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Chapter 1

Introduction

One year ago, the first LHC run ended. The most important result of this
experimental work is certainly the discovery of a particle, with a mass of about
126 GeV, that is fully compatible with the Higgs boson of the Standard Model
(SM) [1]. This is an important step of the modern physics because this particle
confirms that the predictions on the Standard Model spectrum were true. For
the physicists, there is another “hidden” result that may be more important than
the success of the Standard Model: in the data collected over the last years we
can observe the complete absence of new physics.

Maybe LHC will never show us unexpected phenomena. Although it can be
quite disappointing, this result means that we have to revise the approach to
new physics.

1.1 Hierarchy problems

In the '70s, the guideline for theoretical physics was gauge symmetry: physicists
started to assume that particle physics is well described by gauge theories, and
the experiments confirmed this hypotesis. This way of thinking led to the defi-
nition of the Standard Model. Though the SM explains a wide range of physical
phenomena, it has still some unsatisfactory aspects. First of all, it doesn’t take
in account cosmological phenomena, like the Dark Matter (DM), or the expan-
sion of the universe, or the theory of gravitation: this make us think that it is
a low energy effective theory of a more complete theory. The idea is that the
dominant terms of the complete theory at low energies are the SM ones, while
the new terms, that describe new physics, are non renormalizable. If we call Lp
the lagrangian with terms of mass dimension D, we could write the expression
for a general lagrangian as

E:A4£0+A2£2+A£3+£4+%£5+%£6+...
For example, £5 can be the Higgs mass term, while the gauge couplings are
an L4 term. The renormalizable terms, that are the terms with D < 4, have
a parameter that gets big corrections proportional to A*~P, while the non-
renormalizable terms, with D > 4, are suppressed by an energy scale that we
call A: above this scale the new physics must be considered. For simplicity, we
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have supposed only one scale A, but every term can have his own scale, and so
the relative effect can appear at different energies. To be more precise, when
there are symmetries, the correspondence between the dimension of the term and
the power of the correction is no longer true. For example, given the absence
of a fermionic mass term in the lagrangian because of the gauge symmetry,
we observe that the fermion masses don’t get a correction proportional to A,
but only a correction proportional to vlog A. Unfortunately, there is not such
symmetry for the Higgs mass parameter.

At this point, we should introduce another problem of the SM, known with
the name of “hierarchy problem” [2]. One can ask why the dimensional parame-
ters of the SM, that is the Higgs mass, has to get the value that we can measure
experimentally. The SM doesn’t explain the link between the Higgs mass and
other fundamental energy scales, e.g. the Planck mass. To describe our world,
we need to “fine-tune” the parameters, that is, we have to set precisely their
bare value to reproduce the experimental value.

As we said before, to make things worse, the SM implies quadratically di-
vergent corrections to the Higgs mass (explained in [3], p.292). If we write
M? = Mh%are + dM?, the bigger one-loop correction to the Higgs mass comes
from the Top quark loop [5]:

1202 kA 12)\2
5M,3(top)z—/\t /d ~ 12 4o

(4m)2 ) k2 T (4m)2T UV

where Ayy is the ultra-violet cut-off of the integral over the momenta. This
makes the fine-tuning even more difficult, because, with the systematics of renor-
malization, we absorb the divergences in the bare parameters. In this way we
have to set a big bare mass such that the cancellations between the bare mass
and the correction gives the experimental value of the parameter. The only
solution to this problem seems to be that the new physics is at low energies
(about at the weak scale), such that the corrections to the mass of the scalar
are not greater than the value itself.

1.2 Naturalness

A new guideline for the physics beyond the SM may be naturalness [2]. Fun-
damentally this idea consists in replacing the brutal cut-off of the quadratic
divergences with some new physics, such that the correction to the dimensional
quantities of the SM are smaller than the quantity itself. Therefore, new physics
should explain the origin of the values of the parameters of the Standard Model.
In other words, naturalness suggests the existence of new physics at a certain
scale Ayyt such that the corrections dm3? ~ Apae? are less than m3.

Following this guideline, some popular theories has been introduced.

In the past, the scientific community studied the difference between the
charged pion and the neutral pion masses, getting QED quadratic divergences.
This problem has been solved saying that the fundamental particles are the
quarks and the mesons are composite. Perhaps following this idea, in the ’90s
a lot of articles about Technicolor and similar theories have been published [4].
These models consider the Higgs boson as a composite particle, and the di-
vergences for the Higgs mass are counteracted by the exchange of vector-like
particles between the Higgs components. In this case the Higgs mass depends
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of his components, and so there is not a mass term affected by quadratic diver-
gences.

Another old problem, now solved, is about the electron mass: the result of
the classical computation gives a linear divergence for this quantity. The chiral
symmetry and the vacuum polarization have been the solution of this problem,
and the positron was the new physics that has been discovered. In a similar way,
SuperSymmetry (SUSY) introduces superpartners for the SM particles, that is,
for every fermion of the SM there is a bosonic superpartner and vice-versa [6].
This model solves the hierarchy problem preventing quadratic corrections: each
divergent contribution of fermionic loops cancels with the contribution of its
superpartners. In this way, the decoupling occurs: the high energy physics
does not affect the Higgs mass at low energies because it is “protected” by
this mechanism and gets only logarithmic corrections. A SUSY solution to the
hierarchy problem implies, in absence of fine tuning, a Agysy < 100 GeV and
new particles around this weak scale. Since the SUSY correction to the Higgs
mass is proportional to the difference between the Top quark mass and the Stop
particle mass, if we want a small correction we need a light enough Stop mass.
Therefore, SUSY provides us a particle, the neutralino, that is stable and it can
describe the Dark Matter.

Looking at the data of the last period, i.e. the absence of these particles
around the weak scale, the scale of the new SUSY particles had to move toward
greater energy values. So SUSY models can no longer provide a fully natural
solution to the hierarchy problem: in most popular models the fine-tuning is at
the ~ 100 level.

1.3 Finite naturalness

At this point, we could think that the naturalness guideline is wrong and the
naturalness criterion has to be abandoned. Maybe the solution to the hierarchy
problem is anthropic: our universe is just one of the many possibilities and
our existence just “requires” these values of the parameters. Almost all the
reviews on this argument are theoretical, because it’s very difficult to imagine
an experiment to prove these ideas. Instead, we think that some aspects of the
naturalness can be recovered.

Briefly, “finite naturalness” consists in ignoring the quadratic divergences.
The idea is that we can neglect these divergences exactly as we do in dimensional
regularization computations. In this case the only remaining divergences are
the logarithmic ones; they don’t give a big contribution if there are no particles
much heavier than the Higgs. For example, the reliability of finite naturalness
for the SM has been studied in [7]. At one loop they redefine this parameter
considering all the one particle irreducible Feynman diagrams with one loop.
Following the the standard renormalization procedure of absorbing the ~ 1/e
poles in the Passarino-Veltman functions expansion, they observe that Higgs
mass value doesn’t change so much up to the Planck mass scale. At this point,
the greater contribution comes from the quark top loop, that doesn’t weight a
lot more than Higgs. They obtain a fine-tuning of about 10~1.

In this work we will address the Higgs hierarchy problem and the description
of the Dark Matter as a particle. As in [8], the fundamental idea is to start
from a model with a lagrangian that doesn’t have any mass terms for scalar
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particles. The masses will arise from the quantum corrections to the theory and
they won’t depend of the renormalization scale used. The Coleman-Weinberg
mechanism provides us a method to explain a non-zero value of the masses, also
if the mass term is null, considering the radiative corrections of the theory. In
[9] Coleman and Weinberg explain that the spontaneous symmetry breaking is
not necessarily driven by a negative mass term for the scalar particle, but it can
arise because of high-order processes involving virtual particles. They show how
to compute the effective action, that is the functional generator of all the One
particle irreducible (1PI) Green functions. To understand better, let’s consider
the simple case of a single scalar field: we call it ¢.
If we expand the effective action in powers of the field, we get

I = Z/dwl o dz, DM () . plan),

where each T'™ is the sum of all the Feynman diagrams with n external legs.
Therefore, expanding the effective action in powers of the momenta, about the
point where the momenta are null, we get

= /d4x <—V(¢>) + %Z(qﬁ)ama% +.. )

and so we define the effective potential V' as the term of order zero of this expan-
sion. We can say that it is the generator of all the 1PI Feynman diagrams with
vanishing momenta, and at tree-level it coincides with the lagrangian potential
of the theory. Now, if we are interested in the vacuum expectation values (VEV),
we have to minimize this effective potential, so we have to impose dV/d¢ = 0.

In our model, spontaneous symmetry breaking doesn’t occur at tree-level,
because the tree-level potential doesn’t have a negative mass term for the scalar.
Depending on the values of the parameters, it can have a minimum in the origin
or can’t have a minimum at all. However, if we consider the one-loop effective
potential, new minima arise and SSB occurs.

In this way we get rid of the presence of dimensional parameters that make
the lagrangian not scale invariant, and we prevent quadratic divergences for the
running of these parameters.

One of the new particles introduced in our model is a good candidate to
represent the Dark Matter.

1.4 What is the Dark Matter?

An important evidence for the existence of new physics is Dark Matter. Some
phenomena, at different scales, strongly suggest us the existence of this new
type of matter [10], [11]. First, we call it “dark” because the interactions with
the photons or with the other SM particles are negligible, while it interacts
essentially through the gravitational force. One of the evidences comes from
the observation of the rotation curves of the galaxies: we can say that they
are not described by a solid-body rotation, nor by a Keplerian rotation. In
fact, the tangent component of the velocity becomes flat at high distances from
the center. We can explain this phenomenon with a simple idea: we suppose
that in the galaxies there is a DM radial density profile such that the velocity
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distribution is reproduced. Another phenomena that can be explained with the
DM is the weak lensing: there are some processes, like the collisions between
galaxy clusters, in which the spatial off-set between the visible matter and the
gravity has been measured looking at the deviation of the path of the light.
Furthermore, DM is required in cosmological models to explain, for example,
the formation of the structures in our universe.

We don’t know what is the Dark Matter, because we can “see” it only through
gravitational interactions. We don’t even know if DM is made of astro-physical
objects or by particles. Some physicists have analyzed the case of the Dark
Matter as ultra-heavy objects like dead stars, planets or black holes. Other
ideas involve new particles, for example the ultra-light scalars, like the axions.
If we want to describe the Dark Matter as a particle, none of the particles we
already know are good candidates, because we know that DM interacts with
SM particles only gravitationally. The lightest neutrino, that have neglectable
weak interactions, is excluded because Dark Matter has to be non-relativistic.

We know that in the first period of the history of the universe everything was
in thermal equilibrium because of the scatterings between the particles. During
this phase the particle density of the Dark Matter was, in the non-relativistic
limit, the Boltzmann distribution, so

3/2
eq __ m_T —mpm/T
nDM =49 27{_ e .

During the evolution of the universe the temperature started to drop. We find
that scatterings with Dark Matter became less and less: at this point, only
annihilation processes between DM particles continue to occur. The variation
in time of the DM number density can be obtained from the Boltzman equation:
(;—1; +3Hn = —(ov) (n® — ngq)
where H is the Hubble rate, (ov) is the thermal averaged cross section for the
annihilation times the relative velocity of the particles, and neq is the number
density at thermal equilibrium. The temperature continued to decrease, until
its value went well below the rest mass of the DM particle. The Dark Matter
stopped every interaction, went out of equilibrium and became stable, because
the interaction rate I' became slower than the expansion of the universe, de-
scribed by the Hubble rate. This phenomenon is called “freeze-out”. If we call
o the cross section for the scatterings, we can say that for T' < mpy we have
that
N g~
T <7’LDMO'> N MPI.

In this formula we used angular parenthesis to indicate the average over the
energies, while Mp; is the Planck mass. According to this, we think DM is a
thermal relict, that is it could not reach thermal equilibrium, so it did not anni-
hilate completely. In a very rough approximation of the observed DM density,
we can assume that this DM density it is about the same of the photons, and
so, if we suppose that o ~ (g/mpwm)?, where g is the coupling constant, we can
get an estimate for the mass of the Dark Matter particle: it is about a TeV.

DM Twowntor ~ 1 TeV

9
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With similar computations we can estimate when the freeze-out happened. The
important result is that the temperature of the DM particles at that moment
was almost an order of magnitude less than their mass, so these particles are
in a non-relativistic regime. The cosmological DM abundance Qparh? = 0.11 is
reproduced for

ov~ 2.2 x1072%cm? /s = 1.83 x 107°GeV 2

Another property of this DM particle is the stability: some models require
the introduction of an ad hoc Zs symmetry to ensure the stability of the DM
particle. For example, one of the elements of the SUSY theory is the conser-
vation of the R-parity [6]. Every particle of the SUSY model has an R parity
number. To summarize, we can say that SM particles have R = 1 while the new
supersymmetric particles has R = —1 and the stability of the lightest super-
symmetric particle, that is the neutralino, is given exactly by this conservation
law. To be more precise, this law has not been introduced to allow the stability
of the neutralino, but to explain the small decay rate of the proton. Anyhow,
we are going to describe a model that implies the stability of the DM particle
without introducing new symmetries on this purpose.

1.5 A new model for the Dark Matter

Because of the gauge symmetries, we can say that the SM has some “accidental”
symmetries, like the baryonic number and the leptonic number conservation
(neglecting instanton effects). These symmetries arise simply from the particle
content of the model and from the charges associated to the particles. In fact,
in the SM the photon is stable because it is massless, the electron is stable
because it’s the lightest charged particle, the lightest neutrino is stable because
it is the lightest fermion and the proton is stable because of the conservation of
the baryonic number. In [12], Hambye followed the same principle, supposing
that the stability of the DM particle is not given by an ad hoc symmetry, but
only because the gauge symmetry of the lagrangian and because of the particle
content of the theory.

In this model, the DM particle is a multiplet of vector particles. Actually, if
in the SM we don’t mix SU(2);, with U(1)y and if we don’t consider fermions,
we have that the three SU(2);, vector bosons are automatically stable and de-
generate in mass. They can’t decay because the only vertices are the cubic
gauge vertex, the quartic vertices of the gauge bosons and the quartic vertices
with the Higgs; they have the same mass because the Weinberg angle is null.
Following this idea, he introduces a new hidden sector of the lagrangian that is
connected to the SM only through the so-called “Higgs portal”; that is a scalar
quartic interaction with the Higgs boson. For this purpose, a new scalar particle
S has been introduced: it will be the only particle that interacts with the Higgs,
and so with the SM.

He supposes that there is a new non-abelian symmetry group G’ that has
some gauge vectors X. The lagrangian of this new model will be invariant under
the symmetry group of the SM and under G’ at the same time. He supposes
also that all the SM particles are singlets under G’. We should observe there can
be no mixing between SM vectors and G’ ones, because every tensor F** has
an index relative to its own symmetry group, so we can’t construct interaction
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terms between vectors that are invariant under the two groups at the same time.
The condition that G’ is non-abelian is fundamental, because if it is abelian,
we can mix the only vector X of G’ with the vector boson of U(l)y: every
tensor F{” or FI" would be invariant under its own symmetry group and their
contraction would be Lorentz-invariant.

In the following chapters, we will study if this model, without approxima-
tions, can be confirmed by the experimental data, maybe in the next phase of
the work of LHC. We will analyze the general properties of the model in Chapter
2, we will study this model in an approximated case in Chapter 3, in Chapter 4
we show all the computations done in the most general case, while in Chapter
5 we show the results in both case and we discuss them. In the appendix we
report the Feynman rules of the model.



Chapter 2

The model

In this chapter we will briefly study the properties of this model. In particular
we will explain why should we study the one-loop effective potential of the
theory.

2.1 Lagrangian and particle content

Let’s set G' = SU(2)x, so the symmetry group of the entire model becomes
U(1)y xSU(2)1,xSU(3).xSU(2)x. The particle content is given by the SM par-
ticle content; plus we define the doublet .S of the group SU(2)x, that is a Lorentz
scalar and a singlet under the SM symmetry group. To keep the gauge invari-
ance, we need to define also SU(2)x gauge bosons, and we call them X,,. These
particles are, according to the model, the ones that constitute the Dark Mat-
ter. X, bosons, naturally, can be described as X, = X T, where Ts are the
generators of the new symmetry group, and they have a kinetic lagrangian term
1FXFRY, where F), = [D,, D,]. The kinetic term of the new scalar field is
|D,.S|?, where D,, = 9, +igxX,.

2.2 Tree-level potential
Instead of the SM potential we write a new potential:
Vo = Au|H H|? = Ags|HTH||STS| + As|STS|2.

We observe that there isn’t a mass term for the Higgs field nor for the new
scalar boson: as we said before, they will get their mass through the Coleman-
Weinberg mechanism, considering one loop contributes to the theory. We want
that spontaneous symmetry breaking down to U(1)emxSU(3). occurs, and so
the degrees of freedom represented by the six Goldstone bosons of the theory
are absorbed into the longitudinal polarizations of all the gauge bosons. We can
expand the scalar field in components as

Hw) = % (v +%<w>) Sl = % (w +Os<:c)) '
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An important remark is that also SU(2)x is broken by the VEV w of the doublet
S, so every X,, boson gets the same mass Mx = gxw/2 from the interaction
with the S field.

2.3 Parameters of the theory

The lagrangian parameters introduced are Ag, Ag, Ags and gx. We want to fix
their values starting from the experimental data that we know. In this specific
case, experimental values of the Higgs mass, of the Dark Matter abundance
in the universe and of the decay rate of the muon will be used. Therefore,
since in this model the spontaneous symmetry breaking occurs, we have to find
the minimum of the one-loop effective potential, imposing two relations that
fix the expectation value of the two scalar fields. In this way also the vacuum
expectation values become parameters we have to determine. We choose gx to
be the only free parameter of the theory, so every quantity will be studied as
this parameter changes.

2.4 One-loop potential

If we search for the minimum of the tree-level lagrangian potential, we obtain
only one minimum point in the origin in the case 4A\gAs —\%,4 > 0, so the sym-
metry is exactly realized (i.e. no symmetry breaking). In the opposite case, the
origin becomes a saddle point and there are four directions where the potential
diverges negatively. At this point, to have spontaneous symmetry breaking, we
need to consider one-loop corrections to the theory.

The condition for the SSB is 4AgAs — A% ¢ < 0, and this condition can
be dynamically verified. If we don’t want to take in account the wavefunction
renormalization, the one-loop potential is obtained replacing the parameters of
the lagrangian with the running ones and setting the energy scale of the RGE
equal to the generic VEV of the field. In other words, the VEV is the value of
the energy where the condition turns to be satisfied.

Let’s take the parameter Ag: the result for the 5y, reported in the article
by Hambye and Strumia is

d)\s 1 9

4 2 2 2
= = =75 | Z9 —9g As + 2A + 24\ .
/1 (1 )2 ] X XNS HS S

ﬁks (M)
This result has been obtained considering both the one-loop potential and the
wave-function renormalization. We observe that g is always positive, in fact it
doesn’t cancel for any value of the constants. It can be verified quickly neglecting
Apms term. Since Ag becomes smaller and smaller at low energies, the symmetry
breaking condition depends of the renormalization scale.

Therefore, the search of the minimum of the potential will depend of the
perturbative expansion. To consider the one-loop contributions we need to
start from the effective action, that is the generating functional of all the one
particle irreducible Green functions. If we expand the effective action in powers
of the derivatives of the fields, the effective potential is the zeroth order of
this expansion. The new potential doesn’t depend of the energy scale used to
regularize loops computations.
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Quantitatively, the effective potential is the sum of the tree-level potential
and of the contributions given by scalar, fermion or vector loops. To compute
it, we consider that the tadpoles with an external leg of a certain field are
exactly the derivative of the potential with respect to that field. The complete
derivation is in [3].



Chapter 3

Previous approximated
computations

In this chapter we will study this model with some approximations. An useful
approximation is to consider Agg small. It’s simple understanding why the
analysis simplifies: the “portal” between the SM and the new pieces of the
lagrangian, represented by the Ags|H|?|S|? term, is smaller. This case has
already been studied in [13].

The SSB condition becomes simply Ag < 0, and we can approximate the
expression for Ag with

)\5 ~ ﬂ)\s In i*
S

Making this substitution, we obtain an approximate expression for the one-loop
effective potential:

vioor o A HVH|? — Aps|HTH||STS| + By, In S§|STS|2.

We know that, because of the running of Ag, there is an energy scale s* where
As goes to zero. We observe that for the energies near to the SSB scale, that is
for s ~ s*, we have By, ~ Ag, so the condition for Ay g to be negligible becomes
)‘%{S < ﬂ)\s AH

To justify this expression for Ag, we study the vectors loop contributions to
the one-loop effective potential. If there is no mixing between H and S fields,
the vector mass depends only on the S field. To be more specific,

The computation of the one-loop potential leads to
yHoor — V4 4+ (const)gy s? log i,
I

where all the cut-off dependent terms have been absorbed in the parameters of
the potential V4. It’s simple to verify that a change of the renormalization scale
doesn’t lead to a modification of the potential. In fact, changing the renormal-
ization scale from p; to pe, we obtain a variation of the coupling constant of

12
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the quartic term:

As (1) = As(p2) + (const)gy log (%)

In this way, we choose to renormalize all the potential to the scale s*: the
quartic terms will be

(/\S(s*) + (const)g% In ﬁ*) st ((const)g§(54 log i* + (const) g% s* log S—>
s s 1

We defined s* as the energy scale where renormalized Ag cancels, and because
of this only the logarithmic term remains.

If we consider also S loops and wavefunction renormalization, we obtain that
the quartic term gets a factor Sy log 2. Beacuse of this, the one-loop potential
can be written as before in the approximation of small A\gg.

Now we can find the minimum of this potential, so we can compute the
vacuum expectation values of the two scalar fields, H and S. We impose that
the first derivatives with respect to the fields cancels simultaneously. We obtain

2 u|H|* = Ags|S[> =0
—~2X\prs|H|? + Bag[S])? + 48, |S?In 2 = 0.

From the first equation we obtain the condition

v /208,
22y

while from the second we obtain
2

A
—H5 4 By +4ﬂAslni* =0
)\H S

that, considering A% g < BxrsAm, leads to the expression for the minimum:

w=se”

=

At this point we should study the mass terms of the h and s fields. The quadratic
terms of the potential have the form

(h s)u2( 22y —V2 5 \HS ) (h)
’ —V2XgAus Abps +28asAm/Aus) \s

We diagonalize the mass matrix and we obtain, in the limit of small Agg, the
eigenvalues

2
m3 ~ 202 (,\H_ALS) m§22v2ﬂ)\s/\H
Birs AHS

The mass eigenvectors h; and he mix with an angle a:

2 V8AHAHS

2 2 -
ma; —mj

sin 2o = v
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In the limit of small Agg we get mso > mq, and sina ~ «, so

3
(e 7?{5 .
V2AE BN

We identify the hq eigenstate with the physical Higgs boson, so my ~ 125.6 GeV.
We observe that the other eigenvector interacts like the Higgs does with the SM
particles, but its interaction must be rescaled by a factor sin . Therefore, we
can write the Higgs mass as m? ~ w?\pgg, this means that Higgs mass value can
be written as a function of the vacuum expectation value of this new doublet
and of the mixing constant Agg.

Now we have to study, in the approximation of small A\gg, if this model
for the DM reproduces the experimental data of the DM abundance in the
universe. As we said in the introduction, DM went through a freeze-out, so we
compute, in this approximation, the expressions for the non-relativistic cross
sections for the annihilation and the semiannihilation processes of the DM. In
this approximation the only relevant interactions are the gauge interactions,
and the mixing between the two scalars is negligible. As a consequence, The
annihilation process has two DM particle in the initial state and two s particles
in the final state. The semiannihilation has again two X particles in the initial
state, but in the final state there is an s and an X. If we call v the relative
velocity of the two initial particles and we suppose that Myx > M we have
these results:

11g% _ 9%
172872 O el = gon2
where we have already averaged over the polarization and over the gauge com-
ponents. The DM abundance is reproduced for

OVann =

1
Cann? + 5 Tsemiannt = 2.2 X 107 %cm® /s = 1.83 x 107°GeV 2,

where the factor 1/2 for the semiannihilations indicates that the number of DM
particles that annihilate is just one. From this relation, we can observe that the
coupling constant gx and the VEV of the S boson are linked by

w

IX =50 Tev’

To be thorough, we skip the computation of the corrections to the VEV of
the Higgs. This quantity, however, depends on the correction to the propagator
of the W, so in this approximation there are no new terms, compared to the
SM.

The results of all the computations of this approximation are reported in
Section 5.1.



Chapter 4

Complete computation

In this chapter we will explain the computations that have been done. In the
Introduction we said that we improve the SM introducing some new lagrangian
terms, so new parameters arise in our model. The new parameters that we can
find directly in the lagrangian are Ay, Ags, As and gx. We have to consider
also the scalar VEVs v and w between the unknown parameters. We aim to find
the values of these parameters in terms of some known experimental data, so
we compute some appropriate observables like the Higgs mass, the annihilation
and semiannihilation cross sections of the DM, the muon decay amplitude.

In section 4.1 we describe the result of the one-loop potential of our model.
Since in this model the spontaneous symmetry breaking occurs, we have to find
the minimum of the potential. Thus, we describe the equations to minimize the
one-loop potential in section 4.2. In Section 4.3 we explain how to compute the
masses of the two scalar particles, considering that they are not mass eigenstates,
and we report the result of the one-loop propagator of the Higgs boson of our
model. In the section 4.4 we study the processes that led to the annihilation of
the Dark Matter before the freeze-out, so we report the computations relative
to DM annihilation and semi-annihilation cross sections. In the last section
of this chapter (Section 4.5) we will consider the one-loop corrections to the
Higgs VEV of our model, studying the amplitude of the muon decay process
and considering that the value of the Fermi constant is well known.

4.1 One-loop potential

We observe that the potential V4, depending of the parameter values, can have
a minimum in the origin or not having a minimum at all, so, if we want SSB in
this model, we can’t consider only the tree-level potential. To find a minimum
point different from the origin we have to consider the one-loop contributions
computing the one-loop potential. The result for this theory is

Vlloop _ VO 4 ‘/'1

15
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1

Vi = 612 3fs/6(m%) — fa2(E2m%) + 6 fs5/6(miy) — 2f32(Ewmiy )+

+9f5/6(m%) — 3f3/2(Exmi) — 12f3/2(mi) + Z f3/2(mi)

where Z, W and X loops (with longitudinal polarization for every vector), quark
top loops (we suppose that this quark is the only fermion that gives a contribu-
tion), scalar particles and ghosts loops have been considered. In this expression,
¢z, &w and Ex are the parameters that determine the gauge fixing for the Z,
W and X sectors, respectively. We will choose the Landau gauge for the next
computation, so we will take £z = & = €x = 0. The sum is over all the scalar
particles of the theory, that is the six Goldstone bosons and the two scalars h
and s. The expression for the f function is

1 x
fc(x) :;62 (E—FIHE _C) )
where p is the energy scale where we are renormalizing the theory. The three
expressions for the mass of the Goldstone bosons related to the H field are
mi2 = v* g — wAgs/2+ EwMj, and mg = v g — w?Aps/2 + £z MZ, while
for the three Goldston bosons of the S field we have my 5.6 = w2 s —v*Agg/2+
ExM?%. Regarding of the mass of the two physical scalars, we observe the tree-
level mass matrix is not diagonal:

Mo = 3’02)\H —w2)\H5/2 —vw)\Hg
0= —VWAHS 3w s —v2Ags/2)

Since we want to describe scalar fields using the eigenstates of this matrix, the
eigenvalues are their masses:

1

mi,2 :Z [’1)2(6)\]{ — AHs) — wQ(AHS —6)\s)
+ (—202102()\115(6)\11 —TAms) + 6As(6Ayg + Ags))
+0 (62 + Ams)? + wt(As + 6)\5)2)1/2} :

The interaction eigenstates don’t coincide with mass eigenstates: we will see
that this fact is true also considering one-loop corrections of the theory. In the
Section 4.3 a mixing angle that correlates the two basis will be introduced. In
our computation, for simplicity, we choose the Landau gauge for the expression
of the effective one-loop potential, so we set £z =&w =&x =0

4.2 Minimum equations

Since SSB occurs, we put the origin in a minimum point of the effective potential.
Since the one-loop potential is scale invariant, we can choose freely the energy
scale of the renormalized theory. To simplify calculations, we choose the critical
scale where 4A\gAs — A% ¢ = 0. The existence of this scale is reasonable, in fact
we can see in Figure 4.1 the running of the parameters of our model up to the
Planck mass scale, fixing gx = 1 at a scale of 100 GeV [13]. We observe that
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there is a scale where \g becomes negative, so the scale where 4\ g — )\%,S =0
exists certainly. In this situation, the tree-level potential has minima on two
straight lines passing for the origin:

3 B >\_H 1/4
w a )\5' '

This choice is possibile because, if we study the running of the constants as a
function of the energy [13], we can see there is an energy p where this condition
is satisfied. At this point, the parameters of the theory become Ag, Ags and
the critical scale energy pu.

—
P
<
|
T
L

Couplings

1072 - . E

1()—31 L 1 ! ! ! !
102104 10 10% 10" 102 10" 10 10" 10%

RGE scale p in GeV

Figure 4.1: Running of the parameter of the model, up to Planck mass scale,
fixing gx = 1 for p = 100 GeV.

Now we switch to the effective potential. Since we have to find the minimum,
we impose that the first derivatives of the potential with respect to the fields
cancel:

ov

50 = v(Agv? — w*Ays/2) + Ty = 0,
v

ov

0= wAsw? —v?Ags/2) + T, =0,

where Ty, and T represent the tadpoles related to the two scalars. By definition,
tadpoles are the one particle irreducible diagrams with only one external leg
and they correspond to the first derivative of the one-loop contributions to the
effective potential with a minus sign.

4.3 Higgs mass

The mass matrix has this form:

M2 = i + 1l 12
Loop I m3 + g )’

where M 2 represent the tree-level masses of the scalars, while I represents the
one-loop corrections to the propagator. If we want to consider only the one-loop
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approximation, off-diagonal terms are not important, and can be neglected, so

we have
M7 = + Iy (7)), M3 = 13 + Iy (1h3)

In the critical condition we have chosen, one of the tree-level masses of the
two scalars cancels, so the correction to it wouldn’t be a small perturbation
anymore, but it would constitute the entire value of the observable. Because of
this, we compute the one-loop correction of the masses in two subsequent steps.
We split II(p?) in two parts:

I(p*) = 1(0) + AI(p?).

For each scalar field we can obtain I1(0) computing the second derivatives with
respect to the field, for example

1., (0) = 8*V/Oh.

Then, we do the same thing for IIs,(0) and for the off-diagonal term and we
construct a matrix mass. We will call the eigenstates of this matrix hy and ho,
while the eigenvalues are a good approximation for the scalar masses. We call
them m; and my. We observe that the one-loop potential doesn’t take into
account the renormalization of the wavefunction. To compute this correction
we have to start from the one-loop correction to the propagators of h; and
ha. More precisely, we can write AIl(p?) = II(p?) — I1(0), so we compute the
one-loop contributions to the two-points Green function of each mass eigenstate
for a generic p? and for p = 0 and than we do the subtraction. As we said
before, the off-diagonal terms of these corrections are not important, so the
final expressions for the masses of the scalars are:

M} =mi+Alli(m?), M3 =m3 + Allay(mj3)

We observe that the one-loop contributions to the propagators of the scalar
particles are similar to those of the Higgs propagator of the Standard Model. It
is convenient to expand the computation of the SM, because we should describe
the interaction of the scalars between them, the interaction with SU(2)x gauge
bosons, and the mixing between the scalars.

Regarding of the mixing between the scalars, we need to introduce the mixing
angle «, that is the rotation angle needed to diagonalize the one-loop mass
matrix. Following the notation of the article written by Hambye and Strumia,
it is defined by the relations

hi = hcosa + ssina and he = scosa — hsina.

The Feynman rules of this model are similar to those of the SM: one should
consider that the Higgs boson field corresponds to one of the eigenstates h; and
hs. Regarding of the interactions with the gauge bosons of the SU(2)xU(1)
symmetry group and with the fermions, one should take the SM vertices and
consider, for every Higgs line present in the diagrams, two similar diagrams
that show respectively a line of h; or a line of hs in its place. The first of them
takes a factor cos a, while the second a factor sin . All the other interactions,
that are substantially modified, are collected in the appendix. In Figure 4.2 we
report all the one-loop diagrams that contribute to the Higgs propagator of this
model.
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Figure 4.2: Contributi ad un loop al propagatore dell’Higgs.

We indicate with ¢ the Goldstone bosons of the Standard Model, while ¢ x
are the Goldstone bosons of the new symmetry group. In the same way we call
respectively ¢ and cx the ghost fields of the SM and of the group SU(2)x.

The expression for the Higgs one-loop propagator reported below is the sum
of all these diagrams, in the same order as in Figure 4.2:



CHAPTER 4. COMPLETE COMPUTATION 20

B 34, (M,%) ()\H cost o — Mg sin? avcos? o + Ag sin® a)

O (p?) =
) 1672
n Ag (MSQ) ((6)\H + 4Ags + 6Ag) cos? asin? a — Agg ((3054 o + sin? a))
3272
Ag (Mvzvﬁ) (2/\H cos? o — Ay g sin® a)
+
1672
Ag (M%{“) (2/\H cos? o — Ay g sin® a)
+
3272
340 (Mf(fx) (2/\5 sin? a — Ay cos? a)
+
3272
My s (M) ME giea (B MY
32M3, w2 64ME, 72 64 M2, 2

L (_BMi | 393 A (Miy) | Eg3A0 (MEE) ) o,
1672 3272 3272

s <_g§<M§< L 30k A0 (MR) | ExgiAo (M%&)) e
3272 6472 6472

3MPAo(MP) g3 3 (MY - MPp?) Bo (0, ME, MP) 93 5
16M32, 72 320M2, 7

9B, (pz,M,f,M,%) (21})\H cosd a + whg sin® o — Agg (wsinac052 o+ vsin2acosa))2

3272

3a — 2whggsinacos? a — 6wg sin a cos? o

+ (v/\HS cos
By (p?, M?, M?
—6vAg sin? acosa — 20\ g sin? a cos o + wA g sin® a)2 %
s
+ (’U/\HS cos® a + 6ud gy sin o cos® a + 20\ g sin a cos? a
2 BO (p27Ms27Ms2)
3272

2 2

—2w s sin? a cosa — 6whg sin? a cos v — wAp g sin® a)

N By (p2, MZ€, Mvzvﬁ) (20 g cos @ — wA s sin a)?

1672
By (p2, MZ¢, M%{“) (20 g cos @ — wA s sin a)?
_l’_
3272
3By (p2, M3%éx, M)z(ﬁx) (2wg sin o — v grg cos a)?
_l’_
3272
| GBMEE2Bo (v, M3 €, M€) cos? a
3272
| GBMLE By (p?, MEE, MEE) cos? a
64M32, 2

B 39% M%E% Bo (p*, M%Ex, M3Ex) sin? o
6472




CHAPTER 4. COMPLETE COMPUTATION 21

. ((Mm —1) =) Ao (M) 3 ((1—20)M5y +p?) Ao (Mi€) 03

32M§V7r2 32M§V7T2

((€ = 1)2Myy, — 2p%(€ + )M, + p*) Bo (p?, My, M) g5

+ 32M§Vﬂ'2
2
_ (p2 - MI%V&) BO (p27 M%/gu MI%V&) g% COSQ o
32M§V7T2
L (MR- ) Ao (MB) 6B (129003 ) Ao (MEE) 6
64M§V7r2 64M3V7T2

((€—1)2M3 —2p*(§ +1)M5 + p*) Bo (p°, M3, M3€) g3

+ 64M§Vﬂ'2
2

(p* — M2€)” Bo (p*, M3&, M2€) g3 )

— 64M3Vﬂ'2 COS™ &
Lo (((MEEx 1) —p?) Ao (MR) g% (= 260)MF +p?) Ao (MiEx) g%
640272 G402 72
n ((€x —1)2M% — 2p*(Ex + 1) M5 +p*) Bo (p?, M}, M%€x) g%
64M§(7T2
2

(p* — M3%¢x)” Bo (p*, M%Ex, M%E¢x) 9% \ . »

— 64M§(ﬂ'2 SIn- «

93(& — 1) Ao (ME€) N 93 (12M3), — 4p* M3, + p*) Bo (p?, M/, M)
3272 64ME, 72

64 M2, 2 82 3272
B (€= 1My, = 20%(€+ )MG, +p*) Bo (0%, My, M%f)) )

LGB = 2R Bo (0 M6 MFE)  giME  g3(E— DAy (M)

32M3V7T2 COS™ v

93(6 —1)Ag (M%&) M7 N 93 (12M3% — 4p*M% + p*) By (p*, M2, M2)
64ME, 72 128 M3, 72
LG8 —2MBE)" B (1 MBE, MBE)  g3MY  g3(€ —1)Ao (M3) M3

128 M2, 2 © 16M2, w2 64 M2, 2

B DM e DM+ ) Bo (PN
64 M2, 2

o (o 6 = DA (VSR | g (1204 — AR + ") By (% M M)
Ix 64n2 128022

128 M% w2 1672 6472
g% ((6x = 1)2MY — 2% (6x + )M +p*) Bo (0, ME, M§<§X)> i o

LG (P~ 2MRE)" Bo (1, MR, MREx)  gRME  gh(6x — 1)do (M)

64M 32



CHAPTER 4. COMPLETE COMPUTATION 22

In this formula Ay and By are the Passarino-Veltman functions:

1 1
2y - bp__ -
Ao(m)_iﬂ'D/2/dq q2_m2+i€
Bo(p?,m?,m3) = —=— /qu 1
o\p -, My, My inD/2 (q2—m2+ie)((q+p)2—m§+i€)-

We can observe that the diagrams with a loop of the charged Goldstone of
SU(2)x and the analogous with the neutral one give the same result; this cause
the factor 3 before some of the contributions. We can make a similar argument
for the vectors: if we define

X:[:Xl_iXQ X;:X1+1X27
V2 V2
the X3 boson, in these diagrams, gives exactly the same result of the X*
bosons. We have to observe that in these expressions, the plus or minus sign
doesn’t represent the electrical charge of the particle, this is just a convenient
reparametrization of the fields.

4.4 Dark Matter abundance

In the introduction we introduced the DM as a thermal relic. To be more precise,
we are going to describe which processes are important before the freeze-out of
these particles. If we consider that X vectors interacts only between them and
with the s boson, we can say that the fundamental processes are the annihilation
processes, like XX — ss and the semiannihilation processes, like XX — Xs.
In Figure 4.3 we collected all the diagrams that describe annihilations. From
the Feynman diagrams for the annihilation, we see that the final state can be
a couple of hi, a couple of ho or one of each. A couple of X vectors can
annihilate via a direct quartic interaction, via an intermediate hy or hs in the s-
channel, via an intermediate X in the t-channel or via an intermediate Goldstone
boson, also in the t-channel. In Figure 4.5 there are all the diagrams relative
to the semiannihilations. The final state is composed by a vector particle X
and a scalar particle, that can be hy or he. Precisely, if we call 0., and
Osemiann the non-relativistic cross sections of these processes, and we say v is
the relative velocity between the particles, we can say the experimental Dark
Matter abundance is reproduced if

Tann¥ + %osemia,mv =22x10"%cm?/s = 1.83 x 107°GeV 2.

We added a factor 1/2 for the semi-annihilations because the number of DM
particles drops only by one unit, so their contribution to the total annihilation
of the DM is just one half of the contribution of the annihilations. Since we have
no informations about which of the three X bosons is annihilating and about
their polarizations, we have to average these cross sections over the polarizations
of the vectors and over their SU(2)x index.

To do the computation of these cross sections it’s useful to consider the
known analogous annihilations and semiannihilations of the SM vector boson
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Figure 4.3: Feynman diagrams for the annihilation process of the DM with

scalars in the final state.
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Figure 4.4: Feynman diagrams for the annihilation process of the DM with W,
Z or Top quark in the final state.

N
N3t

b

into Higgs bosons and adopt these results: in our model we need to take into
account the presence of two scalars and their mixing.

These cross sections are gauge-invariants but, to simplify this computation,
we choose the unitary gauge, that is the gauge in which diagrams with Goldstone
particles don’t give any contribution. There are some contributions to the cross
sections depending on the final state: for each piece we compute the amplitude,
that is the sum of all the Feynman diagrams with that final state. Then, to
get the cross section of this process, we compute the squared modulus of each
amplitude and we multiply by the phase space factor of the process itself. To get
the total cross section we sum all the contributions. In this computation we can
consider only the non-relativistic limit, so the initial particles are about at rest.
To get the final expressions for all the cross sections we used the application
Mathematica, that automatically compute the cross sections, given the value
of each Feynman diagram amplitude. These are the resuls for the annihilation
cross sections. There are six contributions: the first one has two hj particles
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Figure 4.5: Feynman diagrams for the semiannihilation process of the DM.

in the final state, the third one has two ho particles, while the second one has
one of each scalar. The last three contributions are related respectively to the
production of a couple of W, a couple of Z or a couple of Top quarks.
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Therefore, we compute in the same way the result for the semiannihilation
cross section. There are two contributions in this case: the first of them comes
from the processes with h; in the final state, the second comes from the processes
with ho. The expression below is the sum of these two contributions.

g% (M} —10M2M% + 9]\/[;1()3/2 (sin(a) + cos(a))?
1287 M4 (M2% — 3M2)? '

Osemiann¥ =

We observe that in the limit of small Agg, we get the same result of the
approximate computation in Chapter 3.
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4.5 Corrections to the VEV of the Higgs

The VEV of the Higgs is fixed by the amplitude of the muon decay process. In
the Feynman diagrams for this decay there is a W propagator, so, if we want to
study our model at one-loop level in perturbation theory, we have to consider the
one-loop corrections of this propagator too. We can find the relation between
the Higgs VEV and G, that is the Fermi constant.

G 1
7; = ﬁu*'AT),

where Ar encloses all the contributions given by the corrections to the W boson
propagator. At tree-level approximation, as in the SM computations, we have
Ar = 0. The experimental value of the Fermi constant is 1.16637 x 10-°GeV ™2,
so, considering only tree-level diagrams we obtain v =~ 246.22 GeV from the
previous relation.

In our model Ar is slightly different from the known result of the Standard
Model. As in the previous computations, in our work we need to consider the
presence of two scalars and their mixing. The contributions where Higgs doesn’t
enter are the same of the SM, so the result of this computation is well-known,
and we don’t compute it again. To understand better how to improve the SM
to take in account the new scalar and the mixing, we have to consider the terms
of the SM where the Higgs boson enters the computation. In the SM there are
three diagrams, giving each a contribution to Ar:

1
ATssel\i/ilgull = (47TU)2A0 (m}2L)
ApSM __ L [OME M M A(Myy) — MiAo(My)
rainbow h/W (47”))2 ) M}% — M{%V
1 Ao(M2) — Ag(M2,)
ApSM _ a2, 20Uty W
T rainbow h/p (47”))2 [ w M}% — MI%V

We consider that for every Higgs line of the SM we have to draw two copies
of the same diagram in our model, adding a factor cos? a for the Higgs boson
contributions and a factor sin? o for the s boson. We get:

AT(lloop) — ASM (Mh — Mhl) cos” o + ArSM (Mh — Mh2) sin? av.
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The complete result is

1
(1loop) _
Ar 167202
2 2
X {3M:2p - M — 640 (M7F) + Ao(M}) cos® v + Ag (M?) sin® o
3M32 6M32, — 3M?2
(0= g ) 4o k) + (=) o )
AM, (Ao (M57) — Ao (M) o AMG, (Ao (M2) — Ao (M)
+ M,% — M‘%V cos” o + M52 — M‘%V sin” «
o (Mo (M) - M2A O) pen
Mg — My, 2

L[ MivAo (Miy) = M40 (M2) M2+ My )
MZ I3, 2

To make the computations simpler, we have consistently chosen the Landau
gauge & = 0 for the expressions of the scalar propagators and for the correction
to the VEV of the Higgs. In the computation of the annihilation and semi-
annihilation cross sections we used the unitary gauge, since the cross sections
are themselves gauge invariant.



Chapter 5

Results

In the previous chapter we have considered the computation of some observables
in our model. Now we have to write a system of equation, imposing that our
observables agree with the experimental data. As we said before, we introduced
six parameters in this model, but the observable that we computed are only
five. So we will determine the values of all the parameters, except for gx: we
choose it as the only free parameter. In this chapter we will show the prediction
of the model about some observables, like the production cross section of the
new scalar or the direct detection cross section for the DM particle. In Section
5.1 we consider the approximation of small Agg, while in Section 5.2 we show
the results for the complete model.

5.1 Small \yg approximation

As we said in Chapter 3, the bulk of the correction of the theory is given by
the SU(2)x gauge interactions, so in this first case we will consider only these
contribution to the one-loop potential. The first simplified system to be solved
takes in account only three equations and three unknowns: we are going to
find Ag, Ags and p?, setting the values for the VEVs as v = 246.22 GeV and
w = 2.0 TeV x gx. The last relation comes from the approximate case studied
by Hambye and Strumia in [13], where they computed the annihilation and
semi-annihilation cross sections for the gauge-only model.

oy lleor
o, Y

oy -oer
Os =0

m? = (125.6GeV)?

In the previous chapter, we have seen that there are two mass eigenstates, but
we don’t know which of them is the Higgs boson and which is the s boson.
Thus, in our computation we have to consider both the cases. In the first case
we choose the first eigenstate to be the Higgs particle, so we use its eigenvalue
in the third equation; in the second case, we make the same computation but
the Higgs is the second eigenstate.

For each value of the free parameter gx we solve the system and we get
a point in the space of the parameters. With these data we draw some plots
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showing several interesting quantities. First of all, we plot the production cross
section of the new scalar as a function of its mass and as a function of gx.
The expression for this cross section is similar to that of the Higgs: the only
factor to take in account is sin(a)?, where « is the mixing angle between the
scalars. Therefore, a convenient choice is to plot the cross section in SM Higgs
unit. In the first diagram of Figure 5.1 we can see two branches, on the left
the branch for a new scalar lighter than the Higgs, and on the right the case
in which the new scalar weights more than 125.6 GeV. We observe that there
is a discontinuity: there are no points with a mass for the s boson in the range
between about 105 GeV and 145 GeV. To understand why, we need to consider
that the mass matrix is not diagonal, so the eigenvalues are never degenerate.
In this diagram we report also the bounds set by LEP or ATLAS and CMS
experiments, so the points in the grey areas are not acceptable. We can see that
for a big range of the free parameter the predictions for the masses and for the
cross sections of the new scalar give values compatible with the bounds of LEP
and LHC experiments. In the second diagram of Figure 5.1 we plotted og, that
is the spin-independent cross section for DM direct detection, as a function of
the DM mass, with the change of gx. Its expression is:

4 £2 2
my f 1 1 2 2

— NS o 2
16702 <m% m%) g sin”(20)

0s1
where f is the nucleon mass matrix, f ~ 0.295, and my is the nucleon mass.
From this diagram, we can see that this model is compatible with the experi-
mental data for the direct detection when gx = 0.8.

Our approximated results reproduce those of [13]. We can now add the more
precise comutation performed in this thesis. To start, we modify the one-loop
potential, taking in account other interaction. The following plots (Figure 5.2)
were made adding new contributes to the potential, like scalar loops, Top quark
loops, SM vector loops, Goldstone loops. In each diagram we leave the result of
the X-loops-only case as small points. From the comparison of these plots we
can observe that the biggest correction to the production cross section of the
new scalar is given by Top loops.

5.2 The complete model

Finally, we present the results for the complete model. In this section we con-
sider the contributions of all the interactions to the one-loop potential of the
theory. Furthermore, we consider also the corrections to the Higgs mass and to
the s mass given by wave-function renormalization (not taken in account by the
effective potential), the exact relation between w and gx given by the annihi-
lation and the semiannihilation cross sections, the correction to the Higgs VEV
through the value of the Fermi constant.

To do this we want to solve a system of five equations with five unknowns.
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We are going to find the values of Ay, Ags, 12, v and w:

gy tleep
o, Y

oV eer
Os =0

M? =m? + All(p?) = (125.6GeV)?
S5 (1+ Ar(lleor)) = G = 1.16637 x 10°GeV
Tann¥ + 2 0semiannt = 2.2 x 107 2cm? /s = 1.83 x 107GeV 2

Again, we will consider that this system has to be solved in two cases, because we
don’t know which of the eigenvalues my, of the one-loop mass matrix corresponds
to the Higgs. The only free parameter will be gx, so we have to compute the
solution for every value of it.

As in the section above, we have a new set of solutions showing us the values
of the parameters of the model as function of gx. With these data we build
the diagram of the production cross section of the new scalar as a function of
the mass of the scalar itself (Figure 5.3, above). Also in this complete case we
observe that there is a discontinuity of about about 20 GeV around the Higgs
mass, and so the wavefunction renormalization that we have considered for both
the scalars doesn’t give a big contribution in this sense. The plots report the
bounds given by LEP experiments for energies lower than the Higgs mass and
by ATLAS and CMS experiments for greater energies. Below, in Figure 5.3, we
present the spin independent cross section for direct detection in the complete
case. The model is not excluded by LUX2013 data for gx 2 0.8

Furthermore, for completeness, in Figure 5.5 we plot how the parameters of
the theory depend on gx.

In the Conclusions we make further comments and observations about the
results given above.
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Figure 5.1: Above, the prediction of the gauge-only approximation about the
cross section of the new scalar. The grey areas are excluded by LEP or CMS
and ATLAS experiments. Below, the prediction of the ogy, the gray areas are
excluded by XENON2012 and LUX2013 experiments. Everything is computed
as a function of the parameter gx, that varies as shown in the colour legend.
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Figure 5.2: Cross section of the new scalar as a function of the parameter gx,
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Figure 5.3: Our final result: above, the prediction of the complete model for
the production cross section of the new scalar. Below we report the prediction
for the cross section for DM direct detection. These quantities are plotted as a
function of the parameter gx, that varies accordingly to the colors on the legend.
For a comparison, in these diagrams we leave the data of the approximated
case as smaller points. As in the approximated case, in Figures 5.1 and 5.2,
the grey areas are excluded by LEP or CMS and ATLAS experiments for the
diagram above, while the bounds comes from XENON2012 and from LUX2013
experiments for the diagram below.
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Figure 5.4: We plot again the first diagram of Figure 5.3, enlarging on the area
where the data show similar masses for the scalars.
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Figure 5.5: Predictions of the complete model: above, the parameter Ay g, that
is the coefficient of the “portal” term. Below, the parameters w and u, the
mass of the extra scalar M and the mass of the DM particle. w is the vacuum
expectation value of the new scalar s, while y indicate the critical scale at which
4AgAs — Mg = 0, so the scale u in our computations effectively replaced the
parameter Ag. All these quantities are plotted as a function of the parameter
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Conclusion

We considered an extension of the SM that describes the Dark Matter and
proposes a solution to the hierarchy problem.

In the introduction we analized the hierarchy problem and the presence of
quadratically divergent corrections to the dimensional parameter of the SM.
In the context of “finite naturalness”’, we introduced a model without a mass
term for the Higgs. The masses of the particles arise from a Coleman-Weinberg
mechanism, so spontaneous symmetry breaking does not occur at tree-level, but
is generated by the radiative corrections to the theory. We supposed that there
is a new particle S, scalar doublet under an extra group SU(2) x, and new vector
bosons X of the same gauge group. The only communication between this new
sector and the SM is through the so-called “Higgs portal”, that is the quartic
vertex between two Higgs fields and two S fields. The VEVs of the two scalars
are fixed by the one-loop potential. The interactions with the scalars give mass
to all the particles of the model, so all the scales are related and exponentially
suppressed with respect to the Planck scale.

Astrophisical and cosmological experiments demand the presence of Dark
Matter. We don’t know, as we wrote in the introduction, what it is, and there are
a lot of hypoteses on it. We think it is a particle, and in our model we introduced
the vector boson X of SU(2) x, that is a good candidate to represent the Dark
Matter. It has a mass of about 1 TeV, and if we make a rough estimate, as we did
in the introduction, this is the order of magnitude of the scale where the mass of
the DM particle is expected, assuming it is a thermal relict. Furthermore, this
particle has to be stable. Some theories have to introduce special symmetries
with the specific purpose of keeping the DM particle stable. In our model, X
vectors are automatically stable, because of the gauge symmetry and because
of the particle content of the theory.

Another peculiarity of this simple model is the presence of only one free
parameter. The other parameters introduced in the model are fixed by the
experimental values of the DM cosmological abundance, of the Fermi constant
and of the Higgs mass.

The original work presented in this thesis consisted in performing for the
first time a precise computation of the predictions of the model for the LHC
and for direct detection experiments.

The new computation includes for the first time a full one-loop computation
of the scalar masses and of the effective potential, and a full tree-level compu-
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tation of the DM annihilations and semi-annihilations relevant for the thermal
DM abundance. We find that:

e there are new solutions missed in the previous computation; however they
are in the already excluded area.

e in [13] the diagrams the predictions for the DM mass and direct detec-
tion cross section show a “gap”. In our computations, this discontinuity
disappeared, being an artifact of the previous approximated computation.

e given the mass M, of the extra scalar, the cross section for its production
for LHC increases by a factor ~1.3 with respect to the approximated com-
putation. Anyhow, this cross section is compatible with the experiments
in a small range around gx =~ 0.9 when s is lighter than Higgs, and for
gx 2 1.0 when s is heavier.

e the prediction for the DM direct detection is compatible with LUX2013
and XENON2012 bounds for gx = 0.8.
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Feynman rules of the model

A.1 Overview

The lagrangian of the theory is:

mp= 1 v
L=Lg=0— ZF;WF'“ +|DuSI* + Aus|HS|” — As| S|
This lagrangian is invariant under U(1)y xSU(2), xSU(3).xSU(2)x. We intro-
duced a new symmetry group, SU(2)x, and S, that is a doublet under this group.
In this model there is the spontaneous symmetry breaking, so we write directly
the H and S fields as a sum of a vacuum expectation value and a physical field:

0 0
H = <v+h> S = <w+s> .
V2 V2

Therefore, we observe that the mass matrix for h and s is not diagonal: we call
h1 and ho the mass eigenstates and we define a mixing angle a:

cos o —sina\ (R (M
sin v cos s) " \ho

The expression D, S represents the covariant derivative of the field: (9, +
igxX,)S, where the X, fields are the vector bosons of the new symmetry group
SU(2)x. The Feynman rules of this model are similar to those of the SM: we
should consider that the Higgs boson field is not simply ki, but it is rotated, so
it is a combination between h; and hs. To write the rules for the interactions
with the W and Z bosons and with fermions, we just take the SM vertices and
we consider, for every line of the Higgs field, two similar diagrams: in each of
them the h line is replaced with a hy line or a hs line respectively. The first of
them takes a cos « factor, while the second takes a sin « factor. All the other
interactions, that are substantially modified, are listed below.

A.2 Scalar and vector interactions

A.2.1 Propagators

The propagators of the h; and he scalars are
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hio B i
p p2—m,2“y2—|—ie’
while the vector boson propagators, that have all the same mass my = £5%,
become
¢ b —ig Pubv
JOXERAVAVAVAVAVAVAVER 79SS — (1)t
P p? —m%k +1ie G = Op?—{“m?x
We can express the vector bosons in this way:
X' —ix? O XT4iX?

xt=2_—_"= x;j ===
" V2 " V2

where the plus or minus doesn’t represent the electrical charge of the particle,
this is just a convenient reparametrization of the fields.

A.2.2 Gauge vertices

Gauge bosons only

M, a
psC
_ gXeabc
x [g"(p1 — p2)° + 9" (p2 — p3)" + 9" (p3 — p1)"]
v,b p1+p2+p3=0
H,a v, b
= - ig§( [eeabGBCd(gupgvo - g,uogup)

+ 6eaceedb (g,ucrgvp _ gyuga'p)
p,c o,d + feadfebc(guugpo = YupYvo)]
p1+p2tps+pa=0
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Vertices involving scalars
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A.2.3 Scalar vertices

Quartic
SN ,
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hy 7 Ny
ha , he
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N v
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Cubic
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A.2.4 Goldstone bosons interactions

Besides the Goldston bosons of the Higgs, there are three new Goldstone bosons
relative to the S field, and we call them ¢%. Their propagator is

A.2.5 Goldstone vertices

An useful way to describe Goldstone bosons is:

w?w%—w% w—f@%(*’%’g( Y

Goldstone-vectors vertices

i 5
K e s X
/
_ ig,uuaij(sabggf
AN
v T XN
\ Px
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Goldstone-scalars vertices

— — —  =—idY(2\gvcosa — Agswsin )

i\

h g
— 2~ =i§9(2Agvsina + Agsw cos @)

Yi 7/
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X = —i8Y(2)\y cos® a — A\yg sin® a)
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A.2.6 Goldstone only vertices
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A.3 Ghost fields

To fix the gauge over the new vector bosons, we introduce three new couples of
ghost and anti-ghost fields. We call them c% and ¢’ . Their propagator is

A.3.1 Ghost vertices

Also for the ghosts, a useful way to describe them is

T S
X \/5 X \/5 ’

considering that antighost fields are defined with the opposite signs. Similarly

to the case of the vector bosons, the signs are not the electric charge of the

particle.
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