UNIVERSITY OF P1sA
FACULTY OF MATHEMATICAL, PHYSICAL
AND NATURAL SCIENCES

Master's degree in computer science

Master thesis

Data-driven exploration of
mobility interaction patterns

Candidate
Gabriele Galatolo

Supervisor Co-examiner

Dr. Mirco Nanni Prof. Laura Ricci

Accademic Year 2012/2013

To my family

To Silvia

SOMMARIO

In questa tesi proponiamo un framework per lo studio delle in-
terazioni tra oggetti mobili, come ad esempio auto sulle strade
o pedoni in movimento all’interno di piazze. Abbiamo seguito
un approccio caratteristico del data mining, basato sulla com-
putazione di semplici eventi di interazione e sull’estrazione di
pattern complessi che possano descrivere quali sano le combi-
nazioni frequenti di eventi che compaiono nello stesso istante e
la loro evoluzione nel tempo. Il lavoro include due casi di stu-
dio su dataset reali, rispettivamente su veicoli che percorrono
un tratto autostradale e su pedoni in movimento su una piazza.

ABSTRACT

In this thesis we propose an analysis framework for studying
the interactions between moving objects, such as cars on roads,
pedestrians in a square, etc. We follow a data mining approach,
based on the computation of simple interaction events and on
the extraction of complex patterns, describing frequent combi-
nations of events that happen together and their evolution in
time. The work includes two case studies on real datasets, re-
spectively on cars and pedestrians.

Vil

Ohana means family.
Family means nobody gets left behind, or forgotten.

— Lilo & Stitch

If i have seen further
it is by standing on the shoulders of the giants.

— Isaac Newton

ACKNOWLEDGEMENTS

Finally i’'m here to write again this section, after three years
from the last time. As the last time i would to write a lot on
everyone who shared with me something along this years, but
i risk to miss someone or to be not so exhaustive with all of you
as i would. For someone, however, i’'ll do an exception.

The first person i want to thank is my supervisor, Mirco Nanni,
who drove me through this fantastic experience. I hope to have
done a good job: if it has been so, is certainly thanks to him.
An important acknowledgement goes to my family, who sup-
ported me through my academic career. Without them i wouldn’t
be here, and i wouldn’t be who i am.

Obviously a special thank goes to Silvia, who tolerated me dur-
ing periods of examinations (even if sometimes happened the con-
trary) but, in particular, who gave me the force to break down
my limits when i was dispirited.

Last, but not least: when i downloaded the template for this
thesis, in the dedication part there was a sentence taken from
Lilo&Stich, the recall to the ohana, the idea of family that con-
tains not only the natural one but also the friends and all the
relationships important for someone. I think is not a case that
this was contained at the beginning of this template, because
it is thanks to you that this has been possible. Is thanks to my
ohana that i feel quiet to deal with anything, and where i feel
safer: if i could do this is by standing on your shoulders, on the
shoulders of the giants.

So, thanks.

Gabriele

X

CONTENTS

11

INTRODUCTION AND BACKGROUND 1
MOTIVATIONS AND OBJECTIVES 3
1.1 Interactions in a mobility context 4
1.2 Organization of the Thesis 8
1.3 Novel contributions 8
RELATED WORKS AND BACKGROUND 11
2.1 Related works 11
2.1.1 Agents movement modelling/simulation
with physical models 11
2.1.2 Simulate pedestrians moving with Agent
Based Models 14
2.1.3 Interactions for complex system modelling 1
2.1.4 Reality mining 17
2.2 Data-mining background 19
2.2.1 Apriori principle and association rules min-
ing 19

2.2.2 Graph mining 21
2.3 Graph theory 22
2.3.1 Multigraphs 24
2.3.2 Graphs isomorphism problem 25
2.3.3 Temporal graphs 26

MINING DATA WITH INTERACTION PATTERNS 29
THE INTERACTION PATTERN ANALYSIS FRAMEWORK
3.1 Preliminaries 32

3.2 The IPA Framework 33
3.2.1 Representing trajectories with a graph 34
3.2.2 Neighborhood creation 35
3.2.3 Measuring interactions 37
3.2.4 IPA Events 40
THE STATIC INTERACTION PATTERN MINING AL-
GORITHM 45
4.1 Instance patterns and interaction patterns 46
4.2 Equivalence between interaction patterns 50
4.3 The SIPM algorithm 53
THE EVOLVING INTERACTION PATTERNS MINING
ALGORITHM 59
5.1 Evolving interaction patterns 60
5.2 The EvIPM algorithm 64
EXPERIMENTS 67
6.1 Analysis on NGSIM vehicle dataset 67

xi

6

31

xii

iii
7

CONTENTS

6.2 Analysis on a campus square dataset

6.3 SIPM and EvIPM performances 76

CONCLUSIONS AND FUTURE WORK
CONCLUSIONS 83

7.1 Future works 83

7.2 Summary of results 85

BIBLIOGRAPHY 87

81

73

Part |

INTRODUCTION AND BACKGROUND

In the following chapters we introduce the overall
work of thesis: we first introduce the key ideas that
drove our work, with a discussion on some possi-
ble target applications and research developments.
Then we introduce some important concepts about
the techniques and methodologies used in the state-
of-art for the mobility data mining, finally classify-
ing our work with respect to the current literature
about mobility data analysis.

MOTIVATIONS AND OBJECTIVES

In the last years the topic of big data and related ones followed
an exponential growth, both for the increase of the devices from
which we can accumulate data about peoples” behaviour (GPS,
smart-phone, tablet, etcetera) and also for the increase of inter-
est in the discovery of information from big amount of data
which have a lot of information hidden and not immediately
visible. Data mining research and applications have become an
important field to discover important statistical facts that we
can use to simplify our life, improve our security or help to
fight some social plagues, as the tax evasion phenomena.

There are a lot of examples of applications and techniques
that data mining has led: one of the most famous is the basket-
market analysis, which has been firstly used to discover habits
and profiles of customers to improve the productivity and the
targeted selling. Another example is the study of clustering
techniques and the applications based on them, as the DIVA
project [34] that has been studied and developed by the Ital-
ian National Council of Research to find potential tax evaders.
One recent field is the mining on mobility data where, for in-
stance, the study of trajectories of moving cars can be analyzed
to improve the existing major road or also to identify new ways
of transportation to optimize vehicles movement, like the car-
pooling service.

Mobility data mining is the topic on which we have focused
our attention. In this field a lot of research has been done [17]
to answer to several interesting questions that involve various
aspects of data-mining as:

FINDING GROUP OF AGENTS WITH COMMON CHARACTERISTICS
this task involve the evolution of clustering techniques to
find groups of moving agents that share some important
spatio-temporal characteristics, as the time or the street of
journey;

EXTRACTION OF FREQUENT PATTERNS this topic is focused
on the extraction of rules that can describe the behaviour
of a subset of agents, where the found rules are verified
for a considerable amount of agents;

MOTIVATIONS AND OBJECTIVES

PREDICTION OF LOCATIONS AND TRAJECTORIES this is the
task to predict information about the time and the spatial
position in which an agent could be, studying its previous
behaviours and trajectories.

In this work we focused on the extraction of frequent pat-
terns: in particular we want to start from a set of trajectories
and, studying the interactions that happen between agents, to
bring out frequent patterns that could describe the most com-
mon behaviours in the area of study considered.

1.1 INTERACTIONS IN A MOBILITY CONTEXT

We interact continuously with the external world: when we
move or we talk with other persons, when we drive our car
acting on car’s commands and other examples like these. Some-
times we interact directly with the objects or with the environ-
ment, as when we are pushing a box in some direction, but in
other cases we have an indirect influence on the others. Sup-
pose that a person is moving and another person is walking
in the opposite direction: in a certain moment, to avoid a colli-
sion, the person in front of the first can decide to take another
direction to turn in order to avoid him. The decision of the sec-
ond agent to choose another direction is indirectly suggested
by some interactions between him and the first that we do not
see but that exist, interactions that we could summarize as:

A. the direction of the second person is opposite to the first
one;

B. the first person is in front of the other one;
c. the distance between them is decreasing at each instant;

D. the difference of velocity can suggest to the second agent
the intention of the other to not move from its initial di-
rection

Thus we can consider interactions as made of measurable
quantities returned from a set of functions. Those values repre-
sent some possible influences that an agent could have on the
others into the environment, influences that manifests them-
selves in form of events. Even if we have exemplified what we
mean with interactions, we did not answer to some important
questions: in which way those interactions clarifies what is hap-
pening between two agents? Is the set of interactions that iden-
tify the ongoing events between agents attributable to some

1.1 INTERACTIONS IN A MOBILITY CONTEXT

well-known, or frequent, behavioural pattern? Are those pat-
terns related to other ongoing events?

To better explain how we will use the interactions and what
we want to discover from data with our work, we imagine this
example: consider two car, with identifiers 1 and 2, shown in
tigure 1.

1 faster than 2 1 faster than 2
1 same direction of 2 1 same direction of 2
1 approaching to 2 1 approaching to 2
1 aligned to 2 1 aligned to 2
1 behind 2 1 behind 2

}

BACK_ALIGNED APPROACH(1,2)

Figure 1: Two consecutive instants in which interactions, indicated in
the rectangles, are formulated as differences of values of the
attributes of moving of the cars.

Assuming that two neighbor agents influence each other, if
we could define a set of functions that compute values about
the situation between agents (in the example, difference of ve-
locity and direction, alignment and position of the cars), we
would be capable also to recognize a set of events, where each
of them can be described by a specific subset of interactions
repeated in time. In the example shown in figure 1, if in two
consecutive instants of time we find that 1 is aligned to 2 and
is approaching it, we can state that 1 is making an aligned ap-
proach on 2 that has duration 2 instants: furthermore we can
also state that 1 is the subject of the event because is faster than
2.

Once we can retrieve all the events we have defined in our
events’ library, we could ask if there exist some patterns de-
scribing frequently seen behaviours, in function of these events.
Those patterns can tell us if there are behaviours that are not
immediately recognizable or that does not have a name that
directly identify the pattern, as could be a group movement
in which several agents maintain the distance each other while
moving in the same direction. For example, combining the events
found with the study of the interactions between agents, we
may find a situation as the one exemplified in figure 2.

This pattern has not an explicit semantic explanation, but
could simply be something that is frequently found in data,
having so a statistical significance.

5

MOTIVATIONS AND OBJECTIVES

o)

FLANKING(1,2)

"y

APPROACHI(2.3)

>

Figure 2: A complex pattern that describes three agents involved in
two events happening at the same time, or in an overlapped
interval of time.

When we have found these instance patterns we may do more:
we could ask if there are sequences of those patterns that share
a subset of agents frequently seen in data. This can give to
the dataset owner important information regarding the possi-
ble evolutions of groups of events that characterize the studied
area, but also where they are concentrated and if they have
interesting time distributions. A simple sequence of instances
patterns that one expect to find in a dataset in which the agents
are vehicles or trucks is the one shown in figure 3.

BACK_ALIGNED APPROACH(1,2) = FLANKING(l,2) =P MOVING_AWAY(1.2)

Figure 3: An overtaking between two cars.

However we are interested to study a methodology to de-
scribe not only those intuitive sequences, but to find all patterns
that characterize a dataset where are involved moving agents,
once defined the proper interactions and definitions of events.
Furthermore we want to describe those patterns in a more gen-
eral way: so, if for example a lot of different agents are involved
in the same scheme as the one represented in figure 2, we want
state that a frequent behaviour between cars’ drivers is the one
described by flanking(A, B) — approach(B, C), where {A,B,C}
represent three placeholders for real agents.

1.1 INTERACTIONS IN A MOBILITY CONTEXT

In figure 4 we show the scheme representing the whole pro-
cess that we developed with this thesis. We will take this scheme
every time we will need to explain at which level we will be
and what we have to do to reach the final outputs, the static
interaction patterns and the evolving interaction patterns.

Instant 0

Instant 1

Instant 2

7

Raw data

creation of neighbor
graph,each agent.
All the agents are

v linked to the next one

Snapshot of
neighbor graph

analyze of interactions
between agents to

APPROACH(2,3)

APPROACH(4,5)

MAINTAINING_DISTANCE(2,3)

retrieve events

v

Retrieve events
graph

l

Creation of events
multigraph
dataset

APPROACH(4,5)
APPROACH(2,3)

MAINTAINING_DISTANCE(1,2)
MAINTAINING_DISTANCE(4,5)
MAINTAINING _DISTANCE(2,3)

MOVING_AWAY (4,1)
MOVING_AWAY(4,2)]

[MAINTAINING_DISTANCE(1,2) §

INSTANCE PATTERNS

_/

‘ finding instance patterns
generation of interaction patterns

generation of evolving interaction patterns

APPROACH(A,B)

d

DISTANCE(A,B)

°/°

[MAINTAINING_DISTANCE(A,B) ;
MOVING_AWAY(C,A) ;
MOVING AWAY(C,B) 1

{

INTERACTION PATTERNS

APPROACH(A,B) sy MAINTAINING_DISTANCE(A,B)

O = O

[MAINTAINING_DISTANCE(B, C;
MOVING_AWAY(A,B) ;
MOVING awav(n.e) mep IOV INE-TIRVEL D) |

)i

—>

EVOLVING INTERACTION PATTERNS

Figure 4: Schematic summary of the whole process that we devel-

oped.

Starting from raw data we will create a structure to explicit
the relations between moving agents; from this structure we
want to extract all the events which involve the agents in a
neighborhood relation; from those events, with a further ab-
straction of the first representation, we want to extract a set of
general patterns indicating the most common behaviours found
in the dataset (in function of the previously defined events) and
the most frequent evolutions within them that characterize the

dataset.

MOTIVATIONS AND OBJECTIVES

1.2 ORGANIZATION OF THE THESIS

The thesis is organized in three parts. In the first we have done
a brief introduction and in the next section we will introduce
some methodologies and techniques that we have used or that
we will refer in the rest of the thesis; furthermore we will make
an overview on the concepts of interaction analysis, as they
have been treated in literature, in particular in the fields of
transportation/pedestrian movement simulation, and into the
modelling/analysis of complex systems.

The second part will be focused on interaction patterns: first
of all we will introduce the concepts and tools that constitute
the interaction patterns analysis framework; the main task of
the framework is to extract from data the abstract objects that
will be used to construct and define the notion of static instance
patterns, which are concrete groups of events with specific fea-
tures, where there are involved real agents. These represent in-
stantiations of the static interaction patterns, schemes of con-
temporary events that are combined between them, but where
the agents are substituted by variables, because represent fre-
quent generic schemes, i.e. schemes whose instances grouped
together verify a temporal support threshold. Furthermore we
will be interested to the temporal evolution of these frequent in-
teraction patterns. To find these objects and to study their tem-
poral evolution, we will develop and discuss two algorithms,
the static interaction patterns miner (SIPM) and the evolving
interaction patterns miner (EvIPM). Afterword we will present
the experiments we made on two real case studies, one regard-
ing a dataset of moving vehicles on a section of an US highway,
and one relative to a small campus square taken from the data
of a surveillance video. We will discuss the potential use of the
developed instruments, and the possible analysis that can be
done with several examples taken from the result of our exper-
iments.

In the last section we will discuss the possible future improve-
ments for what has been done until now, and we will analyze
the methodologies used comparing them with the results ob-
tained in the experiments.

1.3 NOVEL CONTRIBUTIONS

During this work some new tools and notions where intro-
duced to reach our final goal. In particular we have newly in-
troduced:

1.3 NOVEL CONTRIBUTIONS

. a definition of a general framework for the retrieval of
events described with a set of continuous interactions be-
tween agents, the IPA framework;

. the concept and definition of interaction pattern as the

complex object that allows to describe a frequent behaviour
into the dataset, describing it as a generalization of con-
crete groups of events that emerge from the data;

. development of the SIPM algorithm, that extract frequent
interaction patterns from a set of events;

. development of the EvIPM algorithm to find the temporal
evolution of the interaction patterns found with the SIPM
algorithm.

9

RELATED WORKS AND BACKGROUND

As every work, an important part of our time has been spent
to the definition of the collocation of our work into the existing
literature, the retrieving of material that could be useful to bet-
ter define what we want to do and to understand or face some
problems that could be useful into the definition of the method-
ologies and techniques that we developed. So, before starting to
explain our work, we present in this chapter two fundamental
things.

In the first part we present some works of the literature re-
lated to ours. In particular we will talk about some of the works
related to the simulation and to the modelling of moving pedes-
trians/agents, and how the interactions are treated by the au-
thors: furthermore we will see two works about the modelling
of complex systems that have a more closer relation to our idea
of interaction.

In the second part we will expose briefly some important con-
cepts that we will use in the following, to better explain what
are the problems encountered and what are the basis on which
we worked. In particular we will make an overview on some
basic concepts of graph theory, that will be fundamental in the
phase of framework definition, framework that we will use to
analyze interactions between agents, and for the definition of
the interaction patterns; we will see some basic notions behind
the basket market analysis, in particular into the definition and
the use of the Apriori principle; finally we make a brief intro-
duction to the graph mining, the part of data mining that study
how to mine frequent substructures from graphs datasets, since
we will use graphs and we want take from those graphs specific
types of frequent patterns.

2.1 RELATED WORKS

2.1.1 Agents movement modelling/simulation with physical models
One of the topic that has focused the interest of the scientists in
the simulation of crowds and moving agents in general, is the

one that refers to the dynamics of a crowd in a panic situation.
There are a lot of cases in which the study of the behaviour of

11

12

RELATED WORKS AND BACKGROUND

a crowd in those situations can help to save several lives and to
better understand how to address very huge crowds to assume
the correct behaviour that can limit the risks for everybody. An
important work that tackle this problem is the one published
by Helbing, Farkas and Vicsek[3]. This work has been derived
from previous studies on the social force models [2], which try to
model the movements of an agent using similarities with physi-
cal forces and models. In this work the authors try to tackle the
problem of the crowd’s behaviour modelling in an emergency
situation, where panic and uncoordinated motions of pedestri-
ans are the main features of the environment. Empirical and
scientific motivations have been led the authors to model the
crowd as a particles system guided by gas or fluid laws. Each
pedestrian has associated a function to compute the variation
in its velocity that can be defined with the equation 1.

0 0
my (jivl = m (e — vilt) +) £+) fiw (1)
t T =
(#1) w

In the previous equation the pedestrian with mass m; that
wants to move in the direction e) with a certain desired speed
v(i) tends to adapt its velocity to the current one (vi(t)) in a cer-
tain time T;. The interactions, with other agents j and with the
walls around him W, are defined with the functions f;; and
fiw. Each function f is based on some similarity with physics
phenomenons: for instance, the interaction that establish the
tendency of two pedestrians to stay away from each other is
modelled with a formula (called in the paper repulsive interac-
tion force) very similar to the Coulomb’s law, which express the
electrostatic interaction between two electrically charged parti-
cles. In figure 5 we show an image taken from the experiments
section of the article [3].

In particular, in this simulation, each pedestrian moves with
an initial velocity of vi = 5 m/s choosing the desired direc-
tion randomly: the equation that describe the movement con-
tains a panic factor p that influence each pedestrian to follow
a neighbor, to make its own choice or mix both. Into the plots
are shown the effects of the behaviour of the crowd varying the
panic parameter. Keeping aside the implementation of the func-
tions, is important to note that the equation takes into account
the interactions of one agent as the sum of all the interactions
between pairs of agents and between the pairs constituted by
the current agent with each of the obstacles in the environment,
the wall in this case. This is an important assumption that we
will maintain in our thesis. However, into the cited work, those
assumptions model well the behaviour of a crowd in a panic sit-
uation, and the authors themselves recognize the need to find a

2.1 RELATED WORKS

74

72
70
68
=
=
62
&0
58
56

People Escaping within 30s o

13

0 01 02 03 04 05 06 07 08

[a]

Panic Parameter p
35

30
25
20
15
10

5

Leaving Time for 80 People (s)
BEE50REE80E8

o

01 02 03 04 05 06 07 08
Panic Parameter p

Difference in the Usage of Two Doors o

Panic Parameter p

Figure 5: Simulation of 9o pedestrians trying to escape from a room:
in the figure (a) a snapshot of the simulation, in the plots the
variation of leaving time, difference of usage of the doors
and the people escaping, varying a parameter simulating
the panic in the crowd.

theory or model that can add into this representation interper-
sonal interactions, or other interesting interactions between the
pedestrians and the environment.

Other works based on the previous one, like [4], try to tackle
two problems that afflict the one presented by Helbing;:

A. retain the realism of the original model;

B. create the basis for a more realistic model for situation in
which there are a low number of pedestrian.

Thus, in these works the attention is focused on the fact that
the social forces do not have physical sources and try to refine
them, including other aspects as the density of the crowd in the
current pedestrian’s position, the distinguishing between face
to back and face to face repulsion with other agents and so on.

In particular, trying to increase the realism detail of the simu-
lation, we can see in figure 6 an example of problem tackled by
Lakoba and Filkenstein: in the new formulation they include
into the social force model some modifications to take into ac-
count the density of the crowd that, in a real case, can be at the
base of a choice respect to others. As we can see from figure 6,
the introduction of this parameter studied in that work leads

0 01 02 03 04 05 06 07 08

14

RELATED WORKS AND BACKGROUND

1 ‘ L] 12 ‘ L]
» ..“.‘.h\.‘ ‘.‘!‘*.

10 [] .'\.i [] . 10 ., o .'\- [}
AT S a SoTeltae

. LR F X . . o Welde
: 217 I B 25 17
Qe ¥e {4 o “i

T .-'“." : : “. - ‘." ,

aee? %, 2 . ee® %%

L A

Figure 6: The effect of the crowd on the outer pedestrians: in the left
they first try to open a way in the crowd but after, in the
right plot, they run away as a group.

to more realistic reactions: in fact initially the pedestrians in
the outer part of the crowd try to move themselves to the exit,
but considering the crowd density they choose to turn back
and run away. Furthermore there are some works in which the
authors introduce the study of social force models in a more
behavioural way to see how pedestrians react to the external
stimulus. In [10], the model presented include an interaction
law, stills inspired to the physical laws, which has composed by
a set of parameters fitted with real experiments. However those
models are still too dependant to a physical inspiration to give
very realistic simulations in all contexts.

2.1.2 Simulate pedestrians moving with Agent Based Models

The previous type of models are not the unique ones: others,
as the one presented in [6], try to explicit the movements of
the agents with particular models called Agent Based Model
(ABM). These are well-known models [7] that are made of a
set of agents, each of one makes its decision individually ana-
lyzing the current status of the agent and a set of predefined
rules. One of the main differences between those models and
the pure mathematical ones is given by the fact that in ABM we
can integrate the mathematical models with a set of rules that
are involved into the decision of the move for an agent, sepa-
rated from the ones that manage the physics of the movements.

In the cited work the author focus its attention on the fact
that physical modelling only is not appropriate to describe the
behaviour of pedestrians in low-density scenarios, and wants
develop an instrument with which he could describe several
scenarios without limitation on a minimum/maximum number
of agents. The model he defined is divided in three types of be-

2.1 RELATED WORKS

Path-planner
+ Agent behavior
r » Next plausible node
= Shortest paths
GIS » Shortest path surface
* Shortest path surface I "
= ® Space-time paths Vision

= Infrastructure polygons r « Distanca

+ Spatial data access — Steering + Nearest neighbors
1 |+ Potential collisions

| * Accelerate/decelerate « At destination
= Stopping rules « Targets
= Facing
Validation » Seekingfflesing -

« Pursuing/evading

« Path metrics s Map to path

= Directional statistics = Path-following Amblent
+ Affective steering
= Aligncohere/separate r « Talking
= Avoid collisions + Standing

1 3¢

| Motion capture Motion blending Graphics engine ‘ | Renderer

Preferred speed

Max and min acceleration |
Max and min deceleration

« Gait

+ Animation cycle

S

Figure 7: Flow of information for the model presented in [6]

Pose = Character rigs * Scene culling

Animation interpolation >, Mesh enveloping * Level-of-detail

Inverse kinemalics « Scene graph « Texture mapping

Forward kinematics L « Ray-tracing

Physical constraints L » Bounded volume hierarchy
Lecomaotion

..

haviours, each of one influence the others underlying, and that
combined together generate the decision model for the move-
ment of an agent:

HIGH-LEVEL BEHAVIOUR the high level behaviour is the one
that concern the planning of the path from its origin to its
destination. According to some studies, people define pre-
viously the path who want to follow and approximately
the journey time[8][9], so this component is the one used
to plan which is the best strategy to arrive at the destina-
tion;

MEDIUM-LEVEL BEHAVIOUR at this level, the model try to in-
sert into the decision process the components that are
amenable to those behaviours related to the objects and
agents surrounding the current agent, and other aspects
that may be taken into account at the scale of the streetscape
(aspects related also to the steering of the agent, avoid col-
lisions and so on);

LOW-LEVEL BEHAVIOUR at the lowest level, the model take
into account aspects that are related to each single step.
Following some physics rules derived from kinematics,
the model aggregates the other information from high-
level and medium-level to calculate the position of the
agent in the next instant.

In figure 8 we show an example of high level behaviour: the
agent choose initially its preferred path to reach its destination,

15

16

RELATED WORKS AND BACKGROUND

destination ‘

\ e
v .\ . YR LA
L b

W L
" shortest-path

p wall

4.
W ¢ collision-free path
LY b — d" F
5 b L v
- . v d «
. b "y ¢
- L%
w 13
\\.\ Yot =
S L F F
e t“. 1." S ['(L4
:.- \‘) L e
Origlin i - & - L3 " . ¥ :
- b " ©
- - . /—o L] 2 - 5tgp5
L character-obstacles cocoee

.+ |100eeen

Figure 8: Example of path choice of an agent from its origin to the
destination

evaluating the length of the possible paths and the probabili-
ties of collision with other obstacles (other pedestrians and the
walls). However the author reports how some potential signif-
icant details are not treated; the main lack is the one related
to the focusing on individual behaviour, while the group be-
haviour is only considered from the point of view of the indi-
vidual.

2.1.3 Interactions for complex system modelling

Another point of view of the study on interactions between
agents is the one that tackle the whole dynamic of one sys-
tem. An example is the work [12] presented by Quattrociocchi,
Latorre, Lodi and Nanni. Here the authors would like to find
some interesting characteristics from dataset of trajectories that
could be useful to define structural characteristics of data, or
to analyze them in a quantitative manner to describe particu-
lar subdivisions that can exist within data. The work’s goal is
to find some features, movement patterns and interaction pat-
terns, to classify the starting trajectories searching for danger-
ous drivers. This is done starting from the raw data and ana-
lyzing the interaction between the neighbors of a specific agent
along a part of the considered trajectory. For example functions
that calculate interactions can be the difference of velocity be-
tween the considered agent and the average value in a portion
of the studied area, or some other differences between a char-
acteristic value of the agent and aggregates of the values of the

2.1 RELATED WORKS

other agents in a specific region.

In this work we have a first attempt to define the notion of
interaction pattern, even if there the authors try to describe in-
teraction patterns in a different way respect to the definition
we will give later: in that paper the studied area is divided
in regions where, for each one, is calculated a descriptors set
that identify some measurable quantities (as the average speed
of the vehicles in that region defined as low,medium and high
speed region). Thus those interaction patterns describe frequent
schemes of variation that occurs for an agent moving from a re-
gion to another one. For example an interaction pattern could
be the following:

{Laist, Nspeea} = {mMaist} (2)

which means that is frequent to have agents moving from re-
gions with low average distance between fast agents, to regions
in which we can find a medium distance between agents.
Important elements to be considered when modelling complex
systems are surely the ones related to the social interactions
studied [13] in other fields, as the social sciences, to create cog-
nitive models that can be used in the simulation to integrate
a modelling more physical and mathematical with aspects re-
lated to the internal and concious/unconcious choices of each
agent.

2.1.4 Reality mining

This work has been developed by the MIT Human Dynamics
Laboratories[15] and is probably the one closer to our inten-
tions and to our idea on mining pattern that could describe
frequent agents’ behaviours. The authors wanted to find some
structures into the people’s routines and activities, trying also
to infer social relationships by analyzing the interactions be-
tween the cellular phones of the sample taken into account: us-
ing the Bluetooth devices and some ad-hoc cell tower to retrieve
the data about absolute position and the relative to other Blue-
tooth devices, they developed two software, BlueAware and
Bluedar that, running in background on the phone, have had
the main task to collect data about position of the cell and other
devices in the neighborhood. Once tackled the problem to col-
lect data, the work focus its attention on two main activities:

CONTEXT INFERENCE using data about the usage of phones’
applications, the authors try to understand which are the
most used applications for different contexts; this can be

17

18

RELATED WORKS AND BACKGROUND

useful to understand, basing the decision on the place
in which the user currently is, what applications will be
most probably used, or if there are a significant modify
into the habits of the user itself.

Aggregate Application Usage in Context

Calendar = % \?\:::: R

Clock e I Hore |

Video Recorder gg—— i
Media Player g7 .
Photo Gallery — .

Camera L 3 R
Snake -

Web Browser 4

I] i L
0 0.2 0.4 06 08 1 12
% of Total Application Usage

Figure 9: Phone applications” usage for the context analyzed by the
article

RELATIONSHIP INFERENCE the context’s inference is only the
tirst part of the work, that have the ambition to do more.
In fact, once inferred the user’s context, one can try to in-
fer who are the persons that the users could meet during
the day. This is an indirect indication of a specific rela-
tionship that can be used to generate communities for the
current user: those communities can be used to say, for
example, when is most probable to meet someone, or to
have general information about the specific community.

Figure 10: Friendship network (left) and the proximity network
(right) elaborated from devices proximities.

All the information retrieved are finally used to describe un-
derlying communities, building generative models to parametrize
the dynamics of those networks and so on.

This is, without any doubts even if with significance differences,
the work that is most closer to the one we have done. In fact
even here in some way the authors try to retrieve informations
and patterns to describe habits of the users by some sort of

2.2 DATA-MINING BACKGROUND

interactions (in particular, interactions between devices and be-
tween each user and its device). However we start from a dif-
ferent context, we faced with small and well delimited areas,
and we try to find patterns that could be described by events
in functions of some low-level interactions. We can state that
our work, furthermore, has the ambition to represent a more
general and complete solution that could be also applied, with
a preliminary brief adjustment, in this context.

2.2 DATA-MINING BACKGROUND
2.2.1 Apriori principle and association rules mining

The apriori principle is the property related to the one that is
probably the most known application of data mining, the bas-
ket market analysis, associated to the problem of the mining of
association rules. The first definition of the problem and of the
algorithm was given by Agrawal, Imielinski and Swami in [19],
where a faster and improved implementation is discussed in
[20]. In this problem we have a set of m transactions and n
different items present into the database, and we want to find
a set of rules with which we can predict the occurrence of an
item based on the occurrences of other items into the transac-
tions [18]. In figure 11 we show an example of association rules
elaborated from a database of transactions *.

Market-Basket transactions L
Example of Association Rules

rn ftems
{Diaper} —» {Beer},

! Bread, Milk {Milk, Bread) —» {Eggs, Coke},

2 Bread, Diaper, Beer, Eggs {Beer, Bread)} — {Milk},

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer Implication means co-occurrence,
5 Bread, Milk, Diaper, Coke not causality!

Figure 11: Example of association rules from a database

The algorithm for finding the association rules is structured
in two main part:

GENERATION OF FREQUENT ITEMSETS in this phase the algo-
rithm try to find all the subsets of items that are frequent
in a database made of transactions, the frequent itemsets.
In the figure 11, for example, one of these subsets is given
by {diaper, beer};

all the images about association rules mining has been taken from the sup-
port material of [18], at the website http://www-users.cs.umn.edu/~kumar/
dmbook/dmslides/

19

http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/
http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/

20

RELATED WORKS AND BACKGROUND

GENERATION OF ASSOCIATION RULES once retrieved the set
of frequent itemsets, the algorithm elaborate the associa-
tion rules returning in output only those ones that has
confidence over a certain threshold.

The part of the problem that mainly interest us, is the one
relative to the generation of the frequent itemsets. This because
in this phase is used the apriori property, that we used in the
algorithms that we have developed to find the frequent instance
patterns and the frequent sequence of interaction patterns. Is
quite obvious that, given n different items, there are at most
2" possible itemsets that can be generated with a brute force
approach. Starting from the null element we can see in figure 12,
in which we have five items, the lattice of the possible itemsets
of size k generated by pairs of itemsets of dimension k — 1, with
1<k<5:

Figure 12: Example of lattice for generate all the subsets for 5 items

The apriori property is the one that is used to prune part of
this lattice, excluding the ones that generate surely infrequent
itemsets. If we indicate with support(-) of an itemset X the
fraction of transactions containing the elements of X over the
entire database, we can state the property as:

Definition 1 (Apriori principle). Given two itemsets X and Y,
holds the following:

(X CY) = support(X) > support(Y) (3)

that is also known as anti-monotone property of the support.

2.2 DATA-MINING BACKGROUND

The previous principle states that if we have an infrequent
itemset, there won’t be any superset of that itemset containing
it that could be a frequent itemset. So, when the algorithm find
that a subset is not frequent into the transaction set, it does
not generate any superset that contains the infrequent subset.
Taking the previous lattice, and assuming that the subset {A, B}
is infrequent, we can see the effect of the pruning followed with
the applying of the apriori principle.

Found to be
Infrequent

L
N :
supersets Rl P _,-*

Figure 13: Example of pruned lattice for 5 items

This principle in general can apply a drastic reduction of el-
ements generated by the algorithm during the search of the
frequent itemsets. However, even if in real cases it is very im-
probable, in the worst case (there are no infrequent itemsets)
the algorithm still generates (}) itemsets. In our work we will
use this principle in the algorithm that we has developed, be-
cause to find all the interaction patterns we will interested to
keep, and to grow, only those patterns which are frequent, i.e.
that have a support value such that are greater than a decided
threshold.

2.2.2 Graph mining

Graph mining is the field of data-mining which deals to ex-
tract frequent substructures present in datasets represented as
graphs [21]. In particular this type of mining can be used in a lot
of disciplines, due to the increasing of importance of network
models in various scientific fields: apart the just mentioned so-
cial networking, we can also describe with graphs the chemical
compounds, the web, the protein interactions and so on. Thus
work directly with graphs is something that improve the under-

21

22

RELATED WORKS AND BACKGROUND

standing of the results, that are given in form of graphs them-
selves. In the case of frequent substructure mining in chemical
compounds, we show an example ? of graph mining in figure

14.

CHEMICAL COMPOUNDS '
| D
%

|
N N ¢O N N 90 \’,NH
T T e
N "~ N ~ //\N)\s\\
/ l! / !! —d
(a) caffeine (b) diurobromine (c) viagra
FREQUENT SUBGRAPH

(1)

Figure 14: In the dataset of three chemical compounds, given as
graphs, is found a frequent structure.

In our work some concepts from the graph mining will be
useful, because there will be a moment in which, from a set
of elaborated graphs dataset, we would find the ones that in
the introduction we have called interaction patterns. In partic-
ular, to do this, we couldn’t use some of the common tools
for the graph mining, as the Apriori Graph Mining [22] or the
gSpan[23] algorithms, because our dataset will have specific
characteristics that those instruments do not take into account,
making them unusable. However we will take inspiration from
these tools to develop an algorithm that can elaborate our de-
sired form of data.

2.3 GRAPH THEORY

Graph theory is the mathematical field that study the graph
structures, that are mathematical models which are used to rep-
resent objects that are connected with links between them. In
our work we will use intensively the graphs, thus we introduce
some important concepts about graphs and graphs theory. First
of all we give the mathematical definition of a graph.

the image has been taken from the support material about graph mining of
the Interdepartmental Bioinformatics Group - Max Planck Institute for Biological
Cybernetics, at the website http://agbs.kyb.tuebingen.mpg.de/wikis/bg/
BNA-4.pdf

http://agbs.kyb.tuebingen.mpg.de/wikis/bg/BNA-4.pdf
http://agbs.kyb.tuebingen.mpg.de/wikis/bg/BNA-4.pdf

2.3 GRAPH THEORY

Definition 2 (Graph). A graph G is a pair G = (V, E), where V is
the set of vertices and E is the set of edges. In particular E C 'V x V
identify the set of links that could be directed or undirected.

The graphs can be represented as shown in figure 15. The last
of these three examples represents a labelled graph, that we will
use to define the framework for the analysis of the interactions
between moving agents.

Ly © L

Figure 15: Three examples of graphs: undirected, directed and di-
rected labelled.

We can define formally a labelled graph as:

Definition 3 (Labelled graph). Given a set of labels Ly for the
vertices, a set of labels Lg and two functions ¢y : V. — Ly and
&e 1 E — L, a labelled graph G is a graph where for eachv € V :
label, = ¢&v/(v) and for each e € E : label, = ¢g(e).

Each graph, labelled and unlabelled, can be represented with
a matrix called adjacency matrix: if a graph is such that [V| =n,
then the adjacency matrix is a structure with dimension n x n
with nodes labels as rows and column. Examples of adjacency
matrices for labelled graphs, can be seen in figure 16.

Figure 16: Adjacency matrices associated to an undirected graph and
to a directed one.

The concept of adjacency matrix is important because it’s
the structure usually used to work on matrices and is a com-
pact representation of a graph with its relations; in the case of
undirected graph it is necessary only half of the original matrix
thanks to the symmetry of the matrices in the undirected case.

23

24

3

4

RELATED WORKS AND BACKGROUND

2.3.1 Multigraphs

In the following chapters we will see that, once elaborated the
information connected to the interactions between agents, we
will be interested to represent the results in a more simple form
to be elaborated by the algorithm that we will develop. In par-
ticular we will use the concept of multigraph. Multigraphs are
a generalization of the simple graphs as we have introduced in
the previous section. The difference between the two kind of
structures is given by the fact that in simple graphs can exists
only one edge between two vertices, while in a multigraph we
have not this requirement. In figure 17 3 we show an example
of multigraph.

Figure 17: Example of undirected multigraph

With those structures we can easily model multiple relations
between nodes of the graph, and this has become very impor-
tant in the last years where, thanks to the increasing and the
diffusion of the social networks, we have access to a lot of data
about the connections and the relations between the users that
can be analyzed. This because relations can be represented and
modelled with labelled multigraphs, as we can see in figure 4
18.

We have introduced multigraphs because we will use them
when it will be necessary model in a simpler and blunt way the
relations retrieved with the analysis framework (those relations
will correspond to ongoing events) between moving agents be-
fore starting the search of our interaction patterns.

The image of is taken from the website http://en.wikipedia.org/wiki/
Multigraph
The image of is taken from [1]

http://en.wikipedia.org/wiki/Multigraph
http://en.wikipedia.org/wiki/Multigraph

2.3 GRAPH THEORY 25

O .
- -

2006
same

colleagues name 2005
colleagues 2005
relatives . 2009 .
RN - >~ .
eam

Figure 18: Relations” modelling between a users of a network with a
multigraph

2.3.2 Graphs isomorphism problem

The last section about graph theory is the one relative to the
graphs isomorphism problem. We can state this problem as:

Definition 4 (Graph isomorphism problem). Given two graphs
G = (Vg, Eg) and H = (Vy, Ey), the graph isomorphism problem is
the problem to find a bijection between the sets of vertices Vg and Vi
which preserves the edges.

Thus this problem is the one to state if two graphs are the
same, unless labels. In figure > 19 two isomorphic graphs.

An isomorphism
between G and H

@ ® .-

fic)=8
O |
flg)=45
9 o fih)y=2
fi)=4

@/ @ f)=1

Figure 19: Two isomorphic graphs with the function of translation

Graph H

This is a well-known problem, that is faced in particular in
scientific field as, for example, mathematical chemistry and chem-
informatics [14] where is important to identify same chemical
compounds or same substructures present in different com-
pounds. Recognize that two graphs are the same, if we do not
consider the labelling of the vertices, is something that will be
very useful in our work when we will have to decide if two
patterns with real agents represents the same generic pattern.

5 The image of is taken at the website http://en.wikipedia.org/wiki/
Graph_isomorphism

http://en.wikipedia.org/wiki/Graph_isomorphism
http://en.wikipedia.org/wiki/Graph_isomorphism

26

RELATED WORKS AND BACKGROUND

However, even if this problem is so important, it is known that
it is an NP problem [32], where the best result known in lit-
erature for a graph with n nodes is given by an algorithm of

complexity 20(v™108M) [33] The most simple algorithm to rec-
ognize if two graphs are isomorphic is the one that we show in
tigure 20.

: procedure GRAPH ISOMORPHISM(G, H)
amg = adjacency_matrix(G)
amy = adjacency_matrix(H)
for all permutation of node in amy do
if amg = amy then
return TRUE
end if
end for
9: return FALSE
10: end procedure

N 2 B W N

Figure 20: Naive graph isomorphism psuedocode

This algorithm is based on the fact that two isomorphic graphs
must have the same adjacency matrix: so it simply permutes the
vertices of one of the two graphs until the adjacency matrices
become the same. Since the cost of the comparison between two
adjacency matrices of graphs with n vertices is O(n?) and since
the algorithm generates in the worst case all the permutations
of the vertices, with a cost of O(n!), we can state that the naive
algorithm has an overall cost of O(n!- n?). However we will see
how to face this problem in our case, developing an heuristic
that in real cases has better performance respect to the worst
one.

2.3.3 Temporal graphs

Temporal graph [36], or temporal networks [35], are structures
that describe a model evolving in time making explicit the tem-
poral component of the model. Take as example the follow-
ing figure where is reported a table representing the emails
send /received from a set of persons. The images are taken from
[36].

Obviously, if we want to model the situation of this exchange
of emails we could use a directed graph, as reported in figure
22.

It is clear that this representation does not consider an impor-
tant information given by the data, that has been flattened on
a non-temporal representation. Temporal graph has been devel-
oped to tackle those situation, in which the temporal informa-

2.3 GRAPH THEORY

Sender Recipient Time
A B Hh=0
A C.E =1
E D =3
B C 14=3
B D =9
D B t=14
A D =20

Figure 21: Table with the information about the exchange of emails
between A, B, C, D and E.

©

OOn0
Figure 22: Representation of mail exchanging relation between A, B,
C,Dand E

tion and the graph representation must be mixed to have the
maximal expressiveness to the ones that have to analyse those
kind of data. Thus, the data contained in the table of figure 21
can be represented in the following manner.

q 1 | 2} | 3} |t} | 5 | | 6 | | &
TN g
[A5} ! 19-" Aty)
\I/ .
I/I;’;\:---- ->|./i-334\\,r---4 --v“/E-‘%\' (g
NS \I_/ \{j .
4 e
= O
S v
™ - N N
I| I/DG r é --l-l,/D-s }..B l-I/D"ﬁ)-8 r|/D°?)
\ \j/ N N N
\
N .
Fae N 2
[Bty po o By
N N

Figure 23: Representation of mail exchanging relation between A, B,
C, D and E with a temporal graph. The dashed lines means
that the person is waiting.

A lot of things can be modelled with those kind of graphs: in
particular we will see how we will use a very similar structure,
that we won’t use at maximum of its potentiality, to represent
relations between moving agents and that will be to the basis
of all our work.

27

Part II

MINING DATA WITH INTERACTION
PATTERNS

We introduce now a new methodology to analyze
mobile data from a point of view based on the con-
cept of interaction pattern. First of all we will define
the problem, introducing the elements that we need
to bring out from the data useful information about
the interactions between moving agents. After we
develop two algorithms that we will use to extract
behavioural patterns from the elaborated data re-
garding the movement of the agents. Finally we will
see the application to the interaction pattern mining
on two real cases, showing examples of functioning
of ours tools.

THE INTERACTION PATTERN ANALYSIS
FRAMEWORK

In this chapter we will define the framework that is used to ab-
stract and to bring out particular configurations between mov-
ing agents. In figure 24 are shown the components we face in
this chapter and that we have defined: starting from the tra-
jectories” dataset, called as raw data in the example, we want to
define a better representation for trajectories that we can use for
our computation. This representation is based on a sequence of
graphs, each of which represents the neighborhood relations
between agents and their interactions, in the form of edges’ la-
bels. On this new structure we will search for events between
pairs of agents and events on single agents, that are the first
abstract objects in output on which we will base the search of
the interaction patterns.

Instant 0 Instant 1 Instant 2

APPROACH(2,3)

MAINTAINING_DISTANCE(2,3)

Raw data

creation of neighbor
graph,each agent.
All the agents are

"Mnked tothe next one

Snapshot of
neighbor graph

analyze of interactions
between agents to

Figure 24: Schematic description of what we tackle in this chapter.

All is constructed around interactions, as we have introduced
in chatper 1, of which we gave an informal description but that
now we want to define clearly:

Definition 5 (Interaction). We define as interaction any measur-
able quantity, returned from some defined function, that can poten-
tially influence the behaviour of the agents involved in the measure-
ment or that can describe something that is happening between the
agents in their sphere of influence.

Along this chapter we will define, as first, the theoretical no-
tions on which the framework is based. During the explaining

31

retrieve events
y

Retrieve events
graph

32

THE INTERACTION PATTERN ANALYSIS FRAMEWORK

of that theoretical part, we present also an instantiation of the
framework that we have used for our experiments, that will be
reported in chapter 6.

3.1 PRELIMINARIES

In the previous chapters we have stated that our work is based
on trajectories associated to moving agents. So before starting
defining the framework and the algorithms we have developed,
we formally define the notions of trajectory, trajectories” set and
of agent.

Definition 6 (Trajectories and trajectories’ set). The set of trajec-
tories T is the set of the trajectories observed from a set of moving
agents in a time scope T = {t € IN|0 < t < Tyax):

T ={Ty,..., Ty} 4)

where n is the number of unique agents of the dataset. Each trajec-
tory Tiq, with 1 < id < n, is the set of points in which the agent
with identifier id has been tracked into an interval [s,e] C T:

Tid :{(XSIHS)/"' /(Xelye)} (5)

The trajectory set identify then a set of agents, all unique,
each of one has associated a trajectory of the initial dataset.

Definition 7 (Agent set and agent). Given a set of trajectories T
where |T| = n, we define the agent set as

A ={Aq, .. An} (6)

where a single agent is defined as

Aig = (Tig, {(TEy, A%, Vi) eriy) (7)

where 1 <id < nand Tiq = [s, e] C T. The values T'fd = (Xx, Yx),
d¥, and V¥, represent respectively the position of the agent id, its
direction and its velocity in the instant k. For the sake of simplicity
we can also refer to the set that represents an agent as

‘Aid - {‘Aisd/ Ay ‘Afd} (8)

As above, Tig = [s, el.

3.2 THE IPA FRAMEWORK

p._\h

™\
A J

Figure 25: Example of direction’s derivation for a moving agent; con-
sidering two points in which the agent is positioned in two
consecutive instants. The difference between the y values
in these instants (x in the case of direction o or 180) deter-
mines which angle consider.

Thus, assuming to know the sampling rate of the trajectories,
we can start from these points to derive the velocity and the di-
rection of an agent in each instant. We assume as primitive the
agent described into definition 7, also containing the derived
measures from the associated trajectory. We show in the follow-
ing how they can be computed.

Given two points p; = (x1,y1) and p2 = (x2,y2) in consecu-
tive instants, the velocity for an agent can be calculated as:

Vv (x2—x1)2+ (y2 —y1)?
tu

v(p1,p2) = 9)

where t,, is the temporal sampling unit for the points, that is
shared by all trajectories. Given the same points, the direction
is calculated as:

—1 (x1 —%x2) =0A(yr—y2) =0
d(p1,p2) = 1 2 Y1 —Y2 (10)
angle(pi,p2) otherwise

where angle() is the absolute angle of the line on which lies
the movement vector respect to the unit circumference. In fig-
ure 25 we see how this function must take into account the
values of both points to decide if take an angle or its opposite.

3.2 THE IPA FRAMEWORK

We start now to develop and discuss a general framework, the
Interaction Pattern Analysis (IPA) framework, for the analysis
and the retrieving of events in which are involved single agents
and all the pairs of agents that interact with each others.

33

34

THE INTERACTION PATTERN ANALYSIS FRAMEWORK

3.2.1 Representing trajectories with a graph

First of all we want transform the original trajectories dataset T
in a structure that can describe the relations between agents in
a manner for which will be simpler for the framework we will
define the seeking process of our atomic components. Since we
are putting the basis of all the work, we have chosen the way
to represent the trajectories of the dataset agents very carefully.
In the introductive examples, into the chapter 1 but also into
the works presented in the section 2.1, we have seen how is nat-
ural to describe relations and interactions between pairs of ob-
jects, instead of representing subsets of agents variable in time.
Furthermore we assume that an agent directly or indirectly in-
fluence the others into the environment. These considerations
have led us to describe trajectories associated to the moving
agents with a series of consecutive graphs, where the main re-
lation (the edges) represent a neighborhood relation: each of
these graphs is connected with the ones representing the previ-
ous instant and the following one, creating so a unique graph
structure. We can so define the notion of neighbor graph.

Definition 8 (Neighbor Graph). Given a set A of agents over the
time scope T and given a neighborhood function N defined between
pairs of agents in a time instant, the neighbor graph is a graph
G) 1 = (N, E), with:

1. nodes N ={A} | A; € ANt € Ty}
2. edges E = Eego U Einy, where
Eego = {(AL, AT € N%
and

Eint = {(AL A} € N2 [A e N(AD AATT AT € N

In figure 26 we show, in the right part of the figure, the repre-
sentation of the neighbor graph for three snapshots (in the left
part) of three consecutive instants, for the agents with identi-
tiers {1,2,3} Ego edges represent vertical links that connect the
different occurrences of each agent at consecutive time instants,
whereas interaction edges represent pairs of agents that at spe-
cific moments fall within each other’s sphere of influence, thus
could potentially interact. Notice that Ei, ¢ excludes initial time
instants of agents: this is due to the fact that in our framework
we will consider only events that involve changes of features
between time instants, which are not defined for initial points.

The choice to represent the agents with a graph is the better
one, even because this is a representation where the relations

3.2 THE IPA FRAMEWORK

e
-
-
-
(&
HADC‘J

On
T

v
o ’3’0 g b

Figure 26: Representation of a neighbor graph

between agents are immediately clear and where the represen-
tation of the neighbor relation, the one privileged for us at this
level, is the most natural. Furthermore in literature we have
other cases in which relations and interactions between moving
agents are represented using graphs [11] [30] [31]. This repre-
sentation, finally, is very close to a temporal graph, presented
in the chapter 2 and then can be studied also in this way. How-
ever we have mostly used it to base a new kind of work instead
of using the techniques studied to analyze the agents and their
interactions with this form of representation.

3.2.2 Neighborhood creation

In the definition of neighbor graph a fundamental component is
the neighborhood function. The type of neighborhood is vary-
ing respect to the specific context and also respect to the as-
sumptions that we could make about agents: a particular rele-
vance is given by who can influence the others into the envi-
ronment. Is intuitive in a mobility context to think that, chosen
an agent, agents closest to the one considered have a greater
influence on it than the farest ones. We have chosen to define
this relation, in our case, as the one described by all the closer
agents to the one considered that are visible by him, and vice
versa. We make an example to explain what we mean in figure

27

a o‘_‘—m

™ | | -,

Figure 27: Different possible choices for the neighborhood relation

Both possibilities represent valid neighborhood relations, but
the one that is the closest to our approach and to our definition

35

36

THE INTERACTION PATTERN ANALYSIS FRAMEWORK

of interaction is without doubt the one represented in the right
part of the figure. This because, if we want that interactions will
be the measure indicating potential influences between agents,
following the definition 5, in the first case we are assuming that
two agents (black and red cars) could have potential interac-
tions even if they are not directly visible each other. We instead
prefer the second kind of relation in which interactions, and
consequently events, between the three cars can be explained
with the pairs of relations (black car, blue car) and (blue car,
red car), where they are all directly visible each other.

In other contexts the neighborhood relation can be described
in other ways: for example, if we would adapt the framework
to manage interactions between non moving agents as financial
markets, we could define a function that take into account other
types of parameters.

In our case we want to construct a function of neighborhood
that works in a similar way to the algorithms that create visibil-
ity graphs [28][29]. In figure 28 an example of visibility graph
for the points s and t and the obstacle’s vertices”.

Figure 28: An example of visibility graph for the points s and t

In those kind of graphs, widely used in robotics, the points
are connected to the vertices of the obstacles with an edge iff
they are visible each other, and these edges are called visibility
edges. Our intention is very similar, in fact we have defined our
neighborhood function N in this way: given a search diameter
dsearch and an agent described by a point and a circle of radius
Tagent (fixed for all agents) that describe a radius of visibility
having the agent as center, returns all the agents visible to him,
i.e. all the agents into the search diameter dgeqrch for which we
can draw a line that has no intersection with any other circles
between the two points. In figure 29 we can see an example
of behaviour for our implementation of the neighborhood func-
tion.

Image taken from the website http://www.cs.wustl.edu/~pless/546/
lectures/122.html

http://www.cs.wustl.edu/~pless/546/lectures/l22.html
http://www.cs.wustl.edu/~pless/546/lectures/l22.html

3.2 THE IPA FRAMEWORK

Figure 29: Construction of our neighbor graph for the initial situation
in the left part of the figure

3.2.3 Measuring interactions

Once defined the structure with which we will represent the
trajectories associated to the agents, we are interested to define
how to measure interactions. Thus we introduce two kind of
function that we can use to label the neighbor graph:

Definition 9 (Ego and interaction functions). Given an agent set
A, a ego function ffgo is defined as a function that associates a
predefined number nego of real values to two consecutive instances
of an agent, ie. £, (A", AL returns values in RMeso. £ re-
mains undefined for the first instance of an agent, ie. t—1 ¢ T, =
A (gt-1 gty
fego(A{ , A{) = undef.

Similarly, an interaction function f£., is defined as a function
that associates a predefined number nin of real values to each pair of
contemporary instances of two agents, also involving their previous

instances, i.e. 4 (A7 AL, Ajt*],fl]?) returns values in R™nt, Asg

int
A ‘A
for fego, Ting remains undefined when the first instance of an agent is
involved.

Both ego and interaction functions, so, can be seen as t-uples
of respectively, Nego and nin¢ function:

A A A
1:ego = (fegow /fegonego) (11)
A A A
fine = (fint1/ T lfegonmt) (12)

Ego functions are those ones that calculate the variations of
internal parameters of an agent in two consecutive instants.
Those parameters could be the ones associated to the change
in the acceleration, in the direction and so on; however, poten-
tially every measurable change into the state of the agent can be
associated to a simpler or more complex ego function. Interac-
tion functions are those ones that calculate a measure regarding
the situation between the internal parameters of the involved

37

38

THE INTERACTION PATTERN ANALYSIS FRAMEWORK

agents. These functions consider pairs of agents in two consec-
utive instants because could be necessary to see the previous
state of both agents to return a correct evaluation of the inter-
action. For instance, take a function that checks the variation of
distance: considering only the coordinates of two agents in one
instant is not sufficient to determine if the distance between the
agents is decreasing or not, because we must have a point of
reference to return the correct evaluation. If we consider also
the previous distance between them, we can return a value in-
dicating if one of the agent is approaching the other or not.

If we see these values at this point they simply give us an in-
stantaneous of the differences or measures between parameters
of different agents. However, if we consider those values in dif-
ferent instants related each other, those simple measurements
can tell us something about a behaviour that we can construct
to an higher level of abstraction. For example, even if we will
see it more deeper after, take again the distancing function. If
we see that the returned value for two agents is a value indicat-
ing a distance’s decrease in an instant, we can state something
about the instantaneous situation of the distancing between two
agents: on the contrary, if we see that in a consecutive set of in-
stants the function calculates decreasing values for this param-
eter, we can state that in the considered set of instants those
two agents have been interacting. An event is ongoing between
them, that we could define as approach of the first agent on the
second one.

All of those events will be searched into the labelled version
of the neighbor graph.

Definition 10 (Labelled Graph). Given a set A of agents over the

time scope T, a neighborhood function N, a ego function ffgo and

a interaction function f{., the Labelled graph is a graph Gt =
(N,E, L¢, L), where:

1. (N, E) is the neighbor graph associated to A and N

2. for each edge (A, AY) € E, a label Lg(A}) = félgo(*AJ{_]/AJ{)
is associated to node A}

3. foreach edge (A}, A) € E, alabel Ly(A}, AY) = A
is associated to edge (A¥, A]-t).

3.2.3.1 Instantiation of interaction functions

We briefly describe now the interaction functions we defined
and that we will use in the rest of the thesis. In particular, even

—1 —1
(A, AL A, A

3.2 THE IPA FRAMEWORK

if for completeness we have defined them, we do not use the
ego functions and we have not instantiated them, because we
focused our attention on the aspects related on the interaction
functions, more closest to the basic concept of interaction.

Into the definitions of the functions, in table 1, we denote
with A; and A; the pair (A?],AD and (A;‘*],Ajt) respectively.

Table 1: Complete definition for the interaction functions
frame (Ai/ -Aj) used

name function definition

distance T8 — T8l — T} — Tl
; t_ ot
velocity Vi =V
direction min{360 — |d}f — d]f‘\, |af — djtl}
position position(Ai, Aj, €1at, €|, €move)
. 1 if d(l, TF?U < €align Ad(L, T < €align
align))
0 otherwise

In the distance function a negative value indicates an instan-
taneous approach, while a positive non-zero value indicates an
instantaneous distancing. In the velocity function we can de-
rive by the returned value if the first agent is faster or slower
than the second one. The third function defined calculates the
difference of direction between two agents: to note that this
value can assume a minimum of o degrees (same direction) or
180 (opposite direction). The position function computes the
position of the first agent w.r.t. the second one and it returns a
code that indicates if the agent A; is behind (v1), ahead of (v;),
lateral to (v3), flanked to with same direction (v4), moving in
front of (vs), moving behind the other in opposite direction (vg)
or not moving as like agent A; (v7): the function analyzes the
line generated by the two points pair (T{‘RT{) and (T}_],T}),
combining the information about the degree of parallelism of
the two lines, the lateral positioning of the agent and the mov-
ing indication to return the correct positioning. In figure 30 we
show three possible examples in which the position function
returns three different values.

In the first case the red car is in front of the blue one, because
the blue car is outside the band generated by the perpendicu-
lar line to the direction of the red car at distance <4t from its
center. These margins represent the band in which one agent is
lateral to the one considered. In the second and third example
the blue car is lateral, or flanked, to the red one; in the third
case, analyzing the angle between the two directions, we can

39

40

THE INTERACTION PATTERN ANALYSIS FRAMEWORK

Figure 30: Three examples of position returned from the position
function: in the first case a front-back relation, in the sec-
ond a lateral positioning and in the last a flanking.

guess that the agents are flanked. The last function we have de-
tined is the one that check the alignment between two agents:

P P
indicating with 1; the line yi_y‘i = Xi_x‘i ,

Y=Yy X37Xq
the second agent, in two consecutive instants, is contained into

the band generated by the two lines parallel to 1; at distance
€align from it.

the function checks if

.......... —>@3%' e e Feis

Figure 31: Two types of alignment

In the left part of figure 31 there isn’t any alignment, because
the red point in two consecutive instants isn’t contained both in
the band generated by the parallel lines to the direction of the
blue car, each one at distance €q1ign. In the second case there
is an alignment, the red point in two consecutive instants is
contained into the alignment band.

3.2.4 IPA Events

Having defined the complete structure that abstracts the trajec-
tories” dataset and where we can find the interactions between
pairs of agents, we can finally define the first complex com-
ponent that will be at the base of our interaction patterns in
the following. As we introduced in section 3.2.3, the measur-
ing of an instantaneous interaction is something not interesting
itself, and that do not give us any information. We must so
find and construct aggregations of interactions that can iden-
tify something about the dynamics of the environment. As we
have already said in a previous example, a series of decreasing
distances can be seen as an event, that we can call approach;
this represents an event with a start instant, an end instant, a
subject and an object of the event. These events emerge directly
from the interactions, because (as introduced in the example)
each event can be described by a template that indicates which

characteristics, in terms of interactions calculated by the fﬁlt, it

3.2 THE IPA FRAMEWORK 41

should have in a certain interval. In conclusion, the IPA frame-
work primarily search events.

We can define so the notion of event template.

Definition 11 (Event template). Given an agent set A and a time
scope T, an event template is defined as a predicate P : A x A X
T2 = B.

The intended meaning of the predicate P(Aq, Ay, a,b) is that a
property P holds in time interval [a, b], involving agents Ay and A,;.
Ay is the subject of the event while A; is the object of the event.

Example 1. Now we can take the example already done and defining

it more formally: an approach is an event template approach(Aq, Ay, ts, te)
which holds iff for each time instant t € [ts, te) is satisfied T gistance (A}, A5) <
€dist 0T fdistance (.A}[,AE) = €dist = fdistance(AJ1[+]r‘A§+1) < €dist-

As the example shows, templates can have a complex form,
for instance not limited to a simple monotonic behaviour. In
our case shown above, non-strict decreases in the distance are
allowed only if isolated.

Definition 12 (Graph events). Given a labelled graph GL = (N,E,Le, L)
and a family €T of event templates, the graph events of G- are de-
fined as the set EJ of all event instances P(A4, Ay, a,b) such that:

1. Vt € [a,bl. A}, AS e N
2. P(Aq, Ay, a,b) = true
3. la, bl is maximal, i.e.: [c,d] D [a,b] = —P(A;, Ay, c,d)

The events belonging to the £J set, found with a search in
the labelled graph, are the objects resulting as output from the
framework.

3.2.4.1 Concrete events

The last thing we have to do is to finalize the instantiation of
the framework. With the defined interaction functions, in the
section 3.2.3.1, we want to create our library of concrete events
that we want to search in the datasets that we will have to anal-
yse. First of all we define the concrete event template:

Definition 13 (Concrete event templates). We have an event of
type P(Ai, Aj, ts, te) iff for each t € [ts,te) is satisfied a specific
condition or in a t < te — 1 the previous condition is not verified,
but is verified in the instant t + 1.

THE INTERACTION PATTERN ANALYSIS FRAMEWORK

42

Table 2: Complete definition for concrete events

P

condition

subject/object

moving_away

_—

%&ﬁnﬁnmﬁ.\:\ ,\rv > €dist

Ay is the subject if it’s faster than A;

following

froute (Ai, ._.: < €route N wnzmdmmﬁ.\f\ .\f,v = 1A

Tposition (A, .x:u =V /A —egist < faistance(Ai, \r.v < Edist

v indicate that A; is behind the agent A;, A; it’s the subject if it follows the A;

maintaining_distance

—

—€gist < faistance (A, Aj) < €aist

N[Altgr, ter) C lts, te) . ter — tgr > 1A following(As, Aj, ts, te))

Ay is the subject if it follows A;

back_aligned_approach

froute(Ai, .x—u.u < €route N\ wm:mﬁm&ﬁ.\f\ ,\f.w =1NA

%ﬁoﬁioﬁﬁ\r\ _\fv =vA ﬁ&mﬁnﬁnmﬁ\:\ \ru < —€qist

v indicate that A; is behind the agent Aj;, A; it’s the subject if it follows the A;

frontal_approach

——

froute (Ai, .\fu > (180 — eroute) N ﬁnﬁmﬁmmﬁ_\f\ .\fu = 1A

fposition (A, Aj) = VA faistance (Ai, Aj) < —€gist

v indicate that A; and A;j are opposite, A; it’s the subject if it’s faster than A;

opposite_approach

froute (Ai, .\ru > (180 — €route) N\ ._nm:.o:mmﬁx—f .xr.u = 0N

v indicate that A; and A; are opposite, A; it’s the subject if it’s faster than A;

- — fposition (Ais Aj) =V Afdistance (A1, Aj) < —€aist
approach faistance (At Aj) < —€aist/\ Altgr, ter) C [ts, te) . ter —tg > TA Ay it’s the subject if it’s faster than A;
—_— (back_aligned_approach(Ai, Aj, ts, te)
Vfrontal_approach(A;, Aj, ts, te)Vopposite_approach(A;, Aj, ts, te))
flanking froute (A1, Aj) < €route /\ fposition (Ai, Aj) =V v indicate that A; is flanking the agent A;, A; it’s the subject if it’s faster than A;
—DD

opposite_flanking

-

froute(Ai, .h.u.u < (180 — €route) N Thosition (Ai, \:u =V

v indicate that A; is flanking the agent A;, A it’s the subject if it’s faster than A;

3.2 THE IPA FRAMEWORK

In the table 2 we report the concrete events we defined: in
the first column, with the name we gave to each event, we have
indicated a legend of the corresponding graphical representa-
tion. This representation will be used in the examples that we
will show from now on. To search the events into the labelled
graph we have defined a seeker that have for each event P the
same general skeleton, of which we present the pseudo-code in
figure 32. As we can see, the seeker simply annotates when an
event starts and then updates the temporal field of the event
until the main condition of the template is verified or when the
condition in that instant is not verified but is verified in the
next one. We can note how this procedure need one visit of the
labelled graph to find all the events.

1: procedure P_EVENT_SEEKER(G')

2 events_resulting = ()

3 event_repository = ()

4 forallt € T do

5 for all (A, A;‘) € Edo

6 condition_verified = condition for P is verified
or is verified in t + 1

7 event = event_repository((A, A}))
8: if event = () then
9: if condition_verified then
10: put(event_repository, (Al Ajt), P)
11 end if
12: else
13: if condition_verified then
14: update(event_repository(Af, A;‘))
15: else
16 remove(event_repository(A¢, A]-t))
17: events_resulting = events_resulting U
event
18: end if
19: end if
20: end for
21: end for
22: return events_resulting

23: end procedure

Figure 32: Generic seeker structure for an event template P

43

THE STATIC INTERACTION PATTERN MINING
ALGORITHM

The framework presented in the previous section can analyse
trajectories” data to retrieve some useful information about the
events involving the agents of a trajectories dataset. Those data
refer to information about the interactions of pairs of agents
and do not give directly other information about the presence
of some more complex schemes that occur frequently. How-
ever we can expect to find some events that appear frequently
together: for instance, into a mobility context should be intu-
itively to find as a frequent pattern a certain number of agents
that maintain between them the same distance. This pattern is
shown, using the graphical formalism introduced in 3.2.4.1, in
the left part of figure 33. Even if these are a more complex ob-
jects instead of single pairs of events, these schemes are still
too dependant from the specific agents. Thus should be more
interesting searching for group of those schemes, trying to find
the ones that appears frequently.

Figure 33: On the left two combinations of contemporary events with
different agents, representing the same complex scheme.

On the right, in figure 33, we can observe the generalized
scheme of the instances shown on the left, assuming that {A,
B, C} are variables and not unique agents’ identifiers. We will
require that each group of events with concrete agents, like the
ones in the left part of the example, must have specific charac-
teristics of:

PERSISTENCE groups of contemporary events between agents
(static pattern instances in figure 34) must have a duration
over a certain temporal threshold, to limit our search to
the patterns with a significant duration.

45

THE STATIC INTERACTION PATTERN MINING ALGORITHM

IPA Framework's events

from IPA framework's

Creation of events
multigraph dataset
events

‘fmdmg instance patterns
generation of interaction patterns
APPROACH(A,B)
APPROACH(4,5) °
APPROACH(2,3) ‘e
MAINTAINING DISTANCE(A,B)

MAINTAINING_DISTANCE(L,2) °
MAINTAINING_DISTANCE(4,5)
MAINTAINING_DISTANCE(2,3) |} ss— e

[MAINTAINING_DISTANCE(A,B) ;

MOVING_AWAY(C,A) ;
[MAINTAINING_DISTANCE(1,2) § MOVING AWAY(C,B)]

MOVING_AWAY(4,1) ; .E

MOVING_AWAY(4,2) 1
B

INSTANCE PATTERNS INTERACTION PATTERNS

Figure 34: Schematic summary of the work tackle in this chapter.

MAXIMALITY group of contemporary events between agents
must have the maximal number of persistent and contem-
porary event.

TEMPORAL CONTINUITY the elements of the set containing
the same pattern’s scheme, but instantiated with differ-
ent agents (static interaction patterns in figure 34), must be
seen for an interval with duration over a certain temporal
threshold to be considered as frequent.

In figure 34, we show what will be the main topic in this chap-
ter: starting from the events generated by IPA framework we
will search for static interaction patterns, that are a generaliza-
tion of frequently seen contemporary group’s events between
agents.

4.1 INSTANCE PATTERNS AND INTERACTION PATTERNS

To simplify the search of the objects that we have informally
introduced in the summary of the chapter, we define a trans-
formation of the initial dataset: the new dataset will be created
starting from the set £J (defined in 12) to make explicit what
are the ongoing events between pairs of agents. We have so cre-
ated, for each instant of the temporal scope T, a multigraph
where exists an edge between two agents for each ongoing
events between them in that instant: this information is sim-
ply to recover, since we remind that the events are in the form

4.1 INSTANCE PATTERNS AND INTERACTION PATTERNS

P(Aidi,/lidj,ts,te) with [ts, te] € T. So, we can define formally
this new structure called event multigraph set.

Definition 14 (Event multigraph set). Given a set of event in-
stances €J, we can construct a set of consecutive direct multigraph
called event multigraph set EMS = {EM;}icT where each event
multigraph EM; = (NEM EEMY 45 defined as:

1. NFM ={Ajq € A i€ Tig}
2. EFM _= {(‘Aichl‘Aidz/P) | P(Aid1/‘Aid2/tSI te) /\l € [ts/ te]}

In figure 35 we show an example of graph’s construction,
taken from the example made in the introduction chapter: in
the upper part there are some examples of events found with
the IPA framework, that are highlighted in the various multi-
graphs in the lower part of the figure, where all the events
found are visible with the graphical formalism defined in the
previous chapter.

47

APPROACH(2,3) MAINTAINING_DISTANCE(2,3)

1 From retrieved events to a set of multigraph with events as relations

EVENT MULTIGRAPH SET

Figure 35: From the events found with the IPA framework we con-
struct a series of multigraphs in which edges represent
the ongoing events between neighbors. The meaning of the
edges in the multigraphs representation is given in the con-
crete events table in the previous chapter.

The neighborhood relation in these graphs is implicit, be-
cause the presence of an event between a pair of agents means
that both are neighbors each other; on the contrary it could not
exist an event between them. Moreover each of these graphs
gives also immediately the information related to the ongoing
events between each pair of agent and also their relation sub-
ject/object. We want remark that this is a structure introduced
only to simplify the search of the structures that we will define:
in a more general definition the problem can be restated using

THE STATIC INTERACTION PATTERN MINING ALGORITHM

directly the set £J.
In these graphs we search all the static instance patterns defined
as:

Definition 15 (Static Instance Pattern). Given a minimum interval
length tmin, a set of event instances ip = {ey, ..., ex} C EJ is said to
be an instance pattern if the following properties are satisfied:

K
1. (Duration) Iy, = ﬂ interval(e;) N |Lip| = tmin;

i=1

2. (Connectedness) Vei, e; € pi, e, em C piel = e A
e™ = ¢; A\ Vi<iem.agents(e') Nagents(e'™1) # (;

3. (Maximality) e € EJ |l Ninterval(e)| > tin /A agents(e) C
k
U agents(e;) = e € ip;

i=1

where interval(P(A;, Aj, a, b)) = [a, bl and agents(P(Ai, Aj, a, b)) =
{‘Ai/ 'A)}

In this way we identify substructures which represent persis-
tent and maximal configurations of agents that can be found in
at least tyin consecutive multigraphs of EMS. However, those
instances are still too dependant from the real agent, while we
would recognize the patterns deriving by a generalization of
a set of equivalent instance patterns, independently from the
identifiers of the agents found in the dataset. To do this we
give the definition of isomorphic instances.

Definition 16 (Isomorphic Instances). Given two static pattern
instances piy and piy, we say that they are isomorphic instances,
denoted with piy ~ piy, if there exists a bijective function ¢ : A — A
such that: VA, Ay, € AVa,b,a’,b’ € T.P(Ay,A,a,b) € piy &
P(d (A1), d(A2), d’,b") € pis.

Recognize the equivalent instances is the operation neces-
sary to abstract from the concrete pattern found: in this way,
different concrete events that represent the same event can be
grouped with the others representing the same type. So the set
of all equivalent instance patterns is the complex object that we
were searching for.

Definition 17 (Frequent Static Interaction Pattern). Given the
set PJ of static pattern instances inferred from all event instances
&J, we define the set of static interaction patterns in PJ as 8P =
{lpil~ |pi € PI}, where [pil~ denotes the equivalence class induced
by =~ that contains pi.

4.1 INSTANCE PATTERNS AND INTERACTION PATTERNS

We define the temporal support of static interaction pattern sp &
8P as

UpieinJ/\[pﬂ ~=SPp interv al(pi)
supp(sp) = T

A static interaction pattern sp is said to be frequent iff supp(sp) >
tsupp, where tsypy € [0,1] is a minimum temporal support threshold.
Finally, we denote with F8P the set of all frequent static interaction
patterns in 8P.

An important point in the previous definition is the one rel-
ative to the temporal support. This because the property we
would with this type of support implies that the important as-
pect of an interaction pattern is the one to be continuous, in-
stead of having some peak of instances but very limited into
the time scope considered. Moreover in this way we are using
the temporal support as an application of the Apriori property:
in fact we won't use the instances of size k agents of an in-
frequent interaction pattern to try to generate instances of size
k + 1, since any instance of size k + 1 containing that instance
cannot generate an interaction pattern with greater temporal
support. In figure 36 we show a schematic representation of
the notions of time persistence for a static pattern instance and
of temporal support for a static interaction pattern.

49

-

O 0O

©

Persistence of the instances: Temporal support of the interaction pattern:

.-.e Jlam =2 e

Figure 36: Persistence and temporal coverage of a simple example
dataset of three instants.

Toiee = 66%

50

THE STATIC INTERACTION PATTERN MINING ALGORITHM

In the figure we can see clearly the differences between per-
sistence time and temporal support: persistence is related to
the number of instants for which we have seen a specific static
pattern instance; in particular the ones indicated in the left part
in the bottom of the figure have been seen for two consecutive
instants (t; and t; the first, t; and t3 the others). The tempo-
ral support is related to the static interaction pattern and is the
percentage of instant for which at least one instance of that in-
teraction pattern have been recognized; in the example the first
interaction pattern has temporal support of the 100%, since it
has at least one instance in every instant, while the second in-
teraction pattern has temporal support of the 66%, since it has
at least one instance in the last two instants.

4.2 EQUIVALENCE BETWEEN INTERACTION PATTERNS

Recognizing that two instances are equivalent is a problem
amenable to the graph isomorphism problem. In fact if we
choose a simple renaming function, as the one shown in fig-
ure 37, we could probably create different equivalent groups
representing the same generic pattern.

Figure 37: Two static pattern instances belonging to the same static
interaction pattern, recognized as different.

However, any problem related to graphs isomorphism is known
to be NP-Hard and unfortunately we have to face with this
problem to recognize the same instance patterns. Since we can’t
avoid this problem, we developed an heuristic to try to reduce
considerably the number of comparisons necessary to know if
two graphs are isomorphic, for this particular case in which
the vertices are uniquely identifiable and the edges are labelled.
We based our strategy on two main considerations: first of all,

4.2 EQUIVALENCE BETWEEN INTERACTION PATTERNS

since we can represent our instances as labelled multigraphs, if
two vertices have the same number of outgoing edges but have
different number of edges with the same label, the two graphs
cannot be isomorphic: furthermore, looking at the adjacency
matrices of two graphs representing static pattern instances,
only the vertices that have the same number of outgoing edges
with the same labels and that have the same incoming degree
can represent a possible mapping for two vertices. This intu-
ition is shown in the example of figure 38. Then we can use this
fact to generate only the necessary subsets of permutations of
the adjacency matrix of one of the two matrices to know if the
two graph are isomorphic.

X b W Z A =] C D
X o @ @ @ sl 8 v @ @
¥ & m zway approsch [E| oroech 3 m_EwEy
W & &) & c % %) & zpproach
Z & & & & D @ & & &

Figure 38: Two isomorphic graph with their adjacency matrices

In figure 38 we have two isomorphic pattern instances with
the corresponding adjacency matrices. In this case we are not
interested to all the possible permutation of one of the two ma-
trices: in fact we know that if two rows do not contain the
same labels” groups we can’t have any isomorphism. In this
case the heuristic generates only the permutation of the ver-
tices with possible mappings for the assignment of the nodes
X=CY=BW=AVD,Z =AVD, reducing the number
of permutations from 4! = 16 to 2. The procedure still costs, in
the worst case, as the naive version of the method, but having
matrices belonging to real cases we should reduce the method’s
complexity to have an acceptable computation time. In figure
39 we show the pseudocode of the heuristic we propose. Finally
we want to highlight only one aspect: in the procedure we ex-
clude any isomorphism if the nodes are not mappable, that is
possible knowing the labels of the edges. Thus the labelling of
the edges and the uniqueness of nodes can help us to reduce
a lot the number of possible comparison we could have to do,
and then the number of times we have to permute the map-
pings found.

51

52

THE STATIC INTERACTION PATTERN MINING ALGORITHM

1: procedure INP_tsoMORPHISM_HEURISTIC(INP, INPcp)
2 if INP and INP¢y,p have different number of event, or
same number of event but of different type then

return false

3:
4. end if
5 mappings =0
6: adjacencynp = get_adjacency_matrix(INP)
7: adjacencycmp = get_adjacency_matrix(INPcmy)
8: for all row T¢ip € adjacencycmp do
9: for all row rnp € adjacencynp do
10: if Tcmp contains the same labels” groups of rinp
then
11 mapr,, = get_mapped_nodes(mapping, rinp);
12: MAaPrp = MAPrp UN0de(Temp)
13: end if
14: end for
15: end for
16: if mappings # () then
17: for all permutation permutation(mappings,:) of
the mappings do
18: if adjacencyinp =
permutation(mappings, adjacencynp) then
19: return true
20: end if
21 end for
22: end if
23: return false

24: end procedure

Figure 39: Generalized pattern isomorphism heuristic pseudo-code

4.3 THE SIPM ALGORITHM

4.3 THE SIPM ALGORITHM

All the previous elements have been introduced to define the al-
gorithm that works on the event multigraph dataset to extract
frequent static interaction patterns. After having introduced the
notions at the basis of static interaction patterns, can be clearer
the motivation that has led us to develop a new algorithm in-
stead of using one of the already developed for graph mining
as, for example, the well-known gSpan[23]. We can summarize
those motivations in two points:

CORRELATION BETWEEN GRAPHS the structure we used to sim-

plify our search is given by a set of consecutive multi-
graphs representing consecutive situation between agents;
then the order in which they are treated must be consid-
ered by the algorithm, to explicit the temporal properties
of the instances we are searching for;

SEARCH FOR GENERAL PATTERNS FROM THEIR INSTANCES
in a graph mining algorithm the dataset is given by a set
of n graphs in which search for frequent structures: we
want instead to find not the frequent structures in the
event multigraphs set, but to find one more general struc-
ture that we can induce from the frequent persistent in-
stances representing it.

In a certain sense the inoperability and the not adaptibility of
the algorithms proper of the graph mining to find the structures
we were searching, are others confirmation of the fact that the
use of EMS is only a facilitation of representation of our data.
Now we have all the elements to present the Static Interaction
Pattern Mining (SIPM) algorithm in figure 40. In the line 4 we
extract from the event multigraph dataset all the pairs of ver-
tices that are instance patterns, following the definition 15; in
the line 7 we execute the calculus for the equivalence classes
of the instance patterns. The cycle starting from 8 is the one
that recognize an interaction pattern as frequent, and so all its
instances, if the interval set of the instance patterns cover tem-
porally a certain percentage of the entire interval considered. A
key step of the algorithm is the generation of the candidates, in
the line 14. We include the pseudo-code of this procedure into
the figure 42.

Before inspecting the pseudocode of the candidate genera-
tion procedure, we show in figure 41 a simplified example of
its behaviour, starting from a set of three instance patterns of
two agents: if we consider the pair (1,2), we start in the first
step collecting all the 2-agents instances belonging to frequent
interaction patterns that involve the elements of the pair (1,2),

53

54

THE STATIC INTERACTION PATTERN MINING ALGORITHM

1: procedure SIPM(EMS, tsupp, tmin)

2: k=2

3 FSP =10

4 Cx = extract_2_ip(EMS, timin)

5: while Ck 7ﬁ () do

6 I = 0

7 8Py = merge_isomorphic_instances(Cy)
8 for all sp € 8Py do

9 if supp(sp) > tsupp then

10: L =LU (U[ip}::sp ip)

11 FEP =TF8PUsp

12: end if

13: end for

14: Cxs1 = candidate_generation(Iy, timin)
15: k=k+1;

16: end while

17: return F8P
18: end procedure

Figure 4o: Static Interaction Pattern Mining pseudo-code

and then we recombine them for the step two. To know if they
are the maximal instance patterns we recombine the resulting
3-agents intermediate results to get the final result in step 3.
In this case all the instances of step 2 are deleted from the fi-
nal result, because they are not the maximal ones that can be
generated with the agents (1,2,3).

Instance Candidates (IC) Intermediate Results (IR)

Starting instance

Selegtall the instance patterns of size 2
ag#nts, where are involved the agent 1 o 1> 0
d its neighbors except the one
containing 2 H H 4| Interval:[3, 8]
i Interval(L, 10] / e O'be
O—0) G

Interval{2, 5] Interval:[3, 9]

Selemhmcepimems‘nfsizel o 0 i e
agents, where are involved the agent 2

and its neighbors except the one o e
ntaining 1

Figure 41: An example of the generation of 3-agents instance patterns
starting from 2-agents instance patterns.

We can now explain the procedure for the candidates gen-
eration: first of all, given one instance pattern, we retrieve all
the instance patterns that are correlated to the one given in this

4.3 THE SIPM ALGORITHM

way: we get all the frequent instance patterns that share with
the selected one all the agents minus one, where the last agent
is given by one neighbor of one of the other agents remained:
this is done for all the agents in the original pattern (line 5), as
exemplified in the figure 41. Then we use a set of intermedi-
ate results to collect the instance patterns of k agents that are
persistent and that we can merge to create a new candidate of
k + 1 agents. These are intermediate results because with the
tirst step of merging we do not found the maximal instance
patterns, while into the second recombination, lines 12 - 16, we
merge the intermediate results (if they respect the persistence’s
property) to obtain as final result only the maximal patterns.
Finally the generators of the new pattern are removed from the
set of the final results (because they are not maximal), if they
are used in the recombination phase.

1: procedure CANDIDATE_GENERATION(Iy, tiin)

2 C=0

3: for all ip; € Ik do

4 IR=0,CR=10

5 IC = {ip; € Ikl agents(ip;) = {agents(ipi) \{idp}} U

ide, {ida, idp} C ips, ide € N(ida) \ agents(ip)}

6: for all ip; € IC do
7: if interval(ip;) Ninterval(ip;) > tmin then
8: IR = IRU{merge(ips, ip;j)}
9: CR = CRU{merge(ip;, ip;j)},
10: end if
11 end for
12: for all ir;, ir; € IR s.t. agents(ir;) = agents(irj) do
13: if [interval(iry) Ninterval(irj)| > tiin then
14: CR = {CRU{merge(iry, iry) J\{iri} U {irj}}
15: end if
16: end for
17: C=CUCR
18: end for
19: return C

20: end procedure

Figure 42: Candidate generation pseudo-code

Analyzing the pseudo-code shown in figure 40, we end this
chapter stating the following theorem on the time complexity
of the SIPM algorithm.

Theorem 1 (SIPM complexty). Given a set of event instances £J
observed in a time scope T and a minimum persistence time for each
instance pattern of tmin, the time complexity of the SIPM algorithm

55

56

THE STATIC INTERACTION PATTERN MINING ALGORITHM

is O(m - (4n)™ - n3), where n is the maximum number of different
agents present in one instant and m = | 7] |.

tmin

Proof. Indicating with nli‘p the number of instance pattern found
at the k-th iteration, and indicating the cost in function of the k-
th iteration, we can state that the cost of the algorithm is given
by the following sum:

P
k ko ook
csipm = D (Chig + Che 4 €y) (13)
k=2
where p is the maximum number of iteration executed by the
algorithm. The summands refer to the cost of the methods con-

tained in the main procedure: the cost of the merge_isomorphic_groups

(c]]jﬁg) method, the one for the calculus of the frequent interac-

tion patterns (cX.) and tinally the candidate_generation (cgg). In-
dicating with n = max{leMl | 1€ T/\(NiEM,EiEM> e EMS}
then, by definition of instance pattern, the algorithm can gen-
erate patterns of size at most n in the worst case (if all agents
would be connected to everyone else), and this is in the worst
case the maximum number of iteration of the algorithm. Then
we can rewrite the cost as

n
CSIPM = Z(Chﬁ,g + n}?p + C]ég) (14)
k=2

The cycle to check the temporal support is done in linear time

in the worst case, the one in which each instance pattern is as-

k k

sociated to a different interaction pattern. So we have cg. = n;.

To merge the isomorphic group, in the worst case, we have to
check for multidimensional directed clique of size k, so the cy-
cle is composed from a comparison part and the cost of the
naive isomorphism between graph, c]]jﬁg = (n‘fp)z k! k2. The
part relative to the comparison cycle is (nk)? because again
we are considering the worst case, the one in which each in-
stance pattern belongs to a different interaction pattern. Indi-
cating with nk. the number of candidates for the generation of
instance patterns with size k + 1, and considering that in the
worst case n'fc < n]fp, since |IC| < |Ix| (because the instance can-
didates do not contain surely at least the the starting pattern),

we have that dgg =nk . (nlfc)s. With these consideration about

ip
the cost of the various operations we can restate the cost of the

algorithm as:

n
CSIPM = Z(n]fp + (n]icp)z k! kz + nkp : (nfc)s) (15)
k=2

4.3 THE SIPM ALGORITHM

n n n
=Y nk+) M) kK4) nk k)’ (16)
k=2 k=2 k=2
n n n
anJrZ ~p)2-k!-k2+Zn]fp~(n‘fc)3 (17)
k=0 k=0 k=0

It remains to give an estimation of n]-fp: in the worst case at
the k-th iteration we can have as possible patterns all the com-
bination of n agent of size k, then nf = (}}), while the possible

ip
instance patterns are given multiplying this quantity for m =

LtEnJ that gives the maximum number of instance patterns
that can be found with n agents in a time scope of length [T|
(we are supposing that each instance pattern has the minimum
duration, to maximize the number of patterns) Thus, using the

n
binomial properties Z (2) = 2" and Z <) 2 <2$) we
k=0

can state that:

esipm < - (2" 471 ((ﬁ*)-n!-nzwn-(zn-ri)) 18)

where ri = kmzax {(ng) }. To simplify the formula we can

introducing an overestimation of the cost, in fact n! < n™ and
then:

<m- (2" SN A &
cstpm < M- +n‘(m‘n nf)+n-(2"13)) (19)
2n! o2 3
m- (2% +n- (n, J+n-(2%-13)) (20)
n
:m-Zn+m-%wﬁntm-nlwng1 (21)

Then, with algebraic passages we can write:

cspm =m-2"+m- (4n)" P +men- 20 (22)
n

and then the cost, with the growing of n, is dominated by the
middle factor; so we can state that:

csipm = O(m - (4n)™ - n?) (23)
]

57

58

THE STATIC INTERACTION PATTERN MINING ALGORITHM

The previous theorem gives us surely an overestimation re-
spect to the real cases in which the algorithm is used: however
we can note how the cost of the algorithm is somehow a mix of
the components given by the use of a variant of the Apriori al-
gorithm (that has a complexity of O(m-2™) with m transactions
and n items) and the cost of the naive graphs isomorphism al-
gorithm (that has a complexity of O(n!-n?), with graphs of n
vertices). Our heuristic for the isomorphism and the pruning
technique based on the temporal support of the interaction pat-
terns, in union with the difficulty of finding instances patterns
with the minimum persistence’s threshold with the increasing
of the iterations, act on the factor (4n)™ and , how we will see
in the experiments chapter, seems to work well in real cases.

THE EVOLVING INTERACTION PATTERNS
MINING ALGORITHM

In the previous chapter we have introduced an algorithm to
tind all the frequent interaction patterns, deriving from the in-
teraction analysis of agents’ pairs. Those data indicate frequent
behaviours seen between agents; even if we can already extrap-
olate some useful information about the characteristics of those
patterns, we could ask if they have some consequentiality. For
example if we are analysing data from a dataset of moving ve-
hicles, we should not be surprised to find some sequences like
the one represented in figure 43.

++ &

Figure 43: An example of sequence of static interaction patterns

The previous figure represents an overtaking: in fact we have
a first phase in which an agent A approaches the agent B, a sec-
ond phase in which the agent A is flanking the agent B and in
the third and last phase the agent A that is moving away from
B. Our goal, in this chapter, is to use the results of the SIPM
algorithm to find objects like this. So, if in the previous chap-
ter we found frequent behaviour between agents, we will now
make explicit their natural evolution in time, still maintaining
the generalization of the agents.

gener

APPROACH(4,5)
APPROACH(2,3)

MAINTAINING_DISTANCE(1,2)
MAINTAINING_DISTANCE(4,5)
MAINTAINING_DISTANCE(2,3)

MOVING_AWAY(4,1) ;
MOVING_AWAY(4,2)]

[MAINTAINING_DISTANCE(1,2) j

APPROACH(A,B)

M. DISTANCE(A,B)

[MAINTAINING DISTANCE(A,B) ;
MOVING_AWAY(C,A) ;
MOVING AWAY(C,B)]

B

ration of interaction patterns generation of evolving interaction patterns

APPROACH(A,B) mmmmmllp MAINTAINING_DISTANCE(A,B)

O ~ O

[MAINTAINING DISTANCE(B, C
MOVING_AWAY(A,B) ;
MOVING_AWAY(A,B) mumllp- MOVING AWAY(A.C) 1

H

INSTANCE PATTERNS

_/

INTERACTION PATTERNS

—>

EVOLVING INTERACTION PATTERNS

Figure 44: Schematic summary of the work tackled throughout this

chapter.

59

60

THE EVOLVING INTERACTION PATTERNS MINING ALGORITHM

In figure we can see schematically the aim of this section:
from interaction patterns and their instances, generate sequence
of interaction patterns correlated in time.

5.1 EVOLVING INTERACTION PATTERNS

The main question now is: how to use static interaction patterns
and their instances to find sequences of frequent interaction pat-
terns?

We explain our idea following the schematic example in fig-
ure 45.

SEQUENCE INSTANCE PATTERN

EVOLVING INTERACTION PATTERN

Figure 45: Schematic example of creation of an evolving interaction
pattern

We exemplified how we want to proceed with some simpli-
fication to be clearer: suppose to have a situation like the one
represented in the previous figure where, in four consecutive
instants, we find four static pattern instances belonging to the
interaction patterns close into the ellipses. We can see how the
indicated pairs of instances are related between them, because
share a subset of the agents: in the first case the agents with
identifier 1 and 3, and in the other case the agents 4 and 6. If
we suppose that the time window in which we have found that
relation be enough significant for this context, we could state
that the second instances patterns, in instants t3 and t4, are
evolutions of the instances found respectively in the instants t;
and t;. Furthermore, the two sequences share another feature:

5.1 EVOLVING INTERACTION PATTERNS 61

in each sequence the first instance pattern and the second be-
long to the same static interaction pattern. We can conclude that
from data emerge a frequent evolution of the interaction pat-
tern from the first state into the second one. Is interesting that
the resulting evolving interaction pattern has been constructed
starting from instance patterns, to recognize sequences present
in the data, and using the information given by the labelling
of the corresponding static interaction patterns to create a se-
quence in which we want to highlight the agents protagonists
of the evolution. The situation represented in the example in-
volve only two instance patterns, but we can extend the search,
into a specified temporal window, for sequences of m patterns.
Anyhow we are interested to sequences with particular char-
acteristics about agents’ persistence and continuity. All these
teatures are explained with the following definition.

Definition 18 (Sequence pattern instances). Given a set of fre-
quent static patterns F8P, a temporal window t,in € N and a
min;. € [0,1], a sequence of instances spi = (ip1,ip2,...1ipx),
where V1 < j < k. [ipjl~ € FSEP, is said to be a sequence pattern
instance if the following conditions are verified:

1. jc(ipy, ip2) = miny. V agents(ipy) C agents(ip2) V agents(ip,) C
agents(ipy).

2. V1 <i<k:je(ipy, ipis1) = minye

3. V1 <i<k th g <t

star start
k 1
4. (tstart - tstart) < twin

5. V1 <1< k:kernel(spi) C agents(ip;)

where jc(a, b) denotes the Jaccard coefficient between agents(a)
and agents(b). The set of agents kernel(spi) = agents(ipy) N
agents(ipy) is called the kernel of the sequence, while the interval
of the sequence is defined as interval(ipy, - -- ,ipx) = UK, |, interval(ip;).
We denote with SPJ the set of all the sequence pattern instances of this
form.

Some comments on the previous definition: first of all we can
see how the first two instances of the sequence have particular
characteristics respect to the others of the sequence. In fact they
determine the start of the sequence because in two instants, not
immediately after but within the time window, we have that:

A. the set of the agent in the first pattern is contained in the
second one (independently from the Jaccard’s coefficient
value) or viceversa;

THE EVOLVING INTERACTION PATTERNS MINING ALGORITHM

B. we have a significant amount of agents shared from both
instances, where the significant amount is given by a thresh-
old indicated with the Jaccard’s coefficient value.

This because the evolution of a sequence can be interesting if

we see the evolution of an hard core of agents (first case) or of a
significant amount of agents that persist through the sequence’s
patterns.
We only miss the second phase of the process we exemplified
in the figure 45: the generalization of the sequence to create
a labelling that give us a general sequence to which belong all
the sequences with the same form. For this purpose, in a similar
manner to what we done in the previous chapter, we define the
equivalence between two sequences.

Definition 19 (Isomorphic sequence instances). Given two se-
quence pattern instances spiy = (pil,...,pi}) and spi; = (pi), ..., pil),
we say that they are isomorphic sequence instances, denoted with

spi1 o~ spiy, if (i) n = m, and (ii) there exists a bijective function

¢ A — A such that V1 < i< npil ~ pil.

In the definition above, we notice that the name mapping
function ¢ is the same for all static pattern instances involved,
meaning that if an agent appears in more than one static in-
stance within a sequence, the new identities it will have after
the name mapping will be the same across the whole sequence.
An example of behaviour of the renaming process is shown in
tigure 46.

Thus we assign the same label to the agents of agentsiermer
for all the instances in the sequence, while the other agents
are labelled following an ordering suggested by the mapping
between the label of the agent into the corresponding static in-
teraction pattern and the identifiers of the agents themselves.
When considering the equivalence, we must take into account
also the fact that two instances can be overlapped and, follow-
ing the definition of sequence pattern, that can exist a sequence
in which appear the same agents in more than one interaction
pattern but that are not recognized as belonging to the kernel
(this fact derives from the condition V1 < i < k:jc(ipi, ipir1) =
min;c). An example of those two cases are shown in figure 47.

Since we can recognize all the equivalent sequences, we can
define the notions of evolving interaction pattern and frequent
evolving interaction pattern.

Definition 20 (Evolving interaction patterns). Given the set $PJ
of all sequence pattern instances, we define the set of evolving inter-
action patterns in 8PJ as the set EP = {[spil~ | spi € §PI} where
[spil~ denotes the equivalence class induced by ~ that contains spi.

5.1 EVOLVING INTERACTION PATTERNS 63

Sequence pattern found

\

Finding corresponding

interaction patterns
New mapping for the
labels, taking into account]

the azents of the kernel
and the interaction pattern

labelling

Final labelling for the agents
not in the kernel

Figure 46: Example of behaviour of the renaming for the sequence
of instance patterns with their corresponding interaction
patterns.

Temporal duration of instance patterns Corresponding evolving interaction pattern

5 > Z){(D)
v ® .
© . N - 5 ®

o »e « >
Temporal duration of instance patterns
O =€) «—> c ling evolving i i
v < L orresponding evolving interaction pattern
- &
P S—
o © N (D
Y0 ‘ — (3 — & () » @/v

O |

o >° <

Figure 47: In the first case two subsequent pattern generate an evolv-
ing pattern of three elements because the one with three
agents is overlapped to the one of two. In the second case
the label mapping for the agent Y is maintained in the sec-
ond and third part of the sequence because the generic
agent found in the second part, even if is not part of the
kernel of the sequence, still appears in the last part.

We define the temporal support of an evolving interaction pattern
ep € EPas

UspiESﬂ’J/\[spﬂ ~=ep interv al(spi)
IT]

supp(ep) =

THE EVOLVING INTERACTION PATTERNS MINING ALGORITHM

1: procedure EVIPM(F8P, PJ, tyyin, minje, tesupp)
2: k=2
: 8PT% = {(pir1,piz) € PI? | [pirle € FSPAlpizle € FSP Ainterval(pir) =
[ti, te] Ainterval(piz) = [t5,t2] Aty < t5 < ti + twin A (agents(pir) C
agents(piz) V agents(piz) C agents(pii) Vijc(pii, piz) 2 minyc)}

4 FEP ={spil~|spi€ 8PT Asupp(lspila) > tesy)
5 8P, = {spi € 8PJ3 | [spil~ € FEP}
6: while 8PJy # 0 do
7: for all spi= (pij,.. pik) € 8PIx do
8: [ts, te] = interval(piy)
9 Pliait = {pilinterval(pi) = [t1,t2] At € [ts, ts + twinl A
kernel(spi) C agents(ip) Ajc(pix, pi) = minj}
10: 8P, ={(pir,..., P, Pi)Ipi € Plianr}
11: end for)
12: 8P =USPIEY
13: FEP =FEPU{[spilx|spi € 8PIi1 Asupp(lspily) > te—supp}
14: 8PIxr1 ={spi € 8PT; 1 | [spil~ € FEP}
15: k=k+1

16: end while
17. return FEP

18: end procedure

Figure 48: Evolving Interaction Pattern Mining pseudo-code

An evolving interaction pattern ep is said to be frequent iff supp(ep) >
tesupp, Where tesypy € [0, 1] is the minimum temporal support thresh-
old for evolving patterns. Finally, we denote the set of all frequent
evolving patterns with FEP.

Even in this definition we have an use of the Apriori principle,
given by the temporal threshold that the evolving interaction
pattern must verify to be recognized as a frequent one.

5.2 THE EVIPM ALGORITHM

Now we can describe the sequential interaction pattern mining,
shown in figure 48.

The algorithm starts with the creation of sequence instances
composed by two static pattern instances (step 3), by follow-
ing the special case conditions described in Definition 18; then,
we keep only those forming frequent evolving patterns (lines
4-5). The main cycle in lines 6-16 performs the same operations
for the general case, trying to append a new static pattern (in-
stance) to existing sequences at each step: in line 9 we find all
the static pattern instances with starting time into the tempo-
ral window, and then we construct all the possible sequences
of size k + 1, creating a new sequence that is composed by the
current spi and one of the possible patterns found in 9. Again
we keep only those sequences belonging to frequent evolving
patterns, lines 13-14. From the pseudocode of the SeqIPM algo-
rithm we can derive the following theorem:

Theorem 2 (EvIPM complexty). Given n the number of instance
patterns contained into FS8P, t the dimension of the temporal win-
dow, and m the maximum number of instance patterns that start in

5.2 THE EVIPM ALGORITHM 65

the same instant i € T, the computational complexity of the EvIPM
algorithm is given by O(mn - m*).

Proof. Indicating with m = maxict{pilpi € PINA[, te] = interval(pi)}l,
in the worst case each combination of patterns in sequence

into the chosen temporal window t = t;, of length k with

0 < k < tis a valid sequence pattern. If we assume that in each
instant start the maximum number of instance patterns m, we

have m' possible sequence patterns for one starting sequence:

this means that for n instances (n possible starting sequences)

the procedure cost in the worst case

CEvipm =T - Mt (24)

EXPERIMENTS

In this section we present the results of the experiments ob-
tained analyzing two dataset with the IPA framework and the
SIPM/EvVIPM algorithms. In the last section we will discuss
also the performances of the algorithms, to compare the real
performances with their theoretical complexities. The system
that we used for all the runs is equipped with an Intel i7-3517U
1.9/2.4 Ghz and 8GB of memory, while the IPA framework and
the SIPM/EvIPM algorithms are written in Java 7. The values
used for the parameters of the interaction functions, defined in
section 3.2.3.1, are reported in table 3.

Table 3: IPA framework used values

dataset | Tagent | dsearch ‘ €move | €dir | €align | €| H €dist || €route €vel H €lat

NGSIM | 1.83m | 25m o.1m 5° 2m 4° | o.am 4° 0.15 km/h || 3.25m

Campus | 0.6m 1om || 107%m || 13° ° °

m || 13° | o.oim | 13 0.005m/s || 1.2m

We want to do a comment on the choice of these values: as
one can image, all the events resulting from the analysis of the
IPA framework are very related to the choice of the interac-
tion functions” parameters. Small variations in those parame-
ters could present, in some cases, significant variations in the re-
sults. To tune them we have done several tests on both datasets,
trying to validate their effectiveness and appropriatness on a
sample of a group of events (for both datasets) and searching
for a visual confirmation into the videos from which data are
taken. Without doubt this part has required a lot of time, even
for some problems linked to the Campus dataset which are
explained in the section 6.2. After testing and analyzing the
contexts in which the datasets are inserted, we think that those
can be good values to represent appropriately the dataset con-
ditions.

6.1 ANALYSIS ON NGSIM VEHICLE DATASET

The first dataset on which we have experimented our tools con-
tains data about 15 minutes of car that are moving on 2100 feet
of the US Highway 101".

In figure 49 we can see a photo with the area considered, that
is substantially a straight road with five lanes of the highway

1 the original dataset is available here: http:/ /ngsim-community.org/

67

68

EXPERIMENTS

Figure 49: Image of the part of highway considered by the NGSIM
dataset.

with an entering and an exit ramp. The period considered in
this dataset is described, from the preliminary analysis done by
the owners of data, as a transational period of traffic in the built
up of a congestion period>. The vehicles’ trajectories have been
tracked with an automatical analysis of the video recording of
eight cameras, each of which was used to record a section of the
highway, as evidenced in figure 49. These raw data was manual
adjusted in a second moment, where needed. Each car moving
on it has been tracked every one-tenth of a second.

120000
100000
50000
60000

40000

- I
0
§
=]
hri
g

Ewent

HAWA},

D"STAN\:E

5 2
S

’ £
g ;
E

é,.'
&

{

M(:lvm

Figure 50: Events’ distribution for the NGSIM dataset

2 The preliminar analysis on the area can be retrieved from http://

ngsim- community.org/

http://ngsim-community.org/
http://ngsim-community.org/

6.1 ANALYSIS ON NGSIM VEHICLE DATASET

With the analysis of the dataset with the IPA framework for
the NGSIM dataset we have found 343441 different events of
length at least one-tenth of second, divided as shown in fig-
ure 50. How we can expect, the dominating events between
agents are the maintaining_distance, the moving_away and the
approach ones. However, we have also found a significant pres-
ence following events, flanking and back aligned approaches. It
is not surprising that opposite’s type of events, as the opposite
approach, were not found since we consider in this dataset ve-
hicles that are moving on a straight road with the same manda-
tory direction.

Once retrieved these events, we have set up the SIPM algo-
rithm for finding all the interaction patterns with instance pat-
terns of minimum duration tqi, = 20 tenth of seconds and
temporal support of ts,p = 0.8. The algorithm has retrieved 98
interaction patterns and did not found any interaction pattern
with more than six agents per pattern: of these ones, we report
some examples in the table 4 in the first column.

Table 4: Examples of interaction patterns and evolving patterns found
for the NGSIM dataset: the symbols for the events are speci-
fied in table 2

69

INTERACTION PATTERNS EVOLVING INTERACTION PATTERNS

We can see in this table how some patterns are intuitively
recognizable, like the one in the grid in the first column at the
first row, in which an agent A is following an agent B and at
the same time a third agent C is in the middle maintaining
the same distance from both A and B: this pattern represents
a group moving together. However not all the patterns can be
so simple to recognize with a visual analysis, as the one that
state that while two agents D and E are moving away from an
agent C, it is approached by an agent A which is moving away
from a fifth agent B: the graphical representation of this pattern
is given by the figure in the table 4, in the last row, first column.

Once retrieved the interaction patterns we have used the re-
sults of the algorithm to test the EvIPM algorithm, to find into

70

EXPERIMENTS

the interaction patterns possible schemes of evolution of the
corresponding instance patterns. The algorithm has been con-
figured to find all the sequences of pattern instances into win-
dows of length t,,in = 150 tenth of seconds, with Jaccard’s co-
efficient value of at least min;. = 0.6 and temporal support of
tesupp = 0.9: furthermore we have limited our search to the
sequences of instances of at most 4 consecutive instances. With
these parameters the algorithm has found 950352 sequences di-
vided in 786 frequent evolving interaction patterns. The most
frequent evolving pattern is shown in the first row in table 4
in the second column; this sequence has been seen over 6079
times and indicates an overtaking in which the flanking phase
is under the 2 second necessary to recognize a flanking be-
tween the approach phase and the moving away phase. In fact,
even if is not reported into the examples, also the sequence
approach(A,B) — flanking(A,B) — moving_away(A, B) is
a frequent pattern, but with a lower counting respect to the con-
sidered in the example: this because it is more simpler to find
a fast overtaking in this context respect to one in which all the
phases are slower.

Another example of frequent evolving pattern found is the evo-
lution of a small group that is moving together, as shown in the
second row, second column in table 4.

140

Group Movement
120 Cwertaking

100

80

60

40

Sequence ongoing count

20

0

75
RN

Figure 51: Ongoing events count for the fast overtaking and the
group’s movement along time scope T.

We take as example those two sequences to evidence some
analysis that could be done with the retrieved data. We spec-
ify that in the following figures related to NGSIM, the flow of
the vehicles is left to right, where the ramps are situated in the
upper part of the plots while instead the external lane is in the
bottom part. First of all we can analyze the time distribution
of the sequences, considering the ongoing sequences’ instances
for each instant. From the plot in figure 51 we can note, for

6.1 ANALYSIS ON NGSIM VEHICLE DATASET

instance, that when is increasing the group movement the fast
overtaking tend to decrease and vice versa, that is a reasonable
fact. Thus, we could see from the time distribution of the ongo-
ing sequences if can emerge some hidden temporal correlations
between sequences.

(a) Spatial distribution for the (b) Spatial distribution for the
fast overtaking group’s movement

Figure 52: Spatial distribution for the sequences taken as example.

Another interesting analysis that we can do is the one related
to the spatial distribution of the sequences: in fact, having the
information about the trajectories of the agents, we can track
each point in which a sequence has been recognized. To do that
we have taken the middle point of the bounding box contain-
ing all the agents involved in each sequence of instance pattern.
In this way we can produce a graphical view of the points in
which the sequences has been found, as we can see in figure 52.
Seeing the distributions we can immediately recognize some
areas in which the sequences are most concentrated. However,
even if we will see that this kind of plot can be significant in
some cases, in this context we can have more significant infor-
mation using these points with a kernel density estimation. In
this way we can have an immediate visualization of the charac-
terization of a sequence respect to the area studied. In figure 53
we report the computed density for the sequences we consid-
ered.

(a) Density distribution for (b) Density distribution for
overtaking group movement

Figure 53: Density distribution for the sequences taken as example.

In figure 53a we can see how the fast overtaking is an event
that characterizes the external lane of the highway, and the

71

72

EXPERIMENTS

most dense area is curiously the one that, in air line, is af-
ter the entrance ramp. The group movement is instead most
concentrated into the central lanes of the road, in particular in
proximity of the entering ramp, going gradually disappearing
towards the end of the section considered, indicating as mo-
torists near the entrance ramp maintain safer behaviour, maybe
suggested by the flow of vehicles entering the road. In fact, this
interpretation is supported by the fact that in the external lane
this behaviour is less frequent.

Until now we have seen two behaviours that one can expect
to find on a road. The last example we show, in the last row of
the second column in table 4, is the one that we call for sim-
plicity complex overtaking. If we analyze it, we can see that it has
the principal components of the already considered fast over-
taking even if in this case we have different interactions. While
an agent A is approaching an agent B both are moved away by
other two agents in the same condition; then the agent A, once
made the overtaking on B, is moving away from it and, finally,
when A is moving away from B this last one is approached by
another agent. This is without doubt a more difficult behaviour
to recognize even with a prior knowledge that one can have on
the mobility context, however this behaviour emerge from data
and has been seen, with different groups of agents, for at least
13 minutes. Then it must be something that could characterize
the area in the period of time considered.

! ! ! ! ! ! o
0 100 200 300 400 500 500 700

Figure 54: Density distribution for the complex overtaking. We can
note how this event has a significance density also in prox-
imity of the input junction.

In figure 54 we can see also how the distribution is very dis-
similar from the one found for the fast overtaking, identifying
its own different spatial characterization of the road.

6.2 ANALYSIS ON A CAMPUS SQUARE DATASET

6.2 ANALYSIS ON A CAMPUS SQUARE DATASET

The second dataset represent a set of people moving in a small
square of an university campus 3.

Figure 55: Image of the square considered into the Campus dataset.

In figure 55 we show a frame taken from the original video
from which has been retrieved the data. The main reason for
which we used this dataset is primarily for testing the frame-
work and the algorithms in an environment very different from
the previous one, and where we have a different type of mov-
ing agents, but using the same functions and events used for
the NGSIM dataset; this is useful also to test also the ductility
of the instruments in different contexts. This dataset is however
more gaunt than the one downloaded from NGSIM: in fact con-
tains data only for 3 minutes and 31 seconds.

A problem given by this dataset is that the agents and their tra-
jectories weren’t presented in the same format as the one given
by the NGSIM dataset. In particular, for each agent, in this
dataset has been provided a set of tracking point with associ-
ated the instants in which they have been tracked: furthermore
the point has been tracked respect to an angle of the camera,
so were not presented in any standard unit of measurement for
distance. Thus we have tried to reconstruct the trajectories and
to convert the points to be amenable to a standard unit of mea-
surement in an empirical way. This procedure, even if we have
made our best to be much precise as possible, has surely in-
troduced some errors: however, for our testing purposes, this is
an acceptable compromise. We have not chosen another dataset
for the difficulty to find one that had been available freely.

After the preprocessing phase we have reconstructed the trajec-

the original campus dataset is available here:
https:/ /graphics.cs.ucy.ac.cy/research/downloads/crowd-data in the
section University Student

73

74

EXPERIMENTS

tories to have data relating to the agents with a sampling rate
21—5 of a second.

10000

9000
000
7000
6000
5000
4000
3000
2000
1000 IIII III

o &

Count

-
O,
%-,.G

iy e
E 5
g

_g'éj. E; g dﬁc “ ﬁg ?ég
/F

g,

Figure 56: Events” distribution for the Campus dataset

The analysis with the IPA framework has retrieved 30772
events between pairs of agents, divided as shown in figure 56:
even in this case, as the one presented in the previous section,
we have that the events most present are the ones related to the
maintaining of the distance, the approaching and the moving
away. In this context they are also predominating on the oth-
ers that has a lower counting; however we can note how here
are present events that involve opposite agents, that in the pre-
vious dataset we could not find. After we have launched the
SIPM algorithm with parameters t;in = 25 to identify all the
interaction patterns with duration of at least a second and with
time support of tgpp = 0.8 of the dataset. The SIPM algorithm
has returned 48 interaction patterns and did not find any inter-
action pattern with more than five agents. Some examples of
these patterns retrieved are shown in the first column of table

5:

Table 5: Examples of interaction patterns and evolving interaction pat-
terns found for the Campus dataset: the symbols for the
events are specified in table 2

GENERALIZED PATTERNS SEQUENCE PATTERNS

6.2 ANALYSIS ON A CAMPUS SQUARE DATASET

It is evident that, in only three minutes of video, the most
frequent patterns involve the approach and the moving away
as most frequent interaction patterns with instances of at least
one second. This could be intuitable from the fact that a low
number of other events respect to the maintaining of distance,
the approaching and the moving away cannot be sufficient to
find them in some frequent interaction patterns. Even for this
dataset we have used the SIPM results as input for the EvIPM al-
gorithm, this time with parameters t,,i, = 12 seconds, Jaccard’s
coefficient value of at least min;. = 0.6 and temporal support
of tesupp = 0.9: again we have limited the search of the se-
quences to only sequences of length at most 4 instances. The al-
gorithm with these parameters has retrieved 147839 sequences
grouped into 171 evolving interaction pattern. The sequences
found for this dataset may be less obvious than the ones found
into the NGSIM dataset; however, even if these events can’t be
named with a well-known macro-event (as the overtaking), they
express plausible interactions’” schemes into a place in which
moving people are involved. An example of sequence found,
of which we report the density distribution in figure 57, is the
second in the table 5 in the column of evolving interaction pat-
terns for the Campus dataset.

30 T T T T T T T 5000

4500
25 -
4000
3500
20 —
3000
15 - 2500
2000
10
1500
1000

500

0 2 4 6 8 10 12 14 16 18 20

Figure 57: Density distribution of the evolving interaction pattern in
the first row, second column of table 5

How we can see from the density distribution in figure 57,
and how one can expect, the most dense area is the center of
the square. For this sequence we also provide, in figure 58, the
tracked points in which the sequence has been recognized.

We show the tracked point also because we can note some-
thing interesting that in the other dataset did not emerge as
here. In fact, in figure 58, we can clearly see well-defined tra-
jectories deriving from the tracked sequences: in figure 58b we
have highlighted some groups of those derived trajectories to

75

76

EXPERIMENTS

y (meters)

1.2 3 4 s & 7 8 @ 10 11 12 13 14 15 16 17 18 18 20 21 22 23 24 25 26
x(metars)

(a) Spatial distribution of the sequence.

P
L
‘

¥y (meters)

1.2 3 4 s & T 8 © 10 1 12 13 14 15 16 47T 18 1@ 20 21 22 23 24 25 28
x(meters)

(b) Schematic ways in which develops the sequence.

Figure 58: In the figures we highlight some evident flows of move-
ment for the evolving interaction pattern taking as exam-

ple.

evidence how we could find information regarding the flow be-
haviour given by the agents that are involved in this sequence.
This can be used to find not only the area associated to some
behaviour, but also to inspect how they evolve in a spatial man-
ner.

63 SIPM AND EVIPM PERFORMANCES

In this section we report the performances test for the SIPM and
the SeqIPM algorithms. In particular, in the light of the com-
plexities” theorems stated for both algorithms, we have tested
the effectiveness of the heuristic that we have proposed to face
the graph isomorphism in our context and of the pruning tech-
niques used to find only frequent interaction patterns and se-
quences. In fact in the worst case both algorithm have a com-
plexity that would make them unusable for a non toy-example.
However, how happens for other algorithms theoretically unus-
able, we have seen how those algorithms provide results in a

77

63 SIPM AND EVIPM PERFORMANCES

‘punoj surajyed aduUeISUI [[€ JO JUNOD Y} UWN[OD Ise[Y} Ul pue urd)jed paziferauad jo Junod ay) puodas ay} ul

o uru
SL= mjﬁ._tdouw

RURRITE

ST = unsput Jj0q 10§ @0 = ddnsy (1)

(5g) uoisUB WP J3SEEQ

%001 %06 %08 %0l %09 %05
0

00005
o/Q/Ql‘q\.\o"l 00000+
000051
000002
000052

selep sndwed —s— |- 00000€

125EIED NISDON ——

00005E

10q 10§ §°0 = Q&ﬁww Qv
(2as) awip sousysIsiag

§ ¥ € [4
4% 0

/ w0000t

000002

00000E
00000%
000005
000009

esefep sndwe) —— 000002
19SEIED WISON —8—

000008

ulu ulu

SL= sndwpot ’ ST= Eﬁm.mﬁuq Auv

poddng [eJodwal

560 60 580 80 510 20 590 90 550 50

0
00005
00000k
0000z 1
000002
000052
00000E
0o00SE
00000%

jeselep sndwe) —a—
13521Ep NISON —li—

00005F

000005

1UN03 SLIEYe 4 23UBISU|

JUN0 SUERE 4 BUEsU|

JUNos SWaRed SaUEs Y|

- un
SL= mﬁnﬁtdo#

e

ST = Lpsput L WOQ 10§ g0 = 44T () ‘57 = (10 1 0q 10y g0 = 44m5 (9)

(%) UOISURLID 135BIEQ

%001 %06 %08 %0L %09 %05
0
1BSElEp SNdWe) —4—
25E1EP NISON —l— 0z
or
09
08
l/\ 00k
—
g

0q 10§ g0 = 44157 (9)

(225) W 2oualsIsiad

S ¥ £ 4 1
Pa—
0z
or

09

08

ook

43

ovl
jesejep sndwe) —e— 091
18SBIED NISON —m—

oaL

ww, _ utw
SL= sndwpot ST = E@mmcuw An—v

poddng fesoduws |
560 60 580 80 500 L0 590

05
ook
051
00z
052
00E
Pselep sndwe) —e— 058

19SEIED ISON —l—

90 550 50

=Y

JUN0D SWaREd uogoRIEU|

JUN0o SUaye d UoRoEla||

WN0D SLWAEd UoRIElau|

o uru
SL= mjngduv

RURRITE

(54) UOISUSLIID 19SEEQ
%001 %06 %08 %04 %03 %05

pseiEp sndwED)

IR WISON—B—| 5

051
00z
052
00g
10q 10§ g°0 = 4475 (p)
(298) 8wy soussisiad
5 4 £ 4 b
+ 0
0— T
ooz
00w
009
og
jeseep sndwe) —— 000}
19SEIEp NISON ——
00k
ulw, ulu
L sndwpot ¢ E@wm:p
yoddng Elodwa)l
560 60 580 80 500 L0 590 90 550 50
0
ook
ooz
00E
oor
005
009
004
oog
eseep sndwen) —e— 006
19SE1ED WISON ——
000k

‘dwr) uond[dwod Y dALY 9M UWN]Od JSITJ Y} U] '}9Sejep JO UoIsuawIp pue awr adud)sisiad “roddns awmn Surdrea seouewrrojrad NJIS :65 213y

(oas)awn]

(spucoas)auL

(spucoas) awn|

78

EXPERIMENTS

reasonable amount of time.

In figure 59 we report the charts with the performance tests
for the algorithm SIPM. Those charts are related to the comple-
tion time, the number of interaction patterns and the number of
instance patterns found varying the persistence time, the tem-
poral support and the size of the dataset. In the first two rows
we can see the performances of the SIPM having more strin-
gent time parameters: in the first case, varying the persistence
time of a group of events that happen contemporary, we can
see how is difficult to find persistent instance patterns with the
increase of this parameter. This fact as a consequence tell us
that an higher persistence time, apart to be useful for finding
interesting instances instead of the volatile ones, has an impor-
tant impact on the growing of instances candidates. Thus it is
a first passage of pruning, followed by the one done with the
temporal support. The performances related to the variation of
this last parameter are shown in the second row: again we see
how is important the reduction of instances and interaction pat-
terns found with the increase of this parameter. These consider-
ation, keeping apart the fact that the given heuristic to face the
isomorphism problem seems to work in real cases, highlights
the importance of the choice of time persistence and temporal
support respect to the problem faced, since it can determine
a significant reduction or growing of the patterns found, that
can be led to include some useless pattern or to exclude some
useful one. In the third row we show the performances varying
the dimension of the datasets. Here we can see a substantial
difference between the dataset, in which is evidenced how the
worst quality of the Campus dataset influences the final results.
In fact, while the amount of interaction patterns are maintained
at the same level with the NGSIM dataset and the instances in-
crease with the increase of the dataset’s dimension, this does
not happen for the Campus dataset where the increase of the
dataset” dimension corresponds to a decrease of patterns found:
this can be explained with the fact that increasing the dimen-
sion of the dataset (and then the amount of time considered)
the first dataset consolidates the frequent pattern found, while
in the second case the ones that in a smaller interval was con-
sidered frequent are not really frequent (characteristics of the
referenced context), and so disappear.

In the figure 60 we show the result of the tests done for the
algorithm EvIPM on a percentage of the dataset of the 10% for
both cases. In the first row we are varying the Jaccard’s coef-
ficient value, and we can see that in the campus dataset this

63 SIPM AND EVIPM PERFORMANCES

impact on all the values we are considering (completion time,
sequence instances found, evolving interaction patterns found),
while in the NGSIM dataset this does not lead a significant
decreasing of the calculated values. Effects which instead are
visible on both dataset varying the temporal support and the
length of the searching window. Here again we obtain results
in a reasonable amount of time, but is important to note how
the pruning based on the temporal support for the evolving in-
teraction patterns is less influent on the performances respect
to the same effect that the similar parameter has on the SIPM al-
gorithm: in this case in fact, even using strict parameters as only
the 10% of the dataset and limiting the search of the parameters
to 4 interaction patterns per sequence at most, we can see how
the completion time is in the order of the ten of minutes. This
because we can only act on the surely infrequent sequences, but
for those ones found as frequent, we can only proceed to search
all the combination that we can find into the defined window
length with all the instance patterns that can make grow the
sequence.

79

EXPERIMENTS

8o

2500
~@—NGSIM dataset
—+—Campus dataset
2000
H
= 1500
5
£
s
% 1000
a
£
o

500 M————= I'.’llll..‘ll'lll . n

05 06 07 08 09

(@) NGSIM: t,in = 15s, Campus:
twin = 28, te_supp = 0.9 for both

2500
—8—NGSIM dataset

—+— Campus dataset

2000

1500

=
g
=

Com pletion tim e (sec)

05 06 o7 08 09
Temporal support

(d) NGSIM: t,in = 15s, Campus:
twin = 2s, min;. = 0.6 for both

4000

== NGSIM dataset

3500

—+— Campus dataset
3000
3 250
-
£ 2000
<
H
3 1500
T
g
S 1000
mal-‘\l\h\\\i
0
5-25 10- 50 1575 20-100 25 125

‘Window length(10th of seconds and 1/25 of seconds)

(g) minjc = 0.6, te_supp = 0.8 for both

120000

—&— NGSIM dataset

100000 —+— Campus dataset

80000

60000

40000

B o e —

20000

Sequence ofPatemn Instances count

0
05 06 0.7 08 09

Jaccard coefiicient value

(b) NGSIM: tyin = 155, Campus:
twin =25, te_supp = 0.9 for both

350000

——NGSIM dataset

300000 —— Campus dataset

250000

200000

150000

100000

Sequence ofPattermn Instances count

50000
0
05 06 07 08 09
Temporal support

(e) NGSIM: tyin = 15s, Campus:
twin = 2s, min;. = 0.6 for both
120000
~@—NGSIM dataset
100000 - | =#— Campus dataset

80000

60000

40000

mccca.\l\-\-\L\\-

5-25 10-50 16-75 20-100 25125
‘Window length(10th of seconds and 1/25 of seconds)

(h) min;c = 0.6, te_supp = 0.8 for both

Sequence ofPatem Instances count

900

800 —B—NGSM dataset

—+—Campus dataset

700
600
500
400
300

200
—_—
100

Ealving Interaction Pattern count

05 06 0.7 08 09

() NGSIM: tyin = 15s, Campus:
twin = 25, te_supp = 0.9 for both

9000

8000 —m—NGSIM dataset

—4— Campus dataset

7000
6000
5000
4000
3000
2000

Sequence Interaction Pattems count

1000

0
05 06 07 08 09

Temporal support

(f) NGSIM: tyin = 155, Campus:
twin = 2s, min;. = 0.6 for both

1200

—#—MNGSIM dataset

1000 —4— Campus dataset

800

600

400

Esolving Interaction Pattern count

200

JE———————

6-25 10-50 16-75 20-100 25-125
‘Window length(10th of seconds and 1/25 of seconds)

(i) minjc = 0.6, te_supp = 0.8 for both

Figure 60: EVIPM performances varying time support, Jaccard values and window length. In the first column we have the completion time, in the
second the count of frequent sequence group found and in the last all the sequences found that belong to an evolving pattern. All the
test has been done on the 10% of the dataset of both, with at most 4 instances per sequence.

Part III

CONCLUSIONS AND FUTURE WORK

We have introduced a kind of mobile data analysis

based on the idea that data could tell something,
bringing out patterns that can describe the behaviour
of the moving agents bringing out those patterns

from the interactions between agents. In this last

part we conclude our work, summarizing our results

respect to the initial idea and possibles improvements
and future work following this new approach.

CONCLUSIONS

7.1 FUTURE WORKS

The work we have done till now cannot be considered conclu-
sive: a lot of work and improvements can be done to strenghten
the new methodology we introduced and to integrate it with
the existent literature. As future works that can be done to im-
prove what we started with this thesis, we suggest the follow-

ing:

NEW EXPERIMENTS The datasets analyzed in this thesis are
only two examples that we have used to define the prob-
lem and study a data mining approach for the extrac-
tion of patterns based on the interactions between agents.
However, we could think to analyze other situations in-
volving mobile agents, as areas with dense crowd, malls
or other contexts involving vehicles. In this sense the NGSIM
community provides other datasets, with complex envi-
ronments as streets with crossroads or wider urban areas.
We could also think, if we should plan an experiment, to
record the moving agents of an area for different days
to check if the patterns found present the same temporal
and spatial trends, or be used as a starting point to see in
which conditions an interaction pattern (or a sequence of
interaction patterns) is frequent and with what distribu-
tion over time and space.

INTEGRATE OBJECTS OF THE SPECIFIED CONTEXT In the pre-
sented work we have left apart the role of the environment
and its possible passive influence on the active agents; we
do that because in the presented datasets we preferred
to focus our attention on basic interactions, i.e. those be-
tween active agents. However, we could define some in-
teractions, in the NGSIM dataset, for example regarding
the input/output ramp; we should not underestimate the
influence that an object can passively have on the active
agents, as a velocity limit signboard or the weather.

83

84 CONCLUSIONS

INTEGRATE THE EXISTENT WORKS IN SIMULATION In section
2.1 we have seen the equation for the social force model
applied to the simulation of a person’s movement:

dv; v (t)e? —vi(t)
mi—d;:mi - +§ fij+§ fiw (25)
T o

W

As already said, we based our work in some way on as-
sumptions that are reported in this equation: the resulting
movement of an agent can be described as a sum of influ-
ences between the pairs constituted by the current agent
and the ones interacting with it; in that case those values
are given by a set of functions that model social interac-
tions as physical forces, but we could think to use the in-
formation that we can retrieve from the IPA framework, in
some way, to improve this equation, since we retrieve in-
formation about all the events that involve pairs of agents.
In this way we could insert a data-driven social compo-
nent that can improve the realism of the simulation of
moving agents.

OPEN THE STUDY OF INTERACTIONS IN OTHER CONTEXTS The
work we have done, and the problem we have defined,
is used for a mobility context; however there is no limi-
tation to the possible application of this methodology in
different context, adjusting some concepts as the notion of
neighborhood or the specific events that need to be used.
Since we stated that we continuously interact with the ex-
ternal world, we could apply the mining of interaction
patterns in any context where there exist a set of measur-
able interactions between agents: in economy, where fi-
nancial markets influence each other; in medicine, where
patients and drugs in a certain sense interact and influ-
ence each other; in games (either on computers or in the
physical world), where players interact with each others
and so on;

Then it becomes fundamental to understand, on one side,
the potential benefits that the interaction patterns can give in
other fields beyond mobility; on the other hand, we must un-
derstand which is the best way to integrate the information
about frequent behaviours between agents discovered with our
work and how they can be inserted into the existent tools to
improve them.

7.2 SUMMARY OF RESULTS

7.2 SUMMARY OF RESULTS

We started this work with a question: can hidden interactions
between agents tell something important or difficult to see that
we might overlook when analyzing data? Through our work,
we aimed at letting data “speak about themselves”: the main
goal we have selected since we started, was to find a new ap-
proach that could exploit the common behaviours and their
characteristics analyzing the most common activities in our life:
the interaction with the others. To do that, we have defined a
set of tools and mechanisms to explicit those interactions, in
function of visible events of which interactions are the atomic
components.

The experiments we made on the datasets have been very en-
couraging: on one side the algorithms we developed seemed
to react well, in terms of computation time, on real cases with
big amounts of data; on the other hand, the results obtained
are very significant. For instance, think about the results ob-
tained on the NGSIM dataset; we have found patterns that one
initially can expect as frequent, as the overtaking or the group
movements; however, this fact in a certain sense validates the re-
sults found, because an instrument that cannot find the obvious
cannot surely hope to find what is not obvious or immediate.
Thus we can state that less obvious results we found can really
highlight those hidden behaviours we were searching.

In conclusion, we believe that the approach we proposed for
the extraction of frequent patterns from mobility data in mobile
contexts is a good start to a new way of exploiting the hidden
information contained in the data: even if we have only posed
the basis of the approach we think that our work, with deeper
studies, could have a very useful impact on the scientists/ana-
lysts/tools that work on simulation, and on the studies of big
datasets from an analytical and/or sociological point of view.

85

BIBLIOGRAPHY

[1]

[2]

[9]

M. Berlingerio, M. Coscia, F. Giannotti, A. Monreale, D. Pe-
dreschi “Foundations of multidimensional network analy-
sis”, International Conference on Advances in Social Net-
works Analysis and Mining (ASONAM), pp. 485-489, 2011

D. Helbing, P. Molnar, “Social Force Model for Pedestrian
Dynamics”, Physical Review E, Volume 51, Issue 5, pp. 4282-

4287, 1995

D. Helbing, I. Farkas, T. Vicsek, “Simulating dynamical fea-
tures of escape panic”, Nature, Volume 407, pp. 487-490,
2000

T. I. Lakoba, N. M. Finkelstein, “Modifications of the
Helbing-Molnar-Farkas-Vicsek social force model for pedes-
trian evolution”, Simulation: Transactions of the Society for
Modelling and Simulation International, Volume 81, Issue

5, PP- 3397352, 2005

R. L. Hughes, “A continuum theory of flow pedestrian mo-
tion”, Transportation Research, Volume 36, Part B, pp. 507-

535, 2002

P. M. Torrens, “Moving agent pedestrians through space
and time”, Annals of the Association of American Geog-
raphers,Volume 102, Issue 1, pp. 35-66, 2012

E. Bonabeau, “Agent-based modeling: Methods and tech-
niques for simulating human systems”, Proceedings of the
National Academy of Sciences of the United States of Amer-
ica (National Academy of Sciences), Volume 99, 2002

A.V.Moudon, P. M. Hess, M. C. Snyder, K. Stanilov, “Effects
of site design on pedestrian travel in mixed-use, medium-
density environments”, Transportation Research, Record

1578, pp. 48-55, 1997

T. Hagerstrand, “Space-time and human conditions”, Dy-
namic allocation of urban space, ed. Karlgvist-Lundkvist-
Snickars, pp. 3-12, 1975

[10] M. Moussaid, D. Helbing, S. Garnier, A. Johansson, M.

Combe, G. Theraulaz, “Experimental study of the be-
havioural mechanism underlying self-organization in hu-
man crowds”, Proceedings of the Royal Society B: Biological
Sciences, Volume 276, pp. 2755-2762, 2009

87

88

BIBLIOGRAPHY

[11] P. Hidas, “Modelling vehicle interactions in microscopic
simulation of merging and weaving”, Transportation Re-
search Part C: Emerging Technologies, Volume 13, No. 1,

pp- 37-62, 2005

[12] W. Quattrociocchi, D. Latorre, E. Lodi, M. Nanni, “Dealing
with interaction for complex system modelling and predic-
tion”, International Journal of Artificial Life Research, Vol-
ume 1 No.1, pp.1-11, 2010

[13] C. Castelfranchi, “The theory of social functions: chal-
lenges for computational social science and multi-agent
learning”, Journal of Cognitive Systems Research, Number

2, pp-5-38, 2001

[14] J. W. Raymond, P. Willett, “Maximum common subgraph
isomorphism algorithms for the matching of chemical struc-
tures”, Journal of Computer-Aided Molecular Design, Vol-
ume 16, pp.521-533, 2002

[15] N.Eagle, A. Pentland, “Reality mining: sensing complex
social systems”, Personal and Ubiquitous Computing, Vol-
ume 10, Issue 4, pp 255-268, 2006

[16] F. Giannotti, D. Pedreschi, “Mobility, Data Mining and Pri-
vacy: A Vision of Convergence”, ed. Springer Berlin Heidel-
berg, 2008

[17] M. Nanni, B. Kuijpers, C. Kérner, M. May, D. Pedreschi,
“Spatio-temporal Data Mining”, in Mobility, Data Mining and
Privacy, ed. Springer Berlin Heidelberg, Chapter 10, pp 267-
296, 2008

[18] PN. Tan, M. Steinbach, V. Kumar, “Introduction to data
mining”, Chapter 6, ed. Pearson, 2005

[19] R. Agrawal, T. Imielinski, A. Swami, “Mining association
rules between sets of items in large databases”, Proceed-
ings of the 1993 ACM SIGMOD international conference on
Management of data, pp. 207-216, 1993

[20] R. Agrawal, R. Srikant, “Fast algorithms for mining asso-
ciation rules”, Proceedings of the 20th International Confer-
ence on Very Large Databases, pp. 487-499 , 1994

[21] D. J. Cook, L. B. Holder, “Mining graph data”, ed. John
Wiley and Sons, 2006

[22] A. Inokuchi, T. Washio, H. Motoda, “An apriori-based
algorithm for mining frequent substructures from graph

BIBLIOGRAPHY

data”, Proceedings of the 4th European Conference on Prin-
ciples of Data Mining and Knowledge Discovery, pp. 13-23,
2000

[23] X. Yan, J. Han, “gSpan: graph-based substructure pattern
mining”, Proceedings of the 2002 IEEE International Con-
ference on Data Mining, pp. 721-725, 2002

[24] O. Arikan, D. A. Forsyth, “Interactive motion generation
from examples”, Proceedings of the 2g9th annual conference
on Computer graphics and interactive techniques, pp. 483-
490, 2002

[25] K. H. Lee, M. G. Choi, Q. Hong, J. Lee, “Group behaviour
from video: a data-driven approach to crowd simulation”,
Proceedings of the 2007 ACM SIGGRAPH/Eurographics
symposium on Computer animation, pp. 109-118, 2007

[26] J. Dijkstra, J. Jessurun, H. Timmermans, “A cellular au-
tomata model for pedestrian behaviour”, in Pedestrian and
evacuation dynamics, ed. Springer-Verlag, pp. 173-181, 2001

[27] D. Helbing, “A fluid-dynamic model for the movement
of pedestrians”, Complex Systems, Volume 6, pp. 391-415,

1992

[28] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars,
“Visibility graphs - Finding the shortest route”, in Compu-
tational Geometry: algorithms and applications, ed. Springer,
Chapter 15, pp. 323-333, 2008

[29] S. K. Ghosh, “Visibility algorithms in the plane”, ed. Cam-
bridge University Press, 2007

[30] A. Sebastian, M. Tang, Y. Feng, M. Looi, “Multi-vehicles
interaction graph model for cooperative collision warning
system”, Proceeding of the IEEE Intelligent Vehicles Sym-

posium, pp.929-34, 2009

[31] C. Oh, T. Kim, “Estimation of rear-end crash potential us-
ing vehicle trajectory data”, Accident Analysis and Preven-
tion, ed. Elsevier, Volume 42, Issue 6, pp.1888-1893, 2010

[32] J. Tordn, “On the hardness of graph isomorphism”, SIAM
Journal on Computing, Volume 33 Issue 5, pp.1093-1108,
2004

[33] V. Arvind,]J. Kobler “Graph isomorphism is low for
ZPP(NP) and other lowness results”, Proceedings of the
17th Annual Symposium on Theoretical Aspects of Com-
puter Science, pp.431-442, 2000

89

90 BIBLIOGRAPHY

[34] DIVA project website, http://www-kdd.isti.cnr.it/
project/diva

[35] P. Holme,] Saramé&ki “Temporal networks”, Physics Re-
ports, Volume 519, Issue 3, pp.97-125, 2012

[36] V. Kostakos “Temporal Graph”, Journal of Physics A,
Number 388, pp.1007-1023, 2009

http://www-kdd.isti.cnr.it/project/diva
http://www-kdd.isti.cnr.it/project/diva

	Dedication
	Sommario
	Abstract
	Acknowledgements
	Contents
	Introduction and background
	1 Motivations and objectives
	1.1 Interactions in a mobility context
	1.2 Organization of the Thesis
	1.3 Novel contributions

	2 Related works and background
	2.1 Related works
	2.1.1 Agents movement modelling/simulation with physical models
	2.1.2 Simulate pedestrians moving with Agent Based Models
	2.1.3 Interactions for complex system modelling
	2.1.4 Reality mining

	2.2 Data-mining background
	2.2.1 Apriori principle and association rules mining
	2.2.2 Graph mining

	2.3 Graph theory
	2.3.1 Multigraphs
	2.3.2 Graphs isomorphism problem
	2.3.3 Temporal graphs

	Mining data with interaction patterns
	3 The Interaction Pattern Analysis framework
	3.1 Preliminaries
	3.2 The IPA Framework
	3.2.1 Representing trajectories with a graph
	3.2.2 Neighborhood creation
	3.2.3 Measuring interactions
	3.2.4 IPA Events

	4 The Static Interaction Pattern Mining algorithm
	4.1 Instance patterns and interaction patterns
	4.2 Equivalence between interaction patterns
	4.3 The SIPM algorithm

	5 The Evolving Interaction Patterns Mining algorithm
	5.1 Evolving interaction patterns
	5.2 The EvIPM algorithm

	6 Experiments
	6.1 Analysis on NGSIM vehicle dataset
	6.2 Analysis on a campus square dataset
	6.3 SIPM and EvIPM performances

	Conclusions and future work
	7 Conclusions
	7.1 Future works
	7.2 Summary of results

	Bibliography

