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Chapter 1

Introduction

In the recent years, data centers changed the way to provide hardware and software
resources for high performance, scientific and business computing: with this facility
is possible to reach good performances or virtually unlimited computational power
without buying the whole needed infrastructure. Data center owner instead has to
deal with different problematics respect to end user like for example hardware main-
tenance and redundancy (because with a large number of devices fault probability of
some of them increases), energy and power consumption needed to keep turned on
the whole infrastructure, hot air dissipation and cooling for servers and switches and
also other internal organization problems regarding for example the proper design
of a network topology without bottlenecks providing the best quality of service as
possible.

Energy and power consumption in data centers definitely affects management
costs. In the last years, different solutions where developed to improve energy effi-
ciency directly on hardware and especially in processors but less improvements were
done in the networking part also because percentage of energy cost is less crucial
rather than processors and servers in general. Nevertheless, the right displacement
of network connections could improve energy efficiency also for the networking part
reducing the number of turned on devices.

In this thesis is introduced a task allocation algorithm for data centers aiming
to find a reasonable trade off between task’s completion time and devices power
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12 CHAPTER 1. INTRODUCTION

consumption.
A new model for both data centers and tasks representation was developed.

Three-tier fat tree topology for data center is considered. Tasks are characterized
by a number of instructions to be executed and a bandwidth requirement; the orig-
inality in this model lies in this task differentiation: adding this two parameters,
allocation problem turns an already existent and solved permutation problem in a
more challenging one.

This algorithm is designed using Genetic heuristics that allow both to explore
solutions space and to search for the optimal solution in an efficient manner, and
it is implemented on a dedicated framework for multi-objective Genetic algorithms,
called jMetal[2]. Using Genetic heuristics, is possible to solve allocation problem
involving a big number of tasks with better performances, having a measured time
complexity which is cubic respect to the number of tasks, rather than other meth-
ods like VMPlanner [13] which performs allocation of X Virtual Machines (VMs)
in a network topology of Y switches in O(X4) + O(Y 2.5) plus the complexity of
the Quadratic Assignment Problem that is not practical to be executed with in-
put size greater than 20; moreover VMPlanner doesn’t consider at all any kind of
computational requirement for VMs to be allocated.

Network flows are allocated and managed with the help of Software Defined
Networking (SDN) architecture. SDN decouples control plane from data plane in
switches; SDN control plane is centralized and every switch receives the proper for-
warding rules according to the controller network view. Through this approach is
possible to allocate perfectly connections in the network avoiding congestions and
bottlenecks, as first step to realize energy saving also in the networking part. More-
over one of the greater potentiality of SDN is that controllers (which are external
respect to the forwarding devices) could implement the developed algorithm and
execute directly the task allocation according to the obtained results.
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1.1 Thesis structure

This document is structured in several chapters:

• chapter 1 is the introduction of the thesis which presents the examined prob-
lem;

• chapter 2 describes data centers focusing especially on the internal network
topology and on the power consumption problem;

• chapter 3 explains the genetic heuristics and describes the jMetal framework
used to design, implement and execute the algorithm;

• chapter 4 introduces the SDN research field and some developed solutions;

• chapter 5 deals with the implemented algorithm explaining the developed
model, and the obtained results;

• chapter 6 summarizes the whole thesis and describes future works.
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Chapter 2

Data Center

2.1 Introduction

A data center is a facility that hosts servers and associated components such as
telecommunication devices (switches, routers, ...), storage systems, coolers, uninter-
ruptible power supplies, air filters; there is a certain degree of redundancy of the
resources in order to avoid single points of failure and more in general to improve
fault tolerance. A data center typically houses a large number of heterogeneous
networked computer systems and usually it can occupy one room of a building, one
or more floors, or an entire building.

There are some motivations behind the establishment of massive data centers
both economic and technical: it is possible to achieve economies of scale in order
to amortize total costs of bulk deployments and to receive benefits from the ability
to dynamically reallocate resources among services reaching better performances
through load balancing techniques.

This huge amount of devices requires an internal organization and a specific
topology design in order to better exploit the whole set of resources: servers should
be interconnected in the proper way to guarantee full accessibility and low commu-
nication latency to internal and external customers. Moreover, applications could
be distributed on multiple servers therefore highly performant connection between
servers of the same data center should be ensured.

15
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Data centers are characterized by two types of network traffic:

• North-South traffic, coming from the external gateway and directed towards
the servers (and vice versa);

• East-West traffic or intra-data center traffic, representing the traffic between
servers of the same data center e.g. the traffic between distributed applications.

It’s important to design an efficient network topology avoiding bottlenecks, single
point of failure and reaching good performance and scalability. Last two param-
eters play a fundamental role when there is an agreement between customers and
data center owner which explicitly defines the kind of guaranteed performance and
availability.

2.2 Fat-tree topology

From the network bandwidth perspective, the availability of per-server bandwidth
is one of the most fundamental requirements affecting the design of modern data
centers. The most widely used topology in data centers is the three-tier fat tree[4][5].
In this topology, servers are grouped in racks that are able to host from 20 up to
40-50 servers [3].

Three-tier fat tree topology is hierarchically organized in three layers (Fig.2.1):

• Access or Edge;

• Aggregation;

• Core.

Access layer provides connection to servers belonging to the same rack, all con-
nected to the same switch called Top of the rack. Link between server and top of
the rack switch usually has a capacity of 1 Gbps.

In the aggregation layer, top of the rack switches are connected to a pair of
Aggregation switches through links of capacity 10 Gbps.
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The oversubscription ratio is the ratio between the offered and the usable capac-
ity. Considering 48 servers per rack, the oversubscription ratio for the access layer
is 2.4 (because no more than 48 Gbps could be requested by servers and at most 20
Gbps are provided by the upper layer).

An aggregation switch typically offers 8-12 ports for access layer connections
and is connected to all the core layer switches. The set of racks connected to the
same couple of aggregation switches is called pod. Typical value of aggregation layer
oversubscription ratio is 1.5.

Figure 2.1: Fat-tree topology in data centers

The last layer is the core layer which hosts core switches. Usually the number
of core switches is limited (in general 8, depending on the data center size). Each
aggregation switch is connected to all the core switches allowing a connection to
the external gateway and to the other aggregation switches. At the core layer,
oversubscription ratio should be 1 or less.
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2.3 Other topologies

Three-tier fat tree is not the only available topology: there are other network topolo-
gies that could be exploited to interconnect servers in data centers and new solutions
are always developed because new ways to structure data center internal topology
are currently under research to improve reliability, availability and performance of
the network.

2.3.1 Portland

An approach which slightly modifies fat-tree topology is Portland, mainly based
on a centralized manager called fabric manager. Fabric manager maintains a soft-
state of the network, recording possible faults and creating multipaths exploiting
some protocols that allows to keep informations about the network. This entity
could be an application on a network host or an element of a separate control
network. Thanks to this centralization element which stores informations about link
status, it’s possible to compute alternative paths for unicast and multicast/broadcast
communications in case of fault. Keepalive messages are used to determine if a link
either active or failed. If a link fails, fabric manager computes the new paths storing
the informations about the actual network status and sending these informations to
all the switches.

2.3.2 DCell

DCell approach doesn’t exploit the tree topology; it uses instead a recursive defini-
tion for its construction and composition; in order to realize this kind of topology,
each server must be equipped with multiple network ports. DCell is structured in
levels and the basic one, named DCell0, contains n servers connected to a single
mini-switch. Typical value of n is less than or equal 8 therefore the mini-switch
requires only a limited number of ports. The next level of DCell is named DCell1
and it’s created grouping and connecting all together n + 1 DCell0. Within the
same DCell1, a DCell0 is connected to all the others: each server of the same DCell0
is connected to another server of a different DCell0(Fig.2.2). With this approach,
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Figure 2.2: DCell1 structure

every DCell0 is treated like a virtual node and it is fully connected to the others.
Generalizing this procedure, having DCellk−1 with tk−1 servers it is possible to cre-
ate up to (tk−1+1) DCellk−1. More in general, when all the necessary DCellk−1 are
created, each one is fully connected to the others and a DCellk is created; DCells
are connected through servers (except for DCell0 in which mini-switches are used)
therefore to realize a DCellk, k + 1 ports per server are needed.

DCell approach compared with Fat-tree guarantees better bandwidth perfor-
mance and implements fault tolerant routing avoiding single points of failure.

2.3.3 Comparison with Fat-tree

Portland introduces some features to the classical fat-tree view maintaining the
former topology. However, using SDN switches in the data center is possible to
obtain same or more improvements collecting more details about the network status
(section 4).

Considering the second approach, fat-tree is less scalable respect to DCell because
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top of the rack switches represent a single point of failure while in case of aggregation
or core switch fault, network performance decreases dramatically.

Although these new approaches solve this kind of problem, fat-tree is actually one
of the most diffused topology in data centers representing a consolidated structure
with predictable and known performances.

2.4 Data center power consumption

One of the main obstacles to data center scale-economy problem is power consump-
tion. Total power consumption due to data center, in a country such as US, doubled
in 6 years (from 2000 to 2006) reaching nearly 61 billion kW h (1.5% of total US
electricity consumption)[13]. Out of each watt delivered, about 59% goes to the
IT equipment (represented by servers, consuming between 39% and 49% and by
switches consuming between 10% and 20% of the total amount of power delivered),
8% goes to power distribution loss, and 33% goes to cooling.

Most of the current researches in data centers focus on saving power, proposing
more energy and power efficient technologies. Servers and cooling systems represent
the top two power consumers in current data centers.

On the other side, network infrastructure (such as routers, switches and links)
contributes only with a relative small proportion in the total power consumption:
only the 10%-20% of the energy budget of a data center is employed in these devices.

Power consumption in data center is expected to reach great values growing
fast in the next years. Following this growth, large slices of power will be dissipated
during the delivery phase and to cool network elements; for these reasons now it’s the
time to address the challenge for reducing the network power consumption without
affecting network system performance in data centers.

During the last years, power management in computer has evolved implementing
hardware support for power performance and idle sleep states. Two techniques are
used: the former intends to save power during active times by lowering down oper-
ating frequency and/or voltage to different scales (Dynamic Voltage and Frequency
Scaling or DVFS) while the latter tries to save power during idle times, by powering
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down as much as possible all the sub-components. This kind of philosophy is also
followed by researchers with respect to network power consumption: i.e. reducing
the number of used path aggregating (consolidating) the traffic, a network operator
can free some devices and put them to sleep reducing power consumption, but this
kind of solution requires a good degree of coordination between every device present
in the network. This approach is viable because in data center, network utilization
has been found very low during most of the time (even a quota higher then 40% of
link capacity is unused or idle), and the network capacity is generally far from being
exceeded by the traffic load.
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Chapter 3

Genetic Algorithm

3.1 Introduction

Genetic Algorithms (GAs) are stochastic search algorithms based on the mecha-
nism of natural selection and natural genetics. This kind of algorithms differs from
conventional search techniques because they start with an initial set of random so-
lutions called population which satisfies some specified boundaries and/or system
constraints characterising the problem and then, during the execution of the algo-
rithm, solutions of the population evolve towards the optimal one. Each individual
in the population is called a chromosome, representing a solution to the problem at
hand. Chromosome is in general a string of symbols and usually, but not necessarily,
a binary bit string. Each chromosome comprises a number of individual structures
called genes describing part of the solution. Chromosomes evolve through successive
iterations called generations. During each generation, the chromosomes are evalu-
ated, using some measures of fitness through specific fitness functions. To create the
next generation, new chromosomes, called offspring, are formed by either merging
two chromosomes from current generation using a crossover operator or modifying
a chromosome using a mutation operator. A new population is formed, using the
selection operator, choosing the best chromosomes and rejecting the others keeping
the population size constant. Fitter chromosomes have higher probabilities of being
selected respect to the others. After several generations, the algorithms converge
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to the best chromosome, which hopefully represents the optimum or sub-optimal
solution to the problem.

3.2 Searching for Solutions

Search is the core phase for GA problem solving methods. There are two impor-
tant issues in search strategies: exploiting the best solution and exploring the search
space. GA is a class of general purpose search methods which is able to combine
elements of directed and stochastic search producing a good balance between explo-
ration and exploitation of the search space.[1]

3.3 Chromosome

Chromosomes represent specific solutions for the problem. Each chromosome com-
prises a number of individual structures called genes and each gene has an associated
value called allele.
Genes can be represented or encoded in different ways like binary strings, integer
or real numbers, arrays, array permutations or other defined data structures. Real
number encoding performs better for function optimization problems while integer
and permutation encoding are utilized for combinatorial optimization problem. For
each kind of gene a proper set of operators should be defined.

3.4 GA Operators

3.4.1 Crossover

Crossover represents one of the most important GA operators. It works on two dif-
ferent chromosomes at a time, generating an offspring combining both chromosomes’
features. As example, if we consider one chromosome encoded like a binary string,
one crossover operator could take two chromosomes, cut them in the same position
(cut the related encoded binary string) and take the first part from one parent and
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the last from the other. In this way the generated chromosome includes parts of
both parents. The crossover probability is the probability to apply the crossover
operator to a couple of chromosomes. Denoting pop_Size the population size and
Pc the crossover probability, the expected size of the offspring is Pc ∗ pop_Size.

Examples of crossover operator are:

• one-cut point crossover(Fig.3.1): two chromosomes choose the same random-cut
point dividing them in two parts (left and right) and generate the offspring
taking the left segment from one parent and the right segment from the other
one and/or vice versa.

Figure 3.1: One-cut point crossover

• two-cut points crossover (Fig.3.2) and multi-cut points crossover which follow
the same approach of before, applying two or more cut points instead of one;

Figure 3.2: Two-cut point crossover

• uniform crossover (Fig.3.3): a fixed mixing ratio between parents is decided
and the offspring is generated mixing the two parents according to that ratio
in a probabilistic way; uniform crossover enables the parent chromosomes to
contribute at gene level rather than at segment level.
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Figure 3.3: Uniform crossover with mixing ratio 0.5

The above described crossover operators are not able to destroy one gene: every
time that one cut is executed, the cut falls always between two consecutive genes
and never in the middle of a single gene.

3.4.2 Mutation

Mutation is an operator which produces random changes in various chromosomes
and usually it accomplishes two important tasks:

1. replaces the lost genes from the population during the selection process in
order to tried them again in a new context;

2. provides the genes that were not present in the initial population;

One of the most simple way to achieve a mutation is to randomly change one gene
of a chromosome. The mutation probability (PM) represents the probability of
introducing new genes into the population. A good tuning of this probability is
needed because if it is too high, offspring will be too much different respect to the
parents losing the possibility to learn by the previous history while if it’s too low,
some important genes could never get in the solutions; For each gene of a given
chromosome, the mutation probability is evaluated and the value of the gene is
changed according to the adopted mutation strategy.
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3.4.3 Selection

Selection operator is used to select the population for the next generation among the
different chromosomes. This operators drives the algorithm in a certain region of
the solution space; if the pressure of this operator is low, wider areas of the solution
space are explored otherwise, with an high pressure, this operator will focus on
narrower areas of the solution space. A good strategy is to implement a selection
operator with a low pressure in the beginning and a high pressure at the end; in this
way, a wider solution region is explored at the beginning, focusing on the best local
solutions only at the end.

One of the most important selection operator is called Tournament selection.
It runs a “tournament” between a certain number of individuals chosen at random
from the population and selects the winner according to the fitness values; selection
pressure can be easily adjusted by changing the tournament size indeed if the tour-
nament size is larger, weak individuals have a smaller chance to be selected. When
the tournament size is 2, this kind of tournament is called Binary Tournament.

3.5 Solutions

Generally, an algorithm for solving optimization problems is a sequence of compu-
tational steps which asymptotically converge to the optimal solution. Most classical
optimization methods are based on gradient or higher order derivatives of objective
function applied to a single point in the search space. This point-to-point approach
embraces the danger of failing in local optima. GA performs a multi-directional
search by maintaining a population of potential solutions. This approach has differ-
ent advantages:

• Adaptability, GA does not have much mathematical requirement about the
optimization problems and, due to the evolutionary nature, GA will search
for solutions without regarding to the specific inner workings of the problem
handling any kind of objective functions and any kind of constraints, i.e., linear
or nonlinear, defined on discrete, continuous or mixed search spaces;
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• Robustness, the use of evolutionary operators makes GA very effective in per-
forming a global search (in probability); respect to most of the conventional
heuristics that usually perform a local search, it has been proved by many
studies that GA is more efficient and more robust in locating optimal solu-
tion, reducing computational effort more than other conventional heuristics[1];

• Flexibility, thanks to the possibility to hybridize GA with domain-dependent
heuristics in order to make an efficient implementation for a specific problem.

3.5.1 Legal and feasible solutions

Using a GA approach it’s necessary to deal with some issues: sometimes generat-
ing randomly the initial population or applying mutation or crossover operator, is
possible to create unallowed chromosomes, mainly divided in infeasible and illegal
chromosomes.

An infeasible chromosome represents a solution which lies outside the feasible
region of a given problem (usually defined by some constraints) while an illegal
chromosome doesn’t represent a solution at all.

Infeasible chromosomes are usually considered within the algorithm because often
in constrained optimization problems, the optimum typically occurs at the boundary
between feasible and infeasible areas.

Illegal chromosomes usually are originated by the used encoding technique; in
many combinatorial optimization problems, problem-specific encodings are used
and such encodings usually yield illegal offspring applying a simple one-cut point
crossover. In that situation different strategies could be adopted to deal with this
kind of chromosomes:

• Rejecting strategy, discarding all infeasible chromosomes created;

• Repairing strategy, turning an illegal chromosome into a legal one;

• Modifying Genetic operators strategy, creating operators working only into the
feasible region;
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3.6 Multiobjective GA

Optimization methods could involve one or more parameter to be optimized. With
only one parameter we are dealing with a single objective optimization problem,
with more than one with a multiobjective optimization problem. A single objective
optimization problem is expressed into the following form:

max {z = f(x)}

x = x(x1, x2, ..., xj, ..., xn);

subject to gi(x) ≤ 0, i = 1, 2, ..., m

and xj > 0, j = 1, 2, ..., n

with

• x ∈ Rn a vector of n decision variables;

• z ∈ R the objective;

• f : Rn → R the fitness function;

• gi : Rn → R a generic constraint functions.

In this scenario, is really simple to classify the solution: it is sufficient to compare
the fitness value and create a descending ordered set respect to those values.

More in general with multiple objective we have:

max {z1 = f1(x), z2 = f2(x), ..., zq = fq(x)}

x = x(x1, x2, ..., xj, ..., xn);

subject to gi(x) ≤ 0, i = 1, 2, ..., m

and xj > 0, j = 1, 2, ..., n

In this case, there does not necessarily exist a solution that is the best with respect
to all objectives because of incommensurability (it’s not possible to compare vectors
between each others) and conflict among objectives.
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Consider two solutions x and y, x dominates y if exists a value k such that:
 fk(x) > fk(y)

fl(x) ≥ fl(y) ∀l 6= k

If that value of k doesn’t exist, y is nondominated by x.
The main task of a multiobjective GA is to find a set of nondominated solutions

(or Pareto optimal solutions) optimizing the current problem.

3.7 JMetal Framework

3.7.1 Introduction

JMetal is a Java-based framework designed for multi-objective optimization. It is
publicly available to the community of people interested in multi-objective opti-
mization. It is licensed under the GNU Lesser General Public License 2 and it can
be obtained freely. This framework is specifically oriented to multi-objective opti-
mization rather than other frameworks that are mainly focused on single objective
optimization implementing only a general support to multiobjective optimization.
JMetal implements the following features:

• a number of modern multi-objective optimization metaheuristics like Non dom-
inating sorting algorithm II (NSGA-II), MOCell and others;

• a rich set of test problems;

• different variable representations;

3.7.2 Java Implementation

Framework classes are named and built in order to make them general enough to be
used in any context. The main classes of jMetal are:

• Algorithm;

• Solution;
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• SolutionSet;

• Variable;

• Problem;

• Operator.

Class Algorithm represents the superclass for all the optimizers: whatever meta-
heuristic included in jMetal has to inherit from it. Application-specific parameters
can be added and accessed through the methods addParameter and getParame-
ter. Similarly, an algorithm may also use of some operators incorporated with the
method addOperator and retrieved by the getOperator method.

In the context of evolutionary algorithms, populations and individuals corre-
spond to SolutionSet and Solution jMetal classes: in this implementation class
SolutionSet represents a set of Solution objects. Solution objects are typed by So-
lutionType objects and encapsulate an array of Variable objects. Variable is a
superclass used to describe different kinds of representations for solutions. A Solu-
tion object non necessarily has to contain variables of the same representation indeed
it can be composed by an array of mixed variable types. Furthermore, this design
method provides a good extensibility because new solution representations can be
easily incorporated into the framework just by inheriting from the class Variable.

In jMetal, all the problems have to inherit from class Problem. This class con-
tains two basic methods: evaluate and evaluateConstraints. Both methods operate
with Solution objects representing candidate solution to the problem; the former
determines the evaluation of a solution in terms of its fitness functions while the lat-
ter determines the overall constraint violation of a solution. All the problems have
to define the evaluate method, while only problems having side constraints need to
define evaluateConstraints.

Operator is a superclass for all the operators. As Algorithm class, Operator
contains the getParameter and setParameter methods, which are used to add and
access to specific parameters like crossover probability for crossover operators.
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NSGA-II

Nondominated Solution Genetic Algorithm II (NSGA-II) is the second version of
one of the first search strategy heuristic able to find solutions for multi-objectives
GA in a single run; in the past each objective should be considered one at time[6].
NSGA-II has a complexity of O(MN2) with M the number of objectives and N the
population size and improves the former algorithm which was able to perform only
O(MN3). This heuristic sorts a population into different nondomination levels with
a procedure called ranking. Initially, a random parent population is created. The
population is sorted according to the property of domination: if a solution p domi-
nates a solution q, q belongs to the dominated set of p. This procedure is repeated
for every solution creating different groups or nondomination levels (solutions of the
same group are nondominating themselves); an integer value called rank is assigned
to each nondomination level (1 is the best level, 2 is the next-best level, and so on).

When applying selection and sorting, NSGA-II is able to deal with constraints
and unfeasible solutions. Using a binary tournament selection with a single objective
the possible cases confronting two solutions are:

• both solutions are feasible and the one with the best fitness is chosen;

• only one solution is feasible and that is chosen;

• both solutions are unfeasible and the one with the smallest overall constraint
violation is chosen.

Using multiobjective optimization, it’s necessary to introduce the definition of con-
straint domination: a solution i is said to constrained-dominate a solution j, if any
of the following conditions is true:

1. solution i is feasible and solution j is not;

2. solutions i and j are both infeasible, but solution i has a smaller overall con-
straint violation;

3. solutions i and j are feasible and solution i dominates solution j.
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Applying a binary tournament operator, constraint-dominating solutions are pre-
ferred. All feasible solutions are ranked according to their nondomination level
which is based on the objective function values. However, among two infeasible so-
lutions, the solution with a smaller constraint violation has a better rank. If two or
more solutions belong to the same nondomination level, another parameter called
crowding distance is used to complete the ranking procedure. The crowding distance
value of a solution provides an estimate of the density of solutions surrounding that
solution. Crowding distance of point i is an estimate of the size of the largest cuboid
enclosing i without including any other point(Fig. 3.4).

Figure 3.4: Crowding distance for i-th solution in a two objectives algorithm

Boundary solutions which have the lowest and highest objective function values
are given an infinite crowding distance. Solution A is better ranked than B if and
only if:
nondominated level(A) < nondominated level(B)
or
 nondominated level(A) = nondominated level(B)

crowding distance(A) > crowding distance(B)
.

When the ranking procedure is done, a number of chromosome equal to the
population size is taken from the best ranked solutions. After this selection, crossover
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and mutation operator can be applied to the new population in order to generate
another offspring.



Chapter 4

Software Defined Networking

4.1 Introduction

Software Defined Networking (SDN) [8] is an emerging dynamic and a flexible net-
work architecture in which the network control plane logic is programmable and
decoupled from the forwarding plane.

SDN provides a framework which enables the centralized control of data plane
elements, completely independent respect to the used network technologies.

One of the advantages of this centralized control, relies on the possibility to
maintain the network-wide view updated. With this functionality is possible to im-
prove network management and configuration permitting also to software developers
to rely upon network resources in the same way they do with computing resources.
The intelligence present in SDN is localized in software-based controllers while net-
work devices act simply like packet forwarding devices that can be programmed
through open interfaces such as OpenFlow[9].

SDN research field is recent, it’s actually growing fast and some important chal-
lenges have to be addressed: for example, the grain of SDN control could include
not only packet forwarding at switching level but also link tuning at data link level
optimizing communication in a cross-layer way.

35
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4.2 Benefits

Software defined networking, with its inherent decoupling of control plane from data
plane, offers a greater control of a network through programming.

The first benefit is the automatic configuration of the network: when a new
device is attached to an existent net, it has to be configured and, specially in case
of heterogeneous devices, manual intervention is subject to error. During this phase
SDN really helps thanks to the single point of configuration of the control plane.

Another important benefit due to the centralization, is the possibility to create
global view of networks instead of managing only local informations; with more
informations is possible to optimize and improve performance of the network: actual
optimization approaches, that are based on local information without cross-layer
consideration, could lead to sub-optimal performance, or even worse to conflicting
network operations; with SDN is possible to develop different kind of approaches
able to reach optimal configurations.

Elasticity of SDN allows to implement simplified and full programmable testbeds
useful to prepare experiment, to deploy and test new applications and functional-
ities; in this sense, SDN encourage innovation because it allows the possibility of
testing application under specified network conditions and performances. Progres-
sive deployment of new ideas can be performed through a seamless transition from
an experimental phase to an operational phase also with the support of a SDN
network simulator like Mininet[10]

4.3 SDN Reference Model

Reference model for SDN consists of three layers:

1. Infrastructure layer ;

2. Control layer ;

3. Application layer.
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4.3.1 Infrastructure Layer

This layer consists of switching devices in the data plane. These elements have two
main functions:

• collect network information, storing them in a local memory and flushing them
to the centralized controller;

• forward packets according to the received rules.

Connections among switching devices could be realized through different transmis-
sion media, including copper wires, wireless radio, and also optical fibers.

Switches are completely depleted from their "intelligence": they are only able
to apply received rules and to collect data; for this reason this architecture could
require to produce a new kind of devices or to adapt the existent ones enabling
software defined networking functionalities.

In order to be more efficient, SDN switches should improve memory utilization
according to the network scale. In case of insufficient memory space, packets would
be dropped or directed to the controller for further decisions on how to process them,
resulting in a degraded network performance. Memory saving techniques already
implemented in classical routers (like route aggregation) can reduce the memory
usage by aggregating several routing records with a common routing prefix to a
single new routing record with the common prefix.

Into the data plane, SDN switch first identifies the forwarding rule that matches
with the packet and then forwards the packet to next hop accordingly. SDN packets
could be forwarded not only (like in legacy routers) according to IP or MAC address
but also to TCP/UDP connections, VLAN tags and other parameters. Using a long
vector for forwarding decision would undoubtedly increases processing complexity,
resulting a fundamental trade-off between cost and efficiency in SDN packet process-
ing; implementing for example hardware classification for incoming packets based
on header fields in the onboard Network Interface Controller (NIC), switch CPU is
exempted from the lookup process and performance increases.

SDN switching devices are divided in three categories according to their imple-
mentation if it’s done:
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• on general PC Hardware, which is usually a software running upon a Linux op-
erative system; software switches provide a port density limited to the number
of NICs onboard and relatively slow packet processing speed using software
processing but it’s possible to implement also virtual switching for VMs;

• on open network hardware (e.g. NETFPGA), offering a vendor independent
and programmable platform to build networks for research and experiments;
this kind of switches are more flexible than vendor’s switches and provide
higher throughput than the one with software implementation;

• on vendor’s switch; actually hardware vendors are releasing their SDN strate-
gies and solutions, along with a vast variety of SDN-enabled switches; there
are also other project to turn old switches in SDN switches enabling all the
required features using firmware upgrades.

4.3.2 Control Layer

Control layer is a bridging layer between infrastructure and application layers hav-
ing two defined interfaces; the one interacting with the infrastructure layer is called
south-bound interface and it specifies interfaces to access functions provided by
switching devices possibly including network status report and packet forwarding
rules import.

Interface between this layer and application layer is called north-bound interface;
it provides service access points in various forms, for example Application Program-
ming Interfaces. Since multiple controllers could coexist for a large administrative
network domain, it’s possible to have another kind of communication at this layer,
defining an east-west communication.

SDN controller deals with two types of objectives: network controlling, includ-
ing policies imposed by the application layer and packet forwarding rules for the
infrastructure layer and network monitoring, in the format of local and global net-
work status. Therefore, because of these two objectives, the logical architecture has
two counter-directional information flows from application to infrastructure layer
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and viceversa. Leveraging these architectural principles, the logical design for SDN
controllers can be decoupled into four building components:

• High Level Language: this function dictates a communication protocol be-
tween application and control layer in order to translate application require-
ments into packet forwarding rules. This language should embrace an expres-
sive and comprehensive syntax for SDN applications to easily describe their
requirements and network management strategies.

• Rules Update: control plane is in charge to update forwarding rules in switch-
ing devices; rules need to be updated because of configuration changes and
dynamic control; in the presence of network dynamics, consistency is a basic
feature that rule update should preserve to ensure proper network operations
and preferred network properties, such as, loop free, no black hole, and secu-
rity. There are two defined kinds of rules consistency:

– Strict, ensuring that either the original rule set or the updated rule set
is used;

– Eventual, in which later packets use the updated rule set eventually at
the end the update procedure while earlier packets of the same flow could
use rules set before or during the update procedure;

One possible solution to guarantee strict consistency is to stamp each packet
with a versioning number indicating which rule set should be applied. Then,
the packet will be processed depending on the version of the applied ruleset.
Later packets will be stamped to take the updated rule set. Thus, no more
packets will take the original rule set after a time long enough and the original
rule set will be removed. Nevertheless, both the original and updated rulesets
are kept in switching devices before the originale one expires and is removed.

Eventual consistency could generate undesired behaviours but it allows mem-
ory saving because with this implementation it’s not necessary to save both
the old rules and the updated ones.
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• Network Status Collection: SDN controllers collect network status to build
a global view of the entire network and provide to the application layer the
necessary informations like network topology graph, for network operation
decisions; main network status is represented by traffic statistics such as du-
ration time, packet count, byte count, and bandwidth share of a flow; local
traffic statistics may be retrieved by controllers in the so called pull mode or
proactively reported to controllers using the push mode.

• Network Status Synchronization: with a centralized controller some problems
can occur like bottlenecks and single point of failures, typical of every cen-
tralized approach; common solution to overcome these problems is deploying
multiple controllers acting peer, backup, or replicate controllers. Maintaining
a consistent global view among all controllers is essential to ensure proper net-
work operations because inconsistent or stale states may result in the applica-
tion layer making incorrect decisions, leading to inappropriate or sub-optimal
operations of the network. To maintain consistency between different con-
troller instances there are several methods like publish/subscribe systems and
protocols of communication among multiple controllers that are widely used
to achieve a synchronized global network view.

4.3.3 Application Layer

Last layer contains SDN applications designed to fulfill user requirements. SDN
applications are able to access and control switching devices at the infrastructure
layer. Example of SDN applications could include dynamic access control, seamless
mobility and migration, server load balancing, network virtualization. SDN appli-
cations are able to manipulate the underlying physical networks using the high level
language provided by the control layer. An example of application in the routing
domain is the one using a cross-layer approach which is a highly touted technique
to enhance integration of entities at different layers in a layered architecture al-
lowing entities at different layers to exchange information among each other. This
is feasible with SDN because the offered platform for applications easily accesses
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network status information and then cross-layer approaches can be developed. Ap-
plications could involve also network security indeed thanks to the centralized ap-
proach, if attacks are detected, SDN can install proper packet forwarding rules to
all the switching devices at the same time blocking quickly the attacking traffic; an-
other functionality at application level is network virtualization the allows multiple
heterogeneous network architectures to cohabit on the same shared infrastructure;
conventional virtualization methods using tunnels and VLAN or MPLS tags require
tedious configurations on all the involved network devices; SDN instead offers a
platform allowing configuration of all switching devices in a network from a single
controller.

4.4 SDN and task allocation

SDN is a good support for task allocation within a data center: exploiting its func-
tionalities, it’s possible to efficiently reserve and manage network resources during
task allocation phase. Running the resource allocation algorithm such as an ap-
plication on the SDN controller, is possible to perfectly allocate tasks according to
their bandwidth requirements making the real performances of the algorithm closer
to the expected ones.
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Chapter 5

Resource Allocation

5.1 Introduction

Due to the rapid growth of demands for computational power in data center for
scientific highly performant, business and web related applications, data center size
is increasing together with power and energy consumption. More energy efficient
hardware was developed but the overall consumption is anyway growing year by
year. This high power consumption contributes to increase carbon dioxide emission
in substantial manner affecting the greenhouse effect.

Nowadays is fundamental to find the right balancing between performance and
power saving inside data centers. A new model of data center and activities to be
allocated within was designed and, based on this model, also a resource allocation
algorithm was developed in order to to find a good trade off between power con-
sumption and performance of tasks execution. This algorithm exploits GA heuris-
tics which allow to find optimal o closely optimal solutions ensuring good execution
times.

43
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5.2 Model

Data center is modeled with an internal three-tier fat-tree topology; servers are
grouped in racks and pods: one rack contains up to 24 servers and a single pod
includes up to 8 racks.

The objective is to allocate in this data center, which is empty at the beginning,
a set of independent tasks on the available servers.

A generic tasks is characterized by:

• a number of instructions to be executed;

• a constant amount of bandwidth required to perform the execution.

Being each task independent by the others, bandwidth required by tasks is only for
North-South traffic avoiding East-West communications.

Server processor is modeled like a single core processor with a fixed computa-
tional power expressed in terms of instructions per second. Tasks allocated onto the
same server share equally the processor. Server power consumption model is load
(or frequency) proportional; in our case we supposed that a server containing one
or more tasks is maximum loaded (works at the maximum frequency) in order to
execute as fast as possible all the tasks; if no tasks are allocated, server is turned off
having no power consumptions. All the servers into the data center have the same
characteristics in terms of computational power and power consumption.

Switches power consumption model is linear respect to the amount of used band-
width assuming all the values between idle and peak power respectively when traffic
load is 0 or 1 but, also in this case, if a switch is idle (no traffic is carried on) it’s
turned off in order to save more power. Power models are more detailed described
in subsection 5.3.2.
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To better formalize the problem, let define:



N =tasks to be allocated
M =total number of servers
S =total number of switches
R =total number of racks
Tc =maximum completion time between all the tasks
Bi =i-th task bandwidth request
PSRj =power consumption of server j-th
PSR =

∑
j

PSRj = total server power consumption

PSW k =power consumption of k-th switch (top of the rack or aggregation)
PSW =

∑
k

PSW k = total switch power consumption

P = PSR + PSW =global power consumption
PSRP =peak power consumption for servers
PSW P =peak power consumption for switches
PSW I =idle power consumption for switches
VLj =bandwidth utilization on j-th server link
VT k =bandwidth utilization on k-th top of the rack switch
IPS =number of instruction per second executed by a single processor on a server
nj =number of tasks allocated on j-th server

To solve this allocation problem a GA was used. A single solution is represented
by a N-dimensional integer array ranging between 1 and M1; if yi is the i-th integer
component in the solution array, this indicates that i-th task was allocated to the
yi-th server.

Operators and heuristic used by the algorithm are:

• One-cut point crossover;

• Random mutation, one or more genes of the same chromosome are randomly
changed i.e. one or more task are randomly re-allocated to another servers;

1In the software implementation, integer value ranges between 0 and M-1
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• Binary Tournament selection;

• NSGA-II search heuristic.

With these operators, all the generated chromosomes are never illegal therefore is
not necessary to implement a repairing or a rejecting strategy.

Two objectives are present:

1. Minimization of the maximum completion time between all the tasks also
called makespan;

2. Minimization of the power consumption;

The two objectives are in contrast because when one is improved the other is penal-
ized: what we want is to find a suitable trade-off between this two objectives.

The two fitness functions for this algorithm are denoted with:
 f1 = Tc

f2 = P

but in this case, fitness functions should be minimized and not maximized.
Our problem is subject to two different constraints: it’s not possible to allocate

on a single server more than the link capacity (1Gbps) and more than the 20Gbps
per top of the rack switches in order to avoid link congestion to both access and
aggregation levels.

The two considered constraints are in this way formalized:
 VLj ≤ 1Gbps 1 ≤ j ≤M

VT k ≤ 20Gbps 1 ≤ k ≤ R

In the power consumption profile we do not consider core switches because usu-
ally those switches are always turned on in data centers and it’s very rare to switch
off one of them. For this reason and because of the linearity of the switch power
model, core switch power consumption is not considered: this value is more or less
constant in every solution (due to the linearity of switch power model) and could
be neglected.
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5.3 Fitness functions

5.3.1 Completion Time

The total completion time is the completion time of the last task in execution.
Defining:


xij =

 1 if the i-th task is allocated on the j-th server;
0 otherwise;

#insi =total number of instruction of task i-th;

Ij =
N∑

i=1
xij #insi = total number of instructions to be executed on server j-th.

Tj = Ij

IPS
= Completion time of tasks allocated on j-th server

We can define the total completion time as:

Tc = max 1≤j≤M Tj

This formula consider the maximum of all server completion time or equivalently
the completion time of the slowest task. To compute this value, each task on the
same server is supposed to be executed in parallel equally sharing processor compu-
tational power. It’s the same to consider one big task per server containing the sum
of all the instruction of the allocated task (on the same server) and to compute that
completion time.

5.3.2 Power consumption

Server power consumption is modeled with a load proportional law. Supposing that
the load value of each processor could assume only two values (0 if no tasks are
assigned and 1 if one ore more task are running), power consumption law for server
is binary:

PSRj =

 PSRP if nj ≥ 1
0 if nj = 0
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Switch power consumption is load proportional and linear respect to the traffic
between two values PSW P (when all all the link are full utilized) and PSRI (when
the switch is idle). In our model we suppose also that, in case of load equal to 0,
switched are turned off.

Defining also:


Ci =throughput of the i-th link
CMAX =sum of maximum capacity of all uplinks

#linkk =number of uplinks in switch k-th

lk =
#linkk∑

i=1

Ci

CMAX

= load factor of k-th switch

Switch power consumption law is:

PSW k(lk) =

 PSW I + (PSW P − PSW I)lk 0 < lk ≤ 1
0 lk = 0

5.3.3 Constraints

Two constraints were defined regarding the allocated bandwidth per link between:

• server and top of the rack switches;

• top of the rack switches and aggregation switches.
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Denoting:


xijk =

 1 if the i-th task is allocated on the j-th server of the k-th rack;
0 otherwise;

cj1 =
(

N∑
i=1

xij Bi − C

)
sgn

(
N∑

i=1
xij Bi − C

)

ck2 =
 M∑

j=1

N∑
i=1

xijk Bi − 20 Gbps

 sgn

 M∑
j=1

N∑
i=1

xijk Bi − 20 Gbps



the two constraints are:


c1 =
M∑

j=1
cj1

c2 =
R∑

k=1
ck2

having that:

sgn(x) =

 0 ∀x ≤ 0
1 ∀x > 0

Defining in this way the two constraints, if links are not congested no penalty will
be applied otherwise penalty value will be exactly the difference between the total
required capacity and the available one. Everytime that tasks allocated on the same
server (or on the same rack) require more bandwidth than the one available on links
directed to the upper layer, the exceeding bandwidth is added to the constraint
violations. Is important to recall that with this search heuristic, solutions that are
violating constraints are still considered during the search phase but they tend to
disappear in the last generations because non violating solution are always preferred.
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5.4 Execution

This algorithm was executed with a different set of input values but there are some
parameters which are common to each execution.
For genetic algorithm execution we have:

Parameter Value
Population size 100

Iterations number 25000
Crossover probability 0.9

Mutation probability 1
task number

Data center topology is represented in this way:

Parameter Value
Server per rack 24
Rack per pod 8

Tasks parameters have these values:

Parameter Value
Average instructions per task 7.5 ∗ 108

Average required bandwidth 5.01 ∗ 108[bps]
Instruction distribution uniform between [5;10]∗108 instruction
Bandwidth distribution uniform between [1;1001]∗108bps

Server parameters are:

Parameter Value
IPS 120 ∗ 106[instr/sec]

PSRP 300[W ]

Top of rack switches power consumption values:

Parameter Value [W]
PSW P 200
PSW I 160
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Aggregation switches power consumption values:

Parameter Value [W]
PSW P 2500
PSW I 2000

5.4.1 Experiment 1: variable task number

First experiment was executed with these input values:

Parameter Value [W]
Server number 1536
Task number [500:15000] with steps of 500

Same experiment repetition 3

Figure [5.1] shows the best completion time solutions obtained running three
times the experiment, choosing the best three different solutions and averaging
those values. The completion time trend is almost linear respect to the number
of tasks and this was expected because increasing the number of tasks to be allo-
cated, computational resources are more and more shared and global completion
time grows; when task number is three-four times the server number, completion
time is no more linear: the algorithm tries to find the best solutions for both the
objectives and power consumption could be improved only turning off servers and
switches unbalancing server load; in this situation, it’s still possible to find some so-
lutions which sacrifice completion time objective to achieve a better value of power
consumption. Increasing furthermore the number of tasks, it’s really hard for the
algorithm to find solutions with empty servers: there are too many tasks allocated
per server on average and with crossover and mutation operator only a few number
of solutions are able to reach some particular kind of configurations like the one with
a lot of empty servers; for the big majority of solutions, only small variations are
present in power consumption objective which tends to reach the maximum limit
(the sum of the maximum values of power consumption for all the devices); in this
situation, completion time becomes the main objective and it grows linearly again.

Figure [5.2] shows the best values of power consumption using the same technique
as before to compute best completion times. Here the curve follows a different trend
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because if the number of server and switches is constant, increasing the number of
tasks the final effect is to reach the limit of the sum of the peak power consumption
for every devices into the data center.

Figure 5.1: Best completion times

Figure 5.2: Best power consumption values
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5.4.2 Experiment 2: variable server number

The second experiment was realized varying the number of server and fixing instead
the number of tasks:

Parameter Value W

Server number
[192:5760]

with steps of 192
(adding always 8 racks)

Task number 3000
Same experiment repetition 3

In this situation, we would like to compare the best solutions for power consumption
and completion time normalized with their average values.

Figure 5.3: Normalized power consumption and completion time ratio

In figure [5.3] normalized values of the best solutions for power consumption
and completion time are evaluated. Varying the number of servers, it is possible to
note that the two objectives performs similarly because the ratio is close to 1 but
increasing the number of servers, power consumption increases more than completion
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time that should be more or less stable (if the number of servers grows becoming
greater than the number of tasks, those could be allocated one per server minimizing
the maximum completion time while some tasks can be allocated in servers belonging
to different racks and/or different pods, turning on more switches and increasing the
power consumption).

5.4.3 Experiment 3: Pareto-optimal solutions

This experiment shows the relation between Pareto-optimal solutions of different
executions of the problem varying server numbers. In figure 5.4 it’s shown one
example of solution of a single instance of one specific execution obtained with these
input values2:

Parameter Value W
Server number 1536
Task number 3000

Same experiment repetition 3

In figure [5.4] the completion time range from around 40 seconds to 48 seconds
(optimal solutions) while the power consumption ranges from 425 KW to 446 KW
(again the best results). If power consumption and completion time could be con-
sidered equally relevant the vector with minimal module can be consider the best
solution. On the contrary if power consumption (or vice versa completion time)
would be more relevant the two metrics could be weighted to find the preferred
solution.

Figure 5.5 shows the superimposition of solutions varying the number of servers;
each execution is repeated three times. Some solution of the same execution could
dominate the others only because they belongs to different runs of the same execu-
tion.

Increasing the number of servers, completion time decreases while power con-
sumption increases as it was expected; between different runs of the same algorithm

2remember that we will not find a single solution but a set of suitable solutions corresponding
to the search for the optimum
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Figure 5.4: Pareto-front obtained by a single experiment

Figure 5.5: Solution with different number of servers
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there are only slight differences, in this way different executions of the algorithm
converge to the same solution set showing a certain degree of stability and reliability.

5.4.4 Experiment 4: algorithm execution time

Last experiment measures the performance of the framework to compute the solution
with a fixed number of servers (1536) varying the task number. Figure 5.6 shows
the results with a trend line. Points are close to the cubic trend function that fits

Figure 5.6: Execution time of the algorithm

well the measured values then the algorithm in the considered range of values has a
cubic dependence from the number of input tasks.

5.4.5 Other approaches

5.4.6 VMPlanner

VMPlanner is a network-wide power manager that optimizes VM placement and
traffic flow routing to reduce data center power costs by sleep scheduling of network
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elements [13]. In this approach, data center network topology is modeled as a
simple undirected graph with two types of vertices, servers and switches, and edge
which represents a communication link between a server and a switch or between a
pair of switches. VMPlanner solves the VM allocation problem with three different
algorithms:

1. Traffic-aware VM grouping, which collects VMs into a set of VM-groups so
that the overall inter-group traffic volume is minimized while the overall intra-
group traffic volume is maximized; this algorithm is approximated and has a
complexity O(X4) with X the VMs number.

2. Distance-aware VM-group to server-rack mapping, which optimally assigns
VM-groups to servers and racks such that the mapping minimizes the total
inter-rack traffic load in the network; this kind of algorithm falls into the class
of Quadratic Assignment Problem (QAP) and exact algorithms are still not
practical to solve QAP problems with rack number > 20;

3. Power-aware inter-VM traffic flow routing, that moves and aggregates network
traffic onto a fewer number of paths so as to put the remaining network el-
ements into dormant state for energy conservation; this algorithms scales up
only for networks with small size having complexity O(Y 2.5) with Y number
of switches.

This work solves this problem only with a combinatorial approach without any kind
of information about VM computational requirements and mainly focusing only on
the network part.

5.4.7 Energy Aware Scheduling

In this work, authors developed a particular kind of Service Level Agreement (SLA)
called Green SLA [14]. Task scheduling is based on specified task execution time,
CO2 emission and power consumption through energy aware schedulers. There are
two kinds of scheduling in this approach:

• best effort, which minimizes task execution time;
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• energy-performance trade off, based on the green SLA; users accepts a tolerable
performance loss, for example, additional 10% of task execution time, to reduce
more energy consumption and make their computing more green.

This approach implements some advanced power consumption strategies like Dy-
namic voltage and frequency scaling (DVFS) and supports parallel activities but
doesn’t consider the network part at all.
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Conclusions

Resource allocation in data centers will be necessarly related to the problem of
finding the best performances reducing in the meanwhile the power consumption of
the whole infrastructure. For this reason, an algorithm was developed to find the
right allocation for groups of tasks in order to find the best compromise as possible.
The developed algorithm finds a set of nondominated solution in this multi-objective
computation. When the execution of the algorithm is completed and the Pareto
Optimal solutions are retrieved, is possible to choose the required trade off between
power consumption and execution time with fine tuning approaches that could be
done upon the obtained solutions choosing the proper tasks allocation, privileging
sometimes one objective or the other according to the policy that would be adopted.

Algorithm execution time reaches good values having a cubic dependency on the
number of tasks to be allocated.

Genetic heuristics are able to find good solutions exploring the whole solution
space focusing on the optimal or almost optimal ones while another approaches
typical of operations research (adopted for example by VMPlanner) lead to higher
complexities and to approximated solutions that for sure don’t reach the optimum.
This algorithm represents a first approach of resource allocation exploiting SDN
functionalities which allow to jointly allocate computational resources and network
resources for tasks or VMs in data centers. The main contribution of this thesis
is that the developed algorithm considers computational and network requirements
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(differentiating tasks betweem themselves with a more complete model respect for
example to VMPlanner), power consumption of servers and network devices and
exploits network resource allocation provided by the SDN architecture, with the
possibility to be executed directly on SDN controller.

6.1 Future works

For future works, it’s possible to adjust the model or implement new features:

• as first step, East - West traffic could be considered introducing dependencies
between tasks;

• support for new data center topologies could be implemented;

• algorithm could be improved to achieve also inter-data center scheduling of
tasks, considering more than one data center and adding new parameters like
electricity cost and data center load factor;

• another important extention could be the dynamic task allocation: thanks to
the informations provided by the SDN controller (which is able to retrieve
informations about the allocated flows in each switch) it could possible to find
strategies to reallocate tasks which are already present or to allocate new ones
on-the-fly.

This work provides also the basis for a new kind of scheduling looking towards a
cognitive perspective: tasks could be allocated using a cognitive scheduler following
a kind of artificial intelligence able to choose the best allocation patterns based on
the collected parameters on server and network status; Software Defined Networking
could assist the cognitive scheduler thanks to its flexibility and the global network
view available for all the network devices providing the needed informations, allo-
cating the tasks to the right server and configuring switches and network flows in
the proper way.
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Source Code

In the following sections is included the most important part of the source code
of the algorithm. Problem, Crossover, Mutation and Main classes were designed
ad hoc. Algorithm and Selection classes belong to the jMetal framework already
implemented classes.

A.1 Problem

This is the problem implementation: here fitness functions and constraints are de-
fined.

import java.io. BufferedReader ;
import java.io. IOException ;
import java.io. InputStreamReader ;
import java.util. ArrayList ;
import java.util. HashMap ;
import jmetal.core. Problem ;
import jmetal.core. Solution ;
import jmetal.core. Variable ;
import jmetal. encodings . solutionType . IntSolutionType ;
import jmetal. encodings . variable .Int;
import jmetal.util. JMException ;

public class DynamicAllocationProblem extends Problem {

private int TASK_NUM ; // Number of tasks present in
the system
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public static int SERV_NUM ; // Number of servers
private static int SERV_ON_RACK ; // Number of servers

in a rack
private static int RACK_NUM ; // Number of racks
private static int RACK_ON_POD ; // Number of racks in a

pod
private static int POD_NUM ; // Number of pods
private static double CPU_CAPACITY ; // CPU

computational power [ instruction /second]
private double P_S_IDLE = 0; // Fixed amount of power

used by CPUs [W]
private double P_S_PEAK = 300; // Peak power of a

generic CPU [W]
private double P_TS_PEAK =200; // Peak power of a top of

rack switch [W]
private double P_TS_IDLE = 0.80* P_TS_PEAK ; // Fixed

amount of power used by top of rack switches [W]
private double P_AGG_PEAK = 2500; // Peak power of an

aggregation switch [W]
private double P_AGG_IDLE =0.80* P_AGG_PEAK ; // Idle

aggregation switch power consumption [W]

private double SERVER_LINK_CAPACITY = 1E9; // Single
link Server - ToR switch capacity [bits/sec]

private double RACK_LINK_CAPACITY = 20e9; // Single
link ToR - Aggregation switch capacity [bits/sec]

private ArrayList <Task > task; // List of tasks to be
allocated

private static final long serialVersionUID = 1L;

@SuppressWarnings (" unchecked ")
public DynamicAllocationProblem (HashMap <String , Object >

parameters ) {

numberOfObjectives_ = 2;
numberOfConstraints_ = 2;
problemName_ = " Dynamic Allocation ";
solutionType_ = new IntSolutionType (this);
SERV_NUM = (int) parameters .get(" serverNumber ");
SERV_ON_RACK = (int) parameters .get(" serverPerRack ");
RACK_ON_POD =( int) parameters .get(" rackPerPod ");
RACK_NUM = ( SERV_NUM / SERV_ON_RACK )

+ ( SERV_NUM % SERV_ON_RACK == 0 ? 0 : 1);
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POD_NUM =( RACK_NUM / RACK_ON_POD ) +( RACK_NUM %
RACK_ON_POD ==0?0:1) ;

task = (ArrayList <Task >) parameters .get(" task ");
TASK_NUM = task.size ();
numberOfVariables_ = TASK_NUM ;
upperLimit_ = new double[ numberOfVariables_ ];
lowerLimit_ = new double[ numberOfVariables_ ];
for (int i = 0; i < numberOfVariables_ ; ++i) {

upperLimit_ [i] = SERV_NUM - 1;
lowerLimit_ [i] = 0;

}
}

public int sgn(double x) {
return x > 0 ? 1 : 0;

}

@Override
public void evaluate ( Solution solution ) throws

JMException {
int task_per_server [] = new int[ SERV_NUM ];
int task_per_rack []= new int[ RACK_NUM ];
int task_per_pod []= new int[ POD_NUM ];
double instruction_per_server [] = new double[ SERV_NUM

];
double bandwidth_per_server [] = new double[ SERV_NUM ];
double bandwidth_per_rack [] = new double[ RACK_NUM ];
double bandwidth_per_pod [] = new double[ POD_NUM ];
Variable [] var = solution . getDecisionVariables ();

for (int i = 0; i < numberOfVariables_ ; ++i) {
Int server = (Int) var[i];
int server_index = (int) server. getValue ();
task_per_server [ server_index ]++;
task_per_rack [ server_index / SERV_ON_RACK ]++;
task_per_pod [( server_index / SERV_ON_RACK )/

RACK_ON_POD ]++;
instruction_per_server [ server_index ] += task.get(i)

. getInstructionNumber ();
bandwidth_per_server [ server_index ] += task.get(i).

getBandwidth ();
}
// Fitness function 1;
double total_completion_time = 0;
for (int i = 0; i < SERV_NUM ; ++i) {
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double server_completion_time =
instruction_per_server [i]

/ ( CPU_CAPACITY );
total_completion_time = total_completion_time >

server_completion_time ? total_completion_time
: server_completion_time ;

}
// Fitness function 2;
double server_power_consumption = 0;
double switch_power_consumption = 0;

for (int i = 0; i < SERV_NUM ; ++i) {
server_power_consumption += ( task_per_server [i] ==

0 ? P_S_IDLE : P_S_PEAK );
// Sums server allocated bandwidth if it less than

the maximum link capacity
// otherwise the last one is considered .
bandwidth_per_rack [i / SERV_ON_RACK ] += (

bandwidth_per_server [i] <= SERVER_LINK_CAPACITY
? bandwidth_per_server [i]

: SERVER_LINK_CAPACITY );
}
for (int i = 0; i < RACK_NUM ; ++i) {
//If the offered rack capacity is greater than the 20

Gbps , than only 20 Gbps are provided to the upper
layer

bandwidth_per_pod [i / RACK_ON_POD ] += (
bandwidth_per_rack [i] <= RACK_LINK_CAPACITY ?
bandwidth_per_rack [i]

: RACK_LINK_CAPACITY );
}

double tor_switch_power_consumption = 0;
for (int i = 0; i < RACK_NUM ; ++i) {

if( task_per_rack [i]!=0){
tor_switch_power_consumption += P_TS_IDLE

+ ( P_TS_PEAK - P_TS_IDLE )
* ( bandwidth_per_rack [i] / ( SERV_ON_RACK *

SERVER_LINK_CAPACITY ));
}

}

double agg_switch_power_consumption = 0;
for (int i = 0; i < POD_NUM ; ++i) {
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if( task_per_pod [i]!=0){
agg_switch_power_consumption += 2* P_AGG_IDLE

+ ( P_AGG_PEAK - P_AGG_IDLE )
* ( bandwidth_per_pod [i] / ( RACK_ON_POD *

RACK_LINK_CAPACITY ));
}

}

switch_power_consumption =
tor_switch_power_consumption

+ agg_switch_power_consumption ;

solution . setObjective (0, total_completion_time );
solution . setObjective (1, server_power_consumption

+ switch_power_consumption );

}

public void evaluateConstraints ( Solution solution )
throws JMException {

double bandwidth_per_server [] = new double[ SERV_NUM ];
double bandwidth_per_rack [] = new double[ RACK_NUM ];
double bandwidth_per_pod [] = new double[ POD_NUM ];

// Constraint evaluations ;
Variable [] var = solution . getDecisionVariables ();
// System.out. println (var.length);
for (int i = 0; i < var.length; ++i) {

Int server = (Int) var[i];
int server_index = (int) server. getValue ();
bandwidth_per_server [ server_index ] += task.get(i).

getBandwidth ();
}
for (int i = 0; i < SERV_NUM ; ++i) {

bandwidth_per_rack [i / SERV_ON_RACK ] +=
bandwidth_per_server [i];

}
for (int i = 0; i < RACK_NUM ; ++i) {

bandwidth_per_pod [i / RACK_ON_POD ] +=
bandwidth_per_rack [i];

}

// First constraint
double server_constraint = 0;
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for (int i = 0; i < SERV_NUM ; ++i) {
server_constraint += ( bandwidth_per_server [i] -

SERVER_LINK_CAPACITY )
* sgn( bandwidth_per_server [i] -

SERVER_LINK_CAPACITY );
}

// Second constraint
double rack_constraint = 0;
for (int i = 0; i < RACK_NUM ; ++i) {

rack_constraint += ( bandwidth_per_rack [i] -
RACK_LINK_CAPACITY )

* sgn( bandwidth_per_rack [i] -
RACK_LINK_CAPACITY );

}
int number_violated_constraint = 0;
if ( server_constraint > 0)

number_violated_constraint ++;
if ( rack_constraint > 0)

number_violated_constraint ++;

solution . setOverallConstraintViolation (
rack_constraint

+ server_constraint );
solution . setNumberOfViolatedConstraint (

number_violated_constraint );

}
}
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A.2 Operators

A.2.1 Crossover

package jmetal. operator . crossover ;

import java.util. HashMap ;
import jmetal.util. Configuration ;
import jmetal.core. Variable ;
import jmetal.core. Operator ;
import jmetal.core. Solution ;
import jmetal.util. JMException ;
import jmetal.util. PseudoRandom ;

/*
* This class allows to apply a One Point crossover

operator using two parent
* solutions .
*
*/

public class UniformCrossover extends Operator {

private static final long serialVersionUID =
7679206687912422515 L;

private double probability ;

public UniformCrossover (HashMap <String ,Object >
parameters )throws JMException {

super(null);
if(! parameters . containsKey (" crossoverProbability "))

throw new JMException (" Missing
crossoverProbability ");

probability =( double) parameters .get("
crossoverProbability ");

} // OnePointUniformCrossover

public Solution [] doCrossover ( double probability ,
Solution parent1 ,
Solution parent2 )

throws JMException
{

Solution [] offSpring = new Solution [2];
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offSpring [0] = new Solution ( parent1 );
offSpring [1] = new Solution ( parent2 );

try {
if ( PseudoRandom . randDouble () < probability ) {

int len = offSpring [0]. numberOfVariables ();

Variable [] vars1 = offSpring [0].
getDecisionVariables ();

Variable [] vars2 = offSpring [1].
getDecisionVariables ();

int half = len >>1;
int crossPnt = PseudoRandom . randInt ( 0 , half );

Variable [] buffer = new Variable [ half ];
System. arraycopy ( vars1 , crossPnt , buffer , 0

, half );
System. arraycopy ( vars2 , crossPnt , vars1 ,

crossPnt , half );
System. arraycopy ( buffer , 0 , vars2 ,

crossPnt , half );

} // if
} // try
catch ( ClassCastException e1) {

Configuration . logger_ .severe("
OnePointUniformCrossover . doCrossover : Cannot
perfom " +

" OnePointUniformCrossover ");
throw new JMException (" Exception in

OnePointUniformCrossover . doCrossover () ") ;
} // catch
return offSpring ;

} // doCrossover

public Object execute ( Object object ) throws
JMException {

Solution [] parents = ( Solution []) object;

if ( parents .length < 2) {
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Configuration . logger_ .severe("
OnePointUniformCrossover . execute : operator " +

" needs two parents ");
throw new JMException (" Exception in

OnePointUniformCrossover . execute () ") ;
} // if

Solution [] offSpring ;
offSpring = doCrossover ( probability , parents [0],

parents [1] );

for (int i = 0; i < offSpring .length; i++) {
offSpring [i]. setCrowdingDistance (0.0);
offSpring [i]. setRank (0);

} // for
return offSpring ;

} // execute

} // OnePointUniformCrossover
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A.2.2 Mutation

import java.util. HashMap ;
import java.util.Random;
import jmetal.core. Operator ;
import jmetal.core. Solution ;
import jmetal.core. Variable ;
import jmetal.util. JMException ;

public class MyRebalanceMutation extends Operator {

private static final long serialVersionUID =
-7403795178769425557 L;

private int numberOfTasks_ = 0;
private int numberOfMachines_ = 0; // the server number
private int rounds_ = 2;
private double probability_ ;

public MyRebalanceMutation (HashMap <String , Object >
parameters ) throws JMException {

super( parameters );
if(! parameters . containsKey (" mutationProbability ")){

throw new JMException (" Mutation Probability is
missing ");

}
probability_ =( double) parameters .get("

mutationProbability ");
if(! parameters . containsKey (" serverNumber ")){

throw new JMException (" Number of server is missing "
);

}
numberOfMachines_ =( int) parameters .get(" serverNumber ")

;

}
private void doMutation ( Solution solution ) throws

JMException {
Variable [] var = solution . getDecisionVariables ();
for(int i=0;i<var.length ;++i){

Random r=new Random ();
double prob=r. nextDouble ();
if(prob <= probability_ ){

Random t=new Random ();
var[i]. setValue (t. nextInt ( numberOfMachines_ ));
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}
}
return;

}

@Override
public Object execute (Object object) throws JMException

{
Solution solution = ( Solution )object;
double rand = Math.random ();
if ( rand <= probability_ )

doMutation ( solution );
return null;

}

}
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A.2.3 Selection

This is the Binary Tournament implementation already present in jMetal framework[2].

package jmetal. operators . selection ;

import jmetal.core. Solution ;
import jmetal.core. SolutionSet ;
import jmetal.util. PseudoRandom ;
import jmetal.util. comparators . DominanceComparator ;

import java.util. Comparator ;
import java.util. HashMap ;

/**
* This class implements an binary tournament selection

operator
*/

public class BinaryTournament extends Selection {

/**
* Stores the <code >Comparator </code > used to compare

two
* solutions
*/

private Comparator comparator_ ;

/**
* Constructor
* Creates a new Binary tournament operator using a

BinaryTournamentComparator
*/

public BinaryTournament (HashMap <String , Object >
parameters ){

super( parameters ) ;
if (( parameters != null) && ( parameters .get("

comparator ") != null))
comparator_ = ( Comparator ) parameters .get("

comparator ") ;
else

// comparator_ = new BinaryTournamentComparator ();
comparator_ = new DominanceComparator ();

} // BinaryTournament

/**
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* Performs the operation
* @param object Object representing a SolutionSet
* @return the selected solution
*/
public Object execute (Object object){

SolutionSet solutionSet = ( SolutionSet )object;
Solution solution1 , solution2 ;
solution1 = solutionSet .get( PseudoRandom . randInt (0,

solutionSet .size () -1));
solution2 = solutionSet .get( PseudoRandom . randInt (0,

solutionSet .size () -1));

if ( solutionSet .size () >= 2)
while ( solution1 == solution2 )

solution2 = solutionSet .get( PseudoRandom . randInt
(0, solutionSet .size () -1));

int flag = comparator_ . compare (solution1 , solution2 );
if (flag == -1)

return solution1 ;
else if (flag == 1)

return solution2 ;
else

if ( PseudoRandom . randDouble () <0.5)
return solution1 ;

else
return solution2 ;

} // execute
} // BinaryTournament
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A.3 Algorithm

This is the NSGA-II implementation present in jMetal Framework[2].

/ NSGAII.java
//
// Author:
// Antonio J. Nebro <antonio@lcc .uma.es >
// Juan J. Durillo <durillo@lcc .uma.es >
//
// Copyright (c) 2011 Antonio J. Nebro , Juan J. Durillo
//
// This program is free software : you can redistribute

it and/or modify
// it under the terms of the GNU Lesser General Public

License as published by
// the Free Software Foundation , either version 3 of the

License , or
// (at your option) any later version .
//

package jmetal. metaheuristics .nsgaII;

import jmetal.core .*;
import jmetal. qualityIndicator . QualityIndicator ;
import jmetal.util. Distance ;
import jmetal.util. JMException ;
import jmetal.util. Ranking ;
import jmetal.util. comparators . CrowdingComparator ;

/**
* Implementation of NSGA -II.
*/

public class NSGAII extends Algorithm {
/**

* Constructor
* @param problem Problem to solve
*/

public NSGAII( Problem problem ) {
super ( problem ) ;

} // NSGAII

/**
* Runs the NSGA -II algorithm .
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* @return a <code >SolutionSet </code > that is a set of
non dominated solutions

* as a result of the algorithm execution
* @throws JMException
*/

public SolutionSet execute () throws JMException ,
ClassNotFoundException {

int populationSize ;
int maxEvaluations ;
int evaluations ;

QualityIndicator indicators ; // QualityIndicator
object

int requiredEvaluations ; // Use in the example of use
of the

// indicators object (see below)

SolutionSet population ;
SolutionSet offspringPopulation ;
SolutionSet union;

Operator mutationOperator ;
Operator crossoverOperator ;
Operator selectionOperator ;

Distance distance = new Distance ();

// Read the parameters
populationSize = (( Integer ) getInputParameter ("

populationSize ")). intValue ();
maxEvaluations = (( Integer ) getInputParameter ("

maxEvaluations ")). intValue ();
indicators = ( QualityIndicator ) getInputParameter ("

indicators ");

// Initialize the variables
population = new SolutionSet ( populationSize );
evaluations = 0;

requiredEvaluations = 0;

// Read the operators
mutationOperator = operators_ .get(" mutation ");
crossoverOperator = operators_ .get(" crossover ");
selectionOperator = operators_ .get(" selection ");
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// Create the initial solutionSet
Solution newSolution ;
for (int i = 0; i < populationSize ; i++) {

newSolution = new Solution ( problem_ );
problem_ . evaluate ( newSolution );
problem_ . evaluateConstraints ( newSolution );
evaluations ++;
population .add( newSolution );

} // for

// Generations
while ( evaluations < maxEvaluations ) {

// Create the offSpring solutionSet
offspringPopulation = new SolutionSet (

populationSize );
Solution [] parents = new Solution [2];
for (int i = 0; i < ( populationSize / 2); i++) {

if ( evaluations < maxEvaluations ) {
// obtain parents
parents [0] = ( Solution ) selectionOperator .

execute ( population );
parents [1] = ( Solution ) selectionOperator .

execute ( population );
Solution [] offSpring = ( Solution [])

crossoverOperator . execute ( parents );
mutationOperator . execute ( offSpring [0]);
mutationOperator . execute ( offSpring [1]);
problem_ . evaluate ( offSpring [0]);
problem_ . evaluateConstraints ( offSpring [0]);
problem_ . evaluate ( offSpring [1]);
problem_ . evaluateConstraints ( offSpring [1]);
offspringPopulation .add( offSpring [0]);
offspringPopulation .add( offSpring [1]);
evaluations += 2;

} // if
} // for

// Create the solutionSet union of solutionSet and
offSpring

union = (( SolutionSet ) population ).union(
offspringPopulation );

// Ranking the union
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Ranking ranking = new Ranking (union);

int remain = populationSize ;
int index = 0;
SolutionSet front = null;
population .clear ();

// Obtain the next front
front = ranking . getSubfront (index);

while (( remain > 0) && (remain >= front.size ())) {
// Assign crowding distance to individuals
distance . crowdingDistanceAssignment (front ,

problem_ . getNumberOfObjectives ());
// Add the individuals of this front
for (int k = 0; k < front.size (); k++) {

population .add(front.get(k));
} // for

// Decrement remain
remain = remain - front.size ();

// Obtain the next front
index ++;
if (remain > 0) {

front = ranking . getSubfront (index);
} // if

} // while

// Remain is less than front(index).size , insert
only the best one

if (remain > 0) { // front contains individuals to
insert

distance . crowdingDistanceAssignment (front ,
problem_ . getNumberOfObjectives ());

front.sort(new CrowdingComparator ());
for (int k = 0; k < remain; k++) {

population .add(front.get(k));
} // for

remain = 0;
} // if

// This piece of code shows how to use the
indicator object into the code
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// of NSGA -II. In particular , it finds the number
of evaluations required

// by the algorithm to obtain a Pareto front with a
hypervolume higher

// than the hypervolume of the true Pareto front.
if (( indicators != null) &&

( requiredEvaluations == 0)) {
double HV = indicators . getHypervolume ( population )

;
if (HV >= (0.98 * indicators .

getTrueParetoFrontHypervolume ())) {
requiredEvaluations = evaluations ;

} // if
} // if

} // while

// Return as output parameter the required
evaluations

setOutputParameter (" evaluations ", requiredEvaluations
);

// Return the first non - dominated front
Ranking ranking = new Ranking ( population );
ranking . getSubfront (0). printFeasibleFUN (" FUN_NSGAII ")

;

return ranking . getSubfront (0);
} // execute

} // NSGA -II
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A.4 Main

This is the main class of the algorithm: it instantiates the other classes, sets all the
parameters and launches the framework execution.

import java.io. IOException ;
import java.util. ArrayList ;
import java.util.Arrays;
import java.util. Comparator ;
import java.util. HashMap ;
import java.util.Random;
import java.util. logging . FileHandler ;
import jmetal.core. Algorithm ;
import jmetal.core. Operator ;
import jmetal.core. Problem ;
import jmetal.core. Solution ;
import jmetal.core. SolutionSet ;
import jmetal.core. Variable ;
import jmetal. encodings . variable .Int;
import jmetal. metaheuristics .mocell.MOCell;
import jmetal. metaheuristics .nsgaII.NSGAII;
import jmetal. metaheuristics .nsgaII. NSGAII_main ;
import jmetal. operator . crossover . UniformCrossover ;
import jmetal. operators . selection . SelectionFactory ;
import jmetal.util. Configuration ;
import jmetal.util. JMException ;
import jmetal.util. NonDominatedSolutionList ;

public class NSGAII_main_new extends NSGAII_main {
public static Algorithm setup( Problem problem ){

Algorithm algorithm ;
algorithm = new NSGAII( problem );
algorithm . setInputParameter (" populationSize ", 1000)

;
algorithm . setInputParameter (" maxEvaluations ",

25000);
return algorithm ;

}
// Task generation
public static ArrayList <Task > taskGenerator (int server ,

int task_num ){

ArrayList <Task > list = new ArrayList <Task >();
for (int i = 0; i < task_num ; ++i) {

Random r=new Random ();
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double instruction =r. nextDouble () *500 E6 +500 E6;;
double bandwidth =r. nextDouble ()*1E9+1E6;
list.add(new Task(instruction , bandwidth ));

}
return list;

}

@SuppressWarnings (" unchecked ")
public static void main(String args []) throws

JMException ,
SecurityException , IOException ,

ClassNotFoundException {
// ARGS [0] TASK NUM
// ARGS [1] SERVER NUM
// ARGS [2] SERV_PER_RACK NUM
// ARGS [3] SERV_PER_POD NUM
Problem problem ; // The problem to solve
Algorithm algorithm ; // The algorithm to use
Operator crossover ; // Crossover operator
Operator mutation ; // Mutation operator
Operator selection ; // Selection operator
HashMap <String ,Object > parameters ; // Operator

parameters
// Logger object and file to store log messages
logger_ = Configuration . logger_ ;
fileHandler_ = new FileHandler (" NSGAII_main . log ");
logger_ . addHandler ( fileHandler_ );
int task_num = Integer . parseInt (args [0]);

int serverNumber = Integer . parseInt (args [1]) ;;
int serverPerRack = Integer . parseInt (args [2]);
int rackPerPod = Integer . parseInt (args [3]);
ArrayList <Task >list= taskGenerator (serverNumber ,

task_num );

// Problem
parameters = new HashMap <String ,Object >();
parameters .put(" serverNumber ", serverNumber );
parameters .put(" task ", list);
parameters .put(" serverPerRack ",serverPerRack );
parameters .put(" rackPerPod ", rackPerPod );
problem = new DynamicAllocationProblem ( parameters );

// Algorithm
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algorithm =setup( problem );
parameters .put(" crossoverProbability ", 0.9);
// AllocationComparator is used to compare different

solutions
parameters .put(" comparator ", new AllocationComparator

());
crossover = new UniformCrossover ( parameters );
// Mutation Probability
parameters .put(" mutationProbability ", 1.0 / problem .

getNumberOfVariables ());
mutation =new MyRebalanceMutation ( parameters );

// Selection Operator
parameters = null;
// This method creates the selection operator through

the provided parameters
selection = SelectionFactory . getSelectionOperator ("

BinaryTournament ",
parameters );

// Add the operators to the algorithm
algorithm . addOperator (" crossover ", crossover );
algorithm . addOperator (" mutation ", mutation );
algorithm . addOperator (" selection ", selection );

// Execute the Algorithm
long initTime = System. currentTimeMillis ();
SolutionSet population = algorithm . execute ();
long estimatedTime = System. currentTimeMillis () -

initTime ;
// Result messages
logger_ .info(" Total execution time : " + estimatedTime

+ " ms ");
logger_ .info(" Variables values have been writen to

file VAR ");
population . printVariablesToFile (" VAR ");
logger_ .info(" Objectives values have been writen to

file FUN ");
population . printObjectivesToFile (" FUN ");

}

}
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