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Abstract 

The discovery that somatic cells can be reprogrammed to pluripotency as induced 

pluripotent stem cells (iPSC) has generated much interest since it presents an 

opportunity to generate patient- and disease-specific cell lines from which normal 

and diseased human cardiomyocytes (CMs) can be obtained. In most cases, the 

iPSC-derived CMs have been show to be able to recapitulate the disease phenotype 

and have provided opportunities for gaining novel insights into heart 

pathophysiology. These genetically diverse human model systems can be used in 

vitro to decipher mechanisms of diseases and to develop innovative strategies and 

reagents for personalized medicine approaches (Maaike H. et al., 2012): iPSC-based 

models can be indeed employed as a platform for screening the efficacy of new 

therapeutic molecules, as well as their toxicity and side effects in a human context. 

Preclinical data supporting the safety and efficacy of iPSC are also accumulating. 

However, some recent reports also indicate risk factors for the use of iPSC, such as 

genetic and epigenetic abnormalities that could take place during reprogramming 

or maintenance in subsequent cell culture (Hideyuki O. et al., 2013) and mainly due 

to retroviral transgene activation and/or retroviral insertion mutagenesis into iPSC-

derived cells. For this reason, increasing efforts have been recently directed toward 

the generation of insertion-less or insertion-free iPSC using chemical compounds, 

adenoviral vectors, transposons, modified mRNA, plasmids, recombinant proteins, 

episomal vectors, Sendai vectors (Hideyuki O. et al., 2013). 

In our experiment we used CytoTune™-iPS Reprogramming, a system based on 

replication incompetent Sendai virus (SeV) expressing the four “pluripotency” 

Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc). These reprogramming vectors have 

been engineered to increase biological and environmental safety. In fact these 

viruses are confined into the cytoplasm and do not integrate into the host cell 

genome. Furthermore, due to their temperature sensitivity, they can be cleared 

from the host cells by incubation at 38°C for few hours. After cell reprogramming 

occurs, iPSC have been characterized by checking the expression of markers typical 

of pluripotency (Oct-4, SSEA-1, TRA1-60) using several methodologies, such as RT-
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PCR, immunofluorescence, Western Blot, FACS, and alkaline phosphatase activity 

detection.  

The ability to differentiate into cells that derive from all the three germ layers is 

another key feature of a pluripotent cell: when iPSC are removed from 

differentiation suppression conditions and grown in suspension aggregates [called 

embryoid bodies (EBs)] in presence of serum, differentiation into cells from the 

three germ layers occurs, including spontaneously beating CMs. In the protocol we 

are using in the laboratory, ascorbic acid is added to increase the efficiency of 

induction toward the mesoderm lineage and CMs (Di Pasquale E. et al., 2013).  

The projects I have been involved in the laboratory have been mainly focused on 

the use of iPSC technology to model and treat cardiac diseases.  

Cardiac arrhythmias and heart failure are major causes in the Western Countries. In 

younger patients, the majority of sudden cardiac deaths underlies Mendelian 

genetic causes. iPSC models have been described for some cardiac arrhythmia 

syndromes, including Brugada Syndrome, catecholaminergic polymorphic 

ventricular tachycardia (CPVT) and other cardiac diseases, such as Timothy 

syndromes and cardiomyopathies (CMPs – hypertrophic and dilated). In my project, 

I focused my interest on developing iPSC-based system to investigate recessive 

CPVT and familial dilated CMPs (DCM) 

Recessive CPVT is associated with mutations in the CASQ2 gene and is characterized 

by the absence or the drastic reduction of cardiac calsequestrin, a protein critical for 

the regulation of cytoplasmic calcium homeostasis in cardiac myocytes. 

In our study, we exploited a human knock-out model of CPVT caused by the 

homozygous mutation D307H calsequestrin protein. Our final propose was to 

explore whether viral gene transfer using AAV9, engineered to carry the wild type 

CASQ2 gene, was able to revert the complex set of abnormalities due to the lack 

calsequestrin. The distinguishing features of recessive CPVT include: severe 

reduction of the sarcoplasmic reticular (SR) proteins TrD (Triadin) and JnC (Junctin) 

that, together with calsequestrin, regulate the release of calcium from the SR 

mediated by ryanodine receptor; ultra-structural changes of the SR; development of 

adrenergically mediated diastolic delayed after-depolarizations and triggered 
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activity and occurrence of sustained polymorphic or bidirectional ventricular 

tachycardia elicited by stress or emotion.  

On the other, familial DCM is a progressive disease of the heart muscle, clinically 

characterized by presence of left ventricular enlargement and reduced systolic 

dysfunction, myocyte death and myocardial fibrosis leading to severe heart failure 

and increased risk of sudden death due to arrhythmia. In many cases the disease is 

inherited (about 20-30% of cases) and associated to mutations in genes encoding 

components of a wide variety of cellular compartment and pathways, and 

comprising the nuclear envelope (i.e. lamin A/C), the contractile apparatus and the 

sarcomere (i.e. titin, alpha and beta myosin), gene transcription and splicing 

machinery and calcium handling (Watkins H et al., 2011).  

In the laboratory a familial case of DCM due to mutations in Lamin A/C and titin has 

been recently described: in this work the authors found two mutations in the genes 

encoding Lamin A/C and Titin (LMNA and TTN) were segregating with the DCM 

phenotype. In particular, they observed that all the affected family members were 

carrying the c.656A>C variant in LMNA gene (already associated to DCM), whereas 

and the four most severely affected family members were found to have a 

previously not described variant in the TTN gene (c.14563C>T), that have been 

proposed to act as a “modifier” gene. However, further genotype/phenotype 

correlation studies are required to determine how commonly rare variants in 

multiple genes associated with DCM are associated with a particularly severe 

clinical course. (Roncarati et al, 2013). 

In order to prove causal-link between the disease and the identified mutations we 

developed a gene correction strategy to revert both Lamin A/C and Titin mutations: 

such method is based on helper-dependent adenoviral vectors (HDAdVs), shown to 

be a highly efficient and safe for correcting mutations in large genomic regions in 

human iPSC.  

In conclusion, the development of targeted genome-editing strategies to be applied 

to iPSC-based model systems will have enormous rebounds for future cell therapy 

approaches to human genetic diseases. 
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INTRODUCTION 
 
 

Induced Pluripotent Stem Cells 

technology to study and cure of human 

diseases 
 

 

 “Induced Pluripotent Stem Cells” (iPSC) are adult somatic cells that have been that 

have been genetically reprogrammed to an embryonic stem cell-like state by being 

forced to express genes and factors important for maintaining the defining 

properties of embryonic stem cells (ESCs).  

IPSC are indistinguishable from ESCs for morphology and are pluripotent; iPSC are 

able to grow indefinitely and posses the potential to give rise derivatives of all the 

three germ layers, i.e. ectoderm, mesoderm and endoderm.  

The discovery of iPSC dates back to 2006 when Shinya Yamanaka showed that a 

differentiated cell was able to go back to an embryonic state through the forced 

expression of transcription factors typical of the state of pluripotency .This  

discovery was first demonstrated in the mouse and, the following year, iPSC were 

generated also from human fibroblasts in the laboratories of S. Yamanaka and J. 

Thomson, through the forced expression of a different set of transcription factors 

typical of the state of pluripotency, that are Oct4, Sox2 and either Klf4 and c-Myc or 

Nanog and Lin-2842.Oct4, Sox2  and Nanog  are transcription factors that are 

essential  for maintenance of the state of pluripotency; Klf4 and c-Myc, are  

oncogenes and act by inducing proliferation of reprogrammed cells, while Lin-28 is a 

micro-RNA binding protein, thought to regulate the self-renewal of stem cells.  

The reprogramming process lasts about  20-30 days in vitro reprogrammed cells are 

first detectable by morphology typical of ESC. these cells grow aggregated in 

colonies, possess prominent nuclei and a high ratio nucleus/cytoplasm due to a high 

transcription in the nucleus. 

http://en.wikipedia.org/wiki/Stem_cell
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Major applications of iPSC are: i) disease modeling, they could be a valuable 

approach for studying the pathophysiology of genetic human diseases in vitro in 

order to design strategies and reagents for new therapies20,21 ;ii) drug discovery, the 

ability to get in culture patient-specific disease cells could be useful for the testing 

of new drugs and to test their toxic effects; iii)regenerative medicine, being 

autologous cells may be used for transplantation in order to regenerate the tissues, 

damaged cells, without triggering the immune system. 

 

 

Fig.1: iPSC-approach to human diseases 
There are multiple potential uses of the human iPSC, including: study of the mechanisms of disease, 
drug screening, human genetics, developmental biology, gene therapy and autologous cell therapy 

 
However, recent studies have showed iPSC may carry genetic and epigenetic 

abnormalities that may compromise their use for preclinical and therapeutic 

purposes. Among the multiple methods described so far to generate iPSC, cell 

transduction with retroviral/lentiviral vectors is still one of the most popular 

method to induce reprogramming for the high efficiency and moderated cost; 

however vectors integration into host chromosomes is required to express 

reprogramming genes and may retroviral transgene activation and/or insertional 

mutagenesis into iPSC-derived cells.  

For this reason, increasing efforts have been recently directed toward the 

generation of insertion-less or insertion-free iPSC using chemical compounds, 
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adenoviral vectors, transposons, modified mRNA, plasmids, recombinant proteins, 

episomal vectors and, Sendai vectors 30. 

DNA-based vectors such as adenovirus, adeno-associated virus, and plasmid vectors 

exist episomally and do not require integration. However, their reprogramming 

efficiency is lower and they may still be integrated into host chromosomes at 

certain frequencies. Modified-RNA, DNA or proteins have been also proposed as 

alternative methods for iPSC generation, but their use is either technically complex 

or seem to give extremely low efficiency of reprogramming (0,001%). 

Use of vectors based on Sendai virus expressing the four “pluripotency” factors has 

been recently demonstrated to efficiently generate transgene-free iPSC. Based on 

these premises, we decided to employ such methodology for our reprogramming 

experiments.) 

 

Sendai virus (SeV) and reprogramming  

Sendai virus is a respiratory virus of mouse and rat, classified as mouse 

parainfluenza virus type-I belonging to the Paramyxoviridae family. SeV was first 

isolated in Japan in the early 1950s and is also called Hemagglutinating Virus of 

Japan (HVJ). SeV is an enveloped virus of 150–250 nm in diameter whose genome is 

a single chain RNA (15,384 bases) in the minus sense. Six genes coding for viral 

proteins are situated sequentially on the genome of the wild-type SeV in the 

following order (starting from the 3’ end): 

 Nucelocapsid protein (NP) forms the core nucleocapsid complex with the genome 

RNA. 

 Phosphoprotein (P) is the small subunit of the RNA polymerase. 

 Matrix protein (M) supports the envelope structure from the inside. 

 Fusion protein (F) fuses the viral envelope with cell membrane when the virus 

enters the cell. 

 Hemagglutinin-Neuraminidase (HN) recognizes the cell surface receptor, sialic acid. 

 Large protein (L) is the large subunit of RNA polymerase. 
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Fig.2: Structure of the Sendai Virus 

 
 

The Sendai-based viral vectors have been designed to safely and efficiently express 

the four “pluripotency” Yamanaka factors (Oct4, Sox2, Klf4 and c-Myc) in a variety 

of different cell types. These reprogramming vectors have been engineered to 

increase biological and environmental safety. Furthermore, due to their 

temperature sensitivity, they can be cleared from the host cells by incubation at 

38°C for few hours. 

SeV infects cells by attaching itself to the sialic acid receptor present on the surface 

of many different cells, it can infect a wide range of cell types of various animal 

species. Activation of F protein by a protease is required for the virus-cell fusion 

process to take place. After infection, the virus goes through genome replication 

and protein synthesis, and then daughter virus particles are assembled and released 

(Figure 3). 

 

Fig.3: Comparison of the lifecycles of non-integrating SeV vectors and other vectors. 
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There are several advantages to use the SeV vectors: 

 No genotoxicity: Sendai reprogramming vectors do not integrate into chromosomes 

of the target cells. 

 Wide range of targets: the vectors are capable of transducing a wide range of cell 

types in proliferative and quiescent states. 

 High transduction efficiency with low multiplicity of infection (MOI). 

 Short contact time of virus with target cells is sufficient to establish transduction. 

 High level of expression of the transgenes. 

 Fast expression of the transgenes: expression is detectable as early as 6–10 hours 

after transduction, with maximum expression detected more than 24 hours after 

transduction. 

 Zero footprint: the vectors and transgenes can be eliminated from the cells. 

 No production of infectious particles by the transduced cells. 

 Derived from a virus that is non-pathogenic to humans. 

 Temperature sensitivity: virus can be easily removed from transduced cells with 

(38°C for three days) 

 

iPSC to model human cardiac diseases: an overview  

Cardiac arrhythmias and heart failure are major causes in the Western Countries. In 

younger patients, the majority of sudden cardiac deaths underlies Mendelian 

genetic causes. iPSC models have been described for some cardiac arrhythmia 

syndromes, including Brugada Syndrome, catecholaminergic polymorphic 

ventricular tachycardia (CPVT) and other cardiac diseases, such as Timothy 

syndromes and cardiomyopathies (CMPs – hypertrophic and dilated). In my project, 

I focused my interest on developing iPSC-based system to investigate recessive 

CPVT syndrome. 

The discovery that somatic cells can be reprogrammed to pluripotency as iPSC has 

generated much interest since it presents an opportunity to generate patient- and 

disease-specific cell lines from which normal and diseased human cardiomyocytes 

(CMs) can be obtained in vitro. 
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Such possibility is of great interest, since it overcomes one of the major limitation 

related to the investigation of cardiovascular diseases, that is the limited source of 

cells from human heart. 

 In most cases, the iPSC-derived CMs have been shown to be able to recapitulate 

the disease phenotype and have provided opportunities for gaining novel insights 

into heart pathophysiology. These genetically diverse human model systems can be 

used in vitro to decipher mechanisms of diseases and to develop innovative 

strategies and reagents for personalized medicine approaches: iPSC-based models 

can be indeed employed as a platform for screening the efficacy of new therapeutic 

molecules, as well as their toxicity and side effects in a human context31. Preclinical 

data supporting the safety and efficacy of iPSC are also accumulating.  

To give an example, in the laboratory has been recently described a model of CPVT 

due to the heterozygous mutation in the gene encoding RYR2 calcium release 

channel.  

Results from these study demonstrated iPSC differentiation are able to give rise to 

an heterogeneous population of cardiac cells (i.e. atrial, ventricular and nodal-like 

cells) and showed that CMs derived from patient-specific iPSC recapitulate the 

disease phenotype, with occurrence of delay after depolarization and trigger 

activity after beta adrenergic stimulation through isoproterenol.  

Furthermore, we also demonstrated that treatment with KN-93, an inhibitor of the 

calcium-calmodulin kinase pathway was able to restore the correct phenotype in 

the CPVT cells, indicating the feasibility of using iPSC-CM as a platform for drug 

testing. 

 

Catecholaminergic Polymorphic 

Ventricular Tachycardia (CPVT) 

 
Disease characteristics 

CPVT is a life-threatening form  of arrhythmia (its prevalence in Europe is 1/10.000 

so that it is considered a rare disease);characterized by ventricular tachycardia (VT) 
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induced by the adrenergic stress (exercise or acute emotion)which may degenerate 

into ventricular fibrillation and cause syncope and sudden death. 

 The onset of the disease is precocious (between 7 and 9 years of age) and shows 

similar frequency in both sexes. Affected individuals have normal ECG at the 

baseline and do not show any structural abnormalities of the heart. 33   

The mortality rate associated with the disease is extremely high, and about  30%-

35% of the patients die by the age of 35 years, if not threated.  

Therapy is mainly based on b-blockers that are ineffective in about 30% of the 

patients. In the most severe cases, use of implantable cardioverter defibrillators is 

necessary. 

 

Genetics of CPVT 

Two genetic forms of CPVT have been identified, one transmitted as an autosomal 

dominant (50%) disease caused by mutations in the gene encoding the cardiac 

ryanodine receptor (RyR2)2,3 and the other with autosomal recessive(3%) way of 

inheritance that is caused by mutations in the cardiac specific isoform of the 

calsequestrin gene (CASQ2).4,5  

Both genes encode for proteins that are responsible for calcium handling and 

storage within heart muscle cells (at the sarcoplasmic reticulum) and that are 

critically involved in cardiac excitation-contraction (EC) coupling by controlling 

calcium-induced calcium release. This suggests that abnormal intracellular 

regulation of Ca2+ may be crucial driving in arrhythmogenesis and may represent 

the central pathogenic pathway in CPVT33.  

Accordingly, it has been speculated that the electrophysiological mechanism 

underlying arrhythmias in CPVT is triggered activity initiated by delayed after-

depolarizations (DADs).  

Both proteins are part of a supramolecular Ca2+- signaling complex in the junctional 

sarcoplasmic reticulum (SR) that also contains Triadin 1 (TrD) and Junctin (JnC ), 

among other proteins.6,7   

TrD binds specifically to the RyR/Ca2+-release channel and CASQ2 and its binding to 

the C-terminal luminal loop of the RyR seems important for ensuring rapid Ca2+ 

release during ECC in the striated muscle. 
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JnC is an integral component of the junctional SR membrane in both cardiac and 

skeletal muscle. A short N-terminal region of this 26-kDa protein is located in the 

cytoplasm, and the bulk of the molecule projects into the SR lumen.37 

More in details RyR2 serves as a Ca2+-release channel in the SR; in fact it is located 

in the membrane of the sarcoplasmic reticulum. During the ECC process, RyR2 

channels are activated by Ca2+ that enters the cell through voltage-dependent L-

type Ca2+-channels, causing the release of Ca2+-from the SR into the cytosol, a 

mechanism known as Ca2+-induced Ca2+-release (CICR).8,9 Increased cytosolic Ca2+- 

levels activate the contractile apparatus. Ca2+-release is terminated when SR luminal 

[Ca2+] falls below a threshold level, causing a decline in RyR2 activity via a 

mechanism termed luminal Ca2+-dependent deactivation.10,11 

CASQ2 is a high-capacity Ca2+-binding protein; its primary function is to store the 

releasable Ca2+ within the SR12,9 and to control the local luminal [Ca2+] in the vicinity 

of the RyR2 channels11; it has been also proposed to serve as a luminal Ca2+- sensor 

for RyR213 : its buffering function allows the SR to store large amounts of Ca2+ ions 

near the releasing sites while preserving a low concentration of free Ca2+ 25
. 

Additionally, CASQ2 seems to play an important role in regulation the open 

probability of RyR2.14
 CASQ2 is thought to modulate RyR2 via TrD and JnC.26  

CASQ2 may also importantly regulate the development of the SR ultrastructure 

along with these two proteins . Altogether, these observations have suggested that 

CASQ2 plays an essential role in the regulation of  Ca2+ storage and release required 

for excitation-contraction (EC) coupling in mammalian hearts.32 
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Fig.4: Macromolecular complex in Junction Sarcoplasmic Reticulum (jSR): 

During muscle contraction the key role is played by the Ca2+ which is released into the sarcoplasmic 
reticulum after the opening of the channel Ryanodine, under the control of CASQ2, TrD-1 and  JnC. 
The Ca

2+
 will bind to troponin-C, allowing slippage between the myofilaments (myosin and actin), 

allowing the contraction. During the relaxation is necessary that the channel ryanodine is closed 
does not allow the release of more Ca

2+
.) 

 

The precise mechanism for this regulatory function is still the subject of 

controversy. 

Available evidence suggests that the clinical features of CASQ2 and RyR2-related 

CPVT are virtually identical. 

 

Genothype/Phenotype correlation in CPVT-patients with 
CASQ2 mutation 

 
CASQ2 gene maps on chromosome 1 at the 1p 13.1 locus and encodes the cardiac 

isoform of calsequestrin (CASQ2), a protein of 399 amino acid25  located in the 

junctional sarcoplasmic reticulum (jSR) of mammalian cardiac muscle32. As already 

mentioned before, it is a calcium-binding protein14: CASQ2 appears as a densely 

staining protein in the lumen of the jSR and at this site forms a quaternary complex 

with the SR Ca2+ release channel RyR2 and with JnC and TrD.15,16 
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In my project I focused on a family case of the autosomal recessive form of CPVT is 

linked to the deletion from 339 to 354 (G112) in CASQ2 leading to a frame shift and 

a stop codon after 5aa (5X)14; the lack of CASQ2 stops the normal function of 

chelating calcium ion of this protein, leading to an increase of the diastolic Ca2+-

concentration in the cytoplasm and determining irregular and polymorphic 

arrhythmias. 

In vitro examinations showed CMs with absence of CASQ2 are characterized by 

electrophysiological abnormalities (increase the frequency of Ca2+ sparks in isolated 

ventricular myocytes14; ventricular arrhythmias and abnormal T-wave alternans), 

ultra-structural variations to SR (increase in the volume and formation of electron-

dense “clumps” of the SR cisterne32 and a molecular changes (reduction in TrD and 

JnC expression)). 

The patients present bidirectional arrhythmias, which can lead to a ventricular 

tachycardia and ventricular fibrillation. 

 

Clinical Diagnosis and therapy of CPVT  

The clinical evaluation of CPVT-patients includes the following main diagnostic 

procedures: 

 ECG during a graded exercise (exercise stress test); 

 Genetic testing; 

 Evaluation of presence/absence of structural abnormalities of the right ventricle; 

 Holter monitoring; 

 Prenatal diagnosis (DNA from amniocentesis) when the mutation has already been 
identified in at least one member of the family. 
 

Therapies are limited and rely on the following: 

 Beta-adrenergic blockers (preferentially: Nadolol and Propanolol that are usually 
effective in preventing recurrences of arrhythmias in the majority of the patients); 
 

 Implantable Cardioverter Defibrillator (ICDs); 

 Sympathetic denervation (for patients who are resistant to the therapy with β-
blockers); 
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 Flecainide (reduces the duration of channel opening and disrupts the propagation of 

calcium waves). 

However, available therapeutic options are ineffective in about 30% of the patients 

and identification of novel pharmacological and therapeutic approaches is of 

utmost important to ameliorate the survival and the quality of life of the affected 

patients. 

On this regard, development of patient specific iPSC-based model of CPVT may 

serve as a cardiac platform to identify new therapies and to test their efficacy in 

human cells. 
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GENE THERAPY OF CARDIAC 
ARRHYTHMIAS 

Advantages of Adeno-Associated Viral Vectors 
 

 

Fig.5:Schematic representation of the use of adeno-associated vector for guiding expression of 
therapeutic genes: 

Viral gene therapy vectors entry into the mammalian cell. Viral vectors bind to cell surface receptors, 
initiating endocytosis via the clathrin-dependent process. Once internalized, the viral particles avoid 
degradation via the lysosomal pathway and direct endosome trafficking to the cell nucleus. 
Adenoviral and adeno-associated viruses are released from the endosome in the perinuclear region, 
and the viral particles ‘‘dock’’ on the nuclear envelope membrane pores. The viral particle capsid 
coat dissociates, and the genome is delivered into the cell nucleus. Retroviral and lentiviral vectors 
require further processing in the cytoplasm, including reverse transcription, prior to arrival in the 
nucleus. ) 

 

As discussed in the section above even though conventional therapies including 

pharmacological therapy, catheter ablation, and implantable devices have been 

shown to be effective in reducing morbidity and mortality of CPVT patient, a certain 

segment of these arrhythmias is still refractory to treatment.  

“Gene therapy” approaches constitute an exciting option to threat human disease 

and to correct expression of a potential gene of interest.31 

A study recently published by Denegri M et al, 2012 demonstrated that in vivo 

transduction of cardiac cells with adeno-associated vectors carrying the wild type 
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CASQ2 gene was sufficient to restore both expression and function in CASQ2 knock-

out models. 

Gene therapy is defined as the technology by which genes, small DNA or RNA 

molecules are delivered to human cells, tissues or organs to correct a genetic 

defect, or to provide new therapeutic functions for the ultimate purpose of 

preventing or treating diseases. The primary aim of gene therapy is to either 

increase or decrease the level of a specific protein within a target tissue, in order to 

modify cellular functions of cell of interest or to effect changes to surrounding 

tissues by altering secreted proteins. The development of successful gene therapy 

approaches is expected to have a great impact in reducing morbidity and mortality 

due to cardiac diseases.36  

Of the diverse potential methods for gene therapy, the adeno-associated virus 

(AAV) is extremely advantageous. These are known to elicit a longer expression of 

the protein of interest; AAV are also expected to raise less immunological problems 

than others. 

Among the several serotypes of AAV, AAV9 has a higher affinity to for 

cardiomyocytes than the other AAV serotypes. It has also been reported that AAV9 

has a higher efficacy of transduction in the heart than in the other organs. Such 

properties combined with the low adverse effects related to the use of these 

vectors are fundamental to bring gene therapy applications closer to their clinical 

use.31 

As already mentioned, a recent work from Serge Viatchenko K. et al.,2004 

employed AAV9 vectors expressing CASQ2 to restore the expression of the mutated 

CASQ2D307H in adult rat myocytes. They showed that the Asp307 compromises the 

ability of CASQ2 to form high capacity Ca2+-biding oligomers and/or to interact with 

RyR2 channel complex. Additionally, induction of CASQ2 expression by AVV9 in 

CASQ2-defective knock-out CPVT mice reverts the molecular, structural, and electric 

abnormalities associated with the absence of CASQ2 and prevents occurrence of 

life-threatening arrhythmia. In their experiments the authors used the pAVV2.1-

CMV-CASQ2wt-eGFP vector and showed that infected myocytes (efficiency of 

infection was greater than 50%) exhibited increased levels of CASQ2, TrD and JnC ( 

increased 80%-90% to controls); furthermore, ultra-structural abnormalities and 
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electrophysiological instability of CASQ-defective myocytes were  restored, 

abolishing the ventricular tachycardia phenotype in such mice models38. 

Importantly, AAVs have been recently approved for their use in the to threat 

patients affected by Leber’s congenital amaurosis (LCA), a group of inherited 

blinding diseases with onset during childhood. One form of the disease, LCA2, is 

caused by mutations in RPE65 gene. Maguire AM and colleagues demonstrated the 

safety of sub-retinal delivery of a recombinant AAV carrying RPE65 cDNA: three 

patients with LCA2 manifested acceptable local and systemic adverse -events after 

delivery of AAV2.hRPE65v2, while each enrolled patient showed a modest  

improvement of the retinal function by subjective tests of visual acuity. 

Testing revealed gains in visual acuity at 6 weeks; thereafter, there was a slower 

rate of improvement the clinical benefit to the patients has been sustained during 

the 6 months since the experimental treatment of LCA2 .39 

These results provide the basis for further gene therapy studies in patients with LCA 

and support their potential applications to threat other diseases with an acceptable 

level of safety. 
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MATERIALS AND METHODS 
 

 

REPROGRAMMING OF  FIBROBLASTS INTO iPSC 

 
Fibroblasts culture 

Dermal fibroblasts biopsies (3-4 mm) obtained from the patient diagnosed with 

CPVT after written informed consent are isolated through enzymatic digestion as 

follow: 

-Liberase (0,9U/mL)   345µL 
-Dispase    1,25µL  
-Trypsin+EDTA (0,05%)    10µL 
-P/S         5µL 
-DMEM:F12 (1:1)   640µL 
  
-Incubate the sample at 37°C in agitation for approximately 3 hours. 

-Mechanically dissociate the sample by pipetting up and down with a 10mL 

pipette,than a 5mL pipette and a 2mL pipette. 

-Dilute the digestion mixture with PBS and filter the solution through a 100µm filter. 

-Centrifuge the sample at 1700rpm for 10 min. 

-Discard the supernatant than count and plate the cells in 12,5cm2 flask. 

(Ideally fibroblasts need to be densely populated to grow (approximately 2.5X104 

cells/cm2 are required). 

Isolated fibroblasts were cultured in FB-MEDIUM, made of:  

-DMEM–Low Glucose/F12 (1:3)  

-10% FBS, 2mM Glutamax 

   -0.1 mM non-essential amino acids and antibiotics. 

Identity and purity of isolated cells have been determined using fibroblasts specific 

markers by immunofluorescence and FACS analysis. 

 

CytoTune™-iPS Reprogramming Kit 

For the reprogramming, CytoTuneTM-iPS Reprogramming System has been used. 

This method is based on replication in competent Sendai virus (SeV) to safely and 
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effectively deliver the four transcription factors necessary for reprogramming of 

somatic cells into iPSCs. In contrast the other available protocols with comparable 

reprogramming efficiency, which mainly rely on viral vectors that integrate into the 

genome of the host cell, the CytoTuneTM Reprogramming System uses vectors that 

are non-integrating and remain in the cytoplasm (i.e., they are zero-footprint). In 

addition to the cytoplasmic nature of SeV, the vectors have been genetically 

modified to become temperature-sensitive, so that the host cell can be cleared of 

the vectors and reprogramming factor genes by treatment at higher temperature 

(38°C). The CytoTuneTM-iPS Reprogramming Kit contains four SeV-based 

reprogramming vectors, each capable of expressing one of the four Yamanaka 

factors (i.e., Oct4, Sox2, Klf4, and c-Myc) and are optimized for generating iPSCs 

from human somatic cells. As already explained the reprogramming vectors have 

been engineered to increase biological and environmental safety. 

Below is included the lists of the CytoTune™ Sendai reprogramming vectors 

included in the CytoTune™-iPS Reprogramming Kit and the detailed protocol used 

for inducing reprogramming.  

Differentiation 
Medium 

Final 
Concentration 

250 mL Catalog Number 

RPMI 1640 
- 

212.5 mL Life Technologies 11875-
119 

GlutaMAX 1X 2.5 mL Life Technologies 

B-27 Supplement 
without insulin 
 

or 

50X 5 mL 

Life Technologies 
005012SA  
Life Technologies 
17504044 

B-27 Supplement with 
insulin 

50X 5 mL 

Life Technologies 
005012SA  
Life Technologies 
17504044 

 

 

 

 

 

 

 

 

 

Reagents Final Concentration Catalog Number 
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**Y-27632 Rock 
inhibitor (5mM) 

10 μM Sigma Y0503-1MG 

**CHIR-99021 
(36mM) 

8-12 μM Selleck S1263-5MG 

**IWR-1 (5mM) 5 μM Sigma 10161-5MG 

Growth Factor-
Reduced (GFR) 
matrigel (10mL) 

1:30 BD Biosciences 354230 

Essential 8 Medium - - 

Accutase - 
Life Technologies 

A1110501 

 

 

PROTOCOL 

Day -2: Prepare the cells for transduction 

1. 2 days before transduction, plate human neonatal foreskin fibroblast cells into     

two wells of a 6-well plate at the appropriate density to achieve 5×105 cells per well 

on the day of transduction (Day 3). 

(Note: 80–90% confluence on the day of transduction is recommended.) Culture the 

cells for two more days, ensuring the cells have fully adhered and extended. To 

prepare 100 mL of complete MEF/fibroblast medium, aseptically mix the 

components listed in the table below. Complete MEF/fibroblast medium can be 

stored at 2–8°C for up to 1 week. 

D-MEM with GlutaMAX™       89 mL 

FBS-ESC Qualified (10%)      10 mL 

MEM Non-Essential Amino Acids Solution (10 mM)      1 mL 

 
Day 0: Perform transduction 

2. On the day of transduction, warm 2 mL of fibroblast medium in a water bath. 

3.  Remove one set of CytoTune™ Sendai tubes from the –80°C storage. Thaw each 

tube one at a time by first immersing the bottom of the tube in a 37°C water bath 

for 5–10 seconds, and then removing the tube from the water bath and allowing it 

to thaw at room temperature. Once thawed, briefly centrifuge the tube and place it 

immediately on ice. 

4. Add the indicated volumes of each of the four CytoTune™ Sendai tubes (3 × 106 CIU 

each; for the appropriate volume changes for each preparation and is provided in 
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the Certificate of Analysis) to 2 mL of fibroblast medium, pre-warmed to 37°C. 

Ensure that the solution is thoroughly mixed by pipetting the mixture gently up and 

down. Complete the next step within 5 minutes. 

5. Aspirate the fibroblast medium from the cells, and add one half of the solution 

prepared in Step 5 to each of the two wells. Place the cells in a 37°C, 5% CO2 

incubator and incubate overnight. 

 

Day 1: Replace medium and culture cells 

6. 24 hours after transduction, replace the medium with fresh fibroblast medium. 

7. Culture the cells for 6 more days, changing the spent medium with fresh fibroblast 

medium every other day. 

 

Day 5 or 6: Prepare MEF culture dishes 

8. One to two days before passaging the transduced fibroblasts on to MEF feeder-

cells, prepare 100-mm MEF culture dishes. 

Gelatin coating culture vessels: 

 Cover the whole surface of each culture vessel with gelatin solution (0,1%) 

and incubate the vessels for 30 minutes at 37°C or for 2 hours at room 

temperature. 

Thawing MEFs:  

 Remove the cryovial containing inactivated MEFs from the liquid nitrogen 

storage tank. 

 Briefly roll the vial between hands to remove frost, and swirl it gently in a 

37°C water bath. 

 When only a small ice crystal remains in the vial, remove it from water bath. 

Spray the outside of the vial with 70% ethanol before placing it in the cell 

culture hood. 

 Pipet the thawed cells gently into a 15-mL conical tube. 

 Rinse the cryovial with 1 mL of pre-warmed MEF medium. Transfer the 

medium to the same 15-mL tube containing the cells. 

 Add 4 mL of pre-warmed MEF medium dropwise to the cells. Gently mix by 

pipetting up and down. 
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 Centrifuge the cells at 200 × g for 5 minutes. 

 Aspirate the supernatant and resuspend the cell pellet in 5 mL of prewarmed 

MEF medium. 

 Remove 20 μL of the cell suspension and determine the viable cell count 

Plating MEFs: 

 Centrifuge the remaining cell suspension (step 9) at 200 × g for 5 minutes at 

room temperature. 

 Aspirate the supernatant. Resuspend the cell pellet in MEF medium to a 

density of 2.5 × 106 cells/mL. 

 Aspirate the gelatin solution from the gelatin coated culture vessel. 

 Add the appropriate amount of MEF medium into each culture vessel Into 

each of these culture vessels, add the appropriate amount of MEF 

suspension.  

 Move the culture vessels in several quick back-and-forth and side-to-side 

motions to disperse the cells across the surface of the vessels. 

 Incubate the cells in a 37°C incubator with a humidified atmosphere of 5% 

CO2. 

 Use the MEF culture vessels within 3–4 days after plating. 

 

Day 7: Plate transduced cells on MEF culture dishes 

9. Seven days after transduction (Step 6), fibroblast cells are ready to be harvested 

and plated on MEF culture dishes. Remove the medium from the fibroblasts, and 

wash cells once with D-PBS. 

10. To remove the cells from the 6-well plate, TrypLE™ has been used following the 

procedure recommended by the manufacturer. When the cells have completely 

detached (1–3 minutes later), add 2mL of fibroblast medium into each well, and 

collect the cells in a 15mL conical centrifuge tube. 

11. Centrifuge the cells at 200 × g for 4 minutes, aspirate the medium, and re-suspend 

the cells in an appropriate amount of fibroblast medium. 

12. Count the cells and seed the MEF culture dishes with 5 × 104–2 × 105 cells per 100-

mm dish and incubate at 37°C, 5% CO2 incubator overnight. 



27 
 

(We tried two different seeding conditions 5 × 104 and 1 × 105cells per 100mm 

dish).  

(Note: Remaining cells have been harvested for RNA extraction to be used as a 

positive control in the RT-PCR detection of the SeV genome.) 

 

Day 8 to 28: Feed and monitor the cells 

13. 24 hours later, change the medium to iPSC medium or E8 and replace the spent 

medium everyday thereafter. 

To prepare 100 mL of human iPSC medium, aseptically mix the components listed 

below: 

KnockOut™ D-MEM/F-12 (1X)     78 mL 

KnockOut™ Serum Replacement (20%)    20 mL 

MEM Non-Essential Amino Acids Solution (10 μM)     1 mL 

GlutaMAX™-I Supplement (100X)         1mL 

β-mercaptoethanol 55 mM (100 μM)            182 μL 

Penicillin-Streptomycin (100X)        1 mL 

Basic FGF* (20 μg/mL)       40 μL 

N-supplement (100X)        1mL 

B27-supplement without Vitamin A (50X)     5mL 

(* Prepare the iPSC medium without bFGF, and then supplement with fresh bFGF right before the use) 

 

Human iPSC medium can be stored at 2–8°C for up to 1 week. 

14. Starting on Day 8, observe the plates every other day under a microscope.  

(Note: For BJ fibroblasts, the manufacturer reported colony formation on Day 12 

post-transduction. However, depending on the cell type, culture for up to 4 weeks 

before seeing colonies may be needed). 

15. Three to four weeks after transduction, colonies should have grown to an 

appropriate size for transfer. The day before transferring the colonies, prepare MEF 

culture plates using Attachment Factor-coated 12- or 24-wel plates. 

By Day 21 post-transduction, the cell colonies on the MEF culture dishes will have 

become large and compact, covering the majority of the surface area of the culture 

dish. However, only a fraction of these colonies will consist of iPSCs, which exhibit a 
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hESC-like morphology characterized by a flatter cobblestone-like appearance with 

individual cells clearly demarcated from each other in the colonies. 

16. Manually pick colonies and transfer them onto MEF plates prepared in step 15. 

 

Protocol for picking iPSC colonies: 

 Place the culture dish containing the reprogrammed cells under an inverted 

microscope and examine and take the photos to the colonies under 4X 

magnification. 

 Mark and count (important to value the efficiency of reprogramming) the    

colony to be picked on the bottom of the culture dish. 

 Transfer the culture dish to a sterile cell culture hood (i.e., biosafety cabinet) 

equipped with a stereomicroscope. 

 Remove the colony slowly (paying attention to the contamination of FBs) 

 Using a 200 μL pipette, transfer the cut pieces to a freshly prepared 12-well 

MEF culture plate containing human  iPSC medium. 

 Incubate the MEF culture plate containing the picked colonies in a 37°C 

incubator with a humidified atmosphere of 5% CO2. 

 Allow the colonies to attach to the culture plate for 48 hours before 

replacing the medium with fresh human iPSC medium. After that, change the 

medium every day. 

 Treat the reprogrammed colonies like normal human ESC colonies and   

passage, expand, and maintain them using standard culture procedures . 

 

 
 

Once picked reprogrammed cell lines adapted to grow feeder free onto Matrigel 

coated dishes in Essential-8 medium (Life-technologies) appeared to be performed 

better in proliferation and maintenance of stability of iPSC colonies. Whenever such 

lines were splitted, we used Dispase or EDTA (if we want to single cells for the 

monolayer differentiation protocol). 
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CHARACTERIZATION OF THE iPSC 

 

iPSC colonies that are obtained after a reprogramming process must be validated 

through a process of characterization, which allows us to test them as pluripotent 

stem cells. It consists in two main steps, the first we evaluate: morphology, 

pluripotency with alkaline phosphatase and RT -PCR that allows us to quantify 

markers of pluripotency. In second step will require testing the competence of 

differentiation: teratomas in vivo and embryoid bodies.  

 

Immunohistological analysis and alkaline phosphatase 
activity 

 
Cells were fixed in 4% paraformaldehyde (PFA) for 20 min and permeabilized with 

0.2% Triton for 10 min. Blocking of unspecific sites was achieved by incubation with 

10% donkey or goat serum (Sigma-Aldrich, St. Louis, MO, USA) for 1 h at room 

temperature. Cells were stained with several primary antibodies, specific for either 

‘stemness’ or differentiation markers: human fibroblast surface protein (Clone 

1B10, mouse monoclonal, 1 : 100; Sigma-Aldrich), human Oct4 (mouse monoclonal, 

1 : 500; Millipore, Billerica, MA, USA), human TRA1–60 (mouse monoclonal, 1 : 100; 

Stem Cell Technologies), human SSEA-4 (mouse monoclonal, 1 : 100; Stem Cell 

Technologies), human a-sarcomeric actin (rabbit polyclonal, 1 : 400; Abcam, Boston, 

MA, USA) and cardiac troponin(mouse monoclonal, 1 : 200; Abcam, Boston, MA, 

USA)  . Alexa-Fluor-488- and -555-conjugated secondary antibodies were used for 

specific detection, whereas nuclei were stained with 40,6-diamidino-2-phenylindole 

(DAPI). Coverslips were mounted using Vectashield mounting medium (Vector 

Laboratories, Burlingame, CA, USA).  

For the FB I have used the human fibroblast surface protein (Clone 1B10, mouse 

monoclonal, Sigma, 1:100). Alexa-Fluor-488- conjugated secondary antibodies (1h 

at RT) were used for specific detection, whereas nuclei were stained with DAPI. 

Coverslips were mounted using 1 Vectashield mounting medium (Vector 

Laboratories, Burlingame, CA). Confocal microscopy was performed with a Leica 

TCS-SP2 digital scanning confocal microscope equipped with a HCX PL APO 
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40x/numerical aperture =1.2 oil immersion objective. The pinhole diameter was 

kept at Airy 1. Images were exported to Adobe Photoshop (Adobe Systems, 

Mountain View, CA) and created with Adobe illustrator (Adobe Systems, Mountain 

View, CA). 

Alkaline phosphatase activity of iPSC lines was determined using the Alkaline 

Phosphatase kit (Sigma-Aldrich). Lines were considered positive when alkaline 

phosphatase activity was detected in more than 95% of iPSC lines (two clones each 

condition were analyzed). 

 

Flow cytometry analysis 

iPSC were harvested and dissociated into single cells using Tryple Express 

(Invitrogen). Surface markers were assessed on fresh cell preparations: anti-SSEA4-

FITC, and anti-TRA1-60-PE were from BD Pharmingen. Analyzes were carried out on 

a FACS Canto flow cytometer (Beckton Dickinson). Data were analyzed with DIVA 

software. 

For the fibroblast I have used CD13 –APC, a fibroblasts specific surface antigen. 

Analyses were carried out as described above. 

 

RNA EXTRACTION 
Extract the total RNA from iPSCs using the TRIzol Reagent (Invitrogen) following the 

instructions provided with the reagent.  

 

cDNA SYNTHESIS 

Reverse Transcription was carried out using 2 μg of RNA in 20µL with “High-Capacity 

Reverse Transcription kit” from Applied Biosystems to obtain the corresponding 

cDNA for RT-PCR. 

Step Temperature Time Cycles (RT) 
Denaturation    25°C    10’ 
Annealing     37°C    120’ 
Elongation    85°C    5’ 

  

Real-time PCR 
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Real-time PCR using either the Taqman Gene Expression Assay or the SybrGreen 

PCR Master Mix (Applied Biosystems), and data were analyzed with REST (Relative 

Expression Software Tool) software (http://www.gene-

quantification.de/rest.html).42. 

Primers used for the specific amplification are listed in the table: 

 

Primers of Sendai Virus 

OCT-4 3’UTR F:ccactagccttgacctctgg 

R:caaacatccttcgcctcagt 
 

DNMT 3b F:gagcccgaagaggagagaa 

R:aaagcccctgttcatgctc 
 

REX-1 F:ccaggacaatggtgagtgc 

R:agctgtgcccatccactg 
 

HGPRT F:gaccagtcaacaggggacat 

R:ctgcattgttttgccagtgt 
 

 

Primers of structural genes of myocytes 

TROPONIN F:tccaactaccgcgcttatg 

R:tcgctccagctcttgctt 
 

MHC-β F:acaccctgactaaggccaaa 

R:tccagggatccttccagat 
 

SCN5A F:ggttctcgcctgcctttag 

R:aacttcacagcgctcaac 
 

CACNA1C F:ttgagctgaaatccatacg 

R:acaggcatctctggctcct 
 

KCNQ1 F:cgcctgaaccgagtagaaga 

R:tgaagcatgtcggtgatgag 
 

 

 

 

 

 

 

 

 

Primers of calcium-regulating genes 
CASQ2 F:ctgtgacattcaccacccca 

R:gttgcccgggacaatactga 
  

RyR2   F:gctattctgcacacggtcatt 

http://www.gene-quantification.de/rest.html).42
http://www.gene-quantification.de/rest.html).42
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  R:atttccgtgccacttccttt 
 

Trd   F:aacaagcttccagacccact 

  R:tttcagaagcttttcccggc 
 

JnC   F:accccactgggtccttctaa 

  R:gggcgtctggacatctgtag 
 

 

Primers of three germinal lineage 

 MESODERM 

DESMIN F:gtgaagatggccctggatgt 

R:tggtttctcggaagttgagg 
 

SCL F:ccaacaatcgagtgaagagga 

R:ccggctgttggtgaagatac 
 

GATA-4 F:ttccagcaactccagcaa 

R:tcgcactgactgagaacgtc 
 

 ECTODERM 

NACAM F:cagatgggagaggatggaaa 

R:cagacgggagcctgatctct 
 

 
 

KRT-14 F:cacctctcctcctcccagtt 

R:atgaccttggtgcggattt 
 

 
 

Β-III TUBULIN Sonda- FAM 

 ENDODERM 

SOX-17 F:ggcgcagcagaatccaga 

R:ccacgacttgcccagcat 
 

GATA-6 Sonda -FAM 

 

 

 

Genetic analysis of CPVT-iPSC lines 

Genetic analysis of the exon 3 of the CASQ2 gene has been performed by direct 

sequencing on PCR products amplified by PCR from genomic DNA of control and 

CPVT-iPSC lines (three clones each).  Analysis has been limited to the exon 3, since 

the mutations is located in this portion of the gene. 

Genomic DNA was isolated using the following protocol: 

Lysis buffer: ( 100 ml Recipe ) 

10 mM Tris-HCl pH7.5 - 0.5 ml of 2M 

10 mM EDTA - 2 ml of 0.5M 
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10 mM NaCl - 0.2 ml of 5M 

0.5% (w/v) Sarkosyl - 0.5gm (N-Lauroylsarcosine, Sigma # L-9150) 

1mg/ml Proteinase K - add fresh each time (stored in freezer). 

1. Add 250µl Lysis Buffer (with proteinase K added) to each well.  

2. Incubate the plate in a sealed humid container at 60°C for 1 hour.  

3. Transfer the contents of each well into a separate 1.5ml eppendorf tube . 

4. Continue lysing the cells for 2 more hours. (60° C).  

5. Add an equal volume (250 µl) of phenol:chloroform (phenol: chloroform: 

isoamylalcohol, 25:24:1). 

6. Mix the contents of the tube until an emulsion forms. Shake by hand for ~1 min, (or 

vortex ~2sec),because vortexing shears genomic DNA.  

7. Centrifuge 5-10 min 10.000g at in a microfuge at room temperature.  

8. Transfer the aqueous phase (the top phase) to a fresh tube.  

9. Repeat steps 5-8 until no protein is visible at the interface of the aqueous and 

organic phases.  

10. Add an equal volume (250 µl) of chloroform and repeat steps 6-8.  

11. Add 1/30th volume of 5M NaCl, for a final concentration of 0.2M NaCl. Mix well.  

12. Add exactly 2 volumes of ice-cold ethanol and again mix the solution well.  

13. Store the ethanolic solution on ice for 30 min to precipitate the DNA.  

14. Centrifuge at 13.000xg for 10 min, 4°C.  

15. Suck off the supernatant using the following protocol disturb the pellet. Vacuum 

droplets from walls of tube as well.  

16. Half fill the tube with 70% EtOH and re-spin for 2 minutes at 4°ree;C.  

17. Suck off supernatant as in step 15.  

18. Store the open tube on the bench at room temperature until the last traces of fluid 

have evaporated.  

19. Dissolve the DNA in 30µl-50 µl of water, depending on the size of the DNA pellet Let 

dissolve for at least an hour at 37°C 

20. Control DNA quality on a 1% agarose gel . 

After isolation, CASQ2 exon 3 has been amplified and the PCR product purified from 

the agarose gel using the “QlAquick®Gel Extraction kit (50)” from 

QIAGEN,Cat.NO.28704. 
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Sequencing has been performed both directions (forward and reverse primers) by 

Eurofins MWG Operon. 

 

Spontaneous differentiation of iPSC and cardiac induction 

EMBRYOID BODIES (EBs) PROTOCOL 

Control and CPVT iPSCs were induced to differentiate by aggregation into EBs: iPSC 

colonies were detached using 1 mg/ml Dispase (Roche, Basel, Switzerland) and 

plated onto ultra-low-attachment plates (Corning, Incorporated, Corning, NY, USA) 

in EB differentiation medium, that is, DMEMF12 medium supplemented with 20% 

FBS, 0.1mM non-essential amino acids, glutamine and antibiotics. After 7 days, EBs 

were plated onto gelatin-coated dishes for further differentiation. 

For cardiac lineage induction, ascorbic acid (50 mg/ml) was added to the medium. 

Spontaneously contracting areas, which appeared 12–30 days after EB plating, were 

manually microdissected and plated onto fibronectin-coated plates for further 

differentiation for an additional 45–90 days. Explants were maintained in EB 

differentiation medium supplemented with FBS at only 2% (Figure 6A).  

 

 

(Fig.6: Schematic representation of the EBs protocol) 

 

Alternatively, differentiation toward the cardiac lineage was more efficiently 

induced by a chemically-defined serum-free protocol, that has been recently 

published by Xiaojun Lian et al.,2012 and referred here as monolayer methods. 

 

 

CARDIAC DIFFERENTIATION PF MONOLAYER METHOD: 

This protocol efficiently directs iPSC to functional cardiomyocytes in a completely 

defined, growth factor (Activin A and BMP4) and serum free system by temporal 

modulation of regulators of canonical Wnt signaling. Appropriate temporal 
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application of a glycogen synthase kinase 3 (GSK3) inhibitor combined with the 

expression of β-catenin or a chemical Wnt inhibitor is sufficient to produce a high 

yield functional cardiomyocytes in 14 days from multiple iPSC lines without cell 

sorting or selection.  

Protocol details and reagents are listed below: 

 
Differentiation 

Medium 
Final 

Concentration 
250 mL Catalog Number 

RPMI 1640 
- 

212.5 mL 
Life Technologies 
11875-119 

GlutaMAX 1X 2.5 mL Life Technologies 

B-27 Supplement 
without insulin 
 

or 

50X 5 mL 

Life Technologies 
005012SA  
Life Technologies 
17504044 

B-27 Supplement 
with insulin 

50X 5 mL 

Life Technologies 
005012SA  
Life Technologies 
17504044 

 

Reagents Final Concentration Catalog Number 

**Y-27632 Rock 
inhibitor (5mM) 

10 μM Sigma Y0503-1MG 

**CHIR-99021 
(36mM) 

8-12 μM Selleck S1263-5MG 

**IWR-1 (5mM) 5 μM Sigma 10161-5MG 

Growth Factor-
Reduced (GFR) 
matrigel (10mL) 

1:30 BD Biosciences 354230 

Essential 8 
Medium 

- - 

Accutase - 
Life Technologies 

A1110501 
 

 

Aliquots for Stock Solution: 

 Y-27632 Rock inhibitor (5mM) 

1 mg in 624.5μL of water; store 50 μL aliquots in -20°C 

 CHIR-99021 (36mM) 
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5mg in 1 mL DMSO; store 20 μL aliquots in -80°C 

 IWR-1 (5mM) 

5mg in 2.44 mL of DMSO; store 50μL aliquots in -20°C 

 Growth Factor-Reduced (GFR) matrigel (10mL) 

Store 500μL aliquots in -20°C 

Preparation of GFR matrigel-coated 12-well plates. 

PROTOCOL: 

Day -4  

1. Aspirate the old medium 

2. Wash twice with 1mL PBS 1X per plate 

3. Add 1 mL of pre-warmed accutase per plate. Incubate for 2-5 minutes at 37°C 

4. Add 1 mL of E8 medium per well and pool all cells in a 15mL conical tube 

5. Spin at 1000rpm for 4 minutes at room temperature 

6. Aspirate the supernatant and resuspend the cells in E8 medium containing 10 μM of 

rock inhibitor 

7. Count cells. Seed 100,000 cells per well of matrigel-coated 12-well plate. Bring the 

final volume to 1 mL per well with E8 medium containing rock inhibitor  

8. Disperse the cells evenly by moving the plate in quick, short, back-and-forth and 

side-to-side movements and place in 37°C incubator. 

Day -3 

9. Aspirate the old medium 

10. Add 1 mL of room-temperature E8 medium 

Day -2 

11. Aspirate old medium 

12. Add 2 mL of room-temperature E8 medium 

Day -1 

13. Aspirate old medium 

14. Add 2 mL of room-temperature E8 medium 

Day 0  

15. Aspirate old medium 



37 
 

16. Add 2 mL of room temperature RPMI/B-27 without insulin containing a final 

concentration of 10μM CHIR-99021. Record the time. 

Note: 8-12μM CHIR-99021 can be used to optimize for the sensitivity of each cell 

line. In our experiments we used a concentration of 10 μM 

Day 1  

17. After 24 hours, aspirate the medium gently with p1000 tip 

Note: a lot of cell death will be observed 

18. Very gently add 2 mL of room temperature RPMI/B-27 without insulin 

Day 3 

19. Prepare 1.5 mL per well of fresh RPMI/B-27 without insulin containing IWR-1 at a 

final concentration of 5 μM. Collect and add 1.5 mL of medium from each well into 

the 15 mL conical containing RPMI/B-27 without insulin and IWR-1.  

20. Gently rock the plate back and forth to collect the debris in suspension. Aspirate the 

remaining media gently with p1000 tip. 

21. Add 3 mL of the combined medium containing IWR-1 to each well 

Day 5 

22. Aspirate old medium gently with p1000 tip 

23. Add 2 mL of room temperature RPMI/B27 without insulin 

Day 7 

24. Aspirate old medium gently with p1000 tip 

25. Add 2 mL of room temperature RPMI/B27 without insulin 

Day 8 

26. Aspirate old medium gently with p1000 tip 

27. Add 2 mL of room temperature RPMI/B-27 with insulin 

Continue to change the media every 2-3 days with RPMI/B-27 with insulin. 

 

 

Teratoma assay 

 iPSC lines were harvested by dispase treatment, resuspended in X-VIVO medium 

(Lonza) and matrigel(1:1); the cell preparation was then injected subcutaneously 

into immunodeficient mice (NOD-SCID,NSG or Rag-/- can be used). Teratomas 
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formed 6-9 weeks after injection; after their formation these were collected and 

processed according to standard procedures for paraffin embedding and 

hematoxylin–eosin staining. 

Karyotype 

Chromosomal G-banding analysis was performed by Humanitas Research Hospital 

Cytogenetics Laboratory, using standard procedures. 

Western Blot analysis for CASQ2 

Normal and mutant CASQ2 protein levels were determined by immunoblot analysis 

as described previously.14 Briefly, 10 g of cell lysate proteins was subjected to 12% 

SDS-PAGE, blotted onto PVDF membranes (Santa Cruz Biotechnology, Inc), and 

probed with antibodies specific for CASQ2 (1:2500, PA1-913, Affinity Bioreagents). 

Blots were developed with Super Signal West Pico (PIERCE) and quantified using a 

Visage 2000 Blot Scanning and Analysis system (BioImage Systems Corporation). 

 

Construction of Recombinant Adenoviruses 

The wild type CASQ-2 gene was cloned in the CIS pAAV2.1-eGFP3 adeno-associated 

vector through standard cloning procedures using DH5α cells. After the cloning, 

correct insertion of the CASQ2 gene and accuracy of its amplification have been 

checked by direct sequencing. Large-scale production of viral particles will be 

carried out by the Vector Core Unit (TIGEM, Naples). 

In detail, isolated exdotoxin-free plasmid DNA endotoxins-free is transfected 

together with pAd helper plasmid, pAAV rep-cap in 293T cells and cell media 

collected for viral particle purification. The virus is isolated through two cycles of 

purification with ultracentrifugation in CsCl2 gradients and dialyzed in sterile PBS in 

single aliquot of about 400-500µL.41 The virus is stored at -80°C. The order of 

magnitude of the title of the virus is 1.4 E+13 GC/mL.41 
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RESULTS 
 

Clinical history and genetic analysis 

The proposed study is focused on a family with recessive form of CPVT that came to the 

attention of our collaborators, the Unit of Cardiology of the Salvatore Maugeri Foundation 

in Pavia. The pedigree of the family is shown in the Figure 7A: the proband is  a male child 

homozygous for the 16bp deletion at position 339-354  in the exon 3 CASQ2 gene, leading 

to a frame shift and stop codon after  5aa(CASQ2G112+5X) while the asymptomatic parents 

are both  heterozygous for the same mutation33. This deletion (G112+5X) lacks the second, 

the third and part of the first domain and is devoid of most of the acidic residues at COOH-

terminal tail, responsible for the ion binding and for the dimerization (the amino acids 

involved in either front-to-front or back-to-back interactions) of the protein. The 

consequences of this mutation compromises its ability to bind Ca2+ and its dimerization 

capability should be compromised.34,35 

The proband, now 17 years old suffers of syncope since the age of 3 ½ years, when he was 

diagnosed of CPVT. He is currently in therapy with β-blockers. 

 

 
 

Fig.7: A. The pedigree of the Casq2 mutation CPVT family studied in this work: Proband CASQ2
-/-

 (III-
2) is indicated by the arrow. Filled symbols indicate clinically and genetically affected subjects. 
Shaded symbols indicate heterozygous individuals. White symbols is the individuals without CASQ2 
mutations; grey symbols is the individuals with del.G112+5X. Typing for the 5 markers used for 
haplotype analysis is shown below symbols. 
B.The structure about Calsequestrin-2 with macromolecular complex. 
 

 

 

Generation of patient-specific CPVT-iPSC  
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The purpose of our study was to create a patient-specific iPSC -based system that 

could be used as an in vitro model to facilitate the validation of gene therapy 

approaches for the treatment of CPVT and to study the molecular, biochemical and 

functional features due to mutation of CASQ2 gene in human cardiac cells. To this 

end, we generated iPSC and iPSC-derived CMs from both the proband and his 

father, carrying either the homozygous or heterozygous G112+5X mutation in 

CASQ2 gene respectively  

CPVT-iPSC were generated from primary fibroblasts (FB) isolated from a skin 

biopsies of the  two patients (3-4mm) after informed consent using Sendai virus-

based reprogramming method as schematically represented in the (Figure 8). 

 

Fig.8: Reprogramming and differentiation strategy 
We start from the patient-FBs and after the reprogramming with Sendai vectors expressing the 4 
Yamanaka’s factors we obtained patient-specific CPVT-CMs). 

  

Prior to reprogramming induction, purity of the isolated primary FB has been 

validated by analysis of expression of markers typical of these cells using FACS and 
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immunofluorescence techniques. The results, represented in the Figure 9, show 

that the totality of the isolated fibroblasts are positive for the specific CD13 markers 

and correctly express and localize the IB10 fibroblast-specific surface antigen by the 

plasma membrane of the isolated cells 

 

 
 

Fig.9: Characterization of isolated fibroblasts: 
Upper right panel: FACS analysis showing expression of CD13 marker in the patient fibroblasts. Cell 
with no antibody staining have been used as negative control. Putting together the results obtained 
by FACS for the whole family we observe an expression equal to 100% (left table) of CD-13 antigen. 
At the bottom left we see an immunofluorescence on patient-FB using another surface antigen: 1-
B10 (green). 

 
As a second step, reprogramming has been induced using the CytoTuneTM-iPS 

Reprogramming Kit. We initially generated iPSC lines from the proband. Colonies 

appeared 13 days after the plating of FB on MEF feeder with an efficiency of 

reprogramming of the 0.2%, calculated as the ration between the number of cells 

positive for the alkaline phosphatase activity and the number of the infected cells 

plated onto MEF (5x104 cells) (Figure 10). 
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Fig.10: Reprogrammed-FB, colonies of iPSC on MEF and Alkaline Phosphatase on reprogrammed-FB: 
Through AP kit we show the violet colonies that are positive to the pluripotency 

 

We then picked 24 colonies based on their morphology for their amplification and 

further characterization.   

Morphological changes of FB during reprogramming following transduction with by 

Sendai Vectors are shown in the  

 

CPVT-iPSC characterization 

Of the 24 isolated colonies, 3 were selected for the molecular characterization. It is 

indeed necessary to verify the actual pluripotency of the obtained induced cells, 

since the process may be incomplete and give rise to intermediate of 

reprogramming with impaired ability to proliferate or to correctly differentiate or 

degenerating during passages. 

Characterization of the iPSC lines entails two main steps, one aimed at verifying the 

expression of markers of pluripotency and the other to evaluate the developmental 

competence of the generated cells (Figure 11).  
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Fig.11: Workflow for iPSC- generation, characterization, and derivation of beating cardiomyocytes. 

 

In the first step, alkaline phosphatase activity detection and expression of markers 

typical of the pluripotent state are used. The second part of the characterization 

process entails the assessment of developmental competence of the generated 

lines, defined as the ability to give rise to derivatives of all the three germ layer, 

both in vitro by EBs aggregation and in vivo by teratoma assays. 

Cardiac differentiation is then induced in three characterized lines for each patient. 

Alkaline Phosphatase activity and expression of marker of pluripotency by Real-

Time PCR and FACS analysis have been initially employed for a major screening of 

the lines. Pluripotency markers expression has been then confirmed by 

immunofluorescence analysis on 3 selected lines. 
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Analyzed markers include: OCT4 (Octamer-binding transcription factors 4 involved 

in the self-renewal of undifferentiated embryonic stem cells), REX1 (RNA 

exonuclease 1 homolog, indicator of pluripotency, coexpressed with Oct4 in the 

inner cell mass of the blastocyst ), DNMT3b (DNA cytosine-5 methyltransferase 3b,is 

essential for successful nuclear reprogramming of the somatic cells Figure 11) and 

the surface markers SSEA4 (B)(stage-specific embryonic antigen-4,sometimes also 

presents at the perinuclear) and (C) TRA1-60 (tumor rejection antigen1-60) whose 

expression lay to disappear during differentiation (Figure 12).  
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*p<0,05 

*p<0,05 

*p<0,05 

Fig.12: RT-PCR for 3 marker of pluripotency: Oct4,Rex1,Dnmt3b: 
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In each RT-PCR HGPRT (gene housekeeping) was used for linearization and fibroblasts (somatic cells) 
as calibrator. The positive control is Rues (embryonic  stem cells). 
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Fig.12: FACS analysis of iPSC lines: 
A.B.C.: Images of plots from FACS-analysis from one representative line, showing expression of 
“stemness”-associated antigens (TRA1-60 (80%) and SSEA4(96%) 
 D:Histogram summarizing the analysis of the generated CPVT lines, indicating the percentage of 

cells expressing either SSEA4 or TRA1-60. 
 
Results from these experiments show up-regulation of the expression of markers 

associated to the pluripotent cells in all the selected lines compared to the parental 

fibroblasts. 

Based on these results, three lines (CPVT-iPSC #1, #13 and #20) were chosen with 

expression levels similar to those of embryonic stem cells control (RUES2 cell line) 

and further characterized.  

Characterization of the iPSC lines derived from the father of the proband is still in 

process.  

As first step, we validated selected iPSC lines possess alkaline phosphatase activity 

and their morphology (Figure 13) and confirmed the expression of Oct4, SSEA4 and 

TRA1-60 markers by immunofluoresce (Figure 14). Our results showed the totality 

of the cells were positively stained for alkaline phosphatase and correctly 

pluripotency markers by immunofluorescence.   
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Fig.13: Morfology and AP test: 
iPSC colonies  derived from the  patient’s fibroblasts showing alkaline phosphatase activity and 
positivity for the pluripotency, it’s important that the positive colonies are >90%  
 

 
 

Fig.14: IF for the Chracterization of  iPSC generated  from a CPVT patient skin biopsy: 
Immunofluerescence utilized three pluripotency markers:Oct-4 (inside the nucleus) and TRA1-60 and 
SSEA-4 (surface antigen membrane. 
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We then verified that iPSC lines carry the genetic mutation of the patient by direct 

sequencing. Results are shown in the figure 15 and confirm iPSC lines possess the 

same genetic mutation of the patient. 

Analysis of the karyotype also confirmed that CPVT-iPSC lines possess a normal 

46,XY karyotype indicating that no chromosomal abnormalities occur during the 

reprogramming process. 

 

A 

 
 

 B 

 
 
Fig.15: A. Sequencing of proband-lines-DNA to confirm the presence of the deletion from 339pb to 
354pb in exon 3 of the CASQ2. 
B. Karyotype of the proband iPSC lines. 

 

As second step of the characterization process differentiation potential of the iPSC 

lines have been validated by EBs aggregation and teratoma formation assay, that 
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represent the most stringent test of pluripotency for human cells. Results from 

these experiments showed CPVT-iPSC lines are able to differentiate into cells of 

ectodermal, mesodermal and endodermal origin in both experimental settings 

(Figures 16 and 17). Semi-quantitative real-time PCR (Figure 17) revealed that 

differentiating EBs contain cells expressing markers of the ectodermal (NCAM1, 

KRT14, βIII-tubulin), mesodermal (SCL, desmin, GATA-4 and cardiac genes) and 

endodermal (GATA6 and Sox17) lineages. Accordingly, analysis of teratomas formed 

after injection of iPSC into immune-compromised mice shows presence of tissue 

from the three germ layers (i.e. neural and adipose tissues and intestinal 

epithelium). 

 

 

Fig.16: RT-PCR from Embryoid Bodies, indicating the presence of cells that derive fromall the three 
germ layers 
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Fig.17: Teratoma assay: 
CPVT-iPSC were injected (about 500.000 cells) into immuno-compromised mice and showed the 
ability to form teratomas containing derivatives of all the three germ layers. 

 

Cardiac differentiation induction and analysis of iPSC-derived 

CPVT-CMs 

 As a next step, we induced iPSC to differentiate toward the cardiac lineage.  

When iPSC are removed from differentiation suppression conditions and grown in 

suspension aggregates (EBs) in presence of serum, differentiation into cells from the 

three germ layers occurs, including spontaneously beating CMs. The inductive 

process is enhanced in the presence of specific medium and ascorbic acid.  

Tipically the first sign of successful differentiation to CMs is the appearance of areas 

of contraction. 

However, using this methods we obtained very low efficiency in cardiac 

differentiation; furthermore, the EBs-based protocol is quite long and contracting 

cells do not appear before 20 days of differentiation. It is also well known that CMs 

obtained from such protocol possess a very immature phenotype, so that 

maintenance in culture for additional 60-90 days is required to further differentiate 

them.  
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Based on these premises, we decided to employ a protocol that has been recently 

published40 and that allows to obtain an almost pure population of CMs  (greater 

than 80%) in 15 days. 

The protocol is based on subsequent activation and inhibition of the Wnt pathway 

that is a key player in driving heart development. A schematic representation of the 

protocol, that we called “monolayer method” is given in the Figure 18 .  

Major advantages of this approach are the use of defined concentrations of 

chemicals and the absence of serum. The protocol will enable efficient production 

of human cardiomyocytes for development and disease research, drug screening 

and testing and advancing cardiac cellular therapies. 

As a first step, we set up such protocol in the laboratory using control iPSC lines that 

were already available in the laboratory39,15. 

 

 

Fig.18: Monolayer Protocol validatio 
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Differentiation cells have been analyzed by FACS at d1, d3 and d13 after induction 

and result showed we were able to respectively obtain mesodermal precursors 

(93,5% of Brachiury that is transcription factor important in the mesodermic 

lineage), cardiac progenitors (65% of GATA, it’s transcription factor evolves in 

embryonic development and in the cardiac differentiation) and differentiated CMs 

(95% of Troponin that is integral to muscle contraction in skeletal and cardiac 

muscle). 

Immunofluorescence staining for two structural markers a-sarcomeric actin and 

cardiac troponin also showed that induced cells possess an organized sarcomeric 

organization. 

Finally, in order to establish the maturity of the obtained cells, we checked the 

expression of both structural markers and ion channel, fundamental for contraction 

and action potential propagation.  

We found that CMs differentiated from iPSC possess expression levels of these 

genes (MHC-β, Troponin, SCN5A, CACNA1C and KCNQ1) comparable with both fetal 

and adult CMs. (Figure 19). 

 

*p<0,05 

Fig.19: RT-PCR about the structural genes of CMs 
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Given the importance of calcium handling in the CPVT, we also specifically 

investigate the correct expression of genes that are important in this process (i.e. 

CASQ2, RyR2, JnC and TrD) at this differentiation stage. Results are shown in the 

Figure 21 and indicate that calcium-regulating genes have a lower expression level 

compared to fetal CMs.  

 

Fig.21: RT-PCR for calcium-regulating genes 

 

These results suggest that, despite the structural maturity of the cell, the obtained 

CMs still have a immature calcium machinery. It is therefore important to further 

differentiate the cells before the electrophysiological and molecular investigation of 

the CPVT phenotype. 

Next steps of the study will indeed entail the definition of the molecular profile of 

CPVT-CMs and their electrophysiological properties by path clamp analysis. 

On this regard, we performed preliminary investigation on the expression the 

CASQ2, JnC and TrD on CPVT-CMs by Real Time-PCR and found that, compared to 

control lines, mutated CMs show a marked down regulation of CASQ2 and JnC, 

whereas RyR2 and TrD do not show any significant modulation. However, even if 

not significant, TrD showed a trend of up-regulation. (Figure 22).  
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Fig.22: RT-PCR showing the calcium handling genes in CPVT-CMs 

 

Our results and previous evidence showed impairment of CASQ expression in CPVT-

CMs. In order to normalize the expression levels of intracellular CASQ2, we plan to 

use of Adeno-associated virus (AAVs) carrying the CASQ2 and to test weather this 

can also correct the pathogenic phenotype typical of the disease. 

In collaboration with the Laboratory of Molecular Cardiology of the Salvatore 

Maugeri Foundation in Pavia, we cloned the cDNA of the wild-type CASQ2 into the 

pAAV2.1-eGFP vector, an AAV deleted of its protein :rep and cap (Figure 23). 
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(Fig.23: Schematic representation of the cloning of the gene of the human CASQ 2 in the viral vector 
Cis pAAV-2.1-eGFP. Component of the plasmid: 5' ITR: sequences of regulation to 5' of the virus AAV 
(inverted terminal repeat"). CMV-Promoter: promoter of Citomegalovirus. SV40 : Sequence intronic 
of viral origin of necessary SV40 for the regulation of the genic expression. CASQ2-WT: sequence 
coding the gene of the mouse CASQ 2. PTV1-2A: sequence biscistronic of viral origin. RFP: sequence 
coding of the gene of the Red Fluorescent Protein. WPRE: regulation sequence post-transcriptional 
of the genic expression of viral origin (WHP). BGHpA: sequence of poli-A of bovine origin. 3'ITR: 
sequences of regulation to 3' of the virus AAV (inverted terminal repeat"). 

 

Cloned vector has been checked by sequencing (not shown) and by transfection in 

HEK293T cells, to verify the correct expression of the CASQ2 protein.  

Results show that cells transfected with the generated vector correctly express 

CASQ2 protein by immunofluorescence and western blot analyses (Figure 24). 

 

Fig.24: HEK293 trasfected: 
we can observer to the HEK cells trasfected with pAAV-hCASQ2-T2A-RFP,viewed in phase contrast 
(PhC) and in channel of Roidamina due to the protein RFP (Red Fluorescent protein) in red, and the 
HEK don’t transfected. 
To confirm everything has been done the Western Blot  with respect to Ab:anti-T2A,anti-CASQ2 and 
anti-Actinin ( as a normalizer ) to see that the cloning is done correctly and you can see the 
expression of the reports protein in tail to the gene of interest (previously checked by sequencing) 
and the gene hCASQ2 is expressed regularly as well as the tag in C-terminal position) 
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CONCLUSION and DISCUSSION 

Recessive form of CPVT is a inherited arrhytmogenic disease associated with 

absence or drastic reduction of the gene encoding cardiac calsequestrin-2 (CASQ2), 

a protein critical for the regulation of cytoplasmic calcium homeostasis in cardiac 

myocytes. The distinguishing clinical and molecular features of recessive CPVT 

include: (1) severe reduction of two proteins TrD and JnC that, together with 

CASQ2, regulate RyR2-mediated release of calcium from the SR;  (2) development of 

adrenergically mediated diastolic delayed after-depolarizations and triggered 

activity;(3) development of sustained polymorphic or bidirectional ventricular 

tachycardia elicited by stress or emotion and (4) lack of amino acids essential for 

dimerization and activity of biding to calcium by the CASQ2. 

The objective of the present study was to create a model of CPVT to investigate the 

functional consequences of the deletion of 16pb in exon 3 in CASQ2 and to 

experiment corrective therapies. 

To this aim, we decided to employ iPSC, a novel technology that allow the 

generation of a patient-specific cell-based system that could be used as an in vitro 

model to facilitate the screening of new therapeutic molecules for the treatment of 

CPVT.  

Here we described the generation and characterization of this iPSC-based model 

from a patient carrying a mutation in the gene encoding CASQ2 and with 

phenotypic manifestations of the disease.17  

Among the several available reprogramming methods, we decided to reprogram the 

patient's skin fibroblasts using viral vectors based on modified sendai virus, for their 

efficiency and their safety of use.  

These are important issues, since our final goal is to employ such model for gene 

therapy approaches. 

In the study I specifically carry out the generation and characterization of the 

patient’s iPSC lines and their differentiation toward the cardiac lineage.  

Results showed here demonstrated we were able to derive iPSC lines from the 

selected CPVT patient (and his asymptomatic father – not shown) with high 
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efficiency (0.2%). Furthermore, analysis for pluripotency and developmental 

competence with different techniques confirmed the pluripotent nature of the 

generated lines.  

Data on cardiac differentiation show that CMs generated from control lines 

exhibited, in a first instance, a quite immature phenotype for the expression of the 

calcium handling machinery, despite the correct expression and morphology of the 

structural proteins. 

Previous report indicated that differentiation of stem cells into cardiomyocytes 

leads to the generation of immature cardiac cells that resemble fetal myocytes. It is 

therefore necessary to consider such issue for the future experiments and to 

further differentiate these cells.  

Preliminary results obtained on differentiated CMs after 20d of induction have 

confirmed CPVT cells down regulate CASQ2, together with JnC, while TrD and RyR2 

do not show any significant modulation. However, even if not significant, TrD 

showed a trend of up-regulation. We were surprised by these findings that will be 

further investigated in more mature cells and with different techniques (i.e. 

Western blot). It is therefore possible that protein levels do not respect the level of 

transcription and other mechanisms may be involved. Also maturity of the cells may 

affect transcription of some genes. 

As a general note, to progress toward the clinical use of iPSC-derived myocytes in 

predicting susceptibility to arrhythmias and response to therapy, the development 

of improved differentiation protocols able to give rise to produce iPS-derived 

myocytes with the electrophysiological properties of adult cardiomyocytes and with 

a fully functional calcium-handling apparatus is of paramount importance. 

Here we compared two methods, one based on aggregation into EBs that was very 

poor efficient in my hands, and the other, relying on chemically-defined medium 

and cells grown as monolayer, that gave better results in term of efficiency. We are 

now working to improve maturity of the cells: longer time in culture is surely a 

possibility to accomplish this goal and to obtain more CMs at the molecular and 

functional level. 

Definition of the electrophysiological properties of these cells is in progress and will 

be performed by the collaborators of this project in Pavia. 
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We expect CPVT-CMs will exhibit delayed afterdepolarizations (DADs), a prominent 

feature of CPVT phenotype, after treatment with isoproterenol, a beta-adrenergic 

agonist.  

If this will be confirmed, our intent will be to explore whether viral gene transfer 

using AAV9 engineered to carry the cDNA-CASQ2-wt it is able to revert such 

phenotype, as described in a mouse model of the disease,. 

On this regard, we already have generated an AVV9 vector expressing the wild-type 

form of CASQ2 that will be used for overexpression of this protein in the patient-

derived CPVT-CMs. 

Ultimate goal of the study is to validate AVV9 as new therapeutic approach for the 

disease. 

Drug therapies have been demonstrated ineffective in some patients; for this 

reason, we though GENE THERAPY approach may be an alternative strategy. In this 

case, since the disease phenotype is dependent by the lack of CASQ2. As already 

discusses, previous results obtained in the mouse are promising and showed an 

improvement in the levels of expression of CASQ2 (80%) and the respective proteins 

to it associated (TRD and JNC) after AVV-CASQ2 transduction. 

Obtainment of positive results of human CMs will be the first step toward the 

clinical applicability of this therapeutic strategy.  

On this regard it is worth noting that AVVs have been already approved for Clinical 

trials to treat the LCA disease, a genetic form of retinopathy, showing a beneficial 

effect of the view of the patients with no adverse effects. This indicates the 

feasibility of using AVV in therapy. 

However, there are some limitations on the application of AVV to treat human 

diseases and that should be taken into account. In treating cardiovascular disease, 

for example, targeting requires the AVV particles to pass physical barriers and to 

reach the heart; also, within the organ, transduction should preferentially target a 

specific cell type. Determination of the most appropriate way of administration and 

the generation of AVV targeted to infect or to express the target gene in the cell 

type of interest can potentially overcome these limitation.  



60 
 

On this regard, there is an active phase II clinical trial (CUPIS) using intracoronary 

perfusion to drive expression of AAV-SERCA into the heart in the treatment of heart 

failure patients. 

To conclude, in this study we created the basis for the development of a cardiac 

platform to investigate molecular and functional dysfunctions of CPVT and for the 

testing of innovative therapeutic strategies. The generation of such experimental 

models, together with the improvement of the specificity of the targeting vectors 

and the methods for inducing reprogramming and differentiation, constitutes the 

prerequisite for the application of iPSC technology in the clinical practice. 
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