1	Identifying key sources of uncertainty in the
2	modelling of greenhouse gas emissions from
3	wastewater treatment
4	Christine Sweetapple ^{a*} , Guangtao Fu ^a , David Butler ^a
5	^a Centre for Water Systems, College of Engineering,
6	Mathematics and Physical Sciences, University of Exeter,
7	North Park Road, Exeter, Devon EX4 4QF, United Kingdom
8	ABSTRACT
9	This study investigates sources of uncertainty in the modelling
10	of greenhouse gas emissions from wastewater treatment,
11	through the use of local and global sensitivity analysis tools,
12	and contributes to an in-depth understanding of wastewater
13	treatment modelling by revealing critical parameters and
14	parameter interactions. One-factor-at-a-time sensitivity analysis
15	is used to screen model parameters and identify those with
16	significant individual effects on three performance indicators:
17	total greenhouse gas emissions, effluent quality and operational
18	cost. Sobol's method enables identification of parameters with
19	significant higher order effects and of particular parameter pairs
20	to which model outputs are sensitive. Use of a variance-based

^{*} Corresponding author. Tel.: +44 (0)1392 726652; E-mail:

cgs204@ex.ac.uk

21	global sensitivity analysis tool to investigate parameter
22	interactions enables identification of important parameters not
23	revealed in one-factor-at-a-time sensitivity analysis. These
24	interaction effects have not been considered in previous studies
25	and thus provide a better understanding wastewater treatment
26	plant model characterisation. It was found that uncertainty in
27	modelled nitrous oxide emissions is the primary contributor to
28	uncertainty in total greenhouse gas emissions, due largely to the
29	interaction effects of three nitrogen conversion modelling
30	parameters. The higher order effects of these parameters are
31	also shown to be a key source of uncertainty in effluent quality.
32	Keywords: Benchmark model; greenhouse gas; model
33	identification; sensitivity; uncertainty; wastewater treatment
34	1 INTRODUCTION
35	Wastewater treatment can result in direct emissions of
35 36	Wastewater treatment can result in direct emissions of greenhouse gases (GHGs) such as carbon dioxide (CO ₂),
35 36 37	Wastewater treatment can result in direct emissions of greenhouse gases (GHGs) such as carbon dioxide (CO ₂), methane (CH ₄) and nitrous oxide (N ₂ O), as well as indirect
 35 36 37 38 	Wastewater treatment can result in direct emissions of greenhouse gases (GHGs) such as carbon dioxide (CO ₂), methane (CH ₄) and nitrous oxide (N ₂ O), as well as indirect emissions resulting from energy generation, chemical
 35 36 37 38 39 	Wastewater treatment can result in direct emissions of greenhouse gases (GHGs) such as carbon dioxide (CO ₂), methane (CH ₄) and nitrous oxide (N ₂ O), as well as indirect emissions resulting from energy generation, chemical manufacture and sludge disposal, amongst other sources.
 35 36 37 38 39 40 	Wastewater treatment can result in direct emissions of greenhouse gases (GHGs) such as carbon dioxide (CO ₂), methane (CH ₄) and nitrous oxide (N ₂ O), as well as indirect emissions resulting from energy generation, chemical manufacture and sludge disposal, amongst other sources. Reduction of GHG emissions is a topic of global interest, and it
 35 36 37 38 39 40 41 	Wastewater treatment can result in direct emissions of greenhouse gases (GHGs) such as carbon dioxide (CO ₂), methane (CH ₄) and nitrous oxide (N ₂ O), as well as indirect emissions resulting from energy generation, chemical manufacture and sludge disposal, amongst other sources. Reduction of GHG emissions is a topic of global interest, and it is recognised that appropriate design and operation of
 35 36 37 38 39 40 41 42 	Wastewater treatment can result in direct emissions of greenhouse gases (GHGs) such as carbon dioxide (CO ₂), methane (CH ₄) and nitrous oxide (N ₂ O), as well as indirect emissions resulting from energy generation, chemical manufacture and sludge disposal, amongst other sources. Reduction of GHG emissions is a topic of global interest, and it is recognised that appropriate design and operation of wastewater treatment processes can play a significant role in

44	Models used to estimate the magnitude of GHG emissions from
45	wastewater treatment plants (WWTPs) for inventories typically
46	utilise empirical emission factors (e.g. IPCC, 2006b), based on
47	the volume of wastewater treated, influent concentrations,
48	effluent concentrations or the mass of wastewater components
49	removed. These emission factors, however, have a high degree
50	of variability and uncertainty (Corominas et al., 2012): for
51	example, N_2O emissions in the range 0 - 90% of the nitrogen-
52	load were reported by Kampschreur et al. (2009). As such,
53	there has been increasing interest in the use of comprehensive
54	process models and mechanistic models to estimate dynamic
55	GHG emissions. Resulting from this, it has been highlighted
56	that significant variability can occur in GHG emissions from
57	WWTPs with different designs (Shahabadi et al., 2009) and
58	operating under different conditions (Flores-Alsina et al.,
59	2011).
60	As wastewater utilities face the challenge of simultaneously
61	reducing GHG emissions and improving treatment standards

62 due to increasing regulatory pressures, the importance of

63 including GHG emissions in addition to effluent quality and

64 operational costs when evaluating design alternatives is clear. It

- has been shown that use of automatic control can reduce GHG
- 66 emissions (Corominas et al., 2010), but models used are

67 typically of hypothetical WWTPs and their results are not

always validated with real data (e.g. Hiatt and Grady, 2008;

69	Guo et al., 2012). As such, results are likely to be subject to a
70	high degree of uncertainty; and careful calibration is therefore
71	essential if applying the models and estimation methodologies
72	to a real WWTP for plant design or control strategy
73	development to reduce GHG emissions. Identification of the
74	most significant sources of uncertainty could aid efficient
75	calibration of models and reduce the complexity of future
76	uncertainty analyses, yet there has been little research into the
77	magnitude of uncertainty in GHG emission estimates resulting
78	from uncertainty in model parameters and emission factors.
79	Sensitivity analysis is a useful tool for identification of the key
80	parameters controlling model outputs (Tang et al., 2007a).
81	However, whilst sensitivity analyses of dynamic WWTP
82	models have previously been undertaken to investigate the
83	effects of uncertainty in model parameters (e.g. Pons et al.,
84	2008; Flores-Alsina et al., 2009; Ramin et al., 2012), design
85	and operational parameters (Benedetti et al., 2008; Pons et al.,
86	2008) and influent characteristics (Pons et al., 2008), no
87	detailed analyses for identification of key parameters affecting
88	GHG emissions have been carried out. Gori et al. (2011)
89	completed a sensitivity analysis to investigate the effects of
90	varying the pCOD/VSS ratio on the rate of GHG emissions
91	from different sources, but no other model parameters were
92	considered. Global sensitivity analyses (GSAs) of the
93	Benchmark Simulation Model No. 1 (BSM1) (Sin et al., 2011)

94	and the Benchmark Simulation Model No. 2 (BSM2)
95	(Benedetti et al., 2008), based on Monte Carlo experiments and
96	linear regression, enabled the identification of individual
97	parameters with significant effects on effluent quality and
98	operational cost, but did not consider GHG emissions.
99	However, interactions were not investigated and output
100	uncertainty was attributed to individual parameters only.
101	The aim of this research is to identify individual parameters and
102	parameter interactions which contribute significantly to
103	uncertainty in modelled GHG emissions from wastewater
104	treatment, as well as the more widely used performance
105	indicators of effluent quality and operational cost. Investigation
106	of the relative contributions of specific parameter interactions
107	to output uncertainty represents an advance in WWTP
108	modelling, as previous analyses have not enabled identification
109	of significant interactions. Sensitivity analysis of a revised
110	BSM2, with pre-defined layout, operating conditions and
111	influent characteristics, is carried out using the one-factor-at-a-
112	time (OAT) method, to identify significant individual (first
113	order) effects and inform the selection of parameters for
114	inclusion in further analysis. GSA is then carried out using a
115	variance-based method – Sobol's method (Saltelli, 2002) - to
116	investigate higher order effects (interactions). This tool has not,
117	as of yet, been extensively used in wastewater treatment, but
118	previous applications have revealed situations and modelling

119	scenarios in which calibration is likely to be most challenging
120	due to the greater presence of parameter interactions
121	(Massmann and Holzmann, 2012) and improved the efficiency
122	of multi-objective optimisation problems by identifying
123	important decision variable interactions (Fu et al., 2012). The
124	results enable identification of: a) parameters that have
125	negligible impact on uncertainty in key model outputs and can,
126	therefore, be excluded from future uncertainty analyses; and b)
127	parameters which contribute significantly to variance in any
128	key model output, due to first or higher order effects, and so
129	need to be accurately defined for model calibration and
130	application.

131 2 MATERIALS AND METHODS

132 **2.1 Model description**

133 2.1.1 Model structure

- 134 The WWTP model used for parameter sensitivity analysis,
- 135 which will be referred to as BSM2-e, is based on the
- 136 Benchmark Simulation Model No. 2: BSM2 (Jeppsson et al.,
- 137 2007), with modifications (outlined in Section 2.1.2) made to
- 138 enable dynamic modelling of the emissions shown in *Fig. 1*.
- 139 The plant layout and modelling of pre-treatment and sludge
- 140 treatment processes are unaltered from those of BSM2 (as
- 141 detailed by Jeppsson et al. (2007) and Nopens et al. (2010)), but
- 142 adjustments have been made to the activated sludge model to

143	enable calculation of N_2O emissions. A complete description of
144	all equations added and modifications made to the BSM2 is
145	provided as supplementary information.
146	Figure 1
147	2.1.2 Greenhouse gas emission modelling methodologies
148	GHG emissions are modelled using previously published
149	estimation methodologies, which are implemented in BSM2.
150	Sources of GHG production and direct emissions from the
151	modelled processing units include:
152	• Aerobic substrate utilisation (CO_2), biomass decay (CO_2)
153	and denitrification (CO ₂ and N_2O) in activated sludge
154	reactors
155	In BSM2, the reduction of nitrate to nitrogen is modelled as
156	a one-step process and dynamic production of N_2O (an
157	intermediate product) cannot be determined. Modifications
158	have therefore been made to include four-step denitrification
159	as detailed by Samie et al. (2011). Stripping of N_2O from
160	solution is then modelled using Henry's law. CO ₂ emissions
161	resulting from nutrient removal are calculated using
162	emission factors derived from the stoichiometric
163	relationships for denitrification with and without an external
164	carbon source (Shahabadi et al., 2010).
165	Calculation of CO ₂ emissions from substrate utilisation and
166	biomass decay is based upon the method detailed by

167	Monteith et al. (2005), with the suspended solids mass
168	balance equation adapted for non-steady state conditions.
169	Required concentrations and flow rates have been derived
170	from the BSM2 state variables and theoretical emission
171	factors, derived from stoichiometry, are applied.
172 •	Biogas leakage (CO_2 and CH_4) and combustion (CO_2)
173	Dynamic CH_4 and CO_2 formation and stripping in the
174	anaerobic digester and the resultant biogas composition and
175	flow rate are modelled in BSM2. It is assumed in BSM2 that
176	all biogas is combusted for energy recovery. However, past
177	investigations (e.g. Shahabadi et al., 2009; Shahabadi et al.,
178	2010), have identified biogas leakage as a potential
179	contributor to total emissions. As it is impractical to
180	accurately measure or model small leaks, a fixed leakage
181	factor of 5% (Shahabadi et al., 2009) has been applied. It is
182	assumed that the remaining biogas is fully combusted and a
183	theoretical emission factor (Monteith et al., 2005) is used
184	calculate CO ₂ production.
185 •	Stripping of dissolved gases (CH_4) in dewatering unit
186	Dissolved CH ₄ concentration in the digester effluent is
187	calculated using the BSM2 methodology. Given the
188	negligible partial pressure of CH ₄ in the atmosphere, it is
189	assumed that all CH ₄ is stripped from solution during
190	dewatering.

191	Additional direct emissions may result from poorly managed
192	treatment and unintentionally anaerobic conditions (Monteith et
193	al., 2005); these are not modelled, however, due to a lack of
194	reliable estimation techniques. Likewise, N ₂ O emissions
195	associated with nitrifier denitrification during nitrification are
196	omitted. There have been recent studies into the factors
197	influencing N_2O emissions (e.g. Foley et al., 2010; Law et al.,
198	2011; Rassamee et al., 2011), but there is little consensus on a
199	method which can be used to estimate emissions with any
200	degree of certainty and metabolic models of the nitrifier
201	denitrification pathway (Mampaey et al., 2011; Ni et al., 2011)
202	have been found unable to consistently reproduce experimental
203	N ₂ O emissions data (Law et al., 2012; Ni et al., 2013). The
204	significance of this omission is uncertain; heterotrophic
205	denitrification is the dominant nitrogen removal process, but
206	nitrifier denitrification yields greater N_2O emissions relative to
207	the nitrogen converted (Kampschreur et al., 2009). Incomplete
208	hydroxylamine oxidation can also result in N_2O emissions, but
209	it is unclear under what conditions this process becomes
210	dominant and current models are inadequate (Ni et al., 2013). If
211	nitrification modelling is included in future GHG emission
212	estimates, inclusion of the associated parameters in uncertainty
213	analysis is recommended.
214	Indirect emissions result from:

215 • Generation of energy imported

216		Energy required for pumping, aeration, heating and mixing
217		is modelled using the original BSM2 methodologies; energy
218		recovery from biogas combustion is also calculated using
219		the BSM2 methodology, but with allowance for biogas
220		leakage incorporated. GHG emissions associated with net
221		energy import are affected by the electricity generation mix,
222		as emissions differ between energy sources. However, as
223		electricity grid composition varies locally and nationally and
224		the model is not linked to a specific location, a single
225		emission factor of 0.245 kg CO ₂ e/kWh (Gori et al., 2011) is
226		used but defined as uncertain.
227	•	Manufacture of chemicals
228		Indirect emissions due to chemical addition have been
229		calculated using the carbon source flow rate for each tank, as
230		modelled in BSM2, and an emission factor of
231		1.54 kg CO ₂ e/kg MeOH (Shahabadi et al., 2010).
232	•	Offsite degradation of effluent
233		Indirect CO ₂ emissions are modelled based on the
234		assumption that all BOD5 remaining in the effluent degrades
235		aerobically, as detailed by Shahabadi et al. (2010). Indirect
236		N ₂ O emissions are calculated using an emission factor of
237		0.005 kg N ₂ O-N/kg N (IPCC, 2006b).
238	•	Transport and offsite degradation of sludge

239	Emissions resulting from the transport of sludge are
240	estimated using a fixed emission factor (Shahabadi et al.,
241	2010). Emissions of CO_2 and CH_4 resulting from the
242	degradation of biosolids remaining in the sludge are
243	modelled as detailed by Shahabadi et al. (2009), based on
244	the theoretical stoichiometric equation for biomass decay in
245	an anaerobic environment. Dynamic N2O emissions are
246	calculated using the modelled sludge nitrogen content and
247	an emission factor of 0.01 kg N ₂ O-/kg N (IPCC, 2006a).
248	All emissions are converted to CO ₂ equivalent (CO ₂ e) units,
249	using global warming potentials (GWPs) of 21 and 310 for CH_4
250	and N_2O respectively (IPCC, 1996), to enable comparison of
251	the magnitude of emissions from each source.
251 252	2.1.3 Simulation strategy and performance assessment
251252253	 <i>2.1.3 Simulation strategy and performance assessment</i> The performance of control strategies in the BSM2 is typically
251252253254	 <i>2.1.3 Simulation strategy and performance assessment</i> The performance of control strategies in the BSM2 is typically assessed using a 609 day simulation, incorporating stabilisation
 251 252 253 254 255 	 <i>2.1.3 Simulation strategy and performance assessment</i> The performance of control strategies in the BSM2 is typically assessed using a 609 day simulation, incorporating stabilisation and evaluation periods, with predefined dynamic influent data.
 251 252 253 254 255 256 	 <i>2.1.3 Simulation strategy and performance assessment</i> The performance of control strategies in the BSM2 is typically assessed using a 609 day simulation, incorporating stabilisation and evaluation periods, with predefined dynamic influent data. Initial values should be determined by simulation with 200
 251 252 253 254 255 256 257 	 <i>2.1.3 Simulation strategy and performance assessment</i> The performance of control strategies in the BSM2 is typically assessed using a 609 day simulation, incorporating stabilisation and evaluation periods, with predefined dynamic influent data. Initial values should be determined by simulation with 200 days of constant influent data to allow the model to reach
 251 252 253 254 255 256 257 258 	 <i>2.1.3 Simulation strategy and performance assessment</i> The performance of control strategies in the BSM2 is typically assessed using a 609 day simulation, incorporating stabilisation and evaluation periods, with predefined dynamic influent data. Initial values should be determined by simulation with 200 days of constant influent data to allow the model to reach steady state (Jeppsson et al., 2007). In order to carry out a GSA
 251 252 253 254 255 256 257 258 259 	 <i>2.1.3 Simulation strategy and performance assessment</i> The performance of control strategies in the BSM2 is typically assessed using a 609 day simulation, incorporating stabilisation and evaluation periods, with predefined dynamic influent data. Initial values should be determined by simulation with 200 days of constant influent data to allow the model to reach steady state (Jeppsson et al., 2007). In order to carry out a GSA of model parameters, however, it is necessary to significantly
 251 252 253 254 255 256 257 258 259 260 	 <i>2.1.3 Simulation strategy and performance assessment</i> The performance of control strategies in the BSM2 is typically assessed using a 609 day simulation, incorporating stabilisation and evaluation periods, with predefined dynamic influent data. Initial values should be determined by simulation with 200 days of constant influent data to allow the model to reach steady state (Jeppsson et al., 2007). In order to carry out a GSA of model parameters, however, it is necessary to significantly reduce the computational demand. Based on analysis of the
 251 252 253 254 255 256 257 258 259 260 261 	the magnitude of emissions from each source. 2.1.3 Simulation strategy and performance assessment The performance of control strategies in the BSM2 is typically assessed using a 609 day simulation, incorporating stabilisation and evaluation periods, with predefined dynamic influent data. Initial values should be determined by simulation with 200 days of constant influent data to allow the model to reach steady state (Jeppsson et al., 2007). In order to carry out a GSA of model parameters, however, it is necessary to significantly reduce the computational demand. Based on analysis of the effects of modifications in stabilisation and evaluation periods
 251 252 253 254 255 256 257 258 259 260 261 262 	<i>2.1.3 Simulation strategy and performance assessment</i> The performance of control strategies in the BSM2 is typically assessed using a 609 day simulation, incorporating stabilisation and evaluation periods, with predefined dynamic influent data. Initial values should be determined by simulation with 200 days of constant influent data to allow the model to reach steady state (Jeppsson et al., 2007). In order to carry out a GSA of model parameters, however, it is necessary to significantly reduce the computational demand. Based on analysis of the effects of modifications in stabilisation and evaluation periods on the OAT sensitivity analysis parameter rankings, a reduced

264	and 14 days evaluation, using days 322-350 of the BSM2
265	dynamic influent data) has been selected to follow the 200 day
266	steady state initialisation. Whilst this shortened simulation does
267	not reproduce the model outputs obtained with full length
268	stabilisation and evaluation, it has been found to be suitable for
269	assessment of the relative importance of parameters, enabling
270	correct identification of the most sensitive model parameters in
271	OAT sensitivity analysis and resulting in an average change in
272	rank of just 1.1 for all 70 parameters across the three key
273	outputs when compared with analysis using the full dynamic
274	simulation period (609 days).
275	Performance indicators used include an effluent quality index

276 (EQI) and an operational cost index (OCI), calculated using the

BSM2 methodology (Jeppsson et al., 2007). EQI is a weighted

sum of average effluent concentrations; OCI is a measure of the

average energy demand, energy recovery, carbon source dosage

and sludge production for disposal. Average GHG emissions

281 per unit of wastewater treated are also calculated, and the

282 contribution of each gas and direct and indirect emissions to

total GHG emissions are modelled to allow a more in-depth

284 investigation into the most significant sources of uncertainty.

285 2.1.4 Model validation

286The magnitude of GHG emissions per unit of treated

287 wastewater reported in the literature differs significantly, even

for WWTPs with the same or similar treatment processes and

289	control.	Total	emissions	in	the ran	ige 1	19,554 -	- 22,920
						\sim		

- 290 kg CO₂e/d (equivalent to 0.947 - 1.110 kg CO₂e/m³, based on
- 291 specified flow rate) were reported by Corominas et al. (2012) in
- 292 an investigation into the effects of different GHG modelling
- 293 approaches for the BSM2 plant. The BSM2-e emissions model
- gives total GHG emissions of 1.077 kg CO_2e/m^3 when using 294

295 the default BSM2 evaluation period, which is within this range.

296 2.2 Sensitivity analysis methodology

297	153 BSM2 parameters are used in the model (excluding those
298	relating to the plant design and operation), and a further 64 are
299	used for the incorporated denitrification and emissions
300	modelling. Given the large number of evaluations required for
301	GSA, it is not practical to include every parameter. Therefore,

- OAT sensitivity analysis, which requires significantly fewer 302
- 303 model evaluations, is used to provide an indication of the

304 importance of each parameter and identify parameters with

- 305 negligible effect on uncertainty in model outputs.
- 306 OAT sensitivity analysis enables changes in model outputs to
- 307 be clearly attributed to a specific parameter, with no ambiguity,
- 308 but does not explore the effects of varying two or more
- 309 parameters simultaneously and is unable to identify any
- 310 significant interactions. As such, it is followed by GSA to
- 311 obtain an understanding of second (and higher) order effects
- and allow exploration of the full parameter space. 312

313 2.2.1 Parameter screening

314 2.2.1.1 Parameter selection and definitions

315	Selection of BSM2 parameters is guided by the results of
316	previous GSA by Benedetti et al. (2008): those identified as
317	being not significant for EQI, OCI and effluent NH ₄ violations
318	in terms of both the standard regression coefficient and the
319	partial correlation coefficient are excluded from this analysis.
320	Henry's law coefficients used to model dissolution and
321	stripping of CO_2 and CH_4 in the anaerobic digester, however,
322	are added to the analysis, as they may affect emissions despite
323	not having significant effects on previously considered model
324	outputs.
325	All half-saturation constants added for the modelling of
326	nitrogen conversions are included in the sensitivity analysis,
327	because these parameters have a high degree of uncertainty
328	(Reichert and Vanrolleghem, 2001) and affect modelled N_2O
329	production, which has been shown to be a major contributor to
330	GHG emissions from WWTPs (Rodriguez-Garcia et al., 2012).
331	Also, other half-saturation constants were found to be
332	significant by Benedetti et al. (2008).
333	It is assumed that median values for each parameter are equal
334	to the BSM2 default values (where applicable). For all other
335	parameters, median values are assumed to be those reported in
336	the literature on which the calculations are based. Parameters

337	for which no feasible range is specified in the literature are
338	classified according to the system defined by Reichert and
339	Vanrolleghem (2001) (summarised in <i>Table 1</i>) and adopted in
340	later sensitivity and uncertainty analyses (Rousseau et al., 2001;
341	Benedetti et al., 2008).
342	Table 1
343	Full details of parameters selected for screening are given in
344	Table 2 and Table 3. Parameters 1-26 are BSM2 parameters,
345	27-39 are nitrogen conversion modelling parameters and 40-70
346	are emissions modelling parameters.
347	Table 2
348	Table 3
349	2.2.1.2 One-factor-at-a-time sensitivity analysis
350	To carry out OAT sensitivity analysis, a simulation is first
351	conducted with all parameters set at their default values; this
352	represents the base case. Further simulations are carried out
353	with each parameter individually set to its upper and lower
354	bound values in turn, whilst all others are held at their default
355	values. Percentage change in each model output with respect to
356	the base case is calculated for each simulation, to determine
357	which parameters cause the greatest variation in model outputs
358	when individually varied within their feasible range.
359	2.2.2 Global sensitivity analysis

360	Sobol's method (2001) is selected for GSA despite being
361	computationally expensive, as it enables first, second and
362	higher order effects to be distinguished through the calculation
363	of first, second and total order sensitivity indices for each
364	parameter or parameter pair. It also provides more robust
365	sensitivity rankings and a more detailed description of the
366	impact of individual parameters and their interactions on model
367	performance than other GSA methods such as analysis of
368	variance (Tang et al., 2007b), and requires significantly fewer
369	model evaluations than factorial design given the large number
370	of parameters under investigation.

The total variance (*D*) of model outputs, resulting from samples of the feasible parameter space, is decomposed and attributed to specific parameters and their interactions as follows, assuming parameters are independent (Tang et al., 2007b):

$$D = \sum_{i} D_{i} + \sum_{i < j} D_{ij} + \sum_{i < j < k} D_{ijk} + \dots + D_{12\dots p}$$
(1)

375 where D_i = output variance resulting from the *i*th parameter; D_{ij} 376 = output variance resulting from interaction between *i*th and *j*th 377 parameters; p = total number of parameters.

378 First and second order sensitivity indices S_i and S_{ij} represent

379 the percentage contribution of the *i*th parameter alone and the

- 380 interaction between the *i*th and *j*th parameters to total variance,
- 381 respectively; total order index S_{Ti} represents the percentage

382 contribution related to the *i*th parameter, including the

383 interactions of any order, as defined below:

$$S_i = \frac{D_i}{D}$$
(2)

$$S_{ij} = \frac{D_{ij}}{D}$$
(3)

$$S_{Ti} = 1 - \frac{D_{\sim i}}{D} \tag{4}$$

384	where $D_{\sim i}$ = output variance resulting from all parameters
385	except <i>i</i> th parameter. A high first order sensitivity index
386	indicates a parameter whose individual uncertainty provides a
387	large contribution to output variance, whereas a low first order
388	index and high total order index indicates a parameter whose
389	interactions result in significant output variance, but
390	individually has little effect.
391	Sobol's method is implemented here as follows:
392	1. Specify upper and lower bounds of parameters for
393	analysis.

394	2.	Generate $2n$ random parameter samples within the
395		specified bounds, with quasi-Monte Carlo sampling
396		using Sobol's sequence generator.
397	3.	Resample parameters using Saltelli's (2002) extension
398		to Sobol's method, holding one fixed at a time, to
399		generate $n(2p+2)$ parameter sets.
400	4.	Run model with each parameter set in turn, recording
401		values of model outputs.
402	5.	Compute first order, total order and second order
403		sensitivity indices, and rankings for each parameter as
404		detailed by Tang et al. (2007b).
405	6.	Calculate 95% bootstrap confidence intervals for all
406		sensitivity indices.
407	3 R	ESULTS AND DISCUSSION
407 408	3 R 3.1	ESULTS AND DISCUSSION One-factor-at-a-time sensitivity analysis
407 408 409	3 R 3.1 O OAT s	ESULTS AND DISCUSSION One-factor-at-a-time sensitivity analysis sensitivity analysis results are presented in Tornado
407 408 409 410	3 R 3.1 O OAT s diagram	ESULTS AND DISCUSSION One-factor-at-a-time sensitivity analysis sensitivity analysis results are presented in Tornado ms, which show the percentage change in each model
407 408 409 410 411	3 R 3.1 O OAT s diagram	ESULTS AND DISCUSSION One-factor-at-a-time sensitivity analysis sensitivity analysis results are presented in Tornado ms, which show the percentage change in each model with respect to the base case when each model
407 408 409 410 411 412	3 R 3.1 O OAT s diagram output	ESULTS AND DISCUSSION One-factor-at-a-time sensitivity analysis sensitivity analysis results are presented in Tornado ms, which show the percentage change in each model with respect to the base case when each model eter is individually set to its respective upper and lower
407 408 409 410 411 412 413	3 R 3.1 0 OAT s diagram output paramon bounda	ESULTS AND DISCUSSION One-factor-at-a-time sensitivity analysis sensitivity analysis results are presented in Tornado ms, which show the percentage change in each model with respect to the base case when each model eter is individually set to its respective upper and lower s. Parameters are ranked by the greatest range of
407 408 409 410 411 412 413 414	3 R 3.1 0 OAT s diagram output parame bounds percen	ESULTS AND DISCUSSION One-factor-at-a-time sensitivity analysis censitivity analysis results are presented in Tornado ms, which show the percentage change in each model with respect to the base case when each model eter is individually set to its respective upper and lower s. Parameters are ranked by the greatest range of tage change for any model output and results for the
407 408 409 410 411 412 413 414 415	3 R 3.1 0 OAT s diagram output parama bounds percent most s	ESULTS AND DISCUSSION One-factor-at-a-time sensitivity analysis sensitivity analysis results are presented in Tornado ms, which show the percentage change in each model with respect to the base case when each model eter is individually set to its respective upper and lower s. Parameters are ranked by the greatest range of tage change for any model output and results for the ensitive parameters are presented in <i>Fig. 2</i> . For clarity,
407 408 409 410 411 412 413 414 415 416	3R3.10OAT sdiagramoutputparamaboundspercentmost sonly th	ESULTS AND DISCUSSION One-factor-at-a-time sensitivity analysis sensitivity analysis results are presented in Tornado ms, which show the percentage change in each model with respect to the base case when each model eter is individually set to its respective upper and lower s. Parameters are ranked by the greatest range of tage change for any model output and results for the ensitive parameters are presented in <i>Fig. 2</i> . For clarity, he 28 parameters with a corresponding range of change of

Figure 2

419	Variation of a single parameter within its feasible range can
420	have particularly significant effects on modelled GHG
421	emissions; setting the half saturation constant for readily
422	biodegradable substrate for N_2O reduction (parameter 30) to its
423	upper bound, for example, results in a 244% increase in
424	reported GHG emissions. Individual variation of a further eight
425	parameters is shown to result in a range of at least 25% change
426	in GHG emissions.
427	A maximum range of variation in total GHG emissions of
428	260%, resulting from uncertainty in just one parameter (No.
429	30), is observed, whereas maximum changes in EQI and OCI
430	are significantly lower at 22.0% (No. 12) and 17.9% (No. 64)
431	respectively. This confirms that accurate calibration of the
432	model with regards to GHG emissions modelling is extremely
433	important. The nine parameters shown to have greatest
434	individual effects on GHG emissions are all used in the
435	modelling of nitrogen conversions, suggesting that uncertainty
436	in GHG emissions corresponds primarily to uncertainty in the
437	rate of N_2O production. The three parameters to which GHG
438	emissions are shown to be most sensitive result in negligible
439	change in EQI and OCI and ought, therefore, to be relatively
440	simple to calibrate if significant higher order effects are not
441	identified in GSA.

442	The greatest changes in EQI arise due to uncertainty in the
443	original BSM2 parameters, and nitrogen modelling parameters
444	have comparatively little impact. Uncertainty in emissions
445	modelling parameters has no effect on EQI. Uncertainty in
446	BSM2 parameters contributes to uncertainty in all three of the
447	key model outputs, although OCI is affected to a lesser degree
448	(maximum 3.2% change, compared with 22.0% and 19.0% for
449	EQI and GHG emissions respectively). It is, therefore,
450	important to take into account the effects of BSM2 parameter
451	values on GHG emissions as well as on conventional
452	performance assessment measures when calibrating the model.
453	The OCI is affected predominantly by uncertainty in the
454	oxygen transfer efficiency (parameter 64) during OAT
455	sensitivity analysis, suggesting that this is particularly
456	important to consider when carrying out uncertainty analyses
457	with regard to operational costs.
458	3.2 Sobol's method global sensitivity analysis
459	GSA was carried out using the highlighted parameters in Table
460	1 and Table 2, selected based on OAT sensitivity analysis
461	screening results. In addition to the 28 parameters shown in
462	Fig. 2, these include a further 11 of the highest ranked
463	parameters. First order, second order and total order sensitivity

464 indices computed using a sample size of 4,000 are presented,

465 and parameters are classified as either 'not sensitive',

466	'sensitive' or 'highly sensitive' based on their contribution to
467	output variance. A threshold of 1% contribution to output
468	variance (i.e. a sensitivity index of at least 0.01) is used to
469	define sensitive parameters, and a 10% contribution (i.e. a
470	sensitivity index of at least 0.1) for highly sensitive parameters.
471	It is known that small numerical errors can result from the
472	truncation of Monte Carlo approximations used in Sobol's
473	method for calculation of integrals (Tang et al., 2007b), so
474	slightly negative indices are assumed to equal zero. Instances in
475	which the total order index is slightly greater than one or the
476	total order index is less than the sum of the first and second
477	order indices are also attributed to such errors. For the OCI,
478	total order indices sum to less than one; this apparent error,
479	however, is fully accounted for by the 95% confidence
480	intervals.
481	Bootstrapped confidence intervals, calculated using 1,000
482	resamples, are presented for all first and total order indices
483	greater than 0.01. It is noted that some sensitivity indices have
484	a high degree of uncertainty, with the greatest confidence
485	interval being 0.501 \pm 0.099. The number of samples generated
486	for analysis was quadrupled from preliminary analyses in an
487	attempt to reduce confidence intervals, but further increase in
488	the number of samples is impractical due to the high
489	computational demand. Large uncertainties are not unexpected
490	for Sobol's method, however, due to random number

491	generation effects (Tang et al., 2007b), and confidence intervals
492	in excess of 20% of the corresponding sensitivity indices have
493	been reported for previous analyses (Tang et al., 2007a; Tang et
494	al., 2007b). Despite large confidence intervals, the sensitivity
495	indices can still be used to provide an indication of the relative
496	significance of uncertainty in each modelling parameter in
497	terms of its effects on model output uncertainties.
498 499	3.2.1 Sensitivity indices based on EQI, OCI and total GHG emissions
500	3.2.1.1 First and total order indices
501	First and total order sensitivities calculated based on EQI, OCI
502	and total GHG emissions are presented in Fig. 3.
503	Figure 3
503 504	Figure 3 The EQI is shown to be sensitive or highly sensitive to twenty
503 504 505	Figure 3 The EQI is shown to be sensitive or highly sensitive to twenty BSM2 and nitrogen modelling parameters, with emissions
503 504 505 506	Figure 3 The EQI is shown to be sensitive or highly sensitive to twenty BSM2 and nitrogen modelling parameters, with emissions modelling parameters (predictably) having no effect.
503 504 505 506 507	Figure 3 The EQI is shown to be sensitive or highly sensitive to twenty BSM2 and nitrogen modelling parameters, with emissions modelling parameters (predictably) having no effect. Uncertainty in the BSM2 parameters results primarily in first
503 504 505 506 507 508	Figure 3 The EQI is shown to be sensitive or highly sensitive to twenty BSM2 and nitrogen modelling parameters, with emissions modelling parameters (predictably) having no effect. Uncertainty in the BSM2 parameters results primarily in first order effects, but it is shown that higher order effects are
503 504 505 506 507 508 509	Figure 3 The EQI is shown to be sensitive or highly sensitive to twenty BSM2 and nitrogen modelling parameters, with emissions modelling parameters (predictably) having no effect. Uncertainty in the BSM2 parameters results primarily in first order effects, but it is shown that higher order effects are dominant for nitrogen modelling parameters, and that some
503 504 505 506 507 508 509 510	Figure 3 The EQI is shown to be sensitive or highly sensitive to twenty BSM2 and nitrogen modelling parameters, with emissions modelling parameters (predictably) having no effect. Uncertainty in the BSM2 parameters results primarily in first order effects, but it is shown that higher order effects are dominant for nitrogen modelling parameters, and that some important parameters cannot be identified based on their
503 504 505 506 507 508 509 510 511	Figure 3 The EQI is shown to be sensitive or highly sensitive to twenty BSM2 and nitrogen modelling parameters, with emissions modelling parameters (predictably) having no effect. Uncertainty in the BSM2 parameters results primarily in first order effects, but it is shown that higher order effects are dominant for nitrogen modelling parameters, and that some important parameters cannot be identified based on their individual effects alone. For example, OAT sensitivity analysis
503 504 505 506 507 508 509 510 511 512	Figure 3 The EQI is shown to be sensitive or highly sensitive to twenty BSM2 and nitrogen modelling parameters, with emissions modelling parameters (predictably) having no effect. Uncertainty in the BSM2 parameters results primarily in first order effects, but it is shown that higher order effects are dominant for nitrogen modelling parameters, and that some important parameters cannot be identified based on their individual effects alone. For example, OAT sensitivity analysis suggests that EQI is not sensitive to parameters 28 and 29
 503 504 505 506 507 508 509 510 511 512 513 	Figure 3 The EQI is shown to be sensitive or highly sensitive to twenty BSM2 and nitrogen modelling parameters, with emissions modelling parameters (predictably) having no effect. Uncertainty in the BSM2 parameters results primarily in first order effects, but it is shown that higher order effects are dominant for nitrogen modelling parameters, and that some important parameters cannot be identified based on their individual effects alone. For example, OAT sensitivity analysis suggests that EQI is not sensitive to parameters 28 and 29 (ranked 11th and 25th), but investigation into their interactions

- 514 using Sobol's method shows that they are the greatest
- 515 contributors to output variance.

516	The effects of parameter interactions on OCI uncertainty are
517	negligible, and there is only one highly sensitive parameter: the
518	oxygen transfer efficiency (parameter 64). OCI is also sensitive
519	to three BSM2 parameters, although their contribution to output
520	variance is insignificant in comparison.

521 All parameters classed as highly sensitive based on GHG 522 emissions are used in the modelling of N₂O production and 523 emission, supporting the earlier suggestion that, due to their 524 high GWP, uncertainty in the rate of N₂O emissions is a 525 significant contributor to uncertainty in total GHG emissions. 526 Variance in modelled GHG emissions is predominantly due to 527 interactions, although first order effects are still significant for 528 some nitrogen modelling parameters: parameter 28, for 529 example, contributes 50.1% of output variance to total output 530 variance, with 10.9% from the parameter itself and 39.2% from 531 its interactions with other parameters. It would, therefore, be 532 beneficial to investigate the effects of specific interactions, to 533 ensure that suitable allowance is made in future analyses and 534 model calibration. 535 It can be seen that there is only one parameter to which all three

- 536 key model outputs are sensitive (parameter 8), although both
- 537 EQI and GHG emissions are highly sensitive to the half

- saturation coefficients for readily biodegradable substrate for
 NO₃, NO₂ and NO reduction. Fourteen parameters are not
 classed as sensitive based on any of the three key outputs; it is
 suggested that these need not be included in future uncertainty
 analyses.
- 543 3.2.1.2 Second order indices
- 544 Second order sensitivity indices calculated based on output
- 545 GHG emissions and EQI are presented in Fig. 4 (second order
- 546 indices based on OCI are not calculated since it has been shown
- that the effect of interactions is negligible): the shade of grey
- 548 represents the sensitivity index magnitude for the
- 549 corresponding parameter pair. Whilst no interactions due to
- 550 individual parameter pairs can be classed as highly sensitive,
- there are numerous parameter pairs which have a significant
- impact on output variance in GHG emissions and EQI (index \geq
- 553 0.01, shown with a circle).
- 554 Figure 4
- 555 Not all parameters identifiable as having significant

556 interactions, based on the difference between their total and

- 557 first order sensitivity indices, are found to have sensitive
- 558 parameter pairs, and the second order effects of some
- 559 parameters account for only a small proportion of total output
- 560 variance resulting from their interactions. Second order effects
- 561 involving parameter 28, for example, contribute to 3.1% of

562	variance in total GHG emissions, but all interactions with this
563	parameter contribute 39.2% of output variance, showing that
564	higher order interactions are significant; calibration of such
565	parameters is, therefore, likely to be challenging.
566	In terms of both GHG emissions and EQI, all sensitive
567	parameter pairings include at least one nitrogen modelling
568	parameter and the most significant second order interactions are
569	between two nitrogen modelling parameters. This provides
570	further support to the earlier suggestion that careful calibration
571	of nitrogen modelling parameters is vital if model output
572	uncertainty is to be reduced.
573	3.2.2 Sensitivity indices based on component GHG
574	emissions
574 575	<i>emissions</i> Having identified parameters to which total GHG emissions are
574 575 576	<i>emissions</i> Having identified parameters to which total GHG emissions are sensitive, the effects of uncertainty in these parameters on
574 575 576 577	<i>emissions</i> Having identified parameters to which total GHG emissions are sensitive, the effects of uncertainty in these parameters on emissions of different gases and from different sources are
574 575 576 577 578	<i>emissions</i> Having identified parameters to which total GHG emissions are sensitive, the effects of uncertainty in these parameters on emissions of different gases and from different sources are explored, and the contribution of uncertainty in different
574 575 576 577 578 579	<i>emissions</i> Having identified parameters to which total GHG emissions are sensitive, the effects of uncertainty in these parameters on emissions of different gases and from different sources are explored, and the contribution of uncertainty in different emission components to uncertainty in total GHG emissions is
574 575 576 577 578 579 580	emissions Having identified parameters to which total GHG emissions are sensitive, the effects of uncertainty in these parameters on emissions of different gases and from different sources are explored, and the contribution of uncertainty in different emission components to uncertainty in total GHG emissions is investigated.
574 575 576 577 578 579 580 581	emissions Having identified parameters to which total GHG emissions are sensitive, the effects of uncertainty in these parameters on emissions of different gases and from different sources are explored, and the contribution of uncertainty in different emission components to uncertainty in total GHG emissions is investigated. The characteristics of GHG emissions resulting from the
574 575 576 577 578 579 580 581 582	emissions Having identified parameters to which total GHG emissions are sensitive, the effects of uncertainty in these parameters on emissions of different gases and from different sources are explored, and the contribution of uncertainty in different emission components to uncertainty in total GHG emissions is investigated. The characteristics of GHG emissions resulting from the 160,000 parameter sets modelled for GSA are summarised in
574 575 576 577 578 579 580 581 582 583	emissionsHaving identified parameters to which total GHG emissions aresensitive, the effects of uncertainty in these parameters onemissions of different gases and from different sources areexplored, and the contribution of uncertainty in differentemission components to uncertainty in total GHG emissions isinvestigated.The characteristics of GHG emissions resulting from the160,000 parameter sets modelled for GSA are summarised inTable 4, from which it can be seen that variance in direct N2O
574 575 576 577 578 579 580 581 582 583 584	emissionsHaving identified parameters to which total GHG emissions aresensitive, the effects of uncertainty in these parameters onemissions of different gases and from different sources areexplored, and the contribution of uncertainty in differentemission components to uncertainty in total GHG emissions isinvestigated.The characteristics of GHG emissions resulting from the160,000 parameter sets modelled for GSA are summarised inTable 4, from which it can be seen that variance in direct N2Oemissions contributes greatly to variance in total GHG
574 575 576 577 578 579 580 581 582 583 584 585	emissionsHaving identified parameters to which total GHG emissions aresensitive, the effects of uncertainty in these parameters onemissions of different gases and from different sources areexplored, and the contribution of uncertainty in differentemission components to uncertainty in total GHG emissions isinvestigated.The characteristics of GHG emissions resulting from the160,000 parameter sets modelled for GSA are summarised inTable 4, from which it can be seen that variance in direct N2Oemissions contributes greatly to variance in total GHGemissions. Indirect emissions provide a comparatively small

587	second greatest contributor to total variance. Variance in direct
588	CO ₂ and CH ₄ emissions provides negligible contribution to
589	total variance, despite contributing 33% of mean total GHG
590	emissions. This suggests that, unless uncertainty in direct N_2O
591	emissions is significantly reduced by reduction of relevant
592	parameter uncertainties, inclusion of parameters to which only
593	direct CO ₂ and CH ₄ emissions are sensitive is unnecessary
594	when calculating uncertainty in total GHG emissions. Further
595	GSA therefore focuses on sources of uncertainty in direct N_2O
596	and total indirect emissions.
597	Table 4
598	First and total order sensitivity indices based on emission
599	components are presented in Fig. 5. There is negligible
600	difference between those based on total GHG emissions and
601	those based on direct N_2O emissions only, confirming that
602	reducing uncertainty in N ₂ O emissions is key to reducing
603	uncertainty in total GHG emissions.

604 Figure 5

Uncertainty in indirect GHG emissions is primarily attributed
to first order effects of the oxygen transfer efficiency and
emission factors for carbonaceous BOD removal and N₂O from
the WWTP effluent and sludge (parameters 64, 65 and 68). A
further five sensitive parameters are also identifiable. Given
that the effects of interactions are negligible and the highly

611	sensitive parameters are not classed as sensitive based on any
612	other model output, calibration with regards to indirect
613	emissions ought to be straightforward.

614	As parameter interactions are shown to contribute significantly
615	to variance in direct N_2O emissions, second order sensitivity
616	indices are calculated and are shown in Fig. 6. Again, the
617	indices based on direct N_2O emissions are very similar to those
618	based on total GHG emissions, although there are differences:
619	whilst all sensitive parameter pairs still include at least one
620	nitrogen modelling parameter, nine pairs involving the half
621	saturation coefficient for NO_2 for heterotrophs (parameter 32)
622	are no longer classified as sensitive. This suggests that their
623	second order interactions impact primarily on other GHG
624	emissions. All emissions modelling parameters are involved in
625	significant second order interactions with parameters 29, 36, 37
626	and 38 and are, therefore, particularly important to reduce
627	uncertainty in and consider simultaneously during calibration.
628	Also important is the interaction between parameters 28 and 27,
629	which alone contributes 2% of variance in direct N_2O
630	emissions.

Figure 6

632 **3.3** Key sources of uncertainty and comparison of results

633 Model parameters to which at least one of the key model

634 outputs (EQI, OCI and total GHG emissions) is sensitive, based

635	on the corresponding sensitivity indices, are detailed in <i>Table 5</i> .
636	Shading is used to distinguish sensitive and highly sensitive
637	parameters for each output, and rankings based on OAT
638	sensitivity analysis results as well as first and total order indices
639	are provided. The maximum specific hydrolysis rate (parameter
640	8) is classified as sensitive based on all three key model
641	outputs, showing that it is necessary to simultaneously consider
642	its impacts on each output during calibration. A further ten
643	parameters are classified as sensitive based on both EQI and
644	OCI; their effects on both effluent concentrations and GHG
645	emissions must be taken into account during calibration. The
646	remaining fourteen parameters are classified as sensitive based
647	on just one model output.

Table 5

649	OAT sensitivity analysis results provide a good indication of
650	the most significant individual sources of uncertainty in output
651	EQI and OCI: parameters classified as highly sensitive based
652	on their first order indices are also the highest ranked in OAT
653	sensitivity analysis. For GHG emissions, however, OAT
654	sensitivity analysis did not enable correct identification of any
655	parameters classified as highly sensitive in GSA and there are
656	significant discrepancies between the first order index rankings
657	and OAT sensitivity analysis rankings for all parameters. This
658	shows that a full GSA is an important tool even when
659	identification of only significant first order effects is required.

660	GSA using Sobol's method also enables identification of
661	parameters involved in interactions with significant effects on
662	uncertainty in the model output. As such, highly sensitive
663	parameters have been identified which have comparatively low
664	first order sensitivity indices and contribute to output
665	uncertainty primarily through higher order effects. These are
666	not all identifiable by OAT sensitivity analysis – uncertainty in
667	parameter 28, for example, provides the greatest contribution to
668	uncertainty in output EQI, but is ranked only 11th based on the
669	results of OAT sensitivity analysis. This highlights the
670	importance of including the effects of interactions when
671	identifying and prioritising sources of uncertainty.

672 **4 CONCLUSIONS**

673	This research uses sensitivity analysis tools to assess the
674	contribution of uncertain parameters in the modelling of GHG
675	emissions from wastewater treatment to uncertainty in model
676	outputs, and to identify parameters to which the outputs are
677	most sensitive. Sensitivity analyses are carried out using both
678	the OAT method (also used for screening) and Sobol's method
679	(to enable identification of significant interactions), from which
680	the following conclusions can be drawn:
681	• Parameters used in the modelling of nitrogen

- 682 conversions have negligible first order (individual)
- 683 effects on the EQI and, based on OAT sensitivity

684		analysis, have a low significance rank. Use of Sobol's
685		method, however, enables identification of parameters
686		involved in interactions that contribute greatly to
687		uncertainty in EQI. This highlights the importance of
688		considering parameter interactions using a variance-
689		based global sensitivity analysis method such as Sobol's
690		method.
691	•	Uncertainty in total GHG emissions from the modelled
692		WWTP result primarily from uncertainty in direct N ₂ O
693		emissions, due to their high GWP. Key sources of
694		uncertainty in direct N ₂ O emissions include the half
695		saturation coefficients for readily biodegradable
696		substrate for NO ₃ , NO ₂ and NO reduction. As such,
697		further work to reduce uncertainty in these parameter
698		values would be beneficial in order to reduce
699		uncertainty in total GHG emissions.
700	•	GSA reveals that parameters used in the modelling of
701		nitrogen conversions are key sources of uncertainty in
702		both EQI and total GHG emissions - therefore, when
703		calibrating the model, it is important to consider the
704		effects on both of these outputs.
705	•	Uncertainty in the OCI is shown to be predominantly
706		due to first order effects resulting from uncertainty in
707		the oxygen transfer efficiency. Neither EQI or GHG
708		emissions are sensitive to this parameter, thus

- calibration of model outputs used in calculation of the
- 710 OCI is expected to be relatively straightforward if this
- 711 knowledge is taken into account.
- 712 In summary, this study has enabled the identification of
- 713 parameters that contribute significantly to uncertainty in one or
- 714 more model outputs and require careful calibration, as well as
- those that provide negligible contribution and can be omitted
- 716 from future uncertainty analyses.

717 ACKNOWLEDGEMENTS

- 718 The authors would like to thank Dr Ulf Jeppsson for providing
- the MATLAB code of BSM2 and Dr Patrick Reed for
- 720 providing the C++ code of Sobol's method. Christine
- 721 Sweetapple gratefully acknowledges financial support provided
- by the University of Exeter in the form of a studentship.

REFERENCES

724 725 726 727	Alex, J., Benedetti, L., Copp, J., Gernaey, K. V., Jeppsson, U., Nopens, I., Pons, M. N., Rosen, C., Steyer, J. P. & Vanrolleghem, P. 2008. Benchmark Simulation Model no. 2 (BSM2).
728 729	Benedetti, L., Batstone, D. J., Baets, B. D., Nopens, I. & Vanrolleghem, P. A. 2008. Global sensitivity analysis
730	of biochemical design and operational parameters of the
731	Benchmark Simulation Model no. 2. In: Sanchez-
732	Marrè, M., Béjar, J., Comas, J., Rizzoli, A. E. &
733	Guariso, G. (eds.) iEMSs 2008: International Congress
734	on Environmental Modelling and Software. Barcelona:
735	iEMSs.
736	Corominas, L., Flores-Alsina, X., Snip, L. & Vanrollegham, P.
737	A. 2010. Minimising overall greenhouse gas emissions
738	from wastewater treatment plants by implementing
739	automatic control. 7th IWA Leading-Edge Conference
740	on Water and Wastewater Technologies. Phoenix, AZ,
741	USA.
742	Corominas, L., Flores-Alsina, X., Snip, L. & Vanrolleghem, P.
743	A. 2012. Comparison of different modeling approaches
744	to better evaluate greenhouse gas emissions from whole
745	wastewater treatment plants. Biotechnology and
746	Bioengineering, 109(11), 2854-2863.
747	European Environment Agency. 2011. Atmospheric
748	<i>concentration of N20</i> [Online]. Available:
749	http://www.eea.europa.eu/data-and-
750	maps/figures/atmospheric-concentration-of-n2o-ppb
751	[Accessed 12/03/2012 2012].
752	Flores-Alsina, X., Corominas, L., Snip, L. & Vanrolleghem, P.
753	A. 2011. Including greenhouse gas emissions during
754	benchmarking of wastewater treatment plant control
755	strategies. Water Research, 45(16), 4700-4710.
756	Flores-Alsina, X., Rodriguez-Roda, I., Sin, G. & Gernaey, K.
757	V. 2009. Uncertainty and sensitivity analysis of control
758	strategies using the benchmark simulation model No1
759	(BSM1). Water Science and Technology, 59(3), 491-
760	499.
761	Foley, J., de Haas, D., Yuan, Z. & Lant, P. 2010. Nitrous oxide
762	generation in full-scale biological nutrient removal
763	wastewater treatment plants. Water Research, 44(3).
764	831-844.

765	Fu, G. T., Kapelan, Z. & Reed, P. 2012. Reducing the
766	Complexity of Multiobjective Water Distribution
767	System Optimization through Global Sensitivity
768	Analysis. <i>Journal of Water Resources Planning and</i>
769	Management-Asce, 138(3), 196-207.
770	Gori, R., Jiang, LM., Sobhani, R. & Rosso, D. 2011. Effects
771	of soluble and particulate substrate on the carbon and
772	energy footprint of wastewater treatment processes.
773	<i>Water Research</i> , 45(18), 5858-72.
774	 Guo, L., Porro, J., Sharma, K. R., Amerlinck, Y., Benedetti, L.,
775	Nopens, I., Shaw, A., Van Hulle, S. W. H., Yuan, Z. &
776	Vanrolleghem, P. A. 2012. Towards a benchmarking
777	tool for minimizing wastewater utility greenhouse gas
778	footprints. <i>Water science and technology : a journal of</i>
779	<i>the International Association on Water Pollution</i>
780	<i>Research</i> , 66(11), 2483-95.
781	Henze, M., Grady, C. P. L., Gujer, W., Marais, G. V. R. &
782	Matsuo, T. 1987. A GENERAL-MODEL FOR
783	SINGLE-SLUDGE WASTE-WATER TREATMENT
784	SYSTEMS. <i>Water Research</i> , 21(5), 505-515.
785	Hiatt, W. C. & Grady, C. P. L. 2008. An Updated Process
786	Model for Carbon Oxidation, Nitrification, and
787	Denitrification. <i>Water Environment Research</i> , 80(11),
788	2145-2156.
789	IPCC 1996. Climate Change 1995: The Science of Climate
790	Change. In: Lakeman, J. A. (ed.) Second Assessment
791	Report of the Intergovernmental Panel on Climate
792	Change. Cambridge.
793	IPCC 2006a. N2O Emissions from Managed Soils, and CO2
794	Emissions from Lime and Urea Application. <i>In:</i>
795	Eggleston, S., Buendia, L., Miwa, K., Ngara, T. &
796	Tanabe, K. (eds.) <i>IPCC Guidelines for National</i>
797	<i>Greenhouse Gas Inventories</i> . Hamaya, Japan: IGES.
798	IPCC 2006b. Wastewater treatment and discharge. <i>In:</i>
799	Eggleston, S., Buendia, L., Miwa, K., Ngara, T. &
800	Tanabe, K. (eds.) <i>IPCC Guidelines for National</i>
801	<i>Greenhouse Gas Inventories</i> . Hamaya, Japan: IGES.
802	Jeppsson, U., Pons, M. N., Nopens, I., Alex, J., Copp, J. B.,
803	Gernaey, K. V., Rosen, C., Steyer, J. P. &
804	Vanrolleghem, P. A. 2007. Benchmark simulation
805	model no 2: general protocol and exploratory case
806	studies. <i>Water Science and Technology</i> , 56(8), 67-78.
807 808	Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S. M. & van Loosdrecht, M. C. M. 2009. Nitrous oxide

809 810	emission during wastewater treatment. <i>Water Research</i> , 43(17), 4093-4103.
811	Law, Y., Lant, P. & Yuan, Z. G. 2011. The effect of pH on
812	N2O production under aerobic conditions in a partial
813	nitritation system. <i>Water Research</i> , 45(18), 5934-5944.
814	Law, Y., Ni, B. J., Lant, P. & Yuan, Z. G. 2012. N2O
815	production rate of an enriched ammonia-oxidising
816	bacteria culture exponentially correlates to its ammonia
817	oxidation rate. <i>Water Research</i> , 46(10), 3409-3419.
818	Lide, D. R. & Frederiske, H. R. 1995. CRC Handbook of
819	Chemistry and Physics, Boca Raton, CRC Press.
 820 821 822 823 824 825 	Mampaey, K., Beuckels, B., Kampschreur, M. J., Kleerebezem, R., Loosdrecht, M. C. M. & Volcke, E. 2011. Modelling nitrous and nitric oxide emissions by autotrophic ammonium oxidizing bacteria. <i>Nutrient Recovery and Management 2011</i> . Miami, FL, USA: Water Environment Federation (WEF).
826	Massmann, C. & Holzmann, H. 2012. Analysis of the behavior
827	of a rainfall-runoff model using three global sensitivity
828	analysis methods evaluated at different temporal scales.
829	<i>Journal of Hydrology</i> , 47597-110.
830 831 832 833 834	 Monteith, H. D., Sahely, H. R., MacLean, H. L. & Bagley, D. M. 2005. A rational procedure for estimation of greenhouse-gas emissions from municipal wastewater treatment plants. <i>Water Environment Research</i>, 77(4), 390-403.
835	 Ni, B. J., Ruscalleda, M., Pellicer-Nacher, C. & Smets, B. F.
836	2011. Modeling Nitrous Oxide Production during
837	Biological Nitrogen Removal via Nitrification and
838	Denitrification: Extensions to the General ASM
839	Models. <i>Environmental Science & Technology</i> , 45(18),
840	7768-7776.
841	Ni, B. J., Yuan, Z. G., Chandran, K., Vanrolleghem, P. A. &
842	Murthy, S. 2013. Evaluating four mathematical models
843	for nitrous oxide production by autotrophic ammonia-
844	oxidizing bacteria. <i>Biotechnology and Bioengineering</i> ,
845	110(1), 153-163.
846	Nopens, I., Benedetti, L., Jeppsson, U., Pons, M. N., Alex, J.,
847	Copp, J. B., Gernaey, K. V., Rosen, C., Steyer, J. P. &
848	Vanrolleghem, P. A. 2010. Benchmark Simulation
849	Model No 2: finalisation of plant layout and default
850	control strategy. <i>Water Science and Technology</i> , 62(9),
851	1967-1974.

852	 Pons, M. N., Jeppsson, U., Flores-Alsina, X., Benedetti, L.,
853	Silva, M. C. L., Nopens, I., Alex, J., Copp, J., Gernaey,
854	K. V., Rosen, C., Steyer, J. P. & Vanrolleghem, P.
855	2008. Sensitivity analysis of the Benchmark Simulation
856	Model n° 1. <i>In:</i> Braunschweig, B. & Joulia, X. (eds.)
857	18th European Synopsium on Computer Aided Process
858	Engineering - ESCAPE 18. Lyon, France.
859	 Ramin, E., Flores-Alsina, X., Sin, G., Gernaey, K. V.,
860	Jeppsson, U., Mikkelsen, P. S. & Plosz, B. Relative
861	importance of secondary settling tank models in WWTP
862	simulations - A global sensitivity analysis using BSM2.
863	6th International Congress on Environmental Modelling
864	and Software (iEMSs2012), 2012 Leipzig, Germany.
865	Rassamee, V., Sattayatewa, C., Pagilla, K. & Chandran, K.
866	2011. Effect of Oxic and Anoxic Conditions on Nitrous
867	Oxide Emissions from Nitrification and Denitrification
868	Processes. <i>Biotechnology and Bioengineering</i> , 108(9),
869	2036-2045.
870	Reichert, P. & Vanrolleghem, P. 2001. Identifiability and
871	uncertainty analysis of the River Water Quality Model
872	No. 1 (RWQM1). <i>Water Science and Technology</i> ,
873	43(7), 329-338.
874 875 876 877 878	 Rodriguez-Garcia, G., Hospido, A., Bagley, D. M., Moreira, M. T. & Feijoo, G. 2012. A methodology to estimate greenhouse gases emissions in Life Cycle Inventories of wastewater treatment plants. <i>Environmental Impact Assessment Review</i>, 3737-46.
879	 Rousseau, D., Verdonck, F., Moerman, O., Carrette, R.,
880	Thoeye, C., Meirlaen, J. & Vanrolleghem, P. A. 2001.
881	Development of a risk assessment based technique for
882	design/retrofitting of WWTPs. <i>Water Science and</i>
883	Technology, 43(7), 287-294.
884 885 886	Saltelli, A. 2002. Making best use of model evaluations to compute sensitivity indices. <i>Computer Physics Communications</i> , 145(2), 280-297.
887	Samie, G., Bernier, J., Rocher, V. & Lessard, P. 2011.
888	Modeling nitrogen removal for a denitrification
889	biofilter. <i>Bioprocess and Biosystems Engineering</i> ,
890	34(6), 747-755.
891	Shahabadi, M. B., Yerushalmi, L. & Haghighat, F. 2009.
892	Impact of process design on greenhouse gas (GHG)
893	generation by wastewater treatment plants. <i>Water</i>
894	<i>Research</i> , 43(10), 2679-2687.

895 896 897 898	 Shahabadi, M. B., Yerushalmi, L. & Haghighat, F. 2010. Estimation of greenhouse gas generation in wastewater treatment plants - Model development and application. <i>Chemosphere</i>, 78(9), 1085-1092.
899	Sin, G., Gernaey, K. V., Neumann, M. B., van Loosdrecht, M.
900	C. M. & Gujer, W. 2009. Uncertainty analysis in
901	WWTP model applications: A critical discussion using
902	an example from design. <i>Water Research</i> , 43(11), 2894-
903	2906.
904 905 906 907 908	 Sin, G., Gernaey, K. V., Neumann, M. B., van Loosdrecht, M. C. M. & Gujer, W. 2011. Global sensitivity analysis in wastewater treatment plant model applications: Prioritizing sources of uncertainty. <i>Water Research</i>, 45(2), 639-651.
909	Sobol, I. M. 2001. Global sensitivity indices for nonlinear
910	mathematical models and their Monte Carlo estimates.
911	<i>Mathematics and Computers in Simulation</i> , 55(1-3),
912	271-280.
913	Tang, Y., Reed, P., van Werkhoven, K. & Wagener, T. 2007a.
914	Advancing the identification and evaluation of
915	distributed rainfall-runoff models using global
916	sensitivity analysis. <i>Water Resources Research</i> , 43(6).
917 918 919 920 921	Tang, Y., Reed, P., Wagener, T. & van Werkhoven, K. 2007b. Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation. <i>Hydrology and Earth System Sciences</i> , 11(2), 793-817.

923 FIGURE CAPTIONS

- 924 Fig. 1 Schematic diagram of the modified BSM2 plant and
- 925 sources of modelled GHG emissions (adapted from Nopens et
- 926 al., 2010).
- 927 Fig. 2 Percentage change in model output resulting from
- 928 variation of individual parameter values
- 929 Fig. 3 First and total order sensitivity indices calculated
- 930 using Sobol's method
- 931 Fig. 4 Second order sensitivity indices calculated using
- 932 Sobol's method
- 933 Fig. 5 First and total order sensitivity indices based on direct
- 934 N₂O emissions and total indirect GHG emissions
- 935 Fig. 6 Second order sensitivity indices calculated using
- 936 Sobol's method, based on direct N₂O emissions

937 FIGURES

- 938 Fig. 1 Schematic diagram of the modified BSM2 plant and sources of modelled GHG
- 939 emissions (adapted from Nopens et al., 2010).

Fig. 2 – Percentage change in model output resulting from variation of individual parameter

942 values

944 Fig. 3 – First and total order sensitivity indices calculated using Sobol's method

948 Fig. 5 – First and total order sensitivity indices based on direct N_2O emissions and total

949 indirect GHG emissions

951 Fig. 6 – Second order sensitivity indices calculated using Sobol's method, based on direct

N_2O emissions

954 TABLE CAPTIONS

- 955 Table 1 Parameter uncertainty classes
- 956 Table 2 BSM2 and nitrogen modelling parameters selected
- 957 for sensitivity analysis screening and global sensitivity analysis
- 958 (highlighted); HSC = half saturation coefficient
- 959 Table 3 Emissions modelling parameters selected for
- 960 sensitivity analysis screening and global sensitivity analysis
- 961 (highlighted); EF = emission factor
- 962 Table 4 Characteristics of total and component GHG
- 963 emission results used for Sobol's method sensitivity analysis
- 964 Table 5 Ranking of model parameters to which at least one
- 965 key model output is sensitive

966 TABLES

Class	Description	Uncertainty (%)	Examples				
1	Accurately known parameters	5	External and input parameters				
2	Intermediate	20	Growth rates; temperature dependence coefficients				
3	Very poorly known parameters	50	Kinetic parameters, except those listed in Class 2; half-saturation concentrations; specific death and respiration rates				

Table 1 – Parameter uncertainty classes

968 Table 2 – BSM2 and nitrogen modelling parameters selected for sensitivity analysis

969 screening and global sensitivity analysis (highlighted); HSC = half saturation coefficient

Parameter		Default v	alue	CI		Bour	nds
number/name	Description	Value	Ref.	Class	Lower	Upper	Ref.
1/Y_H	Heterotrophic biomass yield (g COD/g COD)	0.67	а	1	0.6365	0.7035	с
2/f_P	Fraction of biomass yielding particulate products	0.08	b	1	0.076	0.084	с
3/i_XB	Biomass nitrogen/COD mass ratio (g N/g COD)	0.08	а	1	0.076	0.084	с
4/mu_H	Heterotrophic max specific growth rate (/d)	4	а	2	3.2	4.8	с
5/K_OH	Oxygen HSC for heterotrophic biomass $(g(-COD)/m^3)$	0.2	а	3	0.1	0.3	с
6/ny_g	Correction factor for anoxic heterotroph growth	0.8	а	2	0.64	0.96	с
7/ny_h	Correction factor for anoxic hydrolosis	0.8	а	2	0.64	0.96	N/A
8/k_h	Max specific hydrolosis rate (g COD/g COD/d)	3	а	3	1.5	4.5	N/A
9/K_X	HSC of slowly biodegradable substrate (g COD/g COD)	0.1	а	3	0.05	0.15	N/A
10/mu_A	Autotrophic max specific growth rate (/d)	0.5	а	2	0.4	0.6	с
11/K_NH	Ammonia HSC for autotrophs (g NH ₃ -N/m ³)	1	а	3	0.5	1.5	с
12/b_A	Decay coefficient for autotrophic biomass (/d)	0.05	а	3	0.025	0.075	N/A
13/K_OA	Oxygen HSC for autotrophic biomass (g (-COD)/m ³)	0.4	а	3	0.2	0.6	с
14/k_a	Ammonification rate $(m^3/g \text{ COD/d})$	0.05	а	3	0.025	0.075	N/A
15/F_TSS_COD	TSS fraction of total COD (g TSS/g COD)	0.75	а	1	0.7125	0.7875	N/A
16/k_hyd_ch	Hydrolosis influence coefficient for carbohydrates (/d)	10	а	N/A	6.25	12.5	Derived from c
17/k_hyd_pr	Hydrolosis influence coefficient for proteins (/d)	10	а	N/A	6.36	13.64	Derived from c
18/k_hyd_li	Hydrolosis influence coefficient for lipids (/d)	10	а	N/A	6.36	13.64	Derived from c
19/K_S_ac	Monod HSC for acetate (kg COD/m ³)	0.15	а	3	0.075	0.225	N/A
20/K_H_co2	Henry's law coefficient for CO ₂ (M _{liq} /bar)	0.035	a	2	0.028	0.042	N/A
21/K_H_ch4	Henry's law coefficient for CH4 (Mliq/bar)	0.0014	а	2	0.00112	0.00168	N/A
22/frxs_adm	Anaerobically degradable fraction biomass	0.68	а	1	0.646	0.714	N/A
23/v0	Maximum Vesilind settling velocity (m/d)	474	а	2	379.2	568.8	с
24/r_h	Hindered zone settling parameter (m ³ /g SS)	5.76E-04	а	2	0.00046	0.00069	с
25/r_p	Flocculent zone settling parameter (m ³ /g SS)	0.00286	а	2	0.00229	0.00343	с
26/f_ns	Non-settleable fraction	0.00228	а	2	0.00182	0.00274	с
27/K_S2	HSC for S_S for NO ₃ - reduction (g COD/ m^3)	20	d	3	10	30	N/A
28/K_S3	HSC for S_S for NO ₂ - reduction (g COD/ m^3)	20	d	3	10	30	N/A
29/K_S4	HSC for S_S for NO reduction (g COD/m^3)	20	d	3	10	30	N/A
30/K_S5	HSC for S_S for N ₂ O- reduction (g COD/m ³)	40	d	3	20	60	N/A
31/K_NO3	HSC for SNO ₃ for heterotrophs (g N/m^3)	0.2	d	3	0.1	0.3	N/A
32/K_NO2	HSC for SNO ₂ for heterotrophs ($g N/m^3$)	0.2	d	3	0.1	0.3	N/A
33/K_NO	HSC for SNO for heterotrophs (g N/m ³)	0.05	d	3	0.025	0.075	N/A
34/K_N2O	HSC for SN_2O for heterotrophs (g N/m ³)	0.05	d	3	0.025	0.075	N/A
35/ny_g2	Anoxic growth factor for NO ₃ ⁻ reduction	0.28	d	2	0.224	0.336	N/A
36/ny_g3	Anoxic growth factor for NO2 ⁻ reduction	0.16	d	2	0.128	0.192	N/A
37/ny_g4	Anoxic growth factor for NO reduction	0.35	d	2	0.28	0.42	N/A
38/ny_g5	Anoxic growth factor for N2O reduction	0.35	d	2	0.28	0.42	N/A
39/ny_Y	Anoxic yield factor for heterotrophs	0.9	d	1	0.855	0.945	N/A

^{35/}II<u></u>⁴Alex et al. (2008) ^bHenze et al. (1987) ^cBenedetti et al. (2008) ^dHiatt and Grady (2008)

Table 3 – Emissions modelling parameters selected for sensitivity analysis screening and 970

global sensitivity analysis (highlighted); EF = emission factor 971

Parameter numeer name Description Value Ref. Class Lower Upper Ref. 40/f Addit of BOD, to BODu (g BOD, yg BODu) 0.68 Class 0.646 0.714 N/A 41/EF_AerOxi EF for aerobic oxidation of BOD (g CO, kg O2) 1.1 e 1 1.045 1.155 N/A 42/EF_AcrAutoOxi (EF CO, emissions from denitrification with external carbon source (g CO/g N-N) 1 2.62 Derived 1 2.689 2.972 N/A 44/EF_C02denitWCCarb EF for CO ₂ emissions from denitrification without external carbon source (g CO/g N-N) 0.025 g 2 0.02 0.03 N/A 46kLa_n2o Gas transfer coefficient for N ₂ O (m/l/bar) 0.025 g 1 0.2844-07 N/A 49/EF_AnaerBODremCQ4 CO ₂ emissions from anaerobic carbonaccous substrate 0.25 f 1 0.233 0.263 N/A 40/EF_AnaerVSSdecCO2 CO ₂ emissions from anaerobic biomass decay 0.35 f 1 0.233 0.265 N/A 51/EF_AnaerVSSdecCO2 CO ₂	D (1 (Default	t value	CI	I	Bounds	
	Parameter number/name	Description	Value	Ref.	Class	Lower	Upper	Ref.
	40/f	Ratio of BOD ₅ to BODu (g BOD ₅ /g BODu)	0.68	e	Class	0.646	0.714	N/A
42/EF_AerAutoOxiEF for endogenous respiration of VSS1.947e11.8502.044N/A43/EF_CO2denitWCarbEF for C0: emissions from denitrification with external carbon source (g CO/g N-N)2.62Derived12.4892.751N/A44/EF_CO2denitWCarbEF for C0: emissions from denitrification without external carbon source (g CO/g N-N)0.025g20.020.03N/A45/K H_n2o_baseHenry's law constant for N ₂ O (mol/bar)0.025g20.020.03N/A47/pgas_n2oPartial pressure of N ₂ O in atmosphere (bar)3.20E-07i22.56E-073.84E-07N/A48/EF_AnaerBODremCH4CH4 emissions from anaerobic carbonaceous substrate utilisation (g CO/g BOD)0.25f10.2370.284N/A60/EF_AnaerBODremCD2C0: emissions from anaerobic biomass decay (g CH/g VSS)0.58f10.5110.609N/A52/leak_fracFraction of biogas leaked (g CO/g VSS)0.58f10.5110.609N/A52/leak_fracFraction of biogas leaked (g CO/g VSS)0.58f10.5110.609N/A56/PF_QrPumping energy factor, AS sludge recycle (kWhm ²)0.008a20.00440.06N/A56/PF_QuPumping energy factor, pumped underflow from 	41/EF_AerOxi	EF for aerobic oxidation of BOD (kg CO2/kg O2)	1.1	e	1	1.045	1.155	N/A
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	42/EF_AerAutoOxi	EF for endogenous respiration of VSS (kg CO ₂ /kg VSS)	1.947	e	1	1.850	2.044	N/A
$\begin{array}{ccccc} 42/EF_CO2denitWOCarh & EF for CO_2 emissions from demitrification without & 2.83 Derived & 1 & 2.689 & 2.972 & N/A \\ \hline external carbon source (g CO_{/g} N_2-N) & from f & f$	43/EF_CO2denitWCarb	EF for CO_2 emissions from denitrification with external carbon source (g $CO_2/g N_2$ -N)	2.62	Derived from f	1	2.489	2.751	N/A
	44/EF_CO2denitWOCarb	EF for CO ₂ emissions from denitrification without external carbon source (g $CO_2/g N_2$ -N)	2.83	Derived from f	1	2.689	2.972	N/A
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45/K_H_n2o_base	Henry's law constant for N ₂ O (mol/l/bar)	0.025	g	2	0.02	0.03	N/A
	46/kLa_n2o	Gas transfer coefficient for N_2O (/d)	2	ĥ	3	1	3	N/A
	47/pgas_n2o	Partial pressure of N ₂ O in atmosphere (bar)	3.20E-07	i	2	2.56E-07	3.84E-07	N/A
49/EF_AnaerBODremCO2CO2 emissions from anaerobic carbonaceous substrate utilisation (g CO/g BOD)0.27f10.2570.284N/A50/EF_AnaerVSSdecCH4CH4 emissions from anaerobic biomass decay (g CH/g VSS)0.35f10.3330.368N/A51/EF_AnaerVSSdecCO2CO2 emissions from anaerobic biomass decay (g CO/g VSS)0.58f10.5510.609N/A52/leak_fracFraction of biogas leaked0.05j30.0250.075N/A53/CH4toCO2_combustCombustion emission factor (g CO/g CL4)2.75e12.6132.888N/A54/CH4_conversioneffEnergy conversion efficiency for heating (kWh/m³)0.55k20.40.6N/A56/FF_QrPumping energy factor, AS sudge recycle (kWh/m³)0.006a20.00640.009N/A58/PF_QpuPumping energy factor, pumped underflow from primary clarifier (kWh/m³)0.06a20.0480.072N/A60/PF_QdoPumping energy factor, pumped underflow from dewatering unit (kWh/m³)0.005a20.0040.006N/A61/mixenergyunitADEnergy for activated sludge mixing (kW/m³)0.005a20.0040.006N/A62/PF_QdoPumping energy factor, pumped underflow from dewatering unit (kWh/m³)0.005a20.0040.006N/A61/mixenergyunitADEnergy for activated sludge mixing (kW/m³)0.005a20.0040.006 <t< td=""><td>48/EF_AnaerBODremCH4</td><td>CH₄ emissions from anaerobic carbonaceous substrate utilisation (g CH₄/g BOD)</td><td>0.25</td><td>f</td><td>1</td><td>0.238</td><td>0.263</td><td>N/A</td></t<>	48/EF_AnaerBODremCH4	CH ₄ emissions from anaerobic carbonaceous substrate utilisation (g CH ₄ /g BOD)	0.25	f	1	0.238	0.263	N/A
	49/EF_AnaerBODremCO2	CO ₂ emissions from anaerobic carbonaceous substrate utilisation (g CO ₂ /g BOD)	0.27	f	1	0.257	0.284	N/A
	50/EF_AnaerVSSdecCH4	CH_4 emissions from anaerobic biomass decay (g CH_4 /g VSS)	0.35	f	1	0.333	0.368	N/A
	51/EF_AnaerVSSdecCO2	CO_2 emissions from anaerobic biomass decay (g CO_2/g VSS)	0.58	f	1	0.551	0.609	N/A
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	52/leak_frac	Fraction of biogas leaked	0.05	j	3	0.025	0.075	N/A
54/CH4_conversioneffEnergy conversion efficiency for heating0.5k20.40.6N/A55/PF_QintrPumping energy factor, internal AS recirculation0.004a20.00320.0048N/A55/PF_QrPumping energy factor, AS sludge recycle (kWh/m³)0.008a20.00640.0096N/A57/PF_QwPumping energy factor, AS wastage flow (kWh/m³)0.05a20.040.06N/A58/PF_QpuPumping energy factor, pumped underflow from0.075a20.040.06N/A58/PF_QtuPumping energy factor, pumped underflow from0.06a20.0480.072N/A60/PF_QdoPumping energy factor, pumped underflow from0.004a20.0048N/A61/mixenergyunitRacEnergy for activated sludge mixing (kW/m³)0.005a20.0040.006N/A62/mixenergyunitADEnergy for anaerobic digester mixing (kW/m³)0.005a20.0040.006N/A64/O2TransferEffAeration oxygen transfer efficiency (kg O ₂ /kWh)1.80121.442.16N/A66/EF_EllecEF for methanol usage (kg CO ₂ e/kg)1.54f21.2321.848N/A67/EF_SludgeTransportEF for transport of sludge (kg CO ₂ /kg N)0.016m20.0130.019N/A69/EF_AerBODremlEF for carbonaceous BOD removal (kg CO ₂ /kg COD)0.33f10.3140.347N/A </td <td>53/CH4toCO2_combust</td> <td>Combustion emission factor (g CO₂/g CH₄)</td> <td>2.75</td> <td>e</td> <td>1</td> <td>2.613</td> <td>2.888</td> <td>N/A</td>	53/CH4toCO2_combust	Combustion emission factor (g CO ₂ /g CH ₄)	2.75	e	1	2.613	2.888	N/A
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54/CH4_conversioneff	Energy conversion efficiency for heating	0.5	k	2	0.4	0.6	N/A
$56/PF_Qr$ Pumping energy factor, AS sludge recycle (kWh/m³) 0.008 a2 0.0064 0.0096 N/A $57/PF_Qw$ Pumping energy factor, AS wastage flow (kWh/m³) 0.05 a2 0.04 0.06 N/A $58/PF_Qpu$ Pumping energy factor, pumped underflow from thickener (kWh/m³) 0.075 a2 0.066 0.09 N/A $59/PF_Qtu$ Pumping energy factor, pumped underflow from thickener (kWh/m³) 0.066 a2 0.048 0.072 N/A $60/PF_Qdo$ Pumping energy factor, pumped underflow from dewatering unit (kWh/m³) 0.004 a2 0.0032 0.0048 N/A $61/mixenergyunitreac$ Energy for activated sludge mixing (kW/m³) 0.005 a2 0.004 0.006 N/A $62/mixenergyunitAD$ Energy for anaerobic digester mixing (kW/m³) 0.005 a2 0.004 0.006 N/A $63/cp$ Specific heat capacity for water (Wd/gC) $4.84E-05$ a1 $4.60E-05$ $5.09E-05$ N/A $64/O2TransferEff$ Aeration oxygen transfer efficiency (kg O_2/kWh) 1.80 12 1.44 2.16 N/A $67/EF_SludgeTransportEF for methanol usage (kg CO_2e/kWh)0.245k20.1960.294N/A68/EF_SludgeN2OEF for sludge applied to managed soils (kg N_2O/kg N)0.016m21.2321.848N/A67/EF_SenbodiedCarbEF for carbonaceous BOD removal (kg CO_2/kg COD)0.33f1$	55/PF_Qintr	Pumping energy factor, internal AS recirculation (kWh/m ³)	0.004	а	2	0.0032	0.0048	N/A
57/PF_QwPumping energy factor, AS wastage flow (kWh/m³)0.05a20.040.06N/A58/PF_QpuPumping energy factor, pumped underflow from primary clarifier (kWh/m³)0.075a20.060.09N/A59/PF_QtuPumping energy factor, pumped underflow from thickener (kWh/m³)0.06a20.0480.072N/A60/PF_QdoPumping energy factor, pumped underflow from dewatering unit (kWh/m³)0.004a20.00320.0048N/A61/mixenergyunitreacEnergy for activated sludge mixing (kW/m³)0.005a20.0040.006N/A62/mixenergyunitADEnergy for anaerobic digester mixing (kW/m³)0.005a20.0040.006N/A63/cpSpecific heat capacity for water (Wd/gC)4.84E-05a14.60E-055.09E-05N/A64/O2TransferEffAeration oxygen transfer efficiency (kg O ₂ /kWh)1.80121.442.16N/A65/EF_ElecEF for electricity generation (kg CO ₂ e/kg)1.54f21.2321.848N/A67/EF_SludgeTransportEF for ransport of sludge (kg CO ₂ e/kg)0.016m20.0130.019N/A68/EF_SludgeN2OEF for sludge applied to managed soils (kg N ₂ O/kg COD)0.33f10.3140.347N/A70/EF_EffN2OEF for N ₂ O emissions from effluent (kg N ₂ O/kg COD)0.008n20.0060.009N/A*Alex et al. (2008) <td>56/PF_Qr</td> <td>Pumping energy factor, AS sludge recycle (kWh/m³)</td> <td>0.008</td> <td>а</td> <td>2</td> <td>0.0064</td> <td>0.0096</td> <td>N/A</td>	56/PF_Qr	Pumping energy factor, AS sludge recycle (kWh/m ³)	0.008	а	2	0.0064	0.0096	N/A
Pumping energy factor, pumped underflow from 0.075 a2 0.06 0.09 N/A $58/PF_Qpu$ primary clarifier (kWh/m ³)Pumping energy factor, pumped underflow from thickener (kWh/m ³) 0.06 a2 0.048 0.072 N/A $59/PF_Qtu$ Pumping energy factor, pumped underflow from dewatering unit (kWh/m ³) 0.004 a2 0.0048 0.072 N/A $60/PF_Qdo$ Pumping energy factor, pumped underflow from dewatering unit (kWh/m ³) 0.004 a2 0.0048 0.006 N/A $61/mixenergyunitreac$ Energy for activated sludge mixing (kW/m ³) 0.005 a2 0.004 0.006 N/A $62/mixenergyunitAD$ Energy for anaerobic digester mixing (kW/m ³) 0.005 a2 0.004 0.006 N/A $63/cp$ Specific heat capacity for water (Wd/gC) $4.84E-05$ a1 $4.60E-05$ $5.09E-05$ N/A $64/O2TransferEff$ Aeration oxygen transfer efficiency (kg O ₂ /kWh) 1.80 12 1.44 2.16 N/A $65/EF_Elec$ EF for electricity generation (kg CO ₂ e/kWh) 0.245 k2 0.196 0.294 N/A $67/EF_SludgeTransportEF for transport of sludge (kg CO2e/kg)1.54f21.2321.848N/A69/EF_AerBODremlEF for sludge applied to managed soils (kg N2O/kg N)0.016m20.0060.009N/A69/EF_AerBODremlEF for N2O emissions from effluent (kg N2O/kg N)$	57/PF Ow	Pumping energy factor, AS wastage flow (kWh/m ³)	0.05	а	2	0.04	0.06	N/A
59/PF_QtuPumping energy factor, pumped underflow from thickener (kWh/m³)0.06a20.0480.072N/A60/PF_QdoPumping energy factor, pumped underflow from dewatering unit (kWh/m³)0.004a20.00320.0048N/A61/mixenergyunitreacEnergy for activated sludge mixing (kW/m³)0.005a20.0040.006N/A62/mixenergyunitADEnergy for anaerobic digester mixing (kW/m³)0.005a20.0040.006N/A63/cpSpecific heat capacity for water (Wd/gC)4.84E-05a14.60E-055.09E-05N/A64/O2TransferEffAeration oxygen transfer efficiency (kg O ₂ /kWh)1.80121.442.16N/A65/EF_ElecEF for electricity generation (kg CO ₂ e/kWh)0.245k20.1960.294N/A66/EF_EmbodiedCarbEF for methanol usage (kg CO ₂ e/tonne)24f219.228.8N/A69/EF_AerBODremlEF for sludge applied to managed soils (kg N ₂ O/kg N)0.016m20.0130.019N/A69/EF_AerBODremlEF for carbonaceous BOD removal (kg CO ₂ /kg N)0.008n20.0060.009N/A ^a Alex et al. (2008)	58/PF_Qpu	Pumping energy factor, pumped underflow from primary clarifier (kWh/m ³)	0.075	а	2	0.06	0.09	N/A
$60/PF_Qdo$ Pumping energy factor, pumped underflow from dewatering unit (kWhm3) 0.004 a2 0.0032 0.0048 N/A $61/mixenergyunitreacEnergy for activated sludge mixing (kW/m3)0.005a20.0040.006N/A62/mixenergyunitADEnergy for anaerobic digester mixing (kW/m3)0.005a20.0040.006N/A63/cpSpecific heat capacity for water (Wd/gC)4.84E.05a14.60E.055.09E.05N/A64/O2TransferEffAeration oxygen transfer efficiency (kg O_2/kWh)1.80121.442.16N/A65/EF_ElecEF for electricity generation (kg CO_2e/kWh)0.245k20.1960.294N/A66/EF_EmbodiedCarbEF for methanol usage (kg CO_2e/kg)1.54f21.2321.848N/A67/EF_SludgeTransportEF for transport of sludge (kg CO_2e/tonne)24f219.228.8N/A69/EF_AerBODremlEF for sludge applied to managed soils (kg N_2O/kg N)0.016m20.0130.019N/A70/EF_EffN2OEF for N2O emissions from effluent (kg N_2O/kg N)0.008n20.0060.009N/A^aAlex et al. (2008)0.008N0.008n20.0060.009N/A$	59/PF_Qtu	Pumping energy factor, pumped underflow from thickener (kWh/m ³)	0.06	а	2	0.048	0.072	N/A
61/mixenergyunitreacEnergy for activated sludge mixing (kW/m^3) 0.005a20.0040.006N/A62/mixenergyunitADEnergy for anaerobic digester mixing (kW/m^3) 0.005a20.0040.006N/A63/cpSpecific heat capacity for water (Wd/gC) 4.84E-05a14.60E-055.09E-05N/A64/O2TransferEffAeration oxygen transfer efficiency $(kg O_2/kWh)$ 1.80121.442.16N/A65/EF_ElecEF for electricity generation $(kg CO_2e/kWh)$ 0.245k20.1960.294N/A66/EF_EmbodiedCarbEF for methanol usage $(kg CO_2e/kg)$ 1.54f21.2321.848N/A67/EF_SludgeTransportEF for transport of sludge $(kg CO_2e/kg)$ 0.016m20.0130.019N/A69/EF_AerBODremlEF for sludge applied to managed soils $(kg N_2O/kg N)$ 0.016m20.0130.019N/A70/EF_EffN2OEF for N_2O emissions from effluent $(kg N_2O/kg N)$ 0.008n20.0060.009N/A**a for N_2O emissions from effluent $(kg N_2O/kg N)$ 0.008n20.0060.009N/A	60/PF_Qdo	Pumping energy factor, pumped underflow from dewatering unit (kWh/m ³)	0.004	а	2	0.0032	0.0048	N/A
62/mixenergyunitADEnergy for anaerobic digester mixing (kW/m³) 0.005 a2 0.004 0.006 N/A63/cpSpecific heat capacity for water (Wd/gC) $4.84E.05$ a1 $4.60E.05$ $5.09E.05$ N/A64/O2TransferEffAeration oxygen transfer efficiency (kg O_2/kWh) 1.80 12 1.44 2.16 N/A65/EF_ElecEF for electricity generation (kg CO_2e/kWh) 0.245 k2 0.196 0.294 N/A66/EF_EmbodiedCarbEF for methanol usage (kg CO_2e/kg) 1.54 f2 1.232 1.848 N/A67/EF_SludgeTransportEF for transport of sludge (kg $CO_2e/tonne$) 24 f2 19.2 28.8 N/A68/EF_SludgeN2OEF for sludge applied to managed soils (kg $N_2O/kg N$) 0.016 m2 0.013 0.019 N/A69/EF_AerBODremlEF for carbonaceous BOD removal (kg $CO_2/kg COD$) 0.33 f1 0.314 0.347 N/A70/EF_EffN2OEF for N ₂ O emissions from effluent (kg $N_2O/kg N$) 0.008 n2 0.006 0.009 N/A*Alex et al. (2008)	61/mixenergyunitreac	Energy for activated sludge mixing (kW/m^3)	0.005	а	2	0.004	0.006	N/A
63/cpSpecific heat capacity for water (Wd/gC) $4.84E-05$ a1 $4.60E-05$ $5.09E-05$ N/A64/O2TransferEffAeration oxygen transfer efficiency (kg O_2/kWh) 1.80 12 1.44 2.16 N/A65/EF_ElecEF for electricity generation (kg CO_2e/kWh) 0.245 k2 0.196 0.294 N/A66/EF_EmbodiedCarbEF for methanol usage (kg CO_2e/kg) 1.54 f2 1.232 1.848 N/A67/EF_SludgeTransportEF for transport of sludge (kg $CO_2e/tone$) 24 f2 19.2 28.8 N/A68/EF_SludgeN2OEF for sludge applied to managed soils (kg $N_2O/kg N$) 0.016 m2 0.013 0.019 N/A69/EF_AerBODremlEF for carbonaceous BOD removal (kg $CO_2/kg COD$) 0.33 f1 0.314 0.347 N/A70/EF_EffN2OEF for N_2O emissions from effluent (kg $N_2O/kg N$) 0.008 n2 0.006 0.009 N/A*Alex et al. (2008)	62/mixenergyunitAD	Energy for anaerobic digester mixing (kW/m ³)	0.005	а	2	0.004	0.006	N/A
64/O2TransferEffAeration oxygen transfer efficiency (kg O2/kWh)1.80121.442.16N/A65/EF_ElecEF for electricity generation (kg CO2e/kWh)0.245k20.1960.294N/A66/EF_EmbodiedCarbEF for methanol usage (kg CO2e/kg)1.54f21.2321.848N/A67/EF_SludgeTransportEF for transport of sludge (kg CO2e/kg)1.54f219.228.8N/A68/EF_SludgeN2OEF for sludge applied to managed soils (kg N2O/kg N)0.016m20.0130.019N/A69/EF_AerBODremlEF for carbonaceous BOD removal (kg CO2/kg COD)0.33f10.3140.347N/A70/EF_EffN2OEF for N2O emissions from effluent (kg N2O/kg N)0.008n20.0060.009N/A	63/cp	Specific heat capacity for water (Wd/gC)	4.84E-05	а	1	4.60E-05	5.09E-05	N/A
65/EF_ElecEF for electricity generation (kg CO2e/kWh) 0.245 k2 0.196 0.294 N/A66/EF_EmbodiedCarbEF for methanol usage (kg CO2e/kg) 1.54 f2 1.232 1.848 N/A67/EF_SludgeTransportEF for transport of sludge (kg CO2e/tonne) 24 f2 19.2 28.8 N/A68/EF_SludgeN2OEF for sludge applied to managed soils (kg N2O/kg N) 0.016 m2 0.013 0.019 N/A69/EF_AerBODremlEF for carbonaceous BOD removal (kg CO2/kg COD) 0.33 f1 0.314 0.347 N/A70/EF_EffN2OEF for N2O emissions from effluent (kg N2O/kg N) 0.008 n2 0.006 0.009 N/A	64/O2TransferEff	Aeration oxygen transfer efficiency (kg O ₂ /kWh)	1.80	1	2	1.44	2.16	N/A
66/EF_EmbodiedCarbEF for methanol usage (kg CO2e/kg)1.54f21.2321.848N/A67/EF_SludgeTransportEF for transport of sludge (kg CO2e/tonne)24f219.228.8N/A68/EF_SludgeN2OEF for sludge applied to managed soils (kg N2O/kg N)0.016m20.0130.019N/A69/EF_AerBODremlEF for carbonaceous BOD removal (kg CO2/kg COD)0.33f10.3140.347N/A70/EF_EffN2OEF for N2O emissions from effluent (kg N2O/kg N)0.008n20.0060.009N/A*Alex et al. (2008)	65/EF_Elec	EF for electricity generation (kg CO ₂ e/kWh)	0.245	k	2	0.196	0.294	N/A
$67/\text{EF}_\text{SludgeTransport}$ EF for transport of sludge (kg CO2e/tonne)24f219.228.8N/A $68/\text{EF}_\text{SludgeN2O}$ EF for sludge applied to managed soils (kg N2O/kg N)0.016m20.0130.019N/A $69/\text{EF}_\text{AerBODreml}$ EF for carbonaceous BOD removal (kg CO2/kg COD)0.33f10.3140.347N/A $70/\text{EF}_\text{EffN2O}$ EF for N2O emissions from effluent (kg N2O/kg N)0.008n20.0060.009N/A	66/EF_EmbodiedCarb	EF for methanol usage (kg CO_2e/kg)	1.54	f	2	1.232	1.848	N/A
68/EF_SludgeN2OEF for sludge applied to managed soils (kg N2O/kg N)0.016m20.0130.019N/A69/EF_AerBODremlEF for carbonaceous BOD removal (kg CO2/kg COD)0.33f10.3140.347N/A70/EF_EffN2OEF for N2O emissions from effluent (kg N2O/kg N)0.008n20.0060.009N/A*Alex et al. (2008)	67/EF_SludgeTransport	EF for transport of sludge (kg CO ₂ e/tonne)	24	f	2	19.2	28.8	N/A
69/EF_AerBODremlEF for carbonaceous BOD removal (kg $CO_2/kg COD$)0.33f10.3140.347N/A70/EF_EffN2OEF for N ₂ O emissions from effluent (kg N ₂ O/kg N)0.008n20.0060.009N/A ^a Alex et al. (2008)	68/EF_SludgeN2O	EF for sludge applied to managed soils (kg N ₂ O/kg N)	0.016	m	2	0.013	0.019	N/A
$70/\text{EF}$ _EffN2OEF for N2O emissions from effluent (kg N2O/kg N)0.008n20.0060.009N/A ^a Alex et al. (2008)	69/EF_AerBODreml	EF for carbonaceous BOD removal (kg CO ₂ /kg COD)	0.33	f	1	0.314	0.347	N/A
^a Alex et al. (2008)	70/EF_EffN2O	EF for N ₂ O emissions from effluent (kg N ₂ O/kg N)	0.008	n	2	0.006	0.009	N/A
	^a Alex et al. (2008)	· · · ·						

^aAlex et al. (2008) ^eMonteith et al. (2005) ^fShahabadi et al. (2010) ^gLide and Frederiske (1995) ^hSamie et al. (2011) ⁱEuropean Environment Agency (2011) ^jShahabadi et al. (2009) ^kGori et al. (2011) ⁱNopens et al. (2010) ^mIPCC (2006a) ⁿIPCC (2006b)

972 Table 4 – Characteristics of total and component GHG emission results used for Sobol's

method sensitivity analysis

	Direct	Direct	Direct	Total	Total	
	CO_2	CH_4	N_2O	indirect	GHGs	
Base case (kg CO_2e/m^3)	0.4795	0.0595	0.1426	0.1872	0.8688	
Mean (kg $CO_2 e/m^3$)	0.4736	0.0596	1.1725	0.1913	1.8970	
Variance ((kg $CO_2e/m^3)^2$)	0.0006	0.0003	9.6585	0.2047	9.7978	

974 Table 5 – Ranking of model parameters to which at least one key model output is sensitive

	Sensiti	vities based	on EQI	Sensiti	vities based	on OCI	Sensitiviti	es based on to	otal GHG	
Parameter	GSA sensit	ivity rank		GSA sensit	ivity rank		GSA sensitivity rank			
number	First order	Total order	OAT rank	First order	Total order	OAT rank	First order	Total	OAT rank	
1		20	10		order			01401		
5	5	14	7							
7		19	25					12	17	
8	12	12	17		3	4	6	11	11	
10	2	5	3	-						
11	10	17	8							
12	1	3	1							
13	3	8	2							
14	6	11	5							
22			_	2	2	2				
23	7	15	6							
25	4	13	4							
27		6	9				1	3	4	
28		1					2	1	7	
29	8	2	25				7	2	3	
30		1.0					3	7	1	
32		18	19					14	14	
33		16	30					10	6	
35		9	13				4	5	5	
36	-	1	15					8	9	
37	9	4	28					4	8	
38		10						13	2	
39	11	10	14				-	9	15	
46				1	1	1	5	6	12	
64	1. 1	•,•	. 1 1	1	· 1	1				
Light grey s	nading denotes	sensitive para	ameters, based	on correspondin	ig index					
Dark grey sh	ading denotes l	ngniy sensiti	ve parameters,	based on corres	ponding inde	ex				

975	Supplementary Information
976	
977	Identifying key sources of uncertainty in the modelling of greenhouse gas
978	emissions from wastewater treatment
979	Christine Sweetapple ^{a*} , Guangtao Fu ^a , David Butler ^a
980	^a Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences,
981	University of Exeter, North Park Road, Exeter, Devon EX4 4QF, United Kingdom

^{*} Corresponding author. Tel.: +44 (0)1392 726652; E-mail: cgs204@ex.ac.uk

982 **BSM2 additions and modifications to enable modelling of**

983 greenhouse gas emissions in BSM2-e

984 **5 DIRECT EMISSIONS**

- 985 5.1 Activated sludge reactors
- 986 5.1.1 Substrate utilisation
- 987 The suspended solids mass balance given by Monteith et al. (2005) is modified for
- application to each tank as follows, to enable calculation of biomass formed in each reactor
- 989 from substrate utilisation:

$$V\frac{dX}{dt} = Q_{in}X_{in} - Q_{out}X_{out} + VYr_s - Vk_dX$$
(1)

990 where:

V = reactor volume [m³]

dX/dt = rate of change of biomass concentration in reactor [g VSS/m³/d]

- $Q_{in}X_{in}$ = biomass entering reactor in influent [g VSS/d]
- $Q_{out}X_{out}$ = biomass leaving reactor in effluent [g VSS/d]

 VYr_{e} = biomass formed in reactor from substrate utilisation [g VSS/d]

 $V k_d X$ = biomass decay in reactor [g VSS/d]

- 991 The rate of change of biomass concentration (dX/dT in Eq. 1) in each reactor is estimated
- 992 from states modelled in BSM2, based on the output values at the current (t_i) and subsequent

993 (t_{i+1}) time steps, using Eq. 2:

(1)

$$\frac{dX}{dt} = \frac{\left(\frac{\left(X_{B,H,} + X_{B,A}\right)_{i+1}}{1.42} - \frac{\left(X_{B,H,} + X_{B,A}\right)_{i}}{1.42}\right)}{t_{i+1} - t_{i}}$$
(2)

994 where:

 $X_{B,H}$ = active heterotrophic biomass [g COD/m³] $X_{B,A}$ = Active autotrophic biomass [g COD/m³] 1.42 = conversion factor [COD/g VSS]

Biomass entering and leaving each reactor ($Q_{in}X_{in}$ and $Q_{out}X_{out}$ in Eq. 1) is calculated using Eq. 3:

biomass mass flow rate [g VSS/d]
$$= Q \frac{X_{B,H} + X_{B,A}}{1.42}$$
(3)

997 The rate of biomass decay (Vk_dX in Eq. 1) is calculated using the biomass concentration

derived from the BSM2 outputs and the reactor volume, as shown in Eq. 4:

rate of biomass decay [g VSS/d]
$$= V k_{d,T} \frac{X_{B,H} + X_{B,A}}{1.42}$$
(4)

999 where:

 $k_{d,T}$ = endogenous decay coefficient at temperature T

1000 Temperature dependency of k_d is modelled as for the heterotrophic decay coefficient in

1001 BSM2, using a base value of 0.05 d⁻¹ (b_H , defined in BSM2) and the current activated sludge

1002 temperature (T_{as}) output from the model:

$$k_{\rm d,T} = b_H \exp\left(\left(\frac{\ln\left(\frac{b_H}{0.2}\right)}{5}\right)(T_{as} - 15)\right)$$
(5)

1003 The rate of biomass formation in each reactor (*VYr_s*) is then derived from Eq. 1. The 1004 heterotrophic cell yield coefficient, *Y*, defined in BSM2 (0.67 g VSS/g COD) is used to 1005 calculate the aeration BOD₅ removal rate (r_s) and the oxygen removal rate due to the 1006 oxidation of substrate is then calculated using Eq. 6 (Monteith et al., 2005). A theoretical 1007 emission factor of 1.1 g CO₂/g O₂ (*EF_{AerOxi}*) (Monteith et al., 2005), derived from 1008 stoichiometry, is applied to calculate CO₂ production from aerobic oxidation:

$$r_{02} = \frac{Vr_s}{f} - 1.42Vr_s Y$$
(6)

$$CO2_{AS,BOD} = \sum_{i=1}^{5} EF_{AerOxi} \times r_{O2,i}$$
⁽⁷⁾

1009 Where:

$$r_{o2}$$
 = oxygen removal rate due to substrate oxidation [g O₂/d]
 $V r_s/f$ = total rate of BOD_u removal in reactor (due to both substrate oxidation
and biosynthesis) [g BOD_u/d]

1.42
$$Vr_s Y$$
 = BODu removal due to biosynthesis (in which no CO₂ is formed)
[g COD/d]

$$f$$
 = conversion factor, set to 0.68 g BOD₅/g BOD_u (Monteith et al., 2005)

$$Y$$
 = cell yield coefficient [g VSS/g COD]

$$i = tank number$$

1010 **5.1.2** Biomass decay

1011 The rate of CO₂ production due to biomass decay is modelled for each reactor using a

- 1012 theoretical emission factor of 1.947 kg CO₂/kg VSS (*EF_{AerAutoOxi}*) (Monteith et al., 2005). The
- 1013 total rate of CO_2 production (g CO_2/d) due to biomass decay in the activated sludge process is
- 1014 therefore calculated using Eq. 8.

$$CO2_{AS,VSS} = \sum_{i=1}^{5} EF_{AerAutoOxi} \times (Vk_d X)_i$$
⁽⁸⁾

1015 5.1.3 Denitrification

1016 The activated sludge model has been modified to include four-step denitrification as detailed

1017 by Samie et al. (2011), to enable dynamic modelling of CO₂ and N₂O production during

1018 denitrification. All processes and process rates in the model are detailed in Table SI-1 and

1019 reactions are detailed in Table SI-2. Processes A-D replace the single step in BSM2 for

anoxic growth of heterotrophs and the single variable used in BSM2 for 'nitrate and nitrite

- 1021 nitrogen' (S_{NO}) is replaced with separate variables for nitrate (S_{NO3}), nitrite (S_{NO2}), nitric
- 1022 oxide (S_{NO}) and nitrous oxide nitrogen (S_{NO}) .

Table SI-1: Modified ASM1 process rates, adapted from Samie et al. (2011) and Alex et al.
(2008)

	Process	Process rate
1	Aerobic growth of heterotrophs	$\mu_{HT} \left(\frac{S_s}{K_s + S_s}\right) \left(\frac{S_o}{K_{o,H} + S_o}\right) X_{B,H}$
A	Anoxic growth of heterotrophs on nitrate	$\mu_{HT} \left(\frac{S_{5}}{K_{52} + S_{5}}\right) \left(\frac{K_{0,H2}}{K_{0,H2} + S_{0}}\right) \left(\frac{S_{NO3}}{K_{NO3} + S_{NO3}}\right) \eta_{g2} X_{B,H}$

	Anoxic growth of	
В	heterotrophs on	$\mu_{HT} \left(\frac{S_{5}}{K_{53} + S_{5}}\right) \left(\frac{K_{0,H3}}{K_{0,H3} + S_{0}}\right) \left(\frac{S_{NO2}}{K_{NO2} + S_{NO2}}\right) \left(\frac{K_{13N0}}{K_{13N0} + S_{N0}}\right) \eta_{g3} X_{B,H}$
	Anoxic growth of	
С	heterotrophs on	$\mu_{HT} \left(\frac{S_{s}}{K_{s4} + S_{s}} \right) \left(\frac{K_{0,H4}}{K_{0,H4} + S_{0}} \right) \left(\frac{S_{NO}}{K_{0,H4} + S_{0,H4}} \right) \left(\frac{S_{NO}}{K_{0,H4} + S_{0,H4}} \right) \eta_{g4} X_{B,H}$
	nitric oxide	\1.NO + 5.NO + K14NO/
	Anoxic growth of	
D	heterotrophs on	$\mu_{HT} \left(\frac{S_{5}}{K_{c5} + S_{c}}\right) \left(\frac{K_{0,H5}}{K_{0,H5} + S_{0}}\right) \left(\frac{S_{N20}}{K_{N20} + S_{N20}}\right) \left(\frac{K_{15N0}}{K_{15N0} + S_{N0}}\right) \eta_{g5} X_{B,H}$
	nitrous oxide	
2	Aerobic growth	$(S_{m})(S_{n})$
3	of autotrophs	$\mu_{AT} \left(\frac{S_{NH}}{K_{NH} + S_{NH}} \right) \left(\frac{S_O}{K_{O,A} + S_O} \right) X_{B,A}$
	Decay of	
4	heterotrophs	$b_{HT}X_{B,H}$
_	Decay of	
5	autotrophs	$b_{HT}X_{B,A}$
	Ammonification	
6	of soluble	$k_{aT}S_{ND}X_{B,H}$
	organic nitrogen	
	Hydrolosis of	
7	entrapped	$k_{hT} \frac{X_{5}/X_{B,H}}{V_{NO2}} \left(\left(\frac{S_{0}}{V_{NO2}} \right) + \eta_{h} \left(\frac{K_{0,H}}{V_{NO2}} \right) \left(\frac{S_{NO2} + S_{NO2}}{V_{NO2}} \right) \right) X_{B,H}$
	organics	$K_{X} + (X_{S}/X_{B,H}) \left((K_{0,H} + S_{0}) - K (K_{0,H} + S_{0}) (K_{N0} + S_{N03} + S_{N02}) \right)^{-1}$
	Hydrolosis of	
9	entrapped	$k_{hT} \frac{X_{S}/X_{B,H}}{V_{N-1}(V_{N-1})} \left(\left(\frac{S_{O}}{V_{N-1}+S_{O}} \right) + \eta_{h} \left(\frac{K_{O,H}}{V_{N-1}+S_{O}} \right) \left(\frac{S_{NO2}+S_{NO2}}{V_{N-1}+S_{NO2}} \right) \right) X_{B,H} \left(\frac{X_{ND}}{V_{N-1}+S_{ND}} \right)$
	organic nitrogen	$\kappa_{\chi} + (\kappa_{S} / \kappa_{B,H}) \left(\kappa_{0,H} + S_{0} \right) \left(\kappa_{0,H} + S_{0} \right) \left(\kappa_{N0} + S_{N02} + S_{N02} \right) \left(\kappa_{S} \right)$
10	Stripping of N ₂ O	
10	to atmosphere	$kLa_{N20} \left(S_{N20s} - 28K_{H,N20} P_{N20} \right)$

Process										Mode	l com	ponent				
110005	SI	Ss	XI	Xs	X _{B,H}	X _{B,A}	X _P	S ₀₂	S _{NO3}	S _{NH}	S _{ND}	X _{ND}	S _{ALK}	S _{NO2}	S _{NO}	S _{N2O}
1		$-\frac{1}{Y_H}$			+1			$-\frac{1-Y_H}{Y_H}$		-i _{XB}			$-\frac{i_{XB}}{14}$			
А		$-\frac{1}{Y_H \eta_Y}$			+1				$-\frac{1-Y_H\eta_Y}{1.143Y_H\eta_Y}$	-i _{XB}			$-\frac{i_{XB}}{14}$	$+\frac{1-Y_H\eta_Y}{1.143Y_H\eta_Y}$		
В		$-\frac{1}{Y_H \eta_Y}$			+1					-i _{XB}			$+\frac{1-Y_H\eta_Y}{14\times0.571Y_H\eta_Y}-$	$\frac{i_{XB}1 - Y_H\eta_Y}{140.571Y_H\eta_Y}$	$+\frac{1-Y_H\eta_Y}{0.571Y_H\eta_Y}$	
С		$-\frac{1}{Y_H \eta_Y}$			+1					-i _{XB}			$-\frac{i_{XB}}{14}$		$-\frac{1-Y_H\eta_Y}{0.571Y_H\eta_Y}$	$+\frac{1-Y_H\eta_Y}{0.571Y_H\eta_Y}$
D		$-\frac{1}{Y_H \eta_Y}$			+1					-i _{XB}			$-\frac{i_{XB}}{14}$			$-\frac{1-Y_H\eta_Y}{0.571Y_H\eta_Y}$
3						+1		$-\frac{4.57-Y_A}{Y_A}$	$+\frac{1}{Y_A}$	$-i_{XB} - \frac{1}{Y_A}$			$-\frac{i_{XB}}{14}-\frac{1}{7Y_A}$			
4				$+1 - f_{p}$	-1		+ <i>f</i> _P					+i _{XB} – f _F	i _{XP}			

1025 Table SI-2: Modified ASM1 stoichiometry matrix, adapted from Samie et al. (2011) and Alex et al. (2008)

5		$+1 - f_{p}$	-1	+ <i>f</i> _P				$+i_{XB} - f_{I}$	i _{XP}		
6						+1	-1		$+\frac{1}{14}$		
7	+1	-1									
8							+1	-1			
9											-1
Units		COD			- COD	N			Mole	Ν	

1026 Stripping of N_2O emission from solution is modelled using Eq. 9. Temperature dependency 1027 of the Henry's law constant is modelled in accordance with the ADM1 methodology for CO_2 1028 and CH_4 stripping, using a base value of 0.025 mol/l/atm at 298.15 K (Lide and Frederiske, 1029 1995; quoted in NIST, 2012).

$$r_{N20g} = 3.14kLa_{N20} \times \max\left(0, \left(S_{N20s} - 28 \times 1000K_{H,N20}Pgas_{N20}\right)\right)$$
(9)

1030 where:

$$r_{N20g} = \text{rate of } N_2\text{O emissions } [g N_2\text{O/m}^3/d]$$

3.14 = conversion factor from g N to g N_2O [g N_2O/g N]

$$kLa_{N20} = N_2\text{O gas transfer coefficient, set to 2 d^{-1} (Samie et al., 2011)}$$

28 = conversion factor [g N/mol N_2O]
1000 = conversion factor [l/m³]

$$K_{H,N20} = \text{Henry's law constant for } N_2\text{O [mol } N_2\text{O/kg/atm]}$$

$$Pgas_{N20} = \text{partial pressure of } N_2\text{O in atmosphere, set to } 3.2 \times 10^{-7} \text{ atm (European Environment Agency, 2011)}$$

1031 The total rate of N_2O emission from the five activated sludge tanks at each time step is

1032 therefore calculated using Eq. 10.

$$N2O_{AS,deni} = \sum_{i=1}^{5} r_{N2Og,i} V_i$$
(10)

1033 CO₂ emissions resulting from nutrient removal are calculated using the stoichiometric
1034 relationships given by Shahabadi et el. (2010) for denitrification with and without an external
1035 carbon source:

 $\langle \mathbf{0} \rangle$

$$5 \text{ CH}_3\text{OH} + 6 \text{ NO}_3 \rightarrow 3 \text{ N}_2 + 5 \text{ CO}_2 + 7 \text{ H}_2\text{O} + 6 \text{ OH}$$
 (11)

$$0.02 C_{10}H_{19}O_{3}N + 0.193 NO_{3}^{-} + 0.19 H^{+} \rightarrow 0.001 C_{5}H_{7}O_{2}N + 0.02 NH_{4}^{+} + 0.096 N_{2} + (12)$$

$$0.232 H_{2}O + 0.173 CO_{2} + 0.02 HCO_{3}^{-}$$

Given that these relationships are for complete denitrification and some nitrate removed in the model may be only partially denitrified, emission factors are derived to enable calculation of CO_2 emissions from denitrification based on the mass of nitrogen (N₂) produced instead of the mass of nitrate removed. This yields factors of 2.62 g CO_2/g N₂-N (*EF_{CO2denitWCarb*}) and 2.83 g CO_2/g N₂-N (*EF_{CO2denitWOCarb*}) for denitrification with and without an external source

1041 respectively. Production of N_2 at each time step is modelled as follows:

$$r_{N2} = \left(\frac{1 - Y_H \eta_Y}{0.571 Y_H \eta_Y}\right) procD$$
(13)

1042 where:

 r_{N2} = rate of N₂ production [g N/m³/d] Y_H = heterotrophic biomass yield [g COD/g COD] n_Y = anoxic yield factor for heterotrophs *procD* = process rate D, defined in Table SI-1

1043 It is assumed that the emission factor for denitrification with an external carbon source is 1044 valid even for very low carbon source flow rates (Q_{carb}), provided that $Q_{carb} > 0$. The total

1045 rate of CO₂ emissions resulting from denitrification in the activated sludge is given by Eq. 14:

$$CO2_{AS,deni} = \sum_{i=1}^{5} E_i r_{N2,i} V_i$$
(14)

59

1046 where:

$$E_i$$
 = CO₂ emission factor ($EF_{CO2denitWCarb}$ when $Q_{carb} > 0$, else
 $EF_{CO2denitWOCarb}$)

1047 **5.2 Biogas leakage and combustion**

1048 Dynamic CH₄ and CO₂ formation and stripping in the anaerobic digester and the resultant

1049 biogas composition and flow rate are modelled in BSM2. It is assumed that 5% of biogas

- 1050 produced is leaked to the atmosphere (Shahabadi et al., 2009) and the remaining biogas is
- 1051 fully combusted in accordance with Eq. 15, which yields an emission factor of
- 1052 $2.75 \text{ g CO}_2/\text{g CH}_4$ (Monteith et al., 2005).

$$CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O \tag{15}$$

- 1053 Total emissions of CH_4 (*CH4*_{AD}) and CO_2 (*CO2*_{AD}) to the atmosphere from the anaerobic
- 1054 digester are, therefore, calculated using Eq. 16 and Eq. 17 respectively.

$$CH4_{AD} = 0.05 \times CH4_{AD, biogas} \tag{16}$$

$$CO2_{AD} = CO2_{AD,biogas} + 2.75 \times 0.95 \times CH4_{AD,biogas}$$
(17)

1055 where

 $CH4_{AD,biogas}$ = total CH₄ content of biogas [kg CH₄/d] $CO2_{AD,biogas}$ = total CO₂ content of biogas [kg CO₂/d]

1056 5.3 Stripping of dissolved gases in dewatering unit

1057 Dissolved CH₄ in sludge entering the dewatering unit is assumed to be equal to that in sludge

1058 leaving the anaerobic digester at the corresponding time step. Given that the partial pressure

1059 of CH_4 in the atmosphere is negligible, it is expected that no CH_4 would remain in solution.

1060 The CH₄ mass flow rate ($CH4_{dewatering}$) from the dewatering unit at each time step is therefore 1061 modelled using Eq. 18:

$$CH4_{dewatering} = \frac{16}{64} \times S_{ch4} Q \tag{18}$$

1062 where:

$$16 = \text{conversion factor [g CH4/mol CH4]}$$

$$64 = \text{conversion factor [g COD/mol CH4]}$$

$$S_{ch4} = \text{dissolved CH4 concentration [g COD/m3]}$$

$$Q = \text{sludge flow rate [m3/d]}$$

1063 The gas transfer rate is not taken into account as it is assumed that all dissolved CH_4 will be

1064 stripped eventually, and it would therefore have no effect on net emissions.

1065 6 INDIRECT EMISSIONS

1066 6.1 Generation of energy imported

1067 Energy required for pumping, aeration, heating and mixing (E_{total}) is quantified in BSM2.

1068 Energy credit from biogas combustion is reduced by 5% with respect to the BSM2 value to

account for the 5% biogas leakage:

$$E_{credit} = 0.95 \times CH4_{AD,biogas} \times \frac{50014}{3600} \times CF$$

1070 where:

$$50014 =$$
 theoretical CH₄ energy content [J/kg]

- 3600 = conversion factor [J/kWh]
 - *CF* = energy conversion efficiency (0.50 (Gori et al., 2011) for heating and0.43 for electricity generation (Flores-Alsina et al., 2011))

1071 GHG emissions associated with generation of energy imported are calculated based on net

1072 energy import and an emission factor of 0.245 kg CO₂e/kWh (Gori et al., 2011):

$$CO2e_{energy} = 0.245 \left(\max(0, E_{total} - E_{credit}) \right)$$
⁽²⁰⁾

1073 6.2 Manufacture of chemicals

Indirect emissions due to chemical addition are calculated using the carbon source flow rate
for each tank, as modelled in BSM2, and an emission factor of 1.54 kg CO₂e/kg MeOH
(Shahabadi et al., 2010):

$$CO2e_{methanol} = \sum_{i=1}^{5} \frac{Q_{C,i} \times 400}{1.5} \times 1.54$$
(21)

62

(10)

1077 where:

$$Q_c$$
 = carbon source flow rate [m³/d]

- $400 = \text{carbon source concentration } [\text{kg COD/m}^3]$
- 1.5 = theoretical oxygen demand of methanol [g COD/g MeOH]

1078 6.3 Offsite degradation of effluent

1079 Indirect CO₂ emissions from the reactor effluent are modelled using Eq. 22, based on the

assumption that all BOD₅ remaining in the effluent degrades aerobically in accordance with

1081 the stoichiometric equation given by Shahabadi et al. (2010), which yields an emission factor

1082 of 0.33 g CO₂/g BOD (*EF_{AerBODreml}*). Effluent BOD (*BOD_{eff}*) is calculated using the BSM2

1083 methodology.

$$CO2_{eff} = BOD_{eff} \times EF_{AerBODreml}$$
(22)

1084 The rate of indirect N_2O emissions from the reactor effluent are calculated using the total

1085 effluent nitrogen concentration (N_{eff}) modelled in BSM2 and an emission factor of

1086 0.005 kg N₂O-N/kg N (IPCC, 2006b), as shown in Eq. 23.

$$N2O_{eff} = 0.005 \times \frac{44}{28} \times N_{eff}Q$$
⁽²³⁾

1087 where:

 $44/28 = \text{conversion factor } [g N_2O/g N_2O-N]$

1088 6.4 Transport and offsite degradation of sludge

Dynamic simulation of emissions resulting from sludge disposal is based on digester effluent
 concentrations and flow rates modelled in BSM2. Emissions resulting from the transport of

sludge produced for disposal at each time step are estimated using Eq. 24, with an emission
factor of 24 kg CO₂e/tonne solids (Shahabadi et al., 2010).

$$CO2e_{sludge,trans} = 24 \times TSS \times Q$$

Indirect emissions resulting from the degradation of biosolids remaining in the sludge are modelled using the method detailed by Shahabadi et al. (2009), based on the theoretical stoichiometric equation for biomass decay in an anaerobic environment. It is assumed that the degradable suspended solids in the sludge can be represented by the readily biodegradable substrate (S_s) modelled in BSM2; the rates of CO₂ and CH₄ emissions resulting from the degradation of sludge produced at each time step are, therefore, calculated using Eq. 25 and Eq. 26 respectively.

$$CO2_{sludge} = EF_{AnaerVSSdecCO2} \times \frac{S_s}{1.42}Q$$
(23)

$$CH4_{sludge} = EF_{AnaerVSSdecCH4} \times \frac{S_s}{1.42}Q$$
⁽²⁶⁾

1100 where:

$$EF_{AnaerVSSdecCO2} = \text{theoretical CO}_2 \text{ emission factor, set to } 0.58 \text{ g CO}_2/\text{g VSS} \text{ (Shahabadi} \text{ et al., } 2010)$$
$$= \text{theoretical CH}_4 \text{ emission factor, set to } 0.35 \text{ g CH}_4/\text{g VSS} \text{ (Shahabadi} \text{ et al., } 2010)$$

- 1101 N₂O emissions resulting from sludge produced for disposal at each time step are calculated
- using the total nitrogen content modelled in BSM2 and an emission factor of

(24)

(25)

- 1103 0.01 kg N₂O-/kg N, as recommended by the IPCC (2006a) for application of sludge to
- 1104 managed soils:

$$N2O_{sludge} = 0.01 \times \frac{44}{28} \times N_{effluent,total}Q$$

(27)

1106 **REFERENCES**

- 1107 Alex, J., Benedetti, L., Copp, J., Gernaey, K. V., Jeppsson, U., Nopens, I., Pons, M. N.,
- 1108 Rosen, C., Steyer, J. P. & Vanrolleghem, P. 2008. Benchmark Simulation Model no. 21109 (BSM2).
- 1110 European Environment Agency. 2011. Atmospheric concentration of N2O [Online].
- 1111 Available: <u>http://www.eea.europa.eu/data-and-maps/figures/atmospheric-</u>
- 1112 <u>concentration-of-n2o-ppb</u> [Accessed 12/03/2012 2012].
- 1113 Flores-Alsina, X., Corominas, L., Snip, L. & Vanrolleghem, P. A. 2011. Including
- greenhouse gas emissions during benchmarking of wastewater treatment plant control
 strategies. *Water Research*, 45(16), 4700-4710.
- 1116 Gori, R., Jiang, L.-M., Sobhani, R. & Rosso, D. 2011. Effects of soluble and particulate

substrate on the carbon and energy footprint of wastewater treatment processes. *Water Research*, 45(18), 5858-72.

- 1119 IPCC 2006a. N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea
- 1120 Application. *In:* Eggleston, S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. (eds.)
- 1121 *IPCC Guidelines for National Greenhouse Gas Inventories.* Hamaya, Japan: IGES.
- 1122 IPCC 2006b. Wastewater treatment and discharge. In: Eggleston, S., Buendia, L., Miwa, K.,
- 1123 Ngara, T. & Tanabe, K. (eds.) *IPCC Guidelines for National Greenhouse Gas*
- 1124 *Inventories*. Hamaya, Japan: IGES.
- Lide, D. R. & Frederiske, H. R. 1995. *CRC Handbook of Chemistry and Physics*, Boca Raton,
 CRC Press.

- Monteith, H. D., Sahely, H. R., MacLean, H. L. & Bagley, D. M. 2005. A rational procedure
 for estimation of greenhouse-gas emissions from municipal wastewater treatment
 plants. *Water Environment Research*, 77(4), 390-403.
- 1130 NIST. 2012. *Nitrous Oxide* [Online]. Available:
- 1131
 http://webbook.nist.gov/cgi/cbook.cgi?ID=C10024972&Mask=10#ref-1
 [Accessed

 1132
 12/03/2012 2012].
- Samie, G., Bernier, J., Rocher, V. & Lessard, P. 2011. Modeling nitrogen removal for a
 denitrification biofilter. *Bioprocess and Biosystems Engineering*, 34(6), 747-755.
- 1135 Shahabadi, M. B., Yerushalmi, L. & Haghighat, F. 2009. Impact of process design on
- greenhouse gas (GHG) generation by wastewater treatment plants. *Water Research*,
 43(10), 2679-2687.
- 1138 Shahabadi, M. B., Yerushalmi, L. & Haghighat, F. 2010. Estimation of greenhouse gas
- generation in wastewater treatment plants Model development and application.
- 1140 *Chemosphere*, 78(9), 1085-1092.