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  ABSTRACT 

The imaging of the lung and of the heart are often challenging in magnetic resonance due to the 

motion of the organs. In order to avoid motion artifacts it is possible to make the acquisition fast 

enough to fit in the breath-hold, or use some motion management methods in free breathing. 

A fast image acquisition can be obtained with non-Cartesian acquisition schemes, which require 

specialized reconstruction methods. In this work the least-squares non-uniform fast Fourier 

transform (LS-NUFFT) was compared to the standard gridding (GR) taking the direct summation 

method (DS) as reference. LS-NUFFT obtained lower root mean square error (RMSE), but 

heavier geometric information loss. The performance improvement of the LS-NUFFT was 

studied using three regularization methods. The truncated SVD reduced the RMSE of the simple 

regularization-free LS-NUFFT. 

Alternatively, the scan time can be shortened with some FOV reduction techniques. For cardiac 

imaging, the inner volume (IV) reduced-FOV selection was explored for the myocardial T2 

mapping. The FOV reduction successfully avoided aliasing and provided a scan time reduction 

from about 23s to 15s. However, undesired stimulated echoes caused an overestimation in the T2 

of about 20%. The effects of the inner volume excitation on the T2 mapping were described and 

clarified.  

Finally, motion management was explored for lung imaging in free-breathing, using a non-

Cartesian acquisition trajectory. The rotating ultra-fast sequence (RUFIS) was demonstrated to 

be very suitable for the short T2
* lung tissue. The respiratory motion was addressed with three 

methods: prospective triggering (PT), prospective gating (PG) and retrospective gating (RG). All 

methods were able to reconstruct a 3D high-resolution dataset. PG and RG could achieve 1.2 mm 

isotropic resolution in clinically reasonable scan time (~6min). The RG sequence could 

reconstruct multiple phases of the respiration cycle at cost of higher scan time. 

 

Keywords: non-Cartesian acquisition, reconstruction, LS-NUFFT, geometric information, 

cardiac, T2 mapping, inner volume, lung, RUFIS, navigators. 
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LIST OF SIMBOLS AND ABBREVIATIONS 

MRI: magnetic resonance imaging 

RF: radio-frequency pulse 

B0: static magnetic field in the magnet 

B1: time-varying magnetic field associated with the RF 

T1: longitudinal relaxation time 

T2: transverse relaxation time 

PD: proton density 

TE: echo time 

TR: repetition time 

FA: flip angle 

FOV: field of view 

PE: phase encode 

FE: frequency encode 

SNR: signal-to-noise ratio 

FFT: fast Fourier Transform 

IDFT: inverse discrete Fourier Transform 

DCF: density compensation function 

LS-NUFFT: least squares non-uniform FFT 

GR: gridding method with Keiser-Bessel interpolator 

DS: direct summations method 

RMSE: root mean square error 

SL: Shepp-Logan (digital phantom) 

τ: width of the 2D autocorrelation peak 

τrand: width of the 2D autocorrelation after the pixel location randomization 

G: geometric information loss index 

Rτ: measure of the 2D autocorrelation peak anisotropy 

VSD: variable density spiral 

PSF: point spread function 

TSVD: truncated singular value decomposition 

TR: Tikhonov regularization method 



L1R: L1 regularization 

q: size of the LS-NUFFT interpolator 

GCV: generalized cross validation 

FSE: fast spin echo 

MEFSE: multi-echo FSE 

ETL: echo train length in the FSE 

rFOV: reduced FOV 

IV: inner volume 

2D-RF: multi-dimensional spatially selective pulses 

ROI: region of interest 

SLR: Shinnar-Le Roux transform 

STE: stimulated echo 

RUFIS: rotating ultra-fast imaging sequence 

ZTE: zero-echo time 

UTE: ultra-short echo time 

FID: free induction decay 

DC: static/ zero frequency 

Navg: number of averages 

BWRx: receive bandwidth 

PT: prospective triggering 

PG: prospective gating 

RG: retrospective gating 

MIP: maximum intensity projection 

 

 



 



 

 INTRODUCTION 

Magnetic Resonance Imaging (MRI) is an important medical technique extensively used for 

diagnostic purposes. MRI produces images of the human body showing anatomical and 

functional information with a level of details unimaginable only a few decades ago. MRI has 

been invented around the early 1970s and today thousands of MRI scanners are spread all over 

the world giving crucial information for medical diagnosis. 

MRI is based on the sensitivity to the presence and properties of water in the human body. In the 

case of disease or injuries, the properties and amount of water in tissue can significantly change, 

hence making MRI a suitable technique for diagnostic. MRI uses non-ionizing radiations, thus it 

is generally considered not to be dangerous for the human body. Besides the anatomical 

information, MR is able to obtain functional or metabolic information as well. 

In MRI the patient is put in a strong static magnetic field, generally referred as B0, which 

generates an equilibrium state in the proton spins of the tissues. The spins in the tissues tend 

align to the static magnetic field, ending up in a precession motion around B0. The precession 

motion is associated to a frequency called Larmor frequency, which is dependent on the static 

magnetic field strength and on the imaged nucleus. The most frequently imaged nucleus in 

magnetic resonance is the hydrogen (H). For H imaging at 1 Tesla magnetic field, the Larmor 

frequency is about 42MHz. 

The equilibrium state of the spins is perturbed by electromagnetic pulses at the Larmor frequency 

as central frequency. The phenomenon of giving energy to the spins at the same precession 

frequency is called ‘resonance’ and that is where the imaging technique takes the name from. 

After the radio-frequency (RF) pulse excitation, the spins try to go back to their equilibrium state 

with a speed dependent on the magnetic properties of the tissues. After excitation, the 

longitudinal magnetization signal (parallel to B0) increases getting back to the equilibrium state 

value with an exponential law. Conversely, the signal on the transversal plane (perpendicular to 

B0) decreases exponentially to zero. A receiving coil acquires the time-varying magnetic signal 

generated on the transversal plane by the spins while going back to equilibrium [1].  

On the basis of these principles, MR is capable of acquiring enough information to reconstruct 

detailed images of the human body. Spatially-varying magnetic fields (generally referred as 



gradients) are used to distinguish the spatial origin of the acquired signals. Three gradients 

applied on the different spatial directions are used in order to obtain a slice-encode (z axis), a 

phase-encode (y axis) and a frequency-encode (x axis). The gradients allow acquiring 2D or 3D 

image datasets, which need to be reconstructed with the Fourier Transform. In MRI, the physical 

magnetization vector is considered as phasor, with real and imaginary part. The acquired signal 

is an integration of all the spin phasors contribution from the whole imaged volume. From this 

consideration, the acquired signal fills the Fourier domain (k-space) and a Fourier transform is 

needed to obtain the desired image in the space domain [2]. 

Motion during the acquisition is one of the most common sources of artifact for MRI. During the 

acquisition the location of the spins is assumed not to change. However it is often difficult to 

keep organs still for a time long enough to acquire the interesting signals. Respiration is an 

example of motion that cannot be interrupted for a long time. The heart-beating is an example 

frequent and uncontrolled movement which needs careful management to prevent from artifact 

formation. The easiest way to avoid motion artifacts is to stop the motion during the acquisition. 

For the respiratory motion, the acquisition can be accelerated to fit in the breath-hold. 

Alternatively the motion can be left running free, but some motion management needs to be 

adopted. For cardiac motion, the heart beat cannot be interrupted; hence it is common to 

synchronize the acquisition with a specific phase of the heart cycle (e.g. diastole). 

In this work of thesis the cardiac and lung imaging and reconstruction techniques have been 

investigated. The work is divided in two main sections. The first section is focused on 

reconstruction techniques from fast acquisition schemes, which better fit the acquisition in the 

breath-hold. Non-Cartesian sampling of the k-space is a good way to keep the acquisition fast 

and reduce the echo time (TE) as much as possible. An analysis of the reconstruction method 

performance for non-Cartesian datasets is presented in this work. First a study is presented on the 

reconstruction error and the geometric information loss associated with the reconstruction 

method. Secondly three regularization methods are presented and applied to the reconstruction 

method in order to improve its performance. 

The second section is focused on pulse sequence development. This topic is required solving 

problems of both software engineering and MRI physics. 

In the first place a sequence was developed for cardiac applications. In the case of heart imaging, 

both cardiac and respiratory motions need to be managed in order to avoid motion artifacts. 



Regarding respiratory motion, breath-holding during the acquisition was adopted in order to 

avoid artifacts. Regarding cardiac motion, the acquisition was synchronized to the diastole using 

the ECG signal. The inner volume excitation was explored as scan acceleration method in order 

to comfortably fit the acquisition in the breath-hold. The T2 mapping was chosen cardiac 

application to accelerate. The T2 mapping is a quantitative imaging technique which requires the 

acquisition of the same T2 weighted cardiac image multiple times at different TE. Therefore, the 

scan time can easily exceed the breath-hold. 

The sequence development was focusing on lung imaging as well, presented in the second part of 

the second section. In this case the acquisition was rendered as fast as possible using a radial 

acquisition in the K-space. However the breath-hold might not be long enough to acquire all the 

necessary data, especially for 3D datasets. Therefore the respiration was kept running free using 

some motion management methods. The motion managements were implemented in a zero-TE 

sequence, very suitable for acquiring the short lived signal of the lung.  

Finally some tests were performed in order to merge the skills gained in both cardiac and lung 

imaging. The same approach used for the lung imaging sequence was used for the cardiac 

imaging as well. 

 



 

 

1. SECTION 1: RECONSTRUCTION TECHNIQUES 

 

1.1. INTRODUCTION 

As mentioned above, the MRI technique acquires signal filling the k-space of the desired image. 

The acquisition needs to be as fast as possible in order to better fit the scan in the breath-hold, or 

to acquire the signal before its quick decay.  

Methods to obtain a rapid acquisition include echo planar imaging [3], compressed sensing [4], 

and parallel imaging with restriction to multi-channel receiver coils [5, 6]. Alternatively, non-

Cartesian trajectories, e.g. spirals [7, 8], can be used to rapidly fill the k-space and thus 

accelerate the scan. Non-Cartesian trajectories starting the acquisition from the center of the k-

space acquire most of the relevant information of the image before the signal decays. 

Handling non-Cartesian data is a problem widespread in many different areas. Besides MRI, 

non-Cartesian samples are acquired, for example, in radio astronomy [9], or in several kinds of 

medical imaging techniques [10, 11]. Cartesian trajectories are often preferred in MRI because 

Fast Fourier Transform (FFT) can be used directly in this case. If N is the number of input data, 

then O(N log(N)) will be the computational complexity of FFT, so FFT will be very fast. On the 

other hand, Non-Cartesian trajectories like spirals can fill the k-space with attractive 

performances. They can obtain variable sampling density on the k-space. Spirals sample fewer 

data, thus shortening acquisition time and they oversample the center of the k-space, thus 

reducing movement artifacts. However, FFT cannot be used directly, because FFT requires 

evenly spaced samples in input, and this is the main disadvantage of non-Cartesian data. 

Specialized reconstruction methods are needed to obtain image in the spatial domain in a 

reasonable time. Fig. 1 shows an example of spiral acquisition trajectory compared to a Cartesian 

sampling pattern. 



 

Fig. 1 Example of a) spiral trajectory, b) Cartesian trajectory 

Several reconstruction methods have been proposed in literature [12 - 15]. Direct Summation 

(DS) method [16, 17] is usually taken as reference method because it directly applies the 

definition of the Inverse Discrete Fourier Transform (IDFT). Most reconstruction methods need 

to compensate the variable sampling density on the k-space. The compensation function is 

usually called Density Compensation Function (DCF). Extensive work has been presented in 

literature regarding the optimal choice of DCF [18]. In this work of thesis the term gridding is 

referring to any reconstruction method performing an interpolation followed by FFT. The 

interpolation evaluates data onto Cartesian grid of k-space, so FFT can then be used. The most 

common gridding reconstruction uses a Keiser-Bessel window interpolator before applying the 

FFT [19, 20]. In this work the Keiser-Bessel gridding method will be referred as GR.  

In this work, the attention has been mainly focuses on a gridding method called Least Squares 

Non-Uniform Fast Fourier Transform (LS-NUFFT) [21 - 24]. LS-NUFFT is a development of 

NUFFT [25]. NUFFT uses a Gaussian operator, which has been shown to be effective in several 

applications [26, 27]. LS-NUFFT is supposed to obtain good performance thanks to a pseudo 

inverse matrix guiding the choice for gridding interpolator. 

LS-NUFFT was analyzed under two main aspects. The geometric information loss of the 

reconstruction method was introduced and analyzed for both LS-NUFFT and GR. Additionally 

three regularization techniques were applied to LS-NUFFT in order to reduce the reconstruction 

error using a wider interpolation kernel. 

 



1.2. THEORY: RECONSTRUCTION METHODS 

In this section the reconstruction methods used in the present work are described. An explanation 

will be given of the characteristics of the DS method (which is taken as reference), the GR 

method and the LS-NUFFT method (obtained as a development from NUFFT). 

1.2.1. Direct Summation (DS) 

In principle, a perfect reconstruction of an MR image would require a continuous two-

dimensional Fourier transform applied to a continuous acquired k-space.  

Ideally, the general relationship between the space image  and the signal  acquired by 

the MR scanner is determined by the inverse Fourier Transform: 

 . (1) 

Vector  represents the space location and  represents the frequency location in the k-space. In 

practice it is only possible to acquire a finite number of samples (Ns) on the k-space, so the 

Inverse Discrete Fourier Transform (IDFT) has to be used to reconstruct the image. Discrete 

Fourier Transform and its inverse are well-known tools that keep on being analyzed also in 

recent works [28, 29]. DS method simply uses the definition of the IDFT in the case of non-

Cartesian trajectories. Let us consider the mono-dimensional version of IDFT for simplicity: 

 , (2) 

I j is the value of IDFT at location j. ∆x is the sample spacing of the IDTF, j∆x is the discrete 

space location and M is the number of reconstructed space locations. ωh is the sampled pulsation 

(i.e. the discrete 1D version of vector ) and Ns is the number of samples on the non-uniform 

trajectory. Sh represents the sampled data at the discrete k-space location ωh.  

∆ωh is the discretized integration interval. If the acquisition trajectory is Cartesian, ∆ωh does not 

depend on h. For non-Cartesian trajectories, the use of an adaptive ∆ωh avoids overweighting the 

samples acquired in heavily sampled areas of the k-space. Hence, the previously introduced DCF 

function equals 1/∆ωh. The value of ∆ωh can be calculated using the Jacobian of the trajectory 

mathematical expression [30]. Alternatively ∆ωh can be determined using the Voronoi diagram 



[31, 32] using the area of the region associated with each point of the trajectory on the k-space. A 

spiral trajectory with one interleave is shown in Fig. 2a with the associated Voronoi diagram in 

Fig. 2b. 

 

Fig. 2 : a) Example of spiral trajectory with one interleaf. The centre of the K-space is 

sampled with higher density than periphery. b) Zoomed Voronoi diagram of a spiral trajectory 

with only one interleave. 

The main disadvantage associated with the DS method is the high computational complexity. If 

Ns samples are acquired and the reconstructed image is defined on M2 pixels, then the 

computational complexity equals O(M2Ns). 

 

1.2.2. Gridding reconstruction (GR) 

The use of the FFT algorithm makes the gridding reconstruction method fast. Before using FFT, 

sampled data need to be interpolated on a Cartesian grid. The interpolation process is called 

‘gridding’. 

Considering the 1D case, S is the sampled data (i.e., the signal) and DCF the density 

compensation function depending on the chosen trajectory [12]. DCF is proportional to the 

inverse of the ∆ωh mentioned in the previous section. C is a chosen convolution kernel and III  is 

the Cartesian grid where data are to be interpolated. The gridding process can thus be 

summarized as follows: 



  , (3) 

where Sg represents the gridded data and  is the convolution operator. Gridding is done with 

three main steps i) convolution between density compensated data and a chosen kernel C ii) re-

sampling data onto a Cartesian grid iii) scaling of the space image. Scaling corresponds to 

deconvolve ( ) the obtained dataset with C in the frequency domain. The extension to 2D 

case is straightforward. 

In this work, a 4-pixel-wide Kaiser-Bessel (KB) window was used as C kernel. The Kaiser-

Bessel function is defined as follows: 
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Where Im represents the modified Bessel function of order m, α is a parameter that determines the 

shape, and 
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The interpolation was calculated on a two-fold field-of-view (FOV) to reduce aliasing as 

suggested in [12]. The Voronoi areas associated with the trajectory were used to calculate 

1/DCF. 

The interpolation of GR can be represented with a linear operation . Matrix T is the 

interpolator. D is the diagonal matrix with 1/DCF on the diagonal. Kernel C can be defined to be 

non-zero on a very small number of points. This allows matrix T to be sparse and makes gridding 

very fast. Finally reconstruction is obtained with the inverse FFT algorithm applied to Sg. The 

computational complexity of the convolution step is strictly dependent on the width (w) of the 

convolution kernel. The number of multiplication required for the convolution equals Nsw
2 in the 

2D case. The complexity associated to the 2D FFT algorithm is O(M2log(M2)). The total 

computational complexity is O(M2log(M2)+ Nsw
2) for 2D GR. The M2 multiplications needed for 

final space scaling have little importance in this evaluation. 

 



1.2.3. Least Squares Non Uniform Fast Fourier Transform (LS-NUFFT) 

LS-NUFFT has been developed on the basis of NUFFT method. NUFFT was introduced for the 

first time by Dutt and Rokhlin [14] and is based on the approximation of a complex exponential. 

According to reference [25], the following 1D approximation can be written: 
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Where α(ωh) denotes the integer value closest to ωh. This expression is valid if b > 0.5 and ωh > 

0 are real numbers. It is also required that q ≥ 4bπ is an integer number and x ϵ [–π,π] . We can 

consider ωh as pulsation and x as space coordinate. ρk(ωh) can be expressed as: 
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Defining   αh = Sh · DCF-1 and m ≥ 2 an integer number, Eq. 

6 can be used in the definition of IDFT expressed in Eq. 2 obtaining what follows ([25, 23] ): 
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Eq. 8 shows that every pixel in the reconstructed image is obtained with two summations. The 

inner summation performs an interpolation of data on equidistant frequency locations k. The 

outer summation is an IDFT that can be performed using FFT. Interpolators are often used to 

make the reconstruction process faster. Interpolation uses a window of the samples to determine 

the value of Fourier transform on the interesting Cartesian locations. The width and shape of the 

window affects the quality of the reconstructed image. If the width is kept low, the 

reconstruction can be faster. In Eq. 8, parameter q represents the number of samples used by the 

interpolator. 

NUFFT is a gridding method that uses a Gaussian interpolator [17] and can be compared to the 

classical gridding proposed by Jackson et al. [12], (i.e. what is called GR in this work). The 



factor m is increasing factor for the FOV to reduce aliasing (FOV = M·∆x). ρk(ωh) is the 

interpolator and its width depends on parameter q. ρk(ωh) is a (q+1)×N matrix in which k 

identifies the row and h the column. The scaling factors in the spatial domain are represented 

by

2
2

e
j

b
mM

π −  
  .  

LS-NUFFT is a development of NUFFT that was presented by Nguyen and Liu [21] and uses 

scaling factors different from Gaussian. Let sj be the scaling factors and 
2

w=e
i
mM

π

, then we can 

write a generalization of Eq. 6 as follows: 
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The user needs to choose the scaling factors. The interpolator ρk(ωh) is determined using a 

pseudo inverse matrix. We can rewrite Eq. 9 using matrix notation: 

 ( ) ( )h h 0... 1jv A j Mω ρ ω= = −  
(10) 

with ( ) hjm
h j=s wjv ωω  and matrix A gathers all factors wjk. A is a Fourier matrix and has size 

M×(q+1). Finally the interpolator that minimizes ( ) ( ) 2

h h 2kA vρ ω ω⋅ −  can be obtained using 

the Moore-Penrose pseudoinverse matrix: 

 ( ) ( ) ( )1†
h h

H H
LS A v A A A vρ ω ω

−
= =  (11) 

Matrix AH is the conjugate transpose of A. The interpolator in Eq. 11 has been extensively 

studied by Fessler and Sutton [22]. Fessler and Sutton have shown that ρLS is the interpolator that 

minimizes the maximum approximation error. A 2D version LS-NUFFT has also been applied 

on medical imaging [23].  

The number of multiplications required for the interpolation is Nsq
2 in the 2D case. The 

complexity associated with the 2D FFT algorithm is O(M2log(M2)). The total computational 

complexity is O(M2log(M2)+Nsq
2) for both 2D NUFFT and LS-NUFFT. 



The calculation of the interpolator before reconstruction is the only computational difference 

between NUFFT and LS-NUFFT. 

 

1.3. GEOMETRIC INFORMATION LOSS 

The performance of the reconstruction methods is generally evaluated using the error image. The 

error image is calculated as difference image between the reconstruction image of the tested 

method and the reconstructed image of the reference method (typically DS). The error image 

basically corresponds to the difference image. In literature, often the root mean square error 

(RMSE) [23] has been evaluated in order to estimate the performance of the reconstruction 

method. Fig. 3 shows an example of this comparison, described in [23] for in vivo experiments. 

 



Fig. 3 Comparison of LS-NUFFT and GR methods using in vivo experiment data, taken from 

[23]: (a) DS, (b) LS_NUFFT, (c) GR (d) Absolute error between DS and LS-NUFFT 

reconstructed images (d) Absolute error between DS and GR reconstructed images. 

The RMSE is a first-order statistic estimator; therefore it provides an indication of the error 

amplitude. Besides RMSE, also other first order statistic methods have been presented in 

literature, e.g. the entropy of the image [33].  

However, the first-order statistic indices cannot recognize any geometrical structure in error 

image. The presence of structures in the error image implies that the reconstruction method lost 

some of the interesting geometric information. Tissue shape preservation and correct depiction of 

image details are key issues in diagnostic image applications. The presence of structures in the 

error image can be associated to any value of the RMSE and can only be detected using second-

order statistical methods [33, 34]. These methods analyze the relationships between pixels or 

groups of pixels (usually two), finding correlations in case of structured images. The geometric 

information loss can be analyzed using the co-occurrence matrix [35], which measures the joint 

probability of pair of pixels. However the co-occurrence matrix limits the analysis to the 

relationship of pixels with a fixed geometric position relative to each other. Moreover this 

method is very sensitive to the noise level in the image. Alternatively, the 2D autocorrelation can 

provide information about the structures in the image as well [36]. The autocorrelation analyzes 

the relationships between pixels in any direction and at any distance on the image. Therefore, the 

autocorrelation provides an indication of how the structures are distributed globally in the image. 

In fact, in the autocorrelation image it is possible to detect the geometry of the object present in 

the image. 

The reconstruction methods were tested using both a digital phantom and an experimental data 

set. 3D hyperpolarized 13C in vivo data [37] sampled with a spiral trajectory were chosen as 

exemplary experimental dataset. Chemical Shift Imaging (CSI) of infused hyperpolarized 13C-

labelled compounds allows spectroscopy to detect an extensive range of compounds. Tissue 

perfusion requires the use of 13C-enriched molecules [38] and hyperpolarization [39] to achieve 

enough sensitivity. The use of hyperpolarized 13C-labeled pyruvate allows a real-time monitor 

the metabolic conversion of pyruvate to lactate, alanine and bicarbonate in both normal and 

malignant tissues [40]. Conversion of pyruvate in bicarbonate and lactate is the main factor 

characterizing aerobic and anaerobic behavior of the heart metabolism [41 - 43]. The [1-



13C]pyruvate tracer fast decay (about 60 sec) requires a very fast acquisition strategy. This is why 

non-Cartesian trajectories are often used to accelerate the acquisition. 

 

Fig. 4 Example of typical images of the metabolites obtained with hyperpolarized C13 

imaging.  

The performance of LS-NUFFT and GR methods were tested taking DS as reference for the 

comparison. The geometric information loss was measured analyzing the structures present in 

the error image, besides calculating the RMSE. 

 

1.3.1. Reconstruction error analysis 

The reconstruction error can be analyzed calculating the error image as the difference between 

the reconstructed image of tested method and of the reference method (i.e. DS). The error image 

can be modeled as the sum of two error components: structured and random. The amplitude of 

the overall error can be measured with RMSE. The estimation of the structured component 

required calculating the 2D autocorrelation of the error image [33, 36]. The presence of 



structures in an image can be detected with the width of the central peak of the 2D 

autocorrelation of the image. A wider peak is associated with more evident structures, hence a 

heavier loss of geometric information in the error image. Moreover, the geometry of the error 

image is transferred in the anisotropy of the autocorrelation central peak. In case of an object 

with a size bigger than the other one, the correlation along the bigger size is kept for longer 

distance than for the smaller size. The two main widths associated with the autocorrelation 

central peak were calculated with a fitting described by the following exponential model applied 

to the normalized error image: 

 . (12) 

Two decay constants τ1 and τ2 were calculated the autocorrelation image, taking the mean decay 

constant τ as representative of the width central peak. The ratio Rτ = τ1/τ2 was taken as index of 

anisotropy of the autocorrelation peak. 

The parameter τ is sensitive to the presence of a random component in the image, as any other 

second-order statistic metric [33]. The presence of noise decreases the correlation of the pixels in 

the image. Conversely, the entropy or mutual entropy tends to increase with the noise level. Both 

the noise sensitivity of τ and of the entropy of the co-occurrence matrix was investigated. 

 In order to obtain an index of structured error relative to the random component level, the 

method of surrogate data was used [44]. After calculating τ for the image, the pixel location in 

the image was randomized and a new width of the autocorrelation peak (τrand) was calculated. 

The randomized version of the dataset is called ‘surrogate’ data. The randomization of the pixel 

locations destroys any structure present in the image, keeping a correlation level dependent on 

the amplitude of the pixels. The ratio G = τ/τrand was taken as index of loss in geometric 

information. 

 

1.3.2. Datasets 

Experiments were performed on both digital phantom data and real experimental data. 

All the implementations of reconstruction methods were done using MATLAB (The Mathworks, 

Natick, MA, USA) software tool. The time elapsed by the reconstruction was reported as well, 



using a 1.20 GHz AMD Athlon(tm) X2 Dual Core Processor with 4 Gb of RAM, with Windows 

7 Operating System. 

MR synthetic data were generated from a 64x64 Shepp-Logan digital phantom considering FOV 

= 30cm. The spectrum of the image was interpolated on spiral K-space locations. 

In order to mimic the spiral sampling used in the real applications, a maximum distance of 

1/FOV was imposed between adjacent turns of the spiral to avoid aliasing, following the Nyquist 

criterion. A variable density spiral (VDS) was used as filling trajectory for the K-space [45]. 

VDS are often used in order to spend more time in the center of the k-space, where most of the 

interesting information lays. The distance between adjacent turns was designed to linearly 

increase from 0.5/FOV to 1/FOV moving further from the center of the K-space (Fig. 5a). This 

allows acquiring the center of the K-space more densely and thus gaining better signal-to-noise 

ratio (SNR).  

 

Fig. 5 a) VDS used for simulation and experiments. Distance between adjacent turns linearly 

increases moving toward periphery of K-space. b) Modulus of K-space acquired data plotted 

onto the sampling trajectory. The width of the trajectory does not cover the inverse of spatial 

resolution. This implies zero padding and thus blurring on the reconstructed image. 

The point spread function (PSF) [46] was calculated to characterize the behavior of the 

reconstruction methods. 

Regarding the experimental dataset, metabolic information covering the heart was obtained using 

a 3D IDEAL spiral CSI with FOV of 30cm and slab thickness of 10cm. A 3D dataset was 

acquired using a pulse-and-acquire sequence with 2D spiral readout and Cartesian phase 



encoding (PE) along the slice-encode direction (z). Sampling along z direction was Cartesian. 

Thus slices could directly be obtained performing a 1D-FFT on z direction. The following 

acquisition parameters were used: 14 PE along z, 11 echoes per PE at different echo time (TE), 

constant TE increment = 0.9 ms, 1824 samples per echo, flip angle = 7°, receiving bandwidth = 

±62.5 kHz. The animal experiment was performed on a healthy male mini-pig using a 3T GE 

HDx Excite MR scanner (GE Healthcare, Waukesha, WI, USA) with a 13C quadrature birdcage 

coil. [1-13C]pyruvate hyperpolarization was obtained using a HyperSense DNP polarizer (Oxford 

Instruments, Oxford, UK) with subsequent dissolution. 

Before reconstruction, experimental raw data were processed with the IDEAL method as 

described in [47, 48]. Fig. 6 explains the process performed on each dataset of different pigs. 

Data were firstly low-pass-filtered to improve SNR and reduce ringing artifact. Secondly, 

resonance frequencies of the metabolites were identified with a matching pursuit algorithm. 

Afterwards the IDEAL method was applied using the pseudo-inverse matrix.  

 

Fig. 6 Diagram of the processing procedure performed on experimental data. a) Acquisition. 

A spiral trajectory was used for each Phase Encode along the third direction. b) Filtering. For 

each single slice, data were Low-Pass-filtered to reduce noise level of high frequencies and 

ringing artifact. c) Matching Pursuit. Accurate resonance frequencies were detected for each 

metabolite. d) IDEAL. A pseudo-inverse matrix allowed us to obtain spectrum data. e) 

Reconstruction. Space 3D volumes were reconstructed and visualized.  

Finally the reconstruction methods were applied separately for the 2D images of each slice. The 

acquired VDS trajectory was similar to the one used for simulations. A zero padding 

interpolation (Fig. 5b) was applied to obtain 64x64x64 images, but the actual resolution of the 

image is bigger than the pixel size. The actual resolution is also worsened by the application of 



the Gaussian low-pass filter to reduce the truncation artifact and remove part of the high-

frequency noise. The actual in-plane resolution of the dataset was about 12mm.  

 

1.3.3. Results  

The performance of τ was analyzed simulating the progressive presence of structures and random 

error (Fig. 7a). A 128x128 Shepp-Logan phantom was used for the simulation and the results 

were averaged over 30 repetitions. The parameter τ is sensitive to different levels of structures 

present in the image. When more structures are present, the width of the autocorrelation widens. 

However, as the level of simulated random error increases, τ loses sensibility to the image 

structures. Fig. 7b shows the behavior of parameter G obtained in the same simulation. As the 

intensity of the random error increases, G approaches 1. Conversely, when detectable structures 

are present in the error image, G increases. G can be considered equal to 1 for error levels higher 

than about 3 times the maximum signal of the structured error. 

 



Fig. 7 Analysis of the structure detection performance in presence of noise. The noise level is 

the ratio between the amplitude of the noise variance and the structure maximum signal. The 

bottom row depicts the decreasing levels of structure (S1, S2, S3, S4) used in the analysis. The 

behaviour of τ and τrand are shown in (a) as the noise level increases and for different level 

structures. The behaviour of the relative index G is shown in (b).  

The same analysis was done also for another second-order statistic index, i.e. the entropy of the 

co-occurrence matrix. This index appeared to be very sensitive to the level of random error 

present in the image. Even a small amount of noise was able to blind the metric with very little 

difference among different level of structured error. The results shown in Fig. 8 suggest that the 

width of the autocorrelation matrix is a better index to determine the geometric information loss. 

 

Fig. 8 Analysis of the entropy of the co-occurrence matrix dependency over the structured and 

random errors. The metric appear to be too sensitive to the level of random error in the image.  

The PSF was calculated for both reconstruction methods. The PSF characterizes how the method 

behaves with a general reconstructed image. The error image and the autocorrelation were 

calculated for the PSF (Fig. 9). The autocorrelation of the PSF decreased more slowly than in the 

case of LS-NUFFT than GR. From the PSF, the error associated with LS-NUFFT appears more 

correlated than the error associated with GR. 



 

Fig. 9 Middle line of the normalized 2D autocorrelation for the PSF for both reconstruction 

methods. The curve for LS-NUFFT decreases more slowly than GR. Therefore, the PSF analysis 

shows that the error image of the LS-NUFFT is more structured than GR.  

For the digital phantom experiments on the reconstruction methods, GR obtained τ = 12.9mm, G 

=9.3, Rτ = 1.6 and RMSE = 5.1·10-4, whereas LS-NUFFT obtained τ = 52.6mm, G = 35.0, Rτ = 

1.4 and RMSE = 9.6·10-5. Therefore, LS-NUFFT allows the reconstruction to have an 

improvement of 5.3 times in the RMSE, as previously shown in literature [23]. However, in the 

case of LS-NUFFT the structured error is 35 times more relevant than the random error, whereas 

only 9.3 times in the case of GR. Fig. 10 shows the error images and autocorrelations for both 

methods. The shape of the autocorrelation follows the one of the reconstructed object (Fig. 10d, 

Fig. 10e). The parameter Rτ keeps track of the image anisotropy. In the case of an object with 

one dimension longer than the other one, the correlation will be preserved for longer distance 

than for the shorter dimension and Rτ will be bigger than one.  



 

Fig. 10  Simulation results. a) Reconstructed image with DS method. The image has been 

normalized by its maximum value. b, c) Error image of GR method (b) and LS-NUFFT (c) using 

DS as reference. FOV is circular for both images. d, e) Image of the 2D autocorrelation for the 

error image in GR (d) and LS-NUFFT (e) method.  

The values of τ, G, Rτ and RMSE were evaluated for experimental data as well (Tab. 1). Fig. 11 

shows the exemplary result images for pyruvate on central slice.  



 

Fig. 11  Experimental results shown for Pyruvate on central slice. a) Modulus of reconstructed 

image using DS. Image has been normalized by its maximum value. b, c) error image of GR 

method (b) and LS-NUFFT (c) using DS as reference. FOV is circular for both images. d, e) 

Image of the 2D autocorrelation for the error image in GR (d) and LS-NUFFT (e) method.  

 

GR Lactate hydrate pyruvate alanine bicarbonate Pyruvate 

RMSEx10-5 3.4±0.4 3.4±0.4 3.9±0.6 3.6±0.6 12.0±5.5 

 τ [mm]  9.3±0.6 12.4±1.7 16.6±2.5 10.9±1.1 13.3±1.6 

 Rτ  1.14±0.05 1.13±0.05 1.20±0.07 1.08±0.05 1.16±0.06 

G  6.5±0.5 7.9±0.8 8.4±0.8 7.0±0.6 11.8±1.8 

      

LS-NUFFT lactate hydrate pyruvate alanine bicarbonate Pyruvate 

RMSEx10-5 0.89±0.12 0.89±0.14 1.31±0.34 0.95±0.20 2.76±1.17 

 τ [mm]  53.3±3.1 55.1±1.9 57.8±1.9 55.3±2.9 44.1±8.5 

 Rτ  1.47±0.08 1.50±0.03 1.57±0.02 1.54±0.04 1.44±0.12 

G  13.6±0.5 13.0±0.8 10.8±1.8 13.8±0.9 17.3±0.9 

 



Tab. 1  Results obtained with the experimental dataset for each metabolite (lactate, hydrate 

pyruvate, alanine, bicarbonate and pyruvate). The values showed are averaged over the 64 slices 

of the reconstructed dataset.  

The reconstruction time of the methods was reported as well. GR and LS-NUFFT obtained about 

the same reconstruction time of 10±1ms, because they are both gridding methods, based on the 

use of FFT. The reconstruction time was 690±1ms for the DS method. GR and LS-NUFFT 

appear about two orders of magnitude faster than the DS method due to the different 

computational complexity. 

The DS method and the gridding methods are different in terms of reconstruction accuracy. The 

signal-to-noise ratio (SNR) in the reconstructed image is also dependent on the reconstruction 

method that is used. Comparing the GR method with the DS, for example, it is possible to 

observe that the DS method has a lower associated SNR then GR [49]. This is shown in the 

following figure, where the relative SNR ((SNRDS-SNRGR)/SNRDS) was calculated for all the 

slices and all metabolites of the experimental dataset.  

 

Fig. 12 Right images of the bicarbonate (a), lactate (b) and pyruvate (c) on the central slice 

with associated anatomical image (d). The region-of-interest (ROI) for the calculation of the 

SNR is depicted as red square. The relative SNR over the slices for the three metabolites is 

depicted on the right. 



This result justifies the fact that the DS method is typically taken as reference for the 

reconstruction methods. However DS is much slower than the gridding methods, like GR or LS-

NUFFT, and therefore not often used in the practice. This side result points out that the error 

present in the reconstructed image is also generated by the noise superposed to the input data. 

Moreover the noise transmitted to the reconstructed image depending also on the reconstruction 

method that is used. 

 

1.3.4. Discussion on the geometric information loss 

The LS-NUFFT and GR methods were compared using the DS method as reference. As shown 

in previous works in literature [23], LS_NUFFT obtained a lower RMSE than GR for both 

simulated and experimental datasets. Here the analysis was extended to the geometrical 

information loss of the reconstruction method. An index of geometric information loss (G) was 

presented and calculated using the 2D autocorrelation of the error images.  

The use of the 2D autocorrelation to quantify the presence of structures in the image was shown 

to be effective. The simulation performed with different levels of structured and random noise, 

shows the limitation associated with the use of the width of the autocorrelation peak directly. The 

parameter τ is an absolute measure sensitive to both structured and random errors. Therefore the 

observation of τ alone does not allow the distinction from the two types of error. The index G 

was introduced in order to have relative index for geometrical loss, valid for any level of 

structure in the image. The index G measures how much the structured errors are relevant 

compared to the random errors. The parameter G was shown to have a reduced dependency on 

structures in the image, comparing to τ. In fact, especially in the case of several structures, the 

surrogate method does not cause the total loss of correlation in the image even randomizing the 

pixel locations. The residual correlation present in the surrogate data is associated to the 

amplitudes of the pixels in the image. The following figure depicts this concept. For an image 

with all pixels equal to 1, the associated autocorrelation has a central line which is shaped as a 

triangle. In case of random noise, the autocorrelation is a Dirac delta (i.e. just a central peak). For 

all the surrogate images the amplitude of the pixels in the image creates an autocorrelation that is 

something in between these two extreme examples, i.e. a triangle shape with a higher central 



peak. The triangle shape is wider in case of more pixels with coherent amplitude, therefore in 

case of more structures in the image. 

 

Fig. 13 From left to right on the top row: image of ones, surrogate image of S1 level of 

structures, surrogate image of S2 level of structures, random Gaussian noise. S1 and S2 are 

referred to Fig. 7. Bottom row: central line of the autocorrelation associated to the images on 

the top row.  

For these reasons, a memory of the behavior of τ can still be found in τrand, thus making G less 

dependent on the structure level. 

The estimation of geometric information loss as performance index represents an important 

improvement in evaluation of reconstruction methods. Previous studies only focused on RMSE 

of reconstruction which is only able to give information about the first-order statistics of the 

reconstruction error. The presence of structures in the error image can be detected only by using 

a second-order statistic index, like the autocorrelation. The entropy of the co-occurrence matrix 

was shown to be too sensitive to random errors for these applications. Structures may be present 

in the error image also in case of low RMSE. Therefore a performance analysis limited to the 

RMSE does not benefit from all the information available in the error image. Despite the lower 

RMSE, LS-NUFFT showed an error image more structured than GR. A comparison limited to 

the RMSE would not have been able to recognize that also LS-NUFFT loses relevant 

information in the reconstruction process. 



For both the simulated and experimental datasets, LS-NUFFT obtained a G value higher than 

GR. However, the relative difference between the G values of the two reconstruction methods is 

higher in the case of the simulated data. This is due to the different level of structure and 

acquisition noise in the analyzed images. In fact, the acquisition noise increases the random error 

component, hence decreasing the value of G. The level of noise present in the reconstructed 

image also depends on the reconstruction method as suggested in [49].  

The shape and the size of the interpolation kernel for gridding methods is a key issue in 

determining the accuracy of the reconstruction [20 - 22]. For example, the characteristics of the 

gridding kernel can change the amplitude of the reconstruction error or the shading on the 

reconstructed image. For LS-NUFFT the choice of the gridding kernel is guided by the pseudo-

inverse matrix, hence minimizing the approximation error. For LS-NUFFT the size of the kernel 

can cause relevant reconstruction error related to the matrix pseudo-inverse calculation [24]. 

Therefore the kernel size was carefully chosen in order to make the two reconstruction methods 

comparable and avoid the need for a regularization method for the pseudo-inverse calculation. 

In this study the same weighting function was used for the data to compare the reconstructions 

methods. The DCF was evaluated using the Voronoi diagram for all three methods considered. 

DCF has a relevant influence on the reconstructed image, as proved by the extensive studies on 

its shape [12, 18]. LS-NUFFT differs from GR only in operations coming after data weighting. 

The use of different DCFs would not allow distinguishing the differences in reconstructed 

images due to DCF, and the ones due to the interpolator. In this work the effect of the DCF on 

the reconstructed image was not considered. The study of the effect of DCF over the loss in 

geometric information could be an interesting development of the present work.  

The use of the 2D autocorrelation function could also be useful in parallel imaging applications 

[5, 6]. Parallel imaging techniques commonly suffer from coherent aliasing artifacts, which 

could easily be detected by the 2D autocorrelation function. The presence of an image ghost 

would be detected with a secondary peak placed in the same spatial location of the ghost (Fig. 

14). Ghosts might also appear in many other different applications, like the typical N/2 ghosts of 

the EPI sequence [1]. For this application the amplitude of the autocorrelation peak, rather than 

the width, could be useful to quantify the intensity of the ghost.  



 

Fig. 14 Example of image with N/2 ghosting (left) with associated 2D autocorrelation (middle) 

and autocorrelation vertical profile (right).  

 

1.3.5. Conclusions on the geometric information loss 

The LS-NUFFT and the GR reconstruction methods were compared testing their performances 

on both simulations and hyperpolarized 13C 3D CSI in vivo data. LS-NUFFT obtained smaller 

RMSE than GR, but the error image of LS-NUFFT appeared more structured than GR. These 

results strongly suggest that both reconstruction error and geometrical loss of information indices 

should be adopted for a complete evaluation of reconstruction methods. Even though LS-NUFFT 

shows better reconstruction accuracy, it is relevant to be aware that the reconstruction process 

lost interesting information and not only noise. 



 

1.4. REGULARIZATION METHODS APPLIED TO LS-NUFFT 

As mentioned above, LS-NUFFT is a gridding method that uses a pseudo-inverse calculation in 

order to obtain the interpolation kernel. Generally, when the width of the interpolator grows, the 

performance of reconstruction is improves because more samples are used to evaluate the sample 

on the Cartesian grid. However, for LS-NUFFT the increase of the interpolator width might 

make the inversion problem ill-conditioned [22]. 

An ill-conditioned problem is associated to a matrix which is close to be singular. For a singular 

matrix, the reachable subspace is squeezed on a dimension lower than the smaller dimension of 

the matrix (i.e. the rank is not maximum). In the case of ill-conditioned problems, even though 

the rank is maximum, the subspace spanned by the matrix has some dimensions on which the 

output vectors will not have high components. The singular-value-decomposition (SVD) analysis 

clarifies this concept immediately. Taken a full-rank matrix, the problem is well-posed in case 

the singular values are all significant and comparable to one another. In case some singular 

values are significantly lower than the other ones, the associated auto-vector direction will have 

small projections of the data on itself. The following image shows an example of the span of a 

3x3 matrix with 3, 2 or only 1 significant singular value. 

 

Fig. 15 Example of the span of a 3x3 matrix with full rank and 3, 2 and only 1 significant 

singular value.  

When the problem becomes ill-conditioned, reconstruction is not acceptable because even a 

minimal input error or noise contribute is dramatically amplified in the reconstructed image. A 

regularization technique can be used in order to be able to perform a pseudo-inversion on an ill-



conditioned matrix. The term ‘regularization’ generally refers to any technique including some a 

priori  information in the analysis. This additional information is capable of reducing the 

conditioning number of the problem and allows calculating the solution with acceptable 

accuracy. 

Three different regularization methods were applied to LS-NUFFT in order to achieve an 

acceptable reconstructed image despite ill-conditioning. An analysis was performed in order to 

determine which one of the regularization methods is more suitable for LS-NUFFT, performing 

tests on both simulated and experimental data. The processing time required to calculate the 

interpolator was also considered in the analysis.  

 

1.4.1. Regularization methods applied to LS-NUFFT 

When the interpolator width is too big, the inversion problem in Eq. 11 becomes ill conditioned 

[22]. In this case a regularization technique can be used to achieve accurate reconstruction. Three 

regularization techniques were tested on LS-NUFFT. 

The Truncated Singular Value Decomposition (TSVD) [50] was used in the first place. TSVD 

uses the SVD decomposition to obtain a pseudoinverse matrix. A threshold (th) on singular 

values is used to regularize the problem. If the SVD of A is TU VΣ , the expression of TSVD 

pseudoinverse is the following:  

 † † T
TSVDA V U= Σ  (13) 

where †Σ  is a diagonal matrix. On the diagonal of †Σ  there are the inverses of singular values 

bigger than the threshold. 

The Tikhonov Regularization (TR) was used as well [50]. TR can be formulated as a multiple 

objective minimization. The following objective function is to be minimized: 

 ( ) ( ) ( )2 2

h h 2 h2 2TR k L kS A vρ ω ω λ ρ ω= ⋅ − +  (14) 

TR minimizes the error and keeps the Euclidean norm of the interpolator low at the same time. It 

has been shown that TR is very similar to TSVD [50]. TR does not use a threshold on singular 

values, but it filters them. Filtering shape depends on the λL2 parameter. 



Finally the L1 regularization (L1R) [51, 52] was also used. L1R can also be expressed as a 

multiple minimization. L1R minimizes the following objective function: 

 ( ) ( ) ( )2

1 h h 1 h2 1L R k L kS A vρ ω ω λ ρ ω= ⋅ − +  (15) 

L1R minimizes both the square of Euclidean norm of approximation error and the L1 norm of the 

interpolator. Minimization of ( )h 1kρ ω  is intended to define an interpolator with as many zero 

coefficients as possible. We refer to this kind of interpolator as sparse. The sparsity in the 

interpolator is a reasonable target, because interpolated samples are likely to depend more 

strongly on close locations than on far ones. 

We will refer to LS-NUFFT without regularization as NR, which stands for ‘No Regularization’. 

In general all these different regularization methods can be considered as belonging to the same 

big family of regularization methods formulated by Tikhonov in his theory. However, a change 

in the formulation of the additional a priori information included with the regularization term 

can change significantly the solution of the problem. 

 

1.4.2. Simulation and experimental setup 

Both simulated and experimental datasets were used to evaluate the performance of the 

reconstruction method using regularization techniques. The Shepp-Logan (SL) phantom was 

used as simulated dataset. The spectrum of a modified SL phantom was calculated on a spiral 

trajectory.  

The experimental data were acquired from a human abdomen. We used a 1.5T Signa Excite MR 

scanner (GE Healthcare, Waukesha, WI, USA). An eight-element cardiac phased-array receiver 

surface coil was used for signal reception. A spiral scanning sequence was used with the 

following scan parameters: FA=25°, TE=16ms, single interleaf, 5860 samples, FOV=30cm, slice 

thickness = 5mm, 128×128 images. 

 

1.4.3. Implementation 

The specification of the implementation are similar to the one stated above for the evaluation of 

geometric information loss. Also for the study on regularization a variable-density-spiral (VSD) 



was used and the DS method was taken as reference to evaluate the performance of the 

regularization method on LS-NUFFT. 

In this case the density compensation function (DCF) for both DS and LS-NUFFT was 

calculated using the Jacobian matrix, as suggested by Meyer et al. [53]: 

 ( )( ) ( ) ( )( ) ( )( )( )1

' sin arg ' argDCF k t k t k t k t
−

= ⋅ −
r r r r

 (16) 

( )k t
r

 is the k-space location acquired along the sampling trajectory at time t and ( ) ( )
'

d k t
k t

dt
=

r
r

.  

The LS-NUFFT was implemented similarly as described above, choosing a Kaiser-Bessel shape 

as scaling function, as suggested by Fessler and Sutton [22]. The actual implementation of LS-

NUFFT was done following the formulation by Fessler and Sutton [22].  

Reconstruction performance was measured only by the calculation of the root mean square of 

reconstruction error (RMSE). The RMSE(q) was calculated for increasing values of q. First the 

RMSE(q) was calculated for LS-NUFFT without regularization to show when regularization is 

actually needed. Then RMSE(q) was evaluated for each of the three regularization methods. We 

considered integer values of q up to the size of reconstructed image M. This range for q keeps 

matrix A skinny or square.  

LS-NUFFT requires calculating a pseudoinverse and its regularization parameter for all acquired 

frequencies and for all tested values of q. For TSVD, the regularization parameter is the number 

of preserved singular values of matrix A. The number of preserved singular values was 

calculated using Generalized Cross Validation (GCV) [55]. GCV chooses the regularization 

parameter so that missing data values can be predicted well by regularized pseudoinverse. The 

chosen regularization parameter is the one that minimizes the following function: 

 ( )
( ) ( )
( )

2

h h 2

#

kA v
G

tr I AA

ρ ω ω
λ

⋅ −
=

−
 (17) 

λ is the regularization parameter, A# is the regularized matrix, and tr(.) is the trace operator. 

ρλ(ωh) is the interpolator found using λ as regularization parameter.  

TR was implemented using the following expression: 



 ( ) ( )1

2 h
H H

TR LA A I A vρ λ ω
−

= +  (18) 

ρTR is the interpolator found using TR. GCV was used to determine the TR regularization 

parameter (λL2) as well.  

L1R was implemented using Convex Optimization [51]. Duality allows us to handle the L1 non-

linear estimator. Convex Optimization was implemented using the Newton’s Interior Point 

method [51] to iteratively search for the solution of the minimization problem. The regularization 

parameter (λL1) was defined as the one that minimizes the RMSE of the reconstructed image, 

keeping calculation time for the interpolator as low as possible. 

The parameter sensitivity was tested for each regularization method, calculating the 

reconstruction error using different values of the regularization parameters.  

The processing time was evaluated in order to calculate the interpolator by averaging the 

processing time over ten experiments with the computer configuration previously described. The 

reported processing time is not the one needed for the reconstruction, but it is the time needed to 

calculate the interpolator. Once the interpolator has been calculated, it can be stored and the 

reconstruction takes place with O(M2log(M2)+Nsq
2) computational complexity. It is worth noting 

that the number of multiplications needed for the 2D interpolation is Ns·q
2. 

 

1.4.4. Results 

The 2D LS-NUFFT of SL phantom and experimental data were computed using 128×128 as the 

size of the reconstructed image. Fig. 16 shows the G function of Eq. 17 to determine the number 

of singular values to be preserved for TSVD. For every value of q we chose the value of 

regularization parameter that minimizes the G function. For q ≤ 20 all singular values were 

preserved. For q > 20 the smallest preserved singular value was always about 10-6. For TR, GCV 

let us obtain the values for λL2 as function of q. The λL2 was above 10-8 for q > 14, whereas it 

drops to about 10-12 for q ≤ 14.  



 

Fig. 16 : G function in GCV for choosing the number of preserved singular values in TSVD. q 

is on the vertical axis and the number of preserved singular values is on the horizontal axis. The 

color scale is logarithmic. The range of q goes from 2 to 128. The interesting values of G are 

below the main diagonal. The minimum value of G determines where to put the threshold for 

truncating the singular values.  

A simulation was done in order to measure the reconstruction error for each regularization 

method in dependence of different regularization parameters (Fig. 17). For the TSVD and TR 

methods, the simulation confirmed the optimal values previously found (Fig. 17a and Fig. 17b). 

For L1R, we experimentally found that the error curve Erms becomes stable for λL1 lower than 10-

7 for q > 14, whereas the optimal λL1 was zero for q ≤ 14 (Fig. 17c). The optimal regularization 

parameter was the same using different values of frequency for all techniques.  

Sensitivity of the reconstruction error with respect to parameter values can be observed in Fig. 

17. For TSVD, the error decreased with the value of threshold th on singular values until the 

optimal value was reached. A further decrease of th is associated with an increase in the error. 

The TR method shows the same trend with a higher sensitivity. L1R also showed a decrease in 

the error moving towards the optimal value. The error became stable for λL1 values lower than 

the chosen one.  



 

Fig. 17 Parameter sensitivity for regularization methods. We used values of the regularization 

parameter different from the optimal one we found. a) TSVD with threshold th on singular values 

as regularization parameter, b) TR with λL2 as regularization parameter, c) L1R with λL1 as 

regularization parameter.  

Fig. 18 shows the value of RMSE(q) with and without using regularization in the SL phantom 

using 64×64 and 128×128 as size of reconstructed image. For 64×64 the curve was evaluated 

only up to q=64 to keep A skinny or square. As shown in Fig. 18, RMSE(q) is largely 

independent of the reconstructed image size. This behaviour was verified on other sizes of the 

reconstructed image. 

Considering LS-NUFFT without regularization, for low q a wider interpolator is associated with 

a better reconstruction. This is due to the higher number of samples used by a wider interpolator, 

so a higher q allows us to achieve more accuracy in the interpolation. RMSE(q) has a minimum 

at q = 14. For q > 14, RMSE(q) starts to increase, so regularization is needed. RMSE(q) is shown 

also using the regularization methods. For q ≤ 14 the reconstruction error associated with the 

regularization methods is exactly the same as the NR method. TSVD obtained the smallest 

minimum value of RMSE(q) among the three methods, while L1R obtained the highest. TR 



showed an almost stable error, intermediate between the error of TSVD and L1R. The results 

found for raw data are consistent with results for simulated data (Fig. 19). 

 

Fig. 18 RMSE(q) for LS_NUFFT with and without regularization using simulated data. 

Logarithmic scale is used for both vertical and horizontal axis. Shapes are plotted for 128×128 

(solid line) and 64×64 (dotted line) as size of reconstructed image. RMSE(q) is also plotted for 

all three regularization methods using q≥14.  



 

Fig. 19 RMSE(q) for LS_NUFFT with and without regularization using raw data. Logarithmic 

scale is used for both vertical and horizontal axis. RMSE(q) is plotted for all three regularization 

methods using q≥14.  

The following figures show the difference images obtained using the calculated interpolators. 

Fig. 20 is referring to simulated data and Fig. 21 refers to raw data. For each regularization 

method we showed only the difference image associated with the interpolator that obtains the 

minimum RMSE(q). 



 

Fig. 20 Difference image for simulated data from SL phantom. a) Reference reconstructed 

image (128×128) obtained using DS. b) Difference image for the best interpolator obtained with 

TSVD (q=24). c) Difference image for the best interpolator obtained with TR (q=14). d) 

Difference image for the best interpolator obtained with L1R (q=30).  



 

Fig. 21 Difference image for raw data from human abdomen. a) Reference reconstructed image 

(128×128) obtained using DS. b) Difference image for the best interpolator obtained with TSVD 

(q=24). c) Difference image for the best interpolator obtained with TR (q=14). d) Difference 

image for the best interpolator obtained with L1R (q=30).  

The following figure shows the results for the processing time needed to calculate the 

interpolator. As the value of q increases, more time is required for calculations. It is possible to 

observe that the TR interpolator was the quickest to be calculated. The TR interpolator was 

calculated approximately as rapidly as the interpolator without regularization. The TSVD 

interpolator required a longer time for calculation, whereas the L1R interpolator was by far the 

slowest to be calculated.  



 

Fig. 22 Processing time needed to calculate the interpolator for LS_NUFFT with NR and for 

regularized reconstruction. Processing time is plotted as a function of q using logarithmic scale 

for vertical axis.  

 

1.4.5. Discussion on the regularization methods applied to LS-NUFFT 

The guide role of pseudoinverse for choosing the interpolator allows LS-NUFFT to obtain a 

remarkable efficiency of reconstruction. The increase in interpolator width makes the problem 

ill-conditioned, limiting the possibilities of the reconstruction method. The choice of the most 

appropriate regularization technique is a key point to fully take advantage of the LS-NUFFT 

method. The aim of the present study was to determine which regularization technique performs 

the best for LS-NUFFT.  

Three well-known regularization methods where tested on the reconstruction method. TSVD was 

able to obtain a minimum value of RMSE(q) smaller than without any regularization. Therefore 

TSVD can be used to improve the performance of the reconstruction method. However, the 

required processing time is about one order of magnitude higher compared to the NR method, 

because SVD decomposition has to be calculated and this is time consuming. The value of 

RMSE(q) for TR is about the same as the error for the best interpolator without regularization. 

Hence, increasing q applying TR will not increase the quality of reconstruction. The performance 

of L1R was similar to TR, although a little worse. For L1R the reconstructed image had an 

acceptable RMSE(q) but it was bigger than the error for the other regularization methods. 



Moreover, the processing time required by the L1R algorithm was three orders of magnitude 

higher than that of NR. A possible explanation is the fact that the Newton’s interior point method 

becomes slower as the regularization parameter λL1 decreases to values similar to the one we 

used.  

The presence of noise on the input data seems to have no effect on the results. In fact the results 

obtained with the SL phantom and with the real dataset are comparable. 

The study results showed that TR and L1R regularization algorithms do not provide significant 

improvements in image reconstruction with respect to standard reconstruction without 

regularization. An interpolation dimension of q = 14 without regularization will provide a lower 

reconstruction error with respect to TR and L1R. A possible application of the TR method is to 

obtain a good reconstructed image eve in the case of erroneous choice of the q value, without a 

significant increment in the processing time.  

The only regularization algorithm able to outperform the standard reconstruction method is the 

TSVD method. We found that the increased interpolator size in TSVD improves the 

reconstruction accuracy. TSVD had a minimum value of RMSE(q) for q = 24 in simulated data. 

After this point, the RMSE(q) remains stable increasing q. However, if the interpolator is wider, 

the computational cost of the interpolation increases accordingly, so a trade-off exists between 

reconstruction quality and processing time. The increase of q is advisable in case it is more 

interesting to reduce the reconstruction error, instead of saving processing time.  

Many aspects of the acquisition depend on the sampling trajectory to fill the k-space. If the 

trajectory undersamples the k-space, the reconstructed image will show artifacts. However, the 

trajectory shape does not have any effect on the conditioning number of matrix A. This is 

confirmed by the formulation of Fessler and Sutton [22]. They showed more clearly that the 

interpolator is calculated using the pseudoinverse of the matrix (called SC in reference [22]) that 

does not depend on the sampled pulsation. This shows that trajectory design cannot improve the 

conditioning of the problem.  

In this paper only values of q up to M were considered in order to keep the A matrix skinny or 

square, looking for the least square solution of the linear system. If q > M then the linear system 

becomes underdetermined, and it may be interesting to investigate the behaviour of the least 

norm solution. However, even if the least norm interpolator improves reconstruction accuracy, 



the associated computational complexity would be even higher than for least squares 

interpolator; thus, it may be not suitable for the user’s purposes. 

Moreover in the present analysis of the regularization methods, the geometric information loss 

was not included. A variation of the error image structure was observed in the data, but further 

investigation on this topic is still to be done and could be an interesting development of the 

present study. 

The term regularization generally refers to any method that includes additional information to 

solve a problem. Other numerical methods and regularized processing techniques applied to 

biomedical field can be found for example in [56, 57]. This study focused on the analysis of a 

proper regularized interpolator for LS-NUFFT on MRI data. The interpolator is basically used as 

a filter in the Fourier domain, in order to determine the interesting values of the transform. A 

class of local spectral wavelet filters, discrete singular convolution (DSC) filters, has recently 

been introduced in [58]. This kind of low-pass filter can be adjusted in order to achieve very 

good performance in the removal of Gibbs oscillations while retaining the high resolution 

features. Another kind of high-performance low-pass filter, has been recently described in [59] 

and [60]. These filters are based on the proper choice of parameters for nonlinear partial 

differential equation (PDE) models. A comparison between the regularized filters proposed in 

[56 -60] and the one proposed in the present work for interpolation, would be an interesting topic 

for future work. 

 

1.4.6. Conclusions for the regularization methods study 

Three regularization methods were applied to the LS-NUFFT reconstruction method. The 

increase in interpolator width improves reconstruction as long as q ≤ 14. For q > 14 

regularization is advisable in order to improve the performance. Tikhonov Regularization (TR) 

method is able to preserve the reconstruction quality for q > 14 without increasing the processing 

time. Hence, TR may be useful if the optimal value of q cannot be determined in advance and 

processing time is an important constraint. Truncated Singular Value Decomposition (TSVD) 

was able to obtain a minimum error (RMSE) about two orders of magnitude smaller than the 

minimum RMSE of LS-NUFFT without regularization. However, the processing time associated 



with TSVD is significantly higher, so an appropriate compromise between processing time and 

reconstruction quality should be adopted.  



 

2. SECTION 2: PULSE SEQUENCE DEVELOPMENT 

 

2.1. INTRODUCTION 

The research on MRI topics can be distinguished in three main branches: software, hardware and 

reconstruction. The software development takes care about which electromagnetic field the 

machine should play in order to collect the interesting data. The hardware field is focused on 

how the signal can be physically acquired. The reconstruction field studies how to retrieve the 

interesting information from what has been collected.  

The pulse sequence development belongs to the software field of research. Every company 

building MR scanner has its own proprietary development environment for pulse sequences. 

However the problems to overcome do not only concern coding issues, but there is always a 

close relationship with the physics of the MR technology. The following figure, shows and 

example of how coding ‘bugs’ can strongly influence the appearance of the resulting image. On 

the left is shown the correct image of a phantom obtained with a Fast Spin Echo (FSE) sequence. 

On the right is shown the image obtained with the same sequence, but setting the wrong value to 

the isodelay of the excitation pulse. A wrong isodelay results in a wrong value of the area of the 

rephrasing pulse after the slice selection gradient. Therefore it is as if in the sequence there was 

an additional gradient which modulates the spins, similarly to the tagging sequences. 

 

Fig. 23 Example of image obtained with a wrong value of isodelay for the excitation pulse.  

A ‘sequence’ is the series of RF pulses and gradients that the scanner is supposed to play. The 

structure of the sequence and the timings associated with it determine the type of information 



collected from the tissues. Depending on the information that one wants to gain from the tissues, 

the sequence needs to be adapted for that purpose. 

In this work of thesis the pulse sequence development was focused on two main topics: cardiac 

imaging and lung imaging. Both these topics have the common problem that the interesting 

organ is moving periodically. The acquisition needs to avoid the motion synchronizing always 

with the same phase of the motion. For the lung it is possible to control the motion and stop 

breathing for a limited time. Conversely, for the heart, the motion cannot be controlled and the 

acquisition needs to adapt to the heart behaviour. 

 

2.2. CARDIAC IMAGING 

 

2.2.1. Introduction on cardiac imaging sequence development 

An interesting research area for heart imaging is the quantitative map analysis. MRI generally 

produces images with a contrast depending on more than one parameter characterizing the 

tissues (PD, T1 and T2). From these images it is possible to have a qualitative inspection of the 

health condition of the organs. However there are some quantitative approaches which allow a 

more objective exploration of the condition of the tissues. 

The transverse relaxation time (T2) of the myocardial tissue is altered in several pathological 

conditions. In case of edema following an acute myocardial infarct, an increase in T2 is observed 

owing to the altered water content of the myocardial tissue [61, 62]. An increase in myocardial 

T2 can be associated with severe transient myocardial ischemia [63, 64] or myocarditis [65], as 

well as heart transplant rejection [66]. However, a decrease in the myocardial T2 may also be 

observed, for example, in case of iron overload in the heart [67]. Iron overload is typically 

associated with thalassemia, a disease in which the production of globin is defective and 

unbalanced [68, 69]. Thalassemia is caused by the weakening and destruction of red blood cells, 

due to the variant or missing genes that affect how the body makes hemoglobin. Cardiac failure 

can be facilitated by thalassemia, and thus, an early diagnosis of myocardium iron overload is the 

best strategy to reduce mortality in such cases [70]. Iron accumulation in myocardial tissue leads 

to a decrease in T2* and T2 in the tissues, owing to a susceptibility-induced relaxation [71]. 



Changes in T2 in pathological tissue can be visualized using T2-weighted imaging [72], which is 

prone to inaccuracy arising from several possible sources [73, 74]. The main cause of this 

inaccuracy lies in the qualitative nature of T2-weighted images, where contrast can change 

depending on sequence parameters like the echo time or the repetition time. Stagnant blood can 

appear with a high signal, so that it can be difficult to distinguish it from edema. It has been 

demonstrated that T2 maps have higher accuracy than T2-weighted images for detecting 

pathological tissue in the myocardium [75]. The higher accuracy can be attributed to the 

quantitative nature of the T2 maps. 

The following image shows how the T2 maps can actually identify myocardial infarction as good 

as with the use of a contrast agent. 

 

Fig. 24 Comparison of Lade Gadolinium Enhancement (left) and T2 map on pig with visible 

myocardial infarction. [75]  

Various T2 mapping techniques have been proposed for generating T2 maps of the heart. Double 

inversion recovery Multiple-Echo Fast Spin Echo (MEFSE) is the most common pulse sequence 

[76 - 79]. The double inversion recovery preparation nulls the signal from blood, thus avoiding 

flow artifacts [72]. T2 maps can also be generated using sequences with a T2-preparation, 

followed by a fast acquisition, such as FIESTA [79] or spiral [80]. Double inversion recovery 

MEFSE has been shown to provide the highest signal-to-noise ratio (SNR) among the different 

T2 mapping techniques [81], and hence, it was considered for the present work. 

For cardiac imaging, the low B0 magnetic fields are generally preferred. In the case of lower 

fields (e.g. 1.5T) typically fewer artifacts appear in the images (e.g. 3T). This is due to the wave 

length of the RF used, which directly proportional to the static B0 field as the Larmor formula 



states. For higher fields the wave length will become smaller and comparable with the size of the 

body, especially in the case of chest imaging. Therefore the RF pulses will generate interference 

patterns and thus B1 inhomogeneities causing artifacts in the images. For the present study a 3T 

scanner was used in order to optimize this technology. Better images can be obtained at 3T using 

a dielectric padding on the chest of the patient. This padding acts on the RF reaching the tissues, 

making the B1 more homogeneous and stronger on the whole chest. The following image shows 

the signal improvement obtained with the use of the padding: 

 

Fig. 25 Chest image from a FGRE localizer sequence with dielectric padding (left) and without 

it (right).  

For cardiac MRI, the acquired field-of-view (FOV) is often larger than the region of interest. To 

avoid image aliasing, the FOV must be extended to areas of the chest far from the heart. The 

acquisition of a FOV larger than that required can lead to a prolongation of scan time. Moreover, 

if the FOV needs to be large to avoid image aliasing, the spatial resolution achievable at a fixed 

scan time is lower.  

Techniques to acquire signal from a limited volume include inner volume (IV) and multi-

dimensional pulses. IV is a FOV reduction method that requires both excitation and refocusing 

pulses. IV uses orthogonal slice selection planes for excitation and refocusing, thus generating a 

spin-echo only from a restricted portion of the FOV [82 - 84]. The following figure shows a 

scheme of how the IV excitation and refocalization work: 



 

Fig. 26  The inner volume excitation and refocalization are played with orthogonal slice 

selection gradients.  

Multi-dimensional spatially selective pulses (2D-RF) have been proposed as an alternative 

method to reduce the FOV without aliasing [85, 86]. These pulses are similar to spectral-spatial 

pulses [87, 88], except that they encode the spectral information along the slice direction. 2D-RF 

pulses are generally much longer than common excitation pulses, making it difficult to sample 

the short T2 decay of the myocardium quickly enough. The duration of 2D-RF pulses can be 

reduced using parallel transmission, which takes advantage of the coil sensitivities of the 

transmit coil arrays [89]. However, this work focuses on a clinical MRI system that is not 

capable of applying parallel excitation. Another disadvantage of 2D-RF pulses is their sensitivity 

to off-resonance. The following scheme shows how the 2DRF selection happens: 



 

Fig. 27 2D-RF excitation scheme. The frequency modulation of a spectral-spatial pulse is 

mapped on the slice encode direction. The ghost excitation patterns need to be cropped out with 

some selective refocusing pulse.  

The IV was chosen as preferred FOV reduction technique because it fits the fast spin echo pulse 

sequence well. However some tests were performed using a 2D-RF pulse as well. The results 

obtained with the 2D-RF excitation will be shown, even though the work on this topic is still in 

progress. 

The IV technique for FOV reduction was combined with the double inversion recovery MEFSE 

sequence (called IV-MEFSE) to produce T2 maps in the myocardium. The T2 values obtained 

with MEFSE were taken as reference for comparison. The new pulse sequence was evaluated in 

phantoms and healthy volunteers pointing out the effects of the IV excitation over the T2 maps 

evaluation. 

 

2.2.2. Sequence implementation and experimental setting 

The T2 maps were obtained with the double inversion recovery MEFSE sequence and triggering 

by the ECG signal. Within a single breath-hold N images at different echo times were acquired to 

create the T2 maps. The echo train of the MEFSE sequence was split into N groups (dotted line in 

Fig. 28) and the phase encode (PE) ordering was repeated for each group. The repetition of the 

PE ordering at different time delays from the excitation pulse enabled acquisition N images at 



different echo times (TE). The shortest TE is determined by the center-out PE ordering. Later 

images have a fixed TE increment (∆TE) depending on the echo spacing (ESP), the echo-train-

length (ETL), and the number of images acquired (N): ∆TE = (ETL/N)*ESP.  

Inner volume imaging was accomplished by perpendicular slice selection for the excitation and 

refocusing pulses. As shown in Fig. 28, the excitation pulse is applied together with a slice 

selection gradient in the PE direction, whereas the slice selection gradients of the refocusing 

pulses are applied along the slice encode direction (SE).  

 

Fig. 28 Diagram of the IV-MEFSE sequence. The slice selection gradient for the excitation 

pulse is in the phase-encode direction (PE), whereas the slice selection gradients for the 

refocusing pulses are in the slice-encode direction (SE). The frequency-encode direction (FE) 

and RF pulses are shown as well. The figure represents an example of ETL = 12 and 4 images 

(echo times). For this example, the TE increment in the images equals ∆TE = 3*ESP.  

A highly selective profile of the excitation pulse is the key for successful IV acquisition. A signal 

generated outside of the region-of-interest (ROI) can be neglected only if the sharpness of the 

excitation profile and the suppression of signal outside of the FOV is sufficient. For IV, the FOV 

in the PE direction corresponds to the slice thickness of the excitation pulse. Different excitation 

pulses were designed using the Shinnar-Le Roux (SLR) transform [90]. With the same maximum 

B1, a better selectivity can be achieved with a longer pulse, having a higher time-bandwidth-



product. However, it is relevant to keep the duration of the RF pulses as short as possible, 

because the ESP and the ∆TE are directly dependent on it. Three different excitation pulses were 

compared: the default MEFSE linear-phase excitation pulse (RF1), a minimum-phase pulse 

(RF2), and a linear-phase pulse (RF3). The latter two had a more selective excitation profile than 

RF1. The following figure shows the profile of the excitation pulses used:  

 

Fig. 29 Profile of the excitation pulses tested in the time domain (left column) and in the 

frequency domain (right column). The pulses shown are RF1 (top row), RF2 (middle row), RF3 

(bottom row). 



The parameters of these pulses are listed in Tab. 2. The experiments were performed on a simple 

phantom of water and copper sulfate (CuSO4) [91], with T2 similar to myocardium [92, 93]. The 

accuracy of the generated T2 maps is strongly dependent on the presence of stimulated echoes 

(STEs), which may introduce a longitudinal relaxation time (T1) contribution to the signal decay 

[94]. Three different refocusing pulses (RF4, RF5, and RF6) were designed, with different 

durations and thus different selectivity (Tab. 2), in order to explore the effect of the generated 

STEs. 

Pulse Pulse type 
Pulse duration 

[ms] 
Bandwidth 

[kHz] 
Pass-band 
ripple (%) 

Stop-band 
ripple (%) 

max. 
B1[G] 

RF1 Excitation 2 1.28 1 1 0.08 
RF2 Excitation 3 2.5 0.2 0.2 0.20 
RF3 Excitation 3 2.5 0.2 0.2 0.16 
RF4 Refocusing 1.2 1 1 1 0.24 
RF5 Refocusing 2.1 1.2 0.5 0.5 0.24 
RF6 Refocusing 6 1 0.5 0.1 0.23 

Tab. 2  Parameters of excitation and refocusing pulses. The nominal flip angle is 90° for 

excitation and 180° for refocusing. All pulses are linear-phase, except for the minimum-phase 

pulse RF2.  

Volunteer examinations were performed by acquiring short-axis T2 maps of the myocardium 

within the breath-hold time. For MEFSE the following scan parameters were used: ELT = 24, N 

= 8 echo times, ESP = 5.7ms, FOV = 24 cm, 256 frequency encodes, 128 phase encodes, receive 

bandwidth ±62.5 kHz, 1 acquisition per heart-beat, black-blood preparation, half-echo 

acquisition, and scan time = 24s. For IV-MEFSE the longer excitation pulse (3ms) prolonged the 

ESP to 7.7ms. Double inversion recovery preparation was used for IV-MEFSE as well. All 

experiments were performed with an 8-channels torso surface-coil array on a GE 3T HDx 

scanner (GE Healthcare, Waukesha, WI, USA). 

For the T2 fitting the first echo was not used because of the presence of stimulated echoes 

starting from the second echo [94]. The T2 maps were computed using a mono-exponential 2-

parameter fitting model [95]. The following figure shows an example of decay where the first 

echo is lower than the following ones: 



 

Fig. 30 Example of decay on a phantom, where the first echo is lower than the following ones 

due to the absence of the stimulated echoes.  

 

2.2.3. Results 

IV-MEFSE was first evaluated on phantoms. Fig. 31 shows the results obtained using different 

excitation pulses on the phantom. The short linear-phase pulse (RF1) did not lead to sharp edges 

of the FOV (Fig. 31(a)). For RF1, the excitation profile is clearly visible as shading on the 

imaged FOV. Fig. 31(b) shows that the minimum-phase pulse RF2 could produce sharp edges in 

the selected FOV. However, some artifacts are visible due to the inability of the linear gradient to 

rephase the spins completely. The artifacts appear as dark bands along the PE direction and 

extend outside the selected FOV. Fig. 31(c) shows that the linear-phase pulse RF3 was the only 

pulse that could apply inner volume selection with sharp edges, while avoiding the phase 

dispersion of the spins and thus avoiding artifacts. 



 

Fig. 31 Results of IV-MEFSE on a phantom using different excitation pulses. (a) IV-MEFSE 

with standard short linear-phase excitation pulse (RF1): the FOV does not have sharp edges. (b) 

IV-MEFSE with sharp minimum-phase excitation pulse (RF2): even though the FOV edges are 

sharp, the non-linear phase dispersion cannot be rewound. Artifacts are visible as dark bands 

along the PE direction. (c) Highly selective linear-phase excitation pulse (RF3): the FOV edges 

are sharp and the linear phase dispersion is rewound with the rewind gradient, causing no 

artefact.  

In the phantom experiments, two FOVs were tested in order to analyze the effect of the transition 

bands of the excitation pulse on the formation of stimulated echoes (Fig. 32). The phantom was 

30 cm wide along the PE direction. A large FOV of 44 cm (Fig. 32(a)) was used to make sure 

that the transition bands of the excitation pulse were outside of the phantom. A small FOV of 20 

cm (Fig. 32(b)) was used to make sure that the transition bands of the excitation pulse were 

located inside the phantom. The averaged T2 values measured with the sequences are listed in 

Tab. 3. IV excitation produced an overestimation of T2 compared to MEFSE. IV-MEFSE using a 

large FOV led to a smaller T2 overestimation with longer refocusing pulses (Fig. 32(c)). MEFSE 

with a large FOV did not show any T2 overestimation with any of the refocusing pulses. In case 

of reduced FOV, IV-MEFSE caused overestimation with any refocusing pulse (Fig. 32(d)). The 

T2 overestimation caused by the presence of the reduced FOV is dominant over the effect of 

different refocusing pulses. For phantom scans, IV caused an overestimation of 23±2% of the T2 

value compared to MEFSE. 



 

Fig. 32 Phantom experiment using different FOVs and different refocusing pulses. The first 

column shows: (a) a large FOV (44 cm) covering the entire phantom so that the transition zones 

of the excitation pulse do not invest any spin; (b) a reduced FOV (20 cm) covering part of the 

phantom so that the transition zones invest some spins. The second column shows comparisons 

of the signal decays (echoes 2 to 8). (c) Decay curves obtained using RF4, RF5, and RF6 as 

refocusing pulses, with a large FOV. The acquisitions have different ESP. As the refocusing 

pulses becomes longer, the overestimation of the T2 decreases. (d) Decay curves obtained using 

the same refocusing pulse (RF6) using MEFSE with large FOV and using IV-MEFSE with large 

FOV and with reduced FOV (rFOV). IV introduces an overestimation of T2 that is more 

pronounced in case of reduced FOV.  

 



 

In a volunteer examination, IV-MEFSE enabled acquisition of a smaller FOV in the phase 

encode direction (Fig. 33), leading to a scan time reduction. With the halved FOV, the number of 

phase encodes could be reduced while keeping the same pixel size. Compared to MEFSE the 

scan time was reduced from 23s to 15s.  

 

Fig. 33 In vivo short axis plane using MEFSE (a) and IV-MEFSE (b) with same pixel size as 

MEFSE but halved scan time. In the case of inner volume, it is possible to observe an 

overestimation of the T2 values on the maps. The arrow in (b) shows the reduced FOV selected 

along the PE direction.  

The following image shows how the inner volume excitation was successful in reducing the FOV 

without generating aliasing: 



 

Fig. 34 Left: FOV reduction with standard T2 mapping and no inner volume selection; Right: 

same acquisition but using inner volume excitation. It is possible to observe that for MEFSE the 

aliasing of the image is prominent, whereas for the IV-MEFSE the signal outside of the selected 

FOV is negligible. 

In the volunteer examinations, a T2 overestimation due to IV excitation was observed, similarly 

to the phantom experiments. Tab. 4 shows the mean values obtained over the myocardium of 

four representative volunteers. The average value of the myocardial T2 was 55.2±6.8 ms for 

MEFSE and 66.0±8.1 ms for IV-MEFSE, corresponding to an overestimation of 20±7%.  

Refocusing pulse type FOV IV  mean T2 [ms] 

RF4 large no  38.3±1.2 

RF5 large no  39.2±2.1 

RF6 large no  39.1±3.3 

RF4 large yes  47.8±2.2 

RF5 large yes  44.5±2.1 

RF6 large yes  40.6±4.1 

RF4 reduced yes  49.1±2.2 

RF5 reduced yes  47.0±2.4 

RF6 reduced yes  48.2±4.7 



Tab. 3  Average T2 values of phantom scans using different FOV and different refocusing pulses. 

The excitation pulse is RF3 in all cases.  

 Vol1: T2[ms] Vol2: T2[ms] Vol3: T2[ms] Vol4: T2[ms] 

MEFSE 53.1±6.1 52.1±6.4 60.2±7.2 55.4±8.1 

IV-MSEFSE 60.2±9.1 71.2±9.4 65.5±8.5 66.9±6.6 

Tab. 4  Average T2 values over the myocardium obtained in four representative volunteer scans 

at 3 Tesla.  

 

2.2.4. Discussion on Inner Volume T2-mapping 

A modified version of the MEFSE was presented, where it is possible to acquire a reduced FOV 

without image wrapping. The reduced FOV was obtained with inner volume excitation. The 

sequence was used to produce T2 maps of the myocardium, significantly reducing scan time and 

remarkably facilitating the scan prescription. Scan time reduction obtained with IV can be 

relevant for patients that have difficulties in holding their breath. For the unmodified MEFSE the 

breath-hold time may be too short for the acquisition of multiple images at different TE. The 

prescription of a smaller FOV can significantly reduce the scan time, avoiding the acquisition of 

signal from outside the ROI. Moreover, IV excitation can make the prescription much easier 

since it is not associated with any image aliasing concern.  

Instead of reducing scan time, IV-MEFSE can also be used for increasing image resolution. IV-

MEFSE allows doubling the number of PE, while keeping the same scan time of the MEFSE 

examination, as suggested in [96]. The high-resolution T2 maps reduce truncation artifacts that 

might be present as Gibbs ringing in the image.  

Alternatively, the scan time could be spent to acquire once every 2 heart beat (i.e. 2 R-R) instead 

of once per heart beat (1 R-R). The repetition time of the sequence is dependent on the heart rate 

of the patient. On average the period of the heart cycle is about 60s and this might not be enough 

to allow a full recovery of the spins in the tissues. If this is the case the acquired images will 

have a T1 weighting mixed to the T2 weighting, causing inaccuracies to the T2-map. A possible 



way to avoid this effect is to increase the repetition time, for example acquiring only once every 

second heart beat. 

An excitation pulse was designed for IV in order to improve the sharpness of the selected FOV, 

without exceeding a maximum B1 of 0.2 Gauss. Minimum phase pulses (RF2) were found to be 

not suitable for inner volume selection. These pulses minimize the phase dispersion of the 

excited spins allowing a fast rewinding. However the phase dispersion produced by the minimum 

phase pulses is not linear, thus it cannot be fully rewound by a linear gradient. The residual phase 

dispersion after the rewind gradient causes artifacts. These artifacts can be avoided using a linear 

phase pulse for the IV excitation (RF3). 

IV imaging caused an overestimation of the T2 compared to the values obtained with MEFSE. 

Undesired stimulated echoes due to imperfect pulse profiles led to T2 overestimation [98]. In 

order to minimize the formation of STEs, the nominal flip angle (FA) needs to be set to 90° for 

the excitation pulse and to 180° for the refocusing pulses. However, this may not be enough to 

make the STEs negligible in the signal decay. The shape of the refocusing pulse nominally 

produces a flip angle of 180° only in the center of the excitation profile, but the FA is lower in 

the transition zone, moving farther from the center of the slice. STEs may also be generated by 

an inaccuracy in the FA calibration of refocusing and excitation pulses. For IV, since excitation 

and refocusing slices are orthogonal, the number of spins that experience an inaccuracy in the FA 

for excitation or refocusing is higher than for a standard FSE as shown in Fig. 35. In the case of 

IV excitation (Fig. 35(a)), more spins are affected by transition zones because the transition 

zones are not overlapping as in the case of excitation without IV (Fig. 35(b)). The results listed 

in Tab. 3 show how the STE formation is dependent on the selection profile of both excitation 

and refocusing pulses.  



 

Fig. 35 Transition bands of excitation pulse and refocusing pulses. (a) IV-MEFSE using RF3 as 

excitation pulse; (b) MEFSE without IV using RF1. For the orthogonal excitation of the inner 

volume, the number of spins falling in transition zones and producing STE is higher than in case 

of matching excitation and refocusing slice.  

In the case of large FOV, the STEs are generated by the transition zones of the refocusing pulses. 

For IV-MEFSE, if the refocusing pulse is more selective, the STE formation is reduced, resulting 

in less overestimated T2 values. However, a more selective pulse has longer pulse duration and 

therefore may result in echo times that are too long to measure the short T2 decay of the 

myocardium. Comparing to IV-MEFSE, MEFSE never led to a significant overestimation for 

any refocusing pulse used. This is due to the overlap of excitation and refocusing profiles in the 

slice for MEFSE. Because of the slice profile overlap, the spins experiencing a refocusing FA 

lower than 180° also experience an excitation FA lower than 90°. In the case of IV-MEFSE with 

large FOV, all the spins in the slice experience approximately the same nominal excitation FA 

close to 90°. Therefore, the formed STEs are weaker for MEFSE than for IV-MEFSE, thus not 

producing a significant prolongation of the T2 decay. 

In the case of small FOV, the transition zones of the excitation profile are within the phantom, 

and therefore cannot be neglected. Since the slice thickness for the excitation pulse is as large as 

the FOV in PE direction, the transition bands of the excitation pulse will be much wider than the 

ones of the refocusing pulses. Therefore, an overestimation will be produced even if the 



refocusing pulses give little contribution in the formation of STEs. For in vivo scans, this is 

always the case, since it is possible to take advantage of IV only using a FOV reduction. The 

level of overestimation caused by IV-MEFSE does not significantly change using different 

refocusing pulses with reduced FOV. From this observation, the short refocusing pulse (RF4) 

was used for all in vivo acquisitions in order to minimize the ESP. 

In volunteer examinations, IV led to an overestimation of the T2 similar to the one observed in 

the phantoms scans. However, images showed no visible spatial variation of the maps throughout 

the myocardium. The STE influence on the T2 overestimation may vary depending on the T1 of 

the tissues experiencing the transition bands of the pulses and on the prescribed FOV. A wider 

FOV is associated with wider transition bands of the excitation pulse and thus to more STEs. 

Since the prescription of the reduced FOV cannot be generalized, it would be difficult to model 

the presence of the stimulated echoes in the decay for a potential correction of the overestimation 

as suggested in [97]. A T2 overestimation of about 20% is representative for IV-MEFSE in 

volunteer examinations. 

The solution to completely get rid of the T2 overestimation would be the use of RF pulses as 

close as possible to the ideal shape in the frequency domain. However in order to obtain an RF 

pulse with a sharp frequency profile, the time-bandwidth product (TBP) needs to increase. Since 

the maximum B1 usable on a human is generally <0.25G for safety reasons, the TBP can be 

increased only increasing the pulse duration. With longer pulses the T2 decay becomes 

challenging to sample fast enough, especially in the case of the myocardium (T2~50ms).  

For all the effects associated to the use of IV, T2 quantification using IV imaging should be 

exercised with caution. IV was presented in this work as a method to reduce scan time. Other 

scan acceleration methods, e.g. parallel imaging [98, 99] could be a valid alternative to prevent 

the effects of the IV excitation, obtaining the same advantage in terms of scan time. 

 

2.2.5. Preliminary results on rFOV with 2DRF-MEFSE  

As mentioned above a FOV reduction can be accomplished using a 2D-RF as an alternative to 

the IV approach. The idea of the 2D-RF is very similar to the one of the spectral-spatial pulses. 

In fact, it works as if the slice-direction selection pulse shape (slow shape) was discretized with a 

PE-selection selection shape (fast shape). The discretization of the slow pulse shape makes the 

spectrum periodic in the frequency domain, but this periodicity is mapped in the slice-direction 



with a blipped gradient. The following figure shows the shape of the pulse which was used for 

the myocardial T2 mapping application: 

 

Fig. 36 Shape of the 2D-RF pulse used for the myocardial T2-mapping examinations. The pulse 

was designed to be 10ms long keeping the minimum B1,max.  

The periodic excitation profile in the space is generally not desired; therefore a selective 

refocusing pulse is applied to refocus only the central excited spins. The periodicity of the ghost 

excitation is dependent on the number of fast shapes that are used in the slow shape. The ghosts 

get further if more fast shapes are used. Moreover, 2D-RFs generally suppress fat intrinsically 

because of the chemical shift separation between fat and water.  

The problem of the 2D-RF pulses is that they are generally long pulses. As previously 

mentioned, the use of long pulses in not suitable to sample a fast T2 decay. For the myocardial 

T2-mapping application the 2D-RF was designed as short as possible, reaching the duration of 

10ms. There is a trade-off between pulse duration, B1,max and fat suppression. In order to reduce 

the echo spacing in the FSE sequence scheme and sample the T2 decay as fast as possible, it was 



taken advantage of the difference in length between the 2D-RF excitation pulse and the 1D 

selective refocusing pulses (duration~2ms). The first echo was collected respecting the width of 

the excitation pulse, but the refocusing pulses were designed to be spaced as tightly as possible 

as shown in the following sequence diagram: 

 

Fig. 37 Diagram of the MEFSE sequence with the described 2D-RF excitation. As shown in the 

picture, the first echo spacing is different from the other ones.  

The first echo spacing (esp1) was designed to be an even multiple of the shorter echo spacing 

(esp2) so that the stimulate echo generated from the excitation pulse would coincide with a 

refocalization pulse and thus be crushed by the slice selection gradient. This concept is clarified 

by the following phase graph: 



 

Fig. 38 Phase graph associated to the 2DRF-MEFSE sequence scheme. The phase (Ф) of the 

spins is shown on top, whereas the RF pulses are shown in the bottom. When Ф crosses the 0, the 

spins are rephased and an echo is formed. The stimulated echo (STE) is generated from the 

magnetization stored in the longitudinal direction. Choosing esp1 equal to an even multiple of 

esp2, the STE coming from the excitation pulse (i.e. the strongest STE) ends up corresponding to 

one of the refocusing pulses. Therefore the STE will be crushed by the slice selection gradient 

associated with the refocusing pulse and will not interfere with the acquired signal.  

For the acquisition, esp1 was about 15-20ms and esp2 was about 5ms and again the scheme of 

MEFSE was kept the same (8 echoes with ETL=24). The first echo acquired in the T2 decay was 

neglected also in this case; therefore the first available echo (i.e. the second echo) was coming at 

about 20ms+3*5ms= 35ms. For the phantom acquisitions the behavior of the 2D-RF was very 

promising as shown in the following depicted decays: 

 



 

Fig. 39 Decay curves obtained on a phantom with standard MEFSE, IV-MEFSE and with 

2DRF-MEFSE. The T2 decays are very similar in the case of MEFSE and 2DRF-MEFSE, with 

the same echo spacing. The decay acquired in the case of the IV-MEFSE is slower and has 

higher signal due to the more severe STEs contribution. For the IV-MEFSE the echo spacing is 

longer due to the longer excitation pulse.  

The decay in the case of the 2DRF-MEFSE was very similar to the decay acquired with standard 

MEFSE, even though the acquisition was starting much later (at about 40ms instead of 10ms). 

The application of the 2DRF-MEFSE sequence on volunteer scans was not as successful as 

expected. Following an example of acquired T2-map: 

 

Fig. 40 Example of T2-map obtained with 2DRF-MEFSE.  



The reduce FOV excitation achieved with the 2D-RF was accomplished successfully with sharp 

edges and without wrapping. However, the T2-map obtained using the 2D-RF excitation pulse 

was very inhomogeneous. The single acquired images had quite low SNR, which is probably the 

cause of the bad quality of the maps. Moreover some shading was observed in certain areas of 

the T2-weighted images. This is due to the sensitivity of the 2D-RFs to off-resonance spins.  

More tests need to be performed to optimize the use of 2D-RF pulses for T2-mapping 

applications. The phantom studies showed promising results, but the in vivo tests need more 

refinement and parameter optimization in order to obtain good results and outperform the IV 

approach. 

 

2.2.6. Conclusions on reduced-FOV T2-mapping 

A modified version of the MEFSE sequence was presented for generating T2 maps of the heart. 

The IV-MEFSE was tested in phantoms and volunteers and was able to reduce the scan time 

from 23s to 15s, making the breath hold time more tolerable for the patient. Inner volume 

excitation does not have an aliasing concern, thus the scan prescription was much easier. IV led 

to the generation of more STEs, causing a 20% T2 overestimation. Therefore the IV option 

should be used with caution in case of myocardial T2 mapping. 

The 2D-RF approach was explored as well, showing promising results on the phantom studies. In 

this case more tests and optimization need to be performed in order to obtain a good quality T2-

maps, capable of outperform the IV approach.  

 

2.3. LUNG IMAGING 

 

2.3.1. Introduction on lung imaging pulse sequence development 

The human lung is a challenging target for structural MR imaging of its vessels and parenchyma. 

Generally, lung tissue is characterized by low proton density and associated low signal [100]. 

Rapid succession of air-tissue interfaces result in strong microscopic B0 gradients and associated 

short signal lifetimes (T2* ~ 0.5–3 ms [101, 102]). Furthermore, the lungs are affected by 

respiratory and cardiac motion. If unaccounted, this leads to strong motion artifacts in the form 



of ghosting and blurring dependent on the acquisition scheme. On the positive side, the dark 

background leads to good morphological contrast – assuming the challenging lung signals are 

well captured.  

The current state of MR imaging of the lung was recently summarized in the following review 

articles [103 - 106]. There are four basic sequences that were identified to be effective for lung 

imaging, including: spoiled gradient echo [107], balanced steady state free precession (balanced-

SSFP) [108, 109], fast spin echo [110] and ultra-short TE (UTE) [111, 112]. Derived MR 

protocols are generally optimized for short TE and high scan efficiency. The following figure 

shows some lung images obtained with some standard sequences at 1.5T and at 3T. The off-

resonance effects make the lung imaging more challenging (i.e. more blurry images) at higher 

static magnetic field. 

 

Fig. 41 Lung images obtained using standard imaging sequences with low TE. From left to 

right: Single Shot Fast Spin Echo, balanced Steady State Free Precession, Spoiled Gradient 

Echo. [103]  

Functional studies of the lung are widespread as well [113 - 115]. Most of the techniques used 

for functional studies of the lung need to gain some contrast to be able to visualize the lung 



perfusion. Contrast is often enhanced using hyperpolarized substances. Perfusion of the lung can 

be visualized with more standard contrast agents [116] or with pulsed arterial spin labeling [117]. 

In order to avoid motion artifacts, image data are acquired at a defined phase of the respiratory 

cycle; typically in the more prevalent end-expiratory phase. For this either the patient needs to 

adjust to the data acquisition (in form of breath holding), or vice versa the scanner prospectively 

adjusts to the free-breathing patient using respiratory triggering, or gating [118]. Alternatively, 

retrospective gating can also be applied by sorting data into different phases of the respiration 

cycle [119]. Independent of prospective or retrospective motion management, physiological 

signals are required that reflect the respiratory breathing state. Such signals are typically obtained 

using respiratory belts or navigators [120, 121]. 

First introduced in the 1990s, zero-TE pulse sequences – such as BLAST [122], RUFIS [123] 

and WASPI [124] – experienced a recent revival with associated refinements in the form of ZTE 

[125] and PETRA [126]. Zero TE imaging uses hard pulse excitation followed by 3D radial 

sampling to achieve isotropic and large field-of-view (FOV) coverage. With only minimal 

gradient ramping between spokes, the pulse sequence achieves a nominal TE of zero, is robust 

against gradient imperfections and is virtually silent. Using a high imaging bandwidth provides 

efficient sampling of short T2 signals and also results in very fast scanning with TR ~ 1ms. 

The zero-TE sequences are frequently used for the head imaging [127], for example for brain or 

also for the bones. With RUFIS it is possible to acquired nice 3D datasets with a PD contrast (or 

also T1 or T2 contrast in case an appropriate preparation pulse is applied). Interestingly the 

resulting images show details not visible with other standard imaging sequences, e.g. the bones 

or the coil elements. The following figure is a head RUFIS scan, in which it is possible to 

recognize the coil elements: 



 

Fig. 42 RUFIS imaging of my head at 3T. From the PD image it is possible to recognize the 

bones and the coil elements around the head, especially in the Maximum-Intensity-Projection 

render (bottom left). 

The RUFIS-type zero TE imaging was adapted and optimized for MRI of the lung. Prospective 

and retrospective respiratory motion management were implemented and compared relative to 

free breathing and breath holding. Breathing information was derived from either respiratory 

belts or navigator signals. For the latter, pencil beam and DC navigators were interleaved into the 

pulse sequence. The methods are demonstrated in volunteer studies. 

 

2.3.2. Pulse Sequence 

Zero TE imaging was implemented similarly to the RUFIS method [123]. This pulse sequence 

consists of a non-selective hard pulse excitation followed by 3D center-out radial sampling. 



Unlike most MR pulse sequences, the readout gradients are not ramped down between 

repetitions. Accordingly, image encoding starts immediately at full speed (i.e. without requiring 

initial gradient ramping) and also leads to a nominal TE = 0, with the nominal TE defined as the 

center k-space echo time. The diagram of the pulse sequence is shown in the following figure: 

 

Fig. 43  RUFIS sequence diagram. Figure shows one segment of the sequence, followed by the 

DC navigator acquisition. The DC navigator is present only for RG and is replaced by the pencil 

beam navigator module in the case of PG. α is the flip angle of the RF.  

The residual magnetization between consecutive excitations is canceled using both gradient and 

RF spoiling. The pulse sequence was grouped into segments, each containing a certain number of 

spokes. This grouping allows interleaving navigator modules (for real-time or retrospective 

motion correction), and preparation pulses (for contrast preparation or chemical shift selective 

saturation). 

In order for the imaging gradients to not significantly disturb spin excitation, the excitation 

bandwidth (BWTx) needs to be wider than the imaging bandwidth (BWRx) [127, 129]. For typical 

B1 amplitudes of clinical whole-body MR scanners (~15µT) this leads to flip angles of a few 

degrees maximum, resulting in native proton density type image contrast. Importantly, the 

minimal gradient ramping and short RF pulsing translates into very short TRs (~1ms range), high 

sampling efficiency and hence fast, SNR-efficient scanning.  



The 3D radial spokes were uniformly distributed in all directions and sequentially ordered along 

a spiral path [130]. This limits the gradient switching between repetitions to incremental 

directional updates only, resulting in robustness to eddy currents and virtually silent scanning. 

For a certain FOV and a number of readout points (NRX), the number of radial spokes 

corresponding to the exact Nyquist sampling at the k-space periphery is 4π(NRX)
2. In order to 

keep the acquisition fast without significant aliasing artifacts, the number of spokes was chosen 

to be 4(NRX)
2 and twofold oversampling was applied along the radial direction. The 

reconstruction was performed using a 3D version of the gridding method mentioned in the 

reconstruction section [12]. The following figure shows how the spokes are distributed on a low 

resolution trajectory: 

 

Fig. 44 Under sampled 3D spiral trajectory used for low-resolution acquisition. Trajectory for 

high resolution data has a similar pattern. Trajectory (blue) with spokes (gray) distributed on it.  

In-vivo volunteer experiments and tests on phantom were conducted on a GE 3T MR750w 

scanner, equipped with a GEM Suite whole-body receive array (GE Healthcare, Waukesha, WI).  

2.3.3. Motion management 

Respiratory motion was addressed via i) prospective triggering (PT), ii) prospective gating (PG), 

iii) retrospective gating (RG) and compared to free-breathing (FB) and breath-hold (BH) 

examinations. Prospective triggering was implemented using the respiratory belt as triggering 

device. The triggering was adjusted to end-expiration by selecting appropriate trigger delay (~1s) 



and acquisition duration for each subject. The acquisition duration per respiratory cycle was 

prescribed by the number of segments per trigger; with each segment containing a certain 

number of spokes. The following figure shows the acquisition scheme of the prospective 

triggering (left) and the respiratory belt (right). 

 

Fig. 45 Acquisition scheme of the prospective triggering (left) driven by the respiration signal 

acquired by the respiratory belt (right). TD stands for trigger delay.  

Prospective gating was implemented based on respiration signals derived from a pencil beam 

navigator, which was interleaved in the sequence, and applied between every segment of spokes 

[118]. The pencil beam navigator was implemented in the form of a 2D selective spiral RF pulse 

followed by 1D readout along the excited pencil beam [131]. The gating decision was based on 

the selection of a gating level and window, which was automatically derived after a training 

period of a few respiratory cycles. 

Retrospective gating was implemented based on center k-space DC navigator signals [132, 133]. 

Because the center k-space DC signals are intrinsically missed in zero TE with finite transmit-

receive switching, a separate FID navigator module was interleaved into the sequence and 

applied between every segment of spokes. DC navigator signals were recorded together with the 

actual imaging and were used to retrospectively bin the individual spokes into different 

respiratory phases. In order to obtain sufficient statistics, several averages (Navg) were applied 

and individually stored.  

2.3.4. Data analysis 



Image results were compared measuring SNR and blurriness in the anatomical structures. A 

region of interest (ROI) was manually selected in the liver and the SNR was evaluated as the 

ratio between mean and standard deviation of the signal in the ROI. The blurriness of the 

structures was evaluated using the metric described in [134], which is based on the observation 

that a low-pass filter has more effect on sharp images than on blurry images. The calculated 

blurring value measures the relative change in the overall gradient amplitude of the image before 

and after the low-pass filtering. A 4x4 moving average low-pass filter was used for this work. 

The effectiveness of motion management was evaluated measuring the sharpness of gray level 

transition at the boundary of the diaphragm. Deficient motion management mixes inconsistent 

respiratory phases in the reconstructed image resulting in enhanced blurring at the lung – 

diaphragm interface. 

 

2.3.5. Results 

Fig. 46 illustrates simulations of the acquisition time and point spread function of ZTE (solid 

lines) versus UTE (dashed lines) for different imaging bandwidths (color coded). The 

simulations were performed assuming certain gradient specifications (Smax=120mT/m, 

Gmax=unconstrained), isotropic image encoding for a high nominal resolution of π/kmax=0.4mm, 

and negligible transmit-receive switching with data sampling starting immediately after RF 

excitation. Fig. 46a shows the acquisition time (TACQ) required for different imaging bandwidths. 

Higher BWRx requires longer ramping in case of UTE and correspondingly longer TACQ for UTE, 

due to higher readout gradients. Considering also the longer RF excitation pulses and additional 

ramping of the spoiler gradients characteristic for UTE, the actual speed advantage of ZTE gets 

even more pronounced. Fig. 46b illustrates the 1D profile of the 3D, rotationally-symmetric 

point-spread-function (PSF) of the ZTE sequence for different BWRx, assuming an effective 

T2*=0.5ms characteristic for lung parenchyma [102]. Higher BWRx enables faster and hence 

more efficient and accurate signal capture of the fast decaying lung signals. Conversely, signal 

decay during lower BWRx acquisitions translates in a broadening of the PSF and associated 

image blurring. The intrinsically lower SNR efficiency at higher BWRx (SNR~BWRx
-1/2) can be 

compensated via averaging (SNR~Navg
1/2); both effects are not accounted in the simulation. This 

tradeoff is especially advantageous for ZTE, which has a sampling efficiency close to 100%. It is 



important to note that the maximum flip angle in ZTE is inversely proportional to the BWRx. 

This is illustrated in Fig. 46c showing the PSF multiplied by the flip angle, with the full-width-

half-maximum (FWHM) quantified in the figure legend. Considering both the signal capture 

efficiency (PSF height) and depiction accuracy (PSF width) an imaging bandwidth of around 

±62.5kHz appears optimal for ZTE imaging of the lung. 

 

Fig. 46 Simulation results for spatial resolution dependency over BWRx. (a) Due to gradient 

ramping, UTE needs longer scan time compared to ZTE in order to obtain the same resolution. 

(b) Faster signal decay at lower BWRx causes a broadening of the PSF and associated image 

blurring. (c) On the other hand, low BWRx increases the achievable SNR, as shown by the PSF 

normalized for the maximum flip angle (α) associated to the specific BWRx.  

Besides affecting SNR and resolution characteristics, the imaging bandwidth also impacts the 

contrast behavior. Fig. 47 shows a BWRx comparison for a volunteer using real-time prospective 

triggering. Higher BWRx with faster sampling reduces T2*-induced blurring, improves image 

resolution, and decreases scan time, although at the cost of SNR. The longer signal readout at 

lower BWRx results in enhanced fat-water off-resonance contrast as can be seen in the borders 

between organs and fat/water tissues. Interestingly, the pulse sequence also captures plastic 

signal from the respiratory belt, the coils, and the table, which can be seen most clearly above 

and below the subject in the top row with BWRx = ±125 kHz. The scan parameters for these 

examinations, together with the SNR and blurriness metrics are listed in Tab. 5. 



 

Fig. 47  BWRx comparison on volunteer using the gated acquisition. Top row BWRx = ±125kHz; 

middle row BWRx =±62.5kHz, bottom row BWRx =±31.25kHz. From left to right: sagittal, 

coronal and axial slice. As the BWRx increases, the resolution improves, but the SNR decreases. 

In the images there is no intensity correction or gradient warping applied.  

 

BWRx RF duration FA scan time SNR Blurriness 

±125.0kHz 4µs 0.5° 7’ 03’’ 24±5 0.4259 

±62.5kHz 8µs 1° 12’ 39’’ 33±5 0.4953 

±31.25kHz 16µs 2° 25’ 35’’ 41±5 0.5257 



Tab. 5  Scan parameters used for the BWRx comparison with PT on volunteer. The parameters 

FOV=48cm, pixel size=1.5mm, Navg=1 were kept the same for all acquisitions.  

The avoidance of the motion during acquisition was shown to produce a significant improvement 

on the image quality. The improvement was also preliminarily tested in phantom experiments 

moving the table in order to simulate the respiratory motion. Increasing the width of the 

acquisition window has a strong impact on the artifacts and the image blurring. Even if a wider 

acquisition window shortens the dead time in the scan, the artifacts are more pronounced. 

 

Fig. 48 Phantom comparisons (sagittal slice) for different values of the acquisition window in 

the prospective triggering approach. Phantom motion was along S/I direction and had amplitude 

of 3cm and maximum velocity of 13mm/s. Top row: phantom not moving (left), 1400ms 

acquisition window (middle), 2800ms acquisition window (right). Bottom row: 700ms 

acquisition window (left), 2100ms acquisition window (middle), no gating (right).  

Fig. 49 compares lung images in end-expiration phase obtained with free breathing (FB), breath-

hold (BH), prospective triggering (PT) and prospective gating (PG) examinations. Acquisition 



parameters together with SNR and blurriness metrics are listed in Tab. 6. In the case of FB, 

motion artifact is visible but confined to the areas of significant motion, (i.e. the bottom of the 

lungs). In comparison, BH freezes respiratory motion, but achieves only limited spatial 

resolution and streaking due to a higher undersampling factor. Both PG and PT approaches were 

able to eliminate motion artifacts and obtain high-resolution and high SNR images in less than 

six minutes acquisition time.  



 

Fig. 49  Axial (right column), sagittal (middle column) and coronal (left column) slices of 

isotropic 3D lung images. The free-breathing image (fist row) shows motion artifact, although 



reduced by the 3D-radial sampling. Breath-hold acquisition (second row) shows no motion 

artifact, but has limited image resolution and low SNR per pixel size. Both PT (third row) and 

PG (fourth row) acquisitions show no motion artifact with high image resolution and high SNR 

per pixel.  

  

Method scan time FOV pixel size Navg SNR diaphragm transition 

PT 5’ 40’’ 30cm 1.2mm 2 26±5 5±0.5mm 

PG 5’ 30’’ 30cm 1.2mm 2 27±5 5±0.5mm 

RG 15’ 03’’ 46cm 1.8mm 8 34±5 7±0.5mm 

BH 31’’ 30cm 1.8mm 1 29±5 8.5±0.5mm 

FB 3’ 20’’ 30cm 1.2mm 2 28±5 42.5±0.5mm 

Tab. 6 Scan parameters PG, RG, BH and FB examinations on volunteer. For all examinations 

we used BWRx=±62.5kHz, FA=1.2°, RF width 8µs, oversampling factor=2. For lower resolution, 

partial volume effect makes the diaphragm transition appear wider.  

The lung images acquired are so well detailed that it is possible to distinguish the lung fissure as 

shown in the following figure: 

 

Fig. 50 Lung image acquired with the PT approach. The 1.2 resolution shows a detailed 

overview of the structures of the lung. The lung fissure is showed by the arrow.  



Fig. 51 shows an example of the signals acquired for lung motion detection. The belt signal (Fig. 

51a) and the pencil beam navigator (Fig. 51b) were acquired during the same scan, showing 

good accordance and synchronism. Fig. 51c and d show the DC navigator signal and its 

histogram distribution, acquired over 8 repetitions. From the histogram it is possible to identify 

expiration and inspiration as the most prevalent motion phases. 

 

Fig. 51  a) Respiratory belt signal over 60 sec acquisition. b) Pencil beam navigator signal 

synchronized with the belt signal in a). For the pencil beam navigator it is possible to distinguish 

a training phase from the real acquisition phase. c) DC navigator signal from a separate scan 

over 60 sec acquisition. d) Histogram of the navigator signal acquired over 840s (i.e. the single 

acquisition repeated 8 times).  

Fig. 52 illustrates high-resolution dataset with associated maximum-intensity-projection (MIP). 

The dataset was acquired with PT in ~9min scan time (FOV=280mm, pixel size=0.875mm, 



BW=±62.5kHz, FA=1.2°, Navg=2). The MIP was performed over a slab thickness of 18.5mm 

and very clearly illustrates the lung vasculature.  

 

Fig. 52 High resolution (0.875mm) PT dataset acquired over ~9min of scan. Filtered MIP 

(18.5mm slice thickness) is shown in the bottom row and depicts clearly even very small vessels. 

Retrospective data sorting allowed RG to reconstruct twelve phases of the respiration cycle. Four 

of the twelve phases are shown in Fig. 53. The motion artifact rejection in each phase depends on 

Navg. As Navg increases, each respiratory phase becomes better defined. For prevalent respiratory 

phases, data is collected faster, thus fewer repetitions are necessary for the reconstruction of an 

image clear of motion artifacts. For expiration (Phase 1), inspiration (Phase 12) and middle 

phases, the Navg necessary to avoid motion artifact in the image is 4, 6 and 8, respectively. 



 

Fig. 53  Coronal slices of 4 of the different phases reconstructed with RG. The influence of Navg 

on the motion artifact can be observed. As Navg increases, more data are collected thus the 

motion artifact is better rejected and the respiratory phases are better distinguished. For Navg=1, 

respiratory phases are not distinguishable, thus the reconstruction produces a FB image in all 

cases. Phase 1: expiration; Phase 4 - Phase 8: middle phases; Phase 12: inspiration.  

 

2.3.6. Discussion on RUFIS 3D lung imaging 

The zero-TE 3D RUFIS imaging is demonstrated to be suitable for structural whole lung 

imaging, with isotropic 1.2mm resolution acquired in a ~6min free-breathing scan. Compared to 

standard UTE methods, zero TE minimizes gradient ramping to only directional updates in 

between repetitions. The minimal gradient ramping practically eliminates eddy current effects 

and renders the pulse sequence virtually silent. Unlike UTE, the absence of eddy current effects 

allows the direct use of RUFIS without any previous calibration. Furthermore, a nominal echo 

time of zero in combination with high BW sampling enables accurate and efficient depiction of 

the short T2
* lung structures in reasonable scan times. On the contrary, a high BW constrains the 

RF pulses width resulting in a maximum flip angle to a few degrees maximum and below the 



Ernst angle. As a consequence, the images display a flat proton density contrast, which however 

clearly depicts the relevant lung morphology relative to the dark background. 

The highest achievable resolution of this method was explored. The resolution limit results from 

a tradeoff between improving the imaging point spread function by increasing receive 

bandwidth, and decreasing SNR resulting from the limited achievable flip angle when exciting 

spins over wider frequency bandwidths. The blurring associated with a small receive BW is 

generated by both B0 off-resonant spins and long acquisition window. Off-resonant spins are 

typically very common in the lung tissue, due to the several air-tissue interfaces. The long 

acquisition window allows the signal to decay while acquiring, thus contributing to blurring in 

the final image. Considering the tradeoffs between point-spread function, acquisition time, 

contrast behavior and SNR, an imaging bandwidth of ±62.5 kHz was found to be a good 

compromise.  

In the acquired images it is possible to observe the coil elements used for the acquisition 

(following figure). This witnesses how RUFIS is suitable for the acquisition of the signal from 

very short T2
* materials. 

 

Fig. 54 Table coil acquired with RUFIS at different receive bandwidth. For higher receive BW 

the acquisition is faster. 

 

This sequence is shown to be compatible with typically used methods of respiratory motion 

management, including respiratory belt triggering, a spatially selective pencil beam navigator, 

and a non-spatially selective DC navigator. The navigator acquisitions were interleaved between 

segments of radial spoke acquisitions, and did not introduce significant image artifacts or 



increased scan time. Multiple time phases of a respiratory cycle were reconstructed from DC-

navigated acquisitions. Twelve time phases could be reconstructed from as few as two full data 

acquisitions, although the image quality can be seen to improve with increasing data acquisition. 

A real time version of the multi-phase approach is currently being explored. The sequence is 

based on a pencil beam navigator acquired in real-time and routing the acquired data in a 

different memory location depending on the recognized respiratory phase. 

In the presented results, no scan acceleration was applied beyond under-sampling by a factor of 

π, which is generally considered acceptable for 3D radial imaging. Higher acceleration factors 

and hence faster scanning would be enabled using parallel imaging, compressed sensing [135], 

or constrained reconstruction methods [136, 137]. In case of dynamic imaging also k-t principles 

[138] or GRICS-type methods [139, 140] could be applied. However, these methods are more 

computationally demanding, especially when applied in 3D and using non-Cartesian sampling. 

Dedicated clinical studies are still needed in order to verify the utility and robustness of this 

method in patient populations and compare it relative to gold-standard CT. The obtained results 

are of particular interest for hybrid MR/PET imaging, where appropriate depiction of lung 

morphology is of key importance for oncology applications. 

 

2.3.7. Conclusion about 3D RUFIS lung imaging 

A 3D radial ZTE sequence was presented in this work for high resolution structural MR lung 

imaging. The combination of this imaging method with either prospective or retrospective gating 

was shown to be successful. The breathing motion also may be resolved into multiple time 

phases by retrospectively gating data using an interleaved DC navigator signal. The ZTE 

sequence is shown here to be more time efficient than UTE sequences. ZTE is also natively free 

from artifact arising from eddy currents thanks to the minimal gradient switching. The low flip 

angle, radial image acquisition can be interrupted by a variety of navigator or other signal 

preparations without introducing artifacts. Both prospective triggering and gating approaches 

were able to achieve 1.2mm spatial resolution in the clinically relevant acquisition time of 

around 5 minutes. Increasing resolution is found to be of limited benefit beyond 1mm due to 

SNR efficiency and T2* decay constraints. The combination of good SNR, robustness to 

artifacts, and achievable resolution will likely make this a highly relevant clinical lung imaging 

sequence. 



 

2.4. COMBINATION OF METHODS 

 

2.4.1. RUFIS sequence applied to cardiac imaging 

The RUFIS sequence was explored for cardiac imaging as well. For cardiac applications some T1 

or T2 contrast needs to be produced in the images, otherwise the muscle will not be 

distinguishable from fat or blood. The T1 preparation, the T2 preparation and the fat suppression 

modules used for the head imaging were tested on the chest. Moreover a double triggering was 

implemented in the sequence. A first triggering was on the respiration signal and then a second 

one on the electrocardiogram. The double triggering had the purpose to synchronize the 

acquisition with the end-expiration respiratory phase and with the diastole phase of the cardiac 

cycle.  

The obtained results showed that the preparation modules still need further improvement for the 

cardiac imaging in order to generate informative 3D cardiac images. The fat suppression module 

showed an image with some contrast on the heart (Fig. 55), but the image quality is not 

acceptable, comparing to the common 3D sequences used for cardiac imaging. 

 



Fig. 55 RUFIS image of the chest using a fat suppression preparation pulse. Some contrast is 

visible on the heart, but the image quality is not comparable to the common product sequences 

used for 3D imaging of the chest (e.g. the LAVA sequence [2]).  

 

2.4.2. Prospective triggering applied to cardiac T2 mapping 

In the section about cardiac imaging a solution was shown to better fit the acquisition in the 

breath hold time. This could be useful for patients which can barely hold their breath for long. 

Alternatively the acquisition can be extended beyond the BH time using a prospective triggering 

as described above for lung imaging. This approach could be necessary in the cases of patients 

which can hardly hold their breath. 

2.4.2.1. Implementation 

A prospective triggering on the respiration signal was implemented in the T2-mapping MEFSE 

sequence in order to extend the acquisition beyond the BH time. For comparison, free breathing 

(FB) examinations were acquired as well. The FB acquisition was performed with 1, 2 and 3 

averages (Navg) in order to reduce the motion artifacts in the images.  

The prospective triggering approach was implemented similar to how described above for the 

RUFIS sequence. The triggering was double, first on the respiration signal, and then on the 

electrocardiogram within the acquisition window. Short-axis cardiac images were acquired on 6 

healthy volunteers at 3T (GE Healthcare, Waukesha, WI, USA). A six-segment model of the 

heart was considered to measure the average T2 over the myocardium. The analysis of variance 

(ANOVA) was applied to estimate the presence of any significant difference among methods 

and among the segments of the heart for each method. A difference with p-value<0.01 was 

considered significant. 

2.4.2.2. Results and discussion 

Eight T2-weighted images were acquired at 11ms TE increments. The scan parameters were: 

ETL =16, BWRx=±62.5 kHz, FOV=32, 192x128 matrix. The BH acquisition was performed on 

average in 24s scan time with Navg=0.5. For both FB and PT multiple averages were tested. Fig. 

56 shows the resulting maps obtained with the three methods. For the FB, a high Navg was 



necessary to reduce the motion artifacts, although the images appeared blurry. The PT approach 

avoided most of the motion artifacts already for Navg=1, improving artifact rejection for higher 

Navg. However the scan time associated with PT is much longer than FB (Fig. 56). According to 

the ANOVA-Bonferroni test, the BH approach did not show any significant difference with the 

PT approach for any value of Navg. Conversely, the BH approach resulted to be significantly 

different from the FB approach for any value of Navg (Tab. 7). Fig. 57 shows the six-segment 

model of the heart with associated average T2 values. The ANOVA test resulted in segments 

significantly different in all cases. For both the BH and the PT approaches, the segments number 

2 and 3 (i.e. the ones on the septum) showed a mean T2 of 53.7ms, whereas the mean T2 in the 

rest of the myocardium was 47.7ms. For the FB approach the presence of ghosting and blurring 

caused an increase of T2 in segment 2 and 3 extended to segments 1 and 4 as well. 

 

Fig. 56 T2 maps obtained in breath-hold (BH), in free-breathing (FB) and with prospective 

triggering (PT). On top of each image: the acquisition method, the number of averages (Navg) 

and the average scan time. The same color map was used for all the images, thresholding the T2 

values between 30ms and 80ms.  



 

Tab. 7 Results of the ANOVA-Bonferroni test. The BH exam is statistical equivalent to the RT, 

whereas it is significantly different from the FB. 

 

Fig. 57 T2 maps represented with the 6-segments model of the hear for the BH, the FB Navg=3 

and the RT with Navg=1. The septum shows higher T2 values than the rest of the myocardium for 

BH and RT. For FB the motion artifacts and the blurring generates inaccuracy in the maps. 

The MEFSE sequence was used to produce T2-maps comparing the breath-hold approach with 

the respiratory triggering and the free breathing. The RT was shown to successfully produce T2-

maps statistically equivalent to the maps obtained with the BH approach. The acquisition in the 

PT approach was not limited to the breath-hold time, making the examination easier to prescribe 

and more comfortable for the patient. The FB approach showed non negligible motion artifacts 

which can be reduced only increasing the Navg. However, the use of high Navg with the FB 

approach produces blurry maps significantly different from the BH ones. For all methods a 

significant difference was found among the T2 values of the segments. For both the BH and the 

RT approach, the T2 values of the septum appeared 12.6% higher than in the rest of the 

myocardium. This is due to the fact that the septum is the area of the myocardium mostly 

protected from artifacts. For the FB approach the T2 values of the segments were mixed because 

of the ghosting and the blurring, showing a higher T2 value for the segments immediately 

outside of the septum as well. 



 



 

 CONCLUSION 

In this work of thesis, the topic of MRI has been analysed in two of its main aspects: 

reconstruction and pulse sequence development. Both reconstruction and pulse sequence topics 

were related to the common thread of the avoidance of motion artifacts in the acquisitions. These 

topics are concrete problems in case of lung and cardiac imaging. Motion artifacts can be 

avoided synchronizing the acquisition with a specific phase of the motion. This is what is done in 

several cardiac applications. Regarding respiratory motion, it is possible to either make the 

acquisition fast and squeeze it in the breath-hold, or manage the motion in free breathing. 

Non-Cartesian acquisition schemes are generally capable of providing a fast scans. The LS-

NUFFT reconstruction method was mainly considered and compared to the gridding (GR) taking 

the direct summation method (DS) as reference. 

In the first place a metric to recognize and measure the loss in geometric information was 

introduced using the 2D autocorrelation. According to this metric, the LS-NUFFT method 

resulted to have an error image more structured, comparing to the GR method. 

Three regularization techniques (TSVD, TR and L1R) were applied to the LS-NUFFT in order to 

improve its performance in terms of reconstruction error. All methods kept the RMSE low for 

big interpolator sizes, comparing to the regularization-free approach. The TSVD method was the 

only one able to outperform the regularization-free reconstruction for a low size of the 

interpolator. The TR method resulted to be the fasted to be calculated. 

Regarding the pulse sequence development, the attention has been focused on the thorax where 

the heart and the lungs are the main macroscopic sources of motion. 

For cardiac imaging, FOV reduction methods were explored in order to better fit the acquisition 

in the breath-hold. The inner volume (IV) selection allowed the selection of sharp edges in the 

FOV avoiding aliasing. The IV excitation provided a scan time reduction from about 23s to 15s. 

The RF pulse imperfections produced undesired stimulated echoes (STE), causing an 

overestimation in the T2 of about 20%. The use of 2D-RF pulses as an alternative to the IV 

approach appeared to be promising in order to obtain more accurate T2 decays. 

Regarding lung imaging, the acquisition was extended beyond the breath-hold in free breathing, 

addressing respiratory motion with prospective triggering (PT), prospective gating (PG) and 



retrospective gating (RG). The RUFIS sequence was demonstrated to be suitable for the imaging 

of the lung tissue. The best compromise between SNR and spatial resolution was achieved with 

the receive bandwidth of ±62.5 kHz. All motion management methods were able to reconstruct a 

3D high-resolution dataset with PD contrast weighting. Both PG and RG could achieve 1.2 mm 

isotropic resolution in clinically reasonable scan time (~6min). The RG sequence could 

reconstruct multiple phases of the respiration cycle at cost of higher scan time. 
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