UNIVERSITA' DI PISA

CORSO DI LAUREA MAGISTRALE IN CHIMICA INDUTRIALE

Curriculum Industriale

CLASSE: LM 71 (Scienze e Tecnologie Chimiche)

Preparazione di nanocompositi elastomerici a base di nanotubi di carbonio come sensori di deformazione

Relatore: Dott. Andrea Pucci	Controrelatore: D	ott. Fabio	Di Francesco

Candidato: Luca Panariello

INDICE

1. Introduzione	1
1.1 Nanotubi di carbonio	1
1.1.1 Proprietà elettriche dei nanotubi di carbonio	4
1.1.2 Proprietà meccaniche dei nanotubi	8
1.1.3 Altre proprietà	10
1.2 Preparazione di nanotubi di carbonio	13
1.2.1 Metodi di purificazione	16
1.3 Tecniche di funzionalizzazione	17
1.4 Preparazione di nanocompositi polimerici a base di nanotubi di carbonio	27
1.4.1 Proprietà dei nanocompositi polimerici a base di nanotubi di carbonio	26
1.4.2 Sensori di deformazione nanocompositi polimerici a base di nanotubi di carbonio	31
1.5 scopo della tesi	38
2. Risultati e discussione	38
2.1 Preparazione di nanocompositi poli(stirene-b-(etilene-co-butilene)-b-stirene) (SEBS)/MWCNT 2.1.1 Caratterizzazione delle dispersioni di MWCNT in SEBS mediante	37
spettroscopia Raman	42
2.1.2 Caratterizzazione delle dispersioni di MWCNT in SEBS mediante microscopia a forza atomica (AFM)	43
2.1.3 Caratterizzazione dei nanocompositi SEBS/MWCNT mediante analisi termogravimetriche (TGA)	44
2.1.4 Caratterizzazione dei nanocompositi SEBS/MWCNT mediante calorimetria a scansione differenziale (DSC)	46
2.1.5 Proprietà meccaniche dei nanocompositi SEBS/MWCNT	47
2.1.6 Proprietà elettriche dei nanocompositi SEBS/MWCNT: determinazione della soglia di percolazione e studio del comportamento piezoelettrico	48
2.2 Preparazione di nanocompositi di gomma stirene-butadiene (SBR/MWCNT) e loro caratterizzazione	51
2.2.1 Caratterizzazione dei nanocompositi SBR/MWCNT mediante analisi termogravimetrica (TGA)	55
2.2.2 Caratterizzazione dei nanocompositi SBR/MWCNT mediante microscopia elettronica in trasmissione (TEM)	56
2.2.3 Caratterizzazione dei nanocompositi SBR/MWCNT mediante calorimetria a scansione differenziale (DSC)	58
2.2.4 Proprietà meccaniche dei nanocompositi SBR/MWCNT	60
2.2.5 Proprietà elettriche dei nanocompositi SBR/MWCNT: determinazione	

	della soglia di percolazione e studio del comportamento piezoelettrico	61
b	reparazione di nanocompositi poli(stirene-b-(etilene-co-propilene)- -stirene-b-(etilene-co-propilene))stirene (SEPSEP/MWCNT) e loro	
C	caratterizzazione	65
	2.3.1 Caratterizzazione dei nanocompositi SEPSEP/MWCNT mediante analisi termogravimetriche (TGA)	65
	2.3.2 Caratterizzazione dei nanocompositi SEPSEP/MWCNT mediante microscopia elettronica in trasmissione (TEM)	67
	2.3.3 Caratterizzazione dei nanocompositi SEPSEP/MWCNT mediante calorimetria a scansione differenziale (DSC)	68
	2.3.4 Proprietà meccaniche dei nanocompositi SEPSEP/MWCNT	69
	2.3.5 Proprietà elettriche dei nanocompositi SEPSEP/MWCNT: determinazione della soglia di percolazione e studio del comportamento piezoelettrico	71
	 2.3.6 Proprietà elettriche dei nanocompositi SEPSEP/MWCNT: determinazione della soglia di percolazione e studio del comportamento piezoelettrico effetto della purificazione dei MWCNT 	73
	 2.3.7 Proprietà elettriche dei nanocompositi SEPSEP/MWCNT: determinazione della soglia di percolazione e studio del comportamento piezoelettrico effetto del tipo di MWCNT 	76
	2.3.8 Caratterizzazione dei nanocompositi SEPEP/MWCNT (Aldrich) mediante microscopia elettronica in trasmissione (TEM)	77
2.4 F	unzionalizzazione covalente dei MWCNT: preparazione di NH2MWCNT 82	
	2.4.1 Caratterizzazione delle dispersioni di NH ₂ MWCNT in xilene mediante	
	microscopia elettronica in trasmissione (TEM)	84
	2.4.2 Funzionalizzazione di SEPSEP con anidride maleica	85
	2.4.3 Caratterizzazione del SEPA mediante cromatografia di permeazione	
	su gel (GPC)	89
	2.4.4 Caratterizzazione dei SEPA mediante titolazione potenziometrica	90
	2.4.5 Caratterizzazione dei SEPA mediante risonanza magnetica nucleare(NMR)	92
3. Conclus	sioni	95
I. Parte sp	perimentale	97
4.1 S	olventi, reagenti e matrici polimeriche	97
	4.1.1 Solventi e prodotti	97
	4.1.2 Matrici polimeriche commerciali	98
	4.2 Strumenti e metodi	100
	4.3 Preparazione dei film nanocompositi a base di MWCNT	102

5. Bibliografia	108
4.6 Metodo di misurazione della resistenza elettrica	106
4.5 Misure di resistenza elettrica	105
funzionalizzati (NH ₂ -MWCNT)	104
4.4 Preparazione di Nanotubi di carbonio a parete multipla ammino	