
Università degli Studi di Pisa

DIPARTIMENTO DI INFORMATICA

Corso di Laurea Magistrale in Informatica

Tesi di laurea magistrale

Security Issues in Adaptive Programming

Candidato:

Francesco Salvatori
Matricola 452095

Relatori:

Prof.ssa Chiara Bodei
Prof. Pierpaolo Degano
Dott. Letterio Galletta

Anno Accademico 2012–2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/20258622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Adaptive systems improve their efficiency by modifying their behaviour to re-
spond to changes of their operational environment. Also security must adapt to
these changes and enforcing policies becomes dependent on the dynamic con-
texts. We address some issues of context-aware security from a language-based
perspective. More precisely we extend a core adaptive functional language, re-
cently introduced, with primitives to enforce security policies on the code execu-
tion. We then accordingly extend the existing static analysis in order to insert
checks in a program so to guarantee that no violation occurs of the required
security policies.

i

ii

Contents

1 Introduction 1

1.1 Context and Adaptivity . 1

1.2 Security and Contexts . 1

1.3 Our proposal . 2

2 Preliminary work 5

2.1 Adaptive Software . 5

2.1.1 Context-Oriented Programming 5

2.1.2 Open issues in context-oriented languages 6

2.2 Static analysis techniques . 7

2.2.1 Type Systems . 7

2.2.2 Type and Effect Systems 8

2.2.3 Flow Logic . 8

2.2.4 Language-based Security 9

3 Running example 11

4 MLCoDa 17

4.1 Syntax . 17

4.2 Semantics . 18

5 Type and Effect System 23

5.1 History expressions and labelling environments 23

5.2 Typing rules . 26

5.3 Soundness . 32

6 Loading-time Analysis 35

6.1 Analysis . 35

6.2 From valid estimates to evolution graphs 38

7 Code instrumentation 43

7.1 A further static analysis step . 43

7.2 Handling the runtime monitor . 45

iii

8 A recovery strategy 49
8.1 The need for a new mechanism 49
8.2 The extended static analysis . 51

8.2.1 The rules for the new analysis 52
8.2.2 An ordering on the edges 53

8.3 Implementation issues . 55

9 Conclusions 59

A Proofs 69
A.1 Theorems of Chapter 5 . 69
A.2 Theorems of Chapter 8 . 71

iv

Chapter 1

Introduction

1.1 Context and Adaptivity

Today’s software systems are expected to operate every time and everywhere:
they have therefore to cope with changing environments, without compromising
the correct behaviour of applications and without breaking the guarantees on
their non-functional requirements, e.g., security or quality of service. As a
consequence, software needs effective mechanisms to sense the changes of the
operational environment, namely the context, in which the application is plugged
in, and to properly adapt to changes. At the same time, these mechanisms must
maintain the functional and non-functional properties of applications after the
adaptation steps.

The context is a key notion for adaptive software. It is usually a complex
entity, independent from the single applications, that includes different kinds
of information coming both from outside (e.g., sensor values, available devices,
code libraries etc. offered by the environment), and from inside the application
boundaries (e.g., its private resources, user profiles, etc.).

Context Oriented Programming (COP), introduced in [13], is a recent para-
digm that explicitly deals with contexts and provides programming adaptation
mechanisms to support dynamic changes of behaviour, in reaction to changes in
the context. Also subsequent work [23, 2, 27, 3] follow this approach to address
the design and the implementation of concrete programming languages. The
notion of context-dependent behavioural variation is central to this paradigm:
it is a chunk of behaviour that can be activated depending on the current context
hosting the application, so to dynamically modify the execution.

1.2 Security and Contexts

Security is one of the challenges arising in context-aware systems. The combi-
nation of security and context-awareness requires to address two distinct and
interrelated aspects. On the one side, security requirements may reduce the

1

adaptivity of software, by adding further constraints on its possible actions. On
the other side, new highly dynamic security mechanisms are needed to scale up
to adaptive software. Such a duality has already been put forward in the liter-
ature [47, 10], that presents two ways of addressing it: securing context-aware
systems and context-aware security.

Securing context-aware systems aims at rephrasing the standard notions of
confidentiality, integrity and availability [40] and at developing techniques for
guaranteeing them [47]. The challenge is to understand how to get secure and
trusted context information. Contexts may contain indeed sensible data of the
working environment (e.g., information about surrounding digital entities) that
should be protected from unauthorised access and modification, in order to
grant confidentiality and integrity. A trust model is therefore needed.

Context-aware security is dually concerned with the use of context informa-
tion to drive security decisions. It has therefore to do with the definition and
enforcement of high-level policies that talk about, are based and depend on the
notion of dynamic context. Consider, for instance, the usual no flash photogra-
phy policy in museums. A standard security policy does not allow people to take
pictures, using the flash. A context-aware security is more flexible: it instead
forbids flashing only inside those rooms that exhibit delicate paintings.

Most of the related work aims at implementing mechanisms at different levels
of the infrastructures, e.g., in the middleware [42] or in the interaction proto-
cols [22]. More foundational issues have instead been studied less. Moreover,
the two dual aspects of context-aware security sketched above are often tackled
separately, thus we still lack a unifying concept of security. Also, in the adaptive
framework the most relevant concern is access control, see e.g. [47, 25, 49].

1.3 Our proposal

The kernel of our proposal is MLCoDa, a core of ML extended with COP features.
Its main novelty is to be a two-component language: a declarative constituent
for programming the context and a functional one for computing (see [20] for
details about its design).

The context in MLCoDa is a knowledge base implemented as a Datalog pro-
gram [39, 33]. Applications can therefore query the context by simply verifying
whether a given property holds in it, in spite of the fact that this may involve
possibly complex deductions.

Programming adaptation is specified through behavioural variations, that
are activated depending on information picked up from the context, so to dy-
namically modify the execution. Differently from other proposals, in MLCoDa

behavioural variations are first class, higher-order constructs: they can be re-
ferred to by identifiers, and passed as argument to, and returned by functions.
This makes it possible to program dynamic and compositional adaptation pat-
terns, as well as reusable and modular code.

As a matter of fact MLCoDa, as it is, offers the features needed for addressing
context-aware security issues, in particular for defining access control policies

2

and for enforcing them. First, we can express system-defined policies in strat-
ified Datalog with negation, which is one of the two components of MLCoDa.
This version of Datalog is sufficiently expressive for our policies. It is pow-
erful enough to express all relational algebra [18] and in addition it is fully
decidable and guarantees polynomial response time. Furthermore, adopting a
stratified-negation-model is common and many logical languages for defining
control access policies compile in Stratified Datalog, e.g., [9, 32, 17].

Secondly, the dispatching mechanism of MLCoDa, originally designed for se-
lecting the right action to perform in behavioural variations, suffices for checking
whether a specific policy holds. Therefore, our language requires no extensions
to deal with security policies.

Actually, we can distinguish two classes of policies: those specified by the
system to control the user’s behaviour, and those expressed by the application.
We are only interested in system policies. This is because the application de-
veloper has indeed full knowledge of his policies, and so he can specify them
as behavioural variation constructs. Instead, the application has no a priori
knowledge about the policies that contexts may require; then the system has no
warranty that the application was designed to comply with them.

In the world of “secure” adaptive software, a runtime error can occur because
of two different reasons, besides the presence of bugs in the code. An application
can fail because it cannot adapt to the current context (functional failure) or
because it violates a policy (non-functional failure). We would like to predict as
earlier as possible if either case may occur. Note that some information about
the running context is only available when the application is linked with it, so
a fully static approach is not possible. For this reason we have a two-phase
verification: one at compile time and one at linking time.

This is the approach followed in [19], that proposes a two-phase static tech-
nique for verifying whether a program adequately reacts to all context changes,
signalling possible functional failures. The first phase is based on a type and
effect system, that safely computes an approximation of the behaviour of the
application at compile time. This approximation is then used at linking time
to verify that the resources needed by the application to run will always be
available in the actual context, and in its future modifications.

We extend here this technique to prevent an application from violating the
required policies. A fully static yes/no procedure may lead to reject too many
applications, so our extension is designed to also provide us with the means
for instrumenting the code with suitable checks aimed at guarding the activities
that can be considered risky. Actually, we have a sort of runtime monitor that is
switched on and off at need, and, again, the dispatching mechanism of MLCoDa

suffices for natively supporting it.

After introducing some background about adaptive programming and static
analisys techniques (Chapter 2), we will introduce MLCoDa and our proposal
with the help of a running example (Chapter 3), along with an intuitive pre-
sentation of the various components of our compile time and linking time static
analysis, as well as of how security is dynamically enforced. The formal defi-

3

nitions and the statements of the correctness of our proposal will follow in the
remaining chapters. The conclusion summarises our results and discusses some
future work.

4

Chapter 2

Preliminary work

2.1 Adaptive Software

In this section we introduce the notion of adaptive software (see [43] for a
complete survey). There are many definition of self-adaptability. For example,
the one given in [38]:

Self-adaptive software modifies its own behaviour in response to
changes in its operating environment. By operating environment,
we mean anything observable by the software system, such as end-
user input, external hardware devices and sensors, or program in-
strumentation.

The problem of self-adaptability been tackled by a variety of points of view such
as control theory [30], artificial intelligence [28], software engineering [1, 41] and
programming languages. We follow this last line of research. Language based
approaches push the adaptation down to elementary software components: at
this level we can describe extremely fine-grain adaptability mechanisms and
introduce verification techniques, as those we will define in the next chapters.
Among these approaches, we adopt Context Oriented Programming [24] because
it has an explicit notion of context, which better models the working environ-
ment hosting the software.

2.1.1 Context-Oriented Programming

Context-Oriented Programming [14, 24] is a paradigm recently proposed as a
viable approach to development of systems that are context-aware, i.e. able
to dynamically adapt their behaviour depending on changes occurring in their
execution environment.

Context-oriented languages are designed with suitable constructs for adap-
tation that express context-depended behaviour in a modular and isolating
manner. This enables optimizations of code by the compiler or by the vir-

5

tual machine and also automatised verification to assure that programs keep
their correctness after the adaptation.

Most of the existing languages that follows the COP paradigm are based
on two fundamental concepts: behavioural variations and layers. A behavioural
variation is a chunk of behaviour that can be dynamically activated depending on
information picked up from the context, so to modify the application behaviour
at runtime. Furthermore, multiple behavioural variations can be active at the
same time, and the result of their combination determines the actual program
behaviour.

A layer is an elementary property of the context. Indeed, the context is a set
of layers, that can be activated and deactivated at runtime. Layers have to be
first class objects1 in the language, i.e. they can be bound to variables, passed as
argument and retuned by functions. This feature is especially required to allow
different parts of a system to communicate and perform runtime adaptability.

Inspired by the pioneering work of [24], a large number of COP proposals
emerged, each of which addresses the problem of behavioural variation mod-
ularization and dynamic layer activation in different ways. See [44] for more
details about the different language proposals, [4] for an analysis of some im-
plementations and their performance and [21] for an comparison about the im-
plementation of adaptive software by exploiting traditional languages and COP
languages.

2.1.2 Open issues in context-oriented languages

So far most of the research efforts in the field of Context-Oriented Program-
ming has been directed toward the design and the implementation of concrete
languages. To the best of our knowledge only a limited number of papers in the
literature have a precise semantic description of these languages.

We identify the following restrictions as the most limiting for the develop-
ment of complex adaptive software:

1. Neither semantics foundation nor verification mechanism for this class of
languages have been extensively studied so far.

2. Primitives used to describe the context are too low-level. Therefore,
they are sometimes inadequate to program complex adaptive applications,
where the context may contain structured information.

3. Behavioural variations are not first class citizens in the languages and one
cannot easily manipulate them, e.g. passing them to functions as argu-
ments, or binding them to variables.

4. Finally, security issues have been scarcely considered within COP lan-
guages.

1Note that in Chapter 4 we will introduce also behavioural variations as first class objects,
enriching the number of adaptation patterns we can express.

6

In the following chapters we describe MLCoDa [20], a different approach that
mainly deals with (1), (2) and (3) by introducing a completely new treatment of
COP primitives (see Chapters 4, 5 and 6). Then, we try to address the weakness
pointed out in (4) by properly extending this language: security issues will be
considered in Chapters 7 and 8.

2.2 Static analysis techniques

In this section, we briefly review the concepts and methods underlying the static
analysis techniques that we intend to exploit.

The purpose of static analysis is to acquire information about the runtime
behaviour of a program without actually executing it but only by examining its
source code. The results of an analysis can be used to optimize the execution,
to discover errors in the code or to mathematically prove properties about pro-
grams. Typical examples are data-flow analysis [35, 29], Flow Logic [37, 8], type
systems and their extensions (type and effect systems [36], dependent types [48],
refinement types [7]), model-checking [12, 26], abstract interpretation [15, 16].

In the rest of this section we will explain in more detail the ideas underlying
type systems and Flow Logic to make the formal development in later chapters
clearer.

2.2.1 Type Systems

Among formal methods used to ensure that a system behaves correctly, type
systems are among the most popular and the most largely used. They belong to
the class of deductive systems where the proved theorems are about the types
of programs. Type systems are made up of the elements below.

Type syntax and type environment The type syntax describes the basic
types and the type constructors which can be used to obtain new types from
existent ones. A type environment stores the associations between variables and
the types of the values which may denote. Formally, it is a list of pair recursively
defined as Γ ::= ∅ | Γ, x : t.

Judgements Judgements are formal assertions about the typing of program
phrases and correspond to the well-formed formulas of the deduction systems.
A typical judgement has the form Γ ` A, meaning that Γ entails A, where A is
an assertion whose free variables are bound in Γ. Usually, A asserts that there
exists a relationship between a program phrase (has-type judgement) or between
two types (subtype-of judgement).

Typing rules Typing rules establish relationships among judgements and as-
sert the validity of a certain judgement, the conclusion, on the basis of others
judgements that are already known to be valid, the premises. Also, we have

7

rules without premises, called axioms. They assert judgement that are always
valid. We can repetely apply typing rules and compose them into derivations.

Soundness theorem A formal proof of a soundness theorem is required to
guarantee that the type system achieves his objectives, that is, no type error
occurs at runtime. If the semantics is specified with an operational style, usually
the soundness theorem is proved in two steps: (i) progress, that is, a well-typed
phrase is a value or it can take a step according to the evaluation rules and
(ii) preservation, that is, if a well-type phrase takes a step of evaluation the
resulting phrase is also well-typed (types are preserved under reduction).

2.2.2 Type and Effect Systems

Type and effect systems are a powerful extension of type systems which al-
lows one to express general semantic properties and to statically reason about
program execution. They compute the type of each program sentence and an
approximate (but sound) description of its runtime behaviour.

The elements of a type system are extended as follows:

• in type syntax we annotate types with effects or tags describing some

semantic properties. For example, t1
ϕ−→ t2 means that the functional

types are annotated with the effect ϕ that will hold after the function
application;

• judgements also express properties about runtime behaviour. For example,
Γ ` M : t . ϕ means that in the environment Γ, M has type t and that the
effect described by ϕ holds.

• the correctness of a type and effect system is proved in two steps: (i)
prove that the type and effects system is a conservative extension of the
underlying type system; (ii) prove a soundness theorem that consider the
effects.

2.2.3 Flow Logic

Flow Logic [37] is a declarative approach based on logical systems. Its dis-
tinctive feature is to separate the specification of the analysis from its actual
computation. Intuitively, the specification describes when the results, namely
analysis estimates, are acceptable, i.e. describing the property which we are con-
cerned with. Furthermore, Flow Logic provides us with a methodology to define
a correct analysis algorithm which operates in polynomial time, by reducing the
specification to a constraints satisfaction problem.

Adopting a syntax-directed style (see [37] for a description of all possible
styles), the analysis will be inductive defined by a set of inference rules. The
Flow Logic methodology requires to prove that the analysis enjoys the two
following properties: (i) the analysis is correct with respect to the dynamic
semantics and (ii) every expression has a best or most precise analysis estimate.

8

The statement of the correctness theorem and its prove depend on the style
used to specify the semantics. Adopting small step operational semantics, the
correctness result is a subject reduction one, expressing that the analysis esti-
mate remains acceptable under reduction. For (ii) is sufficient to prove that the
set of the acceptable analysis estimates is a Moore family. s

2.2.4 Language-based Security

Traditionally, security has been considered an external property of programs.
With the ubiquity of the Internet and of mobile computing devices it turns out
that security is a fundamental concern, and that has to be taken into account
from the first steps of the development process.

Language-based security [31, 45] has been proposed to address security con-
cerns within programming languages. Nowadays it is a wide research area, that
can be summarized by the following two points: (i) the usage of techniques
from compilers, from static analysis and from program transformations to en-
force and verify security properties, and (ii) the introduction into languages of
constructs for dealing with security issues.

Another interesting approach is the one proposed in [6, 5, 46]. They in-
troduced the notion of program history and the programming construct called
security framing. A history is the sequence of actions that the program carries
out at runtime. The security framing is a construct that allows programmers
to enforce a security policy φ on a program fragment e (in symbols φ[e]). In-
tuitively, it works as a monitor: after each execution step the framing requires
that the current history η satisfies φ (written η |= φ).

9

10

Chapter 3

Running example

We illustrate our methodology by considering a multimedia guide to a museum
implemented as a smartphone application, starting from the case study of [20].
Assume the museum has a wireless infrastructure exploiting different technolo-
gies, like WiFi, Bluetooth, Irda or RFID. When a smartphone is connected,
the visitor can access the museum Intranet and its website, from which he can
download information about the exhibit and further multimedia contents.

Each exhibit is equipped with a wireless adapter (Bluetooth, Irda, RFID)
and a QR code, used to provide the guide with the URL of the exhibit. The
URL is retrieved by using one of the above technologies, depending on the
smartphone capabilities. If a Bluetooth adapter is available, the smartphone
can directly download the URL; otherwise if the smartphone has a camera and
a QR decoder, the guide can retrieve the URL by taking a picture of the code
and by decoding it.

The context In MLCoDa the smartphone capabilities are stored in the context
as Datalog clauses. Consider, e.g., the following clauses defining when the smart-
phone can either directly download the URL (the predicate device(d) holds
whether the device d is available) or it can take the URL by decoding a picture
(the parameter x in the predicate use qrcore is a handle for using the decoder):

direct_comm () ← device(irda).

direct_comm () ← device(bluetooth).

direct_comm () ← device(rfid_reader).

use_qrcode(x) ← user_prefer(qr_code),

qr_decoder(x),

device(camera).

use_qrcode(x) ← qr_decoder(x),

device(camera),

¬ device(irda),

¬ device(rfid_reader),

¬ device(bluetooth).

11

Adaptivity Contextual data, such as the above predicates direct comm() and
use qrcode(decoder), affect the download. The program flow has to change in
accordance to the current context. To achieve this we exploit behavioural varia-
tions, offered by the functional part of MLCoDa. Syntactically they are similar to
pattern matching, where Datalog goals replace patterns and where parameters
can additionally occur. Just like functional abstractions, behavioural variations
have to be applied. Their application triggers a dispatching mechanism that at
runtime inspects the context and selects the first expression whose goal holds.

For example, in the following function getExhibitData, we declare a be-
havioural variation (called url) with no arguments. It returns the URL of an
exhibit, retrieved depending on the smartphone capabilities. If the smartphone
can directly download the URL, then it does, through the channel returned by
the function getChannel(), otherwise the smartphone takes a picture of the
QR code and decodes it. Note that, in this second case, the variables decoder

and cam will be assigned the handles of the decoder and the one of the camera
deduced by the Datalog machinery. These handles are used by the functions
take picture and decode qr to interact with the actual smartphone resources.

fun getExhibitData () =

let url = (){

← direct_comm ().

let c = getChannel () in

receiveData c,

← use_qrcode(decoder), camera(cam).

let p = take_picture cam in

decode_qr decoder p }

in

getRemoteData #url

The behavioural variation (bound to) url is applied before invoking the function
getRemoteData, that connects to the corresponding website and downloads the
required information. Here, the application of a behavioural variation is repre-
sented by #; for details see Chapter 4.

Formally, suppose the current context C satisfies the goal← direct comm(),
and apply the function getExhibitData to unit. The computation acts as
follows. Here, a transition C, e→ C ′, e′ means that the expression e is evaluated
in the context C and reduces to e′ changing the context C to C ′:

- C, getExhibitData ()→ C, getRemoteData #u, where u is the behaviou-
ral variation bound to url in the body of the function getExhibitData.
This is a standard evaluation step for the let construct.

- C satisfies the goal ← direct comm(), so the dispatching mechanism
selects the first expression of the behavioural variation u. Said n the
value returned by getChannel, we have that C, getRemoteData #u →
C, getRemoteData(receiveData n).

Context update and security policies To update the context at runtime,
MLCoDa provides us with the constructs tell and retract, that add and remove

12

Datalog facts, respectively. Suppose, for instance, that the context stores infor-
mation about the room in which the user is through the predicate current room.
If the user moves from the room delicate paintings to the one sculptures, the
application updates the context by executing

retract current_room(delicate_paintings)

tell current_room(sculptures)

Assume now that one can take pictures in every room, but that in the rooms
with delicate paintings it is forbidden to use the camera flash, not to damage
the exhibits. This policy is specified by the museum (the system) and it must
be enforced during the user’s tour. Since policies predicate on the context, they
are easily expressed as Datalog goals. Let the fact flash on hold when the flash
is active and the fact button clicked when the user presses the button of the
camera. The above policy Φ is then expressed in Datalog as the goal

phi ← ¬ current_room(delicate_paintings)

phi ← ¬ button_clicked

phi ← ¬ flash_on

that, intuitively, is the result of compiling the following logical condition:

current room(delicate paintings)⇒ (button clicked⇒ ¬flash on)

Of course, the museum can specify many other policies. We assume that there
is a unique global policy Φ (referred to in the code as phi), obtained by suitably
combining all the required policies. The enforcement is obtained by a runtime
monitor that checks the validity of Φ every time the context changes, i.e., ev-
ery time a tell/retract is performed. We remark that the introduction of
the runtime monitor requires no modification of the language, because our poli-
cies are Datalog goals and can be checked by simply invoking the dispatching
mechanism.

The need for a static analysis An application fails to adapt to a context
(functional failure) when the dispatching mechanism fails, i.e., a behavioural
variation gets stuck. Consider to evaluate getExhibitData on a smartphone
without wireless technology and QR decoder. Clearly, no context will ever
satisfy the goals of the behavioural variation url, thus, when url is applied no
case can be selected.

Another kind of failure happens when an application violates a policy (non-
functional failure). In our example, this happens when attempting to use the
flash, if the context includes current room(delicate paintings).

To avoid functional failure and to optimise the policy enforcement, we equip
MLCoDa with a two-phase static analysis: a type and effect system and a control-
flow analysis. The analysis checks if an application will be able to adapt to its
execution contexts and detects which actions can result in contexts that violate
the required policies.

13

Type and effect system At compile time we associate to each expression e
a type (which is almost standard) and an effect over-approximating its actual
runtime behaviour. This effect is called history expression, and represents (an
abstraction of) the interactions with the context that are performed during the
evaluation of e.

To intuitively understand how this phase works, take the following expres-
sion, describing the actions for taking a picture:

ea = let x =

if always_flash then

let y = tell F1
1 in tell F2

2

else

let y = tell F3
1 in tell F4

3

in

tell F5
4

For clarity, here (and in the syntax in Chapter 4) we show the labels of tell/
retract in the code. Actually, labels are inserted by the compiler during syntax
analysis or type checking. Moreover, for the sake of readability the facts have
been given a symbolic name. They are intended to be:

F1 ≡ photocamera started F2 ≡ flash on

F3 ≡ mode museum activated F4 ≡ button clicked

The type of ea is unit (that of tell F4), and its history expression (also labelled)
is

Ha = (((tell F 1
1 · tell F 2

2)3 + (tell F 4
1 · tell F 5

3)6)7 · tell F 8
4)9

In history expressions · means sequential composition, while + is for conditional
expression.

Depending on the value of always flash, which records whether the user
wants the flash to be always usable, the expression ea can either perform the
action tell F1 followed by tell F2, or the action tell F1 followed by tell F3
— and the context is informed that the flash is on or off, respectively. After
that, ea will perform tell F4, no matter what the previous choice was.

The labels of history expressions allow us to link the actions in histories to
the corresponding points inside the code, e.g., the first tell F1 in Ha, which
is labelled 1, corresponds to the first tell F1 in ea, which is also labelled 1,
while the tell F4, labelled 8 in Ha, corresponds to that labelled 5 in ea. More
precisely, the correspondences are {1 7→ 1, 2 7→ 2, 4 7→ 3, 5 7→ 4, 8 7→ 5}; the
abstract labels that do not annotate tell/retract constructs have instead no
corresponding labels.

Control flow analysis The effects are exploited at linking time (i) to verify
that the application can adapt to all contexts arising at runtime, and (ii) to
identify which tell/retract are risky and need to be checked by the monitor.
If our static analysis discovers that a tell/retract may lead to a violation,
we have to activate the monitor during its evaluation, otherwise the monitor is

14

{F5, F8}

{F1, F5, F8}

{F1, F2, F5, F8} {F1, F3, F5, F8}

{F1, F2, F4, F5, F8} {F1, F3, F4, F5, F8}

{1, 4}

{2} {5}

{8} {8}

Figure 3.1: The evolution graph for the context C ⊇ {F5, F8} and the history
expression Ha = (((tell F 1

1 .tell F
2
2)3 + (tell F 4

1 .tell F
5
3)6)7.tell F 8

4)9

kept inactive. To do that, our control-flow analysis first builds a graph to trace
how the initial context evolves during execution, and then it finds out in which
contexts there is a violation and which operation might cause it.

Back to our example, consider an initial context C that includes the facts
F8 ≡ current room(delicate paintings) and F5 (irrelevant here), but not
the facts {F1, F2, F3, F4}. Starting from C (and from the history expression Ha

computed above) our loading time analysis builds the graph in Figure 3.1 (we
show only the relevant facts of C). Nodes represent contexts, possibly reachable
at runtime; edges represent transitions from one context to another. Each edge
is annotated with the set of actions in Ha that may cause that transition. For
instance, from the initial context it is possible to reach the context that also
includes the fact F1, because of the two tell operations labelled in the history
expression by 1 and by 4. Therefore an edge can have more than one label (e.g.,
the one labelled {1, 4}). Note also that the same label may occur in more than
one edge (e.g., the label 8).

As said, the labelling is done during the type checking and plays a key role
in enforcing security policies. Here, we observe (e.g., by visiting the graph)
that the context corresponding to the node {F1, F2, F4, F5, F8} (in red in Fig-
ure 3.1) violates our no-flash policy. This amounts to identifying a possible
runtime violation. Since this node has a single incoming edge, labelled with 8
(highlighted in red in Figure 3.1, together with the corresponding abstract ac-
tion), we can deduce that the possibly risky action is the corresponding dynamic
tell F4 labelled by 5 in the code. For preventing a violation, all we have to do
is activating the runtime monitor right before executing this operation.

15

16

Chapter 4

MLCoDa

The kernel of our proposal is MLCoDa, a language consisting of two components:
Datalog with stratified negation to describe both the context and the required
security policies, and a core of ML extended with specific constructs which allows
to express COP features. We present the syntax and the operational semantics
of MLCoDa; for more details and for a longer, fully worked out example consider
that this language has been introduced for the very first time in [20] and its
companion paper [19].

4.1 Syntax

MLCoDa consists of two sub-languages: a Datalog with negation to describe the
context and a core ML extended with COP features.

The Datalog part is standard: a program is a set of facts and clauses. We
assume that each program is safe [11]; to deal with negation, we adopt Stratified
Datalog under the Closed World Assumption.

We enforce security properties by introducing policies Φ, expressed as Data-
log goals, one of the components of MLCoDa. As a consequence, the language
requires no extensions to deal with security policies. The mechanism for se-
lecting behavioural variations can indeed be also used for checking whether a
specific policy holds, and for selecting the chunk of behaviour that does. We
assume that the name phi is reserved for the overall security policy Φ expressed
by the system. Thus, verifying whether the policy holds simply equals to check
if the Datalog goal ← phi is satisfied. As mentioned in Chapter 1, Stratified
Datalog is sufficiently expressive for our policies. As a matter of fact, it is
powerful enough to express all relational algebra [18] and in addition it is fully
decidable and guarantees polynomial response time. Furthermore, many logical
languages for defining control access policies compile in Stratified Datalog, e.g.,
[9, 32, 17].

The functional part inherits most of the ML constructs. In addition to
the usual ones, our values include Datalog facts F and behavioural variations.

17

Moreover, we introduce the set x̃ ∈ DynV ar of parameters, i.e., variables that
assume values depending on the properties of the running context. We distin-
guish these parametres from the standard identifiers V ar, thus requiring that
V ar ∩DynV ar = ∅.
The syntax of MLCoDa is below:

x ∈ V ar x̃ ∈ DynV ar (V ar ∩DynV ar = ∅)
V a ::=G.e | G.e, V a
v ::=c | λfx.e | (x){V a} | F
e ::=v | x | x̃ | e1 e2 | let x = e1 in e2 | if e1 then e2 else e3 |

dlet x̃ = e1 whenG in e2 | tell(e1)l | retract(e1)l | e1 ∪ e2 | #(e1, e2)

To facilitate our static analysis (see Chapters 6 and 7) we require that each
tell/retract in the code is uniquely and mechanically associated with a label
l ∈ LabC . As usual, labels do not affect the dynamic semantics of the calculus.

Standard ML expressions need no explanation. Below, we comment the new
COP- oriented constructs. First we have variations V a, i.e., lists of expres-
sions G1.e1, . . . , Gn.en guarded by Datalog goals Gi, and behavioural variations
(x){V a}, each consisting of a variation V a. The variable x can freely occur
in the expressions ei. At runtime, the first goal Gi satisfied by the context
determines the expression ei to be selected (dispatching). Then we introduce
context-dependent binding, that is the mechanism to declare variables whose
values depend on the context. This is expressed with the dlet construct, which
associates a parameter x̃ to a variation V a. It is syntactically similar to the
standard let, but has additional Datalog goals that made the value of x̃ cal-
culated depending on which goal is satisfied. We also have a way to update
the context by asserting/retracting facts, provided that the resulting context
satisfies the system policy Φ: the tell/retract constructs are provided for this
purpose. Finally, we have operators for managing behavioural variations. The
append operator e1∪e2 concatenates behavioural variations, so allowing for dy-
namic compositions. The application of a behavioural variation #(e1, e2), with
e1 = (x)(V a), applies e1 to its argument e2. To do so, the dispatching mecha-
nism is triggered to query the context and to select from V a the expression to
run, if any. As in standard function application, the calculated value of e2 is
binded to the variable x, which may obviously occur in the body of V a.

4.2 Semantics

We now endow MLCoDa with a small-step operational semantics.

For the Datalog evaluation we adopt the top-down standard semantics of
stratified programs [11]. Given a context C and a goal G, C � Gwith θ means
that there exists a substitution θ, replacing constants for variables, such that
the goal G is satisfied in the context C.

18

(If1)

ρ ` C, e1 → C ′, e′1
ρ ` C, if e1 then e2 else e3 → C ′, if e′1 then e2 else e3

(If2)

ρ ` C, if true then e2 else e3 → C ′, e2

(If3)

ρ ` C, if false then e2 else e3 → C ′, e3

(Let1)

ρ ` C, e1 → C ′, e′1
ρ ` C, let x = e1 in e2 → C ′, let x = e′1 in e2

(Let2)

ρ ` C, let x = v in e2 → C, e2{v/x}

(App1)

ρ ` C, e1 → C ′, e′1
ρ ` C, e1 e2 → C ′, e′1 e2

(App2)

ρ ` C, e2 → C ′, e′2
ρ ` C, (λfx.e) e2 → C ′, (λfx.e) e

′
2

(App3)

ρ ` C, (λfx.e) v → C, e{v/x, (λfx.e)/f}

Figure 4.1: The reduction rules for standard constructs of ML

The semantics of MLCoDa is defined for expressions with no free variable, but
possibly with free parameters, allowing for openendness. For that, we have in
an environment ρ, i.e., a function mapping parameters to variations DynV ar →
V a.

A transition ρ ` C, e→ C ′, e′ says that in the environment ρ, the expression
e is evaluated in the context C and reduces to e′ changing the context C to C ′.
We assume that the initial configuration is ρ0 ` C, ep where ρ0 contains the
bindings for all system parameters, and C results from the linking of the system
context and of the application context.

Most of the rules of the small-step operational semantics are inherited from
ML and presented in Figure 4.1. The inductive definitions of the rules for our
new constructs are shown in Figure 4.2. Labels are not explicited, just because
do not affect the semantics. We briefly comment below on the rules displayed.

Context-dependent binding The rules (Dlet1) and (Dlet2) for the con-
struct dlet, and the rule (Par) for parameters implement our context-dependent
binding. For brevity, we assume here that e1 contains no parameters. The rule
(Dlet1) extends the environment ρ by appending G.e1 in front of the existent
binding for x̃. Then, e2 is evaluated under the updated environment. Notice
that the dlet does not evaluate e1 but only records it in the environment in a
sort of call-by-name style. The rule (Dlet2) is standard: the whole dlet reduces
to the value which eventually e2 reduces to.

19

(Par)

ρ(x̃) = V a dsp(C, V a) = (e, θ)

ρ ` C, x̃→ C, e θ

(Dlet1)

ρ[(G.e1, ρ(x̃)) /x̃] ` C, e2 → C ′, e′2
ρ ` C, dlet x̃ = e1 whenG in e2 → C ′, dlet x̃ = e1 whenG in e

′
2

(Dlet2)

ρ ` C, dlet x̃ = e1 whenG in v → C, v

(Append1)

ρ ` C, e1 → C ′, e′1
ρ ` C, e1 ∪ e2 → C ′, e′1 ∪ e2

(Append2)

ρ ` C, e2 → C ′, e′2
ρ ` C, (x){V a1} ∪ e2 → C ′, (x){V a1} ∪ e′2

(Append3)

z fresh

ρ ` C, (x){V a1} ∪ (y){V a2} → C, (z){V a1{z/x}, V a2{z/y}}

(VaApp1)

ρ ` C, e1 → C ′, e′1
ρ ` C, #(e1, e2)→ C ′,#(e′1, e2)

(VaApp2)

ρ ` C, e2 → C ′, e′2
ρ ` C, #((x){V a}, e2)→ C ′,#((x){V a}, e′2)

(VaApp3)

dsp(C, V a) = (e, {−→c /−→y })
ρ ` C, #((x){V a}, v)→ C, e{v/x, −→c /−→y }

(Tell1)

ρ ` C, e→ C ′, e′

ρ ` C, tell(e)→ C ′, tell(e′)

(Tell2)

dsp(C ∪ {F}, ← phi.()) = ((), θ)

ρ ` C, tell(F)→ C ∪ {F}, ()

(Retract1)

ρ ` C, e→ C ′, e′

ρ ` C, retract(e)→ C ′, retract(e′)

(Retract2)

dsp(C r {F}, ← phi.()) = ((), θ)

ρ ` C, retract(F)→ C r {F}, ()

Figure 4.2: The reduction rules for new constructs of MLCoDa

20

The (Par) rule looks for the variation V a bound to x̃ in ρ. Then the dis-
patching mechanism selects the expression to which x̃ reduces. The dispatching
mechanism is implemented by the partial function dsp, defined as

dsp(C, (G.e, V a)) =

{
(e, θ) if C � Gwith θ

dsp(C, V a) otherwise

It inspects a variation from left to right to find the first goal G satisfied by
C, under a substitution θ. If this search succeeds, the dispatching returns
the corresponding expression e and θ. Then x̃ reduces to e θ, i.e., to e whose
variables are bound by θ. Instead, if the dispatching fails because no goal holds,
the computation gets stuck because the program cannot adapt to the current
context. Our static analysis is also designed to prevent this kind of runtime
errors.

As an example of context-dependent binding consider the simple conditional
expression if x̃ = c2 then c3 else c4, in an environment ρ that binds the
parameter x̃ to e = G1. c1, G2. c2 (ci are constants) and in a context C that
satisfies the goal G2 but not G1:

ρ ` C, if x̃ = c2 then c3 else c4

→ C, if c2 = c2 then c3 else c4

→ C, c3

In the first step, we retrieve the binding for ~x (recall it is e), where dsp(C, e) =
dsp(C, (G1.c1, G2. c2)) = (c2, θ), for a suitable substitution θ.

Concatenating behavioural variations The rules for the concatenation
e1 ∪ e2 of two behavioural variations sequentially evaluate e1 (rule (Append1))
and e2 (rule (Append2)). Once they have been reduced to behavioural vari-
ations, they are concatenated together by renaming bound variables to avoid
name captures (rule (Append3)).

As an example of behavioural variation concatenation, let T be the goal
always true, and consider the function d = λx.λy. x ∪ (w){T.y}. It takes as
arguments a behavioural variation x and a value y, and extends x by adding a
default case which is always selected when no other case apply. In the following
computation we apply d to p = (x){G1.c1, G2.x} and to c2 (c1, c2 constants):

ρ `C, d p c2
→ C, (x){G1.c1, G2.x} ∪ (w){T.c2}
→ C, (z){G1.c1, G2.z, T.c2}

Application of behavioural variations The application of the behavioural
variation #(e1, e2) evaluates the subexpressions until e1 reduces to (x){V a}
(rule (VaApp1)) and e2 to a value v (rule (VaApp2)). Then the rule (VaApp3)

invokes the dispatching mechanism to select the relevant expression e from

21

which the computation proceeds after v is substituted for x. Also in this
case the computation gets stuck if the dispatching mechanism fails. As an
example, consider the behavioural variation (x){G1.c1, G2.x} and apply it to
the constant c in a context C that satisfies the goal G2 but not G1. Since
dsp(C, (x){G1.c1, G2.x}) = (x, θ) for some substitution θ, we get

ρ ` C, #((x){G1.c1, G2.x}, c) → C, c

Updating the context The rules (Tell1) and (Retract1) evaluate the ex-
pression e until it reduces to a fact F , which is a value of MLCoDa. Then,
the new context C ′, obtained from C by adding (respectively, removing) F , is
checked against the security policy Φ (rules (Tell2) and (Retract2)). Since Φ
is a Datalog goal, we can easily reuse our dispatching machinery, implementing
the check as a call to the function dsp where the first argument is C ′ and the
second one is the trivial variation ← phi.(). If this call produces a result1, then
the evaluation yields the unit value () and the new context C ′.

The following example shows the reduction of a retract construct violating
a policy Φ. Let the context be C = {F3, F4, F5}. Suppose that Φ imposes the
logical condition F3 ⇒ F4, and apply the function f = λx. if e then F5 else F4
to unit, assuming that the evaluation of e reduces to false without changing
the context:

ρ `C, retract(f ())

→ C, retract((λx. if e then F5 else F4)())

→ C, retract(if e then F5 else F4)

→ C, retract(if false then F5 else F4)

→ C, retract(F4)

9

Since the policy requires that the fact F4 always holds when F3 holds too, the
attempt to remove it from the context violates Φ. Consequently, the evaluation
gets stuck because dsp(C r {F4}, ← phi.()) fails.

Instead, if e reduces to true, there is no violation of the policy and the
evaluation reduces to unit:

ρ `C, retract(f ())

→ C, retract(if true then F5 else F4)

→ C, retract(F5)

→ C r {F5}, ()

1Note that the result returned by the dispatching mechanism, if any, must consist of the
unit expression () (that is, the one related to the goal ← phi in the variation ← phi.()) and
of a substitution θ (for the free variables possibly occuring in the goal Φ).

22

Chapter 5

Type and Effect System

We now associate MLCoDa expressions with a type, an abstraction called his-
tory expression, and a function called labelling environment. During the veri-
fication phase the virtual machine uses this history expression to ensure that
the dispatching mechanism will always succeed at runtime. Then, the labelling
environment is used to drive us in instrumenting the code with security checks.
First, we briefly present history expressions and labelling environments and then
the rules of our type and effect system.

We remark that our type and effect system is largely inherited from that in-
troduced in [19]: here we just extend it with the possibility of handling labelling
environments.

5.1 History expressions and labelling environ-
ments

History expressions a simple process algebra used to soundly abstract the ex-
ecution histories that a program may generate [6]. Here, history expressions
approximate the sequence of actions that a program may perform over the con-
text at runtime, i.e., asserting/retracting facts and asking if a goal holds.

To support the following formal development, we assume that history ex-
pressions are uniquely labelled on a given set LabH . Labels allow us to go back
from static actions in histories to the corresponding actions inside the code. The
syntax of history expressions is described below:

H ::= �| εl | hl | (µh.H)l | tell F l | retract F l | (H1 +H2)l | (H1 ·H2)l | ∆
∆ ::=(ask G.H ⊗ ∆)l | faill

The empty history expression abstracts programs which do not interact with
the context. For technical reasons, we syntactically distinguish when the empty
history expression comes from the syntax (εl) and when it is instead obtained
by reduction in the semantics (�). The history expression µh.H represents

23

C, (� ·H)→ C, H C, ε→ C, � C, tell F → C ∪ {F}, �

C, retract F → C\{F}, �
C,H1 → C ′, H ′1

C, (H1 +H2)→ C ′, H ′1

C,H2 → C ′, H ′2
C, (H1 +H2)→ C ′, H ′2

C, H1 → C ′, H ′1
C, (H1 ·H2)→ C ′, (H ′1 ·H2)

C, (µh.H)→ C,H[(µh.H)/h]

C � G

C, (ask G.H ⊗∆)→ C, H

C 2 G
C, (ask G.H ⊗∆)→ C, ∆

Figure 5.1: Semantics of History Expressions

possibly recursive functions, where h is the recursion variable; the “atomic”
history expressions tell F and retract F are for the analogous expressions of
MLCoDa; the non-deterministic sumH1+H2 abstracts the conditional expression
if -then-else; the concatenation H1 · H2 is for sequences of actions, that arise,
e.g., while evaluating applications; ∆ mimics our dispatching mechanism, where
∆ is an abstract variation, defined as a list of history expressions, each element
Hi of which is guarded by an ask Gi.

For example, the history expression computed for the behavioural varia-
tion url in the function getExhibitData of Section 3 is Hurl = ask G1.H1 ⊗
ask G2.H2 ⊗ fail, where the goals are G1 = ← direct comm() and G2 =
← use qrcode(decoder), camera(cam) and where H1 is the effect of the expres-
sion guarded by G1 and H2 is the effect of the one guarded by G2. Intuitively,
Hurl says that at least one between G1 or G2 must be satisfied by the context
in order to successfully apply the behavioural variation url.

Given a context C, the behaviour of a history expression H is formalised
by the transition system inductively defined in Figure 5.1. Configurations have
the form C,H → C ′, H ′ meaning that H reduces to H ′ in the context C and
yields the context C ′. Most rules are similar to the ones presented in [6]: below
we only comment on those dealing with the context. Just as in the case of
ML expressions, labels do not affect the semantic: for this reason they are not
explicited in the figure.

An action tell F reduces to � and yields a context C ′ where the fact F has
just been added; similarly for retract F . Differently from what we do in the
semantic rules, here we do not consider the possibility of a policy violation:
history expressions approximate how the application would behave in absence
of any type of check. The rules for ∆ scan the abstract variation and look for

24

the first goal G satisfied in the current context; if this search succeeds, the whole
history expression reduces to the history expression H guarded by G; otherwise
the search continues on the rest of ∆. If no satisfiable goal exists, the stuck
configuration fail is reached, to indicate that the dispatching mechanism fails.

Labelling Environment To support the implementation of security checks,
we want to associate each abstract action described in a history expression to
the corresponding concrete action that can be performed by the application
during its execution. We are only interested in those expressions that have as
an effect the addition or removal of a fact, so modifying the context. For this
purpose we introduce an environment that maps (labels of) history expressions
to (labels of) expressions in the code.

We assume as given the function h : LabH → H, that recovers a construct
in a given history expression starting from its label l. We do not need the
constructs returned by h to be labelled. For example, given the simple history
expression H = (tell F 1

1 + tell F 2
2)3 we have that h(1) = tell F1, h(2) = tell F2

and h(3) = tell F1 + tell F2. This function h is only used to distinguish the type
of the construct associated to a label; also, h will help us in some steps of static
analysis, as we will see in the following chapters.

Now, we can define a way of going back from a tell/retract in a history
expression to the corresponding operations in the code, by exploiting their labels
in the set LabC (see Section 4). Formally, we introduce the function below:

Definition 5.1 (Labelling environment). A labelling environment is a (partial)
function

Λ : LabH → LabC ,

defined only if h(l) ∈ {tell(F), retract(F)}.

Just like history expressions, labelling environments will be computed by
our type and effect system. To give an intuition of how labelling environments
work, recall the history expression

Ha = (((tell F 1
1 · tell F 2

2)3 + (tell F 4
1 · tell F 5

3)6)7 · tell F 8
4)9

of Section 3, obtained from the expression

ea = let x =

if always_flash then

let y = tell F1
1 in tell F2

2

else

let y = tell F3
1 in tell F4

3

in

tell F5
4

The correspondence Λ between labels in Ha and those in the code is here given:
{1 7→ 1, 2 7→ 2, 4 7→ 3, 5 7→ 4, 8 7→ 5}.

We will present a more formal treatment after having introduced the typing
rules for calculating both history expressions and labelling environments.

25

5.2 Typing rules

Here, we only give a logical presentation of our type and effect system. We
assume that our Datalog is typed, i.e., that each predicate has a fixed arity and
a type (see [34]). From here onwards, we simply assume that there exists a
Datalog typing function γ that given a goal G returns a list of pairs (x, type-
of-x), for all the variables x in G.

Typing environments The rules of our type and effect systems have:

• a standard environment Γ binding the variables of an expression:

Γ ::= ∅ | Γ, x : τ

where ∅ denotes the empty environment and Γ, x : τ denotes an environ-
ment having a binding for the variable x (x does not occur in Γ).

• a further environment K that maps a parameter x̃ to a pair consisting
of a type and an abstract variation ∆. The information in ∆ is used to
resolve the binding for x̃ at runtime. Formally:

K ::= ∅ | K, (x̃, τ,∆)

where ∅ denotes the empty environment and K, (x̃, τ,∆) denotes an envi-
ronment having a binding for the parameter x̃ (x̃ does not occur in K).

Judgements Our typing judgements have the form

Γ; K ` e : τ . H; Λ

meaning that in the environments Γ and K the expression e has type τ , effect
H and yields a labelling environment Λ.

Type syntax The syntax of types is

τc ∈{int, bool, unit, . . .} φ ∈ ℘(Fact)

τ ::=τc | τ1
K|H−−−→ τ2 | τ1

K|∆
===⇒ τ2 | factφ

We have basic types (int, bool, unit), functional types, behavioural variations
types, and facts. Some types are annotated for analysis reason. In the type
factφ, the set φ soundly contains the facts that an expression can be reduced
to at runtime (see the semantics rules (Tell2) and (Retract2)). In the type

τ1
K|H−−−→ τ2 associated with a function f , the environment K is a precondition

needed to apply f . Here, K stores the types and the abstract variations of
parameters occurring inside the body of f . The history expression H is the
latent effect of f , i.e., the sequence of actions which may be performed over the

context during the function evaluation. Analogously, in the type τ1
K|∆

===⇒ τ2
associated with the behavioural variation bv = (x){V a}, K is a precondition
for applying bv and ∆ is an abstract variation representing the information that
the dispatching mechanism uses at runtime to apply bv.

26

Orderings We now introduce the orderings vH ,v∆,vK ,vΛ on H, ∆, K and
Λ, respectively (often omitting the indexes when unambiguous). We define:

• H1 vH H2 if and only if ∃H3 such that H2 = H1 +H3;

• ∆1 v∆,∆2 if and only if ∃∆3 such that ∆2 = ∆1 ⊗ ∆3 (note that the
concatenation ∆2 has a single trailing term fail);

• K1 vK K2 if and only if ((x̃, τ1, ∆1) ∈ K1 implies (x̃, τ2, ∆2) ∈ K2 and
τ1 ≤ τ2 ∧ ∆1 v∆ ∆2);

• Λ1 vΛ Λ2 if and only if ∃Λ3 such that Λ2 = Λ1] Λ3.

We exploit this orderings to define rules for subtyping and subeffecting, as shown
in Figure 5.2.

(Srefl)

τ ≤ τ

(Sfact)

φ ⊆ φ′

factφ ≤ factφ′

(Sfun)

τ ′1 ≤ τ1 τ2 ≤ τ ′2 K v K ′ H v H ′

τ1
K|H−−−→ τ2 ≤ τ ′1

K′|H′−−−−→ τ ′2

(Sva)

τ ′1 ≤ τ1 τ2 ≤ τ ′2 K v K ′ H v H ′

τ1
K|H

===⇒ τ2 ≤ τ ′1
K′|H′

====⇒ τ ′2

(Tsub)

Γ; K ` e : τ . H; Λ τ ≤ τ ′ H v H ′ Λ v Λ′

Γ; K ` e : τ ′ . H ′; Λ′

Figure 5.2: Rules for subtyping and subeffecting

Most of the rules of our type and effect system are inherited from those of
ML and properly extended (see Figure 5.3); those for the new constructs are in
Figure 5.4. To make the presentation simpler, the labels (both of the expressions
and of the history expressions) are explicited only in those rules that introduce
new associations to the labelling environment. A few comments are in order.

Subtyping and subeffecting We have rules for subtyping and sub-effecting
(displayed in Figure 5.2). As expected these rules say that subtyping relation
is reflexive (rule (Srefl)); a type factφ is a subtype of a type factφ′ whenever
φ ⊆ φ′ (rule (Sfact)); functional types are contravariant in the types of ar-
guments and covariant in the result type and in the annotations (rule (Sfun));
analogously for behavioural variations types (rule (Sva)). The rule (Tsub) allows
us to freely enlarge types and effects by applying the subtyping and subeffecting
rules; also, we can add elements to Λ, provided that there is no clash.

27

(Tconst)

v ∈ V al
Γ; K ` v : τv . ε; ⊥

(Tvar)

Γ(x) = τ

Γ; K ` x : τ . ε; ⊥

(Tif)

Γ; K ` e1 : bool . H1; Λ Γ; K ` e2 : τ . H2; Λ Γ; K ` e3 : τ . H3; Λ

Γ; K ` if e1 then e2 else e3 : τ . H1 · (H2 +H3); Λ

(Tlet)

Γ; K ` e1 : τ1 . H1; Λ1 Γ, x : τ1; K ` e2 : τ2 . H2; Λ2

Γ; K ` let x = e1 in e2 : τ2 . H1 ·H2; Λ1] Λ2

(Tabs)

Γ, x : τ1, f : τ1
K′|H−−−→ τ2;K ′ ` e : τ2 . H; Λ

Γ; K ` λfx.e : τ1
K′|H−−−→ τ2 . ε; Λ

(Tapp)

Γ; K ` e1 : τ1
K′|H3−−−−→ τ2 . H1; Λ1 Γ; K ` e2 : τ1 . H2; Λ2 K ′ v K
Γ; K ′ ` e1 e2 : τ2 . H1 ·H2 ·H3; Λ1] Λ2

Figure 5.3: Typing rules for standard ML constructs

28

(Tfact)

Γ; K ` F : fact{F} . ε; ⊥

(Ttell)

Γ; K ` e : factφ . H; Λ

Γ; K ` tell(e)l : unit .

H ·
∑
Fi∈φ

tell F lii

l′

; Λ
⊎
Fi∈φ

[li 7→ l]

(Tretract)

Γ; K ` e : factφ . H; Λ

Γ; K ` retract(e)l : unit .

H ·
∑
Fi∈φ

retract F lii

l′

; Λ
⊎
Fi∈φ

[li 7→ l]

(Tvariation)

∀i ∈ {1, . . . , n}
γ(Gi) = −→yi : −→τi Γ, x : τ1,

−→yi : −→τi ;K ′ ` ei : τ2 . Hi; ,Λi
∆ = ask G1.H1 ⊗ · · · ⊗ ask Gn.Hn ⊗ fail

Γ; K ` (x){G1.e1, . . . , Gn.en} : τ1
K′|∆

===⇒ τ2 . ε;
⊎

i∈{1,...,n}

Λi

(Tvapp)

Γ; K ` e1 : τ1
K′|∆

===⇒ τ2 . H1; Λ1 Γ; K ` e2 : τ1 . H2; Λ2 K ′ v K
Γ; K ` #(e1, e2) : τ2 . H1 ·H2 ·∆; Λ1] Λ2

(Tappend)

Γ; K ` e1 : τ1
K′|∆1

====⇒ τ2 . H1; Λ1 Γ; K ` e2 : τ1
K′|∆2

====⇒ τ2 . H2; Λ2

Γ; K ` e1 ∪ e2 : τ1
K′|∆1⊗∆2

=======⇒ τ2 . H1 ·H2; Λ1] Λ2

(Tpar)

K(x̃) = (τ, ∆)

Γ; K ` x̃ : τ .∆; ⊥

(Tdlet)

Γ,−→y :
−→̃
τ ; K ` e1 : τ1 . H1; Λ1 Γ; K, (x̃, τ1, ∆′) ` e2 : τ . H; Λ2

Γ; K ` dlet x̃ = e1 whenG in e2 : τ . H; Λ1] Λ2

where γ(G) = −→y :
−→̃
τ

if K(x̃) = (τ1, ∆) then ∆′ = G.H1 ⊗∆
else (if x̃ /∈ K then ∆′ = G.H1 ⊗ fail)

Figure 5.4: Typing rules for new constructs

29

Type and effect of expressions Rules for standard ML constructs are
shown in Figure 5.3 and need no comment. From now on, we focus on the
rules for the constructs introduced in MLCoDa(displayed in Figure 5.4).

The rule (Tfact) says that a fact F has type fact annotated with the sin-
gleton {F} and empty effect. The rule (Ttell)/(Tretract) asserts that the
expression tell(e)/retract(e) has type unit, provided that the type of e is factφ.
The overall effect is obtained by concatenating the effect of e with the nondeter-
ministic summation of tell F/retract F where F is any of the facts in the type
of e.

In rule (Tvariation) we determine the type for each subexpression ei under
K ′ and the environment Γ extended by the type of x and of the variables −→yi oc-
curring in the goal Gi (recall that the Datalog typing function γ returns a list of
pairs (z, type-of-z) for all variable z of Gi). Note that all subexpressions ei have
the same type τ2. We also require that the abstract variation ∆ results from con-
catenating ask Gi with the effect computed for ei. The type of the behavioural
variation is annotated by K ′ and ∆. Consider, e.g., the behavioural variation
bv1 = (x){G1.e1, G2.e2}. Assume that the two cases of this behavioural vari-
ation have type τ and effects H1 and H2, respectively, under the environment
Γ, x : int (goals have no variables) and the guessed environment K ′. Hence, the

type of bv1 will be int
K′|∆

===⇒ τ with ∆ = ask G1.H1⊗ ask G2.H2⊗ fail and the
effect will be empty.

The rule (Tvapp) type-checks behavioural variation applications and reveals
the role of preconditions. As expected, e1 is a behavioural variation with pa-
rameter of type τ1 and e2 has type τ1. We get a type if the environment K ′,
that acts as a precondition, is included in K according to v. The type of the
behavioural variation application is τ2, i.e., the type of the result of e1, and
the effect is obtained by concatenating the ones of e1 and e2 with the history
expression ∆, occurring in the annotation of the type of e1. Consider, e.g., bv1

above, its type and its empty effect ε. Assume to type-check e = #(bv1, 10)
in the environments Γ and K. If K ′ v K, the type of e is τ and its effect is
ε ·∆ = ask G1.H1 ⊗ ask G2.H2 ⊗ fail .

The rule (Tappend) asserts that two expressions e1, e2 with the same type
τ , except for the abstract variations ∆1,∆2 in their annotations, and effects H1

and H2, are combined into e1 ∪ e2 with type τ , and concatenated annotations
and effects. More precisely, the resulting annotation has the same precondition
K ′ of e1 and e2 and abstract variation ∆1 ⊗∆2, and effect H1 ·H2.

In rule (Tpar) we look for the type and the effect of the parameter x̃ in
the environment K. The rule (Tdlet) requires that e1 has type τ1 in the
environment Γ extended with the types for the variables −→y of the goal G. Also,
e2 has to type-check in an environment K extended with the information for
parameter x̃. The type and the effect for the overall dlet expression are the
same of e2.

Handling the labelling environment The labelling environment generated
by the rule (Tconst) is the empty one ⊥. This is because no tell or retract

30

l 1 2 3 4 5 6 7 8 9
Λ(l) 1 2 ⊥ 3 4 ⊥ ⊥ 5 ⊥

l 1 2 3 4 5 6 7 8 9
Λ′(l) 1 1 ⊥ 2 3 ⊥ ⊥ ⊥ ⊥

Figure 5.5: The labelling environment Λ for the expression ea and its history
expression Ha of Section 3 (on top); a non-injective environment Λ′ (on the
bottom).

occurs in the body of the expressions being typed, that as a matter of fact is
just a value. The same happens for the rules (Tvar), (Tfact) and (Tpar),
respectively for typing facts and parameters.

The most interesting rules are (Ttell) and (Tretract). They update the
current environment Λ by associating all the labels of the facts which e can
evaluate to, with the label l of the tell(e) (retract(e), resp.) being typed.

All the other rules just collect the associations created while typing the
subexpressions. This is done either with widening or by explicitly merging
the labelling environments. The first is the case of (Tif): here we force the
expressions e1, e2 and e3 to yield the same environment Λ (just like e2 and e3 are
forced to have the same type τ). For the other case, consider as instance the rule
(Tlet): it produces an environment Λ that contains all the correspondences of
Λ1 and Λ2 coming from e1 ed e2; note that unicity of the labelling is guaranteed
by the condition dom(Λ1) ∩ dom(Λ2) = ∅.

As an example, Figure 5.5 (top) shows again the correspondence of the labels
in the expression ea and those of its history expression Ha of Chapter 3 (already
recalled also in Section 5.1).

Note that a labelling environment needs not to be injective: this is because
rules (Ttell) and (Tretract) can map different li ∈ LabH into the same l ∈
LabC . This happens when the type factφ is annotated with a set φ consist of
more than a single fact. Consider, e.g., the ambient Λ′ in Figure 5.5 (bottom
part), computed for

e′a = let x =

tell(if y then F1 else F2)
1

in

← F5.retract F2
8,

← F3.retract F3
4

and for its history expression

H ′a = ((tell F 1
1 + tell F 2

2)3 · (ask F5.retract F
4
8 ⊗ (ask F3.retract F

5
4 ⊗ fail6)7)8)9

Here, the non-injectivity comes from the fact that the conditional expression
if y then F1 else F2 can evaluate either to F1 or F2. Thus, the corresponding

31

tell construct (labelled with 1) has type fact{F1,F2} and is abstracted by the
history expression (tell F1 + tell F2).

5.3 Soundness

Our type and effect system is sound with respect to the operational seman-
tics. Here, we recall the results presented in [19], adapting them to our present
extension of the type and effect system. It is convenient to introduce the fol-
lowing technical definitions (we denote with Krx̃ the environment obtained by
removing from K the association for x̃).

Definition 5.2 (Typing dynamic environment). Given the type environments
Γ and K, we say that the dynamic environment ρ has type K under Γ (in
symbols Γ ` ρ : K) iff dom(ρ) ⊆ dom(K) and ∀x̃ ∈ dom(ρ) :

- ρ(x̃) = G1.e1, . . . , Gn.en,

- K(x̃) = (τ, ∆), and

- ∀i ∈ {1, . . . , n} . γ(Gi) = −→yi : −→τi and Γ,−→yi : −→τi ;Krx̃ ` ei : τ ′ . Hi where
τ ′ ≤ τ and

⊗
i∈{1,...,n}Gi.Hi v ∆.

Definition 5.3. Given H1, H2 then H1 4 H2 iff one of the following cases holds

(a) H1 v H2; (b) H2 = H3 ·H1 for some H3;

(c) H2 =
⊗

i∈{1,...,n} ask Gi.Hi ⊗ fail ∧ H1 = Hi, i ∈ [1..n].

Intuitively, the above definition formalises the fact that the history expres-
sion H1 could be obtained from H2 by evaluation.

The soundness of our type and effect system easily derives from the following
standard results.

Theorem 5.3.1 (Preservation). Let es be a closed expression; and let ρ be a
dynamic environment such that dom(ρ) includes the set of parameters of es and
such that Γ ` ρ : K.
If Γ; K ` es : τ . Hs; Λs and ρ ` C, es → C ′, e′s then Γ; K ` e′s : τ . H ′s; Λ′s
for some H ′s, Λ′s, where

- there exists H such that H ·H ′s 4 Hs and C,H ·H ′s →+ C ′, H ′s, and

- Λ′s v Λs.

Proof. See Appendix A.

The Progress Theorem assumes that the effect H does not reach fail, i.e.,
that the dispatching mechanism succeeds at runtime. We take care of ensuring
this property in Section 6 (we write ρ ` C, e 9 to intend that there exists no
transition outgoing from C, e; same for history expressions).

32

Theorem 5.3.2 (Progress).
Let es be a closed expression such that Γ;K ` es : τ . Hs; Λs; and let ρ be a
dynamic environment such that dom(ρ) includes the set of parameters of es,
and such that Γ ` ρ : K.
If ρ ` C, es 9 ∧ C, Hs 9+ C ′, fail then es is a value.

Proof. See [19], Appendix B.1.

The following corollary ensures that the history expression obtained as an
effect of e over-approximates the actions that may be performed over the context
during the evaluation of e.

Corollary 5.3.3 (Over-approximation). Let e be a closed expression.
If Γ;K ` e : τ . H; Λs ∧ ρ ` C, e→? C ′, e′, for some ρ such that Γ ` ρ : K,
then there exists a sequence of transitions C, H →? C ′, H ′, for some H ′.

Proof. See [19], Appendix B.1.

Note that the type of e′ is the same of e, because of Theorem 5.3.1. Fur-
thermore, the labelling environment Λ′s obtained by typing e′ is included in
Λs.

33

34

Chapter 6

Loading-time Analysis

Our execution model for MLCoDa extends that of [19]: the compiler produces
a quadruple (Cp, ep, Hp, Λp) composed by the application context, the object
code, the history expression over-approximating the behaviour of ep and the
labelling environment associating labels of Hp with those in the code. Given
(Cp, ep, Hp, Λp), at loading time the virtual machine performs:

• a linking phase, in which the virtual machine of MLCoDa resolves sys-
tem variables and constructs the initial context C (combining Cp and the
system context); and

• a verification phase, in which a graph G describing the possible evolutions
of C is built, starting from Hp.

We exploit G in order to (i) verify whether applications adapt to all evolutions
of C, i.e., that all dispatching invocations will always succeed (only programs
which pass this verification phase will be run), as done in [19]; and (ii) detect
which tell/retract may lead to a violation of the system policy (see Section 7).

Technically, we compute G through a static analysis, specified in terms of
Flow Logic [37]. Below, we describe the specification of our analysis, and we in-
troduce the notion of viable history expressions. Intuitively, a history expression
is viable for an initial context if the dispatching mechanism always succeeds.

To support the formal development, we assume that all bound variables
occurring in a history expression are distinct. So we can define a function K
mapping a variable hl to the history expression (µh.H l1

1)l2 that introduces it.

6.1 Analysis

The static approximation is represented by a pair (Σ◦,Σ•), called estimate for
H, with Σ◦,Σ• : Lab → ℘(Context ∪ {•}) and where • is the distinguished
“failure” context representing a dispatching failure. For each label l,

35

• the set Σ◦(l) over-approximates the set of contexts that may arise before
evaluating H l (call it pre-set); while

• Σ•(l) over-approximates the set of contexts that may result from the eval-
uation of H l (call it post-set).

The analysis is specified in terms of a set of clauses that operate upon judgments
in the form (Σ◦,Σ•) � H l, where

� ⊆ AE ×H

and AE = (Lab → ℘(Context ∪ {•}))2 is the domain of the results of the
analysis (called analysis estimates) and H the set of history expressions. The
judgment (Σ◦,Σ•) � H l expresses that Σ◦ and Σ• constitute an acceptable
analysis estimate for the history expression H l.

The notion of acceptability will then be used in Definition 6.2 to check
whether the history expression Hp, hence the expression e it is an abstraction
of, will never fail in a given initial context C.

In Figure 6.1 we give the set of inference rules that validate the correctness
of a given estimate, as presented in [19]. Now, we comment on them, where E
denotes the estimate (Σ◦,Σ•).

Intuitively, the estimate components take into account the possible dynamics
of the language evaluation. The checks in the clauses mimic the semantic evolu-
tion of contexts, by modelling the semantic preconditions and the consequences
of the possible reductions.

The rule (Anil) says that every pair of functions is an acceptable estimate
for the “semantic” empty history expression �. The estimate E is acceptable for
the “syntactic” εl if the pre-set is included in the post-set (rule (Aeps)). In the
rule (Atell) the analysis checks whether the context C is in the pre-set, and
the context C ∪ {F} is in the post-set; similarly for (Aretract), where C\{F}
should be in the post-set. The rules (Aseq1) and (Aseq2) handle the sequential
composition of history expressions. The rule (Aseq1) states that (Σ◦,Σ•) is
acceptable for H = (H l1

1 · H
l2
2)l if it is valid for both H1 and H2. Moreover,

the pre-set of H1 must include that of H and the pre-set of H2 includes the
post-set of H1; finally, the post-set of H includes that of H2. The rule (Aseq2)

states that E is acceptable for H = (� ·H l2
1)l if it is acceptable for H1 and the

pre-set of H1 includes that of H, while the post-set of H includes that of H1.
By the rule (Asum), E is acceptable for H = (H l1

1 + H l2
2)l if it is valid for H1

and H2; the pre-set of H is included in the pre-sets of H1 and H2, and the
post-set of H includes those of H1 and H2. The rules (Aask1) and (Aask2)

handle the abstract dispatching mechanism. The first states that the estimate
E is acceptable for H = (askG.H l1

1 ⊗ ∆l2)l, provided that, for all C in the
pre-set of H, if the goal G succeeds in C then the pre-set of H1 includes that
of H and the post-set of H includes that of H1. Otherwise, the pre-set of ∆l2

must include the one of H and the post-set of ∆l2 is included in that of H. The
rule (Aask2) requires • to be in the post-set of fail. By the rule (Arec) E is
acceptable for H = (µh.H l1

1)l if it is acceptable for H l1
1 and the pre-set of H1

36

(Anil)

(Σ◦,Σ•) ��

(Aeps)

Σ◦(l) ⊆ Σ•(l)

(Σ◦,Σ•) � ε
l

(Atell)

∀C ∈ Σ◦(l) C ∪ {F} ∈ Σ•(l)

(Σ◦,Σ•) � tell F
l

(Aretract)

∀C ∈ Σ◦(l) C\{F} ∈ Σ•(l)

(Σ◦,Σ•) � retract F
l

(Aseq1)

(Σ◦,Σ•) � H
l1
1

(Σ◦,Σ•) � H
l2
2 Σ◦(l) ⊆ Σ◦(l1) Σ•(l1) ⊆ Σ◦(l2) Σ•(l2) ⊆ Σ•(l)

(Σ◦,Σ•) � (H l1
1 ·H

l2
2)l

(Aseq2)

(Σ◦,Σ•) � H
l2
2 Σ◦(l) ⊆ Σ◦(l2) Σ•(l2) ⊆ Σ•(l)

(Σ◦,Σ•) � (� ·H l2
2)l

(Asum)

(Σ◦,Σ•) � H
l1
1 Σ◦(l) ⊆ Σ◦(l1) Σ•(l1) ⊆ Σ•(l)

(Σ◦,Σ•) � H
l2
2 Σ◦(l) ⊆ Σ◦(l2) Σ•(l2) ⊆ Σ•(l)

(Σ◦,Σ•) � (H l1
1 +H l2

2)l

(Aask1)

∀C ∈ Σ◦(l)

(C � G =⇒ (Σ◦,Σ•) � H
l1 Σ◦(l) ⊆ Σ◦(l1) Σ•(l1) ⊆ Σ•(l))

(C 2 G =⇒ (Σ◦,Σ•) � ∆l2 Σ◦(l) ⊆ Σ◦(l2) Σ•(l2) ⊆ Σ•(l))

(Σ◦,Σ•) � (askG.H l1 ⊗∆l2)l

(Aask2)

• ∈ Σ•(l)

(Σ◦,Σ•) � fail
l

(Arec)

(Σ◦,Σ•) � H
l1 Σ◦(l) ⊆ Σ◦(l1) Σ•(l1) ⊆ Σ•(l)

(Σ◦,Σ•) � (µh.H l1)l

(Avar)

K(h) = (µh.H l1)l
′

Σ◦(l) ⊆ Σ◦(l
′) Σ•(l

′) ⊆ Σ•(l)

(Σ◦,Σ•) � h
l

Figure 6.1: Specification of the analysis for History Expressions

37

includes that of H and the post-set of H includes that of H1. The rule (Avar)

says that a pair (Σ◦,Σ•) is an acceptable estimate for a variable hl if the pre-set
of the history expression introducing h, namely K(h), is included in that of hl,
and the post-set of hl includes that of K(h).

6.2 From valid estimates to evolution graphs

We are now ready to introduce when an estimate for a history expression is
valid for an initial context.

Definition 6.1 (Valid analysis estimate). Given H
lp
p and an initial context

C, we say that a pair (Σ◦,Σ•) is a valid analysis estimate for Hp and C iff

C ∈ Σ◦(lp) and (Σ◦,Σ•) � H
lp
p .

Semantic properties The following theorems state the correctness of our ap-
proach. The first guarantees that there exists a minimal valid analysis estimate,
showing that the set of acceptable analyses forms a Moore family [37].

Theorem 6.2.1 (Existence of solutions). Given H l and an initial context C,
the set {(Σ◦,Σ•) | (Σ◦,Σ•) � H l} of the acceptable estimates of the analysis for
H l and C is a Moore family; hence, there exists a minimal valid estimate.

Proof. See [19], Appendix C.

As expected, we have a standard subject reduction theorem, saying that
the information recorded by a valid estimate is correct with respect to the
operational semantics of history expressions.

Theorem 6.2.2 (Subject Reduction). Let H l be a closed history expression
such that (Σ◦,Σ•) � H l.
If for all C ∈ Σ◦(l) it is C,H l → C ′, H ′l

′
then (Σ◦,Σ•) � H ′l

′
and Σ◦(l) ⊆ Σ◦(l

′)
and Σ•(l

′) ⊆ Σ•(l).

Proof. See [19], Appendix C.

Viability of history expressions We now define when a history expression
Hp is viable for an initial context C, i.e., when it passes the verification phase.
Below, let lfail(H) be the set of labels of the fail sub-terms in H:

Definition 6.2 (Viability). Let Hp be a history expression and C be an initial
context. We say that Hp is viable for C if there exists the minimal valid analysis
estimate (Σ◦,Σ•) such that ∀l ∈ dom(Σ•)\lfail(HP) it is • /∈ Σ•(l).

We present now a couple of examples to illustrate how viability is checked.
Consider the history expression

Hp = ((tell F 1
1 ·retract F 2

2)3+(ask F5.retract F
5
8⊗(ask F3.retract F

6
4⊗fail7)8)4)9

38

Σ1
◦ Σ1

•
1 {{F2, F5, F8}} {{F1, F2, F5, F8}}
2 {{F1, F2, F5, F8}} {{F1, F5, F8}}
3 {{F2, F5, F8}} {{F1, F5, F8}}
4 {{F2, F5, F8}} {{F2, F5}}
5 {{F2, F5, F8}} {{F2, F5}}
6 ∅ ∅
7 ∅ {•}
8 ∅ ∅
9 {{F2, F5, F8}} {{F1, F5, F8},{F2, F5}}

{F2, F5, F8}

{F1, F2, F5, F8} {F2, F5}

{F1, F5, F8}

{1} {5}

{2}

Figure 6.2: The analysis result (on top) and the evolution graph (on bottom)
for the context C = {F2, F5, F8} and the history expression Hp = ((tell F 1

1 ·
retract F 2

2)3 + (ask F5.retract F
5
8 ⊗ ask F3.retract F

6
4 ⊗ fail7)4)8.

and the initial context C = {F2, F5, F8}, consisting of facts only. For each label
l occurring in Hp, Figure 6.2 shows the corresponding values of Σ1

◦(l) and Σ1
•(l),

respectively. We can observe, e.g., that the pre-set for the tell labelled with
1 includes {F2, F5, F8}, while the post-set includes {F1, F2, F5, F8}; similarly,
the pre-set for the remove labelled with 5 includes {F2, F5, F8}, while the post-
set includes {F2, F5}. The column describing Σ• contains • only for l = 7 which
is the label of fail , so Hp is viable for C.

Now consider the following history expression that fails to pass the verifica-
tion phase, when put in the same initial context C used above:

H ′p = ((tell F 1
1 · retract F 2

2)3 + (ask F3.retract F
5
4 ⊗ fail6)4)7

Indeed H ′p is not viable because the goal F3 does not hold in C, and this is
reflected by the occurrences of • in Σ2

•(4) and Σ2
•(7) as shown in Figure 6.3.

Now we exploit the result of the above analysis to build up the evolution
graph G describing how the initial context C evolves at runtime, paving our
way to security enforcement. Intuitively, G is a direct graph, the nodes of which
are sets of contexts and there is an arc between two nodes C1 and C2 if C2 is
obtained from C1 through adding or removing a fact F .

39

Σ2
◦ Σ2

•
1 {{F2, F5, F8}} {{F1, F2, F5, F8}}
2 {{F1, F2, F5, F8}} {{F1, F5, F8}}
3 {{F2, F5, F8}} {{F1, F5, F8}}
4 {{F2, F5, F8}} {•}
5 ∅ ∅
6 {{F2, F5, F8}} {•}
7 {{F2, F5, F8}} {{F1, F5, F8}, •}

{F2, F5, F8}

{F1, F2, F5, F8} •

{F1, F5, F8}

{1} {}

{2}

Figure 6.3: The analysis result (on top) and the evolution graph (on bottom)
for the context C = {F2, F5, F8} and the history expression H ′p = ((tell F 1

1 ·
retract F 2

2)3 + (ask F3.retract F
5
4 ⊗ fail6)4)7

In the following let Fact∗ and Lab∗H be the set of facts and the set of labels
occurring in Hp, the history expression under verification.

Definition 6.3 (Evolution Graph). Let Hp be a history expression, C be an
initial context, and (Σ◦,Σ•) be a valid analysis estimate.
The evolution graph of C is G = (N,E,L), where

N =
⋃

l∈Lab∗H

(Σ◦(l) ∪ Σ•(l))

E = {(C1, C2) | ∃F ∈ Fact∗, l ∈ Lab∗H s.t. C1 ∈ Σ◦(l) ∧ C2 ∈ Σ•(l) ∧
(h(l) ∈ {tell(F), retract(F)} ∨ (C2 = •))}

L : E → ℘(Labels)

∀t =(C1, C2) ∈ E, l ∈ L(t) iff C1 ∈ Σ◦(l) ∧ C2 ∈ Σ•(l) ∧ h(l) 6= fail

As examples of evolution graph consider the context C and the history ex-
pressions Hp and H ′p introduced in the examples above. The evolution graph
of C for Hp is in Figure 6.2. From the initial context there is an arc with label
1 to the context C ∪ F1, because of the tell1; also, there is an arc labelled 5 to
the context without F8, because of retract5.

40

Clearly, the evolution graph G tell us when the dispatching mechanism al-
ways succeeds: it is sufficient to verify that the failure context • is not reachable
from the initial context C. Back to our examples, it is easy to see that Hp is
viable for C, because the node • is not reachable from C in the graph for Hp.
Instead, H ′p is not viable, because • is reachable in the evolution graph for H ′p,
displayed in Figure 6.3.

Note that labels of G also indicate which tell/retract may lead to a context
violating the security policy Φ: in Chapter 7 we will exploit their correspondence
with the labels in the code to enforce security checks.

41

42

Chapter 7

Code instrumentation

Now, we present the second component of our analysis. The previous chapter
was about functional concerns of the language, that is, guaranteeing that a call
to the dispatching mechanism never fails due to impossibility to adapt to the
current context. Here we care abount security concerns: our efforts are aimed
at preventing the application from violating the security policy Φ to obey. We
reuse the information previouly collected, starting from the evolution graph and
checking which reacheable contexts (if any) do not satisfy Φ; furthermore, we
safely estimate which actions may lead to one of those contexts, and conse-
quently instruct an ad-hoc runtime monitor. We proceed in two steps: the first
one extracts new information from the graph; the second one uses it to monitor
the execution steps. In the following, we formally describe our methodology.

7.1 A further static analysis step

We preliminarily detect which are the potential risky operations the application
can perform through a static analysis of the evolution graph G. The occurrence
of these risky actions will then be guarded by our runtime monitor ; on the
others the monitor will be switched off.

Safe and unsafe transitions Since a node n of G = (N,E,L) represents
a context that the application may reach during its execution, we first verify
whether n satisfies Φ. We thus individuate the set of all the nodes corresponding
to forbidden contexts

RN = {n ∈ N such that Φ does not hold in n}

We then consider all the incoming edges of this nodes, building the set of the
risky transitions

RE = {t = (n1, n2) | n2 ∈ RN}

43

{F5, F8}

{F1, F5, F8}

{F1, F2, F5, F8} {F1, F3, F5, F8}

{F1, F2, F4, F5, F8} {F1, F3, F4, F5, F8}

{1, 4}
{2}

{5}

{8} {8}

Figure 7.1: The evolution graph for the context C ⊇ {F5, F8} and the history
expression Ha = (((tell F 1

1 .tell F
2
2)3 + (tell F 4

1 .tell F
5
3)6)7.tell F 8

4)9 under policy
Φ ≡ ¬F2∨¬F4∨¬F8. The (possible) sources of policy violation are highlighted
in red, and represent the sets RN , RE , and RL.

and the set of their labels

RL =
⋃
t∈RE

L(t) ⊆ LabH

We eventually take advantage of the labelling environment Λ, computed
while type checking the application, for building the set of those portions of the
code that require to be monitored during the execution

Risky = Λ(RL) = {Λ(l) | l ∈ RL}

Clearly, if RN results empty then also Risky will be empty, and we are sure
that no policy violation will occur during the application execution. This is
summerised by the following proposition.

Proposition 7.1.1 (Soundness of overapproximation). Consider an application
having an evolution graph G = (N,E,L) and running under a security policy
Φ. Let RN ⊆ N be the set of the nodes that violate Φ, as discussed above. If
RN = ∅ then also Risky = ∅, and no policy violation occurs during the execution
of the application.

Proof. Straightforward from the fact that the set N represents all the contexts
possibly arising at runtime.

Consider once more the evolution graph of Figure 7.1 in Chapter 3; suppose
again that the security policy Φ requires ¬F2∨¬F4∨¬F8, and that the labelling
environment is Λ ≡ {1 7→ 1, 2 7→ 2, 4 7→ 3, 5 7→ 4, 8 7→ 5}. The leftmost node
on the bottom (say n̄, in red in the figure), that is, the context including the
facts {F1, F2, F4, F5, F8} is the only one that violates Φ. Then, the set RN
consist only of the node n̄. Since it has only one incoming edge, say t̄, we have

44

RE = {t̄} and RL = {L(t̄)} = {8}. Applying the labelling environment, we
finally find Risky = {Λ(8)} = {5}, which means that the only tell/retract
that has to be guarded during the execution of the application is the one labelled
by 5 inside the code.

Safe and unsafe states After having recognised the potential risky opera-
tions, we can detect (a subset of) the contexts that never raise violations and
(a superset of) those who may. Indeed, being G a directed graph, there may
exist some nodes from which we cannot reach any node in RN . Thus, we split
the nodes of the graph in two classes: the ones from which there exists a path
leading to a node in RN and the others. If at runtime we reach a node of the
last class, we are sure that a policy violation will never occur in the future.

Definition 7.1 (Red and blue nodes). Given the graph G = (N,E,L) and the
set RN ⊆ N , let Red ⊆ N of the unsafe nodes be the smallest set satisfying the
following conditions:

- Rn ⊆ Red;

- if t = (n1, n2) ∈ E and n2 ∈ Red then n1 ∈ Red.

Conversely, we define the set of safe nodes as Blue = N rRed.

The following observation immediately follows from the above definition.

Observation 1. Given a node n ∈ N , we have that if n ∈ Red then there exists
a path starting from n and leading to a node in RN . Moreover, if such a path
exists then n ∈ Red.

If we go back to the graph (and the policy) presented in Figure 7.1, where
RN contains the leftmost node on the bottom, it is easy to distinguish its red
and blue nodes. The resulting sets are shown in Figure 7.2 (the blue nodes are
the two rightmost ones on the bottom). Here we do not explicit the labels of
the edges, just because they are not relevant.

7.2 Handling the runtime monitor

Once the information about safe and unsafe nodes and transitions has been
fully collected, we can present how our runtime monitor is implemented and
switched on and off. Recall that the operations that may result in a policy
violation are tell/retract, because they may modify the context. Therefore,
we have to consider all of them and investigate their effects. In doing this we
exploit information about which of them are risky and which are not, as specified
by the static analysis discussed above.

A naive solution More in detail, we want the security policy Φ to be cheched
immediately after a potential risky operation, that is, a tell/retract whose
label belongs to the set Risky. To do that, the compiler has to provide specific

45

{F5, F8}

{F1, F5, F8}

{F1, F2, F5, F8} {F1, F3, F5, F8}

{F1, F2, F4, F5, F8} {F1, F3, F4, F5, F8}

Figure 7.2: The sets Red and Blue for the evolution graph of Figure 7.1, under
the same policy Φ.

support. Its actions can be summarised in the following two points: (i) labelling
the source code as seen in Chapters 3 and 4 and (ii) generating specific calls to
trampoline-like procedures. For now, assume as given a procedure for verifying
whether the policy Φ is satisfied or not, say check_whether_policy_violation(l),
that takes a label l as parameter and has return type unit. A first, straightfor-
ward solution may be the following compilation schema: replace every tell(e)l

in the source code with the following:

let z = tell(e) in

check_whether_policy_violation(l)

where z is a fresh name; and do the analogous for every retract(e)l:

let z = retract(e) in

check_whether_policy_violation(l)

Note in passing that the so obtained code is again fully written in MLCoDa, so
we do not need any new mechanism to be introduced; moreover, this kind of
translation is type-preserving: indeed the type of the let construct is that of
check_whether_policy_violation(l), which is unit, just like that of the tell.
Last but not least, note that we have a lightweight form of code instrumenta-
tion that does not operate with the object code, differently from the standard
instrumentations. Of course, we could have chosen to deal directly with the
object code, but we preferred this approach, that works at a more abstract level
and makes things simpler to deal with. In particular, our way is independent
of the compilation schema and additionally it requires no modification to the
compiler.

As said above, not all tell/retract expressions need the policy Φ to be
checked again. The information gathered from the graph G and represented by
the set Risky is used at linking time to set a global mask risky[], assigned for

46

each label l ∈ LabC , as follows:

risky[l] =

{
true if l ∈ Risky
false otherwise

Now we can specify the procedure check_whether_policy_violation. Intuitively,
it looks at risky[l]: if the value is false then no policy check is needed, the
procedure returns to the caller and the execution goes on normally. Otherwise
we have a call for a check on the policy Φ. The (pseudo) MLCoDa of this
procedure is:

fun check_whether_policy_violation l =

if risky[l] then

ask phi.()

else

()

Note that the call ask phi.() triggers a call to the dispatching mechanism that
implements the check against the policy Φ: if the dispatching fails then a policy
violation has been observed and the computation is aborted. This is indeed what
we require to a runtime monitor: stop the application when a policy violation
is about to occur.

A better solution The mechanism above induces a considerable overhead, in-
troducing a procedure call each time we have an action that modifies the context.
It is easy to speed it up, avoiding to invoke the procedure check_whether_policy_

violation when the analysis of the evolution graph ensures that all the occur-
rences of tell/ retract are perfectly safe, because there is no execution path
leading to a policy violation: this happens if and only if the set RN (and, con-
sequently, Risky) is empty. Still, a finer improvement is possible: whenever a
tell/retract occurs leading to a new context C̃, one can look at the node ñ
of G corresponding to C̃. If n̄ ∈ Blue, then from now on no execution path
leading to a policy violation exists, and the runtime monitor can be definitively
switched off. To implement this optimization, we introduce the flag always_ok.
Its value is initially computed at linking time, but it can be dinamically updated
at runtime: once always_ok turns out to be true, no check is any longer needed
and the monitor is switched off.

Then, we refine the previously compilation schema by testing the value of
always_ok before calling our check procedure. All the occurrences tell(e)l in
the source code are now replaced by

let z = tell(e) in

if not(always_ok) then

check_whether_policy_violation(l)

Similarly for the occurrences of retract(e)l:

let z = retract(e) in

if not(always_ok) then

check_whether_policy_violation(l)

47

In this way, the execution time is likely to be reduced, because some costly, and
useless security checks are not performed. Clearly, the bigger is the size of Blue
with respect to that of Red, the sooner (in expectation) the runtime monitor is
switched off. It is reasonable to assume that execution paths leading to a policy
violation are rare, which results in a cardinality of Blue quite close to that of
N and consequently in a (averagely) reduced overhead.

48

Chapter 8

A recovery strategy

The solution to the policy violation problem presented in Chapter 7 forces the
application to stop its execution whenever it tries to make an action leading
the context in a state with a violation. This strategy is clearly limiting, and
its consequences can be unpleasant: one would like to provide the possibility of
going back and taking different choices, so that the operativity of the application
itself does not result fully compromised.

8.1 The need for a new mechanism

The language MLCoDa has two constucts that cause a branching in the program
flow: they are if-then-else and (behavioural) variations. The conditional con-
struct is guarded by a variable whose value is, generally, dynamically computed.
We cannot predict or modify this value, so we cannot “artificially” force the ex-
ecution of a branch rather than the other. But something can be done in case of
behavioural variations. Recalling the semantics presented in Chapter 4, we only
evaluate the expression corresponding to the leftmost satisfied goal. But what if
other goals are satisfied? This is the general scenario: some expression are not
evaluated even though their guard would allow for their execution. So, if the
highest-priority expression (that is, the leftmost one) causes security problem,
one can try to evaluate one of the others. From the user’s point of view this
proposal is acceptable: a behavioural variation is not indeed a construct for
mutually exclusion, but just for providing adaptivity. In this way, we try to
adapt the application not only to the context but to the security policy, too.

Consider, for instance, the expression e = G1.e1, G2.e2, G3.e3, and suppose
that the goal G2 is the only one that is not satisfied by the current context;
suppose also that the expression e1 is the only one leading to a policy violation.
Being G1 satisfied, the application would proceed executing e1, and the runtime
monitor would block it due to the policy violation. Then, a possible strategy
may be testing the other goals: being G3 also satisfied we would evaluate the
expression e3, allowing for a correct execution of the application.

49

Recalling again the example of the multimedia guide to a museum seen in
Chapter 3, consider the function getExhibitData(): it may happen that the
goal ← direct_comm() is satisfied by the current context but for some reasons
the call to getChannel() results in a policy violation, therefore not allowing
for a direct communication through the available channels. Assuming that the
goal ← use_qrcode(decoder), camera(cam) is also satisfied, the application may
proceed taking a picture of the QR code and decoding it. An alternative form
of execution is then taken, which is both correct from the user’s perspective and
(hopefully) compatible with the security policy imposed by the system.

Try-catch vs behaviural variations An immediate strategy to handle the
problem of security violation can be providing MLCoDa with a try-catch con-
struct. In this way, one would be able to catch the exceptions related to a policy
violation and execute a different piece of code accordingly. This is also accept-
able, but does not add any expressivity to the language if we assume already
given the recovery strategy sketched above. Indeed, we have to distinguish two
mutually exclusive cases: (i) the user has no knowledge of the system policy or
(ii) the user knows a set P of security policies, from which the system chooses
its current one (clearly, if P contains a single element then the user has full
knowledge of the policy). In the first case, the code in the catch block can-
not be parametric in the exception, because we do not know anything about it;
then, this code could easily be expressed with a (piece of) behavioural variation,
possibly guarding the resulting expression with a goal which is always true. For-
mally, the code try {V a} catch() {e} is the same as V a, ← true. e. Suppose,
as an example, that one wants to try to take a picture; in case this action results
forbidden, he wants to switch off the flash and try again. Recalling the example
presented in Chapter 3, this can be easily expressed as follows:

try {

← photocamera_started. tell button_clicked

} catch () {

let x = tell photocamera_started in

let y = retract flash_on in

tell button_clicked

}

Thanks to the recovery mechanism, this is exactly the same as

← photocamera_started. tell button_clicked ,

← true. let x =

tell photocamera_started

in

let y = retract flash_on

in

tell button_clicked

In the other case, if we know that the current policy Φ comes from a fixed set
P, then we can collect information about Φ by just asking datalog goals. Thus,
the code in the catch block can be now parametric in the type of the exception.

50

The same effect can be obtained with a behavioural variation setting the goals
properly.

Finally, the user may want to specify a different catch block for each expres-
sion in the behavioural variation: the construct becomes G1. try {e1} catch()
{e′1}, . . . , Gn. try {en} catch() {e′n}. As an example of its usage, consider the
following piece of code:

← photocamera_started.

try {

tell button_clicked

} catch () {

let y = retract flash_on in

tell button_clicked

} ,

← ¬ photocamera_available.

/* do something else */

Here, the catch block is not common to all the expressions in the behavioural
variation under consideration. Rather, it is specific of the expression guarded
by the goal ← photocamera started.

Again, this can be expressed in MLCoDa without extending its syntax. We
just need to repeat the goal, as follows: G1.e1, G1.e

′
1, . . . , Gn.en, Gn.e

′
n. The

equivalence of the two expressions above is justified by the following intuition.
If an expression ei fails due to policy violation, then the recovery strategy im-
mediately tries to execute e′i, being its goal Gi obviously satisfied. Back to the
example, the behavioural variation can therefore be written without using any
try-catch construct, as follows:

← photocamera_started.

tell button_clicked ,

← photocamera_started.

let y = retract flash_on in

tell button_clicked ,

← ¬ photocamera_available.

/* do something else */

Thus, we can conclude that providing a try-catch construct would be just syn-
tactic sugar, that could improve code readability.

8.2 The extended static analysis

If we adopt a recovery mechanism, our static analysis needs to be revised in
order to (try to) guarantee new properties. Given a behavioural variation V a =
G1.e1, . . . , Gn.en and a context C̄, consider the set {ei | C̄ � Gi} consisting
of all the expressions having the guarding goal satisfied by C̄. Consider now
the evolution graph G built accordingly to the analysis presented in Chapter 6:
the node n̄ corresponding to the context C̄ does not have an outgoing edge
for each of the expression in the set above, but only one corresponding to the
expression with the smallest index i. Instead, we want to consider also all these

51

missing edges, each one corresponding to an alternative path that one may
follow whenever a recovery is needed.

8.2.1 The rules for the new analysis

To do this, the inference rules for valid analysis estimates need to be modified
accordingly: in particular, the rule (Aask1) has to be rewritten so that one does
not stop inspecting the (abstract) variation when a satisfied goal is found. As a
consequence, to avoid introducing in the graph failure contexts • we distinguish
two cases in which the analysis reaches fail: (i) the current context satisfies no
goal, or (ii) all of the (satisfied) goals have been already considered. For this
purpose, we introduce a new (labelled) history expression, say stop, similar to
fail but with a slighty different meaning. Then, instead of rule (Aask1) we use
the new following rule:

(nAask1)

∀C ∈ Σ◦(l) :(
C � G =⇒ (Σ◦,Σ•) � H

l1

(Σ◦,Σ•) � ∆l2 [stop/fail] Σ◦(l) ⊆ Σ◦(l1) Σ•(l1) ⊆ Σ•(l)
)

(C 2 G =⇒ (Σ◦,Σ•) � ∆l2)
Σ◦(l) ⊆ Σ◦(l2) Σ•(l2) ⊆ Σ•(l)

(Σ◦,Σ•) � (askG.H l1 ⊗∆l2)l

What we do is checking the first goal; if it is satisfied, we consider the remaining
part with an additional information (the fact that fail has been substituted with
stop). Nothing new is done in case the first goal is not satisfied. Now, it is clear
that if our analysis reaches fail then no goal was satisfied, while reaching stop
only means we have considered all the alternative paths. This last situation will
be referred to with a dummy context •̄, whose eventual reachability obviously
does non represent a failure. To manage this situation we introduce the following
rule:

(nAask3)

•̄ ∈ Σ•(l)

(Σ◦,Σ•) � stop
l

To better understand how this mechanism works, in Figure 8.1 we show an
example of analysis estimate and the corresponding evolution graph. To make
things simpler, edges are not shown together with their actual label, but with
the constructs they correspond to. Due to to the rule (nAask1), the abstract
variation (ask F5.retract F

5
8 ⊗ (ask F2.retract F

6
5 ⊗ fail7)8)4)9 is now responsi-

bile for more than one edge coming out from the initial context. Indeed, both
the goals F5 and F2 are satisfied, so we have two egdes for retract F 5

8 and
retract F 6

5 respectively. Note that the dotted edge corresponding to stop and

52

Σ1
◦ Σ1

•
1 {{F2, F5, F8}} {{F1, F2, F5, F8}}
2 {{F1, F2, F5, F8}} {{F1, F5, F8}}
3 {{F2, F5, F8}} {{F1, F5, F8}}
4 {{F2, F5, F8}} {{F2, F5},{F2, F8},{•̄}}
5 {{F2, F5, F8}} {{F2, F5}}
6 {{F2, F5, F8}} {{F2, F8}}
7 {{F2, F5, F8}} {•̄}
8 {{F2, F5, F8}} {{F2, F8},{•̄}}
9 {{F2, F5, F8}} {{F1, F5, F8},{F2, F5},{F2, F8},{•̄}}

{F2, F5, F8}

{F1, F2, F5, F8}

{F2, F5} {F2, F8}

•̄

{F1, F5, F8}

tell F1

ask F5 ∧ retract F8

retract F2

ask F2 ∧ retract F5

stop

Figure 8.1: The analysis result (on top) and the evolution graph (on bottom)
for the context C = {F2, F5, F8} and the history expression Ha = ((tell F 1

1 ·
retract F 2

2)3 + (ask F5.retract F
5
8 ⊗ (ask F2.retract F

6
5 ⊗ fail7)8)4)9.

leading to the dummy context •̄ does not really belong to the evolution graph
(recall Definition 6.3: we only add edges corresponding to a tell or retract).

8.2.2 An ordering on the edges

Extending the analysis in the way above has an immediate consequence, that
is, it may happen that some alternative paths that are now included lead to a
functional failure •. To better understand how this situation arises, consider the
history expression Hf = ask F1.tell F5⊗ ask F2.retractF6⊗ ask F3.(retract F8 ·
(ask F4.retract F4 ⊗ fail)) ⊗ fail and an initial context C = {F1, F3, F8}. In
Figure 8.2 we compare the evolution graph obtained using the rules presented
in Chapter 6 and the one obtained using the rules introduced above.

Here, a discussion is in order on the type of failures that the execution of an
application may run into. We talk of functional failure when the dispatching
mechanism gets stuck because no goal is satisfied, and of security failure if
the computation is aborted due to a policy violation. If a functional failure
occurs while executing an alternative path chosen by the recovery mechanism
we just consider it as a security failure. Indeed, the failure occurs becuse the
policy violation leads to take a different branch. From now on, we will refer to

53

{F1, F3, F8}

{F1, F3, F5, F8}

ask F1.tell F5

{F1, F3, F8}

{F1, F3, F5, F8} {F1, F8}

•

ask F1.tell F5 ask F3.retractF8

ask F4.fail

Figure 8.2: Two different graphs for the context C = {F1, F3, F8} and the
history expression Hf = ask F1.tell F5⊗ask F2.retractF6 ⊗ask F3.(retract F8 ·
(ask F4.retract F4 ⊗ fail))⊗ fail.

execution paths without any intervention by the recovery mechanism as standard
paths, while all the others are considered alternative paths; the same holds for
paths in the evolution graph. Thus, a functional failure occurs if and only if a
standard path get stuck; failures occuring in alternative paths will be all treated
as security failures.

Clearly, we need a way to distinguish standard and alternative paths in the
evolution graph, in order to better appoximate the corresponding real cases. A
straightforward solution might be constructing the graph in two steps: the first
using the old rules (that is, (Aask1) and (Aask2)), the other using the new rules
((nAask1) and (nAask3), together with (Aask2)). Edges coming from the first
step are called standard, while the ones introduced by the second step are called
alternative. However, all the information distinguishing between standard and
alternative edges can be directly extracted from history expressions. To do this,
we introduce a partial ordering ≺ on LabH .

Definition 8.1 (Ordering on labels). Given an abstract variation ask G1.H1,
. . . , ask Gn.Hn, let l(Hi) be the label of the first tell or retract occurring in
Hi: then we impose l(H1) ≺ · · · ≺ l(Hn). Given a history expression H, the
ordering ≺ is defined as the union of all the orderings built as described above
for the abstract variations occurring in H.

Note that the definition above requires the first tell or retract construct occur-
ring in a history expression Hi to be uniquely defined. In general, this is not the
case. It may happen that (i) Hi contains no tell or retract actions, or (ii) be-
cause of a non-deterministic construct, the first tell or retract is not well defined
(consider, as instance, the history expression tell F1 + tell F2). To deal with

54

these situation, we require the compiler to add dummy tell constructs at the
beginning of each history (sub)expression in abstract variations, each one telling
a fresh, dummy fact that is relevant neither to the application behaviour nor to
the security policies. Now, the ordering introduced above results well-defined.

Back to the evolution graph G = (N,E,L), consider now a labelled path

n1
l1−→ n2

l2−→ · · · lk−1−→ nk where ti = (ni, ni+1) ∈ E and li ∈ L(ti). A labelled
path is said to be standard (with respect to ≺) if and only if each li is a minimal
element with respect to the ordering relation ≺, that is, there exists no label l
such that l ≺ li, i = 1, ...k − 1. The other paths are said to be alternative.

This distinction enables us to deal with the failure nodes • in the graph, as
follows:

Proposition 8.2.1. Let H be a history expression, that abstracts the behaviour
of the expression e. Let G = (N,E,L) be the evolution graph built for H starting
from an initial context C. Let ≺ be the ordering induced by the history expression
H. If there is no standard path (with respect to ≺) leading to • then no functional
failure will occur during the evaluation of e.

Proof. See Appendix A.

8.3 Implementation issues

As usual, once the static analysis has been defined we have to show how the
gathered information is used to implement new checks or features. For now
MLCoDa still has to be implemented, and this means that our recovery strategy
can be treated only from an abstract point of view, not taking care about some
technical details. In the following we illustrate some important points of out
methodology, together with the problems that emerge and the way we faced
them.

Checkpoints and recovery Implementing our recovery stragegy requires to
get rid of some important issues. For now, we consider the checkpoint problem.
Consider, as usual, a behavioural variation V a = G1.e1, . . . , Gn.en and suppose
the evaluation of e1 is aborted due to a policy violation. If we want to go back
and try to evaluate one of the subsequent expressions, for example e2 (assuming
that G2 is satisfied), we need to undo all the actions done by e1 and restore the
context as it was just before entering V a. This means that each time we enter a
behavioural variation we have to keep a copy of the current context somewhere.
Not only the context has to be saved, but also the global state, that is, the
values of all the variables: as a consequence the size of the checkpoint could
grow large.

Note in passing that this situation is very similar to that of transactions
in databases: if a transaction is affected by a failure then the system has to
be carried back to a consistent state, and this happens through undo or redo
algorithms and the use of checkpoints.

55

Back to our problem, another issue we have to face is that behavioural vari-
ations can obviously be nested. So, if we want to be able to undo all of the
actions done up to a certain moment, then a stack for checkpoints is needed,
and its requirements in amount of memory may be very big. For this reason we
limit our recovery strategy to the last behaviuoral variation the application has
entered; when a new variation occurs, a new checkpoint is taken and the old one
is discarded. Moreover, we are thinking of providing the programmer with a
specific way to distinguish as sensible those variations he wants to be recovered
in case of a security failure, if possible at all. Following this approach, a check-
point is needed only when the application encounters a behavioural variation
marked as sensible.

A guided smart recovery Finally, we briefly argue how our recovery strat-
egy chooses an alternative path to follow. Our goal is avoiding as much as
possible a new occurrence of a policy violation; so, among all the alternative
paths, we would like to choose one, if any, that guarantees that no violation will
be raised during its execution. To this aim, we are as usual supported by the
results of our static analysis, and in particular by the evolution graph and by
the ordering that has been defined on the labels of its edges.

Formally, let V a = G1.e1, . . . , Gn.en be the behavioural variation under
consideration, H be its corresponding history expression, and suppose that the
evaluation of V a begins in context C. Let n be the node of the evolution graph
G = (N,E,L) representing the context C, and l be the label of the first tell or
retract occurring in the reduction steps of H corresponding to the evaluation
of V a. If a policy violation occurs, our recovery strategy has to choose an
alternative path, whose first node is n and whose first edge has label l′, with
l ≺ l′. Note that the ordering relation ≺ obviously includes the one induced by
the history expression H of V a. Consider the set of the edges outgoing from n
and corresponding to the beginning of an alternative path of V a

OutEn,l = {t = (n, n′) ∈ E | ∃l′ ∈ L(t) with l ≺ l′}

and the one of the nodes so connected to n

OutNn,l = {n′ ∈ N | (n, n′) ∈ OutEn,l}

Recall the set Blue of safe nodes singled our by the static analysis. If the set
OutNn,l ∩ Blue is not empty, then there is a safe alternative path, that is, an
alternative path that guarantees the absence of policy violations in the rest of
the execution. If this is the situation, our recovery strategy chooses a blue node
n′ in OutNn,l and executes the alternative path starting with the edge (n, n′).

It may happen that the set OutNn,l contains more than one blue node: in this
case we respect the priority specified by the user: among all the safe alternative
paths, we choose the leftmost one.

The following example clarifies this strategy. Consider the history expression

56

{F1, F3, F7, F8}

{F1, F3, F7}

{F1, F3, F5, F7, F8} {F1, F7, F8}

{F1, F3, F7, F8, F9}

{F1, F3, F5, F7}

1

3

4

5

6

Figure 8.3: The sets Red and Blue in the evolution graph for the his-
tory expression Hr = (ask F1.retract F

1
8 ⊗ (ask F3.(tell F

3
5 · retract F 4

8)2 ⊗
(ask F7.retract F

5
3 ⊗ (ask F8.tell F

6
9 ⊗ fail7)8)9)10)11

Hr consisting of an abstract variation

Hr =(ask F1.retract F
1
8 ⊗ (ask F3.(tell F

3
5 · retract F 4

8)2 ⊗
⊗ (ask F7.retract F

5
3 ⊗ (ask F8.tell F

6
9 ⊗ fail7)8)9)10)11.

Suppose the initial context is C = {F1, F3, F7, F8} and suppose also the security
policy Φ requires that the fact F8 always holds. The ordering ≺ induced by this
abstract variation is 1 ≺ 3 ≺ 5 ≺ 6, while the resulting evolution graph is shown
in Figure 8.3. The sets Red and Blue have been highlighted.
Standard evaluation would follow the leftmost edge (labelled by 1), resulting in
a policy violation (the context {F1, F3, F7} does not contain the fact F8, which
is required by Φ). Said n̄ the node corresponding to the initial context, the
set OutEn̄,1 consists of the edges labelled by 3, 5 and 6 respectively, and OutNn̄,1
consists of the three rightmost sons of n̄. Two of these nodes belong to the
set Blue, thus the recovery strategy has to choose between them, selecting the
leftmost one. Then, the edge labelled by 5 is followed, performing retract F3

and reaching the (safe) context {F1, F7, F8}.

57

58

Chapter 9

Conclusions

Following the Context-Oriented Programming paradigm, we considered the lan-
guage for adaptive programming MLCoDa [20]. Here, in addition we addressed
security issues, by suitably extending the two-phase static analysis for MLCoDa

introduced in [19]. Our methodology and our main contributions can be sum-
marised as follows:

• MLCoDa, a core of ML extended with COP features, coupled with Datalog
for dealing with contexts. We showed here that the Datalog component of
the language suffices for expressing and for enforcing context-dependent
security policies.

• A type and effect system for MLCoDa for ensuring that programs ade-
quately respond to context changes, and for computing as effect an ab-
stract representation of the overall behaviour. This representation, in the
form of history expressions, abstractly describes the sequences of dynamic
actions that a program may perform over the context. Our present ex-
tension also establishes a correspondence between the abstract actions in
effects and the actual ones in the code, relevant to security.

• In [19] the effects are exploited at loading time to verify that the applica-
tion can adapt to all contexts possibly arising at runtime. In addition, we
built above a graph and a further static analysis that identifies the actions
that may lead to contexts which violate the required policy. The analysis
also detects some contexts that, once reached, guarantee the safeness of
the future actions.

• We addressed security issues by defining a runtime monitor that stops an
application when about to violate the policy to be enforced. The monitor
exploits the link between the effects and the code. It is switched on and off,
depending on the information collected by the static analysis mentioned
above.

59

• Also, we designed a kind of recovery mechanism for behavioural variations,
aimed at undoing some risky actions and taking different choices. This
mechanism can be provided for each behavioural variation, or just in some
portions of the code marked by the user as particularly sensitive. The
recovery strategy is again guided by the results of the static analysis.

Still, our proposal is far from being complete and many improvements are pos-
sible, especially on the security side.

Future Work For now, MLCoDa still lacks an implementation. The design of
a concrete version is one of the goals we want to achieve in the future. Once an
implementation will be available, it will be possible to test how our metodol-
ogy works in actual situations. This will help us in refining our analysis, if
an improvement turns out to be necessary. Also, the type and effect system
of MLCoDa provides the rules for type checking, but it is still missing a type
inference algorithm. The realization of such an algorithm is another interesting
issue.

As a future developement, we plan to extend the evolution graph with prob-
abilities. This is aimed at making static estimates on the probability of encoun-
tering an execution path leading to a policy violation: if this value turns out
to be higher than a threshold, then the application is prevented from running
in that particular context. The threshold can be either a fixed value set by the
system or specified by the user.

Another interesting direction of developement could be providing the lan-
guage with a kind of machine learning, based on Bayesian inference. To do
this, each action must be associated with a value that represents a reward or
a penalty. Now, the evaluation of a behavioural variation does not depend on
the first satisfied goal only, but has to consider all of the satisfied goals and to
chose the expression that guarantees the best reward (in estimate). Of course
the type and effect system needs to be revised in order to take into account
these new features.

60

Acknowledgments

Part of the credit goes to my supervisors, that have consistently followed me
and endured me since the early stages of research and writing that gave birth to
this thesis. Besides them, there is a couple of people that I would like to thank
for their helpful discussions and suggestions, and without whom this work would
not have been the same. They are Gianluigi Ferrari (Università di Pisa) and
Piero A. Bonatti (Università di Napoli). The first helped me when conceiving
a thesis seemed tougher than I expected, and introduced me to MLCoDa for
the very first time. The other spent some of his time to reccomend me some
relevant papers about languages to express security policies and the expressivity
of Stratified Datalog.

61

62

Bibliography

[1] Abeywickrama, D.B., Bicocchi, N., Zambonelli, F.: SOTA: Towards a
General Model for Self-Adaptive Systems. 2012 IEEE 21st International
Workshop on Enabling Technologies: Infrastructure for Collaborative En-
terprises 0, 48–53 (2012)

[2] Achermann, F., Lumpe, M., Schneider, J., Nierstrasz, O.: PICCOLA—a
small composition language. In: Formal methods for distributed processing.
pp. 403–426. Cambridge University Press (2001)

[3] Appeltauer, M., Hirschfeld, R., Haupt, M., Masuhara, H.: ContextJ:
Context-oriented programming with java. Computer Software 28(1) (2011)

[4] Appeltauer, M., Hirschfeld, R., Haupt, M., Lincke, J., Perscheid, M.:
A comparison of context-oriented programming languages. In: Interna-
tional Workshop on Context-Oriented Programming (COP ’09). pp. 6:1–
6:6. ACM, New York, NY, USA (2009)

[5] Bartoletti, M., Degano, P., Ferrari, G.L.: Planning and Verifying Service
Composition. Journal of Computer Security 17(5), 799–837 (Oct 2009)

[6] Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Local policies for
resource usage analysis. ACM Trans. Program. Lang. Syst. 31(6) (2009)

[7] Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Re-
finement Types for Secure Implementations. ACM Trans. Program. Lang.
Syst. 33(2), 1–45 (Feb 2011)

[8] Bodei, C., Degano, P., Nielson, F., Nielson, H.R.: Static Analysis for the
pi-Calculus with Applications to Security. Information and Computation
168(1), 68 – 92 (2001)

[9] Bonatti, P., De Capitani Di Vimercati, S., Samarati, P.: An algebra for
composing access control policies. ACM Transactions on Information and
System Security 5(1), 1–35 (2002)

[10] Campbell, R., Al-Muhtadi, J., Naldurg, P., Sampemane, G., Mickunas,
M.D.: Towards security and privacy for pervasive computing. In: Proc. of
the 2002 Mext-NSF-JSPS international conference on Software security:

63

theories and systems (ISSS’02). Lecture Notes in Computer Science, vol.
2609, pp. 1–15. Springer-Verlag (2003)

[11] Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about
datalog (and never dared to ask). IEEE Trans. on Knowl. and Data Eng.
1(1), 146–166 (1989)

[12] Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press
(2000)

[13] Costanza, P.: Language constructs for context-oriented programming. In:
Proc. of the Dynamic Languages Symposium. pp. 1–10. ACM Press (2005)

[14] Costanza, P., Hirschfeld, R.: Language Constructs for Context-oriented
Programming: An Overview of ContextL. In: Proceedings of the 2005
Symposium on Dynamic Languages. pp. 1–10. DLS ’05, ACM, New York,
NY, USA (2005)

[15] Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints.
In: POLP. pp. 238–252. ACM Press (1977)

[16] Cousot, P., Cousot, R.: Systematic Design of Program Analysis Frame-
works. In: Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages. pp. 269–282. POPL ’79, ACM,
New York, NY, USA (1979)

[17] DeTreville, J.: Binder, a Logic-Based Security Language. In: Proc. of the
2002 IEEE Symposium on Security and Privacy. pp. 105–113. SP ’02, IEEE
Computer Society, Washington, DC, USA (2002)

[18] Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Transac-
tions on Database Systems 5(1), 1–35 (1997)

[19] Galletta, L., Degano, P., Ferrari, G.L.: A staged static analysis for reliable
adaptation, Submitted for publication - http://www.cli.di.unipi.it/

~galletta/staged_analysis.pdf

[20] Galletta, L., Degano, P., Ferrari, G.L.: A two-component language for
context oriented programming, Submitted for publication - http://www.

cli.di.unipi.it/~galletta/mlcoda.pdf

[21] Ghezzi, C., Pradella, M., Salvaneschi, G.: An Evaluation of the Adapta-
tion Capabilities in Programming Languages. In: Proceedings of the 6th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems. pp. 50–59. SEAMS ’11, ACM, New York, NY, USA
(2011)

[22] Heer, T., Garcia-Morchon, O., Hummen, R., Keoh, S., Kumar, S., Wehrle,
K.: Security challenges in the IP-based internet of things. Wireless Personal
Communications pp. 1–16 (2011)

64

http://www.cli.di.unipi.it/~galletta/staged_analysis.pdf
http://www.cli.di.unipi.it/~galletta/staged_analysis.pdf
http://www.cli.di.unipi.it/~galletta/mlcoda.pdf
http://www.cli.di.unipi.it/~galletta/mlcoda.pdf

[23] Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented program-
ming. Journal of Object Technology, March-April 2008 7(3), 125–151 (2008)

[24] Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented program-
ming. Journal of Object Technology 7(3), 125–151 (Mar 2008)

[25] Hulsebosch, R., Salden, A., Bargh, M., Ebben, P., Reitsma, J.: Context
sensitive access control. In: Proc. of the tenth ACM symposium on Access
control models and technologies. pp. 111–119. ACM (2005)

[26] Jhala, R., Majumdar, R.: Software Model Checking. ACM Comput. Surv.
41(4), 1–54 (Oct 2009)

[27] Kamina, T., Aotani, T., Masuhara, H.: Eventcj: a context-oriented pro-
gramming language with declarative event-based context transition. In:
Proc. of the tenth international conference on Aspect-oriented software
development (AOSD ’11). pp. 253–264. ACM, New York, NY, USA (2011)

[28] Kephart, J., Walsh, W.: An artificial intelligence perspective on autonomic
computing policies. In: In Proceedings of the Fifth IEEE International
Workshop on Policies for Distributed Systems and Networks. POLICY
2004. pp. 3–12 (2004)

[29] Khedker, U., Sanyal, A., Karkare, B.: Data Flow Analysis: Theory and
Practice. CRC Press, Inc., Boca Raton, FL, USA (2009)

[30] Kokar, M., Baclawski, K., Eracar, Y.: Control theory-based foundations of
self-controlling software. Intelligent Systems and their Applications, IEEE
14(3), 37–45 (1999)

[31] Kozen, D.: Language-based security. In: Proceedings of the 24th Interna-
tional Symposium on Mathematical Foundations of Computer Science. pp.
284–298. MFCS ’99, Springer-Verlag, London, UK, UK (1999)

[32] Li, N., Mitchell, J.C.: DATALOG with Constraints: A Foundation for
Trust Management Languages. In: Proc. of the 5th International Sympo-
sium on Practical Aspects of Declarative Languages. pp. 58–73. PADL ’03,
Springer-Verlag, London, UK, UK (2003)

[33] Loke, S.W.: Representing and reasoning with situations for context-aware
pervasive computing: a logic programming perspective. Knowl. Eng. Rev.
19(3), 213–233 (2004)

[34] Mycroft, A., O’Keefe, R.A.: A polymorphic type system for prolog. Artifi-
cial Intelligence 23(3), 295 – 307 (1984)

[35] Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis.
Springer, 1st ed. 1999. corr. 2nd printing, 1999 edn. (2005)

65

[36] Nielson, F., Nielson, H.: Type and effect systems. In: Olderog, E.R., Stef-
fen, B. (eds.) Correct System Design, Lecture Notes in Computer Science,
vol. 1710, pp. 114–136. Springer Berlin Heidelberg (1999)

[37] Nielson, H.R., Nielson, F.: Flow logic: a multi-paradigmatic approach to
static analysis. In: Mogensen, T.A., Schmidt, D.A., Sudborough, I.H. (eds.)
The essence of computation. Lecture Notes in Computer Science, vol. 2566,
pp. 223–244. Springer-Verlag (2002)

[38] Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G.,
Medvidovic, N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An Architecture-
Based Approach to Self-Adaptive Software. IEEE Intelligent Systems 14(3),
54–62 (May 1999)

[39] Orsi, G., Tanca, L.: Context modelling and context-aware querying. In:
Moor, O., Gottlob, G., Furche, T., Sellers, A. (eds.) Datalog Reloaded,
Lecture Notes in Computer Science, vol. 6702, pp. 225–244. Springer (2011)

[40] Pfleeger, C., Pfleeger, S.: Security in computing. Prentice Hall (2003)

[41] Puviani, M., Cabri, G., Zambonelli, F.: A Taxonomy of Architectural
Patterns for Self-adaptive Systems. In: Proceedings of the International
C* Conference on Computer Science and Software Engineering. pp. 77–85.
C3S2E ’13, ACM, New York, NY, USA (2013)

[42] Román, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R.,
Nahrstedt, K.: Gaia: a middleware platform for active spaces. ACM
SIGMOBILE Mobile Computing and Communications Review 6(4), 65–
67 (2002)

[43] Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research
challenges. ACM Trans. Auton. Adapt. Syst. 4(2), 14:1–14:42 (2009)

[44] Salvaneschi, G., Ghezzi, C., Pradella, M.: Context-oriented programming:
A software engineering perspective. Journal of Systems and Software 85(8),
1801–1817 (2012)

[45] Schneider, F.B., Morrisett, G., Harper, R.: A language-based approach to
security. In: Wilhelm, R. (ed.) Informatics, Lecture Notes in Computer
Science, vol. 2000, pp. 86–101. Springer Berlin Heidelberg (2001)

[46] Skalka, C., Smith, S., Horn, D.V.: Types and trace effects of higher order
programs. Journal of Functional Programming 18(2), 179–249 (2008)

[47] Wrona, K., Gomez, L.: Context-aware security and secure context-
awareness in ubiquitous computing environments. In: XXI Autumn Meet-
ing of Polish Information Processing Society (2005)

66

[48] Xi, H., Pfenning, F.: Dependent Types in Practical Programming. In: Pro-
ceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. pp. 214–227. POPL ’99, ACM, New York, NY,
USA (1999)

[49] Zhang, G., Parashar, M.: Dynamic context-aware access control for grid
applications. In: Proc. of Fourth International Workshop on Grid Comput-
ing, 2003. pp. 101–108. IEEE (2003)

67

68

Appendix A

Proofs

A.1 Theorems of Chapter 5

We need the following lemmas, inherited from those in [19].

Lemma A.1.1 (Substitution). If Γ, x : τ ′;K ` e : τ . H; Λ and Γ;K ` v :
τ ′ . ε; ⊥ then Γ, x : τ ′;K ` e{v/x} : τ . H.

Proof. By induction on the depth of the typing derivation and then by cases on
the last rule applied. Omitted for the sake of brevity.

Lemma A.1.2 (Restriction). If Γ;K ` v : τ . H; Λ then Γ;K ` v : τ . ε; ⊥

Proof. Being v a value, in the typing derivation for Γ;K ` v : τ . H; Λ there
must be a subderivation with conclusion Γ;K ` v : τ ′ . ε; ⊥ (rule (Tconst))
for some τ ′ ≤ τ . Applying rule (Tsub), we can enlarge only the type but not
the effect and the labelling environment: then we get Γ;K ` v : τ . ε; ⊥.

We are now ready to prove the following theorem.

Theorem A.1.3 (Preservation). Let es be a closed expression; and let ρ be a
dynamic environment such that dom(ρ) includes the set of parameters of es and
such that Γ ` ρ : K.
If Γ; K ` es : τ . Hs; Λs and ρ ` C, es → C ′, e′s then Γ; K ` e′s : τ . H ′s; Λ′s
for some H ′s, Λ′s, where

(i) there exists H such that H ·H ′s 4 Hs and C,H ·H ′s →+ C ′, H ′s, and

(ii) Λ′s v Λs.

Proof. Part (i) is proven in [19], Appendix B.1. Here we prove part (ii).
Similarly to that of part (i), the proof is by induction on the depth of the
typing derivation and then by cases on the last rule applied.

69

• Rule (Tvar)

We know es is a variable, so it cannot be the case that ρ ` C, es → C ′, e′s.
The theorem simply holds. The same happens for rules (Tabs), (Tfact)

and (Tvariation), with the exception that es is now a value.

• Rule (Ttell)

We have es = tell(e′)l for some e′, l. Furthermore, the premises tolds
us that Γ; K ` e′ : factφ . H; Λ with Λs = Λ]Fi∈φ [li 7→ l] and Hs =

(H ·
∑
Fi∈φ tell F

li
i)l. There are two rules from which ρ ` C, es → C ′, e′s

can be derived.

– Rule (Tell1)

For the premises we have ρ ` C, e′ → C ′, e′′, then e′s = tell(e′′).
By inductive hypotesis we have Γ; K ` e′′ : factφ . H

′′; Λ′′ with
Λ′′ v Λ. By rule Ttell it follows that Γ; K ` e′s : unit . H ′s; Λ′s
with H ′s = (H ′′ ·

∑
Fi∈φ tell F

li
i)l and Λ′s = Λ′′]Fi∈φ [li 7→ l]. Since

Λ′′]Fi∈φ [li 7→ l] v Λ]Fi∈φ [li 7→ l] = Λs the thesis follows.

– Rule (Tell2)

Now es = tell(F) so e′s = () and C ′ = C ∪ {F}. It follows that
Γ; K ` () : unit . ε; ⊥, and since ⊥ v Λs the thesis follows.

• Rule (Tif)

Given es = if e1 then e2 else e3, we know that Γ; K ` e1 : bool . H1; Λ,
Γ; K ` e2 : τ . H2; Λ and Γ; K ` e2 : τ . H3; Λ. The transition ρ `
C, es → C ′, e′s can be derived from three rules.

– Rule (If1)

We have that e′s = if e′1 then e2 else e3. By inductive hypotesis,
Γ; K ` e′1 : bool . H ′1; Λ′ with Λ′ v Λ. Applying (Tsub) we get
Γ; K ` e′1 : bool . H ′1; Λ; by rule (Tif) it follows that Γ; K ` e′s :
τ .H ′1 · (H2 +H3); Λ. The thesis reduces to Λ v Λ, which obviously
holds.

– Rule (If2)

In this case we have e1 = true and e′s = e2. Then Γ; K ` e′s :
τ . H2; Λ, and again the thesis reduces to Λ v Λ.

– Rule (If3)

Same as for (If2), with the exception that e1 = false and e′s = e1.

• Rule (Tlet)

We have es = let x = e1 in e2, and we know that Γ; K ` e1 : τ . H1; Λ1

and Γ, x : τ1; K ` e2 : τ2 . H2; Λ2. There are two rules from which
ρ ` C, es → C ′, e′s can be derived.

– Rule (Let1)

Here e′s = let x = e′1 in e2. By inductive hypotesis, Γ; K ` e′1 :
τ1 . H ′1; Λ′1 with Λ′1 v Λ1. By rule (Tlet) we get Γ; K ` e′s :
τ2 . H

′
1 ·H2; Λ′1] Λ2. Since Λ′1] Λ2 v Λ1] Λ2 the theorem holds.

70

– Rule (Let2)

We have e′s = e2{v/x}, and we also know that Γ; K ` v : τ1 .H1; Λ1.
By Lemma A.1.2 Γ; K ` v : τ1 . ε; ⊥ and applying Lemma A.1.1 we
get Γ; K ` e2{v/x} : τ2 .H2; Λ2. The thesis reduces to Λ2 v Λ1]Λ2,
which is obviously true.

• For the remaining rules, the proof is similar to that of rule (Tlet).

A.2 Theorems of Chapter 8

Proposition A.2.1. Let H be a history expression, that abstracts the behaviour
of the expression e. Let G = (N,E,L) be the evolution graph built for H starting
from an initial context C. Let ≺ be the ordering induced by the history expression
H. If there is no standard path (with respect to ≺) leading to • then no functional
failure will occur during the evaluation of e.

Proof. Let G′ be the graph that would have been obtained using rule (Aask1)

instead of (nAask1). Suppose that a functional failure may occur at runtime.
Then, there must be a path in G′ leading to •. But G′ is a subgraph of G, and
paths in G′ are standard paths in G (their labels are minimal with respect to ≺).
This means that there is a standard path in G which leads to •, contradicting
the hypotesis of the preposition. Then the thesis holds.

71

	Introduction
	Context and Adaptivity
	Security and Contexts
	Our proposal

	Preliminary work
	Adaptive Software
	Context-Oriented Programming
	Open issues in context-oriented languages

	Static analysis techniques
	Type Systems
	Type and Effect Systems
	Flow Logic
	Language-based Security

	Running example
	MLCoDa
	Syntax
	Semantics

	Type and Effect System
	History expressions and labelling environments
	Typing rules
	Soundness

	Loading-time Analysis
	Analysis
	From valid estimates to evolution graphs

	Code instrumentation
	A further static analysis step
	Handling the runtime monitor

	A recovery strategy
	The need for a new mechanism
	The extended static analysis
	The rules for the new analysis
	An ordering on the edges

	Implementation issues

	Conclusions
	Proofs
	Theorems of Chapter 5
	Theorems of Chapter 8

