.702 28.255 273.000 
125 75-05-8 Acetonitrile                                         2.119 5.271 81.000 
126 77-81-6 Tabun                                                7.771 24.781 246.000 
127 7691-02-3 CH2CHOS(CH3)(CH3)NS(CH3)(CH3)CHCH2       12.366 14.725 160.000 
128 615-67-8 1,4-Benzenediol, 2-chloro-                           20.155 25.666 263.000 
129 591-93-5 1,4-Pentadiene                                      4.173 -2.541 26.000 
130 350-46-9 Benzene, 1-fluoro-4-nitro-                           16.391 14.681 205.000 
131 108-90-7 Benzene, chloro-                                     10.807 16.761 132.000 
132 95-78-3 Benzenamine, 2,5-dimethyl-                            12.537 21.017 218.000 
133 557-11-9 Urea, allyl-                                         8.105 11.476 163.000 
134 557-17-5 Methyl propyl ether                                 1.085 6.407 39.000 
135 110-06-5 di-tert-Butyldisulfide                              13.140 19.686 200.000 
136 594-70-7 Propane, 2-methyl-2-nitro-                           8.789 15.359 127.000 
137 5582-62-7 (Propargyloxy)trimethylsilane                      5.693 10.843 110.000 
138 1072-43-1 Thiirane, methyl-                                   1.410 6.658 72.000 
139 124-07-2 Octanoic acid                                       10.714 15.996 237.000 
140 919-30-2 1-Propanamine, 3-(triethoxysilyl)-                   8.314 12.139 122.000 
141 623-00-7 4-Bromobenzoic acid nitrile                         16.727 19.293 235.000 
142 100-44-7 Benzyl chloride                                     12.036 16.857 177.000 
143 109-55-7 1,3-Propanediamine, N,N-dimethyl-                    8.400 10.048 133.000 
144 598-72-1 2-Bromopropanoic acid                               11.173 11.912 203.000 
145 822-86-6 Cyclohexane, 1,2-dichloro-(trans)                    6.936 13.335 193.000 
146 67-71-0 Dimethylsulfone                                      4.844 22.383 238.000 
147 56-33-7 1,1,3,3-Tetramethyl-1,3-diphenyldisiloxane           20.964 14.576 155.000 
148 112-57-2 Tetraethylenepentamine                              18.198 37.473 340.000 
149 4333-56-6 Cyclopropyl bromide                                4.918 9.457 69.000 
150 80-10-4 Diphenyldichlorosilane                               20.633 31.348 305.000 
151 96-23-1 2-Propanol, 1,3-dichloro-                             8.921 25.525 174.000 
152 110-89-4 Piperidine                                          3.373 8.827 106.000 
153 95-77-2 Phenol, 3,4-dichloro-                                 17.553 23.879 145.000 
154 123-54-6 Acetylacetone                                       7.922 10.594 140.000 
155 91-01-0 Benzenemethanol, α-phenyl-                            23.734 31.844 297.000 
156 115-19-5 3-Butyn-2-ol, 2-methyl-                              6.271 14.827 104.000 
157 78-84-2 Propanal, 2-methyl-                                   3.082 6.660 63.000 
158 104-54-1 2-Propen-1-ol, 3-phenyl-                             16.878 23.577 250.000 
159 420-56-4 Silane, fluorothiomethyl-                             -1.061 -2.005 57.000 
160 98-02-2 2-Furanmethanethiol                                  14.039 16.547 155.000 
161 3970-62-5 3-Pentanol, 2,2-dimethyl-                           4.617 18.157 132.000 
162 92-84-2 Phenothiazine                                        21.133 32.840 371.000 
163 93-99-2 Benzoic acid, phenyl ester                            23.751 27.643 298.000 
164 109-67-1 1-Pentene                                           2.703 3.244 30.000 
165 451-40-1 Ethanone, 1,2-diphenyl-                              23.901 24.618 320.000 
166 625-30-9 2-Pentanamine                                       2.563 7.876 91.000 
167 2051-60-7 1,1'-Biphenyl, 2-chloro-                            21.515 27.031 274.000 
168 2425-79-8 Oxirane,2,2'[1,4-butanediylbis(oximethylene)]bis-  7.299 13.704 155.000 
169 623-73-4 Ethyldiazoacetate                                   8.784 18.857 140.000 
170 103-11-7 2-Propenoic acid, 2-ethylhexyl ester                 9.070 15.387 215.000 
171 107-05-1 1-Propene, 3-chloro-                                 4.122 4.570 44.000 
172 108-31-6 2,5-Furandione                                      11.122 13.982 200.000 
173 57-06-7 Allylisothiocyanate                                  6.281 4.360 150.000 
174 77-75-8 Meparfynol  (1-pentyne-3-ol, 3-methyl)                     6.828 17.020 121.000 
175 229-87-8 Phenanthridine                                      23.456 34.557 349.000 
176 5510-99-6 Phenol, 2,6-bis(1-methylpropyl)-                    16.829 33.099 255.000 
177 3544-25-0 4-Aminophenylacetic acid nitrile                   14.885 25.592 312.000 
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Table 3. Cont. 
n       CAS              Molecule                                                   DCW0 DCW1 NBPexp 
178 501-65-5 Diphenylethylene                                    19.928 22.715 170.000 
179 994-49-0 Hexaethyldisiloxane                                 2.852 17.928 129.000 
180 189-64-0 Dibenzo[a,h]pyrene                              44.801 59.141 596.000 
181 127-19-5 Acetamide, N,N-dimethyl-                             9.128 7.664 165.000 
182 14548-46-0 Phenyl, 4-pyridyl ketone                           22.473 25.002 315.000 
183 1897-45-6 Tetrachloroisophthalonitrile                       23.673 28.057 350.000 
184 135-01-3 Benzene, 1,2-diethyl-                                11.384 16.301 183.000 
185 109-77-3 Malononitrile                                       5.234 5.889 220.000 
186 1008-88-4 Pyridine, 3-phenyl-                                 18.572 22.606 269.000 
187 3741-00-2 Cyclopentane, pentyl-                               4.844 9.432 181.000 
188 109-92-2 Ethene, ethoxy-                                      2.554 2.070 33.000 
189 636-30-6 Benzenamine, 2,4,5-trichloro-                        17.220 22.555 270.000 
190 2916-68-9 Trimethyl-2-hydroxyethylsilane                     6.001 5.437 90.000 
191 126-73-8 Tri-n-butylphosphate                                8.164 15.583 180.000 
192 69-72-7 Benzoic acid, 2-hydroxy-                             21.983 30.500 211.000 
193 771-51-7 1H-indole-3-acetonitrile                            21.226 29.641 157.000 
194 624-83-9 Methane, isocyanato-                                 2.312 13.655 37.000 
195 191-24-2 Benzo[ghi]perylene                                  41.889 54.326 542.000 
196 107-02-8 2-Propenal                                          3.253 6.809 53.000 
197 622-97-9 Benzene, 1-ethenyl-4-methyl-                         12.296 12.533 175.000 
198 762-49-2 Ethane, 1-bromo-2-fluoro-                            0.212 10.710 71.000 
199 5263-87-6 Quinoline, 6-methoxy-                               16.835 25.734 193.000 
200 108-01-0 Ethanol, 2-(dimethylamino)-                          10.248 14.465 133.000 

First we have calculated the complete set via zero- and first-order descriptors, thus obtaining the 
following linear relationships: 

 NBP = 50.24 + 10.91 DCW0                                                                                    (4) 
            n = 200, r = 0.8910, S = 53.7, F = 763 

 NBP = 25.83 + 8.87 DCW1                                                                                      (5) 
 n = 200, r = 0.892, S = 56.0, F = 783 

where the statistical parameters have the usual meanings. 
The statistical data is moderately satisfactory and when Eqs.(4) and (5) are used to predict NBPs 

there are relatively large deviations for a significant number of molecules. 
We then proceed to a more usual calculation procedure when dealing with a large number of 

molecules, which consists of defining two disjoint sets: a training set to determine the regression 
equation and a test set to perform true predictions. Results are as follows: 

 NBP = 49.16 + 10.89 DCW0                                                                                    (6)   
 n = 150, r = 0.8841, S = 55.1, F = 530 (training set) 
            n = 50, r = 0.9120, S = 49.3, F = 237 (test set) 
 
 NBP = 23.72 + 8.96 DCW1          (7) 
 n = 150, r = 0.9328, S = 42.5, F = 530 (training set) 
 n = 50, r = 0.8766, S = 57.6, F = 237 (test set) 

These results are somewhat better than the previous ones and large deviations occur for a smaller 
number of molecules. Since the choice of the molecules comprising the training and test sets are 
somewhat arbitrary, we have tested several partitions of the compounds, but final results are not 
markedly dependent on the way used to choose the molecules in both sets.  
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Since there are some large deviant behaviors, we have resorted to removing these molecules (just 
five, from the total 200 molecules: numbers 11, 15, 56, 98 and 146 according to the identification 
number n from Table 3). Results are the following ones: 

 NBP = 43.25 + 11.41 DCW0                   (8) 
 n = 145, r = 0.9199, S = 46.8, F = 787 (training set) 
 n = 50, r = 0.9120, S = 46.6, F = 237 (test set)  

      If molecules 4, 15, 53, 91 and 98 are removed, statistical results are 

 NBP = 22.50 + 9.10 DCW1         (9)  
  n = 145, r = 0.9530, S = 36.1, F = 1414 (training set) 
 n = 50, r = 0.8765, S = 53.9, F = 159 (test set) 

These results show that by taking out some deviant molecules, the results improve remarkably and 
somewhat better predictions can be obtained. 

A final numerical test was made to define training and test sets based on the clustering approach 
[38]. The k-Means Cluster Analysis (k-MCA) may be used in training and testing (or predictive) series 
design [39,40]. The idea consists of carrying out a partition of the series of compounds into several 
statistically representative classes of chemicals. Thence, one may select from the number of all these 
classes of training and predicting series. This procedure ensures that any chemical classes (as 
determined by the clusters derived form the k-MCA will be represented in both series of compounds 
(i.e. training and test sets). It permits the design of both training and predicting series, which are 
representative of the entire experimental universe. 

 NBP = 53.09 + 11.39DCW0                  (10)  
 n = 158, r = 0.9586, S = 34.8, F = 1770 (complete set) 

 NBP = 54.28 + 11.45 DCW0                  (11) 
            n = 126, r = 0.9633, S = 33.3, F = 1599 (training set) 
 n = 32, r = 0.9391, S = 39.1, F = 224 (test set) 

 NBP = 23.50 + 9.119 DCW1                             (12) 
 n = 144, r = 0.9592, S = 33.9, F = 1633 (training set) 
 n = 37, r = 0.9564, S = 34.8, F = 376 (test set) 

These last results are the best ones among the different equations presented before and they 
represent a suitable improvement with respect to the first ones defined by Equations (4-9). An 
additional possibility for doing these calculations would be to employ both descriptors together, but 
this is not possible since they are strongly correlated, as shown in Figure 1. 

We cannot make any direct comparison with other theoretical results since, to the best of our 
knowledge, the standard literature does not register any calculation for this particular molecular set. 
This is quite sensible, since the molecules are quite diverse and it is well known that working with 
molecular sets comprising similar molecules gives results that are better than those derived from a 
quite dissimilar set of molecules, as it is the present case. However, our aim has been precisely this: to 
make a regression approach for quite different molecules via quite simple linear equations based on a 
single molecular descriptor to predict NBPs. A complete listing of NBP results derived from using 
Eqs. (4-12) is available upon request from the corresponding author. 
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Figure 1. DCW1 (vertical axis) versus DCW0 (horizontal axis). Regression equation: 
                 DCW1 = 2.978 + 1.222 DCW0. 
 

 
 
Conclusions 
 

We have presented results on NBPs for a quite diverse molecular set based upon simple linear 
regression equations depending on a single molecular descriptor in order to test the capability of a 
special kind of such parameter: a flexible molecular descriptor. Results are very encouraging and they 
show the power of such types of topological variables. In fact, although there are some large deviations 
when employing the complete initial molecular set comprising very diverse organic molecules, the 
average deviations are quite sensible ones. In order to judge the relative merits of the present approach 
one must take into consideration that a single figure is representing a physical-chemistry property (i.e. 
NBPs), which evidently depends on many molecular features which cannot be encoded in a single 
topological descriptor. In order to reproduce a given property, it is necessary to resort to a many 
variables regression equation, each of them taking into account a different molecular feature. 
Furthermore, usually one employs a set comprising similar molecules, but our main purpose has not 
been to make exact numerical predictions, but rather to show the real possibilities of a particular kind 
of flexible topological descriptor. We consider this objective has been fully met. The next step is to 
complement these calculations using a several variables approach, based on choosing other molecular 
descriptors in order to add other physical molecular features which are not included into the OCWLI. 
Work along this line of research is under way and results will be presented elsewhere very soon.   
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