
Dynami
al generation of the weak and Dark

Matter s
ale

Giulio Maria Pelaggi

Mar
h 17, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/20258774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Contents

1 Introdu
tion 2

1.1 Hierar
hy problems . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Naturalness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Finite naturalness . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 What is the Dark Matter? . . . . . . . . . . . . . . . . . . . . . . 5

1.5 A new model for the Dark Matter . . . . . . . . . . . . . . . . . 7

2 The model 9

2.1 Lagrangian and parti
le 
ontent . . . . . . . . . . . . . . . . . . . 9

2.2 Tree-level potential . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Parameters of the theory . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 One-loop potential . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Previous approximated 
omputations 12

4 Complete 
omputation 15

4.1 One-loop potential . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Minimum equations . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Higgs mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.4 Dark Matter abundan
e . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Corre
tions to the VEV of the Higgs . . . . . . . . . . . . . . . . 27

5 Results 29

5.1 Small λHS approximation . . . . . . . . . . . . . . . . . . . . . . 29

5.2 The 
omplete model . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Con
lusion 37

A Feynman rules of the model 39

A.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.2 S
alar and ve
tor intera
tions . . . . . . . . . . . . . . . . . . . . 39

A.2.1 Propagators . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.2.2 Gauge verti
es . . . . . . . . . . . . . . . . . . . . . . . . 40

A.2.3 S
alar verti
es . . . . . . . . . . . . . . . . . . . . . . . . 42

A.2.4 Goldstone bosons intera
tions . . . . . . . . . . . . . . . . 44

A.2.5 Goldstone verti
es . . . . . . . . . . . . . . . . . . . . . . 44

A.2.6 Goldstone only verti
es . . . . . . . . . . . . . . . . . . . 48

A.3 Ghost �elds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A.3.1 Ghost verti
es . . . . . . . . . . . . . . . . . . . . . . . . 50

1



Chapter 1

Introdu
tion

One year ago, the �rst LHC run ended. The most important result of this

experimental work is 
ertainly the dis
overy of a parti
le, with a mass of about

126 GeV, that is fully 
ompatible with the Higgs boson of the Standard Model

(SM) [1℄. This is an important step of the modern physi
s be
ause this parti
le


on�rms that the predi
tions on the Standard Model spe
trum were true. For

the physi
ists, there is another �hidden� result that may be more important than

the su

ess of the Standard Model: in the data 
olle
ted over the last years we


an observe the 
omplete absen
e of new physi
s.

Maybe LHC will never show us unexpe
ted phenomena. Although it 
an be

quite disappointing, this result means that we have to revise the approa
h to

new physi
s.

1.1 Hierar
hy problems

In the '70s, the guideline for theoreti
al physi
s was gauge symmetry: physi
ists

started to assume that parti
le physi
s is well des
ribed by gauge theories, and

the experiments 
on�rmed this hypotesis. This way of thinking led to the de�-

nition of the Standard Model. Though the SM explains a wide range of physi
al

phenomena, it has still some unsatisfa
tory aspe
ts. First of all, it doesn't take

in a

ount 
osmologi
al phenomena, like the Dark Matter (DM), or the expan-

sion of the universe, or the theory of gravitation: this make us think that it is

a low energy e�e
tive theory of a more 
omplete theory. The idea is that the

dominant terms of the 
omplete theory at low energies are the SM ones, while

the new terms, that des
ribe new physi
s, are non renormalizable. If we 
all LD

the lagrangian with terms of mass dimension D, we 
ould write the expression

for a general lagrangian as

L = Λ4L0 + Λ2L2 + ΛL3 + L4 +
1

Λ
L5 +

1

Λ2
L6 + . . .

For example, L2 
an be the Higgs mass term, while the gauge 
ouplings are

an L4 term. The renormalizable terms, that are the terms with D ≤ 4, have
a parameter that gets big 
orre
tions proportional to Λ4−D

, while the non-

renormalizable terms, with D > 4, are suppressed by an energy s
ale that we


all Λ: above this s
ale the new physi
s must be 
onsidered. For simpli
ity, we

2



CHAPTER 1. INTRODUCTION 3

have supposed only one s
ale Λ, but every term 
an have his own s
ale, and so

the relative e�e
t 
an appear at di�erent energies. To be more pre
ise, when

there are symmetries, the 
orresponden
e between the dimension of the term and

the power of the 
orre
tion is no longer true. For example, given the absen
e

of a fermioni
 mass term in the lagrangian be
ause of the gauge symmetry,

we observe that the fermion masses don't get a 
orre
tion proportional to Λ,
but only a 
orre
tion proportional to v log Λ. Unfortunately, there is not su
h

symmetry for the Higgs mass parameter.

At this point, we should introdu
e another problem of the SM, known with

the name of �hierar
hy problem� [2℄. One 
an ask why the dimensional parame-

ters of the SM, that is the Higgs mass, has to get the value that we 
an measure

experimentally. The SM doesn't explain the link between the Higgs mass and

other fundamental energy s
ales, e.g. the Plan
k mass. To des
ribe our world,

we need to ��ne-tune� the parameters, that is, we have to set pre
isely their

bare value to reprodu
e the experimental value.

As we said before, to make things worse, the SM implies quadrati
ally di-

vergent 
orre
tions to the Higgs mass (explained in [3℄, p.292). If we write

M2
h = Mh

2
bare

+ δM2
h , the bigger one-loop 
orre
tion to the Higgs mass 
omes

from the Top quark loop [5℄:

δM2
h(top) ≈

12λ2
t

(4π)2

∫

dk4

k2
≈ 12λ2

t

(4π)2
Λ2
UV

,

where Λ
UV

is the ultra-violet 
ut-o� of the integral over the momenta. This

makes the �ne-tuning even more di�
ult, be
ause, with the systemati
s of renor-

malization, we absorb the divergen
es in the bare parameters. In this way we

have to set a big bare mass su
h that the 
an
ellations between the bare mass

and the 
orre
tion gives the experimental value of the parameter. The only

solution to this problem seems to be that the new physi
s is at low energies

(about at the weak s
ale), su
h that the 
orre
tions to the mass of the s
alar

are not greater than the value itself.

1.2 Naturalness

A new guideline for the physi
s beyond the SM may be naturalness [2℄. Fun-

damentally this idea 
onsists in repla
ing the brutal 
ut-o� of the quadrati


divergen
es with some new physi
s, su
h that the 
orre
tion to the dimensional

quantities of the SM are smaller than the quantity itself. Therefore, new physi
s

should explain the origin of the values of the parameters of the Standard Model.

In other words, naturalness suggests the existen
e of new physi
s at a 
ertain

s
ale Λ
nat

su
h that the 
orre
tions δm2
h ∼ Λ

nat

2
are less than m2

h.

Following this guideline, some popular theories has been introdu
ed.

In the past, the s
ienti�
 
ommunity studied the di�eren
e between the


harged pion and the neutral pion masses, getting QED quadrati
 divergen
es.

This problem has been solved saying that the fundamental parti
les are the

quarks and the mesons are 
omposite. Perhaps following this idea, in the '90s

a lot of arti
les about Te
hni
olor and similar theories have been published [4℄.

These models 
onsider the Higgs boson as a 
omposite parti
le, and the di-

vergen
es for the Higgs mass are 
ountera
ted by the ex
hange of ve
tor-like

parti
les between the Higgs 
omponents. In this 
ase the Higgs mass depends
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of his 
omponents, and so there is not a mass term a�e
ted by quadrati
 diver-

gen
es.

Another old problem, now solved, is about the ele
tron mass: the result of

the 
lassi
al 
omputation gives a linear divergen
e for this quantity. The 
hiral

symmetry and the va
uum polarization have been the solution of this problem,

and the positron was the new physi
s that has been dis
overed. In a similar way,

SuperSymmetry (SUSY) introdu
es superpartners for the SM parti
les, that is,

for every fermion of the SM there is a bosoni
 superpartner and vi
e-versa [6℄.

This model solves the hierar
hy problem preventing quadrati
 
orre
tions: ea
h

divergent 
ontribution of fermioni
 loops 
an
els with the 
ontribution of its

superpartners. In this way, the de
oupling o

urs: the high energy physi
s

does not a�e
t the Higgs mass at low energies be
ause it is �prote
ted� by

this me
hanism and gets only logarithmi
 
orre
tions. A SUSY solution to the

hierar
hy problem implies, in absen
e of �ne tuning, a Λ
SUSY

. 100 GeV and

new parti
les around this weak s
ale. Sin
e the SUSY 
orre
tion to the Higgs

mass is proportional to the di�eren
e between the Top quark mass and the Stop

parti
le mass, if we want a small 
orre
tion we need a light enough Stop mass.

Therefore, SUSY provides us a parti
le, the neutralino, that is stable and it 
an

des
ribe the Dark Matter.

Looking at the data of the last period, i.e. the absen
e of these parti
les

around the weak s
ale, the s
ale of the new SUSY parti
les had to move toward

greater energy values. So SUSY models 
an no longer provide a fully natural

solution to the hierar
hy problem: in most popular models the �ne-tuning is at

the ≈ 100 level.

1.3 Finite naturalness

At this point, we 
ould think that the naturalness guideline is wrong and the

naturalness 
riterion has to be abandoned. Maybe the solution to the hierar
hy

problem is anthropi
: our universe is just one of the many possibilities and

our existen
e just �requires� these values of the parameters. Almost all the

reviews on this argument are theoreti
al, be
ause it's very di�
ult to imagine

an experiment to prove these ideas. Instead, we think that some aspe
ts of the

naturalness 
an be re
overed.

Brie�y, ��nite naturalness� 
onsists in ignoring the quadrati
 divergen
es.

The idea is that we 
an negle
t these divergen
es exa
tly as we do in dimensional

regularization 
omputations. In this 
ase the only remaining divergen
es are

the logarithmi
 ones; they don't give a big 
ontribution if there are no parti
les

mu
h heavier than the Higgs. For example, the reliability of �nite naturalness

for the SM has been studied in [7℄. At one loop they rede�ne this parameter


onsidering all the one parti
le irredu
ible Feynman diagrams with one loop.

Following the the standard renormalization pro
edure of absorbing the ∼ 1/ǫ
poles in the Passarino-Veltman fun
tions expansion, they observe that Higgs

mass value doesn't 
hange so mu
h up to the Plan
k mass s
ale. At this point,

the greater 
ontribution 
omes from the quark top loop, that doesn't weight a

lot more than Higgs. They obtain a �ne-tuning of about 10−1
.

In this work we will address the Higgs hierar
hy problem and the des
ription

of the Dark Matter as a parti
le. As in [8℄, the fundamental idea is to start

from a model with a lagrangian that doesn't have any mass terms for s
alar
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parti
les. The masses will arise from the quantum 
orre
tions to the theory and

they won't depend of the renormalization s
ale used. The Coleman-Weinberg

me
hanism provides us a method to explain a non-zero value of the masses, also

if the mass term is null, 
onsidering the radiative 
orre
tions of the theory. In

[9℄ Coleman and Weinberg explain that the spontaneous symmetry breaking is

not ne
essarily driven by a negative mass term for the s
alar parti
le, but it 
an

arise be
ause of high-order pro
esses involving virtual parti
les. They show how

to 
ompute the e�e
tive a
tion, that is the fun
tional generator of all the One

parti
le irredu
ible (1PI) Green fun
tions. To understand better, let's 
onsider

the simple 
ase of a single s
alar �eld: we 
all it φ.
If we expand the e�e
tive a
tion in powers of the �eld, we get

Γ =
∑

n

∫

dx1 . . . dxnΓ
(n)φ(x1) . . . φ(xn),

where ea
h Γ(n)
is the sum of all the Feynman diagrams with n external legs.

Therefore, expanding the e�e
tive a
tion in powers of the momenta, about the

point where the momenta are null, we get

Γ =

∫

d4x

(

−V (φ) +
1

2
Z(φ)∂µφ∂

µφ+ . . .

)

and so we de�ne the e�e
tive potential V as the term of order zero of this expan-

sion. We 
an say that it is the generator of all the 1PI Feynman diagrams with

vanishing momenta, and at tree-level it 
oin
ides with the lagrangian potential

of the theory. Now, if we are interested in the va
uum expe
tation values (VEV),

we have to minimize this e�e
tive potential, so we have to impose dV/dφ = 0.
In our model, spontaneous symmetry breaking doesn't o

ur at tree-level,

be
ause the tree-level potential doesn't have a negative mass term for the s
alar.

Depending on the values of the parameters, it 
an have a minimum in the origin

or 
an't have a minimum at all. However, if we 
onsider the one-loop e�e
tive

potential, new minima arise and SSB o

urs.

In this way we get rid of the presen
e of dimensional parameters that make

the lagrangian not s
ale invariant, and we prevent quadrati
 divergen
es for the

running of these parameters.

One of the new parti
les introdu
ed in our model is a good 
andidate to

represent the Dark Matter.

1.4 What is the Dark Matter?

An important eviden
e for the existen
e of new physi
s is Dark Matter. Some

phenomena, at di�erent s
ales, strongly suggest us the existen
e of this new

type of matter [10℄, [11℄. First, we 
all it �dark� be
ause the intera
tions with

the photons or with the other SM parti
les are negligible, while it intera
ts

essentially through the gravitational for
e. One of the eviden
es 
omes from

the observation of the rotation 
urves of the galaxies: we 
an say that they

are not des
ribed by a solid-body rotation, nor by a Keplerian rotation. In

fa
t, the tangent 
omponent of the velo
ity be
omes �at at high distan
es from

the 
enter. We 
an explain this phenomenon with a simple idea: we suppose

that in the galaxies there is a DM radial density pro�le su
h that the velo
ity
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distribution is reprodu
ed. Another phenomena that 
an be explained with the

DM is the weak lensing: there are some pro
esses, like the 
ollisions between

galaxy 
lusters, in whi
h the spatial o�-set between the visible matter and the

gravity has been measured looking at the deviation of the path of the light.

Furthermore, DM is required in 
osmologi
al models to explain, for example,

the formation of the stru
tures in our universe.

We don't know what is the Dark Matter, be
ause we 
an �see� it only through

gravitational intera
tions. We don't even know if DM is made of astro-physi
al

obje
ts or by parti
les. Some physi
ists have analyzed the 
ase of the Dark

Matter as ultra-heavy obje
ts like dead stars, planets or bla
k holes. Other

ideas involve new parti
les, for example the ultra-light s
alars, like the axions.

If we want to des
ribe the Dark Matter as a parti
le, none of the parti
les we

already know are good 
andidates, be
ause we know that DM intera
ts with

SM parti
les only gravitationally. The lightest neutrino, that have negle
table

weak intera
tions, is ex
luded be
ause Dark Matter has to be non-relativisti
.

We know that in the �rst period of the history of the universe everything was

in thermal equilibrium be
ause of the s
atterings between the parti
les. During

this phase the parti
le density of the Dark Matter was, in the non-relativisti


limit, the Boltzmann distribution, so

neq
DM

= g

(

mT

2π

)3/2

e−m
DM

/T .

During the evolution of the universe the temperature started to drop. We �nd

that s
atterings with Dark Matter be
ame less and less: at this point, only

annihilation pro
esses between DM parti
les 
ontinue to o

ur. The variation

in time of the DM number density 
an be obtained from the Boltzman equation:

dn

dt
+ 3Hn = −〈σv〉

(

n2 − n2
eq

)

where H is the Hubble rate, 〈σv〉 is the thermal averaged 
ross se
tion for the

annihilation times the relative velo
ity of the parti
les, and n
eq

is the number

density at thermal equilibrium. The temperature 
ontinued to de
rease, until

its value went well below the rest mass of the DM parti
le. The Dark Matter

stopped every intera
tion, went out of equilibrium and be
ame stable, be
ause

the intera
tion rate Γ be
ame slower than the expansion of the universe, de-

s
ribed by the Hubble rate. This phenomenon is 
alled �freeze-out�. If we 
all

σ the 
ross se
tion for the s
atterings, we 
an say that for T . m
DM

we have

that

Γ ∼ 〈n
DM

σ〉 . H ∼ T 2

M
Pl

.

In this formula we used angular parenthesis to indi
ate the average over the

energies, while M
Pl

is the Plan
k mass. A

ording to this, we think DM is a

thermal reli
t, that is it 
ould not rea
h thermal equilibrium, so it did not anni-

hilate 
ompletely. In a very rough approximation of the observed DM density,

we 
an assume that this DM density it is about the same of the photons, and

so, if we suppose that σ ∼ (g/m
DM

)2, where g is the 
oupling 
onstant, we 
an

get an estimate for the mass of the Dark Matter parti
le: it is about a TeV.

m
DM

g
∼
√

T
nowM

Pl

≈ 1 TeV
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With similar 
omputations we 
an estimate when the freeze-out happened. The

important result is that the temperature of the DM parti
les at that moment

was almost an order of magnitude less than their mass, so these parti
les are

in a non-relativisti
 regime. The 
osmologi
al DM abundan
e Ω
DM

h2 ≈ 0.11 is
reprodu
ed for

σv ≈ 2.2× 10−26

m

3/s = 1.83× 10−9
GeV

−2

Another property of this DM parti
le is the stability: some models require

the introdu
tion of an ad ho
 Z2 symmetry to ensure the stability of the DM

parti
le. For example, one of the elements of the SUSY theory is the 
onser-

vation of the R-parity [6℄. Every parti
le of the SUSY model has an R parity

number. To summarize, we 
an say that SM parti
les have R = 1 while the new
supersymmetri
 parti
les has R = −1 and the stability of the lightest super-

symmetri
 parti
le, that is the neutralino, is given exa
tly by this 
onservation

law. To be more pre
ise, this law has not been introdu
ed to allow the stability

of the neutralino, but to explain the small de
ay rate of the proton. Anyhow,

we are going to des
ribe a model that implies the stability of the DM parti
le

without introdu
ing new symmetries on this purpose.

1.5 A new model for the Dark Matter

Be
ause of the gauge symmetries, we 
an say that the SM has some �a

idental�

symmetries, like the baryoni
 number and the leptoni
 number 
onservation

(negle
ting instanton e�e
ts). These symmetries arise simply from the parti
le


ontent of the model and from the 
harges asso
iated to the parti
les. In fa
t,

in the SM the photon is stable be
ause it is massless, the ele
tron is stable

be
ause it's the lightest 
harged parti
le, the lightest neutrino is stable be
ause

it is the lightest fermion and the proton is stable be
ause of the 
onservation of

the baryoni
 number. In [12℄, Hambye followed the same prin
iple, supposing

that the stability of the DM parti
le is not given by an ad ho
 symmetry, but

only be
ause the gauge symmetry of the lagrangian and be
ause of the parti
le


ontent of the theory.

In this model, the DM parti
le is a multiplet of ve
tor parti
les. A
tually, if

in the SM we don't mix SU(2)

L

with U(1)

Y

and if we don't 
onsider fermions,

we have that the three SU(2)

L

ve
tor bosons are automati
ally stable and de-

generate in mass. They 
an't de
ay be
ause the only verti
es are the 
ubi


gauge vertex, the quarti
 verti
es of the gauge bosons and the quarti
 verti
es

with the Higgs; they have the same mass be
ause the Weinberg angle is null.

Following this idea, he introdu
es a new hidden se
tor of the lagrangian that is


onne
ted to the SM only through the so-
alled �Higgs portal�, that is a s
alar

quarti
 intera
tion with the Higgs boson. For this purpose, a new s
alar parti
le

S has been introdu
ed: it will be the only parti
le that intera
ts with the Higgs,

and so with the SM.

He supposes that there is a new non-abelian symmetry group G

′
that has

some gauge ve
tors X . The lagrangian of this new model will be invariant under

the symmetry group of the SM and under G′
at the same time. He supposes

also that all the SM parti
les are singlets under G′
. We should observe there 
an

be no mixing between SM ve
tors and G

′
ones, be
ause every tensor Fµν

has

an index relative to its own symmetry group, so we 
an't 
onstru
t intera
tion
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terms between ve
tors that are invariant under the two groups at the same time.

The 
ondition that G

′
is non-abelian is fundamental, be
ause if it is abelian,

we 
an mix the only ve
tor X of G

′
with the ve
tor boson of U(1)

Y

: every

tensor Fµν
X or Fµν

Y would be invariant under its own symmetry group and their


ontra
tion would be Lorentz-invariant.

In the following 
hapters, we will study if this model, without approxima-

tions, 
an be 
on�rmed by the experimental data, maybe in the next phase of

the work of LHC. We will analyze the general properties of the model in Chapter

2, we will study this model in an approximated 
ase in Chapter 3, in Chapter 4

we show all the 
omputations done in the most general 
ase, while in Chapter

5 we show the results in both 
ase and we dis
uss them. In the appendix we

report the Feynman rules of the model.



Chapter 2

The model

In this 
hapter we will brie�y study the properties of this model. In parti
ular

we will explain why should we study the one-loop e�e
tive potential of the

theory.

2.1 Lagrangian and parti
le 
ontent

Let's set G′ = SU(2)

X

, so the symmetry group of the entire model be
omes

U(1)

Y

×SU(2)
L

×SU(3)



×SU(2)
X

. The parti
le 
ontent is given by the SM par-

ti
le 
ontent; plus we de�ne the doublet S of the group SU(2)

X

, that is a Lorentz

s
alar and a singlet under the SM symmetry group. To keep the gauge invari-

an
e, we need to de�ne also SU(2)

X

gauge bosons, and we 
all them Xµ. These

parti
les are, a

ording to the model, the ones that 
onstitute the Dark Mat-

ter. Xµ bosons, naturally, 
an be des
ribed as Xµ = Xa
µT

a
, where T a

s are the

generators of the new symmetry group, and they have a kineti
 lagrangian term

1
4F

X
µνF

µν
X , where FX

µν = [Dµ, Dν ]. The kineti
 term of the new s
alar �eld is

|DµS|2, where Dµ = ∂µ + i gXXµ.

2.2 Tree-level potential

Instead of the SM potential we write a new potential:

V0 = λH |H†H |2 − λHS |H†H ||S†S|+ λS |S†S|2.

We observe that there isn't a mass term for the Higgs �eld nor for the new

s
alar boson: as we said before, they will get their mass through the Coleman-

Weinberg me
hanism, 
onsidering one loop 
ontributes to the theory. We want

that spontaneous symmetry breaking down to U(1)

em

×SU(3)



o

urs, and so

the degrees of freedom represented by the six Goldstone bosons of the theory

are absorbed into the longitudinal polarizations of all the gauge bosons. We 
an

expand the s
alar �eld in 
omponents as

H(x) =
1√
2

(

0
v + h(x)

)

, S(x) =
1√
2

(

0
w + s(x)

)

.

9
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An important remark is that also SU(2)

X

is broken by the VEV w of the doublet

S, so every Xµ boson gets the same mass MX = gXw/2 from the intera
tion

with the S �eld.

2.3 Parameters of the theory

The lagrangian parameters introdu
ed are λS , λH , λHS and gX . We want to �x

their values starting from the experimental data that we know. In this spe
i�



ase, experimental values of the Higgs mass, of the Dark Matter abundan
e

in the universe and of the de
ay rate of the muon will be used. Therefore,

sin
e in this model the spontaneous symmetry breaking o

urs, we have to �nd

the minimum of the one-loop e�e
tive potential, imposing two relations that

�x the expe
tation value of the two s
alar �elds. In this way also the va
uum

expe
tation values be
ome parameters we have to determine. We 
hoose gX to

be the only free parameter of the theory, so every quantity will be studied as

this parameter 
hanges.

2.4 One-loop potential

If we sear
h for the minimum of the tree-level lagrangian potential, we obtain

only one minimum point in the origin in the 
ase 4λHλS−λ2
HS > 0, so the sym-

metry is exa
tly realized (i.e. no symmetry breaking). In the opposite 
ase, the

origin be
omes a saddle point and there are four dire
tions where the potential

diverges negatively. At this point, to have spontaneous symmetry breaking, we

need to 
onsider one-loop 
orre
tions to the theory.

The 
ondition for the SSB is 4λHλS − λ2
HS < 0, and this 
ondition 
an

be dynami
ally veri�ed. If we don't want to take in a

ount the wavefun
tion

renormalization, the one-loop potential is obtained repla
ing the parameters of

the lagrangian with the running ones and setting the energy s
ale of the RGE

equal to the generi
 VEV of the �eld. In other words, the VEV is the value of

the energy where the 
ondition turns to be satis�ed.

Let's take the parameter λS : the result for the βλS
reported in the arti
le

by Hambye and Strumia is

βλS
(µ) =

dλS

d lnµ
=

1

(4π)2

[

9

8
g4X − 9g2XλS + 2λ2

HS + 24λ2
S

]

.

This result has been obtained 
onsidering both the one-loop potential and the

wave-fun
tion renormalization. We observe that β is always positive, in fa
t it

doesn't 
an
el for any value of the 
onstants. It 
an be veri�ed qui
kly negle
ting

λHS term. Sin
e λS be
omes smaller and smaller at low energies, the symmetry

breaking 
ondition depends of the renormalization s
ale.

Therefore, the sear
h of the minimum of the potential will depend of the

perturbative expansion. To 
onsider the one-loop 
ontributions we need to

start from the e�e
tive a
tion, that is the generating fun
tional of all the one

parti
le irredu
ible Green fun
tions. If we expand the e�e
tive a
tion in powers

of the derivatives of the �elds, the e�e
tive potential is the zeroth order of

this expansion. The new potential doesn't depend of the energy s
ale used to

regularize loops 
omputations.
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Quantitatively, the e�e
tive potential is the sum of the tree-level potential

and of the 
ontributions given by s
alar, fermion or ve
tor loops. To 
ompute

it, we 
onsider that the tadpoles with an external leg of a 
ertain �eld are

exa
tly the derivative of the potential with respe
t to that �eld. The 
omplete

derivation is in [3℄.



Chapter 3

Previous approximated


omputations

In this 
hapter we will study this model with some approximations. An useful

approximation is to 
onsider λHS small. It's simple understanding why the

analysis simpli�es: the �portal� between the SM and the new pie
es of the

lagrangian, represented by the λHS |H |2|S|2 term, is smaller. This 
ase has

already been studied in [13℄.

The SSB 
ondition be
omes simply λS < 0, and we 
an approximate the

expression for λS with

λS ≃ βλS
ln

s

s∗
.

Making this substitution, we obtain an approximate expression for the one-loop

e�e
tive potential:

V 1loop ≃ λH |H†H |2 − λHS |H†H ||S†S|+ βλS
ln

s

s∗
|S†S|2.

We know that, be
ause of the running of λS , there is an energy s
ale s∗ where

λS goes to zero. We observe that for the energies near to the SSB s
ale, that is

for s ≃ s∗, we have βλS
∼ λS , so the 
ondition for λHS to be negligible be
omes

λ2
HS ≪ βλS

λH .

To justify this expression for λS , we study the ve
tors loop 
ontributions to

the one-loop e�e
tive potential. If there is no mixing between H and S �elds,

the ve
tor mass depends only on the S �eld. To be more spe
i�
,

M2
X =

∂2V

∂Xµ∂Xν
∼ g2Xs2

The 
omputation of the one-loop potential leads to

V 1loop = V0 + (
onst)g4Xs4 log
s

µ
,

where all the 
ut-o� dependent terms have been absorbed in the parameters of

the potential V0. It's simple to verify that a 
hange of the renormalization s
ale

doesn't lead to a modi�
ation of the potential. In fa
t, 
hanging the renormal-

ization s
ale from µ1 to µ2, we obtain a variation of the 
oupling 
onstant of

12
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the quarti
 term:

λS(µ1) = λS(µ2) + (
onst)g4X log

(

µ1

µ2

)

In this way, we 
hoose to renormalize all the potential to the s
ale s∗: the
quarti
 terms will be

(

λS(s
∗) + (
onst)g4X ln

µ

s∗

)

s4 +

(

(
onst)g4Xs4 log
s

s∗
+ (
onst)g4Xs4 log

s∗

µ

)

We de�ned s∗ as the energy s
ale where renormalized λS 
an
els, and be
ause

of this only the logarithmi
 term remains.

If we 
onsider also S loops and wavefun
tion renormalization, we obtain that

the quarti
 term gets a fa
tor βλS
log s

s∗ . Bea
use of this, the one-loop potential


an be written as before in the approximation of small λHS .

Now we 
an �nd the minimum of this potential, so we 
an 
ompute the

va
uum expe
tation values of the two s
alar �elds, H and S. We impose that

the �rst derivatives with respe
t to the �elds 
an
els simultaneously. We obtain

{

2λH |H |2 − λHS |S|2 = 0

−2λHS |H |2 + βλS
|S|2 + 4βλS

|S|2 ln S
s∗ = 0.

From the �rst equation we obtain the 
ondition

v =

√

λHS

2λH
w,

while from the se
ond we obtain

−λ2
HS

λH
+ βλS

+ 4βλS
ln

s

s∗
= 0

that, 
onsidering λ2
HS ≪ βλS

λH , leads to the expression for the minimum:

w = s∗e−
1

4

At this point we should study the mass terms of the h and s �elds. The quadrati

terms of the potential have the form

(h, s)v2
(

2λH −
√
2λHλHS

−
√
2λHλHS λHS + 2βλS

λH/λHS

)(

h
s

)

We diagonalize the mass matrix and we obtain, in the limit of small λHS , the

eigenvalues

m2
1 ≃ 2v2

(

λH − λ2
HS

βλS

)

m2
2 ≃ 2v2

βλS
λH

λHS

The mass eigenve
tors h1 and h2 mix with an angle α:

sin 2α = v2
√
8λHλHS

m2
2 −m2

1

.
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In the limit of small λHS we get m2 ≫ m1, and sinα ≃ α, so

α ≃ λ
3

2

HS√
2λHβλS

.

We identify the h1 eigenstate with the physi
al Higgs boson, som1 ≈ 125.6 GeV.

We observe that the other eigenve
tor intera
ts like the Higgs does with the SM

parti
les, but its intera
tion must be res
aled by a fa
tor sinα. Therefore, we


an write the Higgs mass as m2
1 ≃ w2λHS , this means that Higgs mass value 
an

be written as a fun
tion of the va
uum expe
tation value of this new doublet

and of the mixing 
onstant λHS .

Now we have to study, in the approximation of small λHS , if this model

for the DM reprodu
es the experimental data of the DM abundan
e in the

universe. As we said in the introdu
tion, DM went through a freeze-out, so we


ompute, in this approximation, the expressions for the non-relativisti
 
ross

se
tions for the annihilation and the semiannihilation pro
esses of the DM. In

this approximation the only relevant intera
tions are the gauge intera
tions,

and the mixing between the two s
alars is negligible. As a 
onsequen
e, The

annihilation pro
ess has two DM parti
le in the initial state and two s parti
les
in the �nal state. The semiannihilation has again two X parti
les in the initial

state, but in the �nal state there is an s and an X . If we 
all v the relative

velo
ity of the two initial parti
les and we suppose that MX ≫ Ms we have

these results:

σv
ann

=
11g2X

1728πw2
σv

semiann

=
g2X

32πw2
.

where we have already averaged over the polarization and over the gauge 
om-

ponents. The DM abundan
e is reprodu
ed for

σ
ann

v +
1

2
σ
semiann

v = 2.2× 10−26

m

3/s = 1.83× 10−9
GeV

−2,

where the fa
tor 1/2 for the semiannihilations indi
ates that the number of DM

parti
les that annihilate is just one. From this relation, we 
an observe that the


oupling 
onstant gX and the VEV of the S boson are linked by

gX ≃ w

2.0 TeV

.

To be thorough, we skip the 
omputation of the 
orre
tions to the VEV of

the Higgs. This quantity, however, depends on the 
orre
tion to the propagator

of the W, so in this approximation there are no new terms, 
ompared to the

SM.

The results of all the 
omputations of this approximation are reported in

Se
tion 5.1.



Chapter 4

Complete 
omputation

In this 
hapter we will explain the 
omputations that have been done. In the

Introdu
tion we said that we improve the SM introdu
ing some new lagrangian

terms, so new parameters arise in our model. The new parameters that we 
an

�nd dire
tly in the lagrangian are λH , λHS , λS and gX . We have to 
onsider

also the s
alar VEVs v and w between the unknown parameters. We aim to �nd

the values of these parameters in terms of some known experimental data, so

we 
ompute some appropriate observables like the Higgs mass, the annihilation

and semiannihilation 
ross se
tions of the DM, the muon de
ay amplitude.

In se
tion 4.1 we des
ribe the result of the one-loop potential of our model.

Sin
e in this model the spontaneous symmetry breaking o

urs, we have to �nd

the minimum of the potential. Thus, we des
ribe the equations to minimize the

one-loop potential in se
tion 4.2. In Se
tion 4.3 we explain how to 
ompute the

masses of the two s
alar parti
les, 
onsidering that they are not mass eigenstates,

and we report the result of the one-loop propagator of the Higgs boson of our

model. In the se
tion 4.4 we study the pro
esses that led to the annihilation of

the Dark Matter before the freeze-out, so we report the 
omputations relative

to DM annihilation and semi-annihilation 
ross se
tions. In the last se
tion

of this 
hapter (Se
tion 4.5) we will 
onsider the one-loop 
orre
tions to the

Higgs VEV of our model, studying the amplitude of the muon de
ay pro
ess

and 
onsidering that the value of the Fermi 
onstant is well known.

4.1 One-loop potential

We observe that the potential V0, depending of the parameter values, 
an have

a minimum in the origin or not having a minimum at all, so, if we want SSB in

this model, we 
an't 
onsider only the tree-level potential. To �nd a minimum

point di�erent from the origin we have to 
onsider the one-loop 
ontributions


omputing the one-loop potential. The result for this theory is

V 1loop = V0 + V1

15
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V1 =
1

64π2

[

3f5/6(m
2
Z)− f3/2(ξZm

2
Z) + 6f5/6(m

2
W )− 2f3/2(ξWm2

W )+

+9f5/6(m
2
X)− 3f3/2(ξXm2

X)− 12f3/2(m
2
t ) +

∑

i

f3/2(mi)

]

where Z, W and X loops (with longitudinal polarization for every ve
tor), quark

top loops (we suppose that this quark is the only fermion that gives a 
ontribu-

tion), s
alar parti
les and ghosts loops have been 
onsidered. In this expression,

ξZ , ξW and ξX are the parameters that determine the gauge �xing for the Z,

W and X se
tors, respe
tively. We will 
hoose the Landau gauge for the next


omputation, so we will take ξZ = ξW = ξX = 0. The sum is over all the s
alar

parti
les of the theory, that is the six Goldstone bosons and the two s
alars h
and s. The expression for the f fun
tion is

fc(x) = x2

(

1

ǫ
+ ln

x

µ2
− c

)

,

where µ is the energy s
ale where we are renormalizing the theory. The three

expressions for the mass of the Goldstone bosons related to the H �eld are

m1,2 = v2λH −w2λHS/2 + ξWM2
W and m3 = v2λH −w2λHS/2 + ξZM

2
Z , while

for the three Goldston bosons of the S �eld we have m4,5,6 = w2λS−v2λHS/2+
ξXM2

X . Regarding of the mass of the two physi
al s
alars, we observe the tree-

level mass matrix is not diagonal:

M0 =

(

3v2λH − w2λHS/2 −vwλHS

−vwλHS 3w2λS − v2λHS/2

)

.

Sin
e we want to des
ribe s
alar �elds using the eigenstates of this matrix, the

eigenvalues are their masses:

m1,2 =
1

4

[

v2(6λH − λHS)− w2(λHS − 6λS)

±
(

−2v2w2(λHS(6λH − 7λHS) + 6λS(6λH + λHS))

+v4(6λH + λHS)
2 + w4(λHS + 6λS)

2
)1/2

]

.

The intera
tion eigenstates don't 
oin
ide with mass eigenstates: we will see

that this fa
t is true also 
onsidering one-loop 
orre
tions of the theory. In the

Se
tion 4.3 a mixing angle that 
orrelates the two basis will be introdu
ed. In

our 
omputation, for simpli
ity, we 
hoose the Landau gauge for the expression

of the e�e
tive one-loop potential, so we set ξZ = ξW = ξX = 0

4.2 Minimum equations

Sin
e SSB o

urs, we put the origin in a minimum point of the e�e
tive potential.

Sin
e the one-loop potential is s
ale invariant, we 
an 
hoose freely the energy

s
ale of the renormalized theory. To simplify 
al
ulations, we 
hoose the 
riti
al

s
ale where 4λHλS − λ2
HS = 0. The existen
e of this s
ale is reasonable, in fa
t

we 
an see in Figure 4.1 the running of the parameters of our model up to the

Plan
k mass s
ale, �xing gX = 1 at a s
ale of 100 GeV [13℄. We observe that



CHAPTER 4. COMPLETE COMPUTATION 17

there is a s
ale where λS be
omes negative, so the s
ale where 4λHλS−λ2
HS = 0

exists 
ertainly. In this situation, the tree-level potential has minima on two

straight lines passing for the origin:

v

w
=

(

λH

λS

)1/4

.

This 
hoi
e is possibile be
ause, if we study the running of the 
onstants as a

fun
tion of the energy [13℄, we 
an see there is an energy µ where this 
ondition

is satis�ed. At this point, the parameters of the theory be
ome λH , λHS and

the 
riti
al s
ale energy µ.

Figure 4.1: Running of the parameter of the model, up to Plan
k mass s
ale,

�xing gX = 1 for µ = 100 GeV.

Now we swit
h to the e�e
tive potential. Sin
e we have to �nd the minimum,

we impose that the �rst derivatives of the potential with respe
t to the �elds


an
el:

∂V

∂v
= v(λHv2 − w2λHS/2) + Th = 0,

∂V

∂w
= w(λSw

2 − v2λHS/2) + Ts = 0,

where Th and Ts represent the tadpoles related to the two s
alars. By de�nition,

tadpoles are the one parti
le irredu
ible diagrams with only one external leg

and they 
orrespond to the �rst derivative of the one-loop 
ontributions to the

e�e
tive potential with a minus sign.

4.3 Higgs mass

The mass matrix has this form:

M2
1loop

=

(

m̃2
1 +Π11 Π12

Π12 m̃2
2 +Π22

)

,

where m̃1,2 represent the tree-level masses of the s
alars, while Π represents the

one-loop 
orre
tions to the propagator. If we want to 
onsider only the one-loop
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approximation, o�-diagonal terms are not important, and 
an be negle
ted, so

we have

M2
1 = m̃2

1 +Π11(m̃
2
1), M2

2 = m̃2
2 +Π22(m̃

2
2)

In the 
riti
al 
ondition we have 
hosen, one of the tree-level masses of the

two s
alars 
an
els, so the 
orre
tion to it wouldn't be a small perturbation

anymore, but it would 
onstitute the entire value of the observable. Be
ause of

this, we 
ompute the one-loop 
orre
tion of the masses in two subsequent steps.

We split Π(p2) in two parts:

Π(p2) = Π(0) + ∆Π(p2).

For ea
h s
alar �eld we 
an obtain Π(0) 
omputing the se
ond derivatives with

respe
t to the �eld, for example

Πhh(0) = ∂2V/∂h2.

Then, we do the same thing for Πss(0) and for the o�-diagonal term and we


onstru
t a matrix mass. We will 
all the eigenstates of this matrix h1 and h2,

while the eigenvalues are a good approximation for the s
alar masses. We 
all

them m1 and m2. We observe that the one-loop potential doesn't take into

a

ount the renormalization of the wavefun
tion. To 
ompute this 
orre
tion

we have to start from the one-loop 
orre
tion to the propagators of h1 and

h2. More pre
isely, we 
an write ∆Π(p2) = Π(p2) − Π(0), so we 
ompute the

one-loop 
ontributions to the two-points Green fun
tion of ea
h mass eigenstate

for a generi
 p2 and for p = 0 and than we do the subtra
tion. As we said

before, the o�-diagonal terms of these 
orre
tions are not important, so the

�nal expressions for the masses of the s
alars are:

M2
1 = m2

1 +∆Π11(m
2
1), M2

2 = m2
2 +∆Π22(m

2
2)

We observe that the one-loop 
ontributions to the propagators of the s
alar

parti
les are similar to those of the Higgs propagator of the Standard Model. It

is 
onvenient to expand the 
omputation of the SM, be
ause we should des
ribe

the intera
tion of the s
alars between them, the intera
tion with SU(2)

X

gauge

bosons, and the mixing between the s
alars.

Regarding of the mixing between the s
alars, we need to introdu
e the mixing

angle α, that is the rotation angle needed to diagonalize the one-loop mass

matrix. Following the notation of the arti
le written by Hambye and Strumia,

it is de�ned by the relations

h1 = h cosα+ s sinα and h2 = s cosα− h sinα.

The Feynman rules of this model are similar to those of the SM: one should


onsider that the Higgs boson �eld 
orresponds to one of the eigenstates h1 and

h2. Regarding of the intera
tions with the gauge bosons of the SU(2)×U(1)
symmetry group and with the fermions, one should take the SM verti
es and


onsider, for every Higgs line present in the diagrams, two similar diagrams

that show respe
tively a line of h1 or a line of h2 in its pla
e. The �rst of them

takes a fa
tor cosα, while the se
ond a fa
tor sinα. All the other intera
tions,
that are substantially modi�ed, are 
olle
ted in the appendix. In Figure 4.2 we

report all the one-loop diagrams that 
ontribute to the Higgs propagator of this

model.
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φZ
X

φZ
X

Z W X c±X

cZX cZ c± Z W X

φZ φ± φX

Z W X

h1 h2 φ± φZ φ±
X

φZ
X t

h1

h1

h1

h2

h2

h2

φ±
X

φ±
X

φZ

φZ

φ±

φ±

Figure 4.2: Contributi ad un loop al propagatore dell'Higgs.

We indi
ate with φ the Goldstone bosons of the Standard Model, while φX

are the Goldstone bosons of the new symmetry group. In the same way we 
all

respe
tively c and cX the ghost �elds of the SM and of the group SU(2)X .

The expression for the Higgs one-loop propagator reported below is the sum

of all these diagrams, in the same order as in Figure 4.2:
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Πhh(p
2) =

3A0

(

M2
h

) (

λH cos4 α− λHS sin2 α cos2 α+ λS sin4 α
)

16π2

+
A0

(

M2
s

) (

(6λH + 4λHS + 6λS) cos
2 α sin2 α− λHS

(

cos4 α+ sin4 α
))

32π2

+
A0

(

M2
W ξ
) (

2λH cos2 α− λHS sin2 α
)

16π2

+
A0

(

M2
Zξ
) (

2λH cos2 α− λHS sin2 α
)

32π2

+
3A0

(

M2
XξX

) (

2λS sin2 α− λHS cos2 α
)

32π2

+

(

− g22M
4
Z

32M2
Wπ2

+
3g22A0

(

M2
Z

)

M2
Z

64M2
Wπ2

+
g22ξA0

(

M2
Zξ
)

M2
Z

64M2
Wπ2

)

cos2 α

+

(

−g22M
2
W

16π2
+

3g22A0

(

M2
W

)

32π2
+

ξg22A0

(

M2
W ξ
)

32π2

)

cos2 α

+ 3

(

−g2XM2
X

32π2
+

3g2XA0

(

M2
X

)

64π2
+

ξXg2XA0

(

M2
XξX

)

64π2

)

sin2 α

+

(

−3M2
t A0

(

M2
t

)

g22
16M2

Wπ2
− 3

(

4M4
t −M2

t p
2
)

B0

(

p2,M2
t ,M

2
t

)

g22
32M2

Wπ2

)

cos2 α

+
9B0

(

p2,M2
h ,M

2
h

) (

2vλH cos3 α+ wλS sin3 α− λHS

(

w sinα cos2 α+ v sin2 α cosα
))2

32π2

+
(

vλHS cos3 α− 2wλHS sinα cos2 α− 6wλS sinα cos2 α

−6vλH sin2 α cosα− 2vλHS sin2 α cosα+ wλHS sin3 α
)2 B0

(

p2,M2
h ,M

2
s

)

32π2

+
(

vλHS cos3 α+ 6vλH sinα cos2 α+ 2vλHS sinα cos2 α

−2wλHS sin2 α cosα− 6wλS sin2 α cosα− wλHS sin3 α
)2 B0

(

p2,M2
s ,M

2
s

)

32π2

+
B0

(

p2,M2
W ξ,M2

W ξ
)

(2vλH cosα− wλHS sinα)2

16π2

+
B0

(

p2,M2
Zξ,M

2
Zξ
)

(2vλH cosα− wλHS sinα)2

32π2

+
3B0

(

p2,M2
XξX ,M2

XξX
)

(2wλS sinα− vλHS cosα)2

32π2

− g22M
2
W ξ2B0

(

p2,M2
W ξ,M2

W ξ
)

cos2 α

32π2

− g22M
4
Zξ

2B0

(

p2,M2
Zξ,M

2
Zξ
)

cos2 α

64M2
Wπ2

− 3g2XM2
Xξ2XB0

(

p2,M2
XξX ,M2

XξX
)

sin2 α

64π2
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+

(

(

M2
W (ξ − 1)− p2

)

A0

(

M2
W

)

g22
32M2

Wπ2
+

(

(1− 2ξ)M2
W + p2

)

A0

(

M2
W ξ
)

g22
32M2

Wπ2

+

(

(ξ − 1)2M4
W − 2p2(ξ + 1)M2

W + p4
)

B0

(

p2,M2
W ,M2

W ξ
)

g22
32M2

Wπ2

−
(

p2 −M2
W ξ
)2

B0

(

p2,M2
W ξ,M2

W ξ
)

g22
32M2

Wπ2

)

cos2 α

+

(

(

M2
Z(ξ − 1)− p2

)

A0

(

M2
Z

)

g22
64M2

Wπ2
+

(

(1− 2ξ)M2
Z + p2

)

A0

(

M2
Zξ
)

g22
64M2

Wπ2

+

(

(ξ − 1)2M4
Z − 2p2(ξ + 1)M2

Z + p4
)

B0

(

p2,M2
Z,M

2
Zξ
)

g22
64M2

Wπ2

−
(

p2 −M2
Zξ
)2

B0

(

p2,M2
Zξ,M

2
Zξ
)

g22
64M2

Wπ2

)

cos2 α

+ 3

(

(

M2
X(ξX − 1)− p2

)

A0

(

M2
X

)

g2X
64M2

Xπ2
+

(

(1− 2ξX)M2
X + p2

)

A0

(

M2
XξX

)

g2X
64M2

Xπ2

+

(

(ξX − 1)2M4
X − 2p2(ξX + 1)M2

X + p4
)

B0

(

p2,M2
X ,M2

XξX
)

g2X
64M2

Xπ2

−
(

p2 −M2
XξX

)2
B0

(

p2,M2
XξX ,M2

XξX
)

g2X
64M2

Xπ2

)

sin2 α

+

(

g22(ξ − 1)A0

(

M2
W ξ
)

32π2
+

g22
(

12M4
W − 4p2M2

W + p4
)

B0

(

p2,M2
W ,M2

W

)

64M2
Wπ2

+
g22
(

p2 − 2M2
W ξ
)2

B0

(

p2,M2
W ξ,M2

W ξ
)

64M2
Wπ2

− g22M
2
W

8π2
− g22(ξ − 1)A0

(

M2
W

)

32π2

−g22
(

(ξ − 1)2M4
W − 2p2(ξ + 1)M2

W + p4
)

B0

(

p2,M2
W ,M2

W ξ
)

32M2
Wπ2

)

cos2 α

+

(

g22(ξ − 1)A0

(

M2
Zξ
)

M2
Z

64M2
Wπ2

+
g22
(

12M4
Z − 4p2M2

Z + p4
)

B0

(

p2,M2
Z ,M

2
Z

)

128M2
Wπ2

+
g22
(

p2 − 2M2
Zξ
)2

B0

(

p2,M2
Zξ,M

2
Zξ
)

128M2
Wπ2

− g22M
4
Z

16M2
Wπ2

− g22(ξ − 1)A0

(

M2
Z

)

M2
Z

64M2
Wπ2

−g22
(

(ξ − 1)2M4
Z − 2p2(ξ + 1)M2

Z + p4
)

B0

(

p2,M2
Z ,M

2
Zξ
)

64M2
Wπ2

)

cos2 α

+ 3

(

g2X
(ξX − 1)A0

(

M2
XξX

)

64π2
+

g2X
(

12M4
X − 4p2M2

X + p4
)

B0

(

p2,M2
X ,M2

X

)

128M2
Xπ2

+
g2X
(

p2 − 2M2
XξX

)2
B0

(

p2,M2
XξX ,M2

XξX
)

128M2
Xπ2

− g2XM2
X

16π2
− g2X(ξX − 1)A0

(

M2
X

)

64π2

−g2X
(

(ξX − 1)2M4
X − 2p2(ξX + 1)M2

X + p4
)

B0

(

p2,M2
X ,M2

XξX
)

64M2
Xπ2

)

sin2 α.
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In this formula A0 and B0 are the Passarino-Veltman fun
tions:

A0(m
2) =

1

iπD/2

∫

dqD
1

q2 −m2 + i ǫ

B0(p
2,m2

1,m
2
2) =

1

iπD/2

∫

dqD
1

(q2 −m2 + i ǫ)((q + p)2 −m2
2 + i ǫ)

.

We 
an observe that the diagrams with a loop of the 
harged Goldstone of

SU(2)

X

and the analogous with the neutral one give the same result; this 
ause

the fa
tor 3 before some of the 
ontributions. We 
an make a similar argument

for the ve
tors: if we de�ne

X+
µ =

X1 − iX2

√
2

X−
µ =

X1 + iX2

√
2

,

the X3
boson, in these diagrams, gives exa
tly the same result of the X±

bosons. We have to observe that in these expressions, the plus or minus sign

doesn't represent the ele
tri
al 
harge of the parti
le, this is just a 
onvenient

reparametrization of the �elds.

4.4 Dark Matter abundan
e

In the introdu
tion we introdu
ed the DM as a thermal reli
. To be more pre
ise,

we are going to des
ribe whi
h pro
esses are important before the freeze-out of

these parti
les. If we 
onsider that X ve
tors intera
ts only between them and

with the s boson, we 
an say that the fundamental pro
esses are the annihilation

pro
esses, like XX → ss and the semiannihilation pro
esses, like XX → Xs.
In Figure 4.3 we 
olle
ted all the diagrams that des
ribe annihilations. From

the Feynman diagrams for the annihilation, we see that the �nal state 
an be

a 
ouple of h1, a 
ouple of h2 or one of ea
h. A 
ouple of X ve
tors 
an

annihilate via a dire
t quarti
 intera
tion, via an intermediate h1 or h2 in the s-


hannel, via an intermediateX in the t-
hannel or via an intermediate Goldstone

boson, also in the t-
hannel. In Figure 4.5 there are all the diagrams relative

to the semiannihilations. The �nal state is 
omposed by a ve
tor parti
le X
and a s
alar parti
le, that 
an be h1 or h2. Pre
isely, if we 
all σ

ann

and

σ
semiann

the non-relativisti
 
ross se
tions of these pro
esses, and we say v is

the relative velo
ity between the parti
les, we 
an say the experimental Dark

Matter abundan
e is reprodu
ed if

σ
ann

v +
1

2
σ
semiann

v = 2.2× 10−26

m

3/s = 1.83× 10−9
GeV

−2.

We added a fa
tor 1/2 for the semi-annihilations be
ause the number of DM

parti
les drops only by one unit, so their 
ontribution to the total annihilation

of the DM is just one half of the 
ontribution of the annihilations. Sin
e we have

no informations about whi
h of the three X bosons is annihilating and about

their polarizations, we have to average these 
ross se
tions over the polarizations

of the ve
tors and over their SU(2)

X

index.

To do the 
omputation of these 
ross se
tions it's useful to 
onsider the

known analogous annihilations and semiannihilations of the SM ve
tor boson
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Figure 4.3: Feynman diagrams for the annihilation pro
ess of the DM with

s
alars in the �nal state.
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Figure 4.4: Feynman diagrams for the annihilation pro
ess of the DM with W,

Z or Top quark in the �nal state.

into Higgs bosons and adopt these results: in our model we need to take into

a

ount the presen
e of two s
alars and their mixing.

These 
ross se
tions are gauge-invariants but, to simplify this 
omputation,

we 
hoose the unitary gauge, that is the gauge in whi
h diagrams with Goldstone

parti
les don't give any 
ontribution. There are some 
ontributions to the 
ross

se
tions depending on the �nal state: for ea
h pie
e we 
ompute the amplitude,

that is the sum of all the Feynman diagrams with that �nal state. Then, to

get the 
ross se
tion of this pro
ess, we 
ompute the squared modulus of ea
h

amplitude and we multiply by the phase spa
e fa
tor of the pro
ess itself. To get

the total 
ross se
tion we sum all the 
ontributions. In this 
omputation we 
an


onsider only the non-relativisti
 limit, so the initial parti
les are about at rest.

To get the �nal expressions for all the 
ross se
tions we used the appli
ation

Mathemati
a, that automati
ally 
ompute the 
ross se
tions, given the value

of ea
h Feynman diagram amplitude. These are the resuls for the annihilation


ross se
tions. There are six 
ontributions: the �rst one has two h1 parti
les
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Figure 4.5: Feynman diagrams for the semiannihilation pro
ess of the DM.

in the �nal state, the third one has two h2 parti
les, while the se
ond one has

one of ea
h s
alar. The last three 
ontributions are related respe
tively to the

produ
tion of a 
ouple of W, a 
ouple of Z or a 
ouple of Top quarks.

σvh1,h1

ann

=
√

M2
X −M2

s

×
(

g4X
(

11M4
s − 28M2

XM2
s + 44M4

X

)

cos4(α)

1152M3
X (M2

s − 2M2
X)

2
π

+
g3X
(

M2
s − 10M2

X

)

cos2(α)

2304M2
X (M2

s − 4M2
X) (M2

s − 2M2
X) (4M2

X −M2
h)π

×
(

3wλHSM
2
h − 18wλSM

2
h + 12vλH sin(2α)M2

h − 6vλHS sin(2α)M2
h

− 6vλH sin(4α)M2
h − 3vλHS sin(4α)M2

h +M2
swλHS − 16M2

XwλHS

− 6M2
swλS + 96M2

XwλS − 4w
(

6λSM
2
h +M2

s λHS − 4M2
X(λHS + 6λS)

)

cos(2α)

− 3
(

M2
h −M2

s

)

w(λHS + 2λS) cos(4α)− 12M2
s vλH sin(2α)

−2M2
s vλHS sin(2α) + 32M2

XvλHS sin(2α) + 6M2
s vλH sin(4α) + 3M2

s vλHS sin(4α)
)

+
g2X

6144MX (M2
h − 4M2

X)
2
(M2

s − 4M2
X)

2
π

×
(

−3wλHSM
2
h + 18wλSM

2
h − 12vλH sin(2α)M2

h + 6vλHS sin(2α)M2
h

+ 6vλH sin(4α)M2
h + 3vλHS sin(4α)M2

h −M2
swλHS + 16M2

XwλHS

+ 6M2
swλS − 96M2

XwλS + 4w
(

6λSM
2
h +M2

s λHS − 4M2
X(λHS + 6λS)

)

cos(2α)

+ 3
(

M2
h −M2

s

)

w(λHS + 2λS) cos(4α) + 12M2
s vλH sin(2α)

+2M2
s vλHS sin(2α)− 32M2

XvλHS sin(2α)− 6M2
s vλH sin(4α)− 3M2

s vλHS sin(4α)
)2
)
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σvh1,h2

ann

=
√

M2
X −M2

h

(

g4X
(

11M4
h − 28M2

XM2
h + 44M4

X

)

sin4(α)

1152M3
X (M2

h − 2M2
X)

2
π

+
g3X
(

M2
h − 10M2

X

)

1152M2
X (M2

h − 4M2
X) (M2

h − 2M2
X) (4M2

X −M2
s )π

×(−24
(

M2
s − 4M2

X

)

wλS sin6(α)− 4
(

M2
h − 3M2

s + 8M2
X

)

vλHS cos(α) sin5(α)

− 4w
(

2(λHS + 3λS)M
2
h − 3M2

sλHS + 4M2
X(λHS − 6λS)

)

cos2(α) sin4(α)

+ 4
(

M2
h − 4M2

X

)

wλHS cos4(α) sin2(α)

+v
(

(3λH + λHS)M
2
h − 3M2

sλH − 4M2
XλHS

)

sin3(2α)
)

+
g2X

6144MX (M2
h − 4M2

X)
2
(M2

s − 4M2
X)

2
π

(

wλHSM
2
h − 6wλSM

2
h + 12vλH sin(2α)M2

h + 2vλHS sin(2α)M2
h

+ 6vλH sin(4α)M2
h + 3vλHS sin(4α)M2

h + 3M2
swλHS − 16M2

XwλHS

− 18M2
swλS + 96M2

XwλS + 4w
(

λHSM
2
h + 6M2

sλS − 4M2
X(λHS + 6λS)

)

cos(2α)

+ 3
(

M2
h −M2

s

)

w(λHS + 2λS) cos(4α)− 12M2
s vλH sin(2α) + 6M2

s vλHS sin(2α)

−32M2
XvλHS sin(2α)− 6M2

s vλH sin(4α)− 3M2
s vλHS sin(4α)

)2
)



CHAPTER 4. COMPLETE COMPUTATION 26

σvh2,h2

ann

=

√

M4
h − 2 (M2

s + 4M2
X)M2

h + (M2
s − 4M2

X)
2

×
(

g4X

36864M8
X (M2

h +M2
s − 4M2

X)
2
π

×
(

M8
h − 4

(

M2
s + 3M2

X

)

M6
h + 2

(

3M4
s + 6M2

XM2
s + 46M4

X

)

M4
h

− 4
(

M6
s − 3M2

XM4
s + 2M4

XM2
s + 56M6

X

)

M2
h +M8

s + 704M8
X

−224M2
sM

6
X + 92M4

sM
4
X − 12M6

sM
2
X

)

sin2(2α)

+
g3X
(

M4
h − 2

(

M2
s +M2

X

)

M2
h +M4

s + 40M4
X − 2M2

sM
2
X

)

sin(2α)

18432M5
X (M2

h − 4M2
X) (M2

h +M2
s − 4M2

X) (4M2
X −M2

s )π

×
(

6vλHM2
h − vλHSM

2
h + 2wλHS sin(2α)M2

h + 12wλS sin(2α)M2
h

+ 3wλHS sin(4α)M2
h + 6wλS sin(4α)M2

h − 6M2
s vλH +M2

s vλHS

− 4
(

M2
h +M2

s − 8M2
X

)

vλHS cos(2α)− 3
(

M2
h −M2

s

)

v(2λH + λHS) cos(4α)

+ 2M2
swλHS sin(2α)− 16M2

XwλHS sin(2α) + 12M2
swλS sin(2α)

−96M2
XwλS sin(2α)− 3M2

swλHS sin(4α)− 6M2
swλS sin(4α)

)

+
g2X

12288M2
X (M2

h − 4M2
X)

2
(M2

s − 4M2
X)

2
π

×
(

6vλHM2
h − vλHSM

2
h + 2wλHS sin(2α)M2

h + 12wλS sin(2α)M2
h

+ 3wλHS sin(4α)M2
h + 6wλS sin(4α)M2

h − 6M2
s vλH +M2

s vλHS

− 4
(

M2
h +M2

s − 8M2
X

)

vλHS cos(2α)− 3
(

M2
h −M2

s

)

v(2λH + λHS) cos(4α)

+ 2M2
swλHS sin(2α)− 16M2

XwλHS sin(2α) + 12M2
swλS sin(2α)

−96M2
XwλS sin(2α)− 3M2

swλHS sin(4α)− 6M2
swλS sin(4α)

)2
)

σvWW
ann

=
g2X sin2(2α)

(

M2
h −M2

s

)2√
M2

X −M2
W

(

3M4
W − 4M2

WM2
X + 4M4

X

)

288πMXv2 (M2
h − 4M2

X)
2
(M2

s − 4M2
X)

2

σvZZ
ann

=
g2X sin2(2α)

(

M2
h −M2

s

)2√
M2

X −M2
Z

(

4M4
X − 4M2

XM2
Z + 3M4

Z

)

576πMXv2 (M2
h − 4M2

X)
2
(M2

s − 4M2
X)

2

σvTT
ann

=
g2X sin2(2α)

(

M2
h −M2

s

)2√
M2

X −M2
T

(

5M2
T − 8M2

X

)

M2
T

2304πMXv2 (M2
h − 4M2

X)
2
(M2

s − 4M2
X)

2

Therefore, we 
ompute in the same way the result for the semiannihilation


ross se
tion. There are two 
ontributions in this 
ase: the �rst of them 
omes

from the pro
esses with h1 in the �nal state, the se
ond 
omes from the pro
esses

with h2. The expression below is the sum of these two 
ontributions.

σ
semiann

v =
g4X
(

M4
s − 10M2

sM
2
X + 9M4

X

)3/2
(sin(α) + cos(α))2

128πM4
X (M2

S − 3M2
X)

2 .

We observe that in the limit of small λHS , we get the same result of the

approximate 
omputation in Chapter 3.
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4.5 Corre
tions to the VEV of the Higgs

The VEV of the Higgs is �xed by the amplitude of the muon de
ay pro
ess. In

the Feynman diagrams for this de
ay there is a W propagator, so, if we want to

study our model at one-loop level in perturbation theory, we have to 
onsider the

one-loop 
orre
tions of this propagator too. We 
an �nd the relation between

the Higgs VEV and GF , that is the Fermi 
onstant.

GF√
2
=

1

2v2
(1 + ∆r),

where ∆r en
loses all the 
ontributions given by the 
orre
tions to the W boson

propagator. At tree-level approximation, as in the SM 
omputations, we have

∆r = 0. The experimental value of the Fermi 
onstant is 1.16637×10−5
GeV

−2
,

so, 
onsidering only tree-level diagrams we obtain v ≃ 246.22 GeV from the

previous relation.

In our model ∆r is slightly di�erent from the known result of the Standard

Model. As in the previous 
omputations, in our work we need to 
onsider the

presen
e of two s
alars and their mixing. The 
ontributions where Higgs doesn't

enter are the same of the SM, so the result of this 
omputation is well-known,

and we don't 
ompute it again. To understand better how to improve the SM

to take in a

ount the new s
alar and the mixing, we have to 
onsider the terms

of the SM where the Higgs boson enters the 
omputation. In the SM there are

three diagrams, giving ea
h a 
ontribution to ∆r:

∆rSM
seagull

=
1

(4πv)2
A0(m

2
h)

∆rSM
rainbow h/W =

1

(4πv)2

[

−M2
W +M2

h

2
+

M2
WA0(M

2
W )−M2

hA0(M
2
h)

M2
h −M2

W

]

∆rSM
rainbow h/ϕ =

1

(4πv)2

[

4M2
W

A0(M
2
h)−A0(M

2
W )

M2
h −M2

W

]

We 
onsider that for every Higgs line of the SM we have to draw two 
opies

of the same diagram in our model, adding a fa
tor cos2 α for the Higgs boson


ontributions and a fa
tor sin2 α for the s boson. We get:

∆r(1loop) = ∆rSM(Mh → Mh1
) cos2 α+∆rSM(Mh → Mh2

) sin2 α.
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The 
omplete result is

∆r(1loop) =
1

16π2v2

×
[

3M2
T − M2

W +M2
Z

2
− 6A0

(

M2
T

)

+A0(M
2
h) cos

2 α+A0

(

M2
s

)

sin2 α

+

(

9− 3M2
W

M2
W −M2

Z

)

A0

(

M2
W

)

+

(

6M2
W − 3M2

Z

M2
W −M2

Z

)

A0

(

M2
Z

)

+
4M2

W

(

A0

(

M2
h

)

−A0

(

M2
W

))

M2
h −M2

W

cos2 α+
4M2

W

(

A0

(

M2
s

)

−A0

(

M2
W

))

M2
s −M2

W

sin2 α

+

(

M2
WA0

(

M2
W

)

−M2
hA0

(

M2
h

)

M2
h −M2

W

− M2
h +M2

W

2

)

cos2 α

+

(

M2
WA0

(

M2
W

)

−M2
sA0

(

M2
s

)

M2
s −M2

W

− M2
s +M2

W

2

)

sin2 α

]

To make the 
omputations simpler, we have 
onsistently 
hosen the Landau

gauge ξ = 0 for the expressions of the s
alar propagators and for the 
orre
tion

to the VEV of the Higgs. In the 
omputation of the annihilation and semi-

annihilation 
ross se
tions we used the unitary gauge, sin
e the 
ross se
tions

are themselves gauge invariant.



Chapter 5

Results

In the previous 
hapter we have 
onsidered the 
omputation of some observables

in our model. Now we have to write a system of equation, imposing that our

observables agree with the experimental data. As we said before, we introdu
ed

six parameters in this model, but the observable that we 
omputed are only

�ve. So we will determine the values of all the parameters, ex
ept for gX : we

hoose it as the only free parameter. In this 
hapter we will show the predi
tion

of the model about some observables, like the produ
tion 
ross se
tion of the

new s
alar or the dire
t dete
tion 
ross se
tion for the DM parti
le. In Se
tion

5.1 we 
onsider the approximation of small λHS , while in Se
tion 5.2 we show

the results for the 
omplete model.

5.1 Small λHS approximation

As we said in Chapter 3, the bulk of the 
orre
tion of the theory is given by

the SU(2)

X

gauge intera
tions, so in this �rst 
ase we will 
onsider only these


ontribution to the one-loop potential. The �rst simpli�ed system to be solved

takes in a

ount only three equations and three unknowns: we are going to

�nd λH , λHS and µ2
, setting the values for the VEVs as v = 246.22 GeV and

w = 2.0 TeV× gX . The last relation 
omes from the approximate 
ase studied

by Hambye and Strumia in [13℄, where they 
omputed the annihilation and

semi-annihilation 
ross se
tions for the gauge-only model.











∂V 1loop

∂h = 0
∂V 1loop

∂s = 0

m2
h = (125.6GeV)2

In the previous 
hapter, we have seen that there are two mass eigenstates, but

we don't know whi
h of them is the Higgs boson and whi
h is the s boson.

Thus, in our 
omputation we have to 
onsider both the 
ases. In the �rst 
ase

we 
hoose the �rst eigenstate to be the Higgs parti
le, so we use its eigenvalue

in the third equation; in the se
ond 
ase, we make the same 
omputation but

the Higgs is the se
ond eigenstate.

For ea
h value of the free parameter gX we solve the system and we get

a point in the spa
e of the parameters. With these data we draw some plots

29
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showing several interesting quantities. First of all, we plot the produ
tion 
ross

se
tion of the new s
alar as a fun
tion of its mass and as a fun
tion of gX .
The expression for this 
ross se
tion is similar to that of the Higgs: the only

fa
tor to take in a

ount is sin(α)2, where α is the mixing angle between the

s
alars. Therefore, a 
onvenient 
hoi
e is to plot the 
ross se
tion in SM Higgs

unit. In the �rst diagram of Figure 5.1 we 
an see two bran
hes, on the left

the bran
h for a new s
alar lighter than the Higgs, and on the right the 
ase

in whi
h the new s
alar weights more than 125.6 GeV. We observe that there

is a dis
ontinuity: there are no points with a mass for the s boson in the range

between about 105 GeV and 145 GeV. To understand why, we need to 
onsider

that the mass matrix is not diagonal, so the eigenvalues are never degenerate.

In this diagram we report also the bounds set by LEP or ATLAS and CMS

experiments, so the points in the grey areas are not a

eptable. We 
an see that

for a big range of the free parameter the predi
tions for the masses and for the


ross se
tions of the new s
alar give values 
ompatible with the bounds of LEP

and LHC experiments. In the se
ond diagram of Figure 5.1 we plotted σ
SI

, that

is the spin-independent 
ross se
tion for DM dire
t dete
tion, as a fun
tion of

the DM mass, with the 
hange of gX . Its expression is:

σ
SI

=
m4

Nf2

16πv2

(

1

m2
1

− 1

m2
2

)2

g2X sin2(2α)

where f is the nu
leon mass matrix, f ≈ 0.295, and mN is the nu
leon mass.

From this diagram, we 
an see that this model is 
ompatible with the experi-

mental data for the dire
t dete
tion when gX & 0.8.
Our approximated results reprodu
e those of [13℄. We 
an now add the more

pre
ise 
omutation performed in this thesis. To start, we modify the one-loop

potential, taking in a

ount other intera
tion. The following plots (Figure 5.2)

were made adding new 
ontributes to the potential, like s
alar loops, Top quark

loops, SM ve
tor loops, Goldstone loops. In ea
h diagram we leave the result of

the X-loops-only 
ase as small points. From the 
omparison of these plots we


an observe that the biggest 
orre
tion to the produ
tion 
ross se
tion of the

new s
alar is given by Top loops.

5.2 The 
omplete model

Finally, we present the results for the 
omplete model. In this se
tion we 
on-

sider the 
ontributions of all the intera
tions to the one-loop potential of the

theory. Furthermore, we 
onsider also the 
orre
tions to the Higgs mass and to

the s mass given by wave-fun
tion renormalization (not taken in a

ount by the

e�e
tive potential), the exa
t relation between w and gX given by the annihi-

lation and the semiannihilation 
ross se
tions, the 
orre
tion to the Higgs VEV

through the value of the Fermi 
onstant.

To do this we want to solve a system of �ve equations with �ve unknowns.
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We are going to �nd the values of λH , λHS , µ
2
, v and w:































∂V 1loop

∂h = 0
∂V 1loop

∂s = 0

M2
h = m2

h +∆Π(p2) = (125.6GeV)2

1
v2

√
2
(1 + ∆r(1loop)) = GF = 1.16637× 10−5

GeV

−2

σ
ann

v + 1
2σsemiann

v = 2.2× 10−26

m

3/s = 1.83× 10−9
GeV

−2

Again, we will 
onsider that this system has to be solved in two 
ases, be
ause we

don't know whi
h of the eigenvaluesmh of the one-loop mass matrix 
orresponds

to the Higgs. The only free parameter will be gX , so we have to 
ompute the

solution for every value of it.

As in the se
tion above, we have a new set of solutions showing us the values

of the parameters of the model as fun
tion of gX . With these data we build

the diagram of the produ
tion 
ross se
tion of the new s
alar as a fun
tion of

the mass of the s
alar itself (Figure 5.3, above). Also in this 
omplete 
ase we

observe that there is a dis
ontinuity of about about 20 GeV around the Higgs

mass, and so the wavefun
tion renormalization that we have 
onsidered for both

the s
alars doesn't give a big 
ontribution in this sense. The plots report the

bounds given by LEP experiments for energies lower than the Higgs mass and

by ATLAS and CMS experiments for greater energies. Below, in Figure 5.3, we

present the spin independent 
ross se
tion for dire
t dete
tion in the 
omplete


ase. The model is not ex
luded by LUX2013 data for gX & 0.8
Furthermore, for 
ompleteness, in Figure 5.5 we plot how the parameters of

the theory depend on gX .
In the Con
lusions we make further 
omments and observations about the

results given above.
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Figure 5.1: Above, the predi
tion of the gauge-only approximation about the


ross se
tion of the new s
alar. The grey areas are ex
luded by LEP or CMS

and ATLAS experiments. Below, the predi
tion of the σ
SI

, the gray areas are

ex
luded by XENON2012 and LUX2013 experiments. Everything is 
omputed

as a fun
tion of the parameter gX , that varies as shown in the 
olour legend.
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Figure 5.2: Cross se
tion of the new s
alar as a fun
tion of the parameter gX ,

onsidering also Top loops (above) or 
onsidering W, Z, s
alars and Goldstone

loops (below)
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Figure 5.3: Our �nal result: above, the predi
tion of the 
omplete model for

the produ
tion 
ross se
tion of the new s
alar. Below we report the predi
tion

for the 
ross se
tion for DM dire
t dete
tion. These quantities are plotted as a

fun
tion of the parameter gX , that varies a

ordingly to the 
olors on the legend.
For a 
omparison, in these diagrams we leave the data of the approximated


ase as smaller points. As in the approximated 
ase, in Figures 5.1 and 5.2,

the grey areas are ex
luded by LEP or CMS and ATLAS experiments for the

diagram above, while the bounds 
omes from XENON2012 and from LUX2013

experiments for the diagram below.
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Figure 5.4: We plot again the �rst diagram of Figure 5.3, enlarging on the area

where the data show similar masses for the s
alars.
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Figure 5.5: Predi
tions of the 
omplete model: above, the parameter λHS , that

is the 
oe�
ient of the �portal� term. Below, the parameters w and µ, the
mass of the extra s
alar Ms and the mass of the DM parti
le. w is the va
uum

expe
tation value of the new s
alar s, while µ indi
ate the 
riti
al s
ale at whi
h

4λHλS − λ2
HS = 0, so the s
ale µ in our 
omputations e�e
tively repla
ed the

parameter λS . All these quantities are plotted as a fun
tion of the parameter

gX .



Chapter 6

Con
lusion

We 
onsidered an extension of the SM that des
ribes the Dark Matter and

proposes a solution to the hierar
hy problem.

In the introdu
tion we analized the hierar
hy problem and the presen
e of

quadrati
ally divergent 
orre
tions to the dimensional parameter of the SM.

In the 
ontext of ��nite naturalness�, we introdu
ed a model without a mass

term for the Higgs. The masses of the parti
les arise from a Coleman-Weinberg

me
hanism, so spontaneous symmetry breaking does not o

ur at tree-level, but

is generated by the radiative 
orre
tions to the theory. We supposed that there

is a new parti
le S, s
alar doublet under an extra group SU(2)X , and new ve
tor

bosons X of the same gauge group. The only 
ommuni
ation between this new

se
tor and the SM is through the so-
alled �Higgs portal�, that is the quarti


vertex between two Higgs �elds and two S �elds. The VEVs of the two s
alars

are �xed by the one-loop potential. The intera
tions with the s
alars give mass

to all the parti
les of the model, so all the s
ales are related and exponentially

suppressed with respe
t to the Plan
k s
ale.

Astrophisi
al and 
osmologi
al experiments demand the presen
e of Dark

Matter. We don't know, as we wrote in the introdu
tion, what it is, and there are

a lot of hypoteses on it. We think it is a parti
le, and in our model we introdu
ed

the ve
tor boson X of SU(2)X , that is a good 
andidate to represent the Dark

Matter. It has a mass of about 1 TeV, and if we make a rough estimate, as we did

in the introdu
tion, this is the order of magnitude of the s
ale where the mass of

the DM parti
le is expe
ted, assuming it is a thermal reli
t. Furthermore, this

parti
le has to be stable. Some theories have to introdu
e spe
ial symmetries

with the spe
i�
 purpose of keeping the DM parti
le stable. In our model, X
ve
tors are automati
ally stable, be
ause of the gauge symmetry and be
ause

of the parti
le 
ontent of the theory.

Another pe
uliarity of this simple model is the presen
e of only one free

parameter. The other parameters introdu
ed in the model are �xed by the

experimental values of the DM 
osmologi
al abundan
e, of the Fermi 
onstant

and of the Higgs mass.

The original work presented in this thesis 
onsisted in performing for the

�rst time a pre
ise 
omputation of the predi
tions of the model for the LHC

and for dire
t dete
tion experiments.

The new 
omputation in
ludes for the �rst time a full one-loop 
omputation

of the s
alar masses and of the e�e
tive potential, and a full tree-level 
ompu-

37
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tation of the DM annihilations and semi-annihilations relevant for the thermal

DM abundan
e. We �nd that:

• there are new solutions missed in the previous 
omputation; however they

are in the already ex
luded area.

• in [13℄ the diagrams the predi
tions for the DM mass and dire
t dete
-

tion 
ross se
tion show a �gap�. In our 
omputations, this dis
ontinuity

disappeared, being an artifa
t of the previous approximated 
omputation.

• given the mass Ms of the extra s
alar, the 
ross se
tion for its produ
tion

for LHC in
reases by a fa
tor ≈1.3 with respe
t to the approximated 
om-

putation. Anyhow, this 
ross se
tion is 
ompatible with the experiments

in a small range around gX ≈ 0.9 when s is lighter than Higgs, and for

gX & 1.0 when s is heavier.

• the predi
tion for the DM dire
t dete
tion is 
ompatible with LUX2013

and XENON2012 bounds for gX & 0.8.



Appendix A

Feynman rules of the model

A.1 Overview

The lagrangian of the theory is:

L = Lmh=0
SM

− 1

4
F ′
µνF

′µν + |DµS|2 + λHS |HS|2 − λS |S|4.

This lagrangian is invariant under U(1)

Y

×SU(2)
L

×SU(3)



×SU(2)
X

. We intro-

du
ed a new symmetry group, SU(2)

X

, and S, that is a doublet under this group.
In this model there is the spontaneous symmetry breaking, so we write dire
tly

the H and S �elds as a sum of a va
uum expe
tation value and a physi
al �eld:

H =

(

0
v+h√

2

)

S =

(

0
w+s√

2

)

.

Therefore, we observe that the mass matrix for h and s is not diagonal: we 
all
h1 and h2 the mass eigenstates and we de�ne a mixing angle α:

(

cosα − sinα
sinα cosα

)(

h
s

)

=

(

h1

h2

)

The expression DµS represents the 
ovariant derivative of the �eld: (∂µ +
i gXXµ)S, where the Xµ �elds are the ve
tor bosons of the new symmetry group

SU(2)

X

. The Feynman rules of this model are similar to those of the SM: we

should 
onsider that the Higgs boson �eld is not simply h, but it is rotated, so
it is a 
ombination between h1 and h2. To write the rules for the intera
tions

with the W and Z bosons and with fermions, we just take the SM verti
es and

we 
onsider, for every line of the Higgs �eld, two similar diagrams: in ea
h of

them the h line is repla
ed with a h1 line or a h2 line respe
tively. The �rst of

them takes a cosα fa
tor, while the se
ond takes a sinα fa
tor. All the other

intera
tions, that are substantially modi�ed, are listed below.

A.2 S
alar and ve
tor intera
tions

A.2.1 Propagators

The propagators of the h1 and h2 s
alars are

39
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h1,2

p
=

i

p2 −m2
h1,2

+ i ǫ
,

while the ve
tor boson propagators, that have all the same mass mX = gXw
2 ,

be
ome

µ, a ν, b

X

p
=

− i δab

p2 −m2
X + i ǫ

[

gµν − (1− ξ)
pµpν

p2 − ξm2
X

]

We 
an express the ve
tor bosons in this way:

X+
µ =

X1 − iX2

√
2

X−
µ =

X1 + iX2

√
2

,

where the plus or minus doesn't represent the ele
tri
al 
harge of the parti
le,

this is just a 
onvenient reparametrization of the �elds.

A.2.2 Gauge verti
es

Gauge bosons only

µ, a

ν, b

ρ, c

= gXǫabc

× [gµν(p1 − p2)
ρ + gνρ(p2 − p3)

µ + gρµ(p3 − p1)
ν ]

p1 + p2 + p3 = 0

µ, a ν, b

ρ, c σ, d

= − i g2X [ǫeabǫecd(gµρgνσ − gµσgνρ)

+ ǫeacǫedb(gµσgνρ − gµνgσρ)

+ ǫeadǫebc(gµνgρσ − gµρgνσ)]

p1 + p2 + p3 + p4 = 0
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Verti
es involving s
alars

X

X

µ, i

ν, j

h1

= i gµνδijgXmX sinα =
i

2
gµνδijg2Xw sinα

X

X

µ, i

ν, j

h2

= i gµνδijgXmX cosα =
i

2
gµνδijg2Xw cosα

X

X

µ, i

ν, j

h1

h1

=
i

2
gµνδijg2X sin2 α

X

X

µ, i

ν, j

h1

h2

=
i

4
gµνδijg2X sin 2α

X

X

µ, i

ν, j

h2

h2

=
i

2
gµνδijg2X cos2 α
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A.2.3 S
alar verti
es

Quarti


h1

h1

h1

h1

= −6 i(λH cos4 α−λHS cos2 α sin2 α+λS sin4 α)

h2

h2

h2

h2

= −6 i(λS cos4 α−λHS cos2 α sin2 α+λH sin4 α)

h2

h2

h1

h1

= − i[(6λH + 4λHS + 6λS) cos
2 α sin2 α+

− λHS(cos
4 α+ sin4 α)]

h2

h1

h1

h1

= 3 i(2λH cos3 α sinα+λHS
sin 4α

4
−2λS cosα sin3 α)

h1

h2

h2

h2

= 3 i(2λH cosα sin3 α−λHS
sin 4α

4
−2λS cos3 α sinα)
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Cubi


h1

h1

h1
= −3 i(2λHv cos3 α−λHS(w cos2 α sinα+v cosα sin2 α)+2λSw sin3 α)

h1

h1

h2
= i(λHSw cos3 α+ 6λHv cos2 α sinα+ 2λHSv cos

2 α sinα

− λHSv sin
3 α− 6λSw cosα sin2 α− 2λHSw cosα sin2 α)

h1

h2

h2
= i(λHSv cos

3 α− 6λHv cosα sin2 α− 2λHSv cosα sin2 α+

+ λHSw sin3 α− 6λSw cos2 α sinα− 2λHSw cos2 α sinα)

h2

h2

h2
= −3 i(2λSw cos3 α+λHS(v cos

2 α sinα−w cosα sin2 α)−2λHv sin3 α)
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A.2.4 Goldstone bosons intera
tions

Besides the Goldston bosons of the Higgs, there are three new Goldstone bosons

relative to the S �eld, and we 
all them ϕi
X . Their propagator is

ϕi
X

p
=

i

p2 − ξXm2
X + i ǫ

A.2.5 Goldstone verti
es

An useful way to des
ribe Goldstone bosons is:

ϕ+
X =

ϕ1
X − ϕ2

X√
2

ϕ−
X =

ϕ1
X + ϕ2

X√
2

ϕZ
X = ϕ3

X

Goldstone-ve
tors verti
es

X

X

µ, i

ν, j

ϕa
X

ϕb
X

=
i

2
gµνδijδabg2X

ϕ−
X

ϕ+
X

p−

p+

X3
µ

= − i
gX
2
(p+µ − p−µ )

h1

ϕ∓
X

k

p

X±
µ

= − i
gX
2
(pµ − kµ) sinα
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h1

ϕZ
X

k

p

X3
µ

= − i
gX
2
(pµ − kµ) sinα

h2

ϕ∓
X

k

p

X±
µ

= − i
gX
2
(pµ − kµ) cosα

h2

ϕZ
X

k

p

X3
µ

= − i
gX
2
(pµ − kµ) cosα

ϕZ
X

ϕ∓
X

k

p

X±
µ

= − i
gX
2
(pµ − kµ)
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Goldstone-s
alars verti
es

ϕi

ϕj

h1
= − i δij(2λHv cosα− λHSw sinα)

ϕi

ϕj

h2
= i δij(2λHv sinα+ λHSw cosα)

ϕX
i

ϕX
j

h1
= − i δij(2λSw sinα− λHSv cosα)

ϕX
i

ϕX
j

h2
= − i δij(2λSv cosα+ λHSw sinα)

h1

h1

ϕi

ϕj

= − i δij(2λH cos2 α− λHS sin2 α)
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h2

h2

ϕi

ϕj

= − i δij(2λH sin2 α− λHS cos2 α)

h1

h2

ϕi

ϕj

= i δij(2λH + λHS) sinα cosα

h1

h1

ϕX
i

ϕX
j

= − i δij(2λS sin2 α− λHS cos2 α)

h2

h2

ϕX
i

ϕX
j

= − i δij(2λS cos2 α− λHS sin2 α)

h1

h2

ϕX
i

ϕX
j

= − i δij(2λS + λHS) sinα cosα
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A.2.6 Goldstone only verti
es

ϕ+
X

ϕ−
X

ϕ+
X

ϕ−
X

= −4 iλS

ϕ+
X

ϕ−
X

ϕX
Z

ϕX
Z

= −2 iλS

ϕX
Z

ϕX
Z

ϕX
Z

ϕX
Z

= −3 iλS

ϕ+
X

ϕ−
X

ϕ+

ϕ−

= iλHS

ϕZ
X

ϕZ
X

ϕZ

ϕZ

= iλHS

ϕ+
X

ϕ−
X

ϕZ

ϕZ

= iλHS
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ϕZ
X

ϕZ
X

ϕ+

ϕ−

= iλHS

ϕ+

ϕ−

ϕ+

ϕ−

= −4 iλH

ϕ+

ϕ−

ϕZ

ϕZ

= −2 iλH

ϕZ

ϕZ

ϕZ

ϕZ

= −3 iλH
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A.3 Ghost �elds

To �x the gauge over the new ve
tor bosons, we introdu
e three new 
ouples of

ghost and anti-ghost �elds. We 
all them ciX and c̄iX . Their propagator is

ciX

p
=

i

p2 − ξXm2
X + i ǫ

A.3.1 Ghost verti
es

Also for the ghosts, a useful way to des
ribe them is

c+X =
c1X − c2X√

2
c−X =

c1X + c2X√
2

,


onsidering that antighost �elds are de�ned with the opposite signs. Similarly

to the 
ase of the ve
tor bosons, the signs are not the ele
tri
 
harge of the

parti
le.

c±X

c±X

p
X3

µ

= ∓ i gXpµ

c3X

c±Xp

X±
µ

= ± i gXpµ

c±X

c±X

h1

= − i

4
ξg2Xw sinα
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c±X

c±X

h2

= − i

4
ξg2Xw cosα

c3X

c3X

h1

= − i

4
ξg2Xw sinα

c3X

c3X

h2

= − i

4
ξg2Xw cosα

c±X

c±X

ϕZ
X

= ± i

4
ξg2Xw
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c3X

c±X

ϕ∓
X

=
i

4
ξg2Xw

c±X

c3X

ϕ±
X

= − i

4
ξg2Xw
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