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Abstract 

 

Natural User Interfaces entered our everyday life and changed the classical 

approach we had in the human-computer interaction. In the last decade 

devices as multi-touch screens and various kinds of motion sensors become 

part of the common glossary, and the interest from industry and the 

development of new devices have boosted the research in this branch. 

The common approach in the application-programming interface (API) of this 

kind of devices is to provide the user interface developer with a limited set of 

high-level gestures and all the raw data gathered from the sensors. This 

approach lacks of flexibility in adding new custom gestures and the 

processing of raw data is not simple.  

The aim of this thesis is to design and develop generic-purpose tools that give 

to the user the possibility to make statistical analysis on time series of data. 

The user can use classical high-level gestures and integrate them with 

customized gestures, in a more design-oriented structure, for an improved 

maintenance of the code. 
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1. Introduction 

 

 

In the last decade, the traditional paradigm for human-computer interaction 

based on mouse and keyboard has been sided by new and emerging devices 

in order to create a more natural user experience. In the first place, multi-

touch devices emerged followed by passive sensors, such as Microsoft 

Kinect, whose goal is to observe users making gestures. This last form of 

interaction is often referred as Natural User Interface (NUI). Gesture and 

gesture recognition have become common terms now and there is an 

increasing request of methodologies to describe and implement new 

gestures.   

Natural User Interfaces are a broad range of devices which return various 

kinds of data with very different nature. In absence of well-defined models 

and abstractions, the approach taken by the various device SDKs is to 

provide a fixed set of high-level gestures signaled as atomic events, together 

with the possibility to directly access to raw data from the sensors.  

This approach lacks of flexibility and in most cases it prevents the possibility 

to add customized gestures; moreover, the processing of raw data is not 

simple and comes without additional support, because gestures are 

sometimes complex and develop in a timespan. This kind of gestures requires 

a temporal analysis, that does not fit well the typical observer pattern used for 

classic event listening. 
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The aim of this thesis is to provide a generic-purpose framework that allows 

programmers to do efficient statistical and mathematical analysis on time 

series of data, thus allowing the introduction of new gestures recognized by 

a device with a design-oriented structure, which results in code that is easier 

to maintain.  
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2. State of the Art 

 

 

In this chapter, we will start with a description of the diffusion of the Natural 

User Interfaces in everyday life, and how they changed our interaction with 

the computers with respect to the usual mouse and keyboard approach.  

Following we will describe the gesture paradigm developed to interact with 

these systems, and in the end we will see what are the actual frameworks 

available to build up gestures and to make time analysis on collected data.  

 

2.1 Natural User Interface (NUI) 

 

The human-computer interaction is not exclusively bound anymore only to the 

use of mouse and keyboard.  

With the advent of Wii Remote™ controller (2006) [1] the interaction with 

game consoles changed, as well as the iPhone® (2007) [2] demonstrates a 

successful usage for a multi-touch screen and the Microsoft Kinect™ (2010) 

[3] added the possibility to interact without using or wearing any kind of 

controller. 

Nowadays these technologies surround us, widespread in the everyday life. 

In some cases we expect them to be present: For example, when you see a 

mobile phone screen, an ATM or a wall-screen in a museum, probably you 

expect it to be a multi-touch interactive device and not only a video display. 
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All this interfaces go under the name of Natural User Interfaces (NUI) [4]. This 

category includes many devices with heterogeneous nature, but with some 

common elements. 

The first one is that Natural User Interfaces break the WIMP (Windows-Icon-

Menu-Pointer) paradigm used in classical Graphical User Interfaces.  A 

second common element is that they are mostly intuitive or easy to assimilate.  

For some aspects the Natural User Interfaces have overturn the way to 

interact: the user does not feel forced to understand the metaphor that will 

make the system work; in most cases, instead, the user expects the system 

to understand the movement which intuitively represents the action. 

The research in this area is not just the result of the last decade; the first 

prototypes of multi-touch devices were developed in the ‘80s [5]. An important 

part of the success of a Natural User Interface depends from the perception 

of how much natural it is for the user.  

The precision of the devices has constantly grown together with the 

computational capabilities and the technological advance. This allows the 

recognition of more complex gestures. The improvement of quality and 

reactivity in gesture recognition is an important part of the recent success of 

NUIs. 

It is hard to make an exhaustive list of the kinds of devices available on the 

market and it is not the goal of this thesis. In the next sections, we will make 

a short overview of the devices that are targeted by our framework and we 

will describe the technologies used in them. 
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2.1.1 Touch Based Devices 

 

We call “touch devices” all of the touch-sensitive surfaces that are able to 

recognize one or more points of contact. The detection of multiple points of 

contact (so called multi-touch devices) opened the road to the possibility to 

implement even more complex functionalities than it was possible with older 

devices. 

Under this category are classified the multi-touch screens, tables, tablets, 

smartphones and touch-pads. The technologies behind the touch devices are 

various and with different costs; they can be grouped in three basic 

categories: 

Resistive systems; 

Capacitive systems; 

Surface acoustic wave systems. 

Resistive systems consist of a glass panel, covered with a conductive metallic 

layer and a resistive layer. Spacers hold the two layers apart and a scratch-

resistant layer is placed on top of them for protection. When the user touches 

the screen, the two layers make contact, changing the electrical field, and a 

process calculates the coordinates of the point of contact. 

In capacitive systems, a layer that stores electrical charge is placed on the 

glass panel of the monitor. When the user touches the monitor with his 

fingers, some of the charges are transferred to the user, and the charge of 

the layer changes. On each corner of the monitor, there are circuits that 

measure the decrease of the charges and send this information to the system. 

The capacitive system is more efficient than the resistive system. 

In surface acoustic wave systems, two transducers (one receiver and one 

transmitter) are placed along the x and y axes of the glass plate. Reflectors 

are placed on the glass: as its name suggests, they reflect the signal sent by 
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one transducer to the other. The receiving transducer is able to tell if the wave 

is been disturbed by a touch event at any instant, and can locate it 

accordingly.  

 

2.1.2 Motion Based Devices 

 

The name “motion-based devices” describes all of the devices that must be 

worn or moved to detect the movements of the user.  

An example of this kind of devices are data-gloves, gloves that users has to 

wear to map finger movements. Similar devices use a combination of sensors 

like gyroscopes and accelerometers. Commercially widespread controllers of 

this type are the Wii Remote™ Controller from Nintendo or the PlayStation® 

Move from Sony™. 

Accelerometer and gyroscope are widespread on smartphones, too. In hand-

held devices they are mostly used for recognizing the orientation of the device 

or in the entertainment applications. 

 

2.1.3 Vision Based Devices 

 

All the devices that recognize movement without wearing or using any kind of 

visible sensor belongs to this category. The most common commercial 

devices of this type are the Microsoft Kinect™, Leap Motion Controller and 

PlayStation® Eye.  

The Leap Motion Controller is a sensor that detects and tracks hands, fingers 

and finger-like tools.  The controller uses infrared cameras and LEDs to 

observe a reverse pyramidal space from the origin point located in the device. 
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The effective range is from 25 millimeters to approximately 60 centimeters. In 

the next chapters, we will examine this device and its library more in depth. 

 PlayStation® Eye and Microsoft Kinect™ are full body 3D motion capture 

devices. They use a combination of RGB cameras, an infrared sensor for 

depth and a multi-array microphone; the devices allow the recognition full 

body 3D motion, facial recognition and have voice recognition capabilities. 

The Microsoft Kinect™ can be used through a software development kit, 

which has been officially released by the producer and is free for non-

commercial uses. This library allows to access to the raw sensor streams, to 

a skeletal model tracking and to some advanced audio capabilities. According 

to current specification has a range of from 0.8 m to 4.0 m depth. It allows to 

access to two streams of 640x380 images at a 30fps (frame per second), in 

which one is a RGB video image, and the other is an 11-bit depth image which 

is used to compute positional data.   

 

2.2 Gesture Recognition 

 

Gesture recognition is a field of computer science whose goal is to 

successfully interpret human gestures via mathematical algorithms. 

Recognizing gestures is a complex task, which may involve many aspects, 

such as motion modelling and analysis, pattern recognition and machine 

learning.  

With the diffusion of Natural User Interfaces, gesture recognition is receiving 

more and more attention in the recent research. For recognizing gestures, it 

is important to know the technical specification of the sensors and the context 

in which the gestures are recognized. 
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It is important to understand which gestures are comfortable and natural and 

fit better in the normal usage of the interface. This depends on the type of 

input device and is a fundamental part of the gesture analysis.  

Gesture design plays an important role: for every device it must be clear which 

are the strengths and the weaknesses, to understand if that device is suitable 

in a specific application domain.  A poor design of the gesturing system may 

lead to a lack of success and diffusion of the device, independently from the 

technical features.  

One of the first steps consists in recognizing the typical patterns that would 

be natural to use and imagine what reaction the user would expect from the 

system.  

 

2.2.1 Gesture Recognition Techniques 

 

There are many different approaches used in the gesture recognition, 

depending from the nature of the device and the subject to recognize. We will 

make an overview of the most common ones. 

 

Template Matching Models 

This approach involves to find some small subsection of an image which 

representing the input and checking if it matches any template image. 

Template matching is probably the simplest method of recognizing postures, 

but in some cases it is also used to recognize gestures. [6]  

The raw sensor data is used as input for a decision phase. It is implemented 

with built-in functions which evaluate whether it matches with the template. 

The functions measure the similarity between templates of values and the 
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input; for each template there is a similarity threshold value, below which the 

input is rejected as not belonging to any possible classes.  

The similarity function is usually the Euclidean distance between the set of 

sensor values and a template. 

 

Statistical Classification 

Statistical classification represents each pattern as a feature in an appropriate 

n-dimensional space and assumes that patterns are generated by a 

probabilistic system. 

An example from this category is the Hidden Markov Model (HMM). A Hidden 

Markov Model is a Markov Chain in which the states are not directly 

observable. It is a collection of finite states connected by transitions, much 

like Bayesian Networks. Each state has a transition probability and an output 

probability distribution.  

This model need a phase of training, to set up the correct parameters, and in 

the long term this models learns the most likely way that a human will perform 

the gesture. This method can be used in the classification of the new 

gestures.  

The typical application of HMM is in speech recognition systems [7], but they 

are used even in the two-dimension spatial/temporal gestures recognition [8]. 

 

Neural Networks 

Neural networks have received much attention for their successes in pattern 

recognition. [9] 
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In this method, the representation is distributed over a graph as a series of 

interdependent weights instead of a conventional local data structure. One of 

the keys of the success of neural networks is that the decision process is 

robust even for noisy or incomplete input and it is tolerant to approximate 

matches, since even the same user will not reproduce the gestures exactly in 

the same way.  

The drawbacks of a neural network are mostly in the training phase: 

thousands of examples are needed to train a network correctly and the 

training phase must be repeated whenever new gestures are added. 

Moreover, some care must be taken to avoid overlearning the examples and 

to ensure that bad examples do not prevent the convergence of the net. 

The formal basis for constructing the neural network is not as well understood 

as the other kind of recognizers, so after the training the developer must 

understand, mostly by trial and error, if the net behavior models appropriately 

what the user wanted to represent. 

 

Skeletal Model Based Approach 

This approach is used mostly in three-

dimensional modelling; working with a full 

3D body model in the recognition would 

have a great cost in resources, in terms of 

processing and parameters. Instead the 

skeletal model represents a simplified 

version of the body by reducing it to 

segments and joints.  

The analysis uses the position and the orientation of the segments and the 

relation between each of them with a body part. 
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Examples of this approach are the Microsoft Kinect™ skeletal model [10], 

represented in the previous picture, or the Leap Motion hand model. 

 

Syntax or Structure Matching  

The syntax or structure matching approach consists in composing complex 

gestures by starting from short patterns.  

As in a language, the libraries offer a grammar with ground terms and 

operators. This approach relies on the compositionality of the gestures. The 

Proton library and the GestIT library are based on this methodology. 

The user must define gestures by writing an expression using the syntax 

provided by the library. Complex gestures are built  building from shorter and 

simpler ones, which can be recognized natively by the sensor as ground 

terms. 

 

2.2.2 Touch Based Gestures 

 

Multi-touch gestures today are common on devices such as touch-screens, 

tablets, smartphones, and even some notebooks. The current Start Menu in 

Windows 8 or 8.1 for desktop computers is an example of this tendency 

towards a more touch-focused interface. 

Here is a list of typical touch gestures, which includes the ones classically 

supported by the main software development kits:  

 Tap: 

The tap gesture consists in touching one point the screen. It can be 

recognized as single or multiple tap, depending on whether it happens 

in the same spot.  
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It is normally associated to the selection of a graphical item on the 

screen, just like a traditional click from the mouse. 

 Long press ( or tap and hold ): 

This gesture consists in touching the screen in one point and holding 

the finger down for a certain amount of time without leaving the position. 

This functionality is typically associated to a pop-up menu or to auxiliary 

functions of the object which is targeted by the touch. 

 Pan: 

Panning consists in touching the screen in one point and moving it in 

any direction without losing contact with the screen. 

This functionality is commonly associated to dragging. 

 Swipe: 

This gesture consists in moving in a horizontal or vertical direction the 

fingers, starting or reaching the borders of the screen. Some devices 

recognize and discriminate if the gesture is made with multiple fingers, 

the common uses are to pop-up the application menu from the borders, 

to go back or forward in the navigation or to scroll the view. 

 Pinch in and out: 

This gesture is performed by touching the screen with two fingers and 

moving closer or farther from each other in a linear direction. The most 

common use of this gesture is to zoom in and out on documents, photos 

or browsers. As a consequence the usual parameter of the event 

handlers of this gesture is a scale factor. 

 Rotate: 

This gesture consists in rotating two touches. This gesture triggers 

when the user moves two fingers in opposite circular directions on the 

screen, and it is commonly associated to the rotation of the current view 

of the screen, or to a rotation of the elements which are displayed (like 

pictures or the current selection). 
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2.2.3 Vision Based Gestures 

 

When working with vision-based devices, the first thing we lose respect to a 

touch device is the possibility to be certain of the event triggering. We will 

consider high-level gestures in the Leap Motion Controller and the Microsoft 

Kinect™, because of the availability of a free and official standard 

development kit. 

The Leap Motion Controller recognizes some typical patterns in the hand 

movements. The current version of the development library allows you to 

access the raw data, but it also has the possibility to recognize four high level 

gestures, related to the finger movements: 

 Circle gesture; 

 Swipe gesture;  

 Screen Tap gesture; 

 Key Tap. 

Since we will use the Leap Motion Controller for the thesis, in the section 3.3 

we will describe in depth the access to the raw data and the Leap Motion 

hand model. 

The Microsoft Kinect™ standard development kit toolkit officially offers two 

high-level gestures for recognizing movement with the hands:  

 Grab: 

The gesture consists on moving a hand towards the device and closing 

it as you were grabbing an item. 

 Push: 

It consists of moving a hand towards the camera from a firm position to 

indicate a selection 

The new Kinect™ 2.0, available the end of November, has increased the 

hardware capabilities, improved the skeletal recognition and facial model, 
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improved the tracking robustness, but they did not introduce any new 

gestures, as stated in the producer’s announcement [11]. 

For the other similar devices, like PlayStation® Eye and Wii Remote™ 

Controller the SDK are not publicly available. 

 

2.3 Available Frameworks 

 

In this section, we will describe some of the frameworks and libraries available 

on the market to describe or compose gestures in our domain or to analyze 

time series.  

When a programmer has to design and implement a new customized gesture 

from scratch, the main problem is the manual handling of all the generated 

events at low level.  

The main issues when programming new gestures with this approach are 

mostly two:  

 The recognition code is probably split in various location of the source 

code 

 Different gestures may have a common part  

Imagining future extensions, adding a new gesture will cause a rewriting of 

parts of code in the handlers, so the complexity will grow and will cause 

conflicts, making the future maintainability problematic.  

In the next sub-chapter, we will see a brief description of Proton++, a software 

developed by the Berkeley University of California that uses regular 

expression and nondeterministic finite state automata (NFA) to express 
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gestures. Then we will describe Deedle, a library working with structured data 

frames, ordered and unordered data to make some offline statistical analysis. 

In a following chapter, under the tools section of this thesis, we will analyse 

GestIT, a library using a Petri Net model to represent the system, developed 

in the Università di Pisa. 

 

2.3.1 Proton/Proton++ 

Proton++ [12] is a C++ framework developed in Berkeley University of 

California, which allows defining multi-touch gestures as regular expressions, 

applied to a stream of touch events, adding the possibility to include 

customizable attributes linked with the gesture. 

Proton++ has been developed as an extension of Proton [13], the older 

framework developed from the same university; the main addition of this 

extension is the customizable attributes. 

As the two framework are bound together, we will analyze Proton first, and 

then we will see the improvements added in Proton++. 

The latest version of Proton is released under the BSD license, and available 

at [14]. 

  

Proton 

Proton is a declarative multi-touch framework that allows developers to 

specify gestures as regular expressions of touch event symbols. Proton 

converts all the touch events, generated by a multi-touch hardware, in a 

stream of touch event symbols, touch IDs and custom touch attributes. 

The touch symbols are three, representing an encoding of the touch action 

(down, move and up). When defining a new gesture, the developers have to 
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define the multi-touch gestures as a regular expression of these symbols. 

Proton will match this regular expression with the event stream. 

The approach to gesture development can be synthesized as follows: the 

programmer writes the gesture as a regular expression, and adds the callback 

associated to the gesture completion. The framework builds a finite-state-

automata that will manage all the event system.  

Then the framework, with some static analysis on the regular expression, will 

point out all the conflicts caused by similar gestures, and the programmer will 

have to write the disambiguation logic behind, to solve the conflicts.  

Following this procedure will therefore avoid the manual management of the 

conflicts and consequentially solves the necessity to track the state machine 

and the changes in the handlers.  

In Proton every event is represented as a symbol:   

𝐸𝑖𝑑
𝑡𝑦𝑝𝑒

 

Where: 

 𝐸 ∈ {𝐷, 𝑀, 𝑈}    (representing respectively touch-down, touch-move, 

touch-up); 

 𝑡𝑦𝑝𝑒  represent the type of object influenced by the touch; 

 𝑖𝑑 is the ID of the event, regroups events that belongs to the same 

touch. 

 

In this image, for example, are reported the description of classical gestures, 

such as translation, rotation and scaling: 
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The rotation gesture starts with a first touch on the shape to select it, then a 

second touch on the shape or canvas (defined as any in the type); then both 

touches will perform the move event repeatedly. In the end, the touches can  

be released in any order. 

 

The pseudo code to implement this gesture is the following: 

 

Another instrument the framework offers is the gesture tablature, which allows 

to define and organize multi-touch events using a graphical tool, with an 

intuitive definition. The notation is similar to guitar tablature notations.  

𝑔𝑒𝑠𝑡𝑢𝑟𝑒 ∶  𝐷1
𝑆𝑀1

𝑆 ∗ 𝐷2
𝐴(𝑀1

𝑆|𝑀2
𝐴) ∗ (𝑈1

𝑆𝑀2
𝐴 ∗ 𝑈2

𝐴 | 𝑈2
𝑆𝑀1

𝑆 ∗ 𝑈1
𝑆  ) 

𝑔𝑒𝑠𝑡𝑢𝑟𝑒 ∶ 𝑎𝑑𝑑𝑇𝑟𝑖𝑔𝑔𝑒𝑟(𝑟𝑜𝑡𝑎𝑡𝑒( ); 4) // 𝑀1
𝑆 

𝑔𝑒𝑠𝑡𝑢𝑟𝑒 ∶ 𝑎𝑑𝑑𝑇𝑟𝑖𝑔𝑔𝑒𝑟(𝑟𝑜𝑡𝑎𝑡𝑒( ); 5) // 𝑀2
𝐴 

// 𝑟𝑜𝑡𝑎𝑡𝑒() 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑎𝑙𝑙𝑎𝑏𝑐𝑘 𝑡ℎ𝑎𝑡 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑠 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 

𝑔𝑒𝑠𝑡𝑢𝑟𝑒: 𝑓𝑖𝑛𝑎𝑙𝑇𝑟𝑖𝑔𝑔𝑒𝑟(𝑒𝑛𝑑𝑅𝑜𝑡𝑎𝑡𝑒( )) 

// 𝑒𝑛𝑑𝑅𝑜𝑡𝑎𝑡𝑒() 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑎𝑙𝑙𝑏𝑎𝑐𝑘 𝑡ℎ𝑎𝑡 𝑝𝑒𝑟𝑓𝑜𝑟𝑚 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑙𝑒𝑎𝑛𝑢𝑝 

𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑀𝑎𝑡𝑐ℎ𝑒𝑟: 𝑎𝑑𝑑(𝑔𝑒𝑠𝑡𝑢𝑟𝑒)) 
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The developer adds a horizontal line for every touch tracked, called touch 

track. Every track has a green element representing the starting of a touch 

event (touch-down) and a red element representing the end (touch-up). A 

black line between the green and the red element represents an arbitrary 

number of touch move events. 

The temporal order of the events is given by their position in the tablature, 

with the time flowing from left to right. The other element in the tablature, 

represented as a blue pin 

linked to events are the 

triggers, representing the 

callback methods. 

 

 

 

Proton++ 

Proton++ is the evolution of Proton, which adds the possibility to integrate the 

gesture definitions with customizable attributes, increasing the expressivity of 

the regular expressions without losing the advantage of static analysis. 

Typical attributes that can be added are: the direction of the touch, computed 

from the last two positions, binding the movement only to specific axis 

directions, like northbound only, or adding a pinch attribute to reveal if the two 

touches are moving toward each other. Moreover, Proton++ adds the 

possibility to code a temporization of the touch symbols. 

To obtain this custom attributes in Proton++ the user has to write an attribute 

generator, that has the duty to map the hardware discrete values to the 

attribute information. 
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The touch event has nearly the same grammar than before, but the type has 

now become a set of attribute values that have to be verified. 

 

More formally: 

𝐸𝑖𝑑
𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 

Where: 

 𝐸 ∈ {𝐷, 𝑀, 𝑈}    (representing respectively touch-down, touch-move, 

touch-up); 

 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠  represents a sequence of attributes values, split by a 

semicolon (𝐴1: 𝐴2: 𝐴3 …); 

 𝑖𝑑 is the ID of the event, regroups events that belongs to the same 

touch. 

For example, if we have to represent the move event of the item “s” in 

direction west is 𝑀1
𝑠:𝑊  

In Proton++, there is also the possibility to instantiate a time constraint. The 

syntax involves writing a timespan over the element we want, as a superscript 

over the event close in brackets. The time unit is fixed, and is equal to one 

thirtieth of second.  

Using the previous example, if we want to indicate the previous move event 

in west direction, giving a timespan of half second, we need to write 

(𝑀1
𝑠:𝑊)1−15. 

 

2.3.2 Deedle 

Deedle is an F# library for manipulating data and time series and for scientific 

programming. It supports working with structured data frames, ordered and 

unordered data, and time series. 
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The main application of Deedle is working for exploratory programming using 

the interactive console, but it can be used in compiled code. 

The Blue Mountain Capital Management LCC, a company working mostly on 

private capital investment and finance, develops the library, and releases 

freely under BSD license [15].  

The background of the company makes the library more oriented towards 

working on offline analysis of big series of data about stock exchange market 

with the interactive console, but it also offers a range of operation that allow 

the users to develop analysis on time series. 

The data series are organized with a relational approach: it works on tuples, 

seeing data as rows and attributes as columns, and, similarly to databases, 

offers queries for data manipulations.  

Time is an essential type for performing the data manipulation and they offer 

some operation based on it, as:  

 Sorting based on time; 

 Zip time series entries together with some aggregating operators; 

 Extracting or grouping data by a timespan; 

 Lookup to find the nearest available data to a specified date; 

 Sliding time windows to represent and select groups of data; 

 Time sampling. 

The main statistical operators are for calculating cardinality, sum maximum 

and minimum, mean, median and standard deviation.  

All the operations can be applied to the whole dataset or to certain groups of 

data, defined by applying a levelling operator, that makes a hierarchical 

indexing, using constraints for splitting and aggregating values. 

Further documentation on the library is available at [16].  
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3 Tools  

 

 

In this chapter we will see which are the tools used in this thesis. In the first 

part, we will see the .Net Framework and the main features of the F# language 

in particular. Then we will examine the Leap Motion Controller and in the end 

the GestIT library and its typical usage. 

 

3.1 The .Net Framework 

 

The .Net Framework [17] has been developed 

by Microsoft in the late 90s, with the first official 

release in 2002, and the latest release is version  

4.5.1. It is a technology that runs primarily on 

Microsoft Windows platforms and it supports 

building and running applications, with different 

programming languages. 

There are two main integrated development 

environment (IDE) used for developing with .Net 

Framework: Visual Studio [18], developed by 

Microsoft for Windows only, and MonoDevelop [19] from the Mono project, an 

open source project for making the .Net Framework cross-platform, available 
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both on Windows and on Unix like platforms like Linux and MacOS X. In this 

thesis, we used Visual Studio 2012.  

The .Net Framework supports various types of language, the most famous 

are C++, C#, F#, Visual Basic .Net, ASP.Net and Jscript.Net. 

The foundation of the .Net Framework is the Common Language 

Infrastructure (CLI), a specification originally proposed by Microsoft, now 

open and standardized by ISO [20] and ECMA [21]. 

The Common Language Runtime (CLR), an 

implementation of the CLI, is the core of the 

Microsoft .Net Framework.  

The CLR is an application that provides a 

virtual machine that runs the Common 

Intermediate Language (CIL) and 

guarantees some important services, such 

as security, code execution, memory 

management, thread management, garbage 

collection and exception handling. This layer 

provides an abstraction layer over the operating system, and every .Net 

compliant language has a compiler from the language to the CIL. 

The second important part of the .Net Framework is the Base Class Library: 

this library is the base of the functionalities available in all the languages 

supported by the framework. It is an object-oriented collection of reusable 

types, which implements the basic functionalities for developing applications. 

The class library includes all the common functionalities: from basic input-

output operations, to graphic rendering, to file managing, to database 

interaction and so on. 

Another important aspect of the .Net Framework is the Common Language 

Specification and the Common Type System.  
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The Common Language Specification is a set of rules which the  languages 

targeting the Common Language Infrastructures must respect to interoperate 

with other CLS-compliant languages.  

The Common Type System define how to declare, use and manage types in 

the Common Language Runtime. This enables cross-language integration, 

type safety and high-performance execution. 

Following the two guidelines, while programming the application, guarantees 

language independence and the possibility to build a re-usable component. 

This feature enables the possibility to write components in different 

languages, hopefully the most suited and efficient for the task being coded, 

and make them interact easily. 

In our case, this possibility has been relevant, as the Leap Motion Controller 

Library is written in C++; we developed the framework using F# and the 

graphical user interface in C#, with the help of the visual editor. 

 

3.1.1 F# 

F# [22] [23] is a programming language that can be considered a multi-

paradigm language. It provides support for functional programming constructs 

in addition to the traditional object-oriented and imperative programming 

paradigms. 

F# is strongly typed and it uses type inference to statically type any value in 

the program. It implements functional programming with eager evaluation. It 

has discriminated union types, lambda expressions and it supports partial 

application of functions and closures. Functions are a first-class values and 

they can be used in higher-order functions. 

F# also supports classic imperative and object-oriented programming; this 

includes array and object types, inheritance, static and dynamic method 

dispatch, for and while loops and most of the usual OO patterns.  
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The main advantages of using F# are the possibility to express most concepts 

in a very concise way thanks to the functional language, and to be integrated 

with the features and the advantages offered by the .Net Framework and by 

the Common Language Infrastructure.  

We choose this language for developing our thesis for various reasons: 

 We want to implement a library that gives the possibility to define time 

analysis on data series in a declarative way, by expressing properties 

on the input; functional languages are better suited for this purpose; 

 With functional languages it is easy to work on collections of uniformly 

typed data like time data series; 

 The functional paradigm provides a convenient abstraction due to his 

conciseness and the possibility to express functions as first-class 

values;  the type constraints enforced by the interface ensure  

correctness even in general-purpose usage; 

 It provides the best integration with the GestIT library, which is written 

in F# and was used as starting point to develop the thesis. 

  

3.2 Leap Motion Controller 

 

The Leap Motion controller [24] is a new infrared device that tracks the 

movement of fingers, hands and finger-like tools. It is a small USB peripheral 

that uses an infrared system with LEDs and cameras to detect with high 

precision the positions of these objects. 
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3.2.1 Technical characteristics 

Using three infrared LEDs and two CCD cameras, the sensor observes a 

hemispherical area above the sensor with a radius of about 60 centimeters. 

The minimal distance from the sensor which can be measured is 1 centimeter. 

The producer states that the measurement error is about 0.01 millimeters. 

The Leap employs a right-handed Cartesian coordinate system. The center 

is the center of the leap device. The x-axis and z-axis lie in the horizontal 

plane, with the x-axis that is parallel to the long edge of the device. The y-axis 

is vertical with only positive values increasing upwards. 

 

3.2.2 The Hand Model 

 

The Leap sensor tracks hands, fingers and tools in its field of view and 

updates their set of data, called frame. Each frame consists of lists of basic 

tracking data, such as hands, fingers, and tools, as well as recognized 

gestures and factors describing the overall motion in the scene.    
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When the sensor detects a hand a finger or a tool, it assigns a unique ID to 

it. This ID remains the same as long as the entity is visible in the device field 

of view. If the tracking of an entity is lost and then recovered, the sensor may 

assign a new ID, but has a system to track back if the entity is the same. 

In the next sub chapters we will describe the API and the main classes [25] 

to use for interacting with the device. 

Controller 

The controller class is the main class for using the Leap Motion Controller. 

An instance of the controller class has to be created for accessing the frames, 

for tracking data, and gathering all the configuration information. Calling the 

frame() method allows the user to poll the controller and get last frame data. 

The controller stores up to 60 frames.  

Every controller has associated a Config class, that contains configuration 

parameters for the gesture recognizer. Other useful information that can be 

obtained from this class are: a list of active devices if there are more Leap 

Motion Controllers plugged in the system, a setter to enable high-level 

gestures recognition, and the possibility to add a listener to the controller, to 

receive the notification of new frames, following the typical observer pattern.  

Frame 

The device sends a stream of frames. The frame class is the main data 

structure and it contains the list of all the item and features recognized. It 

represents the entire environment recorded from the leap sensor in a selected 

instant. 

This is the list of the main tracking data supplied by the library: 

 HandList: all the hands detected in the frame; 

 ToolList: all the tools detected; 
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 PointableList: the list of pointable objects (both tools and fingers) 

recognized; 

 FingerList: the list of fingers detected in the current frame; 

 GestureList: the list of gestures recognized or continuing in the current 

frame 

Other useful values regarding this class are the item id, the possibility to 

access to current frame-rate and of course the timestamp. 

Hands 

The hand model provides information about position, characteristics and 

movement of a detected hand and the list of fingers and tools associated.  

The API provides as much information as possible. However, it is not possible 

to have all the attributes in every frame. For example when a hand is closed 

in a fist, the fingers are not visible to the Leap sensor so the fingers list will be 

empty. This is an important remark, as the programmer has to handle this 

case in their code. 

The Leap does not discriminate 

between the left and right hand, 

and there is no explicit recognition 

of the thumbs respect to other 

fingers. The sensor can recognize 

multiple hands but the  

recommendation for an optimal 

tracking quality is to avoid the use 

of more than two hands together. 

The Hand object provides several attributes reporting physical characteristics 

of detected hands. The most relevant are: 
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 Palm Position: indicates the center of the palm, measured in 

millimeters; 

 Palm Velocity: The speed of the palm in millimeters per second; 

 Palm Normal: A vector that is perpendicular to the plane formed by the 

palm of the hand, pointing downwards; 

 Direction: A vector pointing from the center towards the fingers; 

 Sphere center: The center of a sphere that fit to the curvature of the 

hand; 

 Sphere Radius: The radius of the sphere that fit to the curvature of the 

hand. This radius changes with the shape of the hand. 

The direction and the palm normal are unit direction vectors that describe the 

orientation of the hand respect to the Leap coordinate system, while the 

sphere center and the sphere radius describe the curvature of the hand. 

The object also provides several attributes that represent the motion of a 

detected hand between frames. The Leap sensor analyzes the motion of the 

hand and its associated fingers and tools, and it reports translation, rotation, 

and scale factors. Translation represents moving the hand around the Leap 

field. The rotation is produced by turning, twisting, or tilting the hand. Moving 

the fingers or tools toward or away from each other will end in the scaling 

attribute. 

These values are derived by comparing the characteristics of the hand in the 

current frame with those specified in the earlier frame.  

The most relevant attributes are:  

 Rotation Axis: A direction vector expressing the axis of rotation; 

 Rotation Angle: The angle of rotation clockwise around the rotation axis 

(using the right-hand rule); 

 Rotation Matrix: A transform matrix expressing the rotation; 

 Scale Factor: A factor expressing expansion or contraction; 

 Translation: A vector expressing the linear movement. 
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Fingers and Tools 

The accessibility to fingers and tools is possible by accessing one of this three 

lists: 

 Pointables: Both fingers and tools as Pointable objects; 

 Fingers: Just the fingers; 

 Tools: Just the tools. 

You can also find an individual finger or tool using an ID value obtained in 

previous frames. The Pointable list is convenient if the cases where there is 

no need to discriminate between fingers or tools.  

The Leap classifies finger-like objects according to shape, expecting that a 

tool is longer, thinner, and straighter than a finger. 

The physical characteristics of pointable objects include: 

 Length: the length of the visible portion of the object, from the first point 

out of the hand to the tip; 

 Width: the average width of the visible portion of the object; 

 Direction: a unit direction vector pointing in the same direction as the 

object, from base to tip; 

 Tip Position: the position of the tip in millimeters from the Leap origin; 

 Tip Velocity: the speed of the tip in millimeters per second. 

Every Pointable is classified as a Finger or a Tool. To discriminate between 

a tool and a finger is possible to use the IsTool() property. 
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Gestures 

The Gesture class represents the recognized high-level pattern movements 

by the driver. 

The Leap Motion Controller watches the activity, in his field of view, to 

recognize the movement patterns which represent typical gestures. 

When the Leap Motion software detects a gesture, it assigns an ID to it and 

adds a Gesture object to the frame gesture list. For continuous gestures that 

last many frames, the Leap motion software updates the gesture by adding a 

Gesture object with the same ID and updated information. 

Peculiar properties of this class are the time duration, available in seconds or 

microseconds, the frame, hands and pointable items that are associated to 

the gesture. The properties that define the state of the gestures are the 

gesture state and the gestures type. 

The gesture type is an enumeration which is used to discriminate the high-

level gesture; four gestures can be recognized: 

 Circle:  a circular movement by a finger; 

 Swipe: a straight line movement by the hand with fingers extended; 

 Screen Tap: a forward tapping movement by a finger; 

 Key Tap: a downward tapping movement by a finger. 

 

The gesture state is another enumeration of three possible values:  

 Start: the software has recognized enough to consider that the gesture 

is starting; 

 Update: the gesture is still in progress, with updated parameters; 
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 Stop: the gestures has completed or stopped.  

The continuous gestures have all the three states, associated to the same 

gesture id. In case of a discrete gesture, the software will recognize a single 

gesture item, which always appears with a stop state.   

The circle and swipe gestures are continuous, while both the screen tap and 

key tap are discrete gestures. Every high-level gesture is a subclass of the 

gesture class, with the additional parameters describing the specific gesture. 

It is important to remark that the built-in gestures are not active by default. In 

order to use them, the user must activate the recognition of each of them in 

the controller class, calling the EnableGesture(type, boolean) method with 

type which indicates the appropriate kind of gesture and a Boolean to choose 

whether to enable or disable its recognition. 

Listening Events to Leap Motion Controller 

The listener class is the main interface to receive events from the device.  

It follows the classical Observer pattern [26]; a user has to subclass listener 

class, implement the methods and subscribe the listener to the controller, 

calling the AddListener(Listener) method.  

The controller object will call these listener methods as callbacks when an 

event occurs, passing a reference to itself: 

 OnConnect: this method is called when the Controller object connects 

to the Leap Motion software, or when the Listener object is added to a 

Controller that is already connected; 

 OnDisconnect: called when the Controller object disconnects from the 

Leap Motion software; 

 OnExit: called when this Listener object is removed from the Controller 

or the Controller instance is destroyed; 
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 OnFocusGained: called when the application becomes the foreground 

application; 

 OnFocusLost: Called when the application loses the foreground focus; 

 OnFrame: Called when a new frame of hand and finger tracking data 

is available; 

 OnInit: Called once, when this Listener object is newly added to a 

Controller. 

 

3.2.3 Strength and Weakness 

 

To sum up the main strength and weakness of the Leap Motion controller, we 

can say that its strength are: 

 Precision: The device has a resolution of about 0.01 millimeters, which 

should result in position samples with a very high precision; 

 Frame Rate: Its frame rate is high and stable; it can exceed 100 frames 

per seconds in general use and it stays above 50 fps even under stress; 

 Multiple hands: It recognizes two hands with great stability; the case of 

having more than two hands over the same controller is unpractical 

because of insufficient physical space. 

The weakness or issues are: 

 Distinguishing two close fingers: In most of the cases they will be shown 

as a single finger, so sometimes the programmer can have problems 

with disappearing fingers if they get too close; 

 Aliasing: the sensor sometimes assigns a new id the same element, if 

it loses track of it for a fraction of second as it believes that there is a 

new one in the same area. This may lead to strange behaviours if the 

application code is excessively bound to IDs. Recent versions of the 

driver have reduced the impact of this problem; 
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 Overlapping: Due to his nature, the sensor has only a point of view, so 

in case of multiple hands, the possibility of overlapping the hands or 

one hand and a pointable item, can cause problems. 

   

3.3 GestIT 

 

GestIT [27] is a library for managing gestures in a compositional and 

declarative way. 

The library is developed in the Università di Pisa, and it is currently available 

in JavaScript and F# for the .Net environment. It is open source and freely 

downloadable on GitHub at [28]. 

GestIT is abstract with respect the platform: it can be used for describing 

gestures recognized by very different kinds of devices, such as multi-touch 

interactions with touch screens or body gestures detected using Kinect or 

Leap sensor. 

The library permits to define high-level gestures by decomposing them in 

small parts and to assign handlers to the composing parts. The user defines 

an expression, composed by simple gestures and operators and the library 

transforms it in an object that performs the desired behaviour.  

The meta-model behind GestIT is the Petri Net, more precisely the non–

autonomous coloured Petri Net.  

In the next sub-chapters, we will see a formal definition of Petri Nets and their 

variants, the basic concepts used in the GestIT library and how it works. 
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3.3.1 Petri Nets  

A Petri Net [29] (also known as a place/transition net or P/T net) is a 

mathematical representation for a distributed system. They took their name 

from Adam Petri, who defined formally for the first time in his PhD Degree [30] 

in 1962. 

A Petri Net (PN) is composed by a graph and a signature: the graph is a 

bipartite direct graph, with 2 kinds of nodes called places and transitions, and 

a marking that specifies the number of tokens in each place.  

Formally, a Petri Net is defined as a quintuple: 

𝑃𝑁 = {𝑃, 𝑇, 𝐹, 𝑊, 𝑀0 } 

 

 P is a finite set of states called places; 

 T is a finite set of states called transitions; 

 𝐹 ⊆ (𝑃 × 𝑇 ) ∪ ( 𝑇 × 𝑃) a set of arcs; 

 𝑊: 𝐹 →  𝑁+ a weight function on the arcs; 

 𝑀𝑜: 𝑃 →  𝑁  the initial marking on the places; 

  𝑃 ∩ 𝑇 = ∅ and 𝑃 ∪ 𝑇 ≠ ∅. 

There are various equivalent definitions, other authors describe Petri Net as 

𝑃𝑁 = {𝑁, 𝑀0}, with N, defined as the first four elements in the quintuple, to 

underline the distinction from the net, that represents the structure of the 

system and the initial marking 𝑀0  that is the part that represents the 

dynamicity. 

So the behaviour of systems can be described in terms of states and their 

changes. To simulate the dynamicity of the system the marking changes 

according to the following transition rule, called firing rule: 
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 A transition is said to be enabled if each input place p of t is marked 

with at least 𝑊(𝑝, 𝑡) tokens, where W is the weight of the arc between 

p and t; 

 An enabled transition may or may not fire (depending on whether or not 

the event take place); 

 A firing of an enabled transition t removes 𝑊(𝑝, 𝑡) tokens from each of 

the input places p of t, and adds 𝑊(𝑡, 𝑞) tokens to each output place q 

from t, where 𝑊(𝑡, 𝑞) represents the weight of the arc from t to q. 

As a graphical convention, the places are represented with circles with the 

tokens inside, and the transition are represented as tight rectangles. Every 

arc has a weight, if not stated the weight is one.  

 

Here an example of a Petri Net before (a) and after (b) a transition, 

representing the well-known chemical reaction 2𝐻2 + 2𝑂2 = 2𝐻2𝑂 +  𝑂2 

Petri Nets are often used to represent easily concurrent system or workflows 

[31], and are used in different contests with many variants from the original 

definition.  For example, the earlier definition is the definition of autonomous 

Petri net.  

The second rule of the firing rule states that an enabled transition may or may 

not fire. When describing a concurrent system, with this rule, we consider the 

system in a qualitative way, without giving any concept of timing or 

synchronization.  

This concept is satisfactory when we are looking to a workflow system, where 

we are mostly interested in what happens after a transition, but does not fit 



   3. Tools 

37 
 

very well in our case. We want a reactive system and the non-autonomous 

Petri Nets are the answer, in which transition are triggered by external events, 

independent from the system. 

Finally, colored Petri Nets, preserve all the properties of the Petri Nets and at 

the same time extends the formalism, adding the possibility to distinguish 

tokens. With the color, we have the advantage to add information on the 

tokens and make compact representations. 

Although this is convenient, in our case it does not actually make the model 

more complex, because colored Petri Nets with a finite number of colors can 

be converted in ordinary Petri Nets [32]. 

 

3.3.2 Gesture Description Model 

In this section we will define the compositional gesture description model at 

the base of GestIT [33]. For composing a gesture, we need to understand the 

three main concepts of the library: ground terms, which are the basic building 

blocks, composition operators, useful to build complex gestures, and 

handlers. 

 

Ground Terms 

A ground term is the working unit of the system. A ground term has no 

temporal extension and it is composed by two parts: the feature and the 

predicate.  

In this figure, we can see the equivalence of a ground term in a Petri Net. The 

dotted arcs are external to the ground term.  
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The feature represents the event tracked by the developers from the sensor.  

All the sensor events involved in the gesture recognition will be assigned as 

a feature. For instance, a mouse click, a touch event on a multi-touch device 

or a finger move fall into this category.  

Optionally a predicate can be associated to the feature in a ground term. The 

predicate in an additional function that has to be verified, in order to allow the 

firing of the transition, after receiving the sensor notification. 

As an general guideline a predicate should only verify additional properties 

just like a filter, and should never modify the state of the system with side 

effects, thus to avoid losing the compositionality of the system. As we will see 

in a moment, the handlers can perform side-effects without breaking the 

behaviour of the system. 

The state of a gesture at a given time is represented by the current value of 

each feature. The state of a gesture recognition support over time can be 

represented by a sequence of states, considering a discrete time sampling.  

We can define a feature 𝑓 as a n-dimensional vector with data representing 

the state obtained from the device. 

A gesture recognition support 𝐺𝑆  can be seen as set of features, and a 

gesture recognition support state can be seen as the value of this features at 

a given time 𝑡𝑖. In the end the evolution of the system can be represented as 

a sequence of states.  
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𝑓 ∈ ℝ𝑛  

𝐺𝑠 = [𝑓1, 𝑓2, . . , 𝑓𝑛]             𝐺𝑠 ∈ ℝ𝑘 , 𝑓𝑖 ∈  ℝ𝑛𝑖 ,   ∑ 𝑛𝑗 = 𝑘𝑚
𝑖=1  

 𝐺𝑆𝑖
= [𝑓1(𝑡𝑖), 𝑓2(𝑡𝑖), . . , 𝑓𝑛(𝑡𝑖)]     (𝑡𝑖) ∈  ℝ 

 𝑆 = 𝐺𝑆𝑖
, 𝐺𝑆, …, 𝐺𝑆𝑛

        𝑛 ∈  ℕ  

 

The gesture building block in the end notifies the change of a feature value 

between time 𝑡𝑖 and time 𝑡𝑖+1. This change can be optionally be associated 

to a condition, which in our case is a predicate. 

Composition Operators 

The composition operators allow the connection of ground terms or 

composed gestures in order to build up expressions, representing more 

complex gestures.  

The supported operators are the following, and in brackets the shortcut 

symbol in the F# syntax: 

 Iterative ( !* ): it is a unary operator that expresses the repetition of a 

gesture recognition an unlimited number of times; 

 Sequence ( |>> ): a binary operator that represents that the two 

connected sub-gestures have to be performed in sequence, from left to 

right; 

 Parallel ( |=| ): this operator imply represents the requirement that both 

the two connected sub-gestures are recognized; 

 Choice ( |^| ): this operator express that the recognition of any of the 

two sub-gestures also leads to the recognition of the whole gesture; 
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 Disabling ( |> ): this operator is used to let a sub-gesture to stop the 

recognition of another one, typically used to stop the iteration loops. 

Handlers 

A handler is a function that can be assigned to a ground term or an expression 

by using the shortcut symbol " | → " .  

As we expect in a reactive system, it represents the routine that the library 

calls after an event (in our case a ground term) triggers and the Petri Net 

advances. The developer should use the handlers to perform most of the 

functionality and in particular any side-effect that modifies the state of his 

system. 

 

3.3.3 The Library 

In this section, we will see a short description of the features of the library with 

simple examples. We will see the Fusion Sensor, which is the interface 

between GestIT and the sources, the syntactical representation of the gesture 

with the operators. 

The Fusion Sensor 

The Fusion Sensor is the interface between GestIT networks and events 

sources.  It makes possible to bind events to identifiers known as features. 

This can be done on multiple different event sources, so that GestIT networks 

can access input coming from different devices with a unified interfaces.  

Additionally, the Fusion Sensor makes it possible to have a dynamic set of 

features that changes over time. This is important when implementing 

gestures which track objects that appear and disappear and allows easier use 

of timeout and feedback events. 
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This class uses a dictionary, and it stores all the linked events that the system 

has to be aware. The user has to create an instance of the Fusion Sensor 

type and add, using the Listen method, a series of entries to the dictionary.  

The key can be any kind of item or value, as long the type supports 

comparison by equality. A typical appropriate usage is to make an 

enumeration of the current event possibilities, to make the code more 

readable. 

Gesture Expression 

The gesture expression type (GestureExpr) is the abstract type that 

represents the gesture, which will be transformed into a Gesture Net, on 

which the token transition will take place. Gesture expression is an abstract 

type, whose specializations are the ground term type or in the expression 

types, one for each composition operator. 

The abstract type has the common methods for all the subclasses, that allow 

to manage the Petri net, leaving two abstract method that are peculiar for the 

type of item:  

 Children: contains a sequence of gesture expressions, representing the 

sub-terms in the expression; 

 ToNet: is the method that given a sensor, builds the Gesture Net. 

The subclasses representing the possible expression are: 

 Ground Term; 

 Iter; 

 Parallel; 

 Choice; 

 Sequence. 
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Gesture Net 

The GestureNet type is the resulting type when we call the method toNet on 

a gesture expression. It represents the Petri net, and simulates the Petri net 

behaviour. It is an abstract type, which is specialized in two sub-types, 

GroundTermNet and OperatorNet.  

As expected this two types represents the two possible cases, depending 

from the syntax tree of the grammar. The ground term represents the leaf of 

the syntax tree, and the operators are the internal nodes, that compositionally 

build the tree. 

The frontier property states the places of the Petri nets, which currently have 

tokens active, or are reachable without any token consuming transition. The 

completed method is used to signal the completing of a net, while the 

RemoveTokens, AddTokens and ClearTokens are the methods that move 

effectively the token in the net. 

In the building phase all this method work recursively, starting from the 

highest level of the net and forwarding the tokens in the subnets. 

Shortcut Operators 

To reduce the verbosity of the gesture expression, which would involve 

manually constructing the whole syntax tree, some operators have been 

introduced in the language.    

Every operator has an infix alias, which helps to make the expression more 

readable and intuitive. 

Here the list of the infix aliases and the corresponding operators: 

 | ≫  for sequence operator; 

 |^|  for choice operator; 

 | =  for parallel operator; 
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 ! ∗  for iterative operator; 

 | → for assigning a handler to a ground term. 

 

3.3.4 Using the Library 

When he is using the library, the programmer does not need to worry about 

building a Petri Net manually and can focus on the expression which 

represents the device behaviour.  

The typical step that a user must follows are: 

 Create an instance of the fusion sensor; 

 Register the list of features he needs to track; 

 Define expression that fits with the behaviour he wants to implement; 

 Write the handlers that his expression should trigger. 

After these steps, the user call the method ToGestureNet(s) of the object 

which represents the expression, using the fusion sensor that he wants to link 

to the net as the s parameter. 

 

3.3.5 An Example 

This short piece of F# code tracks the clicks of a mouse: 

As first step, we start defining an enumeration type that represents the mouse 

states we want to consider, that will be the features of our ground terms.  

The second step is to create the fusion sensor and to use it to associate 

features and native.  



   3. Tools 

44 
 

We will pass the enumeration as features, and the classical built-in 

MouseEventArgs, the descriptor of a mouse event in the .Net Framework. 

Afterwards we will bind the mouse events with our mouse feature type. 

 
Then we will build the ground terms of our net. Before doing it we build two 

predicates that we will need and use: one to understand which button is 

clicked, the other one to check if there is no pressed button. 

 

Now we can create the ground terms, which will represent the three different 

clicks we want to track: 

type MouseFeatureTypes = 
        | MouseDown = 0 
        | MouseUp = 1 
        | MouseMove = 2 

let sensor = new FusionSensor<MouseFeatureTypes,MouseEventArgs>() 
   
sensor.Listen(MouseFeatureTypes.MouseMove, app.MouseMove) 
sensor.Listen(MouseFeatureTypes.MouseUp, app.MouseUp) 
sensor.Listen(MouseFeatureTypes.MouseDown, app.MouseDown) 

let pushbutton (t:MouseButtons) (e:MouseEventArgs) = 
           if (e.Button.Equals(t))  
                        then 
                            true 
                        else 
                            false 
 
let mouseup (e:MouseEventArgs) =  
           if (e.Button.Equals(MouseButtons.None))  
                    then  
                        true 
                    else  
                        false 
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To finish we need our handlers, which will be triggered when the net moves 

from the states. 

 

In the end we need the gesture expression, to build the Petri net and make 

the application run: 

 

let LeftClick_h (sender, f:MouseFeatureTypes, e:MouseEventArgs) = 
                   System.Console.WriteLine("Left Click") 
 
let MiddleClick_h (sender, f:MouseFeatureTypes, e:MouseEventArgs) = 
                   System.Console.WriteLine("Middle Click") 
 
let RightClick_h (sender, f:MouseFeatureTypes, e:MouseEventArgs) = 
                   System.Console.WriteLine("Right Click") 
 
let MouseUp_h (sender, f:MouseFeatureTypes, e:MouseEventArgs) = 
                   System.Console.WriteLine("Mouse Up") 

 

 

let events =  !*(        
 (LeftButton |-> LeftClick_h) |^| (MiddleButton |-> 
MiddleClick_h) |^| ( RightButton |-> RightClick_h ) |^| (MouseUp |-> 
MouseUp_h)  
) 
 
events.ToGestureNet(sensor)|>ignore 
Application.Run(app) 

let LeftButton   = new GroundTerm<_,_> 
(MouseFeatureTypes.MouseDown, 
(pushbutton MouseButtons.Left))  

 
let MiddleButton = new GroundTerm<_,_>  

(MouseFeatureTypes.MouseDown, 
(pushbutton MouseButtons.Middle))  

 
let RightButton  = new GroundTerm<_,_> 

(MouseFeatureTypes.MouseDown, 
(pushbutton MouseButtons.Right))        

 

let MouseUp  = new GroundTerm<_,_>(MouseFeatureTypes.MouseUp, 
mouseup) 
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With this approach, we can reuse this code and use the already defined 

predicates to track something else. If we wanted to trigger an event when the 

user clicks left, middle and right button in this order, ignoring the rest of clicks, 

we can use the same code, build a new handler and change only the 

expression: 

 

  

let events =   
!*(( LeftButton |>>  MiddleButton |>>  RightButton) |-> ThreeClick_h)  
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4 Design and Implementation 

 

 

The original idea of the thesis work was to develop the part of temporal 

analysis as an extension to GestIT by adding a new syntax for expressing the 

temporal properties of gestures and a system model history.  

At that time, the Fusion Sensor was not yet part of GestIT and sensors were 

modeled differently within the library. The sensor would interface indirectly 

with native events and all the events would come from a unique source; when 

developing an application using GestIT the adapter between a sensor and the 

underlying device library was made by inheriting from a base sensor class.  

Instances of these class were meant to receive events from devices and 

forward them to a GestIT sensor, which would fire the associated actions 

inside the Petri nets.  

 

type MouseSensor () = 
   inherit UserControl() 
   let mutable down = false 
   let sensorEvent = new Event<SensorEventArgs 

  <MouseFeatureTypes,MouseEventArgs>>() 
   let debug = false 
 
   override x.OnMouseDown(e) = 
     if debug then  

   printfn "MOUSE DOWN" 
         sensorEvent.Trigger(new SensorEventArgs<_,_> 

 (MouseFeatureTypes.MouseDown, e)) 
   down <- true 
... 
   interface GestIT.ISensor<MouseFeatureTypes,MouseEventArgs> with 
            [<CLIEvent>] 
            member x.SensorEvents = sensorEvent.Publish 
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In this code snippet, we can see a part of implementation to obtain the mouse 

behaviour.  

This was inconvenient because it required overriding every method and 

rewriting part of the logic to track the device. There were also problems with 

inheritance in case of multiple sensors.  

We started to define and analyse an internal mechanism that would work as 

a history component, to allow the possibility to proceed in the execution of the 

net and then to backtrack, by restoring the token configuration to a previous 

state, when needed. 

We were looking for the definition in the language of a marker syntax, to 

express the elements and predicates that the history would need to track and 

satisfy. 

This led to another problem because the grammar was already complex and 

adding more symbols would result in a drop of readability and practicality of 

use.  

The introduction of the Fusion Sensor added the possibility to unify various 

types of native and customized event sources, and to detach the native event 

from the net triggering.  

All this reasons led to the idea of making the framework independent from the 

GestIT library, even though for the development and the definition we 
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considered the cooperation between the two libraries as one of the primary 

requirements. 

 

The library has thus been designed as a tool that allows to collect series of 

data from one or more sensors. It can compute various statistical 

measurements on these data series and it can be extended with customizable 

events that trigger when the collected data satisfies a defined predicate. 

Another advantage of this approach is that is possible to use multiple 

instances at the same time for tracking the analysis. This divides the tracking 

in small independent units and reduces the complexity of their management. 

  

4.1 Architecture 

 

In this section, we will see the main aspects we took in consideration to build 

the library. 

We were developing a general-purpose library, hence we could neither focus 

on a specific kind of sensors nor develop a list covering all the possible 

instantiations. 

An important factor to consider is that the library should be real-time. It must  

calculate properties during the execution by elaborating the data received 

from sensors. This requirement prevents the use of analysis computations 

that are too deep and complex, otherwise we will lose the reactivity of the 

framework and the computations would introduce a delay between the input 

data from the sensor and the data produced by the analysis. 

Following these ideas, and to integrate it with the GestIT library, we focused 

mostly on two aspects which we deemed desirable:  
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 We want that our framework generates events; 

 We want to define events in a declarative way. 

The GestIT philosophy was to define each ground term as a feature, 

representing a simple native event, and a predicate, which was carrying the 

conditional controls. In our paradigm, we wanted to reverse this approach: 

the framework will do the analysis and then fire a simple event, which has 

previously been associated to a complex predicate. 

The final implementation of our framework works with three main types: the 

data types, buffer types and event types. 

Buffers collect data acting as listeners of sensor events. The data types 

implement a common interface, which exposes the data values and 

guarantees us the possibility to implement a series of methods and 

properties. 

The buffer has members that express in a declarative way properties of the 

time series.  

Events are built using composition of buffer properties. We can define the 

triggering of an event as a message sent by an object to signal the occurrence 

of a certain condition. Since we are working in a functional language, we can 

represent events as a triggering function, which goes from the evaluations of 

our buffer data to a Boolean. 

Events and data are collected in an event buffer, that will receive the input, 

forward it to the buffers, and trigger the appropriate events.  

4.2 Design Choices 

Before starting to illustrate the entire framework, we want to point out some 

choices we made during the development of the framework. 
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First of all, we started by defining the data structure. We realize that in our 

domain most of the cases are related to positional tracking of the gestures 

and checking thresholds on calculated values.  

Vision-based devices, for example, tend to give a structured skeletal 

representation of the input, like the joints of the body.  

Often the position is not the only information provided to the developer; it is 

possible to also find additional information about orientation, velocity, or 

acceleration. In this case, we can say that the sensor already implements a 

form of temporal analysis. 

In this model of representation, for the purpose of gesture definition, the 

correlation between two or more tracked joints is usually more significant than 

the absolute position of each of them. 

For this reasons, we decided to keep the data structure as simple as possible, 

and to offer the possibility to compose it. Every single buffer must cover 

consistently one aspect of the recorded data input, and then the programmer 

should define the correlation on them for the generation of the event. 

We believe that allowing the user to define up to three values and a time 

dimension covers most of the cases of practical interest. We represented 

each of the values as a float, which in F# is a 64-bit floating point type.  

In the first stages of the development, we evaluated the possibility to use units 

of measure [34]. 

F# supports static checking and inference on units of measure. It can be seen 

as a special type, added to the type of the value, that guarantees to avoid any 

measure inconsistency if used throughout the code. In our case, we opted to 

avoid this feature for two main reasons: first of all the other languages of the 

.Net Framework do not support it, and second we imagine that in most cases 

the user will operate mainly on data whose units of measure are uniform. 
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For data storage we chose to use a structure with a time threshold, which 

collects new data and automatically discards old data. In an event-driven 

environment, most of the properties are calculated starting from the last input 

value. With this approach, we can imagine to have a time window that moves 

with the evolution of the events.  We decided to give a customizable threshold 

for each buffer, and to give the possibility to add a time span value on the 

properties, to evaluate them over a smaller time span. 

We want to our code to work in a real-time event-driven environment. We 

need the properties to be evaluated and appropriate events to be triggered in 

a reactive way as a consequence of the reception of the input data. We had 

two main possibility for deciding on the implementation: 

 Checking on every received input; 

 Define a time interval for the control cycle. 

We opted for the first option for various reasons.  

First, we considered that we expect that the library will work mostly with 

events associated to one sensor or multiple instances of the same kind of 

sensor, so we probably want the control to occur whenever new data is 

received. Moreover, we desire to work with native and customized events 

together; in this cases, it is probably preferable to have the native sensor and 

the customized events working at the same frequency. 

In the end, our framework makes it possible to filter the input and to track 

events that occur infrequently; in this cases polling can result in a waste of 

resources. 

To reduce the computational cost of complex customized predicates we 

added the possibility to deactivate and activate events singularly, for a better 

reactivity of the framework. 
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4.2.1 Gesture Analysis 

When studying a gesture over time, especially in touch-less devices, one of 

the aspects that is immediately apparent is that the lack of physical feedback 

and reference points causes uncertainty and loss of precision in the 

movement. 

In this domain, we cannot expect that a plain mathematical definition is 

enough to define a gesture. You cannot pretend that the user performs the 

gesture in a perfect way, and definition which is too strict may lead to false 

negatives. A system to express the tolerance in the model is required in order 

to overcome this issue. 

Another aspect which needs to be considered is the instrumental error of the 

sensor, which may lead to erroneous results. This part is more sensor-

dependent, and, for this reason, we added the possibility to add a customized 

filter and the possibility to resample the input. 

For the gesture recognition, we focused on developing properties and 

measures that can cover the following main simple cases: 

 A threshold value triggering;  

 A standing position; 

 A straight movement; 

 A curvilinear movement. 

With the compositionality, provided by GestIT, is possible to obtain a definition 

for more complex gestures. 

The threshold can have various uses: it can recognize a new entity entering 

in the sensor view, or define a limit for another gesture (for example do not 

recognize entities that are over a certain value). Using the average of a value 

over a short time span instead of a straight value comparison results in 

constraints which are more robust and avoids false positives caused by 

instrumental errors. 
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The standing position is a property typically used as a start of the recognition 

of the gesture, or for calibration phases. We decided to add an explicit 

property to cover this case, and to offer the possibility to pass a tolerance 

parameter, which will be checked on the time series.  

For representing directional moments, we thought of different possibilities. 

For a straight movement, we can rely on the simple linear regression on the 

time series to obtain an approximation; this is not sufficient, as we are not 

guaranteed that the input data point are on a straight line. To evaluate the 

approximation error, we apply the Euclidean distance from the original points 

to their linear approximation; if in the error average is under a certain 

tolerance threshold, a straight line is a good approximation of the movement. 

For the curvilinear movement we used the Fast Fourier Transform to 

recognize periodic movement. The projection along each coordinate of a 

circular movement with a constant angular speed is a sinusoid whose period 

is the same at that of the movement. This can be  recognized as a spike when 

the data associated with that coordinate is represented in the frequency 

domain. The FFT transforms the temporal data to the frequency domain, 

where this analysis is easier to perform. 

For the second possibility we offered, we exploited the advantage of the 

functional language. The developer can pass two functions to the buffer, one 

that represents the approximation of the movement, and one to check the 

matching. The framework will apply the two functions to the input value and 

return a value which represents the percentage of correct matching. 

The position is an important element but it is not the only one which matters 

when defining a gesture. Another important aspect is its evolution over time. 

We decided to express these two aspects separately and for this reason we 

defined properties that compute the typical statistical values, like average 

velocity, average acceleration, mean position, and standard deviation. The 
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full definition of the gesture is the composition of these two aspects, that can 

be expressed as a conjunction of constraints on these values.  

The last aspect we want to point out about our construction is that we are 

working by receiving data from events and producing new events; this means 

that we can compose not only the properties, but also the buffers themselves. 

They can be structured in cascade to obtain more complex and interesting 

properties.  

For example, we could have to track a three dimensional point and check if 

the average velocity of the point is constant for one second, but the developer 

SDK only offers positional values. 

We do not have in our buffers an explicit property which represents this value, 

but we can build it using two buffers working in cascade. The first one gets 

the point position, and generates an event every time a new input is received.   

A second buffer applies a listener to our first buffer, and records the average 

velocity value of the last 100ms. The second buffer will be a simple one-

dimension buffer, with one event that fires only if its value is stable for one 

second. With the composition of two simple properties, we derived easily a 

complex property.  
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The following code represents all the steps necessary to obtain this 

implementation in our framework.  

 

4.3 Development 

 

In the first part, we will start from the data types, then we will see the buffers 

and the developed properties, and in the end, we will see the events definition 

and creation. For the complete code of the library we refer to [35]. 

 

4.3.1 Data Types 

As a first step, we started to define a representation of the collected data. Our 

aim was to include an abstract interface that can fit in most cases, and give 

us a unified vision for the future realization of the statistical measurement. 

We can assume that the typical application of our framework can be 

synthetized in two big areas:  

  let buffer1 = new Buffered3D<_>() 
  let eventbuffer1 = new EventBuffer<_,_,_>(buffer1) 
  let ev1 = new TEvent<_,_>(fun x -> true)  
  eventbuffer1.addEvent(ev1) 
 
  let buffer2 = new Buffered1D<_>() 
  let eventbuffer2 = new EventBuffer<_,_,_>(buffer2) 
  let ev2 = new TEvent<_,_>( 

fun x -> let valore = (x:Buffered1D<_>) 
valore.StationaryPosition(1000.0,10.0)           

                  ) 
  eventbuffer2.addEvent(ev2) 
   
  ev1.Publish.Add(fun x ->  

let b = x:Buffered3D<_>  
      eventbuffer2.AddItem ( new TD1D<_> (b.AverageVelocity(100.0))  
      ) 
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 Tracking the changing of a certain value; 

 Tracking the movement of a point in the space. 

We opted to realize a hierarchy of interfaces that tracks one, two or three 

dimensions, with a possible fourth dimension representing the time.  

This data may not be enough in some cases to distinguish between two 

instances of them, so we added as an additional field a customizable class, 

accessible as a field under the name of Info, with a generic type. 

 

All the data types are available under the module IData of the framework. All 

the classes extends the marker interface Data, that contains only the info 

field, and there are three type of data with the time variable, (TData1D, 

TData2D, TData3D), and three without it (Data1D, Data2D, Data3D). 

When instantiating the interface with a data type, the user has to declare the 

info field type that the type constraint will make uniform for all the data items 

of the same buffer. 
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4.3.2 Buffer Types 

The buffer types are the types that will collect the data and, with their 

properties, offer the user some statistical measurement.  

All the buffers extend the abstract type BufferedData, which implies a type 

constraint that will lock the buffer to one of the defined data types. The class 

extends System.EventArgs and has an addItem method, a function from the 

data type of the constraint to unit. 

We build two parallel data hierarchies that fit in two different kinds of buffers. 

The type constraint will lock every buffer with the expected type to avoid 

erroneous usages. The buffer working with one of the Data items, without the 

time dimension, is more lightweight and works with accumulators; the other 

ones, that save the data for a defined time span which can be adjusted with 

a threshold value, work with the TData types. 

The Accumulator Buffers 

In some occasions, it is useful to follow a value evolution over a time and have 

some statistical measurement on it, while the relationship with time and the 

full series of the data is not interesting by itself for the analysis. 

The typical examples are the cases where you want to check that a value 

does not go over a threshold, or you need to compute repetitions, average or 

standard deviation.  

In these cases, we want to avoid the storage of the entire data set received; 

for this reason we implemented a more lightweight buffer, that works with 

accumulators. 

We can see the accumulator as a component that offers two main interfaces, 

one for the managing of the data and another to access to the statistical 

measurements.  
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For the input of data, the accumulator offers two possibilities: adding another 

item, and resetting the cumulative counters.   

In our implementation the two methods are exposed through the Accumulator 

interface: as expected from the names, the method AddItem is used for the 

insertion of the received data and to perform the update of the cumulative 

buffers, while the method Restart resets all the variables. 

Whenever a new value is inserted, the accumulator will update the item 

counter, the average and the average of the squares of every dimension and 

the last item received. 

Using the average and the average of the squares of the values it is possible 

to derive some other statistical values, like the sum, the average, the variance 

and the standard deviation. 

In our implementation, the accumulator buffer exposes the NumericData 

interface, representing the following properties: Last, SecondLast, Count, 

Sum, Average, Variance, StDev. 

The first two values represent the last and the second of last value received, 

while the third represents the number of item received. We save the last two 

values to allow the user to track an increment or decrement of a nearly static 

value, like for example the number of items tracked. The other four values 

represent the statistic measurement of the sum, the average, the variance 

and the standard deviation.  
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Every property will return an item of the same type of the inserted data, apart 

count that will return an integer.  

The Sequence Buffers 

The sequence buffers store the received data, and make it possible to 

perform a deeper analysis of the data. 

Data are saved depending on the threshold assigned to the buffer. Using 

TData we have the time dimension included, and the buffer automatically 

discards the data after they go past the time threshold.  

As in the previous case, we have three buffer types, whose main difference 

is the number of dimensions of the data.  

Every buffer implements BufferedData, which exposes the method AddItem 

to insert new data. It also contains a list data structure (itemlist) that will hold 

all the inserted data. 

Moreover, it includes some utility methods that allow to do the managing on 

the list, like counting the elements, resetting the buffer, defining the cut-off 
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threshold or getting the entire buffer as a list or as an array of TData, for 

further custom processing by the user. 

Apart from these methods, we will focus on the description of the properties 

we realized to help the user with the analysis of this time series. 

When you have to work on a time series of data, it is important to check the 

consistency of the data time series. It is important to check the regularity of 

the data input as first thing, assuming that afterwards we want to check more 

complex properties over time.   

The user needs some tools to check or enforce some consistency properties 

of the data series has, like:  

 the time series covers a certain time extension or duration;  

 the signal is received continuously; 

 the signal noise and the false positives have been removed.  

From this perspective, we realized the following methods:  

 PeriodLength: allows the user to check that the temporal distance 

between the first and the last item of the buffer; 

 Cardinality: checks if a given integer Is bigger than the number of the 

items in the list; 

 IsContinuous: has two floats, one representing a time window and 

another representing an interval. This property returns a Boolean which 

indicates if in the requested time window the distance between two 

consecutive data is not greater than the interval time. 

 Sample: the aim of this method is to resample the data. It accepts a 

sampling function that will filter the input data and return a new buffer 

with only the sampled elements.  

After this first step, we decided to implement computations to perform 

analysis of movement and position, under the assumption that we are using 

a Cartesian coordinate system. 
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In the next part of the chapter, we will describe the methods we implemented 

for each measure. The measures we covered are:  

 

 Distance:  

We realized the method TotalDistance and ComponentDistance.  

These two methods allow calculating the point-to-point distance 

covered by the tracked sensor during a certain time window. The 

methods receives a float in input, representing the size of the time 

window, in milliseconds, back from the current moment. The first 

method allows the user to obtain the point-to-point Euclidean distance 

covered by the tracked sensor, the second gives the distance obtained 

accounting every dimension as independent. 

Another possibility offered is to use the method DifferenceVector, a 

function that given a timespan gives back a new buffer with the 

differential values between pairs of consecutive elements of time data 

series. 

 Velocity:   

We made the methods AverageVelocity and InstantVelocity. 

The first methods is a function from float to float; it takes a value that 

represents the duration of the time window in milliseconds, backward 

from the current time. For calculating the average velocity we use the 

point-to-point distance, so it is important for the user to know that data 

affected by heavy noise might nullify the precision of the result. 

The InstantVelocity method computes the most recent instant velocity 

if in the last 100 milliseconds there are at least two samples to calculate 

the value.  

The velocity value is expressed as 𝑢𝑛𝑖𝑡𝑠/𝑠  (where the units depends 

on the current measure used by the sensor). 
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 Acceleration:  

The methods Acceleration and InstantAcceleration. 

The average acceleration is calculated as the ratio between the velocity 

variation in an interval of time.  

�̅� =  
Δ𝑣

Δ𝑡
=  

𝑣2 − 𝑣1

𝑡2 − 𝑡1

 

The method Acceleration is implemented as a function from two floats 

to float. It allows the user to set the two points, which will represent two 

time windows: the former represents the duration of the time window 

that will be used to calculate the old velocity, and the latter to calculate 

the new one. We allow the user to set this parameter so that it can be 

tuned depending on the frame rate of the sensor. 

The second method, InstantAcceleration, similarly to the velocity case, 

will calculate the value using some default values to set the two time 

windows, specifically of 200 ms and 100 ms. 

The value is expressed in 𝑢𝑛𝑖𝑡𝑠/𝑠2 (where the units depends on the 

current measure used by the sensor) 

 Positioning:  

The AveragePosition method allows calculating the average value of 

the data. The method accepts a parameter as usual representing the 

timespan window we want to analyze backward from current time.  

The method StationaryPosition is a function that given the timespan 

and a tolerance value, checks if the value has been stable within the 

given tolerance for the specified amount of time. 

The tolerance is expressed as an absolute value. We considered the 

possibility to have it as a relative value, but it found it inconvenient when 

tracking positions. 

 Directionality: 

We developed various methods to retrieve information about the 

evolution of the movement. The possibility to express predicates using 

direction is surely one of the most interesting information achievable 
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from a data time series. Expressing a complex action as a sequence of 

directional movement gives a straightforward approach to express 

most of the usual gestures. 

We realized a method that computes the simple linear regression on 

the data series using the time as the independent variable. The method 

uses the least square method with the QR factorization. The method 

name is  FittingToLine and it has an optional parameter that defines the 

length in milliseconds of the time window on which the linear regression 

should be calculated. It returns two values that represent the slope and 

the offset of the straight line. 

The linear regression alone may lead to wrong results, as it does not 

recognize the difference between a straight line and a curve, so we 

introduced some other methods to refine the result. 

The method IsStraightDirection is a function from two floats to a 

Boolean that accepts a timespan representing the time window to 

consider and a tolerance value. The method returns true or false, 

depending if the Euclidean distance between the sensor values and the 

theoretical values (the ones obtained from the linear regression) are 

within the tolerance. 

Another possibility is offered by the method FollowingFunction. This 

method requires the user to provide the timespan window to consider 

and two functions: a reference function and a checking function.  

The former is a function from floats to our time data: it is used to 

calculate the theoretical trajectory that will be compared to the 

experimental values retrieved from the sensor, given the time as the 

independent variable.  

The latter is the checking function: given two time data values it will 

return a Boolean value representing whether the relationship between 
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the theoretical values we calculated and the registered values in the 

buffer is satisfied. 

This function will return a float number, which represents the 

percentage of measured samples satisfying the checking function. 

 Fourier Transform  

The Fourier Transform has the ability to convert samples represented 

in the time domain to the frequency domain and vice-versa, and it has 

many applications in time series processing. One of the most common 

applications is the analysis of the spectral frequency energy in data 

series, assuming they have been sampled with evenly spaced time 

intervals. 

If the sensor we are tracking has a regular frame rate, we can assume 

that the samples are evenly spaced in time, hence we can apply the 

Fast Fourier Transform to our time data series.  

The Fourier Transform has many applications for the elaboration of 

digital signals, in particular it can be used both for frequency 

measurement and to filter signals. 

In our case, we realized two general methods to use it in our data 

series.  

The first, named FFT makes the Fast Fourier Transform and returns an 

array of floats representing the result.  

The second method, called FFFilter is a function taking a filter as an 

input and returning a buffer of the same type as the original one. This 

method performs the transformation, applies the filter on the values, 

and does the inverse transformation. The filter is defined as a function 

on Complex numbers that will be applied on the frequence values. 

To perform these transforms in our library we utilized the 

implementation available in the Math.Net Numerics [36] library. It 

provides optimized methods and algorithms for calculating the Fast 
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Fourier Transform. In our case uses the Bluestein's FFT algorithm (also 

called chirp z-transform algorithm). 

4.3.3 Event Types 

At this point, the library can be successfully used to study data series using 

the buffer and data types described so far.  

The main reason for developing our library was to use it in cooperation with 

the GestIT library;  therefore, since we are working in a reactive event-model 

environment, the possibility to define a customized event was the more 

natural way to interact with it.  

We defined a custom generic event type, to integrate easily the two libraries 

and as well conform to the Microsoft .Net event model.  

Events in .Net follow the delegate model, which is based on the observer 

design pattern [26]. Each event is a provider on which is possible to subscribe 

delegate handlers to receive notification from it. This results in a push-based 

notification model, in which messages flow from the provider to the 

subscribers, that will react with a response to the notification. 

We want to realize a generic event that tracks a function based on properties 

of our buffers, and the usage of a functional language like the F# comes to 

the aid of our case. 

type TEvent<'X,'V> (triggerfun : 'V -> bool, ?active: bool)= 
    inherit Event<'X>() 
 
    let mutable activity = match active with  
                                    | None -> true 
                                    | Some  h -> h 
 
    member this.CheckFun(value:'V):bool = 
        triggerfun value 
     
    member this.IsActive():bool =  
        activity 
 
    member this.SetActive(v:bool) =  
        activity <- v 
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As function are considered first-class values in F#, we had the possibility to 

use them as components of our structured event type. Because of the type 

constraints, the definition binds the user to express events as properties on 

data buffers. The result of the evaluation is a Boolean that indicates to the 

container if it should fire the event. Furthermore, by extending the Event class 

in the definition, we inherited the observer pattern methods that allow using 

our event as any CLI Event of the .Net language. 

In our case, we wanted to have the possibility to have multiple events working 

on the same buffer so we decided to implement a container for collecting 

related events and buffers.  

This container acts as the main component to interact with. The user will pass 

the data, which will be recorded in the data structures; the addition of a new 

sample will cause the checking of the function on the connected events. 

All of our buffer types are extending the System.EventArgs class, that is the 

base type for all event data classes in the Common Language Runtime. 

We made two types of containers, one having one buffer and multiple events, 

and a second one that gives the possibility to have more than one buffer 

linked as well with multiple events. 

The first buffer is called EventBuffer. It has only one buffer that is passed at 

construction time, which will be the event argument returned when any of the 

connected events is triggered.  
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The generic ‘T type is constrained to types that implements BufferedData, 

and with the ‘W type is constrained to ensure that the right data type is passed 

to the container. 

As shown in the code snippets, we have methods to extend the list of events 

and to add data, so that on every item added, we call the check function of 

the events with the current data, and in case of positive confirmation we 

trigger the event. 

In the second case, the EventsBuffer class, the buffers have to be registered 

in a dictionary with an ID, represented by an integer. The user in this case 

has to bind the inserted data with the correct buffer, using the id he assigned 

and as well must use it in the triggering function of the events.  

The only other difference between the two buffer classes is that if the  

developer is using the multiple data buffer, in the declaration of the object the 

user he has to pass as parameter a function that maps the dictionary to a 

subtype of the System.EventArgs class. 

type EventBuffer<'T,'W,'U> when 'T :> BufferedData<'W> and 'W :> 
Data<'U> (data:'T) = 
 
    let eventlist = new List<TEvent<_,_>>() 
     
    member this.addEvent(t:TEvent<_,_>) = eventlist.Add(t) 
 
    member this.AddItem(d:'W,filter:'W -> bool) =  
        data.AddItem(d,filter) 
        if filter d then this.checkevents() 
 
    member this.AddItem(d:'W) = 
        data.AddItem(d)   
        this.checkevents() 
 
    member private this.checkevents() =  
        eventlist 
            |>Seq.filter(fun x-> (x.IsActive() && x.CheckFun(data))) 
            |>Seq.iter(fun x-> x.Trigger(data)) 
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This function is needed, because in this case we do not have a value that we 

can directly use as the argument of the event. When the event will be fired, 

this function will construct the argument parameter associated with the event. 
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5 A Case Study: Leap Mouse 

 

 

In order to test our library and to have a feedback from a real application, we 

decided to develop a mouse implementation with the Leap Sensor. We 

thought it was a good opportunity to use our library and to see how it 

integrates with the GestIT library. 

The Leap Sensor has some peculiarities that make it an interesting case for 

testing our library. 

First, the sensor has a good precision and responsiveness, and has a push 

method to send the tracked data. Second, it has some built-in high-level 

gestures together with the raw data, which we can try to integrate with our 

system. Third and most important, it has a hand model that guarantees the 

possibility to use our general-purpose structured system to track data with 

different natures, such as finger or hand position and properties like 

cardinality or directional vectors.  

The full code of the application is available at [37].  

 

5.1 Problem 

 

We want to simulate all the behaviours of a mouse pointer with the Leap 

Motion sensor. 
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It is straightforward to imagine the binding of the Cartesian coordinate system 

of the Leap sensor with the desktop pixel coordinates, and using a finger as 

the pointer. 

The main two problems need to be solved are:  

 Calibration of the active area; 

 Define the gestures that will represent the mouse click. 

The first problem is a typical issue when you operate with any touch-less 

sensor. A user does not have a clear definition of the exact dimension of the 

active area.  

Moreover, due to different height, habits, or just the positioning of the sensor 

respect to the user, giving a fixed dimension of the active space window may 

lead to an uncomfortable and awkward usage. 

Therefore, in our application we want to have the possibility to activate a 

dynamical calibration procedure of the device, to set the active virtual desktop 

size depending on the user needs. 

For the second part, we must decide how to link the mouse left and right clicks 

to the Leap Sensor environment. 

As already stated when we described the sensor in chapter 3.2, it has a high-

level gesture representing the click, which consists in pointing one finger and 

moving it forward from the user perspective. However, the click gesture is 

recognized as an atomic event, which starts and ends instantly. 

In our case, since we want to realize the base functionality of a mouse, we 

prefer to have the components of a click, the mouse down and the mouse up 

event, represented separately. Otherwise, some of the fundamental actions 

that can be performed using a mouse, like for example drag and drop, cannot 

be realized, limiting the usefulness of the application. For the right click, we 

need to define a brand new gesture 
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In the next subchapters, we will describe the design and the implementation 

of the application. 

  

5.2 Design 

  

At first glance, the application we want to develop is mainly based on two  

functionalities, the calibration procedure and the active usage phase. 

For the calibration phase, we want the user himself to define the active virtual 

window, which will associated to the current desktop dimensions.  

The calibration procedure works as follows. The application will start by 

asking with a dialog window to point in the Leap space the point that the user 

sees as the top left corner of our desktop and to stay in that position for some 

seconds. After this, another popup will ask the user to point the bottom right 

corner of his virtual desktop.  

Considering that the Leap will be positioned in front of the user in regular 

parallel position, the two points will represent two opposite vertices of a 

rectangle. Recording the x-axis and the y-axis of the two points, we can draw 

the virtual active desktop area. In the normal usage of the Leap Sensor, the 

z-axis should be nearly perpendicular to the screen plane, so we will ignore it 

in the procedure of definition of the space. 

We could make the calibration work from every possible position, including 

the third dimension. In this case we would need another point in the space, 

to compute the relation with the screen. However, this approach would 

prevent the usage of the built-in top-level gestures and the measurements of 

the hand model would need additional processing. 
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The calibration phase will be separate from the usage phase, to make it 

possible to restart the procedure in case of an unsatisfactory calibration. For 

this reason, we will add a start and stop button for the mouse simulation 

usage. 

During the usage of the Leap sensor as a mouse, a hiding button for our 

interface will be desirable to use the mouse over the desktop. 

Starting from these considerations, we 

realized a minimal graphical user 

interface to interact with the user, and 

give the possibility to see current 

virtual desktop coordinates and 

change the state of the application. 

The graphical user interface can be 

divided in three parts, starting from top 

to bottom:  

1. The status indicator, represented as a led that indicates the connection 

status of the leap sensor. 

It uses the three color of the traffic light to represent the status: red 

means the device is disconnected, yellow means that it is busy 

(connected but inaccessible by the application), and green represents 

the connected and ready status. 

2. The virtual desktop box, a rectangle reporting on the borders the actual 

maximum and minimum coordinates that the mouse simulator will 

consider in the Leap coordinate system, the x-axis and the y-axis.  

3. The buttons pad, four buttons that offer the possibility for the user to 

interact with the application. The top two buttons allow activating and 

deactivating the calibration phase and the usage phase; the “hide” 

button minimizes the window, and the “exit” button terminates it. 
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After defining the procedures and the user interface, we need to define the 

gestures we will use to implement the left and right click on the Leap 

environment. 

As stated before, the left click is a high-level gesture implemented and 

recognized by the Leap hand model, but we do not want the instant gesture 

to distinguish the mouse down and the mouse up event.  

In our solution, we want the user to perceive it as if it were the same gesture, 

so we will re-implement it with our library, with the addition of a threshold. The 

library allows us to represent the mouse down event in a similar mode, and, 

with the addition of the threshold he should pass during the click, we could 

add as well add the possibility to realize a mouse up event, associated to the 

gesture of moving backwards.  

For the implementation of the right click, we will use a second finger: we will 

associate the flicking of a second finger near the principal one to the right 

click event.  More precisely, we will fire the mouse down event when the 

second finger appears near the first one, and we will fire the mouse up event 

when it disappears. 

The flicking gesture fits well with the usage of the right click, as we consider 

that in most cases the right click is used to open option menus and normally 

with the complete click event. Making it an atomic event would still reduce its 

applications, so in this way we have a gesture which is quite natural to 

execute atomically with a flick, but still leaves the possibility to distinguish 

between the mouse down and mouse up event. 

 

5.3 Implementation 

In this chapter, we will illustrate the development of the application part by 

part. For the development, we can view the application composed by four 
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main components: the leap event wrapper, the mouse controller simulator, 

the graphical user interface, and the event-managing component. 

We will start with the description of the three peripheral components and in 

the last sub-chapter we will see the event logic part, the core of our 

implementation, where we use our framework combined with the GestIT 

library. 

5.3.1 The Leap Event Wrapper 

When interfacing with the Leap API Leap hand model, as already described 

in the tools chapter, the user needs to instantiate a Controller object and to 

add a listener to it. 

The listener class offers seven methods for the handling of  events coming 

from the device, in which most are for the status of the device: connection or 

disconnection, gaining or losing focus, exiting and initialization. To access the 

frames coming from the device there is the method OnFrame. 

The frame gives an exhaustive vision of the current state, giving the possibility 

to access various lists which represent the gestures, hands, fingers and 

pointable items, plus some global frame properties. 

this case it is up to the developer to recognize by id the old or new fingers and 

to keep track of the correlation between new and old elements, so we decided 

to define a wrapper of the Leap event to have a convenient representation of 

the data. 

We considered worthwhile to have a logic division of the element list, by 

dividing the element inside in three lists: 

 New elements: the element that have an id that appears for the first 

time in the current frame; 

 Active elements: the elements that are active in both the current and 

the frame before it; 
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 Inactive elements: the elements that were active in the preceding 

frames but that are not active anymore. 

This new logic division is provided for each type of element, hands, fingers, 

pointables and gestures, and as well for each of this cases new built-in events 

will be triggered. The class was partially built by a previous thesis, and I 

expanded it to also cover the built-in gesture recognition. 

There are three main types in the wrapper: the type LeapActivity, a back-up 

union type of the various type of element in the leap hand model, the type 

LeapSensorEventArgs that will be used as return type of the events, and the 

type LeapSensor, that will extend the listener of the LeapMotion API. 

LeapActivity 

The LeapActivity type is a union type of different integer lists. There is one 

type for each of the possible cases. This will be used to discriminate the type 

of the element in the processing of the LeapSensorEventArgs.  

In this code snippet, we will report the part regarding the gestures; a similar 

implementation is made for each element type recognized. We will follow this 

assumption in the next code snippets. 

type LeapActivity = 
| ... 
| NewGesture of int list 
| ActiveGesture of int list 
| InactiveGesture of int list 
| ... 
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LeapSensorEventArgs 

This class is the type that will be given as parameter in the events associated 

to a LeapSensor. 

 

The class will inherit System.EventArgs to be compliant as event argument 

type; it has a member frame that will contain the full frame that generated the 

event. Moreover, it has some read-only utility members that will contain the 

full list of active and new elements, divided by type: tools, fingers, hands, 

gestures in a cumulative list, and one member for each gesture separated. 

type LeapSensorEventArgs(f:Frame, ?activity) = 
  inherit System.EventArgs() 
 
  member this.Frame = f 
  member this.Activity = activity 
 
  ... 
   
  member this.ActivityGestures 
    with get() = 
      match activity with 
      | Some(NewGesture l) | Some(ActiveGesture l) ->  

f.Gestures()  
|> Seq.filter (fun h -> l |> List.exists(fun el -> h.Id = el))  
|> Seq.toList 

      | _ -> [] 
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LeapSensor 

The LeapSensor class is the one that extends the Listener class provided by 

the Leap Motion API and the main class that the developer will use. 

 

As explained before, for each element recognized by the Leap Motion sensor, 

we want to have a set that collects all the active elements, and we want to 

have the classification in new items, active items and inactive items. 

 

For each case, we made an event associated with it and we offered a member 

that exposes the events outside the class. 

 

As we stated before the Leap Motion Sensor returns frames, so for the 

handling and processing of the data, we overrode the OnFrame(controller) 

method.  

type LeapSensor() = 
  inherit Listener() 
 
  let controller = new Controller() 
 
  ... 
   
  let mutable activeGestures : int Set = Set.empty 
 
  let newGestureEvt = new Event<LeapSensorEventArgs>() 
  let activeGestureEvt = new Event<LeapSensorEventArgs>() 
  let inactiveGestureEvt = new Event<LeapSensorEventArgs>() 
 

  member this.NewGesture = newGestureEvt.Publish 
  member this.ActiveGesture = activeGestureEvt.Publish 
  member this.InactiveGesture = inactiveGestureEvt.Publish 
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Starting from the controller, the method extracts the frame and processes it. 

It splits the elements of the hand model assigning each one to the 

corresponding item set, and raising an event for items whose classification 

changes. 

The full code of the wrapper implementation is available under the project 

LeapSensor. 

 

  override this.OnFrame c = 
    let frame = c.Frame() 
    frameEvt.Trigger(new LeapSensorEventArgs(frame)) 
     
    ... 
 
    let processGestures () = 
      let ts = frame.Gestures() |> Seq.map (fun h -> h.Id) |> Set.ofSeq 
      let nt = ts - activeGestures 
      let at = ts |> Set.intersect activeGestures 
      let dt = activeGestures - ts 
      if not nt.IsEmpty then  

newGestureEvt.Trigger( 
new LeapSensorEventArgs(frame,  

NewGesture (nt |> Set.toList))) 
      if not at.IsEmpty then  

activeGestureEvt.Trigger( 
new LeapSensorEventArgs(frame,  

ActiveGesture (at |> Set.toList))) 
      if not dt.IsEmpty then  

inactiveGestureEvt.Trigger( 
new LeapSensorEventArgs(frame,  

InactiveGesture (dt |> Set.toList))) 
      activeGestures <- ts 
 
 
    ... 
 
    processGestures() 
 

    ... 
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5.3.2 The Mouse Controller Simulator 

To access mouse events and to simulate them in the .Net Framework, we 

had to import a native dynamic link library (dll) of the system.  

We realized the module MouseInteroperator that imports the file user32.dll, 

and made an external call to the method mouse_event. 

The extern modifier is used to declare a method that is implemented 

externally, and it is typically used to call unmanaged or driver code. 

The mouse_event method accepts five sixty-four bit integers that descibe the 

event. The first one represents the event type, the second and the third ones 

are the x and y coordinate values, the fourth one represents additional 

attached data (for example the scroll dimension when using the middle scroll 

button) and fifth one other extra information. 

We made some simplified methods to associate symbolic names to the 

events, leaving the native calls into this file. 

 
open System.Runtime.InteropServices 
 
 
[<DllImport("user32.dll", CharSet = CharSet.Auto,  

CallingConvention = CallingConvention.StdCall)>] 
extern void mouse_event(System.Int64, System.Int64,  

    System.Int64, System.Int64, System.Int64) 
 
let MOUSEEVENTF_LEFTDOWN    = 0x02L 
let MOUSEEVENTF_LEFTUP      = 0x04L 
let MOUSEEVENTF_RIGHTDOWN   = 0x08L 
let MOUSEEVENTF_RIGHTUP     = 0x10L 
let MOUSEEVENTF_MIDDLEDOWN  = 0x20L 
let MOUSEEVENTF_MIDDLEUP    = 0x40L 
let MOUSEEVENTF_MOVE        = 0x01L 
     
let MouseMove(xDelta:int64, yDelta:int64) =  
    mouse_event(MOUSEEVENTF_MOVE,xDelta,yDelta,0L,0L) 
 
let MouseLeftClickDown (xDelta:int64, yDelta:int64) =  
    mouse_event(MOUSEEVENTF_LEFTDOWN, xDelta, yDelta, 0L, 0L) 
 
let MouseLeftClickUp (xDelta:int64, yDelta:int64) =  
    mouse_event(MOUSEEVENTF_LEFTUP, xDelta, yDelta, 0L, 0L) 
...     
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5.3.3 The Graphical User Interface 

The Graphical User Interface 

(GUI) has been developed in C# 

using the Visual Editor available in 

the Microsoft Visual Studio.  

We opted for writing the GUI in the 

C# language because the visual 

editor designer does not work with 

F#, so we took advantage of the 

language interoperability provided 

by the Common Intermediate 

Language in the .Net framework.  

The GUI can be divided in two parts, the main form and the dialog window 

that will be used during the calibration phase. 

The main form is the one represented in the previous picture, and it is divided 

in three parts, from top to bottom: the connection status, the window status, 

the button pad. 

The connection status represents the current situation of the Leap Motion 

sensor: green stands for connected, yellow for busy and red for disconnected. 

The window status is a rectangle with some numbers on the sides, which 

epresent the current virtual desktop defined with the Leap Motion sensor. 

After the calibration procedure each side reports respectively the top, left, 

right and bottom margin of the virtual desktop area. 

The button panel has four buttons: one for starting the calibration, one for the 

mouse simulation, one for the hiding of the GUI and one for exiting. 
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The behaviour of this form is defined by the methods associated to the four 

events representing the mouse click on each of the buttons. 

 

For the interaction with the rest of the interface, there are three public  

accessible methods: 

 setDesktopMargin, that receives 4 integer and sets this values as the 

values of the virtual desktop area of the Leap sensor; 

 switchColor, that will change the color of the status button; 

 changeStartStopButton, that renames the label of the button when the 

mouse simulation is launched. 

Another part of the GUI is represented from the dialog box that will appear 

when the calibration procedure is executed. 

It is a simple dialog box with customizable text and button label to guide the 

user and explain him the steps that he must follow for a correct calibration of 

the sensor. 

The dialog has two public methods setText and setButtonText  and an event 

PopupAnnullaEvt, to be raised if the procedure is aborted. 

 

   public event EventHandler CalibrationClickEvt; 
   public event EventHandler StartStopClickEvt; 
   public event EventHandler HideClickEvt; 
   public event EventHandler ExitClickEvt; 
 
   private void bCalibrate_Click(object sender, EventArgs e) 
        { 
            CalibrationClickEvt.Invoke(sender, e);  
        } 

   ... 
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5.3.4 The Event Logic Module 

In this section, we will describe the event logic module, the core of the 

application. The application has been developed following the model view 

controller (MVC) pattern, to separate logic, presentation and data.  

In the description we will focus first on the GestIT Petri net representation of 

the two procedures, the calibration and the usage phase, then we will see 

how we implemented the predicates we needed to realize the customized 

events, and finally we will see how to compose the parts to work together. 

Gestures as Petri Nets 

The two procedures, calibration and usage, are independent, we realized two 

different Petri Nets. 

The calibration procedure follows these steps:  

1. the user starts the procedure clicking the corresponding button in the 

GUI; 

2. the Leap Motion sensor finds one finger; 

3. a dialog window appears, asking the user to point the top-left corner of 

his virtual desktop window; 

4. the user moves the finger in the requested position and wait for further 

instruction; 

5. after the user’s finger mantains a stable position for four seconds, the 

position is registered; 

6. the dialog box asks to reach the bottom-right corner of his virtual 

desktop; 

7. after four seconds of a stable position the second position is registered; 

8. a confirmation message appears, the calibration phase ended correctly 

and the new virtual desktop measurement are registered. 

The current behaviour can be represented as a sequence in the Petri net 

model, defined with the following picture.  
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The StartButton transition is associated with the click event on the GUI to 

begin the procedure, NewFinger represents the appearing of a finger on the 

Leap sensor active space, the two Stationary events will trigger when the user 

manages to maintain a stable position for the calibration. Finally, the End 

Calibration transition concludes the procedure, with the closing of the dialog 

box used during the calibration and the registration of the values as new 

virtual desktop coordinates.  

The following code snippet is a builder function that, given the controller, 

returns the Petri net for the calibration procedure. 

We use four ground terms, the start button is not associated to a ground term, 

since it will cause the invocation of the whole net.  

 
let calibrazionebuilder(cont:LMController) =  
 
    let newfinger   = new GroundTerm<_,_>(LeapFeatureTypes.NewFinger, 

fun _ -> not (cont.AlreadyCalibrating())) 
    let stable1     = new GroundTerm<_,_>(LeapFeatureTypes.Stabile) 
    let stable2     = new GroundTerm<_,_>(LeapFeatureTypes.Stabile2) 
    let calibrationend  = new GroundTerm<_,_>(LeapFeatureTypes.Calibrato) 
 
    let calibrating =  

((newfinger |-> setcalibratingfinger_h cont) |>>  
(stable1 |-> standingTL_h  cont ) |>>  
(stable2 |-> standingLR_h  cont ) |>>  
(calibrationend |-> nomod_h  cont)) 

     
    calibrating 
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Every ground term is associated to an event; all events have been created 

with our library, apart the New Finger that is a native event.  

For the first event, new finger, we associate a predicate to check that the net 

is not already active, to avoid starting concurrent istance of the procedure. 

Each event has a handler associated to perform the requested operations.  

Respecting the Model View Controller model, each handler does not perform 

the operation directly, but delegates the operation to the controller object. 

Each handler is defined as a function that takes the controller and a triple 

sender, type and argument as input.  

The first one sets the current calibrating finger and opens the first popup. The 

standing_TL handler, where TL stands for top left, passes the two values to 

the controller and clears the buffer, to avoid having a false positive in the next 

step. Symmetrically there is a handler for the bottom right corner.  

The last handler closes the popup, sets the new coordinates and signals to 

the controller that the procedure ended. 

let setcalibratingfinger_h (controller:LMController) 
(sender:_,f:LeapFeatureTypes,e:System.EventArgs) =  
       let ee = e:?> LeapSensorEventArgs 
       controller.SetCalibratingFinger(ee.ActivityFingers.Head.Id) 
       controller.OpenPopupCalibration1() 
 
let standingTL_h (contr:LMController)  

(sender:_, f:LeapFeatureTypes, e:System.EventArgs) =   
       let ee = e:?>Buffered2D<FingerInfo>  
       let element = ee.GetListBuffer().[( ee.GetListBuffer().Length - 1 )] 
 
       ee.Clear() 
       contr.setmouseTopLeft(element.D1,element.D2) 
       contr.OpenPopupCalibration2() 
       |>ignore 

let nomod_h (controller:LMController) 
(sender:_,f:LeapFeatureTypes,e:System.EventArgs) =  
       controller.Modify(false) 
       controller.ClosePopupCalibration3() 
       controller.SetDesktopCoordinates() 
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The second net is the one that performs the live mouse simulation, capturing 

the movements and the clicks.  

By modeling the mouse behavior, we realize we need a never-ending 

procedure, which can execute the three performed operation repeatedly and 

concurrently.  

In this case, we need to use the iterative operator for each single operation 

associated, movement, left click and right click, and bind them together with 

the choice operator.  

The equivalent Petri net schema representing this behaviour, as described in 

[27], is quite complex and lacks of readability.  In the following picture, we can 

see a simplified but significant version of the actual net.  

 

The mouse down and mouse up subnet should be considered as replicate for 

each kind of click. The net should provide a cancellation procedure to stop 

the net that is not referenced in the model. 
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The corresponding code realized to implement the net is the following. 

The builder creates the ground term, associates the mouse up and down 

events to the handlers, and connects them together with the choice operator.  

As in the previous case, the handlers calls the corresponding method on the 

controller to perform the correct action. 

In the end, for the handling these two nets, and for simplifying the job of the 

controller we realized a net handler object. 

let eventbuilder(cont:LMController) =  
     
    let moving     = new GroundTerm<_,_>(LeapFeatureTypes.Moving) 
    let rclickDown = new GroundTerm<_,_>(LeapFeatureTypes.RClickDown) 
    let rclickUp   = new GroundTerm<_,_>(LeapFeatureTypes.RClickUp) 
    let lclickDown = new GroundTerm<_,_>(LeapFeatureTypes.LClickDown) 
    let lclickUp   = new GroundTerm<_,_>(LeapFeatureTypes.LClickUp) 
   
    let movement = !*(moving |-> moving_h cont) 
    let rightclicks =  !* ((rclickDown |-> rightclickdown_h cont) |>> 

 (rclickUp |-> rightclickup_h cont) ) 
    let leftclicks  =  !* ((lclickDown |-> leftclickdown_h cont)  |>> 

 (lclickUp |-> leftclickup_h cont) ) 
     
    let events = (movement |^| leftclicks |^| rightclicks) 
 
    events 
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The NetHandler class gets the two nets and the sensor and exposes to the 

user two members for each net, to start and stop the service. 

 

Realizing Customized Events 

In this section, we will describe how we realized the customized TEvents and 

the binding with the sensor. 

The first step was to actually implement the data type interfaces, and realize 

the additional class for the auxiliary informations. We called this class 

FingerInfo, as we will need to save the finger ID for the calibration phase. 

For the calibration phase and the mouse movement, we need to track the two 

axes, x and y, needed to define the active virtual window of the Leap sensor. 

For this purpose we used a sequence buffer, of type Buffered2D with two 

dimension, for the x and y-axis, plus the time variable.  

 

type NetHandler(calibration:GestureExpr<LeapFeatureTypes,_>, 
movement:GestureExpr<LeapFeatureTypes,_>,   

  sensor:FusionSensor<LeapFeatureTypes,_>) =  
        
     let mutable calibrationnet = None 
     let mutable movementnet = None 
 
     member this.StartCalibration() =  
            calibrationnet <- calibration.ToGestureNet(sensor) |> Some 
        
     member this.StartMovement() =  
            movementnet <- movement.ToGestureNet(sensor) |> Some 
 
     member this.StopCalibration() =  
            match calibrationnet with  
                         | Some t -> (t :> System.IDisposable).Dispose() 
                         | None   -> () 
            |> ignore 
 
     member this.StopMovement() =  
            match movementnet with  
                         | Some t -> (t :> System.IDisposable).Dispose() 
                         | None   -> () 
            |> ignore 
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Then we need to pass to the EventBuffer the x and y coordinates of the 

fingers; we need to bind it with a function that we will pass to the Leap Sensor 

as a listener. 

With this function we register the data received from the active fingers of the 

sensor only if there is only one finger visible, and we choose to register the 

fingertip coordinates. 

From this data, we can build the events we are interested into: we need two 

events that tracks when the user is pointing the edges of the screen in the 

calibration phase, one that ends the calibration, and one event that tracks 

generally the movement of the finger. 

let movementbuffer = new Buffered2D<_>() 
let evbuffer = new EventBuffer<_,_,_>(movementbuffer) 
 

fun t ->  
let fingerlist = t.ActivityFingers 
if (List.length fingerlist = 1) then 
      new Td2d( 
       float fingerlist.Head.StabilizedTipPosition.x,  

 float fingerlist.Head.StabilizedTipPosition.y,  
 new FingerInfo(fingerlist.Head.Id)) 

            
            |> evbuffer.AddItem 

let stationary(timespan,toll) =  
fun buffer ->  let bb = (buffer:Buffered2D<_>) 

( bb.PeriodLength() > timespan && 
bb.StationaryPosition(timespan,toll) ) 

 
let StationaryEvent  = new TEvent<_,_> (stationary (4000.0,40.0)) 
let StationaryEvent2 = new TEvent<_,_> (stationary (4000.0,40.0)) 
let StopModifica     = new TEvent<_,_> ((fun x -> true) 
let MovingEvent      = new TEvent<_,_> ((fun x -> true) 
    
    evbuffer.addEvent(StationaryEvent) 
    evbuffer.addEvent(MovingEvent) 
    evbuffer.addEvent(StationaryEvent2) 
    evbuffer.addEvent(StopModifica) 
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To achieve this, we defined a function, called stationary that receives two 

floats representing a time window and a tolerance and using our library 

properties verifies that the user is in a stationary position and that we are 

registering data from more than the time window. 

We realized two events, even if they will trigger in the same case, because of 

the limitations coming from the GestIT implementation: in the current version 

we cannot assign two different feature types to the same event. The 

movement event triggers every time there is one finger and new data, and, 

for this reason, we pass a function that always evaluates to true as parameter. 

For the left click gesture we realized a sequence buffer with three dimensions, 

to follow the movement of the fingers along the three axes of the Leap sensor. 

The linking procedure is similar and as expected we created two events, 

LeftUp and LeftDown. 

We associated the left mouse down gesture with the moving of the finger 

toward the screen, nearly perpendicular in the z-axis, and that it passes a 

threshold.  

To achieve this behaviour we used the following constraint: 

 The movement in the z axis, acquired by the component distance 

predicate, is over 50 points; 

 Through the interpolation, we checked that the gradient of the straight 

is in the right direction; 

 We checked that the movement was over the threshold of zero in the 

z-axis; 

 Using the difference vector, we checked that the movement is mostly 

parallel to the z-axis, to discriminate to some casual diagonal 

movement; 

 We checked the movement tracked by the buffer was continuous, to 

avoid strange misbehaviours. 
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The following functional code corresponds to the previous constraints:  

 

For the LeftUp event, we realized a simpler event, where mostly we check 

that the user goes back from the threshold that coincides with the positive 

values on the z-axis. 

To realize the right click gesture, we developed similarly two events, 

representing the right button up and right button down.  

As we stated before, we want to realize the right click by representing it as a 

flick of a second finger. In this case then we need to track just the number of 

fingers present in the Leap Motion sensor view.  

We do not need deep temporal analysis, and to store all the data received. In 

this case we opted for the more lightweight accumulator buffer, with one 

dimension representing the number of fingers. 

 
let leftdown(timespan) = fun buffer ->     
  
  let bb = (buffer:Buffered3D<_>) 
  if (bb.Count() <2)  
  then  
   false 
  else 
   let dati = (bb.cutBuffer(timespan)) 
   let x = bb.DifferenceVector(timespan) 
   let last = bb.GetListBuffer()  
       |> fun x -> (x.Item ( x.Length - 1)) 
   let x1,y1,z1 = x.AveragePosition(timespan) 
   let _,grad = dati.FittingToLine(timespan) 
   let _,_,zdist = bb.ComponentDistance(timespan) 
   let zunder0 =  List.forall ( fun x -> (x:>TData3D<_>).D3 < 0.0) 

      (dati.GetListBuffer()) 
   if (zdist>50.0 && grad.[2] < -300.0 && zunder0 && 

 x1+y1<Math.Abs(z1-10.0) && 
       bb.PeriodLength()> timespan && 

 bb.IsContinuous(timespan,100.0))  
       then  
        true 
       else  
            false 
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We can resume the flicking movement in this way: the button down event 

when the fingers from one become two, the button up when from two active 

fingers, it goes back to one. 

Using the last two saved data of the accumulator buffer, we can easily realize 

two predicates that express this concept, as the following, and associate to 

the events:  

 
let rightdown() =  

fun x -> let bb = (x:Acc1D<_>):>NumericData<Data1D<_>,_> 
               if (bb.Count >2)  
                 then if (int bb.Last.D1  = 2 &&  

   int bb.SecondLast.D1 = 1) 
                         then  

true  
                         else  

false 
               else false  
                                             
let rightup() =  

fun x -> let bb = (x:Acc1D<_>):>NumericData<Data1D<_>,_> 
               if (bb.Count >2)  
                 then  

if (int bb.Last.D1  = 1 && int bb.SecondLast.D1 = 2) 
                    then  

true  
                    else  

false 
               else false  
 
let RightDown        = new TEvent<_,_> (rightdown()) 
let RightUp          = new TEvent<_,_> (rightup())   
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Finally, we need to associate the events to the feature types previously 

assigned to the GestIT nets, to link the controller with the nets and the sensor 

and to make the GUI visible. 

 

  

[<EntryPoint>] 
let main argv =  
    let sensor = new FusionSensor<LeapFeatureTypes,System.EventArgs>() 
    let app = new TrayApplication() 
     
    let gui = new Form1() 
    let popup = new PopupDialog() 
    let controller = new LMController(gui,popup) 
    let calibrazione = calibrazionebuilder(controller) 
    let eventi = eventbuilder(controller) 
 
  
    let leap = new LeapSensor() 
    leap.Controller.SetPolicyFlags( 

Leap.Controller.PolicyFlag.POLICYBACKGROUNDFRAMES) 
 
    ... 
     
    evbuffer.addEvent(StationaryEvent) 
    ... 
    rightevbuffer.addEvent(RightUp) 
 
    ... 
 
    let upcasting =  Event.map (fun y -> y :> System.EventArgs) 
      
    sensor.Listen( LeapFeatureTypes.Stabile,  

upcasting StationaryEvent.Publish) 
    ... 
    sensor.Listen( LeapFeatureTypes.NewFinger ,  

upcasting leap.NewFinger) 
 
    leap.Connect() |> ignore 
   
   
    let netshandler = new NetHandler(calibrazione,eventi,sensor) 
    controller.setNets(netshandler) 
     
    Application.Run(gui) 
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6 Conclusions  

 

 

We started the development of this thesis by defining a part of a language to 

add the possibility of a history modeling into the GestIT library.  

The idea of programming the gesture modeling in the new Natural User 

Interface devices, and in general in the event-based model, with a declarative 

and compositional approach is an important choice which will drive the future 

developments. 

This approach removes the need for explicit management of concurrency, 

and it increases the code maintainability and reusability, by making it possible 

to define of different gestures separately and to compose them with smaller 

and simpler parts. 

In our framework, we tried to continue this philosophy, by defining the time 

analysis as a conjunction of descriptive properties. 

We think our approach implements a good encapsulation of the specific 

capabilities of a sensor, yet it retains the possibility to reuse and to cooperate 

easily with the original SDK. The main purpose of this feature is to help the 

programmer with preserving already-existing code and to customize it for a 

specific device. 

Because of the wide and diverse range of target deices, which differ bothfor 

technical reasons and for the specific use they were originally designed for, 

we wanted the library to be based on the most generic measurement. 

The strongly typed system of F# and the extensive usage of the type 

constraints, that certainly have been both a pleasure and a pain during the 
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development of the thesis, will guide the user towards following the 

declarative model in the development of his events and will prevent him from 

using the interface in an incorrect way. 

With a good knowledge of the sensor by the developer, and some practical 

testing of the statistical values on gesture to represent, we think that our 

solution may help to solve with a good approximation part of the cases that 

may arise, without requiring additional work. 

Using our solution developers can easily to create good approximations of 

the gestures that they want to represent with no additional work beyond a 

good knowledge of the sensor and some practical testing of the statistical 

values. 

We think that the focus of future developments should be aimed towards two 

aspects:  

 Studying the possibility to define the timing of the event-checking 

routine independently from the data received;  

 Executing the testing of the library in different domains and with 

different kind of sensors. 

With the separation of the event firing routine from the data, we can allow a 

mayor customization of the events, for example it is possible to set the desired 

interval between consecutive triggers of an event.  

The testing of the library in different domains or with different kind of sensors 

may lead to the identification of properties and pattern of gesture definition 

that a theoretical approach would be unable to recognize as useful. In this 

cases some testing might find new elements that have not been identified yet, 

which are required in some application domains.  
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