
Dynamial generation of the weak and Dark

Matter sale

Giulio Maria Pelaggi

Marh 17, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/20258774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Contents

1 Introdution 2

1.1 Hierarhy problems . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Naturalness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Finite naturalness . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 What is the Dark Matter? . . . . . . . . . . . . . . . . . . . . . . 5

1.5 A new model for the Dark Matter . . . . . . . . . . . . . . . . . 7

2 The model 9

2.1 Lagrangian and partile ontent . . . . . . . . . . . . . . . . . . . 9

2.2 Tree-level potential . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Parameters of the theory . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 One-loop potential . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Previous approximated omputations 12

4 Complete omputation 15

4.1 One-loop potential . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Minimum equations . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Higgs mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.4 Dark Matter abundane . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Corretions to the VEV of the Higgs . . . . . . . . . . . . . . . . 27

5 Results 29

5.1 Small λHS approximation . . . . . . . . . . . . . . . . . . . . . . 29

5.2 The omplete model . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Conlusion 37

A Feynman rules of the model 39

A.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.2 Salar and vetor interations . . . . . . . . . . . . . . . . . . . . 39

A.2.1 Propagators . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.2.2 Gauge verties . . . . . . . . . . . . . . . . . . . . . . . . 40

A.2.3 Salar verties . . . . . . . . . . . . . . . . . . . . . . . . 42

A.2.4 Goldstone bosons interations . . . . . . . . . . . . . . . . 44

A.2.5 Goldstone verties . . . . . . . . . . . . . . . . . . . . . . 44

A.2.6 Goldstone only verties . . . . . . . . . . . . . . . . . . . 48

A.3 Ghost �elds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A.3.1 Ghost verties . . . . . . . . . . . . . . . . . . . . . . . . 50

1



Chapter 1

Introdution

One year ago, the �rst LHC run ended. The most important result of this

experimental work is ertainly the disovery of a partile, with a mass of about

126 GeV, that is fully ompatible with the Higgs boson of the Standard Model

(SM) [1℄. This is an important step of the modern physis beause this partile

on�rms that the preditions on the Standard Model spetrum were true. For

the physiists, there is another �hidden� result that may be more important than

the suess of the Standard Model: in the data olleted over the last years we

an observe the omplete absene of new physis.

Maybe LHC will never show us unexpeted phenomena. Although it an be

quite disappointing, this result means that we have to revise the approah to

new physis.

1.1 Hierarhy problems

In the '70s, the guideline for theoretial physis was gauge symmetry: physiists

started to assume that partile physis is well desribed by gauge theories, and

the experiments on�rmed this hypotesis. This way of thinking led to the de�-

nition of the Standard Model. Though the SM explains a wide range of physial

phenomena, it has still some unsatisfatory aspets. First of all, it doesn't take

in aount osmologial phenomena, like the Dark Matter (DM), or the expan-

sion of the universe, or the theory of gravitation: this make us think that it is

a low energy e�etive theory of a more omplete theory. The idea is that the

dominant terms of the omplete theory at low energies are the SM ones, while

the new terms, that desribe new physis, are non renormalizable. If we all LD

the lagrangian with terms of mass dimension D, we ould write the expression

for a general lagrangian as

L = Λ4L0 + Λ2L2 + ΛL3 + L4 +
1

Λ
L5 +

1

Λ2
L6 + . . .

For example, L2 an be the Higgs mass term, while the gauge ouplings are

an L4 term. The renormalizable terms, that are the terms with D ≤ 4, have
a parameter that gets big orretions proportional to Λ4−D

, while the non-

renormalizable terms, with D > 4, are suppressed by an energy sale that we

all Λ: above this sale the new physis must be onsidered. For simpliity, we
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CHAPTER 1. INTRODUCTION 3

have supposed only one sale Λ, but every term an have his own sale, and so

the relative e�et an appear at di�erent energies. To be more preise, when

there are symmetries, the orrespondene between the dimension of the term and

the power of the orretion is no longer true. For example, given the absene

of a fermioni mass term in the lagrangian beause of the gauge symmetry,

we observe that the fermion masses don't get a orretion proportional to Λ,
but only a orretion proportional to v log Λ. Unfortunately, there is not suh

symmetry for the Higgs mass parameter.

At this point, we should introdue another problem of the SM, known with

the name of �hierarhy problem� [2℄. One an ask why the dimensional parame-

ters of the SM, that is the Higgs mass, has to get the value that we an measure

experimentally. The SM doesn't explain the link between the Higgs mass and

other fundamental energy sales, e.g. the Plank mass. To desribe our world,

we need to ��ne-tune� the parameters, that is, we have to set preisely their

bare value to reprodue the experimental value.

As we said before, to make things worse, the SM implies quadratially di-

vergent orretions to the Higgs mass (explained in [3℄, p.292). If we write

M2
h = Mh

2
bare

+ δM2
h , the bigger one-loop orretion to the Higgs mass omes

from the Top quark loop [5℄:

δM2
h(top) ≈

12λ2
t

(4π)2

∫

dk4

k2
≈ 12λ2

t

(4π)2
Λ2
UV

,

where Λ
UV

is the ultra-violet ut-o� of the integral over the momenta. This

makes the �ne-tuning even more di�ult, beause, with the systematis of renor-

malization, we absorb the divergenes in the bare parameters. In this way we

have to set a big bare mass suh that the anellations between the bare mass

and the orretion gives the experimental value of the parameter. The only

solution to this problem seems to be that the new physis is at low energies

(about at the weak sale), suh that the orretions to the mass of the salar

are not greater than the value itself.

1.2 Naturalness

A new guideline for the physis beyond the SM may be naturalness [2℄. Fun-

damentally this idea onsists in replaing the brutal ut-o� of the quadrati

divergenes with some new physis, suh that the orretion to the dimensional

quantities of the SM are smaller than the quantity itself. Therefore, new physis

should explain the origin of the values of the parameters of the Standard Model.

In other words, naturalness suggests the existene of new physis at a ertain

sale Λ
nat

suh that the orretions δm2
h ∼ Λ

nat

2
are less than m2

h.

Following this guideline, some popular theories has been introdued.

In the past, the sienti� ommunity studied the di�erene between the

harged pion and the neutral pion masses, getting QED quadrati divergenes.

This problem has been solved saying that the fundamental partiles are the

quarks and the mesons are omposite. Perhaps following this idea, in the '90s

a lot of artiles about Tehniolor and similar theories have been published [4℄.

These models onsider the Higgs boson as a omposite partile, and the di-

vergenes for the Higgs mass are ounterated by the exhange of vetor-like

partiles between the Higgs omponents. In this ase the Higgs mass depends
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of his omponents, and so there is not a mass term a�eted by quadrati diver-

genes.

Another old problem, now solved, is about the eletron mass: the result of

the lassial omputation gives a linear divergene for this quantity. The hiral

symmetry and the vauum polarization have been the solution of this problem,

and the positron was the new physis that has been disovered. In a similar way,

SuperSymmetry (SUSY) introdues superpartners for the SM partiles, that is,

for every fermion of the SM there is a bosoni superpartner and vie-versa [6℄.

This model solves the hierarhy problem preventing quadrati orretions: eah

divergent ontribution of fermioni loops anels with the ontribution of its

superpartners. In this way, the deoupling ours: the high energy physis

does not a�et the Higgs mass at low energies beause it is �proteted� by

this mehanism and gets only logarithmi orretions. A SUSY solution to the

hierarhy problem implies, in absene of �ne tuning, a Λ
SUSY

. 100 GeV and

new partiles around this weak sale. Sine the SUSY orretion to the Higgs

mass is proportional to the di�erene between the Top quark mass and the Stop

partile mass, if we want a small orretion we need a light enough Stop mass.

Therefore, SUSY provides us a partile, the neutralino, that is stable and it an

desribe the Dark Matter.

Looking at the data of the last period, i.e. the absene of these partiles

around the weak sale, the sale of the new SUSY partiles had to move toward

greater energy values. So SUSY models an no longer provide a fully natural

solution to the hierarhy problem: in most popular models the �ne-tuning is at

the ≈ 100 level.

1.3 Finite naturalness

At this point, we ould think that the naturalness guideline is wrong and the

naturalness riterion has to be abandoned. Maybe the solution to the hierarhy

problem is anthropi: our universe is just one of the many possibilities and

our existene just �requires� these values of the parameters. Almost all the

reviews on this argument are theoretial, beause it's very di�ult to imagine

an experiment to prove these ideas. Instead, we think that some aspets of the

naturalness an be reovered.

Brie�y, ��nite naturalness� onsists in ignoring the quadrati divergenes.

The idea is that we an neglet these divergenes exatly as we do in dimensional

regularization omputations. In this ase the only remaining divergenes are

the logarithmi ones; they don't give a big ontribution if there are no partiles

muh heavier than the Higgs. For example, the reliability of �nite naturalness

for the SM has been studied in [7℄. At one loop they rede�ne this parameter

onsidering all the one partile irreduible Feynman diagrams with one loop.

Following the the standard renormalization proedure of absorbing the ∼ 1/ǫ
poles in the Passarino-Veltman funtions expansion, they observe that Higgs

mass value doesn't hange so muh up to the Plank mass sale. At this point,

the greater ontribution omes from the quark top loop, that doesn't weight a

lot more than Higgs. They obtain a �ne-tuning of about 10−1
.

In this work we will address the Higgs hierarhy problem and the desription

of the Dark Matter as a partile. As in [8℄, the fundamental idea is to start

from a model with a lagrangian that doesn't have any mass terms for salar
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partiles. The masses will arise from the quantum orretions to the theory and

they won't depend of the renormalization sale used. The Coleman-Weinberg

mehanism provides us a method to explain a non-zero value of the masses, also

if the mass term is null, onsidering the radiative orretions of the theory. In

[9℄ Coleman and Weinberg explain that the spontaneous symmetry breaking is

not neessarily driven by a negative mass term for the salar partile, but it an

arise beause of high-order proesses involving virtual partiles. They show how

to ompute the e�etive ation, that is the funtional generator of all the One

partile irreduible (1PI) Green funtions. To understand better, let's onsider

the simple ase of a single salar �eld: we all it φ.
If we expand the e�etive ation in powers of the �eld, we get

Γ =
∑

n

∫

dx1 . . . dxnΓ
(n)φ(x1) . . . φ(xn),

where eah Γ(n)
is the sum of all the Feynman diagrams with n external legs.

Therefore, expanding the e�etive ation in powers of the momenta, about the

point where the momenta are null, we get

Γ =

∫

d4x

(

−V (φ) +
1

2
Z(φ)∂µφ∂

µφ+ . . .

)

and so we de�ne the e�etive potential V as the term of order zero of this expan-

sion. We an say that it is the generator of all the 1PI Feynman diagrams with

vanishing momenta, and at tree-level it oinides with the lagrangian potential

of the theory. Now, if we are interested in the vauum expetation values (VEV),

we have to minimize this e�etive potential, so we have to impose dV/dφ = 0.
In our model, spontaneous symmetry breaking doesn't our at tree-level,

beause the tree-level potential doesn't have a negative mass term for the salar.

Depending on the values of the parameters, it an have a minimum in the origin

or an't have a minimum at all. However, if we onsider the one-loop e�etive

potential, new minima arise and SSB ours.

In this way we get rid of the presene of dimensional parameters that make

the lagrangian not sale invariant, and we prevent quadrati divergenes for the

running of these parameters.

One of the new partiles introdued in our model is a good andidate to

represent the Dark Matter.

1.4 What is the Dark Matter?

An important evidene for the existene of new physis is Dark Matter. Some

phenomena, at di�erent sales, strongly suggest us the existene of this new

type of matter [10℄, [11℄. First, we all it �dark� beause the interations with

the photons or with the other SM partiles are negligible, while it interats

essentially through the gravitational fore. One of the evidenes omes from

the observation of the rotation urves of the galaxies: we an say that they

are not desribed by a solid-body rotation, nor by a Keplerian rotation. In

fat, the tangent omponent of the veloity beomes �at at high distanes from

the enter. We an explain this phenomenon with a simple idea: we suppose

that in the galaxies there is a DM radial density pro�le suh that the veloity
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distribution is reprodued. Another phenomena that an be explained with the

DM is the weak lensing: there are some proesses, like the ollisions between

galaxy lusters, in whih the spatial o�-set between the visible matter and the

gravity has been measured looking at the deviation of the path of the light.

Furthermore, DM is required in osmologial models to explain, for example,

the formation of the strutures in our universe.

We don't know what is the Dark Matter, beause we an �see� it only through

gravitational interations. We don't even know if DM is made of astro-physial

objets or by partiles. Some physiists have analyzed the ase of the Dark

Matter as ultra-heavy objets like dead stars, planets or blak holes. Other

ideas involve new partiles, for example the ultra-light salars, like the axions.

If we want to desribe the Dark Matter as a partile, none of the partiles we

already know are good andidates, beause we know that DM interats with

SM partiles only gravitationally. The lightest neutrino, that have negletable

weak interations, is exluded beause Dark Matter has to be non-relativisti.

We know that in the �rst period of the history of the universe everything was

in thermal equilibrium beause of the satterings between the partiles. During

this phase the partile density of the Dark Matter was, in the non-relativisti

limit, the Boltzmann distribution, so

neq
DM

= g

(

mT

2π

)3/2

e−m
DM

/T .

During the evolution of the universe the temperature started to drop. We �nd

that satterings with Dark Matter beame less and less: at this point, only

annihilation proesses between DM partiles ontinue to our. The variation

in time of the DM number density an be obtained from the Boltzman equation:

dn

dt
+ 3Hn = −〈σv〉

(

n2 − n2
eq

)

where H is the Hubble rate, 〈σv〉 is the thermal averaged ross setion for the

annihilation times the relative veloity of the partiles, and n
eq

is the number

density at thermal equilibrium. The temperature ontinued to derease, until

its value went well below the rest mass of the DM partile. The Dark Matter

stopped every interation, went out of equilibrium and beame stable, beause

the interation rate Γ beame slower than the expansion of the universe, de-

sribed by the Hubble rate. This phenomenon is alled �freeze-out�. If we all

σ the ross setion for the satterings, we an say that for T . m
DM

we have

that

Γ ∼ 〈n
DM

σ〉 . H ∼ T 2

M
Pl

.

In this formula we used angular parenthesis to indiate the average over the

energies, while M
Pl

is the Plank mass. Aording to this, we think DM is a

thermal relit, that is it ould not reah thermal equilibrium, so it did not anni-

hilate ompletely. In a very rough approximation of the observed DM density,

we an assume that this DM density it is about the same of the photons, and

so, if we suppose that σ ∼ (g/m
DM

)2, where g is the oupling onstant, we an

get an estimate for the mass of the Dark Matter partile: it is about a TeV.

m
DM

g
∼
√

T
nowM

Pl

≈ 1 TeV
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With similar omputations we an estimate when the freeze-out happened. The

important result is that the temperature of the DM partiles at that moment

was almost an order of magnitude less than their mass, so these partiles are

in a non-relativisti regime. The osmologial DM abundane Ω
DM

h2 ≈ 0.11 is
reprodued for

σv ≈ 2.2× 10−26
m

3/s = 1.83× 10−9
GeV

−2

Another property of this DM partile is the stability: some models require

the introdution of an ad ho Z2 symmetry to ensure the stability of the DM

partile. For example, one of the elements of the SUSY theory is the onser-

vation of the R-parity [6℄. Every partile of the SUSY model has an R parity

number. To summarize, we an say that SM partiles have R = 1 while the new
supersymmetri partiles has R = −1 and the stability of the lightest super-

symmetri partile, that is the neutralino, is given exatly by this onservation

law. To be more preise, this law has not been introdued to allow the stability

of the neutralino, but to explain the small deay rate of the proton. Anyhow,

we are going to desribe a model that implies the stability of the DM partile

without introduing new symmetries on this purpose.

1.5 A new model for the Dark Matter

Beause of the gauge symmetries, we an say that the SM has some �aidental�

symmetries, like the baryoni number and the leptoni number onservation

(negleting instanton e�ets). These symmetries arise simply from the partile

ontent of the model and from the harges assoiated to the partiles. In fat,

in the SM the photon is stable beause it is massless, the eletron is stable

beause it's the lightest harged partile, the lightest neutrino is stable beause

it is the lightest fermion and the proton is stable beause of the onservation of

the baryoni number. In [12℄, Hambye followed the same priniple, supposing

that the stability of the DM partile is not given by an ad ho symmetry, but

only beause the gauge symmetry of the lagrangian and beause of the partile

ontent of the theory.

In this model, the DM partile is a multiplet of vetor partiles. Atually, if

in the SM we don't mix SU(2)

L

with U(1)

Y

and if we don't onsider fermions,

we have that the three SU(2)

L

vetor bosons are automatially stable and de-

generate in mass. They an't deay beause the only verties are the ubi

gauge vertex, the quarti verties of the gauge bosons and the quarti verties

with the Higgs; they have the same mass beause the Weinberg angle is null.

Following this idea, he introdues a new hidden setor of the lagrangian that is

onneted to the SM only through the so-alled �Higgs portal�, that is a salar

quarti interation with the Higgs boson. For this purpose, a new salar partile

S has been introdued: it will be the only partile that interats with the Higgs,

and so with the SM.

He supposes that there is a new non-abelian symmetry group G

′
that has

some gauge vetors X . The lagrangian of this new model will be invariant under

the symmetry group of the SM and under G′
at the same time. He supposes

also that all the SM partiles are singlets under G′
. We should observe there an

be no mixing between SM vetors and G

′
ones, beause every tensor Fµν

has

an index relative to its own symmetry group, so we an't onstrut interation
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terms between vetors that are invariant under the two groups at the same time.

The ondition that G

′
is non-abelian is fundamental, beause if it is abelian,

we an mix the only vetor X of G

′
with the vetor boson of U(1)

Y

: every

tensor Fµν
X or Fµν

Y would be invariant under its own symmetry group and their

ontration would be Lorentz-invariant.

In the following hapters, we will study if this model, without approxima-

tions, an be on�rmed by the experimental data, maybe in the next phase of

the work of LHC. We will analyze the general properties of the model in Chapter

2, we will study this model in an approximated ase in Chapter 3, in Chapter 4

we show all the omputations done in the most general ase, while in Chapter

5 we show the results in both ase and we disuss them. In the appendix we

report the Feynman rules of the model.



Chapter 2

The model

In this hapter we will brie�y study the properties of this model. In partiular

we will explain why should we study the one-loop e�etive potential of the

theory.

2.1 Lagrangian and partile ontent

Let's set G′ = SU(2)

X

, so the symmetry group of the entire model beomes

U(1)

Y

×SU(2)
L

×SU(3)


×SU(2)
X

. The partile ontent is given by the SM par-

tile ontent; plus we de�ne the doublet S of the group SU(2)

X

, that is a Lorentz

salar and a singlet under the SM symmetry group. To keep the gauge invari-

ane, we need to de�ne also SU(2)

X

gauge bosons, and we all them Xµ. These

partiles are, aording to the model, the ones that onstitute the Dark Mat-

ter. Xµ bosons, naturally, an be desribed as Xµ = Xa
µT

a
, where T a

s are the

generators of the new symmetry group, and they have a kineti lagrangian term

1
4F

X
µνF

µν
X , where FX

µν = [Dµ, Dν ]. The kineti term of the new salar �eld is

|DµS|2, where Dµ = ∂µ + i gXXµ.

2.2 Tree-level potential

Instead of the SM potential we write a new potential:

V0 = λH |H†H |2 − λHS |H†H ||S†S|+ λS |S†S|2.

We observe that there isn't a mass term for the Higgs �eld nor for the new

salar boson: as we said before, they will get their mass through the Coleman-

Weinberg mehanism, onsidering one loop ontributes to the theory. We want

that spontaneous symmetry breaking down to U(1)

em

×SU(3)


ours, and so

the degrees of freedom represented by the six Goldstone bosons of the theory

are absorbed into the longitudinal polarizations of all the gauge bosons. We an

expand the salar �eld in omponents as

H(x) =
1√
2

(

0
v + h(x)

)

, S(x) =
1√
2

(

0
w + s(x)

)

.

9



CHAPTER 2. THE MODEL 10

An important remark is that also SU(2)

X

is broken by the VEV w of the doublet

S, so every Xµ boson gets the same mass MX = gXw/2 from the interation

with the S �eld.

2.3 Parameters of the theory

The lagrangian parameters introdued are λS , λH , λHS and gX . We want to �x

their values starting from the experimental data that we know. In this spei�

ase, experimental values of the Higgs mass, of the Dark Matter abundane

in the universe and of the deay rate of the muon will be used. Therefore,

sine in this model the spontaneous symmetry breaking ours, we have to �nd

the minimum of the one-loop e�etive potential, imposing two relations that

�x the expetation value of the two salar �elds. In this way also the vauum

expetation values beome parameters we have to determine. We hoose gX to

be the only free parameter of the theory, so every quantity will be studied as

this parameter hanges.

2.4 One-loop potential

If we searh for the minimum of the tree-level lagrangian potential, we obtain

only one minimum point in the origin in the ase 4λHλS−λ2
HS > 0, so the sym-

metry is exatly realized (i.e. no symmetry breaking). In the opposite ase, the

origin beomes a saddle point and there are four diretions where the potential

diverges negatively. At this point, to have spontaneous symmetry breaking, we

need to onsider one-loop orretions to the theory.

The ondition for the SSB is 4λHλS − λ2
HS < 0, and this ondition an

be dynamially veri�ed. If we don't want to take in aount the wavefuntion

renormalization, the one-loop potential is obtained replaing the parameters of

the lagrangian with the running ones and setting the energy sale of the RGE

equal to the generi VEV of the �eld. In other words, the VEV is the value of

the energy where the ondition turns to be satis�ed.

Let's take the parameter λS : the result for the βλS
reported in the artile

by Hambye and Strumia is

βλS
(µ) =

dλS

d lnµ
=

1

(4π)2

[

9

8
g4X − 9g2XλS + 2λ2

HS + 24λ2
S

]

.

This result has been obtained onsidering both the one-loop potential and the

wave-funtion renormalization. We observe that β is always positive, in fat it

doesn't anel for any value of the onstants. It an be veri�ed quikly negleting

λHS term. Sine λS beomes smaller and smaller at low energies, the symmetry

breaking ondition depends of the renormalization sale.

Therefore, the searh of the minimum of the potential will depend of the

perturbative expansion. To onsider the one-loop ontributions we need to

start from the e�etive ation, that is the generating funtional of all the one

partile irreduible Green funtions. If we expand the e�etive ation in powers

of the derivatives of the �elds, the e�etive potential is the zeroth order of

this expansion. The new potential doesn't depend of the energy sale used to

regularize loops omputations.
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Quantitatively, the e�etive potential is the sum of the tree-level potential

and of the ontributions given by salar, fermion or vetor loops. To ompute

it, we onsider that the tadpoles with an external leg of a ertain �eld are

exatly the derivative of the potential with respet to that �eld. The omplete

derivation is in [3℄.



Chapter 3

Previous approximated

omputations

In this hapter we will study this model with some approximations. An useful

approximation is to onsider λHS small. It's simple understanding why the

analysis simpli�es: the �portal� between the SM and the new piees of the

lagrangian, represented by the λHS |H |2|S|2 term, is smaller. This ase has

already been studied in [13℄.

The SSB ondition beomes simply λS < 0, and we an approximate the

expression for λS with

λS ≃ βλS
ln

s

s∗
.

Making this substitution, we obtain an approximate expression for the one-loop

e�etive potential:

V 1loop ≃ λH |H†H |2 − λHS |H†H ||S†S|+ βλS
ln

s

s∗
|S†S|2.

We know that, beause of the running of λS , there is an energy sale s∗ where

λS goes to zero. We observe that for the energies near to the SSB sale, that is

for s ≃ s∗, we have βλS
∼ λS , so the ondition for λHS to be negligible beomes

λ2
HS ≪ βλS

λH .

To justify this expression for λS , we study the vetors loop ontributions to

the one-loop e�etive potential. If there is no mixing between H and S �elds,

the vetor mass depends only on the S �eld. To be more spei�,

M2
X =

∂2V

∂Xµ∂Xν
∼ g2Xs2

The omputation of the one-loop potential leads to

V 1loop = V0 + (onst)g4Xs4 log
s

µ
,

where all the ut-o� dependent terms have been absorbed in the parameters of

the potential V0. It's simple to verify that a hange of the renormalization sale

doesn't lead to a modi�ation of the potential. In fat, hanging the renormal-

ization sale from µ1 to µ2, we obtain a variation of the oupling onstant of

12
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the quarti term:

λS(µ1) = λS(µ2) + (onst)g4X log

(

µ1

µ2

)

In this way, we hoose to renormalize all the potential to the sale s∗: the
quarti terms will be

(

λS(s
∗) + (onst)g4X ln

µ

s∗

)

s4 +

(

(onst)g4Xs4 log
s

s∗
+ (onst)g4Xs4 log

s∗

µ

)

We de�ned s∗ as the energy sale where renormalized λS anels, and beause

of this only the logarithmi term remains.

If we onsider also S loops and wavefuntion renormalization, we obtain that

the quarti term gets a fator βλS
log s

s∗ . Beause of this, the one-loop potential

an be written as before in the approximation of small λHS .

Now we an �nd the minimum of this potential, so we an ompute the

vauum expetation values of the two salar �elds, H and S. We impose that

the �rst derivatives with respet to the �elds anels simultaneously. We obtain

{

2λH |H |2 − λHS |S|2 = 0

−2λHS |H |2 + βλS
|S|2 + 4βλS

|S|2 ln S
s∗ = 0.

From the �rst equation we obtain the ondition

v =

√

λHS

2λH
w,

while from the seond we obtain

−λ2
HS

λH
+ βλS

+ 4βλS
ln

s

s∗
= 0

that, onsidering λ2
HS ≪ βλS

λH , leads to the expression for the minimum:

w = s∗e−
1

4

At this point we should study the mass terms of the h and s �elds. The quadrati
terms of the potential have the form

(h, s)v2
(

2λH −
√
2λHλHS

−
√
2λHλHS λHS + 2βλS

λH/λHS

)(

h
s

)

We diagonalize the mass matrix and we obtain, in the limit of small λHS , the

eigenvalues

m2
1 ≃ 2v2

(

λH − λ2
HS

βλS

)

m2
2 ≃ 2v2

βλS
λH

λHS

The mass eigenvetors h1 and h2 mix with an angle α:

sin 2α = v2
√
8λHλHS

m2
2 −m2

1

.
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In the limit of small λHS we get m2 ≫ m1, and sinα ≃ α, so

α ≃ λ
3

2

HS√
2λHβλS

.

We identify the h1 eigenstate with the physial Higgs boson, som1 ≈ 125.6 GeV.

We observe that the other eigenvetor interats like the Higgs does with the SM

partiles, but its interation must be resaled by a fator sinα. Therefore, we

an write the Higgs mass as m2
1 ≃ w2λHS , this means that Higgs mass value an

be written as a funtion of the vauum expetation value of this new doublet

and of the mixing onstant λHS .

Now we have to study, in the approximation of small λHS , if this model

for the DM reprodues the experimental data of the DM abundane in the

universe. As we said in the introdution, DM went through a freeze-out, so we

ompute, in this approximation, the expressions for the non-relativisti ross

setions for the annihilation and the semiannihilation proesses of the DM. In

this approximation the only relevant interations are the gauge interations,

and the mixing between the two salars is negligible. As a onsequene, The

annihilation proess has two DM partile in the initial state and two s partiles
in the �nal state. The semiannihilation has again two X partiles in the initial

state, but in the �nal state there is an s and an X . If we all v the relative

veloity of the two initial partiles and we suppose that MX ≫ Ms we have

these results:

σv
ann

=
11g2X

1728πw2
σv

semiann

=
g2X

32πw2
.

where we have already averaged over the polarization and over the gauge om-

ponents. The DM abundane is reprodued for

σ
ann

v +
1

2
σ
semiann

v = 2.2× 10−26
m

3/s = 1.83× 10−9
GeV

−2,

where the fator 1/2 for the semiannihilations indiates that the number of DM

partiles that annihilate is just one. From this relation, we an observe that the

oupling onstant gX and the VEV of the S boson are linked by

gX ≃ w

2.0 TeV

.

To be thorough, we skip the omputation of the orretions to the VEV of

the Higgs. This quantity, however, depends on the orretion to the propagator

of the W, so in this approximation there are no new terms, ompared to the

SM.

The results of all the omputations of this approximation are reported in

Setion 5.1.



Chapter 4

Complete omputation

In this hapter we will explain the omputations that have been done. In the

Introdution we said that we improve the SM introduing some new lagrangian

terms, so new parameters arise in our model. The new parameters that we an

�nd diretly in the lagrangian are λH , λHS , λS and gX . We have to onsider

also the salar VEVs v and w between the unknown parameters. We aim to �nd

the values of these parameters in terms of some known experimental data, so

we ompute some appropriate observables like the Higgs mass, the annihilation

and semiannihilation ross setions of the DM, the muon deay amplitude.

In setion 4.1 we desribe the result of the one-loop potential of our model.

Sine in this model the spontaneous symmetry breaking ours, we have to �nd

the minimum of the potential. Thus, we desribe the equations to minimize the

one-loop potential in setion 4.2. In Setion 4.3 we explain how to ompute the

masses of the two salar partiles, onsidering that they are not mass eigenstates,

and we report the result of the one-loop propagator of the Higgs boson of our

model. In the setion 4.4 we study the proesses that led to the annihilation of

the Dark Matter before the freeze-out, so we report the omputations relative

to DM annihilation and semi-annihilation ross setions. In the last setion

of this hapter (Setion 4.5) we will onsider the one-loop orretions to the

Higgs VEV of our model, studying the amplitude of the muon deay proess

and onsidering that the value of the Fermi onstant is well known.

4.1 One-loop potential

We observe that the potential V0, depending of the parameter values, an have

a minimum in the origin or not having a minimum at all, so, if we want SSB in

this model, we an't onsider only the tree-level potential. To �nd a minimum

point di�erent from the origin we have to onsider the one-loop ontributions

omputing the one-loop potential. The result for this theory is

V 1loop = V0 + V1

15
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V1 =
1

64π2

[

3f5/6(m
2
Z)− f3/2(ξZm

2
Z) + 6f5/6(m

2
W )− 2f3/2(ξWm2

W )+

+9f5/6(m
2
X)− 3f3/2(ξXm2

X)− 12f3/2(m
2
t ) +

∑

i

f3/2(mi)

]

where Z, W and X loops (with longitudinal polarization for every vetor), quark

top loops (we suppose that this quark is the only fermion that gives a ontribu-

tion), salar partiles and ghosts loops have been onsidered. In this expression,

ξZ , ξW and ξX are the parameters that determine the gauge �xing for the Z,

W and X setors, respetively. We will hoose the Landau gauge for the next

omputation, so we will take ξZ = ξW = ξX = 0. The sum is over all the salar

partiles of the theory, that is the six Goldstone bosons and the two salars h
and s. The expression for the f funtion is

fc(x) = x2

(

1

ǫ
+ ln

x

µ2
− c

)

,

where µ is the energy sale where we are renormalizing the theory. The three

expressions for the mass of the Goldstone bosons related to the H �eld are

m1,2 = v2λH −w2λHS/2 + ξWM2
W and m3 = v2λH −w2λHS/2 + ξZM

2
Z , while

for the three Goldston bosons of the S �eld we have m4,5,6 = w2λS−v2λHS/2+
ξXM2

X . Regarding of the mass of the two physial salars, we observe the tree-

level mass matrix is not diagonal:

M0 =

(

3v2λH − w2λHS/2 −vwλHS

−vwλHS 3w2λS − v2λHS/2

)

.

Sine we want to desribe salar �elds using the eigenstates of this matrix, the

eigenvalues are their masses:

m1,2 =
1

4

[

v2(6λH − λHS)− w2(λHS − 6λS)

±
(

−2v2w2(λHS(6λH − 7λHS) + 6λS(6λH + λHS))

+v4(6λH + λHS)
2 + w4(λHS + 6λS)

2
)1/2

]

.

The interation eigenstates don't oinide with mass eigenstates: we will see

that this fat is true also onsidering one-loop orretions of the theory. In the

Setion 4.3 a mixing angle that orrelates the two basis will be introdued. In

our omputation, for simpliity, we hoose the Landau gauge for the expression

of the e�etive one-loop potential, so we set ξZ = ξW = ξX = 0

4.2 Minimum equations

Sine SSB ours, we put the origin in a minimum point of the e�etive potential.

Sine the one-loop potential is sale invariant, we an hoose freely the energy

sale of the renormalized theory. To simplify alulations, we hoose the ritial

sale where 4λHλS − λ2
HS = 0. The existene of this sale is reasonable, in fat

we an see in Figure 4.1 the running of the parameters of our model up to the

Plank mass sale, �xing gX = 1 at a sale of 100 GeV [13℄. We observe that
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there is a sale where λS beomes negative, so the sale where 4λHλS−λ2
HS = 0

exists ertainly. In this situation, the tree-level potential has minima on two

straight lines passing for the origin:

v

w
=

(

λH

λS

)1/4

.

This hoie is possibile beause, if we study the running of the onstants as a

funtion of the energy [13℄, we an see there is an energy µ where this ondition

is satis�ed. At this point, the parameters of the theory beome λH , λHS and

the ritial sale energy µ.

Figure 4.1: Running of the parameter of the model, up to Plank mass sale,

�xing gX = 1 for µ = 100 GeV.

Now we swith to the e�etive potential. Sine we have to �nd the minimum,

we impose that the �rst derivatives of the potential with respet to the �elds

anel:

∂V

∂v
= v(λHv2 − w2λHS/2) + Th = 0,

∂V

∂w
= w(λSw

2 − v2λHS/2) + Ts = 0,

where Th and Ts represent the tadpoles related to the two salars. By de�nition,

tadpoles are the one partile irreduible diagrams with only one external leg

and they orrespond to the �rst derivative of the one-loop ontributions to the

e�etive potential with a minus sign.

4.3 Higgs mass

The mass matrix has this form:

M2
1loop

=

(

m̃2
1 +Π11 Π12

Π12 m̃2
2 +Π22

)

,

where m̃1,2 represent the tree-level masses of the salars, while Π represents the

one-loop orretions to the propagator. If we want to onsider only the one-loop
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approximation, o�-diagonal terms are not important, and an be negleted, so

we have

M2
1 = m̃2

1 +Π11(m̃
2
1), M2

2 = m̃2
2 +Π22(m̃

2
2)

In the ritial ondition we have hosen, one of the tree-level masses of the

two salars anels, so the orretion to it wouldn't be a small perturbation

anymore, but it would onstitute the entire value of the observable. Beause of

this, we ompute the one-loop orretion of the masses in two subsequent steps.

We split Π(p2) in two parts:

Π(p2) = Π(0) + ∆Π(p2).

For eah salar �eld we an obtain Π(0) omputing the seond derivatives with

respet to the �eld, for example

Πhh(0) = ∂2V/∂h2.

Then, we do the same thing for Πss(0) and for the o�-diagonal term and we

onstrut a matrix mass. We will all the eigenstates of this matrix h1 and h2,

while the eigenvalues are a good approximation for the salar masses. We all

them m1 and m2. We observe that the one-loop potential doesn't take into

aount the renormalization of the wavefuntion. To ompute this orretion

we have to start from the one-loop orretion to the propagators of h1 and

h2. More preisely, we an write ∆Π(p2) = Π(p2) − Π(0), so we ompute the

one-loop ontributions to the two-points Green funtion of eah mass eigenstate

for a generi p2 and for p = 0 and than we do the subtration. As we said

before, the o�-diagonal terms of these orretions are not important, so the

�nal expressions for the masses of the salars are:

M2
1 = m2

1 +∆Π11(m
2
1), M2

2 = m2
2 +∆Π22(m

2
2)

We observe that the one-loop ontributions to the propagators of the salar

partiles are similar to those of the Higgs propagator of the Standard Model. It

is onvenient to expand the omputation of the SM, beause we should desribe

the interation of the salars between them, the interation with SU(2)

X

gauge

bosons, and the mixing between the salars.

Regarding of the mixing between the salars, we need to introdue the mixing

angle α, that is the rotation angle needed to diagonalize the one-loop mass

matrix. Following the notation of the artile written by Hambye and Strumia,

it is de�ned by the relations

h1 = h cosα+ s sinα and h2 = s cosα− h sinα.

The Feynman rules of this model are similar to those of the SM: one should

onsider that the Higgs boson �eld orresponds to one of the eigenstates h1 and

h2. Regarding of the interations with the gauge bosons of the SU(2)×U(1)
symmetry group and with the fermions, one should take the SM verties and

onsider, for every Higgs line present in the diagrams, two similar diagrams

that show respetively a line of h1 or a line of h2 in its plae. The �rst of them

takes a fator cosα, while the seond a fator sinα. All the other interations,
that are substantially modi�ed, are olleted in the appendix. In Figure 4.2 we

report all the one-loop diagrams that ontribute to the Higgs propagator of this

model.
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φZ
X

φZ
X

Z W X c±X

cZX cZ c± Z W X

φZ φ± φX

Z W X

h1 h2 φ± φZ φ±
X

φZ
X t

h1

h1

h1

h2

h2

h2

φ±
X

φ±
X

φZ

φZ

φ±

φ±

Figure 4.2: Contributi ad un loop al propagatore dell'Higgs.

We indiate with φ the Goldstone bosons of the Standard Model, while φX

are the Goldstone bosons of the new symmetry group. In the same way we all

respetively c and cX the ghost �elds of the SM and of the group SU(2)X .

The expression for the Higgs one-loop propagator reported below is the sum

of all these diagrams, in the same order as in Figure 4.2:
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Πhh(p
2) =

3A0

(

M2
h

) (

λH cos4 α− λHS sin2 α cos2 α+ λS sin4 α
)

16π2

+
A0

(

M2
s

) (

(6λH + 4λHS + 6λS) cos
2 α sin2 α− λHS

(

cos4 α+ sin4 α
))

32π2

+
A0

(

M2
W ξ
) (

2λH cos2 α− λHS sin2 α
)

16π2

+
A0

(

M2
Zξ
) (

2λH cos2 α− λHS sin2 α
)

32π2

+
3A0

(

M2
XξX

) (

2λS sin2 α− λHS cos2 α
)

32π2

+

(

− g22M
4
Z

32M2
Wπ2

+
3g22A0

(

M2
Z

)

M2
Z

64M2
Wπ2

+
g22ξA0

(

M2
Zξ
)

M2
Z

64M2
Wπ2

)

cos2 α

+

(

−g22M
2
W

16π2
+

3g22A0

(

M2
W

)

32π2
+

ξg22A0

(

M2
W ξ
)

32π2

)

cos2 α

+ 3

(

−g2XM2
X

32π2
+

3g2XA0

(

M2
X

)

64π2
+

ξXg2XA0

(

M2
XξX

)

64π2

)

sin2 α

+

(

−3M2
t A0

(

M2
t

)

g22
16M2

Wπ2
− 3

(

4M4
t −M2

t p
2
)

B0

(

p2,M2
t ,M

2
t

)

g22
32M2

Wπ2

)

cos2 α

+
9B0

(

p2,M2
h ,M

2
h

) (

2vλH cos3 α+ wλS sin3 α− λHS

(

w sinα cos2 α+ v sin2 α cosα
))2

32π2

+
(

vλHS cos3 α− 2wλHS sinα cos2 α− 6wλS sinα cos2 α

−6vλH sin2 α cosα− 2vλHS sin2 α cosα+ wλHS sin3 α
)2 B0

(

p2,M2
h ,M

2
s

)

32π2

+
(

vλHS cos3 α+ 6vλH sinα cos2 α+ 2vλHS sinα cos2 α

−2wλHS sin2 α cosα− 6wλS sin2 α cosα− wλHS sin3 α
)2 B0

(

p2,M2
s ,M

2
s

)

32π2

+
B0

(

p2,M2
W ξ,M2

W ξ
)

(2vλH cosα− wλHS sinα)2

16π2

+
B0

(

p2,M2
Zξ,M

2
Zξ
)

(2vλH cosα− wλHS sinα)2

32π2

+
3B0

(

p2,M2
XξX ,M2

XξX
)

(2wλS sinα− vλHS cosα)2

32π2

− g22M
2
W ξ2B0

(

p2,M2
W ξ,M2

W ξ
)

cos2 α

32π2

− g22M
4
Zξ

2B0

(

p2,M2
Zξ,M

2
Zξ
)

cos2 α

64M2
Wπ2

− 3g2XM2
Xξ2XB0

(

p2,M2
XξX ,M2

XξX
)

sin2 α

64π2
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+

(

(

M2
W (ξ − 1)− p2

)

A0

(

M2
W

)

g22
32M2

Wπ2
+

(

(1− 2ξ)M2
W + p2

)

A0

(

M2
W ξ
)

g22
32M2

Wπ2

+

(

(ξ − 1)2M4
W − 2p2(ξ + 1)M2

W + p4
)

B0

(

p2,M2
W ,M2

W ξ
)

g22
32M2

Wπ2

−
(

p2 −M2
W ξ
)2

B0

(

p2,M2
W ξ,M2

W ξ
)

g22
32M2

Wπ2

)

cos2 α

+

(

(

M2
Z(ξ − 1)− p2

)

A0

(

M2
Z

)

g22
64M2

Wπ2
+

(

(1− 2ξ)M2
Z + p2

)

A0

(

M2
Zξ
)

g22
64M2

Wπ2

+

(

(ξ − 1)2M4
Z − 2p2(ξ + 1)M2

Z + p4
)

B0

(

p2,M2
Z,M

2
Zξ
)

g22
64M2

Wπ2

−
(

p2 −M2
Zξ
)2

B0

(

p2,M2
Zξ,M

2
Zξ
)

g22
64M2

Wπ2

)

cos2 α

+ 3

(

(

M2
X(ξX − 1)− p2

)

A0

(

M2
X

)

g2X
64M2

Xπ2
+

(

(1− 2ξX)M2
X + p2

)

A0

(

M2
XξX

)

g2X
64M2

Xπ2

+

(

(ξX − 1)2M4
X − 2p2(ξX + 1)M2

X + p4
)

B0

(

p2,M2
X ,M2

XξX
)

g2X
64M2

Xπ2

−
(

p2 −M2
XξX

)2
B0

(

p2,M2
XξX ,M2

XξX
)

g2X
64M2

Xπ2

)

sin2 α

+

(

g22(ξ − 1)A0

(

M2
W ξ
)

32π2
+

g22
(

12M4
W − 4p2M2

W + p4
)

B0

(

p2,M2
W ,M2

W

)

64M2
Wπ2

+
g22
(

p2 − 2M2
W ξ
)2

B0

(

p2,M2
W ξ,M2

W ξ
)

64M2
Wπ2

− g22M
2
W

8π2
− g22(ξ − 1)A0

(

M2
W

)

32π2

−g22
(

(ξ − 1)2M4
W − 2p2(ξ + 1)M2

W + p4
)

B0

(

p2,M2
W ,M2

W ξ
)

32M2
Wπ2

)

cos2 α

+

(

g22(ξ − 1)A0

(

M2
Zξ
)

M2
Z

64M2
Wπ2

+
g22
(

12M4
Z − 4p2M2

Z + p4
)

B0

(

p2,M2
Z ,M

2
Z

)

128M2
Wπ2

+
g22
(

p2 − 2M2
Zξ
)2

B0

(

p2,M2
Zξ,M

2
Zξ
)

128M2
Wπ2

− g22M
4
Z

16M2
Wπ2

− g22(ξ − 1)A0

(

M2
Z

)

M2
Z

64M2
Wπ2

−g22
(

(ξ − 1)2M4
Z − 2p2(ξ + 1)M2

Z + p4
)

B0

(

p2,M2
Z ,M

2
Zξ
)

64M2
Wπ2

)

cos2 α

+ 3

(

g2X
(ξX − 1)A0

(

M2
XξX

)

64π2
+

g2X
(

12M4
X − 4p2M2

X + p4
)

B0

(

p2,M2
X ,M2

X

)

128M2
Xπ2

+
g2X
(

p2 − 2M2
XξX

)2
B0

(

p2,M2
XξX ,M2

XξX
)

128M2
Xπ2

− g2XM2
X

16π2
− g2X(ξX − 1)A0

(

M2
X

)

64π2

−g2X
(

(ξX − 1)2M4
X − 2p2(ξX + 1)M2

X + p4
)

B0

(

p2,M2
X ,M2

XξX
)

64M2
Xπ2

)

sin2 α.
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In this formula A0 and B0 are the Passarino-Veltman funtions:

A0(m
2) =

1

iπD/2

∫

dqD
1

q2 −m2 + i ǫ

B0(p
2,m2

1,m
2
2) =

1

iπD/2

∫

dqD
1

(q2 −m2 + i ǫ)((q + p)2 −m2
2 + i ǫ)

.

We an observe that the diagrams with a loop of the harged Goldstone of

SU(2)

X

and the analogous with the neutral one give the same result; this ause

the fator 3 before some of the ontributions. We an make a similar argument

for the vetors: if we de�ne

X+
µ =

X1 − iX2

√
2

X−
µ =

X1 + iX2

√
2

,

the X3
boson, in these diagrams, gives exatly the same result of the X±

bosons. We have to observe that in these expressions, the plus or minus sign

doesn't represent the eletrial harge of the partile, this is just a onvenient

reparametrization of the �elds.

4.4 Dark Matter abundane

In the introdution we introdued the DM as a thermal reli. To be more preise,

we are going to desribe whih proesses are important before the freeze-out of

these partiles. If we onsider that X vetors interats only between them and

with the s boson, we an say that the fundamental proesses are the annihilation

proesses, like XX → ss and the semiannihilation proesses, like XX → Xs.
In Figure 4.3 we olleted all the diagrams that desribe annihilations. From

the Feynman diagrams for the annihilation, we see that the �nal state an be

a ouple of h1, a ouple of h2 or one of eah. A ouple of X vetors an

annihilate via a diret quarti interation, via an intermediate h1 or h2 in the s-

hannel, via an intermediateX in the t-hannel or via an intermediate Goldstone

boson, also in the t-hannel. In Figure 4.5 there are all the diagrams relative

to the semiannihilations. The �nal state is omposed by a vetor partile X
and a salar partile, that an be h1 or h2. Preisely, if we all σ

ann

and

σ
semiann

the non-relativisti ross setions of these proesses, and we say v is

the relative veloity between the partiles, we an say the experimental Dark

Matter abundane is reprodued if

σ
ann

v +
1

2
σ
semiann

v = 2.2× 10−26
m

3/s = 1.83× 10−9
GeV

−2.

We added a fator 1/2 for the semi-annihilations beause the number of DM

partiles drops only by one unit, so their ontribution to the total annihilation

of the DM is just one half of the ontribution of the annihilations. Sine we have

no informations about whih of the three X bosons is annihilating and about

their polarizations, we have to average these ross setions over the polarizations

of the vetors and over their SU(2)

X

index.

To do the omputation of these ross setions it's useful to onsider the

known analogous annihilations and semiannihilations of the SM vetor boson
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Figure 4.3: Feynman diagrams for the annihilation proess of the DM with

salars in the �nal state.
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Figure 4.4: Feynman diagrams for the annihilation proess of the DM with W,

Z or Top quark in the �nal state.

into Higgs bosons and adopt these results: in our model we need to take into

aount the presene of two salars and their mixing.

These ross setions are gauge-invariants but, to simplify this omputation,

we hoose the unitary gauge, that is the gauge in whih diagrams with Goldstone

partiles don't give any ontribution. There are some ontributions to the ross

setions depending on the �nal state: for eah piee we ompute the amplitude,

that is the sum of all the Feynman diagrams with that �nal state. Then, to

get the ross setion of this proess, we ompute the squared modulus of eah

amplitude and we multiply by the phase spae fator of the proess itself. To get

the total ross setion we sum all the ontributions. In this omputation we an

onsider only the non-relativisti limit, so the initial partiles are about at rest.

To get the �nal expressions for all the ross setions we used the appliation

Mathematia, that automatially ompute the ross setions, given the value

of eah Feynman diagram amplitude. These are the resuls for the annihilation

ross setions. There are six ontributions: the �rst one has two h1 partiles
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Figure 4.5: Feynman diagrams for the semiannihilation proess of the DM.

in the �nal state, the third one has two h2 partiles, while the seond one has

one of eah salar. The last three ontributions are related respetively to the

prodution of a ouple of W, a ouple of Z or a ouple of Top quarks.

σvh1,h1

ann

=
√

M2
X −M2

s

×
(

g4X
(

11M4
s − 28M2

XM2
s + 44M4

X

)

cos4(α)

1152M3
X (M2

s − 2M2
X)

2
π

+
g3X
(

M2
s − 10M2

X

)

cos2(α)

2304M2
X (M2

s − 4M2
X) (M2

s − 2M2
X) (4M2

X −M2
h)π

×
(

3wλHSM
2
h − 18wλSM

2
h + 12vλH sin(2α)M2

h − 6vλHS sin(2α)M2
h

− 6vλH sin(4α)M2
h − 3vλHS sin(4α)M2

h +M2
swλHS − 16M2

XwλHS

− 6M2
swλS + 96M2

XwλS − 4w
(

6λSM
2
h +M2

s λHS − 4M2
X(λHS + 6λS)

)

cos(2α)

− 3
(

M2
h −M2

s

)

w(λHS + 2λS) cos(4α)− 12M2
s vλH sin(2α)

−2M2
s vλHS sin(2α) + 32M2

XvλHS sin(2α) + 6M2
s vλH sin(4α) + 3M2

s vλHS sin(4α)
)

+
g2X

6144MX (M2
h − 4M2

X)
2
(M2

s − 4M2
X)

2
π

×
(

−3wλHSM
2
h + 18wλSM

2
h − 12vλH sin(2α)M2

h + 6vλHS sin(2α)M2
h

+ 6vλH sin(4α)M2
h + 3vλHS sin(4α)M2

h −M2
swλHS + 16M2

XwλHS

+ 6M2
swλS − 96M2

XwλS + 4w
(

6λSM
2
h +M2

s λHS − 4M2
X(λHS + 6λS)

)

cos(2α)

+ 3
(

M2
h −M2

s

)

w(λHS + 2λS) cos(4α) + 12M2
s vλH sin(2α)

+2M2
s vλHS sin(2α)− 32M2

XvλHS sin(2α)− 6M2
s vλH sin(4α)− 3M2

s vλHS sin(4α)
)2
)
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σvh1,h2

ann

=
√

M2
X −M2

h

(

g4X
(

11M4
h − 28M2

XM2
h + 44M4

X

)

sin4(α)

1152M3
X (M2

h − 2M2
X)

2
π

+
g3X
(

M2
h − 10M2

X

)

1152M2
X (M2

h − 4M2
X) (M2

h − 2M2
X) (4M2

X −M2
s )π

×(−24
(

M2
s − 4M2

X

)

wλS sin6(α)− 4
(

M2
h − 3M2

s + 8M2
X

)

vλHS cos(α) sin5(α)

− 4w
(

2(λHS + 3λS)M
2
h − 3M2

sλHS + 4M2
X(λHS − 6λS)

)

cos2(α) sin4(α)

+ 4
(

M2
h − 4M2

X

)

wλHS cos4(α) sin2(α)

+v
(

(3λH + λHS)M
2
h − 3M2

sλH − 4M2
XλHS

)

sin3(2α)
)

+
g2X

6144MX (M2
h − 4M2

X)
2
(M2

s − 4M2
X)

2
π

(

wλHSM
2
h − 6wλSM

2
h + 12vλH sin(2α)M2

h + 2vλHS sin(2α)M2
h

+ 6vλH sin(4α)M2
h + 3vλHS sin(4α)M2

h + 3M2
swλHS − 16M2

XwλHS

− 18M2
swλS + 96M2

XwλS + 4w
(

λHSM
2
h + 6M2

sλS − 4M2
X(λHS + 6λS)

)

cos(2α)

+ 3
(

M2
h −M2

s

)

w(λHS + 2λS) cos(4α)− 12M2
s vλH sin(2α) + 6M2

s vλHS sin(2α)

−32M2
XvλHS sin(2α)− 6M2

s vλH sin(4α)− 3M2
s vλHS sin(4α)

)2
)
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σvh2,h2

ann

=

√

M4
h − 2 (M2

s + 4M2
X)M2

h + (M2
s − 4M2

X)
2

×
(

g4X

36864M8
X (M2

h +M2
s − 4M2

X)
2
π

×
(

M8
h − 4

(

M2
s + 3M2

X

)

M6
h + 2

(

3M4
s + 6M2

XM2
s + 46M4

X

)

M4
h

− 4
(

M6
s − 3M2

XM4
s + 2M4

XM2
s + 56M6

X

)

M2
h +M8

s + 704M8
X

−224M2
sM

6
X + 92M4

sM
4
X − 12M6

sM
2
X

)

sin2(2α)

+
g3X
(

M4
h − 2

(

M2
s +M2

X

)

M2
h +M4

s + 40M4
X − 2M2

sM
2
X

)

sin(2α)

18432M5
X (M2

h − 4M2
X) (M2

h +M2
s − 4M2

X) (4M2
X −M2

s )π

×
(

6vλHM2
h − vλHSM

2
h + 2wλHS sin(2α)M2

h + 12wλS sin(2α)M2
h

+ 3wλHS sin(4α)M2
h + 6wλS sin(4α)M2

h − 6M2
s vλH +M2

s vλHS

− 4
(

M2
h +M2

s − 8M2
X

)

vλHS cos(2α)− 3
(

M2
h −M2

s

)

v(2λH + λHS) cos(4α)

+ 2M2
swλHS sin(2α)− 16M2

XwλHS sin(2α) + 12M2
swλS sin(2α)

−96M2
XwλS sin(2α)− 3M2

swλHS sin(4α)− 6M2
swλS sin(4α)

)

+
g2X

12288M2
X (M2

h − 4M2
X)

2
(M2

s − 4M2
X)

2
π

×
(

6vλHM2
h − vλHSM

2
h + 2wλHS sin(2α)M2

h + 12wλS sin(2α)M2
h

+ 3wλHS sin(4α)M2
h + 6wλS sin(4α)M2

h − 6M2
s vλH +M2

s vλHS

− 4
(

M2
h +M2

s − 8M2
X

)

vλHS cos(2α)− 3
(

M2
h −M2

s

)

v(2λH + λHS) cos(4α)

+ 2M2
swλHS sin(2α)− 16M2

XwλHS sin(2α) + 12M2
swλS sin(2α)

−96M2
XwλS sin(2α)− 3M2

swλHS sin(4α)− 6M2
swλS sin(4α)

)2
)

σvWW
ann

=
g2X sin2(2α)

(

M2
h −M2

s

)2√
M2

X −M2
W

(

3M4
W − 4M2

WM2
X + 4M4

X

)

288πMXv2 (M2
h − 4M2

X)
2
(M2

s − 4M2
X)

2

σvZZ
ann

=
g2X sin2(2α)

(

M2
h −M2

s

)2√
M2

X −M2
Z

(

4M4
X − 4M2

XM2
Z + 3M4

Z

)

576πMXv2 (M2
h − 4M2

X)
2
(M2

s − 4M2
X)

2

σvTT
ann

=
g2X sin2(2α)

(

M2
h −M2

s

)2√
M2

X −M2
T

(

5M2
T − 8M2

X

)

M2
T

2304πMXv2 (M2
h − 4M2

X)
2
(M2

s − 4M2
X)

2

Therefore, we ompute in the same way the result for the semiannihilation

ross setion. There are two ontributions in this ase: the �rst of them omes

from the proesses with h1 in the �nal state, the seond omes from the proesses

with h2. The expression below is the sum of these two ontributions.

σ
semiann

v =
g4X
(

M4
s − 10M2

sM
2
X + 9M4

X

)3/2
(sin(α) + cos(α))2

128πM4
X (M2

S − 3M2
X)

2 .

We observe that in the limit of small λHS , we get the same result of the

approximate omputation in Chapter 3.
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4.5 Corretions to the VEV of the Higgs

The VEV of the Higgs is �xed by the amplitude of the muon deay proess. In

the Feynman diagrams for this deay there is a W propagator, so, if we want to

study our model at one-loop level in perturbation theory, we have to onsider the

one-loop orretions of this propagator too. We an �nd the relation between

the Higgs VEV and GF , that is the Fermi onstant.

GF√
2
=

1

2v2
(1 + ∆r),

where ∆r enloses all the ontributions given by the orretions to the W boson

propagator. At tree-level approximation, as in the SM omputations, we have

∆r = 0. The experimental value of the Fermi onstant is 1.16637×10−5
GeV

−2
,

so, onsidering only tree-level diagrams we obtain v ≃ 246.22 GeV from the

previous relation.

In our model ∆r is slightly di�erent from the known result of the Standard

Model. As in the previous omputations, in our work we need to onsider the

presene of two salars and their mixing. The ontributions where Higgs doesn't

enter are the same of the SM, so the result of this omputation is well-known,

and we don't ompute it again. To understand better how to improve the SM

to take in aount the new salar and the mixing, we have to onsider the terms

of the SM where the Higgs boson enters the omputation. In the SM there are

three diagrams, giving eah a ontribution to ∆r:

∆rSM
seagull

=
1

(4πv)2
A0(m

2
h)

∆rSM
rainbow h/W =

1

(4πv)2

[

−M2
W +M2

h

2
+

M2
WA0(M

2
W )−M2

hA0(M
2
h)

M2
h −M2

W

]

∆rSM
rainbow h/ϕ =

1

(4πv)2

[

4M2
W

A0(M
2
h)−A0(M

2
W )

M2
h −M2

W

]

We onsider that for every Higgs line of the SM we have to draw two opies

of the same diagram in our model, adding a fator cos2 α for the Higgs boson

ontributions and a fator sin2 α for the s boson. We get:

∆r(1loop) = ∆rSM(Mh → Mh1
) cos2 α+∆rSM(Mh → Mh2

) sin2 α.
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The omplete result is

∆r(1loop) =
1

16π2v2

×
[

3M2
T − M2

W +M2
Z

2
− 6A0

(

M2
T

)

+A0(M
2
h) cos

2 α+A0

(

M2
s

)

sin2 α

+

(

9− 3M2
W

M2
W −M2

Z

)

A0

(

M2
W

)

+

(

6M2
W − 3M2

Z

M2
W −M2

Z

)

A0

(

M2
Z

)

+
4M2

W

(

A0

(

M2
h

)

−A0

(

M2
W

))

M2
h −M2

W

cos2 α+
4M2

W

(

A0

(

M2
s

)

−A0

(

M2
W

))

M2
s −M2

W

sin2 α

+

(

M2
WA0

(

M2
W

)

−M2
hA0

(

M2
h

)

M2
h −M2

W

− M2
h +M2

W

2

)

cos2 α

+

(

M2
WA0

(

M2
W

)

−M2
sA0

(

M2
s

)

M2
s −M2

W

− M2
s +M2

W

2

)

sin2 α

]

To make the omputations simpler, we have onsistently hosen the Landau

gauge ξ = 0 for the expressions of the salar propagators and for the orretion

to the VEV of the Higgs. In the omputation of the annihilation and semi-

annihilation ross setions we used the unitary gauge, sine the ross setions

are themselves gauge invariant.



Chapter 5

Results

In the previous hapter we have onsidered the omputation of some observables

in our model. Now we have to write a system of equation, imposing that our

observables agree with the experimental data. As we said before, we introdued

six parameters in this model, but the observable that we omputed are only

�ve. So we will determine the values of all the parameters, exept for gX : we
hoose it as the only free parameter. In this hapter we will show the predition

of the model about some observables, like the prodution ross setion of the

new salar or the diret detetion ross setion for the DM partile. In Setion

5.1 we onsider the approximation of small λHS , while in Setion 5.2 we show

the results for the omplete model.

5.1 Small λHS approximation

As we said in Chapter 3, the bulk of the orretion of the theory is given by

the SU(2)

X

gauge interations, so in this �rst ase we will onsider only these

ontribution to the one-loop potential. The �rst simpli�ed system to be solved

takes in aount only three equations and three unknowns: we are going to

�nd λH , λHS and µ2
, setting the values for the VEVs as v = 246.22 GeV and

w = 2.0 TeV× gX . The last relation omes from the approximate ase studied

by Hambye and Strumia in [13℄, where they omputed the annihilation and

semi-annihilation ross setions for the gauge-only model.











∂V 1loop

∂h = 0
∂V 1loop

∂s = 0

m2
h = (125.6GeV)2

In the previous hapter, we have seen that there are two mass eigenstates, but

we don't know whih of them is the Higgs boson and whih is the s boson.

Thus, in our omputation we have to onsider both the ases. In the �rst ase

we hoose the �rst eigenstate to be the Higgs partile, so we use its eigenvalue

in the third equation; in the seond ase, we make the same omputation but

the Higgs is the seond eigenstate.

For eah value of the free parameter gX we solve the system and we get

a point in the spae of the parameters. With these data we draw some plots

29
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showing several interesting quantities. First of all, we plot the prodution ross

setion of the new salar as a funtion of its mass and as a funtion of gX .
The expression for this ross setion is similar to that of the Higgs: the only

fator to take in aount is sin(α)2, where α is the mixing angle between the

salars. Therefore, a onvenient hoie is to plot the ross setion in SM Higgs

unit. In the �rst diagram of Figure 5.1 we an see two branhes, on the left

the branh for a new salar lighter than the Higgs, and on the right the ase

in whih the new salar weights more than 125.6 GeV. We observe that there

is a disontinuity: there are no points with a mass for the s boson in the range

between about 105 GeV and 145 GeV. To understand why, we need to onsider

that the mass matrix is not diagonal, so the eigenvalues are never degenerate.

In this diagram we report also the bounds set by LEP or ATLAS and CMS

experiments, so the points in the grey areas are not aeptable. We an see that

for a big range of the free parameter the preditions for the masses and for the

ross setions of the new salar give values ompatible with the bounds of LEP

and LHC experiments. In the seond diagram of Figure 5.1 we plotted σ
SI

, that

is the spin-independent ross setion for DM diret detetion, as a funtion of

the DM mass, with the hange of gX . Its expression is:

σ
SI

=
m4

Nf2

16πv2

(

1

m2
1

− 1

m2
2

)2

g2X sin2(2α)

where f is the nuleon mass matrix, f ≈ 0.295, and mN is the nuleon mass.

From this diagram, we an see that this model is ompatible with the experi-

mental data for the diret detetion when gX & 0.8.
Our approximated results reprodue those of [13℄. We an now add the more

preise omutation performed in this thesis. To start, we modify the one-loop

potential, taking in aount other interation. The following plots (Figure 5.2)

were made adding new ontributes to the potential, like salar loops, Top quark

loops, SM vetor loops, Goldstone loops. In eah diagram we leave the result of

the X-loops-only ase as small points. From the omparison of these plots we

an observe that the biggest orretion to the prodution ross setion of the

new salar is given by Top loops.

5.2 The omplete model

Finally, we present the results for the omplete model. In this setion we on-

sider the ontributions of all the interations to the one-loop potential of the

theory. Furthermore, we onsider also the orretions to the Higgs mass and to

the s mass given by wave-funtion renormalization (not taken in aount by the

e�etive potential), the exat relation between w and gX given by the annihi-

lation and the semiannihilation ross setions, the orretion to the Higgs VEV

through the value of the Fermi onstant.

To do this we want to solve a system of �ve equations with �ve unknowns.
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We are going to �nd the values of λH , λHS , µ
2
, v and w:































∂V 1loop

∂h = 0
∂V 1loop

∂s = 0

M2
h = m2

h +∆Π(p2) = (125.6GeV)2

1
v2

√
2
(1 + ∆r(1loop)) = GF = 1.16637× 10−5

GeV

−2

σ
ann

v + 1
2σsemiann

v = 2.2× 10−26
m

3/s = 1.83× 10−9
GeV

−2

Again, we will onsider that this system has to be solved in two ases, beause we

don't know whih of the eigenvaluesmh of the one-loop mass matrix orresponds

to the Higgs. The only free parameter will be gX , so we have to ompute the

solution for every value of it.

As in the setion above, we have a new set of solutions showing us the values

of the parameters of the model as funtion of gX . With these data we build

the diagram of the prodution ross setion of the new salar as a funtion of

the mass of the salar itself (Figure 5.3, above). Also in this omplete ase we

observe that there is a disontinuity of about about 20 GeV around the Higgs

mass, and so the wavefuntion renormalization that we have onsidered for both

the salars doesn't give a big ontribution in this sense. The plots report the

bounds given by LEP experiments for energies lower than the Higgs mass and

by ATLAS and CMS experiments for greater energies. Below, in Figure 5.3, we

present the spin independent ross setion for diret detetion in the omplete

ase. The model is not exluded by LUX2013 data for gX & 0.8
Furthermore, for ompleteness, in Figure 5.5 we plot how the parameters of

the theory depend on gX .
In the Conlusions we make further omments and observations about the

results given above.
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Figure 5.1: Above, the predition of the gauge-only approximation about the

ross setion of the new salar. The grey areas are exluded by LEP or CMS

and ATLAS experiments. Below, the predition of the σ
SI

, the gray areas are

exluded by XENON2012 and LUX2013 experiments. Everything is omputed

as a funtion of the parameter gX , that varies as shown in the olour legend.
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Figure 5.2: Cross setion of the new salar as a funtion of the parameter gX ,
onsidering also Top loops (above) or onsidering W, Z, salars and Goldstone

loops (below)
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Figure 5.3: Our �nal result: above, the predition of the omplete model for

the prodution ross setion of the new salar. Below we report the predition

for the ross setion for DM diret detetion. These quantities are plotted as a

funtion of the parameter gX , that varies aordingly to the olors on the legend.
For a omparison, in these diagrams we leave the data of the approximated

ase as smaller points. As in the approximated ase, in Figures 5.1 and 5.2,

the grey areas are exluded by LEP or CMS and ATLAS experiments for the

diagram above, while the bounds omes from XENON2012 and from LUX2013

experiments for the diagram below.
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Figure 5.4: We plot again the �rst diagram of Figure 5.3, enlarging on the area

where the data show similar masses for the salars.
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Figure 5.5: Preditions of the omplete model: above, the parameter λHS , that

is the oe�ient of the �portal� term. Below, the parameters w and µ, the
mass of the extra salar Ms and the mass of the DM partile. w is the vauum

expetation value of the new salar s, while µ indiate the ritial sale at whih

4λHλS − λ2
HS = 0, so the sale µ in our omputations e�etively replaed the

parameter λS . All these quantities are plotted as a funtion of the parameter

gX .



Chapter 6

Conlusion

We onsidered an extension of the SM that desribes the Dark Matter and

proposes a solution to the hierarhy problem.

In the introdution we analized the hierarhy problem and the presene of

quadratially divergent orretions to the dimensional parameter of the SM.

In the ontext of ��nite naturalness�, we introdued a model without a mass

term for the Higgs. The masses of the partiles arise from a Coleman-Weinberg

mehanism, so spontaneous symmetry breaking does not our at tree-level, but

is generated by the radiative orretions to the theory. We supposed that there

is a new partile S, salar doublet under an extra group SU(2)X , and new vetor

bosons X of the same gauge group. The only ommuniation between this new

setor and the SM is through the so-alled �Higgs portal�, that is the quarti

vertex between two Higgs �elds and two S �elds. The VEVs of the two salars

are �xed by the one-loop potential. The interations with the salars give mass

to all the partiles of the model, so all the sales are related and exponentially

suppressed with respet to the Plank sale.

Astrophisial and osmologial experiments demand the presene of Dark

Matter. We don't know, as we wrote in the introdution, what it is, and there are

a lot of hypoteses on it. We think it is a partile, and in our model we introdued

the vetor boson X of SU(2)X , that is a good andidate to represent the Dark

Matter. It has a mass of about 1 TeV, and if we make a rough estimate, as we did

in the introdution, this is the order of magnitude of the sale where the mass of

the DM partile is expeted, assuming it is a thermal relit. Furthermore, this

partile has to be stable. Some theories have to introdue speial symmetries

with the spei� purpose of keeping the DM partile stable. In our model, X
vetors are automatially stable, beause of the gauge symmetry and beause

of the partile ontent of the theory.

Another peuliarity of this simple model is the presene of only one free

parameter. The other parameters introdued in the model are �xed by the

experimental values of the DM osmologial abundane, of the Fermi onstant

and of the Higgs mass.

The original work presented in this thesis onsisted in performing for the

�rst time a preise omputation of the preditions of the model for the LHC

and for diret detetion experiments.

The new omputation inludes for the �rst time a full one-loop omputation

of the salar masses and of the e�etive potential, and a full tree-level ompu-
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tation of the DM annihilations and semi-annihilations relevant for the thermal

DM abundane. We �nd that:

• there are new solutions missed in the previous omputation; however they

are in the already exluded area.

• in [13℄ the diagrams the preditions for the DM mass and diret dete-

tion ross setion show a �gap�. In our omputations, this disontinuity

disappeared, being an artifat of the previous approximated omputation.

• given the mass Ms of the extra salar, the ross setion for its prodution

for LHC inreases by a fator ≈1.3 with respet to the approximated om-

putation. Anyhow, this ross setion is ompatible with the experiments

in a small range around gX ≈ 0.9 when s is lighter than Higgs, and for

gX & 1.0 when s is heavier.

• the predition for the DM diret detetion is ompatible with LUX2013

and XENON2012 bounds for gX & 0.8.



Appendix A

Feynman rules of the model

A.1 Overview

The lagrangian of the theory is:

L = Lmh=0
SM

− 1

4
F ′
µνF

′µν + |DµS|2 + λHS |HS|2 − λS |S|4.

This lagrangian is invariant under U(1)

Y

×SU(2)
L

×SU(3)


×SU(2)
X

. We intro-

dued a new symmetry group, SU(2)

X

, and S, that is a doublet under this group.
In this model there is the spontaneous symmetry breaking, so we write diretly

the H and S �elds as a sum of a vauum expetation value and a physial �eld:

H =

(

0
v+h√

2

)

S =

(

0
w+s√

2

)

.

Therefore, we observe that the mass matrix for h and s is not diagonal: we all
h1 and h2 the mass eigenstates and we de�ne a mixing angle α:

(

cosα − sinα
sinα cosα

)(

h
s

)

=

(

h1

h2

)

The expression DµS represents the ovariant derivative of the �eld: (∂µ +
i gXXµ)S, where the Xµ �elds are the vetor bosons of the new symmetry group

SU(2)

X

. The Feynman rules of this model are similar to those of the SM: we

should onsider that the Higgs boson �eld is not simply h, but it is rotated, so
it is a ombination between h1 and h2. To write the rules for the interations

with the W and Z bosons and with fermions, we just take the SM verties and

we onsider, for every line of the Higgs �eld, two similar diagrams: in eah of

them the h line is replaed with a h1 line or a h2 line respetively. The �rst of

them takes a cosα fator, while the seond takes a sinα fator. All the other

interations, that are substantially modi�ed, are listed below.

A.2 Salar and vetor interations

A.2.1 Propagators

The propagators of the h1 and h2 salars are
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h1,2

p
=

i

p2 −m2
h1,2

+ i ǫ
,

while the vetor boson propagators, that have all the same mass mX = gXw
2 ,

beome

µ, a ν, b

X

p
=

− i δab

p2 −m2
X + i ǫ

[

gµν − (1− ξ)
pµpν

p2 − ξm2
X

]

We an express the vetor bosons in this way:

X+
µ =

X1 − iX2

√
2

X−
µ =

X1 + iX2

√
2

,

where the plus or minus doesn't represent the eletrial harge of the partile,

this is just a onvenient reparametrization of the �elds.

A.2.2 Gauge verties

Gauge bosons only

µ, a

ν, b

ρ, c

= gXǫabc

× [gµν(p1 − p2)
ρ + gνρ(p2 − p3)

µ + gρµ(p3 − p1)
ν ]

p1 + p2 + p3 = 0

µ, a ν, b

ρ, c σ, d

= − i g2X [ǫeabǫecd(gµρgνσ − gµσgνρ)

+ ǫeacǫedb(gµσgνρ − gµνgσρ)

+ ǫeadǫebc(gµνgρσ − gµρgνσ)]

p1 + p2 + p3 + p4 = 0
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Verties involving salars

X

X

µ, i

ν, j

h1

= i gµνδijgXmX sinα =
i

2
gµνδijg2Xw sinα

X

X

µ, i

ν, j

h2

= i gµνδijgXmX cosα =
i

2
gµνδijg2Xw cosα

X

X

µ, i

ν, j

h1

h1

=
i

2
gµνδijg2X sin2 α

X

X

µ, i

ν, j

h1

h2

=
i

4
gµνδijg2X sin 2α

X

X

µ, i

ν, j

h2

h2

=
i

2
gµνδijg2X cos2 α
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A.2.3 Salar verties

Quarti

h1

h1

h1

h1

= −6 i(λH cos4 α−λHS cos2 α sin2 α+λS sin4 α)

h2

h2

h2

h2

= −6 i(λS cos4 α−λHS cos2 α sin2 α+λH sin4 α)

h2

h2

h1

h1

= − i[(6λH + 4λHS + 6λS) cos
2 α sin2 α+

− λHS(cos
4 α+ sin4 α)]

h2

h1

h1

h1

= 3 i(2λH cos3 α sinα+λHS
sin 4α

4
−2λS cosα sin3 α)

h1

h2

h2

h2

= 3 i(2λH cosα sin3 α−λHS
sin 4α

4
−2λS cos3 α sinα)



APPENDIX A. FEYNMAN RULES OF THE MODEL 43

Cubi

h1

h1

h1
= −3 i(2λHv cos3 α−λHS(w cos2 α sinα+v cosα sin2 α)+2λSw sin3 α)

h1

h1

h2
= i(λHSw cos3 α+ 6λHv cos2 α sinα+ 2λHSv cos

2 α sinα

− λHSv sin
3 α− 6λSw cosα sin2 α− 2λHSw cosα sin2 α)

h1

h2

h2
= i(λHSv cos

3 α− 6λHv cosα sin2 α− 2λHSv cosα sin2 α+

+ λHSw sin3 α− 6λSw cos2 α sinα− 2λHSw cos2 α sinα)

h2

h2

h2
= −3 i(2λSw cos3 α+λHS(v cos

2 α sinα−w cosα sin2 α)−2λHv sin3 α)
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A.2.4 Goldstone bosons interations

Besides the Goldston bosons of the Higgs, there are three new Goldstone bosons

relative to the S �eld, and we all them ϕi
X . Their propagator is

ϕi
X

p
=

i

p2 − ξXm2
X + i ǫ

A.2.5 Goldstone verties

An useful way to desribe Goldstone bosons is:

ϕ+
X =

ϕ1
X − ϕ2

X√
2

ϕ−
X =

ϕ1
X + ϕ2

X√
2

ϕZ
X = ϕ3

X

Goldstone-vetors verties

X

X

µ, i

ν, j

ϕa
X

ϕb
X

=
i

2
gµνδijδabg2X

ϕ−
X

ϕ+
X

p−

p+

X3
µ

= − i
gX
2
(p+µ − p−µ )

h1

ϕ∓
X

k

p

X±
µ

= − i
gX
2
(pµ − kµ) sinα
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h1

ϕZ
X

k

p

X3
µ

= − i
gX
2
(pµ − kµ) sinα

h2

ϕ∓
X

k

p

X±
µ

= − i
gX
2
(pµ − kµ) cosα

h2

ϕZ
X

k

p

X3
µ

= − i
gX
2
(pµ − kµ) cosα

ϕZ
X

ϕ∓
X

k

p

X±
µ

= − i
gX
2
(pµ − kµ)
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Goldstone-salars verties

ϕi

ϕj

h1
= − i δij(2λHv cosα− λHSw sinα)

ϕi

ϕj

h2
= i δij(2λHv sinα+ λHSw cosα)

ϕX
i

ϕX
j

h1
= − i δij(2λSw sinα− λHSv cosα)

ϕX
i

ϕX
j

h2
= − i δij(2λSv cosα+ λHSw sinα)

h1

h1

ϕi

ϕj

= − i δij(2λH cos2 α− λHS sin2 α)
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h2

h2

ϕi

ϕj

= − i δij(2λH sin2 α− λHS cos2 α)

h1

h2

ϕi

ϕj

= i δij(2λH + λHS) sinα cosα

h1

h1

ϕX
i

ϕX
j

= − i δij(2λS sin2 α− λHS cos2 α)

h2

h2

ϕX
i

ϕX
j

= − i δij(2λS cos2 α− λHS sin2 α)

h1

h2

ϕX
i

ϕX
j

= − i δij(2λS + λHS) sinα cosα
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A.2.6 Goldstone only verties

ϕ+
X

ϕ−
X

ϕ+
X

ϕ−
X

= −4 iλS

ϕ+
X

ϕ−
X

ϕX
Z

ϕX
Z

= −2 iλS

ϕX
Z

ϕX
Z

ϕX
Z

ϕX
Z

= −3 iλS

ϕ+
X

ϕ−
X

ϕ+

ϕ−

= iλHS

ϕZ
X

ϕZ
X

ϕZ

ϕZ

= iλHS

ϕ+
X

ϕ−
X

ϕZ

ϕZ

= iλHS
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ϕZ
X

ϕZ
X

ϕ+

ϕ−

= iλHS

ϕ+

ϕ−

ϕ+

ϕ−

= −4 iλH

ϕ+

ϕ−

ϕZ

ϕZ

= −2 iλH

ϕZ

ϕZ

ϕZ

ϕZ

= −3 iλH
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A.3 Ghost �elds

To �x the gauge over the new vetor bosons, we introdue three new ouples of

ghost and anti-ghost �elds. We all them ciX and c̄iX . Their propagator is

ciX

p
=

i

p2 − ξXm2
X + i ǫ

A.3.1 Ghost verties

Also for the ghosts, a useful way to desribe them is

c+X =
c1X − c2X√

2
c−X =

c1X + c2X√
2

,

onsidering that antighost �elds are de�ned with the opposite signs. Similarly

to the ase of the vetor bosons, the signs are not the eletri harge of the

partile.

c±X

c±X

p
X3

µ

= ∓ i gXpµ

c3X

c±Xp

X±
µ

= ± i gXpµ

c±X

c±X

h1

= − i

4
ξg2Xw sinα
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c±X

c±X

h2

= − i

4
ξg2Xw cosα

c3X

c3X

h1

= − i

4
ξg2Xw sinα

c3X

c3X

h2

= − i

4
ξg2Xw cosα

c±X

c±X

ϕZ
X

= ± i

4
ξg2Xw



APPENDIX A. FEYNMAN RULES OF THE MODEL 52

c3X

c±X

ϕ∓
X

=
i

4
ξg2Xw

c±X

c3X

ϕ±
X

= − i

4
ξg2Xw
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