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ABSTRACT 8 

This study investigates sources of uncertainty in the modelling 9 

of greenhouse gas emissions from wastewater treatment, 10 

through the use of local and global sensitivity analysis tools, 11 

and contributes to an in-depth understanding of wastewater 12 

treatment modelling by revealing critical parameters and 13 

parameter interactions. One-factor-at-a-time sensitivity analysis 14 

is used to screen model parameters and identify those with 15 

significant individual effects on three performance indicators: 16 

total greenhouse gas emissions, effluent quality and operational 17 

cost. Sobol’s method enables identification of parameters with 18 

significant higher order effects and of particular parameter pairs 19 

to which model outputs are sensitive. Use of a variance-based 20 
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global sensitivity analysis tool to investigate parameter 21 

interactions enables identification of important parameters not 22 

revealed in one-factor-at-a-time sensitivity analysis. These 23 

interaction effects have not been considered in previous studies 24 

and thus provide a better understanding wastewater treatment 25 

plant model characterisation. It was found that uncertainty in 26 

modelled nitrous oxide emissions is the primary contributor to 27 

uncertainty in total greenhouse gas emissions, due largely to the 28 

interaction effects of three nitrogen conversion modelling 29 

parameters. The higher order effects of these parameters are 30 

also shown to be a key source of uncertainty in effluent quality.  31 

Keywords: Benchmark model; greenhouse gas; model 32 

identification; sensitivity; uncertainty; wastewater treatment  33 

1 INTRODUCTION 34 

Wastewater treatment can result in direct emissions of 35 

greenhouse gases (GHGs) such as carbon dioxide (CO2), 36 

methane (CH4) and nitrous oxide (N2O), as well as indirect 37 

emissions resulting from energy generation, chemical 38 

manufacture and sludge disposal, amongst other sources. 39 

Reduction of GHG emissions is a topic of global interest, and it 40 

is recognised that appropriate design and operation of 41 

wastewater treatment processes can play a significant role in 42 

mitigating the effects of global warming (Gori et al., 2011).  43 
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Models used to estimate the magnitude of GHG emissions from 44 

wastewater treatment plants (WWTPs) for inventories typically 45 

utilise empirical emission factors (e.g. IPCC, 2006b), based on 46 

the volume of wastewater treated, influent concentrations, 47 

effluent concentrations or the mass of wastewater components 48 

removed. These emission factors, however, have a high degree 49 

of variability and uncertainty (Corominas et al., 2012): for 50 

example, N2O emissions in the range 0 - 90% of the nitrogen-51 

load were reported by Kampschreur et al. (2009). As such, 52 

there has been increasing interest in the use of comprehensive 53 

process models and mechanistic models to estimate dynamic 54 

GHG emissions. Resulting from this, it has been highlighted 55 

that significant variability can occur in GHG emissions from 56 

WWTPs with different designs (Shahabadi et al., 2009) and 57 

operating under different conditions (Flores-Alsina et al., 58 

2011). 59 

As wastewater utilities face the challenge of simultaneously 60 

reducing GHG emissions and improving treatment standards 61 

due to increasing regulatory pressures, the importance of 62 

including GHG emissions in addition to effluent quality and 63 

operational costs when evaluating design alternatives is clear. It 64 

has been shown that use of automatic control can reduce GHG 65 

emissions (Corominas et al., 2010), but models used are 66 

typically of hypothetical WWTPs and their results are not 67 

always validated with real data (e.g. Hiatt and Grady, 2008; 68 
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Guo et al., 2012). As such, results are likely to be subject to a 69 

high degree of uncertainty; and careful calibration is therefore 70 

essential if applying the models and estimation methodologies 71 

to a real WWTP for plant design or control strategy 72 

development to reduce GHG emissions. Identification of the 73 

most significant sources of uncertainty could aid efficient 74 

calibration of models and reduce the complexity of future 75 

uncertainty analyses, yet there has been little research into the 76 

magnitude of uncertainty in GHG emission estimates resulting 77 

from uncertainty in model parameters and emission factors.  78 

Sensitivity analysis is a useful tool for identification of the key 79 

parameters controlling model outputs (Tang et al., 2007a). 80 

However, whilst sensitivity analyses of dynamic WWTP 81 

models have previously been undertaken to investigate the 82 

effects of uncertainty in model parameters (e.g. Pons et al., 83 

2008; Flores-Alsina et al., 2009; Ramin et al., 2012), design 84 

and operational parameters (Benedetti et al., 2008; Pons et al., 85 

2008) and influent characteristics (Pons et al., 2008), no 86 

detailed analyses for identification of key parameters affecting 87 

GHG emissions have been carried out. Gori et al. (2011) 88 

completed a sensitivity analysis to investigate the effects of 89 

varying the pCOD/VSS ratio on the rate of GHG emissions 90 

from different sources, but no other model parameters were 91 

considered. Global sensitivity analyses (GSAs) of the 92 

Benchmark Simulation Model No. 1 (BSM1) (Sin et al., 2011) 93 
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and the Benchmark Simulation Model No. 2 (BSM2) 94 

(Benedetti et al., 2008), based on Monte Carlo experiments and 95 

linear regression, enabled the identification of individual 96 

parameters with significant effects on effluent quality and 97 

operational cost, but did not consider GHG emissions. 98 

However, interactions were not investigated and output 99 

uncertainty was attributed to individual parameters only. 100 

The aim of this research is to identify individual parameters and 101 

parameter interactions which contribute significantly to 102 

uncertainty in modelled GHG emissions from wastewater 103 

treatment, as well as the more widely used performance 104 

indicators of effluent quality and operational cost. Investigation 105 

of the relative contributions of specific parameter interactions 106 

to output uncertainty represents an advance in WWTP 107 

modelling, as previous analyses have not enabled identification 108 

of significant interactions. Sensitivity analysis of a revised 109 

BSM2, with pre-defined layout, operating conditions and 110 

influent characteristics, is carried out using the one-factor-at-a-111 

time (OAT) method, to identify significant individual (first 112 

order) effects and inform the selection of parameters for 113 

inclusion in further analysis. GSA is then carried out using a 114 

variance-based method – Sobol’s method (Saltelli, 2002) - to 115 

investigate higher order effects (interactions). This tool has not, 116 

as of yet, been extensively used in wastewater treatment, but 117 

previous applications have revealed situations and modelling 118 
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scenarios in which calibration is likely to be most challenging 119 

due to the greater presence of parameter interactions 120 

(Massmann and Holzmann, 2012) and improved the efficiency 121 

of multi-objective optimisation problems by identifying 122 

important decision variable interactions (Fu et al., 2012). The 123 

results enable identification of: a) parameters that have 124 

negligible impact on uncertainty in key model outputs and can, 125 

therefore, be excluded from future uncertainty analyses; and b) 126 

parameters which contribute significantly to variance in any 127 

key model output, due to first or higher order effects, and so 128 

need to be accurately defined for model calibration and 129 

application.  130 

2 MATERIALS AND METHODS 131 

2.1 Model description 132 

2.1.1 Model structure 133 

The WWTP model used for parameter sensitivity analysis, 134 

which will be referred to as BSM2-e, is based on the 135 

Benchmark Simulation Model No. 2: BSM2 (Jeppsson et al., 136 

2007), with modifications (outlined in Section 2.1.2) made to 137 

enable dynamic modelling of the emissions shown in Fig. 1. 138 

The plant layout and modelling of pre-treatment and sludge 139 

treatment processes are unaltered from those of BSM2 (as 140 

detailed by Jeppsson et al. (2007) and Nopens et al. (2010)), but 141 

adjustments have been made to the activated sludge model to 142 
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enable calculation of N2O emissions. A complete description of 143 

all equations added and modifications made to the BSM2 is 144 

provided as supplementary information. 145 

Figure 1 146 

2.1.2 Greenhouse gas emission modelling methodologies 147 

GHG emissions are modelled using previously published 148 

estimation methodologies, which are implemented in BSM2. 149 

Sources of GHG production and direct emissions from the 150 

modelled processing units include: 151 

 Aerobic substrate utilisation (CO2), biomass decay (CO2) 152 

and denitrification (CO2 and N2O) in activated sludge 153 

reactors 154 

In BSM2, the reduction of nitrate to nitrogen is modelled as 155 

a one-step process and dynamic production of N2O (an 156 

intermediate product) cannot be determined. Modifications 157 

have therefore been made to include four-step denitrification 158 

as detailed by Samie et al. (2011). Stripping of N2O from 159 

solution is then modelled using Henry’s law. CO2 emissions 160 

resulting from nutrient removal are calculated using 161 

emission factors derived from the stoichiometric 162 

relationships for denitrification with and without an external 163 

carbon source (Shahabadi et al., 2010). 164 

Calculation of CO2 emissions from substrate utilisation and 165 

biomass decay is based upon the method detailed by 166 
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Monteith et al. (2005), with the suspended solids mass 167 

balance equation adapted for non-steady state conditions. 168 

Required concentrations and flow rates have been derived 169 

from the BSM2 state variables and theoretical emission 170 

factors, derived from stoichiometry, are applied. 171 

 Biogas leakage (CO2 and CH4) and combustion (CO2) 172 

Dynamic CH4 and CO2 formation and stripping in the 173 

anaerobic digester and the resultant biogas composition and 174 

flow rate are modelled in BSM2. It is assumed in BSM2 that 175 

all biogas is combusted for energy recovery. However, past 176 

investigations (e.g. Shahabadi et al., 2009; Shahabadi et al., 177 

2010), have identified biogas leakage as a potential 178 

contributor to total emissions. As it is impractical to 179 

accurately measure or model small leaks, a fixed leakage 180 

factor of 5% (Shahabadi et al., 2009) has been applied. It is 181 

assumed that the remaining biogas is fully combusted and a 182 

theoretical emission factor (Monteith et al., 2005) is used 183 

calculate CO2 production. 184 

 Stripping of dissolved gases (CH4) in dewatering unit 185 

Dissolved CH4 concentration in the digester effluent is 186 

calculated using the BSM2 methodology. Given the 187 

negligible partial pressure of CH4 in the atmosphere, it is 188 

assumed that all CH4 is stripped from solution during 189 

dewatering. 190 
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Additional direct emissions may result from poorly managed 191 

treatment and unintentionally anaerobic conditions (Monteith et 192 

al., 2005); these are not modelled, however, due to a lack of 193 

reliable estimation techniques. Likewise, N2O emissions 194 

associated with nitrifier denitrification during nitrification are 195 

omitted. There have been recent studies into the factors 196 

influencing N2O emissions (e.g. Foley et al., 2010; Law et al., 197 

2011; Rassamee et al., 2011), but there is little consensus on a 198 

method which can be used to estimate emissions with any 199 

degree of certainty and metabolic models of the nitrifier 200 

denitrification pathway (Mampaey et al., 2011; Ni et al., 2011) 201 

have been found unable to consistently reproduce experimental 202 

N2O emissions data (Law et al., 2012; Ni et al., 2013). The 203 

significance of this omission is uncertain; heterotrophic 204 

denitrification is the dominant nitrogen removal process, but 205 

nitrifier denitrification yields greater N2O emissions relative to 206 

the nitrogen converted (Kampschreur et al., 2009). Incomplete 207 

hydroxylamine oxidation can also result in N2O emissions, but 208 

it is unclear under what conditions this process becomes 209 

dominant and current models are inadequate (Ni et al., 2013). If 210 

nitrification modelling is included in future GHG emission 211 

estimates, inclusion of the associated parameters in uncertainty 212 

analysis is recommended. 213 

Indirect emissions result from: 214 

 Generation of energy imported 215 



10 

Energy required for pumping, aeration, heating and mixing 216 

is modelled using the original BSM2 methodologies; energy 217 

recovery from biogas combustion is also calculated using 218 

the BSM2 methodology, but with allowance for biogas 219 

leakage incorporated. GHG emissions associated with net 220 

energy import are affected by the electricity generation mix, 221 

as emissions differ between energy sources. However, as 222 

electricity grid composition varies locally and nationally and 223 

the model is not linked to a specific location, a single 224 

emission factor of 0.245 kg CO2e/kWh (Gori et al., 2011) is 225 

used but defined as uncertain. 226 

 Manufacture of chemicals 227 

Indirect emissions due to chemical addition have been 228 

calculated using the carbon source flow rate for each tank, as 229 

modelled in BSM2, and an emission factor of 230 

1.54 kg CO2e/kg MeOH (Shahabadi et al., 2010). 231 

 Offsite degradation of effluent 232 

Indirect CO2 emissions are modelled based on the 233 

assumption that all BOD5 remaining in the effluent degrades 234 

aerobically, as detailed by Shahabadi et al. (2010). Indirect 235 

N2O emissions are calculated using an emission factor of 236 

0.005 kg N2O-N/kg N (IPCC, 2006b). 237 

 Transport and offsite degradation of sludge 238 
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Emissions resulting from the transport of sludge are 239 

estimated using a fixed emission factor (Shahabadi et al., 240 

2010). Emissions of CO2 and CH4 resulting from the 241 

degradation of biosolids remaining in the sludge are 242 

modelled as detailed by Shahabadi et al. (2009), based on 243 

the theoretical stoichiometric equation for biomass decay in 244 

an anaerobic environment. Dynamic N2O emissions are 245 

calculated using the modelled sludge nitrogen content and 246 

an emission factor of 0.01 kg N2O-/kg N (IPCC, 2006a). 247 

All emissions are converted to CO2 equivalent (CO2e) units, 248 

using global warming potentials (GWPs) of 21 and 310 for CH4 249 

and N2O respectively (IPCC, 1996), to enable comparison of 250 

the magnitude of emissions from each source. 251 

2.1.3 Simulation strategy and performance assessment 252 

The performance of control strategies in the BSM2 is typically 253 

assessed using a 609 day simulation, incorporating stabilisation 254 

and evaluation periods, with predefined dynamic influent data. 255 

Initial values should be determined by simulation with 200 256 

days of constant influent data to allow the model to reach 257 

steady state (Jeppsson et al., 2007). In order to carry out a GSA 258 

of model parameters, however, it is necessary to significantly 259 

reduce the computational demand. Based on analysis of the 260 

effects of modifications in stabilisation and evaluation periods 261 

on the OAT sensitivity analysis parameter rankings, a reduced 262 

dynamic simulation period (consisting of 14 days stabilisation 263 
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and 14 days evaluation, using days 322-350 of the BSM2 264 

dynamic influent data) has been selected to follow the 200 day 265 

steady state initialisation. Whilst this shortened simulation does 266 

not reproduce the model outputs obtained with full length 267 

stabilisation and evaluation, it has been found to be suitable for 268 

assessment of the relative importance of parameters, enabling 269 

correct identification of the most sensitive model parameters in 270 

OAT sensitivity analysis and resulting in an average change in 271 

rank of just 1.1 for all 70 parameters across the three key 272 

outputs when compared with analysis using the full dynamic 273 

simulation period (609 days).    274 

Performance indicators used include an effluent quality index 275 

(EQI) and an operational cost index (OCI), calculated using the 276 

BSM2 methodology (Jeppsson et al., 2007). EQI is a weighted 277 

sum of average effluent concentrations; OCI is a measure of the 278 

average energy demand, energy recovery, carbon source dosage 279 

and sludge production for disposal. Average GHG emissions 280 

per unit of wastewater treated are also calculated, and the 281 

contribution of each gas and direct and indirect emissions to 282 

total GHG emissions are modelled to allow a more in-depth 283 

investigation into the most significant sources of uncertainty. 284 

2.1.4 Model validation 285 

The magnitude of GHG emissions per unit of treated 286 

wastewater reported in the literature differs significantly, even 287 

for WWTPs with the same or similar treatment processes and 288 
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control. Total emissions in the range 19,554 – 22,920 289 

kg CO2e/d (equivalent to 0.947 – 1.110 kg CO2e/m
3
, based on 290 

specified flow rate) were reported by Corominas et al. (2012) in 291 

an investigation into the effects of different GHG modelling 292 

approaches for the BSM2 plant. The BSM2-e emissions model 293 

gives total GHG emissions of 1.077 kg CO2e/m
3
 when using 294 

the default BSM2 evaluation period, which is within this range. 295 

2.2 Sensitivity analysis methodology 296 

153 BSM2 parameters are used in the model (excluding those 297 

relating to the plant design and operation), and a further 64 are 298 

used for the incorporated denitrification and emissions 299 

modelling. Given the large number of evaluations required for 300 

GSA, it is not practical to include every parameter. Therefore, 301 

OAT sensitivity analysis, which requires significantly fewer 302 

model evaluations, is used to provide an indication of the 303 

importance of each parameter and identify parameters with 304 

negligible effect on uncertainty in model outputs.  305 

OAT sensitivity analysis enables changes in model outputs to 306 

be clearly attributed to a specific parameter, with no ambiguity, 307 

but does not explore the effects of varying two or more 308 

parameters simultaneously and is unable to identify any 309 

significant interactions. As such, it is followed by GSA to 310 

obtain an understanding of second (and higher) order effects 311 

and allow exploration of the full parameter space. 312 
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2.2.1 Parameter screening 313 

2.2.1.1 Parameter selection and definitions 314 

Selection of BSM2 parameters is guided by the results of 315 

previous GSA by Benedetti et al. (2008): those identified as 316 

being not significant for EQI, OCI and effluent NH4 violations 317 

in terms of both the standard regression coefficient and the 318 

partial correlation coefficient are excluded from this analysis. 319 

Henry’s law coefficients used to model dissolution and 320 

stripping of CO2 and CH4 in the anaerobic digester, however, 321 

are added to the analysis, as they may affect emissions despite 322 

not having significant effects on previously considered model 323 

outputs. 324 

All half-saturation constants added for the modelling of 325 

nitrogen conversions are included in the sensitivity analysis, 326 

because these parameters have a high degree of uncertainty 327 

(Reichert and Vanrolleghem, 2001) and affect modelled N2O 328 

production, which has been shown to be a major contributor to 329 

GHG emissions from WWTPs (Rodriguez-Garcia et al., 2012). 330 

Also, other half-saturation constants were found to be 331 

significant by Benedetti et al. (2008). 332 

It is assumed that median values for each parameter are equal 333 

to the BSM2 default values (where applicable). For all other 334 

parameters, median values are assumed to be those reported in 335 

the literature on which the calculations are based. Parameters 336 
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for which no feasible range is specified in the literature are 337 

classified according to the system defined by Reichert and 338 

Vanrolleghem (2001) (summarised in Table 1) and adopted in 339 

later sensitivity and uncertainty analyses (Rousseau et al., 2001; 340 

Benedetti et al., 2008). 341 

Table 1 342 

Full details of parameters selected for screening are given in 343 

Table 2 and Table 3. Parameters 1-26 are BSM2 parameters, 344 

27-39 are nitrogen conversion modelling parameters and 40-70 345 

are emissions modelling parameters. 346 

Table 2 347 

Table 3 348 

2.2.1.2 One-factor-at-a-time sensitivity analysis 349 

To carry out OAT sensitivity analysis, a simulation is first 350 

conducted with all parameters set at their default values; this 351 

represents the base case. Further simulations are carried out 352 

with each parameter individually set to its upper and lower 353 

bound values in turn, whilst all others are held at their default 354 

values. Percentage change in each model output with respect to 355 

the base case is calculated for each simulation, to determine 356 

which parameters cause the greatest variation in model outputs 357 

when individually varied within their feasible range.  358 

2.2.2 Global sensitivity analysis 359 
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Sobol’s method (2001) is selected for GSA despite being 360 

computationally expensive, as it enables first, second and 361 

higher order effects to be distinguished through the calculation 362 

of first, second and total order sensitivity indices for each 363 

parameter or parameter pair. It also provides more robust 364 

sensitivity rankings and a more detailed description of the 365 

impact of individual parameters and their interactions on model 366 

performance than other GSA methods such as analysis of 367 

variance (Tang et al., 2007b), and requires significantly fewer 368 

model evaluations than factorial design given the large number 369 

of parameters under investigation. 370 

The total variance (D) of model outputs, resulting from samples 371 

of the feasible parameter space, is decomposed and attributed to 372 

specific parameters and their interactions as follows, assuming 373 

parameters are independent (Tang et al., 2007b): 374 

 

(1) 

where Di = output variance resulting from the ith parameter; Dij 375 

= output variance resulting from interaction between ith and jth 376 

parameters; p = total number of parameters. 377 

First and second order sensitivity indices  and  represent 378 

the percentage contribution of the ith parameter alone and the 379 
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interaction between the ith and jth parameters to total variance, 380 

respectively; total order index  represents the percentage 381 

contribution related to the ith parameter, including the 382 

interactions of any order, as defined below: 383 

 

(2) 

 

(3) 

 

(4) 

where D~i = output variance resulting from all parameters 384 

except ith parameter. A high first order sensitivity index 385 

indicates a parameter whose individual uncertainty provides a 386 

large contribution to output variance, whereas a low first order 387 

index and high total order index indicates a parameter whose 388 

interactions result in significant output variance, but 389 

individually has little effect. 390 

Sobol’s method is implemented here as follows: 391 

1. Specify upper and lower bounds of parameters for 392 

analysis. 393 
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2. Generate 2n random parameter samples within the 394 

specified bounds, with quasi-Monte Carlo sampling 395 

using Sobol’s sequence generator. 396 

3. Resample parameters using Saltelli’s (2002) extension 397 

to Sobol’s method, holding one fixed at a time, to 398 

generate n(2p+2) parameter sets. 399 

4. Run model with each parameter set in turn, recording 400 

values of model outputs. 401 

5. Compute first order, total order and second order 402 

sensitivity indices, and rankings for each parameter as 403 

detailed by Tang et al. (2007b). 404 

6. Calculate 95% bootstrap confidence intervals for all 405 

sensitivity indices. 406 

3 RESULTS AND DISCUSSION 407 

3.1 One-factor-at-a-time sensitivity analysis 408 

OAT sensitivity analysis results are presented in Tornado 409 

diagrams, which show the percentage change in each model 410 

output with respect to the base case when each model 411 

parameter is individually set to its respective upper and lower 412 

bounds. Parameters are ranked by the greatest range of 413 

percentage change for any model output and results for the 414 

most sensitive parameters are presented in Fig. 2. For clarity, 415 

only the 28 parameters with a corresponding range of change of 416 

at least 5% in one or more model output are shown. 417 
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Figure 2 418 

Variation of a single parameter within its feasible range can 419 

have particularly significant effects on modelled GHG 420 

emissions; setting the half saturation constant for readily 421 

biodegradable substrate for N2O reduction (parameter 30) to its 422 

upper bound, for example, results in a 244% increase in 423 

reported GHG emissions. Individual variation of a further eight 424 

parameters is shown to result in a range of at least 25% change 425 

in GHG emissions.  426 

A maximum range of variation in total GHG emissions of 427 

260%, resulting from uncertainty in just one parameter (No. 428 

30), is observed, whereas maximum changes in EQI and OCI 429 

are significantly lower at 22.0% (No. 12) and 17.9% (No. 64) 430 

respectively. This confirms that accurate calibration of the 431 

model with regards to GHG emissions modelling is extremely 432 

important. The nine parameters shown to have greatest 433 

individual effects on GHG emissions are all used in the 434 

modelling of nitrogen conversions, suggesting that uncertainty 435 

in GHG emissions corresponds primarily to uncertainty in the 436 

rate of N2O production. The three parameters to which GHG 437 

emissions are shown to be most sensitive result in negligible 438 

change in EQI and OCI and ought, therefore, to be relatively 439 

simple to calibrate if significant higher order effects are not 440 

identified in GSA. 441 



20 

The greatest changes in EQI arise due to uncertainty in the 442 

original BSM2 parameters, and nitrogen modelling parameters 443 

have comparatively little impact. Uncertainty in emissions 444 

modelling parameters has no effect on EQI. Uncertainty in 445 

BSM2 parameters contributes to uncertainty in all three of the 446 

key model outputs, although OCI is affected to a lesser degree 447 

(maximum 3.2% change, compared with 22.0% and 19.0% for 448 

EQI and GHG emissions respectively). It is, therefore, 449 

important to take into account the effects of BSM2 parameter 450 

values on GHG emissions as well as on conventional 451 

performance assessment measures when calibrating the model. 452 

The OCI is affected predominantly by uncertainty in the 453 

oxygen transfer efficiency (parameter 64) during OAT 454 

sensitivity analysis, suggesting that this is particularly 455 

important to consider when carrying out uncertainty analyses 456 

with regard to operational costs. 457 

3.2 Sobol’s method global sensitivity analysis 458 

GSA was carried out using the highlighted parameters in Table 459 

1 and Table 2, selected based on OAT sensitivity analysis 460 

screening results. In addition to the 28 parameters shown in 461 

Fig. 2, these include a further 11 of the highest ranked 462 

parameters. First order, second order and total order sensitivity 463 

indices computed using a sample size of 4,000 are presented, 464 

and parameters are classified as either ‘not sensitive’, 465 
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‘sensitive’ or ‘highly sensitive’ based on their contribution to 466 

output variance. A threshold of 1% contribution to output 467 

variance (i.e. a sensitivity index of at least 0.01) is used to 468 

define sensitive parameters, and a 10% contribution (i.e. a 469 

sensitivity index of at least 0.1) for highly sensitive parameters. 470 

It is known that small numerical errors can result from the 471 

truncation of Monte Carlo approximations used in Sobol’s 472 

method for calculation of integrals (Tang et al., 2007b), so 473 

slightly negative indices are assumed to equal zero. Instances in 474 

which the total order index is slightly greater than one or the 475 

total order index is less than the sum of the first and second 476 

order indices are also attributed to such errors. For the OCI, 477 

total order indices sum to less than one; this apparent error, 478 

however, is fully accounted for by the 95% confidence 479 

intervals. 480 

Bootstrapped confidence intervals, calculated using 1,000 481 

resamples, are presented for all first and total order indices 482 

greater than 0.01. It is noted that some sensitivity indices have 483 

a high degree of uncertainty, with the greatest confidence 484 

interval being 0.501 ± 0.099. The number of samples generated 485 

for analysis was quadrupled from preliminary analyses in an 486 

attempt to reduce confidence intervals, but further increase in 487 

the number of samples is impractical due to the high 488 

computational demand. Large uncertainties are not unexpected 489 

for Sobol’s method, however, due to random number 490 
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generation effects (Tang et al., 2007b), and confidence intervals 491 

in excess of 20% of the corresponding sensitivity indices have 492 

been reported for previous analyses (Tang et al., 2007a; Tang et 493 

al., 2007b). Despite large confidence intervals, the sensitivity 494 

indices can still be used to provide an indication of the relative 495 

significance of uncertainty in each modelling parameter in 496 

terms of its effects on model output uncertainties. 497 

3.2.1 Sensitivity indices based on EQI, OCI and total GHG 498 

emissions 499 

3.2.1.1 First and total order indices 500 

First and total order sensitivities calculated based on EQI, OCI 501 

and total GHG emissions are presented in Fig. 3.  502 

Figure 3 503 

The EQI is shown to be sensitive or highly sensitive to twenty 504 

BSM2 and nitrogen modelling parameters, with emissions 505 

modelling parameters (predictably) having no effect. 506 

Uncertainty in the BSM2 parameters results primarily in first 507 

order effects, but it is shown that higher order effects are 508 

dominant for nitrogen modelling parameters, and that some 509 

important parameters cannot be identified based on their 510 

individual effects alone. For example, OAT sensitivity analysis 511 

suggests that EQI is not sensitive to parameters 28 and 29 512 

(ranked 11th and 25th), but investigation into their interactions 513 
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using Sobol’s method shows that they are the greatest 514 

contributors to output variance. 515 

The effects of parameter interactions on OCI uncertainty are 516 

negligible, and there is only one highly sensitive parameter: the 517 

oxygen transfer efficiency (parameter 64). OCI is also sensitive 518 

to three BSM2 parameters, although their contribution to output 519 

variance is insignificant in comparison. 520 

All parameters classed as highly sensitive based on GHG 521 

emissions are used in the modelling of N2O production and 522 

emission, supporting the earlier suggestion that, due to their 523 

high GWP, uncertainty in the rate of N2O emissions is a 524 

significant contributor to uncertainty in total GHG emissions. 525 

Variance in modelled GHG emissions is predominantly due to 526 

interactions, although first order effects are still significant for 527 

some nitrogen modelling parameters: parameter 28, for 528 

example, contributes 50.1% of output variance to total output 529 

variance, with 10.9% from the parameter itself and 39.2% from 530 

its interactions with other parameters. It would, therefore, be 531 

beneficial to investigate the effects of specific interactions, to 532 

ensure that suitable allowance is made in future analyses and 533 

model calibration.  534 

It can be seen that there is only one parameter to which all three 535 

key model outputs are sensitive (parameter 8), although both 536 

EQI and GHG emissions are highly sensitive to the half 537 
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saturation coefficients for readily biodegradable substrate for 538 

NO3, NO2 and NO reduction. Fourteen parameters are not 539 

classed as sensitive based on any of the three key outputs; it is 540 

suggested that these need not be included in future uncertainty 541 

analyses. 542 

3.2.1.2 Second order indices 543 

Second order sensitivity indices calculated based on output 544 

GHG emissions and EQI are presented in Fig. 4 (second order 545 

indices based on OCI are not calculated since it has been shown 546 

that the effect of interactions is negligible): the shade of grey 547 

represents the sensitivity index magnitude for the 548 

corresponding parameter pair. Whilst no interactions due to 549 

individual parameter pairs can be classed as highly sensitive, 550 

there are numerous parameter pairs which have a significant 551 

impact on output variance in GHG emissions and EQI (index ≥ 552 

0.01, shown with a circle). 553 

Figure 4 554 

Not all parameters identifiable as having significant 555 

interactions, based on the difference between their total and 556 

first order sensitivity indices, are found to have sensitive 557 

parameter pairs, and the second order effects of some 558 

parameters account for only a small proportion of total output 559 

variance resulting from their interactions. Second order effects 560 

involving parameter 28, for example, contribute to 3.1% of 561 
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variance in total GHG emissions, but all interactions with this 562 

parameter contribute 39.2% of output variance, showing that 563 

higher order interactions are significant; calibration of such 564 

parameters is, therefore, likely to be challenging. 565 

In terms of both GHG emissions and EQI, all sensitive 566 

parameter pairings include at least one nitrogen modelling 567 

parameter and the most significant second order interactions are 568 

between two nitrogen modelling parameters. This provides 569 

further support to the earlier suggestion that careful calibration 570 

of nitrogen modelling parameters is vital if model output 571 

uncertainty is to be reduced. 572 

3.2.2 Sensitivity indices based on component GHG 573 

emissions  574 

Having identified parameters to which total GHG emissions are 575 

sensitive, the effects of uncertainty in these parameters on 576 

emissions of different gases and from different sources are 577 

explored, and the contribution of uncertainty in different 578 

emission components to uncertainty in total GHG emissions is 579 

investigated. 580 

The characteristics of GHG emissions resulting from the 581 

160,000 parameter sets modelled for GSA are summarised in 582 

Table 4, from which it can be seen that variance in direct N2O 583 

emissions contributes greatly to variance in total GHG 584 

emissions. Indirect emissions provide a comparatively small 585 

(12%) contribution to mean total GHG emissions, but are the 586 
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second greatest contributor to total variance. Variance in direct 587 

CO2 and CH4 emissions provides negligible contribution to 588 

total variance, despite contributing 33% of mean total GHG 589 

emissions. This suggests that, unless uncertainty in direct N2O 590 

emissions is significantly reduced by reduction of relevant 591 

parameter uncertainties, inclusion of parameters to which only 592 

direct CO2 and CH4 emissions are sensitive is unnecessary 593 

when calculating uncertainty in total GHG emissions. Further 594 

GSA therefore focuses on sources of uncertainty in direct N2O 595 

and total indirect emissions. 596 

Table 4 597 

First and total order sensitivity indices based on emission 598 

components are presented in Fig. 5. There is negligible 599 

difference between those based on total GHG emissions and 600 

those based on direct N2O emissions only, confirming that 601 

reducing uncertainty in N2O emissions is key to reducing 602 

uncertainty in total GHG emissions. 603 

Figure 5 604 

Uncertainty in indirect GHG emissions is primarily attributed 605 

to first order effects of the oxygen transfer efficiency and 606 

emission factors for carbonaceous BOD removal and N2O from 607 

the WWTP effluent and sludge (parameters 64, 65 and 68). A 608 

further five sensitive parameters are also identifiable. Given 609 

that the effects of interactions are negligible and the highly 610 
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sensitive parameters are not classed as sensitive based on any 611 

other model output, calibration with regards to indirect 612 

emissions ought to be straightforward. 613 

As parameter interactions are shown to contribute significantly 614 

to variance in direct N2O emissions, second order sensitivity 615 

indices are calculated and are shown in Fig. 6. Again, the 616 

indices based on direct N2O emissions are very similar to those 617 

based on total GHG emissions, although there are differences: 618 

whilst all sensitive parameter pairs still include at least one 619 

nitrogen modelling parameter, nine pairs involving the half 620 

saturation coefficient for NO2 for heterotrophs (parameter 32) 621 

are no longer classified as sensitive. This suggests that their 622 

second order interactions impact primarily on other GHG 623 

emissions. All emissions modelling parameters are involved in 624 

significant second order interactions with parameters 29, 36, 37 625 

and 38 and are, therefore, particularly important to reduce 626 

uncertainty in and consider simultaneously during calibration. 627 

Also important is the interaction between parameters 28 and 27, 628 

which alone contributes 2% of variance in direct N2O 629 

emissions. 630 

Figure 6 631 

3.3 Key sources of uncertainty and comparison of results 632 

Model parameters to which at least one of the key model 633 

outputs (EQI, OCI and total GHG emissions) is sensitive, based 634 
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on the corresponding sensitivity indices, are detailed in Table 5. 635 

Shading is used to distinguish sensitive and highly sensitive 636 

parameters for each output, and rankings based on OAT 637 

sensitivity analysis results as well as first and total order indices 638 

are provided. The maximum specific hydrolysis rate (parameter 639 

8) is classified as sensitive based on all three key model 640 

outputs, showing that it is necessary to simultaneously consider 641 

its impacts on each output during calibration. A further ten 642 

parameters are classified as sensitive based on both EQI and 643 

OCI; their effects on both effluent concentrations and GHG 644 

emissions must be taken into account during calibration. The 645 

remaining fourteen parameters are classified as sensitive based 646 

on just one model output. 647 

Table 5 648 

OAT sensitivity analysis results provide a good indication of 649 

the most significant individual sources of uncertainty in output 650 

EQI and OCI: parameters classified as highly sensitive based 651 

on their first order indices are also the highest ranked in OAT 652 

sensitivity analysis. For GHG emissions, however, OAT 653 

sensitivity analysis did not enable correct identification of any 654 

parameters classified as highly sensitive in GSA and there are 655 

significant discrepancies between the first order index rankings 656 

and OAT sensitivity analysis rankings for all parameters. This 657 

shows that a full GSA is an important tool even when 658 

identification of only significant first order effects is required. 659 
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GSA using Sobol’s method also enables identification of 660 

parameters involved in interactions with significant effects on 661 

uncertainty in the model output. As such, highly sensitive 662 

parameters have been identified which have comparatively low 663 

first order sensitivity indices and contribute to output 664 

uncertainty primarily through higher order effects. These are 665 

not all identifiable by OAT sensitivity analysis – uncertainty in 666 

parameter 28, for example, provides the greatest contribution to 667 

uncertainty in output EQI, but is ranked only 11th based on the 668 

results of OAT sensitivity analysis. This highlights the 669 

importance of including the effects of interactions when 670 

identifying and prioritising sources of uncertainty. 671 

4 CONCLUSIONS 672 

This research uses sensitivity analysis tools to assess the 673 

contribution of uncertain parameters in the modelling of GHG 674 

emissions from wastewater treatment to uncertainty in model 675 

outputs, and to identify parameters to which the outputs are 676 

most sensitive. Sensitivity analyses are carried out using both 677 

the OAT method (also used for screening) and Sobol’s method 678 

(to enable identification of significant interactions), from which 679 

the following conclusions can be drawn: 680 

 Parameters used in the modelling of nitrogen 681 

conversions have negligible first order (individual) 682 

effects on the EQI and, based on OAT sensitivity 683 
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analysis, have a low significance rank. Use of Sobol’s 684 

method, however, enables identification of parameters 685 

involved in interactions that contribute greatly to 686 

uncertainty in EQI. This highlights the importance of 687 

considering parameter interactions using a variance-688 

based global sensitivity analysis method such as Sobol’s 689 

method. 690 

 Uncertainty in total GHG emissions from the modelled 691 

WWTP result primarily from uncertainty in direct N2O 692 

emissions, due to their high GWP. Key sources of 693 

uncertainty in direct N2O emissions include the half 694 

saturation coefficients for readily biodegradable 695 

substrate for NO3, NO2 and NO reduction. As such, 696 

further work to reduce uncertainty in these parameter 697 

values would be beneficial in order to reduce 698 

uncertainty in total GHG emissions. 699 

 GSA reveals that parameters used in the modelling of 700 

nitrogen conversions are key sources of uncertainty in 701 

both EQI and total GHG emissions – therefore, when 702 

calibrating the model, it is important to consider the 703 

effects on both of these outputs. 704 

 Uncertainty in the OCI is shown to be predominantly 705 

due to first order effects resulting from uncertainty in 706 

the oxygen transfer efficiency. Neither EQI or GHG 707 

emissions are sensitive to this parameter, thus 708 
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calibration of model outputs used in calculation of the 709 

OCI is expected to be relatively straightforward if this 710 

knowledge is taken into account. 711 

In summary, this study has enabled the identification of 712 

parameters that contribute significantly to uncertainty in one or 713 

more model outputs and require careful calibration, as well as 714 

those that provide negligible contribution and can be omitted 715 

from future uncertainty analyses. 716 
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FIGURE CAPTIONS 923 

Fig. 1 – Schematic diagram of the modified BSM2 plant and 924 

sources of modelled GHG emissions (adapted from Nopens et 925 

al., 2010). 926 

Fig. 2 – Percentage change in model output resulting from 927 

variation of individual parameter values 928 

Fig. 3 – First and total order sensitivity indices calculated 929 

using Sobol’s method 930 

Fig. 4 – Second order sensitivity indices calculated using 931 

Sobol’s method 932 

Fig. 5 – First and total order sensitivity indices based on direct 933 

N2O emissions and total indirect GHG emissions 934 

Fig. 6 – Second order sensitivity indices calculated using 935 

Sobol’s method, based on direct N2O emissions936 
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FIGURES 937 

Fig. 1 – Schematic diagram of the modified BSM2 plant and sources of modelled GHG 938 

emissions (adapted from Nopens et al., 2010). 939 

940 
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 Fig. 2 – Percentage change in model output resulting from variation of individual parameter 941 

values 942 

 943 
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Fig. 3 – First and total order sensitivity indices calculated using Sobol’s method 944 

 945 
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Fig. 4 – Second order sensitivity indices calculated using Sobol’s method 946 

 947 
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Fig. 5 – First and total order sensitivity indices based on direct N2O emissions and total 948 

indirect GHG emissions 949 

 950 
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Fig. 6 – Second order sensitivity indices calculated using Sobol’s method, based on direct 951 

N2O emissions 952 

953 
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TABLE CAPTIONS 954 

Table 1 – Parameter uncertainty classes 955 

Table 2 – BSM2 and nitrogen modelling parameters selected 956 

for sensitivity analysis screening and global sensitivity analysis 957 

(highlighted); HSC = half saturation coefficient 958 

Table 3 – Emissions modelling parameters selected for 959 

sensitivity analysis screening and global sensitivity analysis 960 

(highlighted); EF = emission factor 961 

Table 4 – Characteristics of total and component GHG 962 

emission results used for Sobol’s method sensitivity analysis 963 

Table 5 – Ranking of model parameters to which at least one 964 

key model output is sensitive 965 
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TABLES 966 

Table 1 – Parameter uncertainty classes 967 

Class Description Uncertainty (%) Examples 

1 Accurately known 

parameters 

5 External and input parameters 

2 Intermediate 20 Growth rates; temperature dependence 

coefficients 

3 Very poorly 

known parameters 

50 Kinetic parameters, except those listed in 

Class 2; half-saturation concentrations; 

specific death and respiration rates 
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Table 2 – BSM2 and nitrogen modelling parameters selected for sensitivity analysis 968 

screening and global sensitivity analysis (highlighted); HSC = half saturation coefficient 969 

Parameter 
number/name 

Description 
Default value 

Class 
Bounds 

Value Ref. Lower Upper Ref. 

1/Y_H Heterotrophic biomass yield (g COD/g COD) 0.67 a 1 0.6365 0.7035 c 

2/f_P Fraction of biomass yielding particulate products  0.08 b 1 0.076 0.084 c 
3/i_XB Biomass nitrogen/COD mass ratio (g N/g COD) 0.08 a 1 0.076 0.084 c 

4/mu_H Heterotrophic max specific growth rate (/d) 4 a 2 3.2 4.8 c 

5/K_OH Oxygen HSC for heterotrophic biomass (g(-COD)/m3) 0.2 a 3 0.1 0.3 c 
6/ny_g Correction factor for anoxic heterotroph growth  0.8 a 2 0.64 0.96 c 

7/ny_h Correction factor for anoxic hydrolosis  0.8 a 2 0.64 0.96 N/A 

8/k_h Max specific hydrolosis rate (g COD/g COD/d) 3 a 3 1.5 4.5 N/A 
9/K_X HSC of slowly biodegradable substrate (g COD/g 

COD) 

0.1 a 
3 

0.05 0.15 N/A 

10/mu_A Autotrophic max specific growth rate (/d) 0.5 a 2 0.4 0.6 c 
11/K_NH Ammonia HSC for autotrophs (g NH3-N/m3) 1 a 3 0.5 1.5 c 

12/b_A Decay coefficient for autotrophic biomass (/d) 0.05 a 3 0.025 0.075 N/A 

13/K_OA Oxygen HSC for autotrophic biomass (g (-COD)/m3) 0.4 a 3 0.2 0.6 c 
14/k_a Ammonification rate (m3/g COD/d) 0.05 a 3 0.025 0.075 N/A 

15/F_TSS_COD TSS fraction of total COD (g TSS/g COD) 0.75 a 1 0.7125 0.7875 N/A 

16/k_hyd_ch Hydrolosis influence coefficient for carbohydrates (/d) 10 a N/A 6.25 12.5 Derived from c 
17/k_hyd_pr Hydrolosis influence coefficient for proteins (/d) 10 a N/A 6.36 13.64 Derived from c 

18/k_hyd_li Hydrolosis influence coefficient for lipids (/d) 10 a N/A 6.36 13.64 Derived from c 

19/K_S_ac Monod HSC for acetate (kg COD/m3) 0.15 a 3 0.075 0.225 N/A 
20/K_H_co2 Henry's law coefficient for CO2 (Mliq/bar) 0.035 a 2 0.028 0.042 N/A 

21/K_H_ch4 Henry's law coefficient for CH4 (Mliq/bar) 0.0014 a 2 0.00112 0.00168 N/A 

22/frxs_adm Anaerobically degradable fraction biomass  0.68 a 1 0.646 0.714 N/A 
23/v0 Maximum Vesilind settling velocity (m/d) 474 a 2 379.2 568.8 c 

24/r_h Hindered zone settling parameter (m3/g SS) 5.76E-04 a 2 0.00046 0.00069 c 

25/r_p Flocculent zone settling parameter (m3/g SS) 0.00286 a 2 0.00229 0.00343 c 
26/f_ns Non-settleable fraction  0.00228 a 2 0.00182 0.00274 c 

27/K_S2 HSC for S_S for NO3- reduction (g COD/m3) 20 d 3 10 30 N/A 

28/K_S3 HSC for S_S for NO2- reduction (g COD/m3) 20 d 3 10 30 N/A 
29/K_S4 HSC for S_S for NO reduction (g COD/m3) 20 d 3 10 30 N/A 

30/K_S5 HSC for S_S for N2O- reduction (g COD/m3) 40 d 3 20 60 N/A 

31/K_NO3 HSC for SNO3 for heterotrophs (g N/m3) 0.2 d 3 0.1 0.3 N/A 
32/K_NO2 HSC for SNO2 for heterotrophs (g N/m3) 0.2 d 3 0.1 0.3 N/A 

33/K_NO HSC for SNO for heterotrophs (g N/m3) 0.05 d 3 0.025 0.075 N/A 

34/K_N2O HSC for SN2O for heterotrophs (g N/m3) 0.05 d 3 0.025 0.075 N/A 
35/ny_g2 Anoxic growth factor for NO3

- reduction  0.28 d 2 0.224 0.336 N/A 

36/ny_g3 Anoxic growth factor for NO2
- reduction  0.16 d 2 0.128 0.192 N/A 

37/ny_g4 Anoxic growth factor for NO reduction  0.35 d 2 0.28 0.42 N/A 
38/ny_g5 Anoxic growth factor for N2O reduction  0.35 d 2 0.28 0.42 N/A 

39/ny_Y Anoxic yield factor for heterotrophs  0.9 d 1 0.855 0.945 N/A 
aAlex et al. (2008) 
bHenze et al. (1987)  
cBenedetti et al. (2008) 
dHiatt and Grady (2008) 
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Table 3 – Emissions modelling parameters selected for sensitivity analysis screening and 970 

global sensitivity analysis (highlighted); EF = emission factor 971 

Parameter number/name Description 
Default value 

Class 
Bounds 

Value Ref. Lower Upper Ref. 

40/f Ratio of BOD5 to BODu (g BOD5/g BODu) 0.68 e Class 0.646 0.714 N/A 

41/EF_AerOxi EF for aerobic oxidation of BOD (kg CO2/kg O2) 1.1 e 1 1.045 1.155 N/A 

42/EF_AerAutoOxi 
EF for endogenous respiration of VSS 

(kg CO2/kg VSS) 

1.947 e 1 1.850 2.044 N/A 

43/EF_CO2denitWCarb 
EF for CO2 emissions from denitrification with 
external carbon source (g CO2/g N2-N) 

2.62 Derived 
from f 

1 2.489 2.751 N/A 

44/EF_CO2denitWOCarb 
EF for CO2 emissions from denitrification without 

external carbon source (g CO2/g N2-N) 

2.83 Derived 

from f 

1 2.689 2.972 N/A 

45/K_H_n2o_base Henry's law constant for N2O (mol/l/bar) 0.025 g 2 0.02 0.03 N/A 

46/kLa_n2o Gas transfer coefficient for N2O (/d) 2 h 3 1 3 N/A 

47/pgas_n2o Partial pressure of N2O in atmosphere (bar) 3.20E-07 i 2 2.56E-07 3.84E-07 N/A 

48/EF_AnaerBODremCH4 
CH4 emissions from anaerobic carbonaceous substrate 

utilisation (g CH4/g BOD) 

0.25 f 1 0.238 0.263 N/A 

49/EF_AnaerBODremCO2 
CO2 emissions from anaerobic carbonaceous substrate 
utilisation (g CO2/g BOD) 

0.27 f 1 0.257 0.284 N/A 

50/EF_AnaerVSSdecCH4 
CH4 emissions from anaerobic biomass decay 

(g CH4/g VSS) 

0.35 f 1 0.333 0.368 N/A 

51/EF_AnaerVSSdecCO2 
CO2 emissions from anaerobic biomass decay 

(g CO2/g VSS) 

0.58 f 1 0.551 0.609 N/A 

52/leak_frac Fraction of biogas leaked  0.05 j 3 0.025 0.075 N/A 
53/CH4toCO2_combust Combustion emission factor (g CO2/g CH4) 2.75 e 1 2.613 2.888 N/A 

54/CH4_conversioneff Energy conversion efficiency for heating  0.5 k 2 0.4 0.6 N/A 

55/PF_Qintr 
Pumping energy factor, internal AS recirculation 
(kWh/m3) 

0.004 a 2 0.0032 0.0048 N/A 

56/PF_Qr Pumping energy factor, AS sludge recycle (kWh/m3) 0.008 a 2 0.0064 0.0096 N/A 

57/PF_Qw Pumping energy factor, AS wastage flow (kWh/m3) 0.05 a 2 0.04 0.06 N/A 

58/PF_Qpu 
Pumping energy factor, pumped underflow from 

primary clarifier (kWh/m3) 

0.075 a 2 0.06 0.09 N/A 

59/PF_Qtu 
Pumping energy factor, pumped underflow from 
thickener (kWh/m3) 

0.06 a 2 0.048 0.072 N/A 

60/PF_Qdo 
Pumping energy factor, pumped underflow from 

dewatering unit (kWh/m3) 

0.004 a 2 0.0032 0.0048 N/A 

61/mixenergyunitreac Energy for activated sludge mixing (kW/m3) 0.005 a 2 0.004 0.006 N/A 

62/mixenergyunitAD Energy for anaerobic digester mixing (kW/m3) 0.005 a 2 0.004 0.006 N/A 

63/cp Specific heat capacity for water (Wd/gC) 4.84E-05 a 1 4.60E-05 5.09E-05 N/A 
64/O2TransferEff Aeration oxygen transfer efficiency (kg O2/kWh) 1.80 l 2 1.44 2.16 N/A 

65/EF_Elec EF for electricity generation (kg CO2e/kWh) 0.245 k 2 0.196 0.294 N/A 

66/EF_EmbodiedCarb EF for methanol usage (kg CO2e/kg) 1.54 f 2 1.232 1.848 N/A 
67/EF_SludgeTransport EF for transport of sludge (kg CO2e/tonne) 24 f 2 19.2 28.8 N/A 

68/EF_SludgeN2O EF for sludge applied to managed soils (kg N2O/kg N) 0.016 m 2 0.013 0.019 N/A 

69/EF_AerBODreml EF for carbonaceous BOD removal (kg CO2/kg COD) 0.33 f 1 0.314 0.347 N/A 
70/EF_EffN2O EF for N2O emissions from effluent (kg N2O/kg N) 0.008 n 2 0.006 0.009 N/A 
aAlex et al. (2008) 
eMonteith et al. (2005) 
fShahabadi et al. (2010) 
gLide and Frederiske (1995) 
hSamie et al. (2011) 
iEuropean Environment Agency (2011) 
jShahabadi et al. (2009) 
kGori et al. (2011) 
lNopens et al. (2010) 
mIPCC (2006a) 
nIPCC (2006b) 
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Table 4 – Characteristics of total and component GHG emission results used for Sobol’s 972 

method sensitivity analysis 973 

 Direct 

CO2 

Direct 

CH4 

Direct 

N2O 

Total 

indirect 

Total 

GHGs 

Base case (kg CO2e/m
3
) 0.4795 0.0595 0.1426 0.1872 0.8688 

Mean (kg CO2e/m
3
) 0.4736 0.0596 1.1725 0.1913 1.8970 

Variance ((kg CO2e/m
3
)
2
) 0.0006 0.0003 9.6585 0.2047 9.7978 
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Table 5 – Ranking of model parameters to which at least one key model output is sensitive  974 

Parameter 

number 

Sensitivities based on EQI Sensitivities based on OCI 
Sensitivities based on total GHG 

emissions 

GSA sensitivity rank 

OAT rank 

GSA sensitivity rank 

OAT rank 

GSA sensitivity rank 

OAT rank 
First order 

Total 

order 
First order 

Total 

order 
First order 

Total 

order 

1  20 10       
5 5 14 7       

7  19 25     12 17 

8 12 12 17  3 4 6 11 11 
10 2 5 3       

11 10 17 8       

12 1 3 1       
13 3 8 2       

14 6 11 5       

22    2 2 2    
23 7 15 6       

25 4 13 4       

27  6 9    1 3 4 
28  1 11    2 1 7 

29 8 2 25    7 2 3 

30       3 7 1 
32  18 19     14 14 

33  16 30     10 6 

35  9 13    4 5 5 
36  7 15     8 9 

37 9 4 28     4 8 

38        13 2 
39 11 10 14     9 15 

46       5 6 12 

64    1 1 1    

Light grey shading denotes sensitive parameters, based on corresponding index 
Dark grey shading denotes highly sensitive parameters, based on corresponding index 
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BSM2 additions and modifications to enable modelling of 982 

greenhouse gas emissions in BSM2-e 983 

5 DIRECT EMISSIONS 984 

5.1 Activated sludge reactors 985 

5.1.1 Substrate utilisation 986 

The suspended solids mass balance given by Monteith et al. (2005) is modified for 987 

application to each tank as follows, to enable calculation of biomass formed in each reactor 988 

from substrate utilisation: 989 

 

(1) 

where:  990 

 = reactor volume [m
3
] 

 = rate of change of biomass concentration in reactor [g VSS/m
3
/d] 

 
= biomass entering reactor in influent [g VSS/d] 

 
= biomass leaving reactor in effluent [g VSS/ d] 

 
= biomass formed in reactor from substrate utilisation [g VSS/d] 

 
= biomass decay in reactor [g VSS/d] 

The rate of change of biomass concentration (dX/dT in Eq. 1) in each reactor is estimated 991 

from states modelled in BSM2, based on the output values at the current (ti) and subsequent 992 

(ti+1) time steps, using Eq. 2: 993 
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(2) 

where:  994 

 = active heterotrophic biomass [g COD/m
3
] 

 = Active autotrophic biomass [g COD/m
3
] 

1.42 = conversion factor [COD/g VSS] 

Biomass entering and leaving each reactor (QinXin and QoutXout in Eq. 1) is calculated using 995 

Eq. 3: 996 

biomass mass flow rate [g VSS/d] 

 

(3) 

The rate of biomass decay (VkdX in Eq. 1) is calculated using the biomass concentration 997 

derived from the BSM2 outputs and the reactor volume, as shown in Eq. 4: 998 

rate of biomass decay [g VSS/d] 

 

(4) 

where:  999 

 = endogenous decay coefficient at temperature T 

Temperature dependency of kd is modelled as for the heterotrophic decay coefficient in 1000 

BSM2, using a base value of 0.05 d
-1

 (bH, defined in BSM2) and the current activated sludge 1001 

temperature (Tas) output from the model: 1002 
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(5) 

The rate of biomass formation in each reactor (VYrs) is then derived from Eq. 1. The 1003 

heterotrophic cell yield coefficient, Y, defined in BSM2 (0.67 g VSS/g COD) is used to 1004 

calculate the aeration BOD5 removal rate (rs) and the oxygen removal rate due to the 1005 

oxidation of substrate is then calculated using Eq. 6 (Monteith et al., 2005). A theoretical 1006 

emission factor of 1.1 g CO2/g O2 (EFAerOxi) (Monteith et al., 2005), derived from 1007 

stoichiometry, is applied to calculate CO2 production from aerobic oxidation: 1008 

 

(6) 

 

(7) 

Where:  1009 

 = oxygen removal rate due to substrate oxidation [g O2/ d] 

 = total rate of BODu removal in reactor (due to both substrate oxidation 

and biosynthesis) [g BODu/d] 

 = BODu removal due to biosynthesis (in which no CO2 is formed) 

[g COD/d] 

 = conversion factor, set to 0.68 g BOD5/g BODu (Monteith et al., 2005) 

 = cell yield coefficient [g VSS/g COD] 

 = tank number 
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5.1.2 Biomass decay 1010 

The rate of CO2 production due to biomass decay is modelled for each reactor using a 1011 

theoretical emission factor of 1.947 kg CO2/kg VSS (EFAerAutoOxi) (Monteith et al., 2005). The 1012 

total rate of CO2 production (g CO2/d) due to biomass decay in the activated sludge process is 1013 

therefore calculated using Eq. 8. 1014 

 

(8) 

5.1.3 Denitrification 1015 

The activated sludge model has been modified to include four-step denitrification as detailed 1016 

by Samie et al. (2011), to enable dynamic modelling of CO2 and N2O production during 1017 

denitrification. All processes and process rates in the model are detailed in Table SI-1 and 1018 

reactions are detailed in Table SI-2. Processes A-D replace the single step in BSM2 for 1019 

anoxic growth of heterotrophs and the single variable used in BSM2 for ‘nitrate and nitrite 1020 

nitrogen’ (SNO) is replaced with separate variables for nitrate (SNO3), nitrite (SNO2), nitric 1021 

oxide (SNO) and nitrous oxide nitrogen (SNO). 1022 

Table SI-1: Modified ASM1 process rates, adapted from Samie et al. (2011) and Alex et al. 1023 

(2008) 1024 

Process Process rate 

1 

Aerobic growth 

of heterotrophs  

A 

Anoxic growth of 

heterotrophs on 

nitrate 
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B 

Anoxic growth of 

heterotrophs on 

nitrite 
 

C 

Anoxic growth of 

heterotrophs on 

nitric oxide  

D 

Anoxic growth of 

heterotrophs on 

nitrous oxide 
 

3 

Aerobic growth 

of autotrophs  

4 

Decay of 

heterotrophs  

5 

Decay of 

autotrophs  

6 

Ammonification 

of soluble 

organic nitrogen 

 

7 

Hydrolosis of 

entrapped 

organics 
 

9 

Hydrolosis of 

entrapped 

organic nitrogen 
 

10 

Stripping of N2O 

to atmosphere  
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Table SI-2: Modified ASM1 stoichiometry matrix, adapted from Samie et al. (2011) and Alex et al. (2008) 1025 

Process 

Model component 

SI SS XI XS XB,H XB,A XP SO2 SNO3  SNH SND XND SALK SNO2 SNO SN2O 

1  

 

  
 

  

 

 
 

  

 

   

A  

 

  
 

   

 
 

  

  

  

B  

 

  
 

    
 

  

   

 

C  

 

  
 

    
 

  

 

 

  

D  

 

  
 

    
 

  

 

  

 

3      
 

 

   

  

 

   

4    
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5    
 

 
  

    
 

    

6          
  

 

 

   

7  
 

 
 

            

8           
  

    

9                
 

Units COD - COD N Mole N 
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Stripping of N2O emission from solution is modelled using Eq. 9. Temperature dependency 1026 

of the Henry’s law constant is modelled in accordance with the ADM1 methodology for CO2 1027 

and CH4 stripping, using a base value of 0.025 mol/l/atm at 298.15 K (Lide and Frederiske, 1028 

1995; quoted in NIST, 2012). 1029 

 

(9) 

where:  1030 

 = rate of N2O emissions [g N2O/m
3
/d] 

 = conversion factor from g N to g N2O [g N2O/g N] 

 = N2O gas transfer coefficient, set to 2 d
-1

 (Samie et al., 2011) 

 = conversion factor [g N/mol N2O] 

 = conversion factor [l/m
3
] 

 = Henry’s law constant for N2O [mol N2O/kg/atm] 

 = partial pressure of N2O in atmosphere, set to 3.2 × 10
-7

 atm (European 

Environment Agency, 2011) 

The total rate of N2O emission from the five activated sludge tanks at each time step is 1031 

therefore calculated using Eq. 10. 1032 

 

(10) 

CO2 emissions resulting from nutrient removal are calculated using the stoichiometric 1033 

relationships given by Shahabadi et el. (2010) for denitrification with and without an external 1034 

carbon source: 1035 
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5 CH3OH + 6 NO3

-
 → 3 N2 + 5 CO2 + 7 H2O + 6 OH

-
 (11) 

0.02 C10H19O3N + 0.193 NO3

-
 + 0.19 H

+
 → 0.001 C5H7O2N + 0.02 NH4

+
 + 0.096 N2 + 

0.232 H2O + 0.173 CO2 + 0.02 HCO3

-
 

(12) 

Given that these relationships are for complete denitrification and some nitrate removed in 1036 

the model may be only partially denitrified, emission factors are derived to enable calculation 1037 

of CO2 emissions from denitrification based on the mass of nitrogen (N2) produced instead of 1038 

the mass of nitrate removed. This yields factors of 2.62 g CO2/g N2-N (EFCO2denitWCarb) and 1039 

2.83 g CO2/g N2-N (EFCO2denitWOCarb) for denitrification with and without an external source 1040 

respectively. Production of N2 at each time step is modelled as follows: 1041 

 

(13) 

where:  1042 

 = rate of N2 production [g N/m
3
/d] 

 = heterotrophic biomass yield [g COD/g COD] 

 = anoxic yield factor for heterotrophs 

 = process rate D, defined in Table SI-1 

It is assumed that the emission factor for denitrification with an external carbon source is 1043 

valid even for very low carbon source flow rates (Qcarb), provided that Qcarb > 0. The total 1044 

rate of CO2 emissions resulting from denitrification in the activated sludge is given by Eq. 14: 1045 

 

(14) 



60 

 

where:  1046 

 = CO2 emission factor (EFCO2denitWCarb when Qcarb > 0, else 

EFCO2denitWOCarb) 

5.2 Biogas leakage and combustion 1047 

Dynamic CH4 and CO2 formation and stripping in the anaerobic digester and the resultant 1048 

biogas composition and flow rate are modelled in BSM2. It is assumed that 5% of biogas 1049 

produced is leaked to the atmosphere (Shahabadi et al., 2009) and the remaining biogas is 1050 

fully combusted in accordance with Eq. 15, which yields an emission factor of 1051 

2.75 g CO2/g CH4 (Monteith et al., 2005). 1052 

Total emissions of CH4 (CH4AD) and CO2 (CO2AD) to the atmosphere from the anaerobic 1053 

digester are, therefore, calculated using Eq. 16 and Eq. 17 respectively. 1054 

 
(16) 

 
(17) 

where 1055 

 = total CH4 content of biogas [kg CH4/d] 

 = total CO2 content of biogas [kg CO2/d] 

5.3 Stripping of dissolved gases in dewatering unit 1056 

Dissolved CH4 in sludge entering the dewatering unit is assumed to be equal to that in sludge 1057 

leaving the anaerobic digester at the corresponding time step. Given that the partial pressure 1058 

of CH4 in the atmosphere is negligible, it is expected that no CH4 would remain in solution. 1059 

CH4 + 2 O2 → CO2 +2 H2O (15) 
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The CH4 mass flow rate (CH4dewatering) from the dewatering unit at each time step is therefore 1060 

modelled using Eq. 18: 1061 

 

(18) 

where: 1062 

16 = conversion factor [g CH4/mol CH4] 

64 = conversion factor [g COD/mol CH4] 

 = dissolved CH4 concentration [g COD/m
3
] 

 = sludge flow rate [m
3
 /d] 

The gas transfer rate is not taken into account as it is assumed that all dissolved CH4 will be 1063 

stripped eventually, and it would therefore have no effect on net emissions. 1064 
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6 INDIRECT EMISSIONS 1065 

6.1 Generation of energy imported 1066 

Energy required for pumping, aeration, heating and mixing (Etotal) is quantified in BSM2. 1067 

Energy credit from biogas combustion is reduced by 5% with respect to the BSM2 value to 1068 

account for the 5% biogas leakage: 1069 

 

(19) 

where: 1070 

50014 = theoretical CH4 energy content [J/kg] 

3600 = conversion factor [J/kWh] 

 = energy conversion efficiency (0.50 (Gori et al., 2011) for heating and 

0.43 for electricity generation (Flores-Alsina et al., 2011)) 

GHG emissions associated with generation of energy imported are calculated based on net 1071 

energy import and an emission factor of 0.245 kg CO2e/kWh (Gori et al., 2011): 1072 

 

(20) 

6.2 Manufacture of chemicals 1073 

Indirect emissions due to chemical addition are calculated using the carbon source flow rate 1074 

for each tank, as modelled in BSM2, and an emission factor of 1.54 kg CO2e/kg MeOH 1075 

(Shahabadi et al., 2010): 1076 

 

(21) 
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where:  1077 

 = carbon source flow rate [m
3
/d] 

400 = carbon source concentration [kg COD/m
3
] 

1.5 = theoretical oxygen demand of methanol [g COD/g MeOH] 

6.3 Offsite degradation of effluent 1078 

Indirect CO2 emissions from the reactor effluent are modelled using Eq. 22, based on the 1079 

assumption that all BOD5 remaining in the effluent degrades aerobically in accordance with 1080 

the stoichiometric equation given by Shahabadi et al. (2010), which yields an emission factor 1081 

of 0.33 g CO2/g BOD (EFAerBODreml). Effluent BOD (BODeff) is calculated using the BSM2 1082 

methodology. 1083 

 

(22) 

The rate of indirect N2O emissions from the reactor effluent are calculated using the total 1084 

effluent nitrogen concentration (Neff) modelled in BSM2 and an emission factor of 1085 

0.005 kg N2O-N/kg N (IPCC, 2006b), as shown in Eq. 23.  1086 

 

(23) 

where:  1087 

 = conversion factor [g N2O/g N2O-N] 

6.4 Transport and offsite degradation of sludge 1088 

Dynamic simulation of emissions resulting from sludge disposal is based on digester effluent 1089 

concentrations and flow rates modelled in BSM2. Emissions resulting from the transport of 1090 
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sludge produced for disposal at each time step are estimated using Eq. 24, with an emission 1091 

factor of 24 kg CO2e/tonne solids (Shahabadi et al., 2010). 1092 

 

(24) 

Indirect emissions resulting from the degradation of biosolids remaining in the sludge are 1093 

modelled using the method detailed by Shahabadi et al. (2009), based on the theoretical 1094 

stoichiometric equation for biomass decay in an anaerobic environment. It is assumed that the 1095 

degradable suspended solids in the sludge can be represented by the readily biodegradable 1096 

substrate (Ss) modelled in BSM2; the rates of CO2 and CH4 emissions resulting from the 1097 

degradation of sludge produced at each time step are, therefore, calculated using Eq. 25 and 1098 

Eq. 26 respectively. 1099 

 

(25) 

 

(26) 

where:  1100 

 = theoretical CO2 emission factor, set to 0.58 g CO2/g VSS (Shahabadi 

et al., 2010) 

 
= theoretical CH4 emission factor, set to 0.35 g CH4/g VSS (Shahabadi 

et al., 2010) 

N2O emissions resulting from sludge produced for disposal at each time step are calculated 1101 

using the total nitrogen content modelled in BSM2 and an emission factor of 1102 
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0.01 kg N2O-/kg N, as recommended by the IPCC (2006a) for application of sludge to 1103 

managed soils: 1104 

 

(27) 

 1105 
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