
Università di Pisa

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

Corso di Laurea Magistrale in Ingegneria Informatica

Tesi di Laurea

Design and implementation of an Android
library for supporting network-aware

applications

Relatori

Prof. Luciano Lenzini
Ing. Alessio Vecchio

Candidato

Gloria Ciavarrini

Anno Accademico 2012–2013

i

Abstract

In the last years, research about context-aware systems has been particu-

larly intense. Nevertheless, most of the proposed approaches and systems

failed to flow from research to the industrial world. We propose ANARC a

library that eases the development of network aware applications for smart-

phones. ANARC does not try to cope with all the possible meanings and

variations of context, it instead focuses on a specific restriction of context:

the network and associated properties. To make things easier for designers

and developers, ANARC adopts a rule and trigger based approach: when

the network context matches the one described in a rule, the corresponding

notification is sent to the application level. Examples of use of the proposed

library are also included.

Contents

1 Introduction 1

2 Related work 5

2.1 Context-aware Computing . 5

2.2 Managing context information in mobile devices 7

2.3 Mobile Computing . 8

2.4 Ubiquitous Computing . 9

2.5 Location-based Computing 10

2.6 Smartphone-based Computing 11

2.7 Network-aware Computing . 13

3 The ANARC System 15

3.1 Guiding Principles . 15

3.1.1 Contextual information and function 16

3.1.2 Context-Triggered Actions 17

3.1.3 Information sources 18

3.2 Rule definition language . 18

3.3 System architecture . 23

3.3.1 The Framework Core 24

3.3.2 The modules . 26

3.4 Component interaction . 27

3.4.1 Network Module . 28

3.4.2 Hardware Module . 30

3.4.3 Geographical Module 31

3.5 Example of use . 36

3.6 Summary . 41

ii

CONTENTS iii

4 Applications 42

4.1 Signal Coverage Map . 42

4.1.1 MainActivity.java . 45

5 Conclusion 54

5.1 Contributions . 54

5.2 Future Work . 55

A Implementation details 56

A.1 ANARC library classes and methods 56

A.2 JEVAL evaluator library . 58

A.3 ANARC Functions . 59

A.4 Rule Definition Language . 60

A.4.1 Schema Definition Language 60

A.5 The modules . 62

A.5.1 Network Module . 62

A.5.2 Hardware Module . 63

A.5.3 Geographical Module 63

List of Figures

3.1 High level ANARC architecture schema 24

3.2 High level ANARC’s core structure 25

3.3 High level sequence diagram. 27

3.4 High level Network module structure 29

3.5 High level Hardware module structure 30

3.6 Geographical module diagram class 32

3.7 Distance from a circular area 33

3.8 Monitored location trigger status and provider 35

3.9 Component interaction diagram. 37

4.1 Screenshots . 45

A.1 Core class . 56

A.2 Network module class diagram 62

A.3 Hardware module class diagram 63

A.4 Geographical module diagram class 68

iv

List of Tables

A.1 Network module monitorable properties and values 64

A.2 NetworkMonitoringService monitorable properties and values 65

A.3 Hardware module monitorable properties and values 66

A.4 HardwareMonitoringService monitorable properties and values 67

A.5 Geographical module monitorable properties and values . . . 67

v

Listings

3.1 XML Rule tags disposition using only a boolean condition . . 20

3.2 XML Rule tags disposition using only an onchange condition 20

3.3 XML Rule tags disposition using both boolean condition and

onchange condition . 21

3.4 XML Rule example 1 . 22

3.5 XML Rule example 2 . 22

3.6 Pseudo-algorithm for smart geolocation 34

3.7 Main activity structure example 38

4.1 Signal Coverage Map rule . 43

4.2 Main activity source code . 46

A.1 list:xsdRulefile . 60

vi

Chapter 1

Introduction

Over the last decade advances in digital electronics have made computers

smaller, cheaper, and faster. This trend, along with other industry advances,

has promoted the development and rapid market growth of small computers

that can be carried from place to place. It has also created a revolution

in the consumer marketplace where computers are now commonly embed-

ded in everything from household appliances to automobiles. Whereas once

it was necessary to visit special climate controlled buildings housing com-

puter centres in order to interact with mainframe computer systems, it is

now possible to carry computers and smartphones with us and to commu-

nicate on the spot with everyone. The personal nature of smartphones and

the intimate relationship with their owners fuelled the adoption of these

nowadays ubiquitous devices as the de-facto platform for context-aware ap-

plications. A popular definition of context is the one provided by Dey and

Abowd [1]: any information that can be used to characterize the situation

of an entity, where an entity can be a person, place of object that is relevant

in the interaction between users and applications. Context-aware applica-

tions use it to customize services and provide a better users’ experience.

In many cases, context-aware systems include reasoning functionalities, to

deduce new and/or higher level context information from row data. The

reader is forwarded to [2] for a survey about context-aware mobile network-

ing and additional references on such topic, whereas a general background

about context modeling and reasoning techniques can be found in [3]. De-

spite the large amount of research carried out in the last years and the

ubiquitous diffusion of smartphones as a possible implementation platform,

1

CHAPTER 1. INTRODUCTION 2

development of context-aware application is still not a common activity. In

this area, research mostly concentrated on two directions: i) middleware

systems to support the development of context-aware applications and ii)

the definition of methods and techniques useful to represent and manage

context-related information. The challenge of interacting with network-

aware computer technology is the motivation for this research. With the

new technological advances and strong move towards Future Internet and

Internet as a Platform a new environment is emerging. This environment

is generative, social, strongly interactive and collaborative, so users play a

fundamental role in it. In this environment, context and context-awareness

plays a fundamental role, as context gives meaning and accurately describes

the situation of a user. Context-aware computing is a mobile computing

paradigm in which applications can discover and take advantage of contex-

tual information. Many researchers have studied this topic and built several

context aware applications to demonstrate the usefulness of this technol-

ogy. However, research in the field suffers from fundamental methodological

weaknesses. The approaches are somewhat empirical, giving a sense that

the designers already know what systems to build and what problems to

overcome. Context-aware applications have never been widely available to

everyday users, yet. Elements that can interact with the user and the ap-

plication are distributed across the environment. With the arrival of mobile

devices, context becomes a more considerable influence on the requisite be-

havior of computer systems. People are using mobile devices in extensively

varied environments that are relatively unstable from one moment to the

next. Almost all context-aware systems are made up of two components:

context provider and context consumer. The first one supplies context in-

formation about users and environment while the second one makes use of

this information in building context-aware applications.

The main purpose of this thesis is to design and to develop a reusable

network-aware Android library called ANARC (ANARC is a Network Aware

library for Reactive Computing). Instead of facing the multiple meanings

of context, it tries to support the development of applications in a single

specific domain. This should not be seen as a constraint: we aim at pro-

viding a depth analysis of network-aware mobile applications. In addition

to that, we try to fill the gap between complex existing approaches and

the real necessities of beginner designers and programmers of smartphone

CHAPTER 1. INTRODUCTION 3

applications because, we believe that, in some cases, these mechanisms can

be too far from their necessities and that a library, which can be integrated

with limited effort, can useful increase the network awareness of nowadays

smartphone apps. ANARC shares with ContextPhone [4] the goal of filling

the gap between OS-level functionalities and programmers’ needs, with em-

phasis on network-awareness. Even though the primary goal of ANARC is

to support the development of network reactive applications, it is important

to notice that in several situations network-context can be used to gain more

general information. For instance, if a smartphone is connected to a given

access point during the night hours more or less regularly, this network in-

formation can be used to infer with reasonable confidence that such access

point is located at user’s home. Then, subsequently, when the same access

point will be visible, we can infer that the user is at home and perform

specific actions. ANARC supports the programmer in designing and im-

plementing network-aware applications. In particular, it acts as a runtime

component that encapsulates all the intricacies related to the detection of

network events and context changes, easing the production of network re-

active applications. With ANARC, the programmer specifies the context

properties he is interested into in a simple way, and receives notifications

about relevant changes.

The advantages of meeting these challenges can be illustrate by some

examples:

Management of time-varying resources - Software should be able to

tune itself so it doesn’t access the network on demand, but rather takes

into account the changing bandwidth and monetary costs balanced

with the priority of the task at hand. News readers might download

and cache many news groups, even if they may not get read, before

disconnecting from a high bandwidth network.

Supporting opportunistic interaction - When system components come

and go it may be necessary for applications to postpone actions un-

til certain prerequisites are met. It is desirable to let users act as if

they are fully connected even when they are not. For example, in the

case of a mobile host, a high definition video should be automatically

downloaded just when a high speed Internet connection is available.

Contextual customization - Mobile systems enable computer interaction

CHAPTER 1. INTRODUCTION 4

in non-traditional settings, such as house, meeting rooms, office and

airports. Software customization should not only take into account a

user and host, but also the broader context of use. For example, the

type of meeting a person is attending, and the other people present,

should help decide whether e-mail messages or telephone pages need

to be immediately delivered.

Configuring dynamic systems - The particular physical devices acces-

sible to a mobile user depends on proximity. To simplify the user’s

choices a user interface might use knowledge about location and ac-

cessibility to assist in the selection and presentation of printers, dis-

plays, and other devices. For example, when asking a system for a

printer it should be possible to show the closest printer at the top of

the selection list.

A key distinction that the reader should take away from this section is

the emphasis on the mobile person who interacts with a changing multitude

of people, computers, devices, and environments. This is in contrast to more

traditional models that focus on individual computers, mobile or otherwise.

The thesis is structured into four more chapters. Chapter 2 gives the

state of art of the existing projects on mobile, ubiquitous, location-based,

smartphone-based and network-aware computing. Chapter 3 describes the

design and the implementation process of the ANARCs’ core and modules.

It includes, also, a description on how the library works, the component

interaction and a high level example of use. Chapter 4 provides an extensive

explanation of the implementation of an example application to create a

coverage signal map using ANARC library and the previously described

modules. Chapter 5, finally, concludes this thesis and gives an overview on

some of the possible future developments.

Chapter 2

Related work

The design of a library that allows applications to exploit a rich collection

of information about their context of use draws from several areas of re-

search. Mobile computing attempts to manage variable communication and

hardware characteristics. Ubiquitous computing aims to augment a user’s

computing experience. Since location is a large part of a user’s context,

Location-based computing has to be taken into consideration. When uti-

lizing the various internal sensors and interconnection to external devices,

modern smartphones can become on-body hubs for sensor data acquisition,

processing, and feedback in smartphone-based computing. This chapter de-

scribes work in these areas and compares their approaches to the problems

of this thesis.

2.1 Context-aware Computing

One challenge of mobile distributed computing is to exploit the changing

environment with a new class of applications that are aware of the context

in which they are run. Such context-aware software adapts according to

the location of use, the collection of nearby people, hosts, and accessible

devices, as well as to changes to such things over time. A system with these

capabilities can examine the computing environment and react to changes

to the environment.

In order to use context effectively, we must understand both what con-

text is and how it can be used. This step is of fundamental importance

to anticipate the design challenges. The context is defined as ¡¡the circum-

5

CHAPTER 2. RELATED WORK 6

stances that form the setting for an event, statement, or idea, and in terms

of which it can be fully understood¿¿ in Oxford dictionary; since this is a

general definition, it is not helpful. Some researchers tried to formally de-

fine context. The work that first introduces the term context was written

by Schilit and Theimer [5]. They introduced that concept as location, col-

lection of nearby people and objects and changes on these objects over the

time. According to [6], three important aspects of context are: where you

are, who you are with, and what resources are nearby. Context encompasses

more than just the user’s location because other things of interest are also

mobile and changing. Context includes lighting, noise level, network connec-

tivity, communication costs, communication bandwidth, and even the social

situation.

We list a few concrete examples to illustrate:

• To help navigate the computerized world by providing a display of

interesting located- objects, both nearby and far away.

• To keep a record of located-objects and people one has encountered,

for use by applications such as ”activity-based information retrieval”

which uses the context at the time the data were stored to assist in

retrieval [7].

• To detect location-specific information, for example, electronic mes-

sages left for the user or for public reading.

• To keep a look out for nearby devices that can be used opportunisti-

cally by applications, such as additional display terminals in a room.

• To detect nearby people, located-objects, or services that are relevant

to reminders or actions set to be triggered by their presence.

• Tracking a particular located-object as it moves around a region. Ex-

amples include tracking a co-worker you wish to talk to and tracking

the office coffee cart in order to be made aware when either is nearby.

• Tracking located-objects with a specified set of attributes in a partic-

ular region. An example is tracking all members of a work-group.

People’s actions can often be predicted by their situation. There are certain

things we do when in the library, kitchen, or office. Contextual information

and commands aim to exploit this fact. Similarly, context can parameterize

CHAPTER 2. RELATED WORK 7

”contextual commands” for example the print command might, by default,

print to the nearest printer.

Context concept attempts to contain all changing circumstances and

user needs. Mobile devices are context-sensitive that is they are capable to

detecting the user’s setting and as a result to offer this information to the

application. Additionally, real world ethnographic studies are not consid-

ered important and no special effort has been put in delivering solid design

methodologies for mobile applications. As a result, various issues remain to

be investigated: first of all, effective and efficient positioning and context

awareness methods and models. In other words, models to present useful

information to the user with respect to the information communicated to

him by the environment. Information should be contextualized and person-

alized according to personal needs, and presented to the user rather than

having the user searching endlessly for useful information. This step should

be achieved through a deeper understanding of the tasks in certain environ-

ments and clarification of cognitive issues related to those tasks.

Many mobile user devices are permanently connected to the Internet.

The number of potential context sources (cameras, sensors, microphones,

etc.) is increasing significantly. A variety of context information will be

available by processing and inferring this raw information,

2.2 Managing context information in mobile de-

vices

Mobile device users want to be able to access and manipulate information

and services specific to their location, time, and environment. Context in-

formation gathered from sensors, networks, device status, user profiles, and

other sources can enhance mobile applications’ usability by letting them

adapt to conditions that directly affect their operations. To achieve true

context awareness, however, mobile systems must produce reliable informa-

tion in the presence of uncertain, rapidly changing, and partially true data

from multiple heterogeneous sources. Mobile devices equipped with low-cost

sensing elements can recognize some aspects of context. However, extract-

ing relevant context information by fusing data from several sensors proves

challenging because noise, faulty connections, drift, miscalibration, wear

and tear, humidity, and other factors degrade data acquisition. Extracted

CHAPTER 2. RELATED WORK 8

contexts overlap, change with time, and yield only partially reliable ap-

proximations. Furthermore, mobile devices’ dynamic environments require

that we learn context descriptions from multidimensional data. Learning

systems can’t easily generalize beyond training data, however. Using even

sufficiently reliable derived contexts directly to control mobile applications

poses problems because users with different ideas of ”context” might find

application behavior irritating. To address these challenges, we present a

library that provides systematic methods for acquiring and processing useful

context information from a user’s surroundings and giving it to applications.

2.3 Mobile Computing

Mobile computing is fundamentally about increasing our capability to phys-

ically move computing services with us. As a result, the computer becomes

a taken-for-granted, ever-present device that expands our capabilities to in-

scribe, remember, communicate, and reason independently of the device’s

location. This can happen either by reducing the size of the computing

devices and/or providing access to computing capacity over a broadband

network through lightweight devices. In principle, this evolution has been

marked by the gradual movement of computers from mainframe, personal

computers and laptops to truly mobile devices like smartphones. Mobile

computing enables the localization and personalization of content, always

providing the user with the right information at the right time [8]. Accord-

ing to Lyytinen et al. [9], in mobile computing an important limitation is

that computing model does not considerably change while moving. Connec-

tivity, communication characteristics and the configuration of peripherals

are examples of things that change much more frequently in mobile than in

desktop systems. One goal that has motivated much of the work in mobile

computing is the idea that applications run on mobile hosts should be the

same as those run on desktop systems. In this view, mobility and its con-

sequences should be made transparent to applications. An example of how

systems can support application transparency under mobile conditions is

Columbia’s mobile internetworking work. Mobile internetworking addresses

the problem of providing network access to hosts whose physical location

changes over time. It exploits locality of host mobility to efficiently manage

tracking and routing information. In addition it employs on-demand acqui-

CHAPTER 2. RELATED WORK 9

sition of mobile host location information to aide in scalability. This kind

of systems is a particularly good mechanism for hiding system details from

applications. In cases it is also possible for services to automatically and

transparently reconfigure in order to maintain a high level of service. One

example is an algorithm for paging from a mobile computer into the memory

of the closest paging servers [10]. One important aspect of this work is that

client-server match-ups are made dynamically and vary over time.

Another dimension in making the computer invisible is the idea of per-

vasive computing. This concept implies the computer has the capability to

obtain the information from the environment in which it is embedded and

utilize it to dynamically build models of computing. The process is recipro-

cal: the environment can and should also become intelligent in that it also

has a capability to detect other computing devices entering it. This mutual

dependency and interaction results in a new capacity of computers to act

”intelligently” upon and within the environments in which we move. This

is the very idea of pervasive computing, an area populated with sensors,

pads, badges, and virtual or physical models of the physical and social/cog-

nitive environments. Pervasive computing services can be built either by

embedding models of specific environments into dedicated computers or,

more generally, by building generic capabilities into computers to inquire,

detect, explore, and dynamically build models of their environments. Cur-

rently, the main challenge of pervasive computing is the limited scope and

large effort involved to teach a computer about its environment. This makes

the availability and usefulness of such services limited and highly localized

because of the large effort required to design and maintain such services,

thus preventing users from effectively exploiting the computing resources of

their environments.

2.4 Ubiquitous Computing

Ubiquitous computing is the idea that invisible computation everywhere can

enhance life in the real world. Ubiquitous computing aims to address end-

user needs pertaining to various areas such as assisted living, home automa-

tion or energy management. Because it requires expertise in many fields

(e.g., networking, multimedia, and systems), programming ubiquitous com-

puting systems is very challenging. Even more challenging is the fact that

CHAPTER 2. RELATED WORK 10

this programming must be made accessible to end-users because ubiquitous

computing applications are intimately involved in our everyday life. Also,

the spectrum of potential application areas requires the development process

to be open-ended, enabling new entities, whether devices or components, to

be integrated [11].

The proliferation of computing into the physical world promises more

than the ubiquitous availability of computing infrastructure; it suggest new

paradigms of interaction inspired by constant access to information and com-

putational capabilities. The idea of ubiquitous computing first arose from

contemplating the place of desktop computer in activities of everyday life.

In particular, anthropological studies of work life [12] taught us that people

primarily work in a world of shared situations and unexamined technologi-

cal skills. However the computer was isolated and isolating from the overall

situation, and fails to get out of the way of the work. The challenge was to

create a new kind of relationship of people to computers, one in which the

computer would have to take the lead in becoming vastly better at getting

out of the way so people could just go about their lives.

It was not an easy task. This was not a graphical user interface (GUI)

problem, but is a property of the whole context of usage of the machine

and the affordances1 of its physical properties: the keyboard, the weight

and desktop position of screens, and so on. The problem is not one of

”interface”. For the same reason of context, this was not a multimedia

problem, resulting from any particular deficiency in the ability to display

certain kinds of real-time data or integrate them into applications. The

challenge is to create a new kind of relationship of people to computers [13].

2.5 Location-based Computing

Early work on location-based applications was undertaken by Olivetti Re-

search Lab (ORL) [14]. This research focused for the most part on the hard-

ware design and implementation of infrared beaconing badges (called active

badges) worn by individuals, and networks of infrared receivers. Unique

badge identifiers sent to the stationary receivers provide location informa-

tion to a software system. The main software application is an ”aid for a

1An affordance is a property of an object, or an environment, which allows an individual
to perform an action. For example, a knob affords twisting, and perhaps pushing, while a
cord affords pulling.

CHAPTER 2. RELATED WORK 11

telephone receptionist” showing a table of names alongside a dynamically

updating location and telephone extension. The system also provides a lim-

ited set of commands such as showing which badge wearers are in the same

room. Staff wearing badges can have telephone calls directed to their cur-

rent location. The original ORL system did not take context into account.

Badge wearers expressed a desire to control call forwarding using context

information: who they are with, where they are, and the time of day. There

has been some more general work on location-based systems. The system

developed by Harter [15] uses a subscription based location service. Each

badge transmits an infrared message periodically to some base station. The

transmission interval is dynamically adapted according to light intensity.

However, the previous research and the Olivetti one didn’t support multiple

location sources and unstable connection between devices.

2.6 Smartphone-based Computing

Mobile phones are becoming the convergent platform for personal sensing,

computing, and communication. Smartphones are envisioned to provide ap-

plications and services. They integrate such diverse functionality as voice

communication, audio and video playback, web browsing, short-message and

email communication, media downloads, gaming and more. Mobile smart-

phones are personal in nature, i.e. they stay and travel together with one

person most of the time, and thus enter various social contexts of that per-

son. Therefore, nodes’ movements in these networks are usually repetitive to

a certain extent, and bear the social network properties of their owners. The

main challenge that impacts the sensing stage is to accurately recognize the

required context with a minimum number of sensors and sensing frequency.

Through preprocessing, the phone’s context ambiguity is resolved via a cal-

ibration process prior further processing steps. The constraints of computa-

tion and memory resources also limit the implementations of preprocessing

and classification techniques to less computational intensive methods.

In view of these considerations, mobile devices can execute a wide range

of application fields such as health care, entertainment, networking, etc. It’s

impossible to provide an exhaustive analysis of all mobile applications so,

according to this thesis’ goals, we will focus on some context-aware mobile

applications. TagSense [16] identifies the individuals in a picture; it gathers

CHAPTER 2. RELATED WORK 12

sensor readings in order to identify activities and contextual information;

it optimizes the energy budget for sensing, communicating, and computing.

VEDE [17] is a prototyping project implementing a vehicle-to-driver com-

munication and a vehicle-to-environment communication based on a smart-

phone core and a wireless Bluetooth medium. The system is targeted to in-

crease the safety level of a motorcycle. A smartphone application translates

the notification from the gateway into a stream of audio data (voice synthe-

sis). It also turns the speaker data from the helmet into a command to the

gateway (speech recognition). The smartphone also manages the communi-

cation to and from the web server (remote point) according to the HTTP

protocol (natively embedded in the mobile). ContextPhone [4] is a proto-

typing platform for context-aware mobile applications. The design goal and

philosophy of ContextPhone is to provide context as a resource and to enable

rapid application development. To fill the gap between operating system’s

functionalities and the needs of application developers, ContextPhone pro-

vides modules that abstract sensors, system services, and communication.

ContextPhone was available for Symbian-based phones. WhozThat [18] is

a system that ties together social networking and context-awareness with

smartphones. In this case, the interaction between the physical and the

virtual world is bidirectional: when a user meets other people, the devices

cooperate to discover the social network IDs of the involved people, then

information about users, downloaded from Facebook, LinkedIn, etc., is used

to discover possible common interests. These information are also used to

customize the physical context that surrounds them (e.g. to play music that

is enjoyable for all of them). Cyberguide [19] project, a series of prototypes

of a mobile, hand-held context-aware tour guide. Initially, It uses a part

of the user’s context, specifically location and orientation. Knowledge of

the user’s current location, as well as a history of past locations, is used to

provide more of the kind of services that we come to expect from a real tour

guide.

Mobile phones are widely used for tracing human mobility since mobile

phones have almost 100% penetration, are closely tied to daily life and are

capable of locating themselves using various approaches. The GPS and

Wireless Positioning System (WPS) using cell tower and Wi-Fi access points

(AP) are common technologies that provide a user’s raw coordinates (i.e.,

latitude and longitude) [20]. Ambient fingerprints are often constructed

CHAPTER 2. RELATED WORK 13

to recognize semantic places with room-level accuracy using radio beacons

(e.g., cell towers, Wi-Fi APs, and Bluetooth) and surrounding factors (e.g.,

light, color, texture, and sound patterns) [21,22].

As investigated by Carrol et al. [23], mobile devices derive the energy

required for their operation from batteries. The battery capacity is severely

restricted due to constraints on size and weight of the device. This implies

that energy efficiency of these devices is very important to their usability.

Hence, optimal management of power consumption of these devices is crit-

ical. At the same time, device functionality is increasing rapidly. Modern

high-end mobile phones combine the functionality of a pocket-sized commu-

nication device with PC-like capabilities. The rich functionality increases

the pressure on battery lifetime, and deepens the need for effective energy

management. A simple choice for monitoring mobility is to periodically sense

a user’s location context. Such a scheme, however, significantly reduces the

battery’s lifetime in mobile devices. To optimize energy consumption for

continuous sensing, various approaches have been proposed. These include

sensor selection by movement detector using accelerometers [24–26], mini-

mizing energy consumption within accuracy requirements [27], minimizing

location error for a given energy budget [26, 28], and utilizing a prediction-

based approach [29].

2.7 Network-aware Computing

Communication is a necessity for the human race; hence, with the course

of time, the network, the Internet, and the high-speed networks had been

invented. But as the rate of generated electronic data rose exponentially over

the years, concomitant with the increase in storage capacity and network

bandwidth, so did the network usage and traffic. This brought in a whole

new set of challenges to be dealt with. It is quite interesting understand if

we can use the same protocol and algorithms for both high-speed network

and current Internet structure.

Balman et al. [30] classified the challenges in network-aware data man-

agement into increasing amounts of scientific data, need for efficient use of

high-bandwidth networks, network provisioning and traffic isolation, novel

data access mechanisms and models and ease-of-use and user needs.

Advanced services for optimization and tuning large-scale data move-

CHAPTER 2. RELATED WORK 14

ment, end-to-end resource coordination and network provisioning, and novel

abstraction techniques for data representation are essential in order to sup-

port the requirements of data-intensive applications these days. Since the

amount of data is continuously growing, traditional techniques to manage

data between distributed resources are not sufficient. Many scientific appli-

cations do poorly and fail to provide adequate use of the available bandwidth

in an end-to-end context. The lack of network-aware advanced tools in the

scientific community could cause ineffective use of the network.

However, during last years some interesting are emerged. The need for

network-aware application placement on cloud computing infrastructures

leads to Choreo framework [31]. As applications become more network-

intensive, they can become bottlenecked by the network, even in well-provisioned

clouds. Without a network-aware system for placing workloads, poor paths

can be chosen while faster, more reliable paths go unused. By placing ap-

plications with the goal of minimizing the total completion time, Choreo

is able to improve application-level performance. Choreo’s placement also

tends to place tasks that transfer large amount of data on the same machines

if possible, avoiding any network transmission time, as well as avoiding slow

paths in the network. The PORTOLAN system [32–34] is an Internet mea-

surement system based on traceroute that aims at obtaining the Internet

graph and building maps of the signal coverage through smartphone-based

crowdsourcing. Basically, the system is composed by a client side, an An-

droid application installed on several mobile phones, and a server side. The

crowdsourcing encourages the best qualified and most creative participants

to join in on a project and it can involve possibly millions of people in

helping the scientific research. Furthermore PORTOLAN project follows a

bottom-up approach where the phones are used as mobile monitors. In this

approach the measurements are taken from the edge of the Internet, and

not from the top.

Chapter 3

The ANARC System

3.1 Guiding Principles

We lack conceptual models and tools to support the rapid development

of rich network-aware applications that might better inform the empirical

investigation of interaction design and the social implications of network-

aware computing. The work presented in this chapter attempts to enable

a new phase of network-aware applications development. We want to help

application developers understand what context is, what it can be used

for, and provide concepts and practical support for the software design and

construction of network-aware applications.

The ANARC system consists of a library installed on mobile devices that

helps Android programmer to build quickly and easily mobile network-aware

applications.

The ANARC system is designed around a small number of basic princi-

ples and assumptions:

• Extreme portability

The device is designed to be carried or worn at all times.

• Irregular connectivity.

The system assumes that smartphone isn’t always connected to the

Internet network.

• Location reporting.

The device’s location is always detectable.

• Vast number of information sources

15

CHAPTER 3. THE ANARC SYSTEM 16

ANARC is mainly a network-aware library, but it cannot neglect other

context information, so it should exploit as many information sources

as possible.

The system designers specifically avoided addressing certain issues, such

as intermittent capability of geographical location detection dues to restric-

tive human user decision or, simply, dues to signal network absence. Re-

stricting the system capabilities in this way let us conserve time without

affecting the thesis’s main goal.

The most significant advantage of assuming irregular connectivity is that

the device is not obliged to use constantly a data/WiFi connection, indeed,

it can do the majority of the permitted operations in offline mode. That is,

instead of relying partly or entirely on remote processing the device interacts

with its context and executes local elaborations. An equivalent library with a

server-based processing would have been lighter at the expense of the server

side which is more costly to maintain and less responsive. Furthermore, the

device should be always connected and the user could incur in extra cost,

due to internet data use.

3.1.1 Contextual information and function

Nowadays, mobile devices are usually used in changing environments, yet

they do not adapt to those changes very well so devices are often left unaware

of their surrounding environment. With the perspective of an application

designer in mind, we wanted to provide a conceptual library that automat-

ically supports all the tasks that are common across applications, requiring

the designer to only provide support for the application-specific tasks. To

this end, we have identified a number of requirements that the library must

fulfill to enable designers to more easily deal with context. These require-

ments are:

Separation of concerns - One of the main reasons why context is not

used more often in applications is that there is no common way to

acquire and handle context. Application developers choose whichever

technique is easiest to implement, at the expense of generality and

reuse. We now look at a common way in which context has been

handled: delegating to ANARC library the monitoring and analysis

activities to hide implementation details. Ideally, we would like that

CHAPTER 3. THE ANARC SYSTEM 17

third part mobile applications are able to handle context in the same

manner as they manage user input. We provide an important abstrac-

tion to enable designers to use input without worrying about how the

input was collected.

Context interpretation - To support transparency, context must often

be interpreted before it can be used by an application. An application

may not be interested in the low-level information, and may only want

to know when a high level event occurs. The interpretation, to be easily

reusable by multiple applications, needs to be provided by the library.

Otherwise, each application would have to reimplement the necessary

implementation.

Resource Discovery - With a resource discovery mechanism, when an ap-

plication is started, it could specify the type of context information

required, e.g. geographical position as latitude and longitude, network

information such as network operator name or mobile data connection

type and so on. The mechanism would be responsible for finding any

applicable components and for providing the application with ways to

access them. For example, in the case of a simple ”In/Out” geograph-

ical area application, rather than hard-coding the location sensing,

the developer can indicate that the application is to be notified when-

ever any user enters or leaves the area. This information can then be

provided by any source of location context.

As ANARC born as a network-aware library, it should implements and

exposes the functions listed in Appendix A.3.

3.1.2 Context-Triggered Actions

One of ANARC strengths is allowing third part application freely to imple-

ment specific application actions. The library observes only what application

asked and verifies when a context configuration meets a condition. The de-

veloper must specified as we will see in Sec.3.2, the string which ANARC

should use in order to notify an event and to get some variable values. The

programmer must make the action string unique, to do that we recommend

use as prefix your package/app name, i.e., com.example.mypackagename.myaction.

This helps avoiding a situation where other apps or system components

might attempt to process it.

CHAPTER 3. THE ANARC SYSTEM 18

3.1.3 Information sources

Recall 3.1, one of our key challenge is tracking a vast number of informa-

tion sources. Smartphone data can originate from many sources such as

hardware sensor, online banks, social networking websites, users’ behavior

patterns, etc. We aim to achieve source completeness and accuracy of source

information.

Smartphones have a diverse set of media capture capabilities. They not

only function as a phone, but also as a camera phone, as a portable media

player, and as an Internet client (email, web browsing, and data/Wi-Fi con-

nectivity). Visual as well as audio media types can be processed and stored.

In addition, smartphones often are able to process tactile information, for

example, in form of a multi-touch screen that renders a virtual, rather than

physical, keyboard. Based on Pitt et al. [35] mobile devices are equipped

with an accelerometer, gyroscope, positioning capabilities, allowing the de-

tection of the exact whereabouts of its owner. Geographical coordinates are

obtained using a combination of GPS (Global Positioning System), the cel-

lular infrastructure and Wi-Fi networks. Localization accuracy is typically

within in the range 10 meters, most often even higher.

3.2 Rule definition language

One of our goals was to make possible for the programmer to easily commu-

nicate with the ANARC library. The Extensible Markup Language (XML)

is a flexible way to create common information formats and share both the

format and the data on the World Wide Web, intranets, and elsewhere.

XML, a formal recommendation from the World Wide Web Consortium1

(W3C), is similar to the natural language and contains markup symbols to

describe data. This means that an XML file can be processed purely as data

by a program. Such a standard way of describing information would enable

a programmer to send effortlessly requests to ANARC. XML is ”extensible”

because the markup symbols are unlimited and self-defining.

In respect of this, we create a XML Schema Definition2 (XSD) which

use following tags:

1http://www.w3.org
2http://www.w3schools.com/schema/

http://www.w3.org
http://www.w3schools.com/schema/

CHAPTER 3. THE ANARC SYSTEM 19

RULELIST - it contains a group of RULE tags.

RULE - it contains one of the following combinations shown in List. 3.1,

List 3.2 and List. 3.3.

WHEN - It wraps a CONDITION tag, a DOIFTRUE tag and/or a DOIF-

FALSE tag. Optionally, it can contain also an ONCHANGE element.

CONDITION - this tag identifies a boolean condition

DOIFTRUE - when the boolean condition specified among CONDITION

tags become true, the ANARC’s core launches the action defined

among DOIFTRUE tags. This action will be launching just on the

positive edge of transition.

DOIFFALSE - when the boolean condition specified among CONDITION

tags become false, the ANARC’s core launches the action defined

among DOIFFALSE tags. This action will be launching just on the

negative edge of transition.

ONCHANGE - It wraps a PROPERTY tag, a DO tag and, optionally, a

THRESHOLD tag.

PROPERTY - these tags enclose the property name which the program-

mer wants to observes.

DO - every time the property’s value changes, the ANARC core lunches

the action specified among DO tags.

THRESHOLD - When a property belongs to a continuous range, the

programmer can specify a threshold. Only when the change is greater

than the threshold the ANARC core can launches the DO action.

PROPERTYLIST - The programmer can specify a list of property of

which he wants to know the value every time the ANARC core launches

an action in spite of the boolean condition status.

To be more specific, we provide the XML Schema Definition (XSD) in
Appendix A.4.1 and three possible configuration of the tags inside a rule.
In particularly, in List. 3.1 the rule specifics just a boolean condition and
the actions to execute when it become true or false; otherwise, List.3.2
doesn’t uses the boolean condition, it means that the developer is interested

CHAPTER 3. THE ANARC SYSTEM 20

to monitor every changes of the propriety encloses inside the PROPERTY
tags; finally, in List. 3.3, it is provided a complete example that uses both
boolean condition and on change monitoring.

1 <RULE>

2 <WHEN>

3 <CONDITION>

4 boolean condition

5 </CONDITION>

6 <DOIFTRUE> action </DOIFTRUE>

7 <DOIFFALSE> action </DOIFFALSE>

8 </WHEN>

9 <propertyList>

10 <PROPERTY>

11 property for which you want to know the value.

12 </PROPERTY>

13 <PROPERTY>

14 another property

15 </PROPERTY>

16 </propertyList>

17 </RULE>

Listing 3.1: XML Rule tags disposition using only a boolean condition

1 <RULE>

2 <ONCHANGE>

3 <PROPERTY>

4 property to be monitored

5 </PROPERTY>

6 <DO> action </DO>

7 </ONCHANGE>

8 <propertyList>

9 <PROPERTY>

10 property for which you want to know the value.

11 </PROPERTY>

12 <PROPERTY>

13 another property

14 </PROPERTY>

15 </propertyList>

16 </RULE>

Listing 3.2: XML Rule tags disposition using only an onchange condition

CHAPTER 3. THE ANARC SYSTEM 21

1 <RULE>

2 <WHEN>

3 <CONDITION>

4 boolean condition

5 </CONDITION>

6 <DOIFTRUE> action </DOIFTRUE>

7 <DOIFFALSE> action </DOIFFALSE>

8 <ONCHANGE>

9 <PROPERTY>

10 property to be monitored

11 </PROPERTY>

12 <THRESHOLD>

13 threshold value

14 </THRESHOLD>

15 <DO> action </DO>

16 </ONCHANGE>

17 </WHEN>

18 <propertyList>

19 <PROPERTY>

20 property for which you want to know the value.

21 </PROPERTY>

22 <PROPERTY>

23 another property

24 </PROPERTY>

25 </propertyList>

26 </RULE>

Listing 3.3: XML Rule tags disposition using both boolean condition and
onchange condition

In order to clarify further the previous listings, we provide some rules

as example. The rule in List. 3.4 permits to monitor the state of the Wi-

Fi and to receive notification each time the boolean condition changes its

state. List. 3.5 illustrates a rule that test if the device is using a data

connection and if the signal strength is greater than 6. When that boolean

condition becomes true the library start to check changes of cell ID value.

ANARC notifies when the condition is not true anymore. This rule specifies,

also, a set of extra key-value couples that the library must send anytime

it launches an action (latitude, longitude, type of mobile connection and

network operator name). Please note that it isn’t specified the DOIFTRUE

action.

CHAPTER 3. THE ANARC SYSTEM 22

1 <ruleList>

2 <RULE>

3 <WHEN>

4 <!--

5 Test if the wifi antenna is enabled and if the

current connection type is equal to ’WIFI’. See

Appendix A.3 for further function supported by the

library and example of use.

6 -->

7 <CONDITION>

8 equals(hw.wifi.state, ’ENABLED’) &&

equals(net.networkAccess.ConnectivityType,

’WIFI’)

9 </CONDITION>

10 <DOIFTRUE>

11 com.example.actionTrue

12 </DOIFTRUE>

13 <DOIFFALSE>

14 com.example.actionFalse

15 </DOIFFALSE>

16 </WHEN>

17 </RULE>

18 </ruleList>

Listing 3.4: XML Rule example 1

1 <ruleList>

2 <RULE>

3 <WHEN>

4 <!--

5 Test if the device is using a data connection and if

the signal strength is greater then 6. See

Appendix A.3 for further function supported by the

library and example of use.

6 -->

7 <CONDITION>

8 equals(net.networkAccess.ConnectivityType,

’MOBILE’) && num_gt(net.cellular.ASU, 6)

9 </CONDITION>

10 <!--

11 When the boolean condition is true, no action

must be launched.

12 -->

CHAPTER 3. THE ANARC SYSTEM 23

13 <DOIFFALSE>

14 com.example.actionFalse

15 </DOIFFALSE>

16 <ONCHANGE>

17 <!--

18 When the boolean condition is true, start

monitoring cellID changes.

19 -->

20 <PROPERTY>

21 net.cellular.cellID

22 </PROPERTY>

23 <DO>

24 com.example.actionCellIDchanged

25 </DO>

26 </ONCHANGE>

27 </WHEN>

28 <!--

29 List of the additional couple key-value to return

when the core launches an action (See Tables A.1,
A.2, A.3, A.4 and A.5 inside Sec. A.5).

30 -->

31 <propertyList>

32 <PROPERTY>

33 geo.position.latitude

34 </PROPERTY>

35 <PROPERTY>

36 geo.position.longitude

37 </PROPERTY>

38 <PROPERTY>

39 net.networkAccess.mobileConnectionType

40 </PROPERTY>

41 <PROPERTY>

42 net.cellular.NetworkOperatorName

43 </PROPERTY>

44 </propertyList>

45 </RULE>

46 </ruleList>

Listing 3.5: XML Rule example 2

3.3 System architecture

The framework currently is formed by a core module and three modules.

CHAPTER 3. THE ANARC SYSTEM 24

In the first part of this chapter we describe the single components and

their functionalities, while in the second part we illustrate in detail how

these components interact to each other.

3.3.1 The Framework Core

Basically the ANARC core module acts as a middleware between Android

applications and the framework modules. The core receives rules from one

or more applications, properly parses them and then asks to the appropriate

module to start monitoring and notify changes of those proprieties.

Figure 3.1: High level ANARC architecture schema

The core module is made up of classes showed in Fig. 3.2 and listed

hereunder:

• Framework.java

• MultiCheck.java

• Rule.java

• PowerSaveTask.java

Android applications send one or more rules to the framework sending a

broadcast intent. The Framework.java class uses, indeed, a broadcast re-

ceiver FrameworkBroadcastReceiver that handle intents with one of the fol-

lowing action, it interacts properly with the core:

CHAPTER 3. THE ANARC SYSTEM 25

Figure 3.2: High level ANARC’s core structure

• com.framework. START FRAMEWORK

It checks if an instance of Framework.java was previously created then

send to the framework the rule list received from the Android appli-

cation.

• com.framework.STOP FRAMEWORK

It removes all rules already submitted and asks to the core to stop

itself and all the modules.

• com.framework.removeRULE

It sends to the core the RID of the rule to remove.

When the constructor of Framework class is called, It instantiates all

the modules and retrieves all the properties that can be monitored form

the ANARC system. This step is necessary because it permits to check the

consistency of the rules sent from third part Android application. When

FrameworkBroadcastReceiver notifies the new rules arrive, the core parses

the rule and populates a hash map that links each parsed rule to a unique

Rule IDentificator.

Every time a property changes his value, the framework core executes

some important optimizations: It creates a new thread for each property

changed. Every thread will verify if the new values makes change the state

CHAPTER 3. THE ANARC SYSTEM 26

of one or more rule (from true to false or vice versa) then execute, if any,

the action specified inside the rule for the positive or negative edge of the

change. We should be aware that only rules that contain that property

will be evaluated. Efficiency is obtained using hash maps; since it will be

necessary search among all monitored properties we decided to use hash

maps to optimize the search. It is a good solution because property is

unique, dense in range and lie in a small range.

For evaluate expressions, we decide to use JEVAL an advanced library for

adding high-performance, mathematical, boolean and functional expression

parsing and evaluation. It gives also the possibility to use built-in function

and custom function, too. The operating principles will be described in

Appendix A.2.

Power consumption reduction was one of our mainly goals. The ANARC

framework periodically tries to pause all unnecessary modules. A module

can be paused when there no property to be monitored anymore. If a new

rule will added the module is resumed.

In Appendix A.1 a more detailed analysis on core classes and methods.

3.3.2 The modules

The ANARC system must be easy to extend so we give to the programmer

the possibility of built custom modules. Each module must implement the

interface ModuleInterface that define those classes must be implemented:

• monitoredProperties

It returns an ArrayList which contain all the property that is moni-

torable inside the module.

• PauseModule

When it is invoked, this method executes the necessary instructions in

order to pause the module.

• getStatusModule

It returns a boolean value that represents the current status of the

module:

– running

– paused

CHAPTER 3. THE ANARC SYSTEM 27

• unregister

When it is invoked, this method executes the necessary instructions

in order to stop properly the module (e.g. stop services and all moni-

toration activities).

As shown in Fig. 3.1, the module communicates following an asyn-

chronous paradigm with the core. The core asks to be informed of every

time a certain property changes its value. The module, on the other hand,

starts to check the changes and sends a message to the core only when nec-

essary. This scheme permits to distribute the workload among the modules

without overcharging the core.

Inside ANARC framework there are three modules already connected to

the core and so ready to use.

3.4 Component interaction

In this section, in light of the considerations that we have shown up to this

point, we will now identify principal modalities of communication among

modules, core and third part Android applications. Fig. 3.3 shows an high

Figure 3.3: High level sequence diagram.

level sequence diagram. The Fig. 3.9 effectively explains how, over the

time, they are interacting and communicating one another. In particular

the previous diagram follows these steps:

CHAPTER 3. THE ANARC SYSTEM 28

1. The developer builds his own Android Application integrating ANARC

library.

2. The user starts the third part Android application.

3. The third part Android application sends his rules.

4. If a rule become true or get back to false, the core send a broadcast

intent to the third part application linked to the rule.

5. The Android application may notify the user.

3.4.1 Network Module

As ANARC system is a framework network-aware, the most important mod-

ule is the Network one. It can detect changes of the properties listed in

Table A.1.

As ANARC is a network-aware library, it will make an extensive use of

Internet features. The Internet Protocol (IP) is the foremost communication

protocol amongst all Internet protocol for relaying datagrams across the

network. IP identifies hosts and, jointly TCP, delivers packets from a source

host to a destination host. An IP address is typically a binary number

expressed in a human readable dot-decimal numeric notation; in particular

the:

Internet Protocol Version 4 (IPv4) addresses are commonly written us-

ing the quad-dotted notation of four decimal integers, ranging from 0

to 255 each. An Ipv4 address consists of 32 bits, which may be divided

into four octets.

Internet Proptocol Version 6 (IPv6) An IPv6 address is represented as

eight groups of four hexadecimal digits, each group representing 16

bits (two octets). The groups are separated by colons (:). An IPv6,

in contrast to IPv4, addresses have a size of 128 bits. Therefore, IPv6

has a vastly enlarged address space compared to IPv4.

An IP address is a unique identifier given to a single device on an IP

network.

On top of that, we define two important custom functions:

CHAPTER 3. THE ANARC SYSTEM 29

Figure 3.4: High level Network module structure

• ipRange function checks if IP to check belongs to a continuous IP

address range or, dually, if it is between IP start and IP end. IP

addresses need to be in dot-decimal notation and could be both IPv4

and IPv6.

• Subnet function checks if an IP address belongs to a given subnet/-

mask. IP addresses need to be in dot-decimal notation and could be

both IPv4 and IPv6.

The Fig. 3.4 describes the high level structure of the network module

(for a more detailed structure see Appendix A.5.1). It is formed by three

java classes:

• NetworkModule

This is the main class of the module. It has to implements the inter-

face ModuleInterface as pointed out in Sec. 3.3.2 in this way it can

inherit the methods monitoredProperties, PauseModule, ResumeMod-

ule and unregister. When the default constructor is invoked, it starts

the service NetworkMonitoringService and then it waits for messages

from the broadcast receiver NetworkStateRecevier. This class commu-

nicates to ANARC’s core, asynchronously, when a property changes

its values, indeed, it receives a broadcast intent from NetworkStatetRe-

ceiver and then updates all variables related to network connectivity

(See table in Appendix A.5.1.

CHAPTER 3. THE ANARC SYSTEM 30

• NetworkMonitoringService

This service is started sticky from NetworkModule that means it can be

explicitly started and stopped as needed from NetworkModule. Using

a listener, the PhoneStateListener and a TelephonyManager object,

both provided from Android API, the service is able to monitor the

properties as shown in Tab. A.2. The activator method is invoked at

the end of onCreate process.

• NetworkStatetReceiver

This broadcast receiver receives intents from the Android system since

it is registered inside the Manifest.xml for these actions: android.net.CONNECTIVITY CHANGE,

android.net.wifi.RSSI CHANGED, android.net.wifi.SCAN RESULTS.

3.4.2 Hardware Module

Hardware module permits to ANARC framework to monitor changes in

hardware configuration and state.

Figure 3.5: High level Hardware module structure

This module is formed by three java classes:

• HardwareModule

This is the hardware module’s main class. It implements the interface

ModuleInterface as pointed out in Sec. 3.3.2 and inherits the meth-

ods monitoredProperties, PauseModule, ResumeModule and unregister.

CHAPTER 3. THE ANARC SYSTEM 31

When the default constructor is invoked, it starts the HardwareMoni-

toringService sticky service.

The methods getHealtString, getPluggedString, getBatteryStatusString,

getBluetoothString and getWifiString are used to convert integer codes

in human readable string. checkHWChanges checks all properties in

Tab. A.3 and updates them values, if changed. This function is in-

vokes every time the HardwareStateReceiver receives an intent from

the system.

• HardwareMonitoringService

This service is started sticky from HardwareModule. Using a PhoneS-

tateListener and a gpsListener objects, both provided from Android

API, the service is able to monitor the properties as shown in Tab.

A.4.

• HardwareStateReceiver

This broadcast receiver receives intents from the Android system since

it is registered inside the Manifest.xml for these actions:

android.net.wifi.wifi state changed,

android.bluetooth.adapter.action.state changed and

android.intent.action.battery changed.

3.4.3 Geographical Module

If monitoring of geographical attributes is fundamental for a context-aware

system, it is true even more for a network-aware system as ANARC.

Since Internet is a network-of-networks that consists of millions of pri-

vate, public, academic, business, and government networks, of local to global

scope, that are linked by a broad array of electronic, wireless and optical

networking technologies is very much in the interest of ANARC analyzing

these networks with regard to different geographical standpoints. More-

over, Smartphone applications made easy for users moving across Internet,

collecting information and analyzing them in a real-time way.

The ANARC’s geografical module structure is shown in Fig. 3.6.

The ANARC’s geographical diagram class shown in Fig. A.4 shows these

classes:

• GeoModule.java

CHAPTER 3. THE ANARC SYSTEM 32

Figure 3.6: Geographical module diagram class

This is the geographical module’s main class. It implements the in-

terface ModuleInterface as pointed out in Sec. 3.3.2 and inherits the

methods monitoredProperties, PauseModule, ResumeModule and un-

register. When the default constructor is invoked, it starts the Ge-

oMonitoringService service. Moreover, GeoModule.java implements

some methods which are designed to dynamically start or remove cir-

cular target areas from the monitoring set.

• GeoMonitoringService

This service is started sticky by the GeoModule, which means it can

be explicitly started and stopped as needed by the GeoModule. Using

jointly a LocationListener and the LocationManager provided from

Android API, it updates the properties in Tab.A.5 and uses a smart

update frequency choice as explained, as we’ll see in due course, uti-

lizing the checkDistanceFromCircular method.

• GeoStateReceiver

This class communicates to ANARC’s core, asynchronously, every time

the Android operating system trigger a proximity alarm intent in this

way ANARC core can be informed when the user cross a circular target

area.

The ANARC’s geographical module in addition to the control of proper-

ties (See Tab. A.5) such as position and speed adds, compared with network

and hardware modules it gives an extra level of logic.

CHAPTER 3. THE ANARC SYSTEM 33

It gives the possibility to manage circular geographical areas of interest

and trigger the entrance and the exit from them. The programmer musts

simply specify just latitude and longitude of the center and the radius.

As previous pointed out in Section 3.3.1 the reduction of power con-

sumption followed all the develop process. Saving power of smartphone’s

battery becomes important because of appearance of applications and tech-

nologies that consume more power such as GPS and Wi-Fi. Hereafter we

will show a smart method to save power during position tracking, it tries to

utilize GPS antenna only if the device is reasonably near to a circular area,

and otherwise it utilizes network localization methods. The idea behind this

service is to increase battery life by stopping power-consuming while user is

very far from the border of any circular area monitored by the framework at

the given time. Test conducted to evaluate the effectiveness of this service

on Android Smartphones shows there is a slight increase in battery life.

Location Sampling Rate is the time interval between two device’s location

update. A smaller window in which you listen for location updates means

less interaction location providers, thus, preserving battery life. But it also

allows for fewer locations from which to choose a best estimate. In order to

compensate for this situation, we focused on the following situation:

Figure 3.7: Distance from a circular area

In Fig. 3.7 A stand for location accuracy, D is the distance between the

device and the center of circular area, d is the distance between the device

and the target area’s perimeter.

The aim is dynamically change the localization method depending on

d value. Usually national air line flights minimum length is 400-500 km

(depending on country), so if a user is 400 km far from all circular area and

he catches a flight, he needs at least:

CHAPTER 3. THE ANARC SYSTEM 34

tlowerbound =
400km

850km
h

≈ 30 minutes (3.41)

This also means that it is unnecessary, for at least 30 minutes, using a

high accuracy localization method such as GPS. Despite the level of accuracy

for different providers varies significantly depending on available cells/satel-

lites in a geographical area, moving speed and environmental factors, it can

be estimates as:

• network location provider

– using cell location: accuracy varies from 200 meters to 2000 me-

ters

– using a Wi-Fi connection: estimated accuracy is ∼ 100 meters

• GPS location provider: from 3 meters to ∼ 50 meters.

provider =

network if d ≤ 2· A

GPS otherwise
(3.42)

Bearing in mind Fig. 3.7, we create the pseudo-algorithm shown in List.

3.6.

1

2 if(GSP is disables){

3 foreach(CircularArea){

4 calculate d = |D −R|;
5 if(d ' A){

6 turn on GPS;

7 break;

8 }

9 }

10 }

Listing 3.6: Pseudo-algorithm for smart geolocation

We choice to activate GPS only when d is twice A for take in account the

time required for a GPS receiver to acquire satellite signals.

To better understand the ”Is inside Target Region” meaning, analyze

the following diagram:

Looking at diagram in Fig.3.8, we can define that:

CHAPTER 3. THE ANARC SYSTEM 35

Figure 3.8: Monitored location trigger status and provider

Outside Region - Using network provider

When monitored location with accuracy radius is fully outside the

target location with its proximity radius (red example above) a coarse

accuracy is in line with Eq. (3.42) requirements.

Inside Region - Using GPS provider

When the current position’s accuracy area intersects the target loca-

tion with its proximity radius (yellow example above). According to

Eq. (3.42) the use of GPS is unavoidable.

Outside Region - Using GPS provider

When monitored location with accuracy radius is fully outside the

target area with its proximity radius (purple example above) but d �
2 ·A the localization method must use GPS antenna.

Inside Region - Using network provider

When monitored location with accuracy radius is fully inside the target

area with its proximity radius (grey example above) and d ≥ 2 ·A the

network localization provider is able to function properly.

Due to the approximate nature of position estimation, if the device passes

through the given area briefly, it is possible that no event will be fired.

Similarly, an event could be fired if the device passes very close to the given

area but does not actually enter it.

Android APIs define accuracy as the radius of 68% confidence. In other

words, if you draw a circle centered at a location’s latitude and longitude,

and with a radius equal to the accuracy, then there is a 68% probability

that the true location is inside the circle.

CHAPTER 3. THE ANARC SYSTEM 36

In statistical terms, it is assumed that location errors are random with

a normal distribution, so the 68% confidence circle represents one standard

deviation. Note that in practice, location errors do not always follow such

a simple distribution.

This accuracy estimation is only concerned with horizontal accuracy, and

does not indicate the accuracy of bearing, velocity or altitude if those are

included in this Location.

3.5 Example of use

In this section, it will be provided a useful explanation for built your custom

Android application.

Looking at Sections 3.3.1 and 3.3.2, now we can enhance the sequence di-

agram of Fig. 3.3. It is quite interesting understand the interaction between

ANARC core and modules.

1. One or more third part Android applications send rules to the ANARC

core.

2. The FrameworkBroadcastReceiver intercepts these messages and for-

wards them to the Framework class.

3. The Framework class parses the rules and asks to the appropriate

modules to start monitoring the properties specified from the client

applications.

4. When one of the monitored properties changes his values, the module

sends an asynchronous message to the Framework class.

5. The Framework class asks to the evaluator to evaluate the boolean

conditions (if any) which contain the changed property.

6. If necessary, the Framework class launches the action specified from

the third part applications.

Following the communication schema in Fig. 3.9, an application that

would use the ANARC library, inside onCreate method of the MainActivity

must (refer to List. 3.7):

1. create an intent and set as action:

CHAPTER 3. THE ANARC SYSTEM 37

Figure 3.9: Component interaction diagram.

CHAPTER 3. THE ANARC SYSTEM 38

• com.framework.START FRAMEWORK (line 44)

• or com.framework.removeRULE (line 65) or com.framework.STOP FRAMEWORK

(line 74).

2. put in the intent, as an extras, a string with one or more rule.

3. send a sendOrderedBroadcast for the com.framework.START FRAMEWORK

(line 55) or a sendBroadcast for the others actions.

4. create a BroadCastRecevier (lines 81-111). It is necessary to handle

responses send from the ANARC library every time you send rules to

it.

1 public class MainActivity extends Activity {

2

3 @Override

4 protected void onCreate(Bundle savedInstanceState) {

5 super.onCreate(savedInstanceState);

6

7 /*

8 * Create a string variable which contains the rules according

9 * the Rule Definition Language syntax.

10 */

11 String rules_to_send="<ruleList>

12 <RULE>

13 <WHEN>

14 <CONDITION>

15 boolean condition

16 </CONDITION>

17 <DOIFTRUE> action </DOIFTRUE>

18 <DOIFFALSE> action </DOIFFALSE>

19 <ONCHANGE>

20 <PROPERTY>

21 property to be monitored

22 </PROPERTY>

23 <DO> action </DO>

24 </ONCHANGE>

25 </WHEN>

26 <propertyList>

27 <PROPERTY>

28 property for which you want to know the value.

29 </PROPERTY>

30 <PROPERTY>

31 //another property

32 </PROPERTY>

CHAPTER 3. THE ANARC SYSTEM 39

33 </propertyList>

34 </RULE>

35 <RULE>

36 //another rule

37 </RULE>

38 </ruleList>";

39

40 /*

41 * Create an intent and set as action com.framework.START_FRAMEWORK

42 * or com.framework.STOP_FRAMEWORK or com.framework.removeRULE.

43 */

44 Intent intent_send= new Intent("com.framework.START_FRAMEWORK");

45 intent_send.putExtra("rulelist", rules_to_send);

46 /*

47 * Send an ordered broadcast, it allows you to receive data back

48 * from the broadcast. This is accomplished by supplying your

49 * own BroadcastReceiver when calling, which will be treated as a

50 * final receiver at the end of the broadcast, its

51 * onReceive(Context, Intent) method will be called with the result

52 * values collected from the other receivers.

53 */

54 AppBroadcastRCV appBroadcastRCV= new AppBroadcastRCV();

55 sendOrderedBroadcast(intent_send, null, appBroadcastRCV, null, 0 ,

null,null);

56

57 //

58

59 /*

60 * Broadcast the given intent to all interested BroadcastReceivers.

61 * This call is asynchronous; it returns immediately, and you will

62 * continue executing while the receivers are run. No results are

63 * propagated from receivers and receivers can not abort the

broadcast.

64 */

65 Intent intent_remove= new Intent("com.framework.removeRULE");

66 intent_remove.putExtra("RID", rid_to_remove);

67 sendBroadcast(intent_remove);

68

69 //

70 // DO SOMETHING

71 //

72

73 Intent intent_stop= new Intent("com.framework.STOP_FRAMEWORK");

74 sendBroadcast(intent_stop);

75

76 //

77

CHAPTER 3. THE ANARC SYSTEM 40

78

79 /*

80 * AppBroadcastRCV is your own BroadcastReceiver to treat as the

81 * final receiver of the broadcast.

82 */

83 public class AppBroadcastRCV extends BroadcastReceiver{

84

85 /*

86 * This method is called when the BroadcastReceiver is receiving an

87 * Intent broadcast. During this time you can use the other methods

88 * on BroadcastReceiver to view/modify the current result values.

89 * When it runs on the main thread you should never perform

90 * long-running operations in it (there is a timeout of 10 seconds

91 * that the system allows before considering the receiver to be

92 * blocked and a candidate to be killed).

93 */

94 @Override

95 public void onReceive(Context context, Intent intent) {

96

97 /*

98 * Retrieve the current assigned rule IDs as set by the

99 * previous receiver.

100 */

101 if(extras.containsKey("RIDS")){

102 ArrayList<Integer> RIDS = extras.getIntegerArrayList("RIDS");

103 if(!RIDS.isEmpty()){

104 for(int rid: RIDS){

105 Log.i("AppBroadcastRCV", "Received RID: " + rid);

106 }

107 }

108 else

109 Log.e("AppBroadcastRCV", "No RID received.");

110 }

111 }

112 }

Listing 3.7: Main activity structure example

CHAPTER 3. THE ANARC SYSTEM 41

3.6 Summary

This chapter has presented a network-aware library architecture consisting

of two logical components: ANARC core and add-on modules. Each of

these components is based on the dynamic environment surrounding the

users. The core module interacts with other application installed on de-

vice and manages all modules activities. The second components in the

architecture are the add-on module. They can easily build and link to the

ANARC core. Three of them are already implemented: network, hardware

and geographical module. One important attribute provided from a mobile

deice is location. A smart algorithm helps to extend battery life. ANARC

controls, also, delimited geographical areas. This chapter concluded with

an explanation on how an Android programmer can develop an application

which uses ANARC library.

Chapter 4

Applications

To show some possible usage of ANARC we illustrate two applications that

we implemented for Android, and we describe a third application that we

are planning to build. The first two applications are focused on the cellular

network coverage, while the third one is an application that automatically

logs in to known wireless networks that have an HTTP-based authentication.

We show the rules that these applications submit to ANARC, along with

some examples of execution.

4.1 Signal Coverage Map

Several applications exist on the Google Play Store, aiming at discovering

and mapping the coverage of cellular networks. Examples are Portolan Net-

work Tools [32], Root-Metrics CoverageMap [36] or NetRadar [37]. Typically

all these application rely on the contribution of users, which manually run

measurements that collect RSSI samples associated to GPS samples. This

strategy is driven by the fact that the GPS unit usage is extremely expensive

in terms of battery consumption, thus its control is left to the user. How-

ever, this can result in having areas that are oversampled and areas that

are not sampled at all [38]. Moreover, in order to speed up the collection

process, it would be desirable to automate the collection of samples in the

areas of interest. With the help of ANARC we built a simple application

that automatically collects RSSI samples associated to GPS samples when

the smartphone is in one or more previously specified circular areas. Listing

4.1 contains the list of rules that the application submits to ANARC. The

42

CHAPTER 4. APPLICATIONS 43

rules specify that the application has to be notified when the smartphone is

in the area of interest, each time that the cell identificator changes. ANARC

must then return the current geographic position, cellID and ASU value. In

order not to consume too much battery when monitoring the smartphone’s

position, ANARC implements an optimization based on a hybrid approach

described in Sec. 3.4.3.

1 <!--

2 Refer to Sec. 3.2 for the strucuture of the rule list

3 -->

4 <ruleList>

5 <RULE>

6 <WHEN>

7 <!--

8 Test if the user is inside a circular area with

radius 800 meters centred in Pisa or a a circular

area with radius 3 kilometres centred in Livorno.

See Appendix A.3 for further function supported by

the library and example of use.

9 -->

10 <CONDITION>

11 CircularArea(43.721377,10.389909, 800) ||

CircularArea(43.5435, 10.325011, 3000)

12 </CONDITION>

13 <DOIFTRUE>

14 com.usingframework.RSSI.getAreaAlarmTrue

15 </DOIFTRUE>

16 <DOIFFALSE>

17 com.usingframework.RSSI.getAreaAlarmFalse

18 </DOIFFALSE>

19 <ONCHANGE>

20 <!--

21 When the boolean condition is true, start

monitoring cellID changes.

22 -->

23 <PROPERTY>

24 net.cellular.cellID

25 </PROPERTY>

26 <DO>

27 com.usingframework.RSSI.getSignalASU

28 </DO>

29 </ONCHANGE>

CHAPTER 4. APPLICATIONS 44

30 </WHEN>

31 <!--

32 List of the additional couple key-value to return

when the core launches an action (See Tables A.1,
A.2, A.3, A.4 and A.5 inside Sec. A.5).

33 -->

34 <propertyList>

35 <PROPERTY>

36 geo.position.latitude

37 </PROPERTY>

38 <PROPERTY>

39 geo.position.longitude

40 </PROPERTY>

41 <PROPERTY>

42 geo.position.accurancy

43 </PROPERTY>

44 <PROPERTY>

45 net.signal.ASU

46 </PROPERTY>

47 <PROPERTY>

48 net.cellular.NetworkOperatorName

49 </PROPERTY>

50 </propertyList>

51 </RULE>

52 </ruleList>

Listing 4.1: Signal Coverage Map rule

The main activity (Fig. 4.1a) allows the user to send rules to the framework,

remove a rule previously submitted, show the coverage map and edit the

circular target areas. The user, indeed, can decide how many areas must be

or not monitored and the logical operator among them (Fig. 4.1b). Tapping

on ”Remove rule” button, the user can select which rule ANARC library will

not monitor anymore. Selecting the ”Show map” button, the application

show the current coverage map (Fig. 4.1c). Each sample when tapped

shows some useful information (cellID, ASU, Network operator name).

When the application receives am advice, it sends all the collected data

to a remote database. It could be useful for infer some a posteriori statistic

or information.

CHAPTER 4. APPLICATIONS 45

(a) Main activity (b) Areas editor (c) Sample map

Figure 4.1: Screenshots

4.1.1 MainActivity.java

In order to provide an additional example, in List. 4.2 we show how we

customized the general structure in List. 3.7 aim to reach our purposes.

The main activity of Coverage Map App contains a set of buttons as

show in Fig. 4.1a, so it is necessary to use an OnClickListener (referring

to List. 4.2 lines 15-23, 25-31, 33-42, 44-56 and 58-68); in that way, the

buttons can react when user clicks on them.

CHAPTER 4. APPLICATIONS 46

1 public class MainActivityTest extends Activity {

2

3 //

4

5 String rules_to_send;

6

7 @Override

8 protected void onCreate(Bundle savedInstanceState) {

9 super.onCreate(savedInstanceState);

10

11 rules_to_send= /* rule as described in List. 4.1 */ ;

12

13

14 /*

15 * When the user clicks on the "Settings" button the

16 * MainActivity launches the AddCircleActivity activity

17 * for which it would like a result when it finished. See the

screenshot in Fig. 4.1b

18 */

19 settingsButton.setOnClickListener(new OnClickListener() {

20 Intent intent= new

Intent(MainActivityTest.getIstance().getApplicationContext(),

21 AddCircleActivity.class);

22

23 @Override

24 public void onClick(View v) {

25 startActivityForResult(intent, 1);

26 }

27 });

28

29

30 /*

31 * When the user click on the "Send Rules" button, the

32 * MainActivity send the rules to ANARC library using

33 * the sendRuleToFramework method.

34 */

35 startButton.setOnClickListener(new OnClickListener() {

36

37 @Override

38 public void onClick(View v) {

39 sendRuleToFramework();

40 }

41 });

42

CHAPTER 4. APPLICATIONS 47

43

44 /*

45 * When the user click on the "Stop Framework" button, the

46 * MainActivity broadcast the intent_stop to all interested

47 * BroadcastReceivers and then remove all the previously

48 * assigned RIDs (line 54) .

49 */

50 endButton.setOnClickListener(new OnClickListener() {

51 Intent intent_stop= new Intent("com.framework.STOP_FRAMEWORK");

52

53 @Override

54 public void onClick(View v) {

55 registered_rid.clear();

56 mContext.sendBroadcast(intent_stop);

57 editText.setText("Stop framework\n");

58 }

59 });

60

61 /*

62 * When the user click on the "Remove Rule" button, the

63 * MainActivity invokes the showListRule method. It shows

64 * a pop-up list by which the user can choice the rule RID

65 * to remove.

66 */

67 removeButton.setOnClickListener(new OnClickListener() {

68

69 @Override

70 public void onClick(View v) {

71 int dim;

72 if((dim=registered_rid.size())>0){

73 showListRule();

74 }

75 else{

76 editText.setText("");

77 }

78 }

79 });

80

CHAPTER 4. APPLICATIONS 48

81

82 /*

83 * When the user click on the "Show Map" button, the

84 * MainActivity launches the AddCircleActivity activity.

85 * It shows to the user a map with the Circular Area

86 * monitored (if any) and the collected samples.

87 * See the screenshot in Fig. 4.1c

88 */

89 mapButton.setOnClickListener(new OnClickListener() {

90

91 @Override

92 public void onClick(View arg0) {

93 try{

94 Intent intent_map= new

Intent(MainActivityTest.this.getApplicationContext(),

RSSI_map.class);

95 startActivity(intent_map);

96 }

97 catch(Exception e){

98 e.printStackTrace();

99 }

100 }

101 });

102 }

103

CHAPTER 4. APPLICATIONS 49

104 /*

105 * This method is used to send new rules to the ANARC

106 * library when the user presses the "Send Rule" button

107 * in the MainActivity.

108 */

109 private void sendRuleToFramework(){

110 Intent intent= new Intent("com.framework.START_FRAMEWORK");

111 if(!locationManager.isProviderEnabled(LocationManager.GPS_PROVIDER)){

112 alertGps();

113 }

114 else{

115

116 /*

117 * If the user chose some custom circular area inside the

118 * AddCircleActivity, the variable "result" contains them,

119 * otherwise it is empty. In this case the default settings

120 * will be used.

121 */

122 if(!result.equals("")){

123 "<ruleList>"

124 + "<RULE>"

125 + " <WHEN>"

126 + " <CONDITION>"

127 // Use custom Circular Areas

128 + result

129 + " </CONDITION>"

130 + " <DOIFTRUE>"

131 + " com.usingframework.RSSI.getAreaAlarmTrue"

132 + " </DOIFTRUE>"

133 + " <DOIFFALSE>"

134 + " com.usingframework.RSSI.getAreaAlarmFalse"

135 + " </DOIFFALSE>"

136 + " <ONCHANGE>"

137 + " <PROPERTY>"

138 + " net.cellular.cellID"

139 + " </PROPERTY>"

140 + " <DO> "

141 + " com.usingframework.RSSI.getSignalRSSI "

142 + " </DO>"

143 + " </ONCHANGE>"

144 + " </WHEN>"

145 + " <propertyList>"

146 + " <PROPERTY>"

147 + " geo.position.latitude"

148 + " </PROPERTY>"

149 + " <PROPERTY>"

150 + " geo.position.longitude"

151 + " </PROPERTY>"

152 + " <PROPERTY>"

CHAPTER 4. APPLICATIONS 50

153 + " geo.position.accurancy"

154 + " </PROPERTY>"

155 + " <PROPERTY>"

156 + " net.cellular.ASU"

157 + " </PROPERTY>"

158 + " <PROPERTY>"

159 + " net.networkAccess.RoamingState"

160 + " </PROPERTY>"

161 + " <PROPERTY>"

162 + " net.cellular.NetworkOperatorName"

163 + " </PROPERTY>"

164 + " </propertyList>"

165 + " </RULE>"

166 + "</ruleList>";

167

168 }

169

170 /*

171 * Send the rules to the ANARC library

172 */

173 intent.putExtra("rulelist", rules_to_send);

174

175 AppBroadcastRCV appBroadcastRCV= new AppBroadcastRCV();

176 editText.append("Adding rule... \n");

177 sendOrderedBroadcast(intent, null, appBroadcastRCV, null, 0 ,

null,null);

178 }

179 }

180

181 /*

182 * This method show a dialog which permits to user to

183 * choose which rule must be removed or "All" .

184 */

185 private int showListRule(){

186 int ret=-1;

187 if(registered_rid.size()>0){

188 final String[] items = new String[registered_rid.size()+1];

189 items[0]="All";

190 int i=1;

191 for(int rid: registered_rid){

192 items[i]=String.valueOf(rid);

193 i++;

194 }

195

CHAPTER 4. APPLICATIONS 51

196 AlertDialog.Builder builder = new AlertDialog.Builder(this);

197 builder.setTitle("Make your selection");

198 builder.setItems(items, new DialogInterface.OnClickListener() {

199

200 public void onClick(DialogInterface dialog, int item) {

201 Toast.makeText(MainActivityTest.getIstance().getApplicationContext(),

"Selected: " + items[item], Toast.LENGTH_SHORT).show();

202 //If "item==0" the user selected the "All" option.

203 if(item==0){

204

205 //Broadcast an intent for each rule identificator to

remove.

206 for(int rid : registered_rid){

207 Intent remove_frame_intent= new

Intent("com.framework.removeRule");

208 remove_frame_intent.putExtra("RID", rid);

209 editText.append("Removed: " + rid + "\n");

210 registered_rid.remove(registered_rid.indexOf(rid));

211 // Ask to ANARC libary to remove the rule with ID "rid"

212 MainActivityTest.getIstance().sendBroadcast(remove_frame_intent);

213 }

214 }

215 else{

216 // The user selected a specific RID, broadcast an

intent to remove it.

217 Intent remove_frame_intent= new

Intent("com.framework.removeRule");

218 remove_frame_intent.putExtra("RID",

Integer.parseInt(items[item]));

219 editText.append("Removed: " + items [item] + "\n");

220 registered_rid.remove(registered_rid.indexOf(Integer.parseInt(items[item])));

221 MainActivityTest.getIstance().sendBroadcast(remove_frame_intent);

222 }

223 }

224 });

225 AlertDialog alert = builder.create();

226 alert.show();

227 }

228 else

229 Toast.makeText(this, "no rules to remove",

Toast.LENGTH_SHORT).show();

230 return ret;

231 }

232

233 //

234

CHAPTER 4. APPLICATIONS 52

235

236 /*

237 * When the Coverage Map App is terminating, it broadcasts

238 * as many intents are necessary for removing all active rules.

239 */

240 @Override

241 protected void onDestroy(){

242 super.onDestroy();

243

244 for(Integer rid_elem : registered_rid){

245 Intent remove_frame_intent= new

Intent("com.framework.removeRule");

246 remove_frame_intent.putExtra("RID", rid_elem);

247 editText.append("Removed: " + rid_elem + "\n");

248 registered_rid.remove(rid_elem);

249 sendBroadcast(remove_frame_intent);

250 }

251 }

252

253 /*

254 * The onActivityResult is called when an activity you launched

255 * exits, giving you the requestCode you started it with, the

256 * resultCode it returned, and any additional data from it.

257 * The resultCode will be RESULT_CANCELED if the

258 * AddCircleActivity explicitly returned that, didn’t return any

259 * result, or crashed during its operation. You will receive this

260 * call immediately before onResume() when the MainActivity

261 * is re-starting.

262 */

263 @Override

264 protected void onActivityResult(int requestCode, int resultCode,

Intent data) {

265 if (requestCode == 1) {

266 if(resultCode == RESULT_OK){

267 result=data.getStringExtra("result");

268 ArrayList<Area> lista_aree= (ArrayList<Area>)

data.getSerializableExtra("lista_aree");

269

270 //.............

271

272 sendRuleToFramework();

273 }

274 else if (resultCode == RESULT_CANCELED) {

275 //Write your code if there is no result

276 //

277 // Reset to default settings

278 }

279

280 //

CHAPTER 4. APPLICATIONS 53

281

282 /*

283 * If the GPS localization methos is disable, this method

284 * asks to the user to enable it.

285 */

286 public synchronized void alertGps(){

287 AlertDialog.Builder builder = new AlertDialog.Builder(this);

288 builder.setMessage("Enable GPS first, please!")

289 .setCancelable(false)

290 .setPositiveButton("Yes", new DialogInterface.OnClickListener()

{

291 public void onClick(DialogInterface dialog, int id) {

292 Intent intent = new

Intent(Settings.ACTION_LOCATION_SOURCE_SETTINGS);

293 startActivity(intent);

294 }

295 })

296 .setNegativeButton("No", new DialogInterface.OnClickListener() {

297 public void onClick(DialogInterface dialog, int id) {

298 Intent backtoHome = new Intent(Intent.ACTION_MAIN);

299 backtoHome.addCategory(Intent.CATEGORY_HOME);

300 backtoHome.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

301 startActivity(backtoHome);

302 dialog.cancel();

303

304 }

305 });

306 AlertDialog alert = builder.create();

307 alert.show();

308 }

309 }

Listing 4.2: Main activity source code

Chapter 5

Conclusion

5.1 Contributions

The purpose of this thesis has been to implement an Android library that

facilitates the developers during the creation of network-aware applications.

We reach our goals proving ANARC system of two major features.

The first one is to perform a reactive and homogeneous monitoring of

a heterogeneous resource set. Modern smartphones are equipped with a

mixed set of sensors. So it is possible to analyze the environment surround-

ing the user (light sensor, microphone, etc.), the network connections (Wi-Fi

antenna, Bluetooth antenna, etc.), the geographical position (e.g. GPS an-

tenna) or the hardware state (battery health, battery state, etc.). ANARC

allows developer to retrieve information from the sensors using a simple

high level language. The mainly advantage is that using this approach the

developer can receive information in the same way from each resource. In

other words, he can retrieve data from the light sensor in the same way he

retrieves data from the Wi-Fi antenna.

The second feature is the ability to react in real-time to the environmen-

tal changes. Normally, an Android application uses a polling approach: it

periodically senses the environment in order to detect changes and to react

to them. This approach causes, in some cases, the loss of relevant data or, in

other cases, the creation data redundancy. The ANARC reactive approach,

instead, allows a constantly monitor the environment changes and reacting

to them immediately. This behavior permits to generate data only when it

is really necessary.

54

CHAPTER 5. CONCLUSION 55

To our knowledge, no other open-source Android library provides these

functionalities.

5.2 Future Work

Future improvements are possible for this library through different points of

view. First, it could be interesting to design and to implement additional

modules, e.g.:

Place - A place is similar to a Point Of Interest (POI) which describes

information about locations such as name, category, unique identifier,

or civic address. To be more precise, a place is a human construct

which typically has a coarse level of spatial granularity. Places are

generally larger scale administrative constructs, either informally or

formally defined. Countries, states, counties, districts, neighborhoods

and postal codes or telephone area codes are all places. Places are also

informal or colloquially defined, such as the Bay Area in the United

States, home or office. Places have spatial relationships with parents,

children, and adjacencies and contained by semantics. The Place mod-

ule should be able to assign a human readable label to geographical

areas interesting for the user. For instance, if a device every morning

moving between a set of tower cell, the system must be able to infer

that the user is moving from home to the office using that specific

route.

Time - The module should implement some mechanisms in order to permit

the scheduling of specific tasks.

Second, it should be useful studying the feasibility of the ANARC im-

plementation using other operating systems, e.g. iOS. It is possible that

different operating systems can permit a different access to the sensor and

their information.

Third, ontology languages could be introduced in way of providing vo-

cabulary and structure for describing information sources.

Appendix A

Implementation details

A.1 ANARC library classes and methods

The UML diagram class in Fig. A.1 provides an overview of the ANARc’s

core by describing the objects and classes inside the system and the rela-

tionships between them.

Figure A.1: Core class

Most significant methods used in Framework class are:

• ArrayList¡Integer¿ addRules(String xml string):

Adds rules read from an xml formatted string and assigns a RID to

each rule read.

56

APPENDIX A. IMPLEMENTATION DETAILS 57

• int RIDgen():

It have the task of generate unique integer identificator for each rule

received from customer Android applications.

• void parsingRuleForEvaluator(int rid, String string rule) :

It parses the parameter string rule as JEVAL evaluator required.

• void removeRule(int RID):

removes the rule identified by RID.

• void checkChanges(String property, Object value):

checks if the value of the property has changed, in that case evaluates,

also, all the rules that contain property.

• void unregister():

stops all modules’ activity.

The explanation of some data structured used is given hereunder:

• boolean frameworkStatus

specifies if the framework is running or not.

• ConcurrentHashMap¡String, ArrayList¡Integer¿¿ hm property RIDs

links each property with the RIDs in which it appears.

• ConcurrentHashMap¡String, String¿ hm property currentValue

links each property with his current value.

• ConcurrentHashMap¡Integer, Boolean¿hm rid value

links each RID with the current boolean value of the rule.

• ConcurrentHashMap¡Integer, Rule¿ hm rid rule

links each RID to a Rule objects.

• ConcurrentHashMap¡String, String¿hm property currentValue: links

each property with his current value.

• ArrayList¡CircularArea¿ list circularArea

list of current CircularArea object.

• ConcurrentHashMap¡Integer, String¿ hm rid onchangeThreshold

links each RID to a threshold, if any.

APPENDIX A. IMPLEMENTATION DETAILS 58

A.2 JEVAL evaluator library

JEVAL uses as operator precedence (from highest to lowest):

• + unary plus, - unary minus, ! boolean not

• ∗ multiplication, \division, % modulus

• + addition, - subtraction

• < less than, <= less than or equal, > greater than, >= greater than

or equal

• = equal, ! = not equal

• && boolean and

• —— boolean or

JEVAL evaluator follow these main giudeline in order to evaluate an

expression:

• Spaces are ignored when parsing.

• The expression is evaluated as one or more sub-expressions.

• Sub-expressions within open parentheses and closed parentheses are

evaluated before other parts of the expression.

• Inner most sub-expression are evaluated first working outward.

• Sub-expressions at the same level are evaluated from left to right.

• When evaluating expressions and sub-expressions, operators are eval-

uated with the following precedence listed before.

• Operators with the same precedence are evaluated from left to right.

• Once the expression is parsed, Variables are replaced with their values.

The evaluator has its own internal variable map that it used to resolve

variable values. It’s possible to choose to set you own variable resolver

on your evaluator instancein this case variables resolved by a custom

resolver will override any variables in the evaluator’s inner variable

map.

• Functions are executed and replaced with their results. Function ar-

guments are each individually evaluated as sub-expressions that are

APPENDIX A. IMPLEMENTATION DETAILS 59

comma separated. This gives you the ability to use nested functions

in your expressions.

• Once all variables and functions are resolved, then the parsed expres-

sion and sub-expressions are evaluated according to operator prece-

dence.

Function and variable names can not break any of the following rules:

• can not start with a number

• can not contain an operator (see the above list of operators)

• can not contain a quote character - single or double

• can not contain a brace character - open or closed

• can not contain one of the following special characters: #, ˜, ˆ, !

Expressions can contain different types of expressions but numeric and

string types can not be mixed in a left / right operand pair. Also, if an

expression does not change, it will not be parsed each time an evaluation is

required. Therefore, variables values can change so the expression can be

evaluated without having to re-parse it. The string used to start variables,

”#”, can not appear in an expression.

A.3 ANARC Functions

As ANARC born as a network-aware library, it implements and exposes the

following functions:

• EqualsIgnoreCase

usage: equalsIgnoreCase(string one, string two);

example: equalsIgnoreCase(’hello world’, ’HELLO WORLD’);

return: true or false

• Equals

usage: equals(string one, string two);

example: equals(’hello world’, ’hello world’);

return: true or false

• Num GreaterThan

usage: num gt(’numeric value one’, ’numeric value two’); ex-

ample: num gt(’3’,’2’);

return: true or false

APPENDIX A. IMPLEMENTATION DETAILS 60

• Num LowerThan

usage: num lt(’numeric value one’, ’numeric value two’); ex-

ample: num lt(’3’,’2’); return: true or false

• Num Equals

usage: num equals(’numeric value one, numeric value two’);

example: num equals(’3’, ’2’); return: true or false

• IpRange

Checks if ip to check belongs to a continuous IP address range and if

it is between ip start and ip end.

usage: ipRange(ip to check, ip start, ip end); example: ipRange(’10.0.2.15’,

’10.0.2.0’, ’10.0.2.30’); return: true or false

• Subnet

Checks if ip to check belongs to a given subnet/mask. usage: sub-

net(ip to check, subnet, mask); example:

subnet(’10.0.2.15’, ’10.0.2.0’, ’24’); return: true or false

• CircularArea

usage: CircularArea(center latitude, center longitude, radius);

example: CircularArea(43.721387,10.389901, 2000);

return: true if the user is inside the specified area, false otherwise.

A.4 Rule Definition Language

A.4.1 Schema Definition Language

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

attributeFormDefault="unqualified">

3 <xs:element name="ruleList">

4 <xs:complexType>

5 <xs:sequence>

6 <xs:element name="RULE">

7 <xs:complexType>

8 <xs:sequence>

9 <xs:element name="WHEN" minOccurs="0">

10 <xs:complexType>

APPENDIX A. IMPLEMENTATION DETAILS 61

11 <xs:sequence>

12 <xs:element name="CONDITION"

type="xs:string"></xs:element>

13 <xs:element name="DOIFTRUE" type="xs:string"

minOccurs="0"></xs:element>

14 <xs:element name="DOIFFALSE" type="xs:string"

minOccurs="0"></xs:element>

15 <xs:element name="ONCHANGE" minOccurs="0">

16 <xs:complexType>

17 <xs:sequence>

18 <xs:element name="PROPERTY"

type="xs:string"></xs:element>

19 <xs:element name="DO"

type="xs:string"></xs:element>

20 <xs:element name="THRESHOLD" type="xs:string"

minOccurs="0"></xs:element>

21 </xs:sequence>

22 </xs:complexType>

23 </xs:element>

24 </xs:sequence>

25 </xs:complexType>

26 </xs:element>

27 <xs:element name="propertyList" minOccurs="0">

28 <xs:complexType>

29 <xs:sequence>

30 <xs:element name="PROPERTY" maxOccurs="unbounded"

type="xs:string"></xs:element>

31 </xs:sequence>

32 </xs:complexType>

33 </xs:element>

34 </xs:sequence>

35 </xs:complexType>

36 </xs:element>

37 </xs:sequence>

38 </xs:complexType>

39 </xs:element>

40 </xs:schema>

Listing A.1: list:xsdRulefile

APPENDIX A. IMPLEMENTATION DETAILS 62

Figure A.2: Network module class diagram

A.5 The modules

A.5.1 Network Module

The class diagram in Fig. A.2 shows the building blocks of the Network

module and relationships between its classes.

The NetworkModule class implements the following methods:

• checkNetChanges

When BroadcastStateReceiver receives an intent from the system, it

invokes this function. checkNetChanges checks all properties in Tab.

A.1 and updates them values, if changed.

• UpdateString(String property, String value)

It is called by previous method when it needs to update a string prop-

erty.

• UpdateInt(String property, int prev value, int value)

It is called by checkNetChanges when it needs to update an integer

property.

• getSubTypeName(int subTypeCode)

It converts subTypeCode, that is a a network-type-specific integer de-

APPENDIX A. IMPLEMENTATION DETAILS 63

scribing the sub-type of the network, in an human readable string.

See property net.networkAccess.mobileConnectionType in Tab.A.1

• getIP()

It gets current IP address and converts it into a human readable string.

A.5.2 Hardware Module

The class diagram in Fig. A.3 specifics attributes and methods of the hard-

ware module’s components previously presented in 3.4.2.

Figure A.3: Hardware module class diagram

The HardwareModule is able to monitor the properties show in Tab.

A.3.

The Tab. A.4 shows the HardwareMonitoringService monitorable prop-

erties.

A.5.3 Geographical Module

In addition to Sec. A.5.3 description, we show the UML class diagram (Fig.

A.4) and the description of two inner class of GeoMonitoringService.java:

APPENDIX A. IMPLEMENTATION DETAILS 64

Property name Values

net.ip.value
Current IP address value assigned to
the device.

net.networkAccess.status

CONNECTED
CONNECTING
DISCONNECTED
DISCONNECTING
SUSPENDED
UNKNOWN

net.networkAccess.
connectivityType

WIFI
MOBILE

net.networkAccess.
mobileConnectionType

1xRTT HSUPA
CDMA UMTS
EDGE EHRPD
EVDO 0 EVDO B
EVDO A HSPAP
GPRS IDEN
HSDPA UNKNOWN
HSPA

true/false

net.wifi.rssi
Current Wi-Fi RSSI value. It isn’t nor-
malized (but should be). Each vendor use
a difference range.

net.wifi.ssid Current Wifi SSID value.

Table A.1: Network module monitorable properties and values

APPENDIX A. IMPLEMENTATION DETAILS 65

Property name Values

net.cellular.cellID Current GSM Cell ID (CID)

net.cellular.LAC Current Location Area Code)

net.cellular.cdma.sysID Current system ID for CDMA networks.

net.cellular.cdma.netID Current network ID for CDMA networks.

net.cellular.cdma.bsID Current base station ID for CDMA networks.

net.cellular.RSSI Current RSSI value.

net.cellular.ASU Current ASU value.

net.cellular.status

STATE EMERGENCY ONLY
STATE IN SERVICE
STATE OUT OF SERVICE
STATE POWER OFF

Table A.2: NetworkMonitoringService monitorable properties and values

APPENDIX A. IMPLEMENTATION DETAILS 66

Property name Values

hw.wifi.state

DISABLED
DISABLING
ENABLED
ENABLING
UNKNOWN
ERROR

hw.bluetooth.state

OFF
TURNING OFF
ON
TURNING ON
ERROR

hw.battery.state

CHARGING
DISCHARGING
FULL
NOT CHARGING
STATUS UNKNOWN
ERROR

hw.battery.level Current battery level value.

hw.battery.health

COLD
DEAD
GOOD
OVER VOLTAGE
OVERHEAT
UNKNOWN
UNSPECIFIED FAILURE:
ERROR

hw.battery.plugged

AC
USB
WIRELESS
ERROR

Table A.3: Hardware module monitorable properties and values

APPENDIX A. IMPLEMENTATION DETAILS 67

Property name Values

hw.data.state

ACTIVITY DORMANT
CONNECTED
CONNECTING
SUSPENDED
DISCONNECTED
ERROR

hw.gps.status

FIRST FIX
SATELLITE STATUS
STARTED
STOPPED
ERROR

Table A.4: HardwareMonitoringService monitorable properties and values

• PauseLocationUpdateTask

In accordance with Eq. 3.41, It sends a message to the handler after

30 minutes have passed, in order to resume location tracking.

• mainTask

Two minutes later GPS antenna enabling event, this method checks if

GPS reached the satellites fix.

The GeoModule class can monitor the properties listed in Tab. A.5.

Property name Values

geo.position.latitude Current latitude value.

geo.position.longitude Current longitude value.

geo.position.altitude Current altitude value.

geo.position.speed Current speed value.

Table A.5: Geographical module monitorable properties and values

APPENDIX A. IMPLEMENTATION DETAILS 68

Figure A.4: Geographical module diagram class

Bibliography

[1] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith,

and P. Steggles, “Towards a better understanding of context and

context-awareness,” in Handheld and ubiquitous computing, pp. 304–

307, Springer, 1999.

[2] P. Makris, D. Skoutas, and C. Skianis, “A survey on context-aware

mobile and wireless networking: On networking and computing envi-

ronments’ integration,” 2012.

[3] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ran-

ganathan, and D. Riboni, “A survey of context modelling and reasoning

techniques,” Pervasive and Mobile Computing, vol. 6, no. 2, pp. 161–

180, 2010.

[4] M. Raento, A. Oulasvirta, R. Petit, and H. Toivonen, “Contextphone:

A prototyping platform for context-aware mobile applications,” Perva-

sive Computing, IEEE, vol. 4, no. 2, pp. 51–59, 2005.

[5] S. B. and T. M., “Disseminating active map infromation to mobile-

hosts,” IEEE Network, 1994.

[6] B. Schilit, N. Adams, and R. Want, “Context-aware computing applica-

tions,” in Mobile Computing Systems and Applications, 1994. WMCSA

1994. First Workshop on, pp. 85–90, IEEE, 1994.

[7] S. Hattori, T. Tezuka, and K. Tanaka, “Activity-based query refinement

for context-aware information retrieval,” in Digital Libraries: Achieve-

ments, Challenges and Opportunities, pp. 474–477, Springer, 2006.

[8] K. Lyytinen, Y. Yoo, U. Varshney, M. S. Ackerman, G. Davis, M. Avi-

tal, D. Robey, S. Sawyer, and C. Sorensen, “Surfing the next wave:

69

BIBLIOGRAPHY 70

design and implementation challenges of ubiquitous computing environ-

ments,” Communications of the Association for information systems,

vol. 31, no. 2004, pp. 697–716, 2004.

[9] K. Lyytinen and Y. Yoo, “Ubiquitous computing,” Communicationsof

the ACM, vol. 45, no. 12, p. 63, 2002.

[10] B. N. Schilit and D. Duchamp, “Adaptive remote paging for mobile

computers,” 1991.

[11] Z. Drey and C. Consel, “A visual, open-ended approach to prototyp-

ing ubiquitous computing applications,” in Pervasive Computing and

Communications Workshops (PERCOM Workshops), 2010 8th IEEE

International Conference on, pp. 817–819, IEEE, 2010.

[12] L. A. Suchman, Plans and situated actions: the problem of human-

machine communication. Cambridge university press, 1987.

[13] M. Weiser, “Some computer science issues in ubiquitous computing,”

Communications of the ACM, vol. 36, no. 7, pp. 75–84, 1993.

[14] R. Want, A. Hopper, V. Falcão, and J. Gibbons, “The active badge

location system,” ACM Transactions on Information Systems (TOIS),

vol. 10, no. 1, pp. 91–102, 1992.

[15] A. Harter and A. Hopper, “A distributed location system for the active

office,” Network, IEEE, vol. 8, no. 1, pp. 62–70, 1994.

[16] C. Qin, X. Bao, R. Roy Choudhury, and S. Nelakuditi, “Tagsense: a

smartphone-based approach to automatic image tagging,” in Proceed-

ings of the 9th international conference on Mobile systems, applications,

and services, pp. 1–14, ACM, 2011.

[17] C. Spelta, V. Manzoni, A. Corti, A. Goggi, and S. M. Savaresi,

“Smartphone-based vehicle-to-driver/environment interaction system

for motorcycles,” Embedded Systems Letters, IEEE, vol. 2, no. 2, pp. 39–

42, 2010.

[18] A. Beach, M. Gartrell, S. Akkala, J. Elston, J. Kelley, K. Nishimoto,

B. Ray, S. Razgulin, K. Sundaresan, B. Surendar, et al., “Whozthat?

evolving an ecosystem for context-aware mobile social networks,” Net-

work, IEEE, vol. 22, no. 4, pp. 50–55, 2008.

BIBLIOGRAPHY 71

[19] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper, and

M. Pinkerton, “Cyberguide: A mobile context-aware tour guide,” Wire-

less networks, vol. 3, no. 5, pp. 421–433, 1997.

[20] A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower, I. Smith,

J. Scott, T. Sohn, J. Howard, J. Hughes, F. Potter, et al., “Place lab:

Device positioning using radio beacons in the wild,” in Pervasive Com-

puting, pp. 116–133, Springer, 2005.

[21] M. Azizyan, I. Constandache, and R. Roy Choudhury, “Surroundsense:

mobile phone localization via ambience fingerprinting,” in Proceedings

of the 15th annual international conference on Mobile computing and

networking, pp. 261–272, ACM, 2009.

[22] D. H. Kim, Y. Kim, D. Estrin, and M. B. Srivastava, “Sensloc: sensing

everyday places and paths using less energy,” in Proceedings of the 8th

ACM Conference on Embedded Networked Sensor Systems, pp. 43–56,

ACM, 2010.

[23] A. Carroll and G. Heiser, “An analysis of power consumption in a smart-

phone,” in Proceedings of the 2010 USENIX conference on USENIX

annual technical conference, pp. 21–21, 2010.

[24] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T. Campbell,

“The jigsaw continuous sensing engine for mobile phone applications,”

in Proceedings of the 8th ACM Conference on Embedded Networked

Sensor Systems, pp. 71–84, ACM, 2010.

[25] J. Paek, J. Kim, and R. Govindan, “Energy-efficient rate-adaptive

gps-based positioning for smartphones,” in Proceedings of the 8th in-

ternational conference on Mobile systems, applications, and services,

pp. 299–314, ACM, 2010.

[26] Z. Zhuang, K.-H. Kim, and J. P. Singh, “Improving energy efficiency

of location sensing on smartphones,” in Proceedings of the 8th in-

ternational conference on Mobile systems, applications, and services,

pp. 315–330, ACM, 2010.

[27] K. Lin, A. Kansal, D. Lymberopoulos, and F. Zhao, “Energy-accuracy

trade-off for continuous mobile device location,” in Proceedings of the

BIBLIOGRAPHY 72

8th international conference on Mobile systems, applications, and ser-

vices, pp. 285–298, ACM, 2010.

[28] I. Constandache, S. Gaonkar, M. Sayler, R. R. Choudhury, and L. Cox,

“Enloc: Energy-efficient localization for mobile phones,” in INFOCOM

2009, IEEE, pp. 2716–2720, IEEE, 2009.

[29] Y. Ma, R. Hankins, and D. Racz, “iloc: a framework for incremental

location-state acquisition and prediction based on mobile sensors,” in

Proceedings of the 18th ACM conference on Information and knowledge

management, pp. 1367–1376, ACM, 2009.

[30] M. Balman and S. Byna, “Open problems in network-aware data man-

agement in exa-scale computing and terabit networking era,” in Pro-

ceedings of the first international workshop on Network-aware data

management, pp. 73–78, ACM, 2011.

[31] K. LaCurts, S. Deng, A. Goyal, and H. Balakrishnan, “Choreo:

network-aware task placement for cloud applications,” in Proceedings of

the 2013 conference on Internet measurement conference, pp. 191–204,

ACM, 2013.

[32] “Portolan network sensing architecture.” http://portolan.iet.

unipi.it/.

[33] A. Faggiani, E. Gregori, L. Lenzini, S. Mainardi, and A. Vecchio, “On

the feasibility of measuring the internet through smartphone-based

crowdsourcing,” in Modeling and Optimization in Mobile, Ad Hoc and

Wireless Networks (WiOpt), 2012 10th International Symposium on,

pp. 318–323, IEEE, 2012.

[34] E. Gregori, L. Lenzini, V. Luconi, A. Vecchio, and D. di Ingegne-

ria dell’Informazione, “Sensing the internet through crowdsourcing,”

[35] L. F. Pitt, M. Parent, I. Junglas, A. Chan, and S. Spyropoulou, “Inte-

grating the smartphone into a sound environmental information systems

strategy: Principles, practices and a research agenda,” The Journal of

Strategic Information Systems, vol. 20, no. 1, pp. 27 – 37, 2011.

[36] “Rootmetrics coverage map.” http://www.rootmetrics.com/.

http://portolan.iet.unipi.it/
http://portolan.iet.unipi.it/
http://www.rootmetrics.com/

BIBLIOGRAPHY 73

[37] “Netradar.” http://www.netradar.org/.

[38] A. Faggiani, E. Gregori, L. Lenzini, V. Luconi, and A. Vecchio,

“Lessons learned from the design, implementation, and management

of a smartphone-based crowdsourcing system,” in Proceedings of First

International Workshop on Sensing and Big Data Mining, SENSEM-

INE’13, (New York, NY, USA), pp. 2:1–2:6, ACM, 2013.

http://www.netradar.org/

