Accepted Manuscript

Frequency analysis of urban runoff quality in an urbanizing catchment of Shenzhen, China

Huapeng Qin, Xiaolong Tan, Guangtao Fu, Yingying Zhang, Yuefei Huang

PII: DOI: Reference:	S0022-1694(13)00358-2 http://dx.doi.org/10.1016/j.jhydrol.2013.04.053 HYDROL 18880
To appear in:	Journal of Hydrology
Received Date:	3 August 2011 10 April 2013
Accepted Date:	22 April 2013

Please cite this article as: Qin, H., Tan, X., Fu, G., Zhang, Y., Huang, Y., Frequency analysis of urban runoff quality in an urbanizing catchment of Shenzhen, China, *Journal of Hydrology* (2013), doi: http://dx.doi.org/10.1016/j.jhydrol.2013.04.053

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Essential title page information
2	
3	Title: Frequency analysis of urban runoff quality in an urbanizing catchment of
4	Shenzhen, China
5	Huapeng Qin ^{a, b*} , Xiaolong Tan ^b , Guangtao Fu ^c , Yingying Zhang ^b , Yuefei Huang ^a
6	^a State Key Laboratory of hydroscience and Engineering, Tsinghua University, Beijing,
7	100084;
8	^b Key Laboratory for Urban Habitat Environmental Science and Technology, School of
9	Environment and Energy, Peking University Shenzhen Graduate School, 518055, Shenzhen,
10	China;
11	^c Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences,
12	University of Exeter, Exeter EX4 4QF, U.K
13	
14	*Corresponding author.
15	Tel: +86 755 26035291; Fax: +86 755 26035291
16	Email: qinhp@pkusz.edu.cn
17	Postal address:
18	Room 414, E Building,
19	Peking University Shenzhen Graduate School,
20	Lishui Road, Xili, Nanshan District
21	Shenzhen 518055, China

23 Abstract

41

42

24	This paper investigates the frequency distribution of urban runoff quality indicators using a
25	long-term continuous simulation approach and evaluates the impacts of proposed runoff control
26	schemes on runoff quality in an urbanizing catchment in Shenzhen, China. Four different
27	indicators are considered to provide a comprehensive assessment of the potential impacts: total
28	runoff depth, event pollutant load, event mean concentration, and peak concentration during a
29	rainfall event. The results obtained indicate that urban runoff quantity and quality in the catchment
30	have significant variations in rainfall events and a very high rate of non-compliance with surface
31	water quality regulations. Three runoff control schemes with the capacity to intercept an initial
32	runoff depth of 5mm, 10mm, and 15mm are evaluated, respectively, and diminishing marginal
33	benefits are found with increasing interception levels in terms of water quality improvement. The
34	effects of seasonal variation in rainfall events are investigated to provide a better understanding of
35	the performance of the runoff control schemes. The pre-flood season has higher risk of poor water
36	quality than other seasons after runoff control. This study demonstrates that frequency analysis of
37	urban runoff quantity and quality provides a probabilistic evaluation of pollution control measures,
38	and thus helps frame a risk-based decision making for urban runoff quality management in an
39	urbanizing catchment.
40	

Keywords: urban runoff; water quality; continuous simulation; frequency analysis; urbanization; runoff control

1 Introduction

44	Urban runoff is a major source of surface water pollution in urban areas (Akan, 1988;
45	Andres-Domenech et al., 2010a, 2010b; Behera et al., 2006; Fu et al., 2009, 2010). It has been
46	well documented that runoff quality is closely related to rainfall characteristics such as rainfall
47	intensity, rainfall duration, storm frequency, and Antecedent Dry Period (ADP) (e.g., Chow and
48	Yusop, 2008; Kim et al., 2007; Lee and Band, 2000). Thus runoff quality can vary considerably in
49	different rainfall events. For example, Huang et al. (2007) showed that the Event Mean
50	Concentration (EMC) for Chemical Oxygen Demand (COD) ranges from 41 to 464 mg/l based on
51	the study of five rainfall events in a small catchment in Macau. Qin et al. (2010) found that the
52	maximum EMC for COD is over five times higher than the minimum value in a typical urbanizing
53	area in China.
54	In order to consider the variability in runoff quality, it is suggested that the frequency
55	distributions of runoff quality and pollutant loads be used as indicators to evaluate the impact of
56	pollution in receiving water bodies (Andres-Domenech et al., 2010b). This helps to determine the
57	global water quality conditions of the receiving waters, gain an insight into the duration and
58	frequency of events that do not satisfy water quality standards, and thus support the decision
59	maker to select the most appropriate and sustainable solution for water quality management and
60	planning problems in a risk-based decision making framework (McIntyre, 2004).
61	The challenge in characterizing water quality with a frequency distribution often arises from
62	the scarcity of water quality data and the expensive cost in obtaining new data (e.g. Akan, 1988).
63	Thus, in many situations, it is normally impossible to construct an accurate frequency distribution
64	with observed data. However, water quality models have been used to provide estimates of urban

65 runoff quality (Obropta and Kardos, 2007; Zoppou, 2001). And the frequency distribution of urban 66 runoff quality can be analyzed by the simulation-based methods. In general, there are two methods: 67 analytical probability method and long term continuous simulation. 68 In an analytical probability method, the rainfall event characteristics (e.g., rainfall depth, 69 duration, intensity, and interevent time) in an urban drainage system are typically considered as 70 random variables with specified probability distribution functions (PDFs). The PDFs are then 71 mathematically transformed by rainfall runoff and quality models into the PDFs of system 72 performance variables (such as runoff volume, event mean concentration of pollutants, and 73 pollutant load to receiving waters) (Akan, 1988; Andres-Domenech et al., 2010a; Chen and 74 Adams, 2007; Li and Adams, 2000). However, a major limitation of these approaches lies in the 75 representation of storm events. That is, the rainfall variables are often assumed to be independent, 76 and can be represented by the same type of PDFs (e.g., normal distributions) such that their joint 77 PDF may be expressed as the product of their marginal PDFs. Moreover, the rainfall runoff and 78 quality model has to be simplified, otherwise, the analytical probability distribution of model 79 outputs cannot be derived (Akan, 1988). And thus this approach is normally recommended for the 80 preliminary planning and design stage because of its computational efficiency (Behera et al., 81 2006)

Continuous simulation is based on water quality simulations over a long term period (e.g., several years) and statistical analysis of the simulation results. This approach can take most random rainfall characteristics into account and evaluate the long-term performance of urban drainage systems (Andres-Domenech et al., 2010b; Demuynck et al., 1997). Prior studies have focused on the overall performance of the systems, represented by an integrated indicator e.g.

87 cumulative water volume and pollutant mass, efficiency of pollutant removal, rate of 88 non-compliance with the water quality standards in the entire simulation period. For example, 89 Calabro and Viviani (2006) evaluated the performance of storm tanks with different storage 90 volumes, devices and operational rules for a continuous simulation period of five years in the case 91 of Parco d'Orle'ans catchment and for a period of one year in the case of Fossolo catchment in 92 Italy. Mannina and Viviani (2009) compared the pollution loads discharged to receiving bodies by 93 separate and combined sewer systems during both dry and wet weather. Freni et al. (2010) 94 assessed the effects of different distributed and centralized urban storm-water management 95 techniques on reducing accumulated overflow volumes and total suspended solids loads over a 96 period of six years. Although numerous efforts have been made to investigate the overall 97 performance of urban drainage systems based on a long term continuous simulation, there are very 98 few studies reporting frequency distributions of event-based runoff quality and pollutant loads. 99 These distributions are essential to analyze the risks in a drainage system. In addition, rainfall 100 characteristics and their seasonal variations have significant effects on the runoff quality and 101 pollutant loads. However, to the best of our knowledge, these effects have not been documented in 102 the previous studies.

103 Compared to previous studies based on continuous simulation, this paper aims to provide a 104 more comprehensive assessment of the potential impacts of proposed runoff control schemes on 105 urban runoff quality and quantity. Runoff quality is represented by Chemical Oxygen Demand 106 (COD) because it is one of the main pollutants in the study catchment. The impact assessment 107 conducted in this study has the following aspects: 1) using four different event-based indicators, 108 i.e., total runoff depth, event pollutant load (EPL), event mean concentration (EMC), and peak

109	concentration that are calculated from a long term continuous simulation; 2) examining the effects
110	of the rainfall amount on these indicators; 3) investigating the cumulative frequency distributions
111	of these indicators; and 4) discussing the seasonal changes of these frequency distributions. This
112	method is demonstrated with a series of 41-year rainfall data in an urbanizing catchment in
113	Shenzhen, China. The results obtained reveal that urban runoff quality in the catchment has a high
114	risk of non-compliance with the surface water quality regulations. The proposed runoff control
115	schemes significantly reduce the water quality risk of runoff pollution, and have different effects
116	in different seasons due to seasonal variation in rainfall events. This method is able to provide a
117	probabilistic evaluation of pollution control measures that helps move towards a risk-based
118	decision making framework for water quality management.
119	
120	2 Material and methods
121	2.1 Study area
122	The Shiyan River catchment is located in Shenzhen city, southeast China (Fig.1). It is the
123	longest tributary of Shiyan Reservoir. The Shiyan River catchment has undergone rapid
124	urbanization in the last 20 years, and its population increased from 21,000 in 1990 to 213,000 in
125	2007. It has an area of 25 km^2 with 32% of impervious land use in 2007, characterized by a mix of
126	residential (10%), industrial (16%), agricultural (29%) and sparse forest (37%) land uses.
127	Currently, the water quality of the river has a high rate of non-compliance with the water quality
128	regulations. Due to high population density, lack of environmental consciousness, and inadequate
120	litter management in the rapidly urbanizing area, nonpoint source pollution resulting from urban

130 runoff becomes one of the major sources of pollutants (Qin et al 2010). For example, the peak

131	concentration of COD during four rainfall events measured in 2009-2010 is as high as 360-770
132	mg/L, and is 18-38 times higher than the maximum permitted COD concentration in the river (20
133	mg/L) (Table1).
134	
135	Fig.1 Map of the Shiyan River catchment
136	
137	Table 1 Observed rainfall data for model calibration and validation
138	6
139	Two types of drainage systems co-exist in the Shiyan river catchment: combined sewer
140	systems in the early developed areas and separate sewer systems in the newly developed areas.
141	However, due to inadequate sewer networks coverage, mis-connection between wastewater and
142	storm water pipelines, unregulated sewage flows are frequently discharged into the Shiyan River
143	and subsequently entering the reservoir. To improve the water quality of the reservoir, the local
144	government has proposed a plan to construct a runoff control system at the downstream of Shiyan
145	River catchment (Fig.1). The system comprises of an interception gate, an interception channel
146	and a detention reservoir. It aims to intercept the initial rainwater with high pollution load in the
147	catchment. Thus its capacity is closely linked to the level of interception that needs to be decided
148	by the local government. This paper will provide a probabilistic evaluation of different levels of
149	interception by characterizing frequency distributions of urban runoff quantity and quality and will
150	help frame a risk-based decision making for planning and management of storm water quality in
151	the future.
152	

153 2.2 Historical rainfall data

154	The Shiyan River catchment has a mild, subtropical maritime climate with a mean annual
155	temperature of 22.4°C and mean annual precipitation of 1933 mm, 85-90% of which falls from
156	April to September. A rainfall monitoring station was set in the Shiyan River catchment since 1961,
157	as shown in Fig. 1. A series of 41-year rainfall data at a time step of one hour was used to conduct
158	the long-term continuous simulation of the catchment model. Augmented Dickey-Fuller (ADF)
159	(Dickey and Fuller, 1979) tests were performed (with intercept but without trend) to detect the
160	stationarity of annual total rainfall and annual maximum hourly rainfall (1961–2002). The test
161	indicated that both the annual total rainfall and annual maximum hourly rainfall time series
162	are stationary, with a Mackinnon approximate $P < 0.01$. To analyze statistics of runoff water
163	quality, the long term rainfall record was divided into separate rainfall events in terms of the
164	inter-event time definition (IETD), which is defined as the minimum inter-event time period
165	between two consecutive pulses of rainfall (Li and Adams, 2000). Rainfall pulses that are
166	separated by a time interval greater than the IETD are considered to be separate events. Based on
167	the definition of IETD, the statistical characteristics of some important variables, such as rainfall
168	amount and ADP, can be extracted from the historical rainfall record. 1688 rainfall events with
169	rainfall amount more than 5 mm were identified based on IETD = 3 hours since there is no runoff
170	generated when rainfall depth is less than 5 mm in the catchment.
171	The frequency distribution characteristics of rainfall events in the catchment are shown in Fig.

172 2. The averaged event rainfall amount is 27 mm, but 50% of event rainfall amounts are less than 173 16 mm. And the events with a rainfall amount between 5-15mm, 15-25mm and more than 25mm 174 account for around 48.5%, 18.2% and 33.3%, respectively. The averaged ADP is 4.2 days. And 175 the events with ADP less than 1 day, between 1-10 days and more than 10 days account for

around 37.9%, 50.9% and 11.2%, respectively.

177

- 178 Fig. 2 Frequency distributions of rainfall amount and ADP
- 179

180 **2.3 Rainfall runoff and quality model**

- 181 The IHACRES (Identification of unit Hydrographs And Component flows from Rainfall,
- 182 Evaporation and Streamflow data) model was used to simulate the rainfall runoff processes in the
- 183 case study catchment (Croke et al., 2005). The IHACRES model consists of nonlinear and linear
- modules. The nonlinear module converts rainfall to effective rainfall. The linear module uses the
 unit hydrograph approach to transform effective rainfall to streamflow. In the statistical loss
- 186 module the effective rainfall is expressed as:

187
$$u_{t} = [c_{1}(\phi_{t} - I)]^{p} r_{t}$$
(1)

where *t* is time (min), r_t and u_t are rainfall and effective rainfall (mm), respectively, c_1 , *I* and *p* are parameters for mass balance, soil moisture index threshold and non-linear response terms, respectively, and $\boldsymbol{\phi}_t$ is a soil moisture index (mm) given by:

191
$$\phi_t = r_t + (1 - 1/\tau)\phi_{t-1}$$
(2)

192 The parameter τ is the time constant or, inversely, the rate at which the catchment wetness 193 declines in the absence of rainfall. The initial soil wetness index (Φ_0) is related to the soil wetness 194 at the end of the previous rainfall event (Φ_r) and antecedent dry period (*ADP*, day), and is

195 calculated as

196
$$\phi_0 = \phi_r (1 - 1/\tau)^{ADP/\Delta t}$$
 (3)

197 where Δt is simulation time step (day).

198 In the linear module, the instantaneous unit hydrograph (IUH) is formulated as the

199 two-parameter gamma distribution (Singh, 2004):

$$IUH(t) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} t^{\alpha - 1} e^{-t/\beta}, \alpha \ge 1, \beta > 0$$

200

201 where
$$\alpha$$
 is the shape parameter, β is the scale parameter, and Γ is the gamma function.

202 Pollutant wash-off during storm events is commonly modelled as an exponential decay

203 function of the available surface pollutant load (Rossman et al., 2008):

$$dP_t / dt = -c_2 q_t^{c_3} P_t$$

205 where P_t is pollutant buildup in the catchment at time t (kg), c_2 is wash-off coefficient, c_3 is

wash-off exponent, and q_t is runoff rate (mm/hour). By solving the differential equation (5), the

207 following equation can be obtained:

$$C_{t} = \frac{c_{2}P_{0}q_{t}^{c_{3}-1}}{A} \exp\left(-c_{2}\int_{0}^{0}q_{t}^{c_{3}}dt\right)$$
(6)

208

where C_t is pollutant concentration in runoff at time t (mg/l), P_0 is initial pollutant buildup in the catchment at the beginning of the rainfall (kg) and *A* is catchment area (km²). P_0 can be evaluated by an exponential equation proposed by Alley and Smith (1981):

$$P_{0} = \left(\frac{Accu}{Disp}\right) A \cdot Peim\left(1 - e^{-Disp \cdot ADP}\right) + P_{r}e^{-Disp \cdot ADP}$$
(7)

212

where *Accu* is the buildup rate $(kg/(km^2 d))$, *Disp* is the decay rate (d^{-1}) , P_r is the residual pollutant after last rainfall event (kg), and *Peim* is the percentage of impervious area.

Runoff during storm events comprises of dry weather (no-rain day) flow and storm runoff. The dry weather flow and pollutant loads were determined by measurement before each storm event, thus storm runoff could be estimated by subtracting those values from wet weather flow. Therefore, the six-parameter IHACRES model (c_1 , I, p, τ , α and β) and four-parameter pollutant

(4)

(5)

- buildup and washoff model (c_2 , c_3 , Accu and Disp) are used to describe the rainfall runoff
- 220 pollution processes. Since COD is one of the main pollutants in the Shiyan River catchment, it is
- 221 taken as the representative water quality indicator in this study.
- Temporary monitoring sites were installed at the outlet of the catchment to measure streamflow and associated water quality. Field experiments were conducted for 10 no-rain days and 4 storm events between April 2009 and September 2010. The streamflow was measured by Sontek/YSI Argonaut-SW (1ASW-33000 model) at 10 min intervals; and the COD was measured by Horbi UV-COD online monitor (OPSA-150) at 30 min intervals. Rainfall data was recorded by an automated gauge (1-min interval) at Shiyan reservoir rainfall monitoring station operated by Shenzhen Meteorology Bureau.

The parameter values for the rainfall runoff and quality model of the Shiyan River catchment were calibrated against measured data in April 2009 (Table 1). The genetic algorithm (GA) was used to search the optimal values of the 10 model parameters with the objective to maximize the combined Nash-Sutcliffe (NS) coefficients of runoff and water quality:

233
$$NS = 1 - \frac{\sum (v_{sim} - v_{obs,t})^2}{\sum (v_{obs,t} - \overline{v_{obs}})^2}$$
(8) where v is runoff Q (m³/s) or COD

(mg/L); the subscript *sim* and *obs* denote the simulated and observed values, respectively.
Assuming that runoff and water quality have an equal importance in model calibration, the two NS
coefficients are combined into a single objective using the weighted sum method. The ranges of
the model parameters used in the search are shown in Table 2. In the optimization process of the
GA, we set the values of the genetic parameters to 100 for population size, 90% for crossover and
1% for mutation probability. We continued the search process for 200 generations. The optimized
values of model parameters are shown in Table2, and the corresponding *NS* of runoff and COD is

241	0.774 and 0.824, respectively. The model was further validated against measured data in Sept
242	2010 (Table 1), and NS of runoff and COD is 0.826 and 0.844, respectively. Fig. 3 shows a
243	comparison between the simulated and measured data. The results indicate that the simulated data
244	fit well with the trends of time series measured and can be used to assess the performance of
245	pollutant control measures.
246	
247	Table 2 Optimized values of model parameters
248	
249	Fig. 3 Comparison between measured and calculated data
250	
251	2.4 Indicators of rainfall runoff quality
252	To have a more comprehensive evaluation of runoff quality, four indicators are used to
253	describe the runoff pollution characteristics in the catchment: total runoff depth, Event Pollutant
254	Loads per unit area (EPL), EMC, and peak concentration during a rainfall event. A brief
255	introduction is given to EPL and EMC below.
256	EPL, mass of pollutant washed off per unit area per rainfall event (t/km ²), describes the
257	area-averaged intensity of runoff pollutant loads. It can be expressed as:
	$V = \int C Q dt = \sum C Q M$
258	$EPL = \frac{M}{A} = \frac{\int C_t \mathcal{Q}_t dt}{A} \cong \frac{\sum C_t \mathcal{Q}_t \Delta t}{A} $ (9)
259	where C_t is constituent at time t and Q_t is storm water discharge at time t; M is pollutant mass and
260	A is catchment area (km ²); $\triangle t$ is discrete time interval. EPL can be used for total pollutant mass
261	control in a catchment.
262	Event Mean Concentration (EMC), mean pollutant concentration in runoff per rainfall event

263 (mg/L), reflects water quality of runoff (or runoff pollution degree/level) in a catchment. It can be

264 expressed as (Bertrand-Krajewski et al., 1998):

$$EMC = \frac{M}{V} = \frac{\int_{0}^{1} C_{t} Q_{t} dt}{\int Q_{t} dt} \approx \frac{\sum C_{t} Q_{t} \Delta t}{\sum Q_{t} \Delta t}$$

266 where V is runoff volume during the storm event. EMC can be used in water quality management

- 267 and concentration control for a catchment. EMC is regarded as a good measure to represent
- rainfall runoff quality (Kim et al., 2007; Lee and Bang, 2000).

269

270 3 Results and discussion

271 3.1 Rainfall runoff quantity and quality

272 Each point in Fig.4 represents a rainfall event. The x-coordinate is event rainfall amount and

273 y-coordinate is one of runoff indicators (total runoff depth, EPL, EMC or peak concentration of

274 COD) of a rainfall event.

275

276

Fig. 4 Rainfall amount vs. runoff quantity and quality

277

A close relationship between rainfall amount and runoff depth is shown in Fig.4a. The maximum total runoff depth during rainfall events is 132mm, which is equivalent to a runoff volume of 3.3 million m³ in the catchment. With increasing event rainfall amount, the total runoff depth nonlinearly increases, resulting in a nonlinear increase in runoff coefficient (defined as the ratio of rainfall amount to runoff depth). For example, the events with a rainfall amount of 50mm, 100mm and 200 mm have an average runoff coefficient of 0.34, 0.39 and 0.49, respectively.

284 EPL has a tendency to initially increase with event rainfall amount (Fig.4b). It is because the

(10)

285	surface runoff in a heavier rainfall event has capacity to flush off more pollutant buildup in the
286	catchment. However, when the rainfall amount is more than 115mm, the upper envelope curve of
287	EPL reaches an equilibrium value of 25t/km ² (equivalent to a COD loading of 265t from the
288	catchment during a rainfall event). It implies that the possible maximum COD accumulated in the
289	catchment is 25t/km ² , which can be totally flushed off by the surface runoff when the rainfall
290	amount is more than 115mm. In addition, the EPL of events with the same rainfall amount can be
291	substantially different due to the other rainfall factors such as ADP. Generally, a rainfall event with
292	longer ADP has more pollutant buildup at the beginning of the rainfall, and thus more pollutant
293	loading can be potentially flushed off during rainfall event.
294	As the event rainfall amount increases, the EMC at the upper envelope curve initially rapidly
295	rises, reaches a peak value of 990 mg/l (corresponding to a rainfall amount of 50mm), and then
296	declines in an approximately exponential fashion (Fig.4c). Generally, more rainfall amount has
297	capacity to flush off more pollutant buildup in the catchment and results in higher EMC. However,
298	when the capacity of pollutant wash-off is more than the pollutant buildup in the catchment, more
299	rainfall amount causes lower EMC. Similar to EPL, the events with the same rainfall amount can
300	have a rather different EMC because of different ADPs.
301	EMC and peak concentration during a rainfall event have a strong correlation with a
302	correlative coefficient of 0.948. However, the two indices have different trend as the event rainfall
303	amount increases. As the event rainfall amount increases, the peak concentration of COD at the
304	upper envelope curve initially rises, reaches a peak value of 1420 mg/l (corresponding to rainfall
305	amount of 58mm), and then slowly declines (Fig.4d). When the rainfall amount is more than

306 50mm, the increase in rainfall amount has less effect on the peak concentration than that on EMC.

 $\boldsymbol{\wedge}$

307 This is because the COD concentration reaches the peak value in the initial stage of rainfall event,

- 308 in which the rainfall amount is usually no more than 50 mm in the Shiyan River catchment.
- 309 Similarly, the events with the same rainfall amount have different peak concentrations because
- 310 they have different ADPs.
- 311

312 **3.2** Frequency distribution of runoff quantity and quality

313 The cumulative frequency distributions of runoff quantity and quality indicators are shown in 314 Fig. 5 and represented by the solid lines without makers, denoted as 'interception 0mm' as they 315 represent the current runoff characteristics without any additional control measures. Generally, the 316 dispersion of the probability/frequency distribution of a variable can be quantitatively evaluated 317 by the coefficient of variation (C_v), which is defined as the ratio of the standard deviation to the 318 mean. A zero value of C_v indicates that there is no variation in the variable and all values are the 319 same. And the higher C_v , the greater the level of dispersion around the mean. In addition, the 320 asymmetry of the probability/frequency distribution of a variable can be evaluated by the 321 skewness (C_s). A zero value of C_s indicates that the values are relatively evenly distributed on both 322 sides of the mean. Positively skewed data (skewness, C_s>0) have concave downward cumulative 323 frequency distributions, which imply that the bulk of the data is less than the mean, or the variable 324 has relatively few high values. Conversely, a negative C_s represents a concave upward cumulative 325 distribution, which implies most of the data are greater than the mean, or the variable has 326 relatively few low values.

327

328

Fig.5 Effects of different levels of initial runoff control

2	0	n
5	4	9

330	The cumulative frequency distribution of total runoff depth is a predominantly positive,
331	concave downward curve with a C_s of 5.8 (Fig.5a), which implies that most rainfall events have a
332	runoff depth less than the averaged value of 7.5mm. And the events with runoff depth less than
333	5mm, 10mm and 15mm account for 66.3%, 80.6% and 87.7%, respectively. In addition, the curve
334	has a Coefficient of variation (C_v) of 2.16, which means rainfall events in the catchment have a
335	widely different runoff depth.
336	The cumulative frequency distribution of EPL (COD) presents a concave downward curve
337	with a C_s of 2.28 (Fig.5b). The averaged EPL (COD) is $3t/km^2$, and 50% of rainfall events have
338	EPL less than 0.6 t/km ² . The rainfall events with EPL more than 1t/km ² , 5t/km ² and 10t/km ² ,
339	account for 43.0%, 19.5% and 10.1%, respectively. In addition, rainfall events in the catchment
340	have a different EPL (COD) with a C_v of 1.67.
341	As seen in Fig.5c, the cumulative frequency distribution of EMC presents a slightly concave
342	downward curve with a C _s of 0.64. A 40 mg/l threshold is chosen for COD concentrations in the
343	case study according to the V class of Environmental Quality Standards for Surface Water in
344	China (State Environmental Protection Administration of China, 2002). The rainfall events with
345	EMC greater than 40 mg/l account for 88.3%. In addition, the averaged EMC is 300 mg/l and C_v
346	of EMC is 0.76 in the catchment.
347	Similar to EMC, the cumulative frequency distribution of peak concentration of COD
348	presents a slightly concave downward curve with a C_s of 0.62 (Fig.5d). The rainfall events with
349	peak concentration greater than 40 mg/l account for 91.9%. In addition, the averaged value is 450
350	mg/L and C_v of peak concentration is 0.75 in the catchment.

- 351 The results indicate that the runoff quality in the catchment has a high risk of non-compliance
- 352 with the surface water quality regulations.
- 353 3.3 Effect of initial runoff control

354	The local government proposed to compare three initial runoff control schemes (Scheme1, 2
355	and 3) with the intent of reducing the risk of poor water quality in the catchment. The three
356	schemes have capacity to intercept initial runoff depth of 5mm, 10mm and 15mm, respectively.
357	The runoff control level can be compared to a commonly used indicator, catchment storage ratio,
358	defined as the total storage volume in a catchment divided by its impervious area. Recall that the
359	catchment has an area of 25 km ² with 32 % of impervious landuse, Schemes 1, 2 and 3 represent a
360	catchment storage ratio of 143, 286 and 429 m ³ /ha, respectively. The ratio of scheme 1 is close to
361	the recommend values; however the ratios of schemes 2 and 3 are in the upper ranges reported in
362	the literature (Andres-Domenech et al., 2010b). In the study, frequency distributions of rainfall
363	runoff pollution derived from continuous simulation were used to support the water quality risk
364	analysis for these interception schemes. Without loss of generality, the four indicators (total runoff
365	depth, EPL, EMC and peak concentration) of a rainfall event under a scheme were assumed to 0
366	when the total runoff of the event is less than the corresponding interception level of the scheme.
367	As shown in Fig.5a, when Schemes 1, 2 and 3 are taken, only 33.7%, 19.4% and 12.3% of
368	rainfall events, respectively, have surface runoff discharged into the downstream river. The
369	statistical calculation shows that Schemes 1, 2 and 3 can intercept 35.5%, 52.2% and 62.1% of all
370	the runoff volume in the catchment for a long term period, respectively. And the $C_{\mbox{\scriptsize s}}$ of runoff
371	depth under scheme 1, 2 and 3, decreases from 5.8 in the case of no interception to 4.01, 3.36 and
372	2.94, respectively. This is because the percentage of the rainfall events with relatively small total

374	Initial runoff control schemes can significantly reduce pollutant loading (Fig.5b). For
375	example, the percentage of rainfall events with EPL>1t/km ² under scheme1, 2 and 3 decreases
376	from 43.0% in the case of no interception to 22.7%, 13.5% and 9.4%, respectively. And Scheme 1,
377	2 and 3 have the capacity to intercept 45.67%, 69.92% and 82.19% of all the pollutant loading
378	(COD) in the catchment for a long term period, respectively. Furthermore, the C_s of EPL under
379	scheme1, 2 and 3 decreases from 2.28 in the case of no interception to 1.31, 1.06 and 0.96,
380	respectively. This is because the percentage of the rainfall events with relatively low EPL
381	(compared to the mean) is significantly reduced after interception.
382	Initial runoff control schemes can significantly improve runoff quality (Fig.5c). For example,
383	the percentage of rainfall event with EMC >40mm/L under scheme 1, 2 and 3 decreases from
384	88.3% in the case of no interception to 32.6%, 18.6%, 11.8%, respectively. Meanwhile, the
385	maximum EMC is significantly reduced under the three schemes and the reduction levels roughly
386	reflect the corresponding interception levels. This observation is also true for EPL. And $C_{\rm s}$ of
387	EMC under scheme 1, 2 and 3 is 0.04, 0.003 and 0.04, respectively, which indicates EMCs have
388	an even distribution of frequency after interception.
389	The peak concentration of COD decreases after interception (Fig.5d). For example, the

373 runoff depth (compared to the mean) is significantly reduced after interception.

percentage of rainfall event with peak concentration>40mm/L is 33.35%, 19.19% and 12.26% under scheme 1, 2 and 3, respectively. However, compared to the maximum EMC, the maximum peak concentration has little change after interception. The reason is that the maximum peak concentration usually occurs when the total runoff depth is greater than 20mm before interception, which approximately corresponds to the rainfall amount of 58mm (Fig. 3a and c). The schemes $\overline{}$

395	with an interception level of 15mm have little effect on the maximum peak concentration. In
396	addition, the cumulative frequency distribution of peak concentration presents a concave upward
397	curve, and the C_s of peak concentration under scheme 1, 2 and 3 is -0.35, -0.49, and -0.39,
398	respectively, which implies that most rainfall events have a peak concentration more than the
399	mean after interception.
400	Fig. 6 summarizes the impacts of the three interception schemes on runoff quality in terms of
401	the specified thresholds of the four indicators.
402	It is obvious that increasing interception level further reduces the pollutant loading, EMC,
403	and peak concentration but also increases the intercepted runoff at the same time, which results in
404	less runoff available downstream, potentially affecting aquatic life. It should be noted that the first
405	5 mm interception has more significant effects, reflected by the steeper gradients in the left part of
406	the curves. The gradients are reduced as the curves tend to flat out to the right. This reflects the
407	effects of the first flush phenomenon in the catchment. This figure can be used by decision makers
408	to balance the effects on water quality and quantity and determine the most appropriate scheme
409	that satisfies their preference.
410	
411	Fig.6 Runoff quantity and quality after interception
412	

413 3.4 Effect of seasonal rainfall variation

414 Rainfall in the Shiyan River catchment has significant temporal variation. According to 415 rainfall records, the wet season in the catchment can be divided into three periods: pre-flood 416 season (March to May), flood season (June to August) and post-flood season (Sept to October). In \langle

41/	this study, the effects of seasonal variation in rainfall events have been investigated to provide a
418	better understanding of the performance of initial runoff control measure. We chose Scheme 2
419	(interception 10mm) and two indicators (EMC and peak concentration) for the analysis.
420	As seen in Fig.7a, the cumulative frequency distributions of EMC in pre-flood, flood and
421	post-flood seasons present similar concave downward curves with C_s of 0.49, 0.70 and 0.66,
422	respectively. The percentage of rainfall events with EMC>40mg/L in different seasons is around
423	89%. However, EMCs in pre-flood season is slightly higher than those in other seasons when the
424	cumulative frequency is less than 45%.
425	
426	Fig.7 Effect of initial runoff control in different seasons
427	
400	
428	With interception under Scheme 2, the cumulative frequency distribution of EMC in
428 429	With interception under Scheme 2, the cumulative frequency distribution of EMC in pre-flood, flood and post-flood seasons change to approximately linear or slightly concave upward
428 429 430	With interception under Scheme 2, the cumulative frequency distribution of EMC in pre-flood, flood and post-flood seasons change to approximately linear or slightly concave upward curves with C_s of -0.18, 0.08 and 0.05, respectively (Fig.7b). This is because the percentage of the
428429430431	With interception under Scheme 2, the cumulative frequency distribution of EMC in pre-flood, flood and post-flood seasons change to approximately linear or slightly concave upward curves with C_s of -0.18, 0.08 and 0.05, respectively (Fig.7b). This is because the percentage of the rainfall events with relatively low EMC (compared to the mean) significantly decreases after
 428 429 430 431 432 	With interception under Scheme 2, the cumulative frequency distribution of EMC in pre-flood, flood and post-flood seasons change to approximately linear or slightly concave upward curves with C_s of -0.18, 0.08 and 0.05, respectively (Fig.7b). This is because the percentage of the rainfall events with relatively low EMC (compared to the mean) significantly decreases after interception. Furthermore, pre-flood season has significantly higher EMC than other seasons. For
 428 429 430 431 432 433 	With interception under Scheme 2, the cumulative frequency distribution of EMC in pre-flood, flood and post-flood seasons change to approximately linear or slightly concave upward curves with C_s of -0.18, 0.08 and 0.05, respectively (Fig.7b). This is because the percentage of the rainfall events with relatively low EMC (compared to the mean) significantly decreases after interception. Furthermore, pre-flood season has significantly higher EMC than other seasons. For example, the rainfall events with EMC>40mg/l in pre-flood, flood and post-flood seasons in
 428 429 430 431 432 433 434 	With interception under Scheme 2, the cumulative frequency distribution of EMC in pre-flood, flood and post-flood seasons change to approximately linear or slightly concave upward curves with C _s of -0.18, 0.08 and 0.05, respectively (Fig.7b). This is because the percentage of the rainfall events with relatively low EMC (compared to the mean) significantly decreases after interception. Furthermore, pre-flood season has significantly higher EMC than other seasons. For example, the rainfall events with EMC>40mg/l in pre-flood, flood and post-flood seasons in Scheme 2 account for 22.67%, 17.43% and 16.99%, respectively. The reasons are related to the
 428 429 430 431 432 433 434 435 	With interception under Scheme 2, the cumulative frequency distribution of EMC in pre-flood, flood and post-flood seasons change to approximately linear or slightly concave upward curves with C_s of -0.18, 0.08 and 0.05, respectively (Fig.7b). This is because the percentage of the rainfall events with relatively low EMC (compared to the mean) significantly decreases after interception. Furthermore, pre-flood season has significantly higher EMC than other seasons. For example, the rainfall events with EMC>40mg/l in pre-flood, flood and post-flood seasons in Scheme 2 account for 22.67%, 17.43% and 16.99%, respectively. The reasons are related to the characteristics of rainfall events in different seasons. Since the rainfall events with total runoff
 428 429 430 431 432 433 434 435 436 	With interception under Scheme 2, the cumulative frequency distribution of EMC in pre-flood, flood and post-flood seasons change to approximately linear or slightly concave upward curves with C _s of -0.18, 0.08 and 0.05, respectively (Fig.7b). This is because the percentage of the rainfall events with relatively low EMC (compared to the mean) significantly decreases after interception. Furthermore, pre-flood season has significantly higher EMC than other seasons. For example, the rainfall events with EMC>40mg/l in pre-flood, flood and post-flood seasons in Scheme 2 account for 22.67%, 17.43% and 16.99%, respectively. The reasons are related to the characteristics of rainfall events in different seasons. Since the rainfall events with total runoff depth<10mm have no surface runoff discharged into the downstream river in Scheme 2, we only
 428 429 430 431 432 433 434 435 436 437 	With interception under Scheme 2, the cumulative frequency distribution of EMC in pre-flood, flood and post-flood seasons change to approximately linear or slightly concave upward curves with C_s of -0.18, 0.08 and 0.05, respectively (Fig.7b). This is because the percentage of the rainfall events with relatively low EMC (compared to the mean) significantly decreases after interception. Furthermore, pre-flood season has significantly higher EMC than other seasons. For example, the rainfall events with EMC>40mg/l in pre-flood, flood and post-flood seasons in Scheme 2 account for 22.67%, 17.43% and 16.99%, respectively. The reasons are related to the characteristics of rainfall events in different seasons. Since the rainfall events with total runoff depth<10mm have no surface runoff discharged into the downstream river in Scheme 2, we only considered the rainfall events with total runoff depth>10mm. As shown in Fig.8, the pre-flood

439	rainfall events with ADP>10 days than other seasons. As explained in section 3.1, less rainfall
440	amount may result in higher EMC for the events with rainfall amount> 50mm (Fig. 4c), and
441	longer ADP results in higher EMC. Therefore, the pre-flood season has higher frequency of
442	rainfall events with higher EMC than other seasons after initial runoff control.
443	
444	Fig. 8 Rainfall amount and ADP in different seasons
445	6
446	Similarly to EMC, the cumulative frequency distributions of peak concentration in pre-flood,
447	flood and post-flood seasons present similar concave downward curves with C_s of 0.53, 0.68 and
448	0.55, respectively (Fig.7c). The percentage of rainfall event with peak concentration>40mg/L in
449	different seasons is around 92%. In Scheme2, the cumulative frequency distribution of peak
450	concentration in pre-flood, flood and post-flood seasons change to concave upward curves with C_s
451	of -0.51, -0.52 and -0.07, respectively (Fig.7d). The rainfall events with peak
452	concentration>40mg/L in pre-flood, flood and post-flood seasons in Scheme 2 account for 23.14%,
453	18.33% and 17.70%, respectively. Due to the same seasons for EMC, the pre-flood season has
454	higher frequency of rainfall events with higher peak concentration than other seasons after initial
455	runoff control.
456	

457 4 Conclusions

This paper uses the long-term simulation approach to derive the frequency distribution of urban runoff quality in an urbanizing catchment and evaluate the impacts of proposed runoff control schemes on the distribution. Further, the effects of seasonal variation in storm events are

461 investigated to provide a better understanding of the performance of control measures. The results

462 obtained are summarized below:

463	(1) Urban runoff quantity and quality in the rapidly urbanizing catchment have significant
464	variations between rainfall events, and different indicators have rather different characteristics.
465	With increasing event rainfall amount, the total runoff depth and runoff coefficient nonlinearly
466	increase. The upper envelope curve of EPL initially increases and then levels off after the rainfall
467	amount reaches 115mm. The upper envelope curve of EMC initially rapidly rises, after reaching a
468	peak value, and then declines in an approximately exponential fashion. Peak concentration
469	behaves similarly to EMC but declines slowly after the peak. Due to the effects of ADP, the events
470	with the same rainfall amount have very different EPL, EMC and peak concentration of COD.
471	(2) Urban runoff quality in the rapidly urbanizing catchment has a high percentage of
472	non-compliance with the surface water quality regulations. 43.0% of rainfall events have an EPL
473	(COD) more than 1t/km ² ; 88.3% of rainfall events have an EMC (COD) greater than 40 mg/L; and
474	91.9% of rainfall events have a peak concentration (COD) greater than 40 mg/L. The cumulative
475	frequency distributions of total runoff depth, EPL, EMC and peak concentration of COD present a
476	concave downward curve, which implies that most of the rainfall events have a relatively low
477	runoff pollution level compared to the mean.

(3) Runoff control schemes can significantly improve the runoff quality in the catchment. In
a long term period, the schemes with capacity to intercept initial runoff depth of 5mm, 10mm and
15mm can intercept 35.5%, 52.2% and 62.1% of all the runoff volume, and 45.67%, 69.92% and
82.19% of all the pollutant loading (COD) from the catchment, respectively. And the three
schemes decrease the percentage of rainfall events with EMC >40mm/L from 88.3% to 32.6%,

483	18.6%, 11.8%, and the percentage of rainfall events with peak concentration>40mm/L from 91.9%
484	to 33.35%, 19.19% and 12.26%, respectively. The diminishing marginal benefits are found with
485	increasing interception levels in terms of water quality improvement. Furthermore, the cumulative
486	frequency distributions of EMC and peak concentration change to a convex curve, which implies
487	that most of the rainfall events have a relatively high concentration compared to the mean after
488	interception.
489	(4) Runoff control schemes have different effects at different seasons due to seasonal
490	variation in rainfall events. In the study, the pre-flood season has higher risk of non-compliance
491	with the surface water quality standards than other seasons after initial runoff control.
492	The urban runoff quantity and quality have considerable variations in different rainfall events
493	in an urbanizing catchment, thus, characterizing frequency distributions of runoff quantity and
494	quality can provide a probabilistic evaluation of pollution control measures, and will help frame a
495	risk-based decision making for urban runoff quality management in an urbanizing catchment.
496	It should be noted that the paper is limited to the analysis of rainfall runoff pollution of the
497	catchment at the current urbanization level. The model needs to be calibrated against newly
498	observed data at a different urbanization level if the study catchment undergoes further
499	urbanization in the future.
500	Acknowledgements

This research was supported by Open Research Fund Program of State key Laboratory of Hydroscience and Engineering (sklhse-2011-A-03), National Natural Science Foundation of China (51079001) and the National Water Pollution Control and Management Technology Major Projects (No. 2013ZX07501005).

 $\overline{\langle}$

505	
506	References
507	Akan, A.O., 1988. Derived frequency distribution for storm runoff pollution. J. Environ. Eng.
508	-ASCE. 114(6), 1344-1351.
509	Alley, W.M., Smith, P.E., 1981. Estimation of accumulation parameters for urban runoff quality
510	modeling. Water Resour. Res. 17(6), 1657-1664.
511	Andres-Domenech, I., Montanari, A., Marco, J.B., 2010a. Stochastic rainfall analysis for storm tank
512	performance evaluation. Hydrol. Earth Sys. Sci. 14(7), 1221-1232.
513	Andres-Domenech, I., Munera, J.C., Frances, F., Marco, J.B., 2010b. Coupling urban event-based
514	and catchment continuous modeling for combined sewer overflow river impact assessment.
515	Hydrol. Earth Sys. Sci. 14(10), 2057-2072.
516	Behera, P.K., Adams, B.J., Li, J.Y., 2006. Runoff quality analysis of urban catchments with
517	analytical probabilistic models. J. Water Resour. Plan. ManageASCE. 132(1), 4-14.
518	Bertrand-Krajewski J., Chebbo G., Saget A., 1998. Distribution of pollutant mass vs. volume in
519	stormwater discharges and the first flush phenomenon. Water Res. 32(8), 2341-56.
520	Calabro, P.S., Viviani, G., 2006. Simulation of the operation of detention tanks. Water Res. 40, 83-90.
521	Chen, J., Adams, B. J., 2007. A derived probability distribution approach to stormwater quality
522	modeling. Adv. Water Resour. 30(1), 80-100.
523	Chow, M.F., Yusop, Z., 2008. A review of event mean concentration for urban stormwater runoff, in:
524	Proceedings International Conference on Environmental Research and Technologies (ICERT' 08),
525	2008, Parkroyal Penang
526	Croke, B.F.W., Andrews, F., Jakeman, A.J., Cuddy, S., Luddy, A., 2005. Redesign of the IHACRES
	24

- 527 rainfall-runoff model, 29th Hydrology and Water Resources Symposium, Water Capital, Engineers
- 528 Australia.
- 529 Demuynck, C., Bauwens, W., DePauw, N., Dobbelaere, I., Poelman, E., 1997. Evaluation of
- 530 pollution reduction scenarios in a river basin: Application of long term water quality simulations.
- 531 Water Sci. Technol. 35(9), 65-75.
- 532 Dickey, D. A., Fuller, W. A., 1979. Distribution of the Estimators for Autoregressive Time Series With
- 533 a Unit Root. J. Am. Stat. Assoc., 74, 427-431.
- 534 Freni, G., Mannina, G., Viviani, G., 2010. Urban Storm-Water Quality Management: Centralized
- 535 versus Source Control. J. Water Resour. Plann. Manage., 136(2), 268–278.
- 536 Fu G, Butler D, Khu S.T., 2009. The impact of new developments on river water quality from an
- 537 integrated system modelling perspective. Sci. Total Environ. 407 (4), 1257-1267.
- 538 Fu G, Khu S, Butler D., 2010. Optimal distribution and control of storage tank to mitigate the impact
- of new developments on receiving water quality. J. Environ. Eng. -ASCE. 136(3), 335-342.
- 540 Huang, J.L., Du, P.F., Ao, C.T., Lei, M.H., Zhao, D.Q., HO. M.H., Wang. Z.S., 2007. Characterization
- of surface runoff from a subtropics urban catchment. J. Environ. Sci.-CHINA. 19, 148-152.
- 542 Kim, L.H., Ko, S.O., Jeong, S., Yoon, J., 2007. Characteristics of washed-off pollutants and dynamic
- 543 EMCs in parking lots and bridges during a storm. Sci. Total Environ. 376(1-3), 178–184.
- 544 Lee, J.H., Bang, K.W., 2000. Characterization of urban stormwater runoff. Water Res. 34,(6), 545 1773-1780.
- 546 Li, J.Y., Adams, B.J., 2000. Probabilistic models for analysis of urban runoff control systems. J.
- 547 Environ. Eng. -ASCE. 126(3), 217-224.

- 548 Mannina, G., Viviani, G., 2009. Separate and combined sewer systems: a long-term modelling
- 549 approach. Water Sci. Technol. 60(3), 555-565.
- 550 McIntyre, N., 2004. Analysis of uncertainty in river water quality modelling, PhD thesis, Department
- 551 of Civil and Environmental Engineering, Imperial College London.
- 552 http://www3.imperial.ac.uk/pls/portallive/docs/1/7253966.PDF (accessed 22 July 2011).
- 553 Obropta, C.C., Kardos, J.S., 2007. Review of Urban Stormwater Quality Models: Deterministic,
- 554 Stochastic, and Hybrid Approaches. J. Am. Water Resour. As. 43(6), 1508-1523.
- 555 Qin, H.P., Khu, S.T., Yu, X.Y., 2010. Spatial variations of storm runoff pollution and their correlation
- 556 with land-use in a rapidly urbanizing catchment in China. Sci. Total Environ. 408,4613-4623
- 557 Rossman, L.A., 2008. Storm Water Management Model User's Manual Version 5.0. Cincinnati:
- 558 National Risk Management Research Laboratory Office of Research and Development, U.S.

559 Environmental Protection Agency 2008. Report No. EPA/600/R-05/040.

- 560 Singh, S.K., 2004. Simplified use of gamma-distribution/nash model for runoff modeling. J Hydrol.
- 561 Eng. 29(3), 240-243
- 562 State Environmental Protection Administration of China, 2002. General Administration of Quality
- 563 Supervision, Inspection and Quarantine of China. GB38382-2002 Environmental quality standards
- 564 for surface water. China Environmental Science Press, Beijing.
- 565 Zoppou, C., 2001. Review of urban storm water models. Environ. Modell. Softw.16, 195-231.

- 567 **Figure captions**
- 568 Fig. 1 Map of the Shiyan River catchment
- 569 Fig. 2 Frequency distributions of rainfall amount and ADP
- sub-optic 570 Fig. 3 Comparison between measured and calculated data
- 571 Fig. 4 Rainfall amount vs. runoff quantity and quality
- 572 Fig. 5 Effects of different levels of initial runoff control
- 573 Fig. 6 Runoff quantity and quality after interception
- 574 Fig.7 Effect of initial runoff control in different seasons
- 575 Fig. 8 Rainfall amount and ADP in different seasons nA

- 576 **Table captions**
- 577 Table 1 Observed rainfall data for model calibration and validation
- Accepter 578 Table 2 Optimized values of model parameters

587

588

Table 1 Observed rainfall data for model calibration and validation

	Fyont	Data	Rainfall amount	ADP	Discharge	COD	
	Lvent	Date	(mm)	(day)	(m3/s)	(mg/l)	\sim
	1	April 13,2009	8.9	15	0.32-3.56	88-360	
	2	April 18,2009	13.3	2.6	0.72-10.36	78-464	
	3	September 2,2010	13.9	1.4	0.71-14.53	73-460	
	4	September 7,2010	29.5	5.8	0.23-37.62	81-772	
589							
		0					
	0						
0							

Table 2 Optimized values of model parameters

Symbols	Meanings	Units	Search ranges	Optimized
				values
<i>c</i> ₁	mass balance parameter in	mm^{-1}	[1e-3,3e-3]	2e-3
	effective rainfall function			0-
Ι	soil moisture index threshold in	mm	[4,10]	5
	effective rainfall function		9)
р	non-linear response parameter in	dimensionless	[0.3,0.5]	0.36
	effective rainfall function	~		
τ	time constant of wetness declines	dimensionless	[8e+2,1e+3]	916
α	shape parameter of gamma	dimensionless	[3,5]	3.9
	distribution			
β	scale parameter of gamma	dimensionless	[15,20]	19.2
	distribution			
<i>c</i> ₂ ,	pollutant wash-off coefficient	dimensionless	[1e-2,2e-2]	1.2e-2
<i>c</i> ₃ ,	pollutant wash-off exponent	dimensionless	[1,1.5]	1.45
Асси	pollutant buildup rate	$kg/(km^2 d)$	[1e+6,1.5e+6]	1.2e+6
Disp	pollutant buildup decay rate	d^{-1}	[0.1,0.4]	0.19

- 594 Highlights of manuscript "Frequency analysis of urban runoff quality in an urbanizing
- 595 catchment of Shenzhen, China"
- 596 >Distributions of four runoff quality indicators are derived from continuous simulation
- 597 >Impacts of runoff control schemes are analyzed from the distributions
- >Marginal benefits of improving water quality diminish as runoff control level increases 598
- 599 >Pre-flood season has higher water quality risk than other seasons after runoff control
- 600 >Our approach helps frame a risk-based decision making for urban runoff management
- 601
- 602
- 603