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Determination of Attainable
Landing Area by Forward 

Reachability

Equations of motion of the moon lander are taken from [1]. The 
vector of states and control inputs are defined as follows:

Initial condition and terminal conditions:

DCA Representation

Reference Frame: Downrange-Crossrange-Altitude (DCA)
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 Developments in space technology have paved the way for more challenging missions which require advanced
guidance and control algorithms for safely and autonomously landing on celestial bodies.

 Instant determination of hazards, automatic guidance during landing maneuvers and likelihood maximization of
a safe landing are of paramount importance.

 Reachability analysis is used to obtain attainable landing areas for the final phase of interplanetary space
missions given initial conditions, admissible control inputs and landing constraints.
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 Non-uniform 
collocation points to
avoid the Runge 
phenomenon
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Interpolation error comparison using LGR,f-LGR,LG discretization points
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Interpolation of a function with Lagrange Polynomials using Legendre-Gauss-Radau Polynomial roots
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Interpolation of a function with Lagrange Polynomials using Legendre-Gauss-Radau Polynomial roots
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݊		: Number of discretization points ݊௖: Number of control Inputs

݊௦: Number of states ݊௚: Number of constraints
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Generic Mission Profile 
for Lunar Lander

 Exponential
convergence w.r.t. 
number of
collocation points

 Lagrange 
polynomials for
interpolation of
states,control inputs

 Jacobian of the
associated NLP is
expressed as sum of 3 
different contributors. 
Resulting sparse is used
by commercial off-the-
shelf SQP solver.

In this study, we apply an optimal-control-
based algorithm for approximating 
nonconvex reachable sets of nonlinear
systems [2]. 

 Discretize region of interest

 Find optimal control law that steers the 
system from the initial condition to the 
target state
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OCP is transcribed into NLP by SPARTAN (SHEFEX-3 
Pseudospectral Algorithm for Reentry Trajectory ANalysis)  [3].
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Reachable Landing SiteforLunarLanderattf = 35 -Grid
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 Approximate the reachable set with an error of discretization step 
by solving following optimal control problem (OCP) for each grid 
points

Discretization of State Space

Reachable Set at tf=35 (s)
-Propellant Cost-

Reachable Landing Tunnel  tf <35 (s)
-Propellant Cost-

Reachable Set with free final time           
-Propellant Cost-

Reachable Set with free final time            
-Time Cost-

 Attainable landing area and propellant&time cost map of
associated region is computed using reachability analysis

Jacobian structure of associated NLP

Interpolation of a function with Lagrange 
polynomials using LGR roots

Schematic diagram of Legendre points and Interpolation Error

Condition for successful landing: 


