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Introduction

» Developments in space technology have paved the way for more challenging missions which require advanced
guidance and control algorithms for safely and autonomously landing on celestial bodies.

> Instant determination of hazards, automatic guidance during landing maneuvers and likelihood maximization of
a safe landing are of paramount importance.

> Reachability analysis is used to obtain attainable landing areas tor the final phase of interplanetary space Determination of Attainable

e A . - . . . Landing Area by Forward
missions given initial conditions, admissible control inputs and landing constraints. an '"3ea£‘fgbi§|’it;rwa‘r

Problem Statement Method

Equations of motion of the moon lander are taken from [1]. The In this study, we apply an optimal-control-
vector of states and control inputs are defined as follows: based algorithm for approximating

S B A T . T nonconvex reachable sets of nonlinear
X(t) T (dl h) C, d; h; C, IB) X} m) U(t) (Tu) TS) (1)’8; (1))() SyStemS [2]
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d: Downrange Rate |d: Downrange |B: Pitch Ty, Ts, T;: RCS Thrusters > Discretize region of interest
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h: Altitude Rate h: Altitude X Yaw wg: Pitch Rate » Find optimal control law that steers the
system from the initial condition to the
target state

¢. Crossrange Rate |c: Crossrange \m: Mass w,: Yaw Rate Discretization of State Space

Initial condition and terminal conditions: » Approximate the reachable set with an error of discretization step

. by solving following optimal control problem (OCP) for each grid
X(O) (dO» hO: Co, 0, ho» 0, ,80: X0, mO)T points

TT 1
X(tf) = (0,0,0, free, 0, free, — > 0, free)! Min = | (tr) - gnHZ

Condition for successful landing: s.t. x(0) = f(x(0),u(®)) a.e.in [t tf]

Ax(tr)| < Ax x(to) = Xo
fll = max ’ |
AXmge = (Im/s1m/s,1m/s, free,1m, free, 10°,180°, free)T u(t) € Up a.e. in [to, tf]

Reference Frame: Downrange-Crossrange-Altitude (DCA)

Discretization of Optimal Control Problem

OCP is transcribed into NLP by SPARTAN (SHEFEX-3
Pseudospectral Algorithm for Reentry Trajectory ANalysis) [3].
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