q-ANALOGUE OF WILSON'S THEOREM

ROBIN CHAPMAN AND HAO PAN

Abstract

We give q-analogues of Wilson's theorem for the primes congruent 1 and 3 modulo 4 respectively. And q-analogues of two congruences due to Mordell and Chowla are also established.

1. Introduction

For arbitrary positive integer n, let

$$
[n]_{q}=\frac{1-q^{n}}{1-q}=1+q+\cdots+q^{n-1} .
$$

Clearly $\lim _{q \rightarrow 1}[n]_{q}=1$, so we say that $[n]_{q}$ is a q-analogue of the integer n. Supposing that $a \equiv b(\bmod n)$, we have

$$
[a]_{q}=\frac{1-q^{a}}{1-q}=\frac{1-q^{b}+q^{b}\left(1-q^{a-b}\right)}{1-q} \equiv \frac{1-q^{b}}{1-q}=[b]_{q} \quad\left(\bmod [n]_{q}\right) .
$$

Here the above congruence is considered over the polynomial ring in the variable q with integral coefficients. And q-analogues of some arithmetical congruences have been studied in $[9,1,7,8]$.

Let p be a prime. The well-known Wilson theorem states that

$$
(p-1)!\equiv 1 \quad(\bmod p)
$$

Unfortunately, in general,

$$
\prod_{j=1}^{p-1}[j]_{q} \not \equiv-q^{n} \quad\left(\bmod [p]_{q}\right)
$$

for any integer n. However, we have the following q-analogue of Wilson's theorem for a prime $p \equiv 3(\bmod 4)$.

Theorem 1.1. Suppose that $p>3$ is a prime and $p \equiv 3(\bmod 4)$. Then we have

$$
\begin{equation*}
\prod_{j=1}^{p-1}[j]_{q^{j}} \equiv-1 \quad\left(\bmod [p]_{q}\right) \tag{1.1}
\end{equation*}
$$

[^0]In [6] (or see [10, Theorem 8]), Mordell proved that if $p>3$ is a prime and $p \equiv 3$ $(\bmod 4)$ then

$$
\begin{equation*}
\left(\frac{p-1}{2}\right)!\equiv(-1)^{\frac{h(-p)+1}{2}} \quad(\bmod p) \tag{1.2}
\end{equation*}
$$

where $h(-p)$ is the class number of the quadratic field $\mathbb{Q}(\sqrt{-p})$. Now we can give a q-analogue of (1.2).
Theorem 1.2. Let $p>3$ be a prime with $p \equiv 3(\bmod 4)$. Then we have

$$
\begin{equation*}
\prod_{j=1}^{(p-1) / 2}[j]_{q^{16 j}} \equiv(-1)^{\frac{h(-p)+1}{2}} q \quad\left(\bmod [p]_{q}\right) \tag{1.3}
\end{equation*}
$$

The case $p \equiv 1(\bmod 4)$ is a little complicated. Let $(\dot{\bar{p}})$ denote the Legendre symbol modulo p. It is well-known that for any a prime to $p,\left(\frac{a}{p}\right)=1$ or -1 according to whether a is a quadratic residue modulo p. Let ε_{p} and $h(p)$ be the fundamental unit and the class number of $\mathbb{Q}(\sqrt{p})$ respectively.
Theorem 1.3. Suppose that p is a prime and $p \equiv 1(\bmod 4)$. Then we have

$$
\begin{equation*}
\prod_{j=1}^{p-1}[j]_{q^{j}} \equiv A+B \sum_{j=1,\left(\frac{j}{p}\right)=-1}^{p-1} q^{j} \quad\left(\bmod [p]_{q}\right), \tag{1.4}
\end{equation*}
$$

where

$$
A=\frac{\varepsilon_{p}^{2 h(p)}+\varepsilon_{p}^{-2 h(p)}}{2}+\frac{\varepsilon_{p}^{2 h(p)}-\varepsilon_{p}^{-2 h(p)}}{2 \sqrt{p}} \quad \text { and } \quad B=\frac{\varepsilon_{p}^{2 h(p)}-\varepsilon_{p}^{-2 h(p)}}{\sqrt{p}} .
$$

Write $\varepsilon_{p}=\left(u_{p}+v_{p} \sqrt{p}\right) / 2$ where u_{p}, v_{p} are positive integers with the same parity. Clearly $u_{p}^{2}-p v_{p}^{2}= \pm 4$ since ε_{p} is an unit. Letting $q \rightarrow 1$ in (1.4), we obtain that

$$
-1 \equiv(p-1)!\equiv A+\frac{B(p-1)}{2} \equiv \frac{\varepsilon_{p}^{2 h(p)}+\varepsilon_{p}^{-2 h(p)}}{2} \equiv \frac{u_{p}^{2 h(p)}}{2^{2 h(p)}} \quad(\bmod p)
$$

It follows that $h(p)$ is odd and the norm of ε_{p} is always -1 , i.e., $u_{p}^{2}-p v_{p}^{2}=-4$.
In [4] (or see [10, Theorem 9]), Chowla extended Mordell's result (1.2) for $p \equiv 1$ $(\bmod 4)$. Let $h(p)$ and $\varepsilon_{p}=\left(u_{p}+v_{p} \sqrt{p}\right) / 2$ be defined as above. Then Chowla proved that

$$
\begin{equation*}
\left(\frac{p-1}{2}\right)!\equiv \frac{(-1)^{\frac{h(p)+1}{2}} u_{p}}{2} \quad(\bmod p) . \tag{1.5}
\end{equation*}
$$

Now we have the following q-analogue of Chowla's congruence:
Theorem 1.4. Suppose that p is a prime and $p \equiv 1(\bmod 4)$. Then

$$
\begin{equation*}
\prod_{j=1}^{(p-1) / 2}[j]_{q^{j}} \equiv-C q-D \sum_{j=1,\left(\frac{j}{p}\right)=-1}^{p-1} q^{j+1} \quad\left(\bmod [p]_{q}\right) \tag{1.6}
\end{equation*}
$$

where

$$
C=\frac{\varepsilon_{p}^{h(p)}-\varepsilon_{p}^{-h(p)}}{2}+\frac{\varepsilon_{p}^{h(p)}+\varepsilon_{p}^{-h(p)}}{2 \sqrt{p}} \quad \text { and } \quad D=\frac{\varepsilon_{p}^{h(p)}+\varepsilon_{p}^{-h(p)}}{\sqrt{p}} \text {. }
$$

Let us explain why (1.6) implies (1.5). Letting $q \rightarrow 1$ in (1.6), it is derived that

$$
\begin{aligned}
\left(\frac{p-1}{2}\right)! & \equiv-\left(\frac{\varepsilon_{p}^{h(p)}-\varepsilon_{p}^{-h(p)}}{2}+\frac{\varepsilon_{p}^{h(p)}+\varepsilon_{p}^{-h(p)}}{2 \sqrt{p}}+\frac{p-1}{2} \cdot \frac{\varepsilon_{p}^{h(p)}+\varepsilon_{p}^{-h(p)}}{\sqrt{p}}\right) \\
& \equiv-\frac{\left(\left(u_{p}+v_{p} \sqrt{p}\right) / 2\right)^{h(p)}-\left(\left(-u_{p}+v_{p} \sqrt{p}\right) / 2\right)^{h(p)}}{2} \\
& \equiv-\frac{u_{p}^{h(p)}}{2^{h(p)}}=-\left(u_{p}^{2} / 4\right)^{\frac{h(p-1)}{2}} \frac{u_{p}}{2} \equiv-\frac{(-1)^{\frac{h(p)-1}{2}} u_{p}}{2} \quad(\bmod p) .
\end{aligned}
$$

The proofs of Theorems 1.1-1.4 will be given in the next sections.

2. Proofs of Theorems 1.1 and 1.2

In this section we assume that $p>3$ is a prime and $p \equiv 3(\bmod 4)$. Write

$$
\prod_{j=1}^{p-1}[j]_{q^{j}}=\prod_{j=1}^{p-1} \frac{1-q^{j^{2}}}{1-q^{j}} \text { and } \prod_{j=1}^{(p-1) / 2}[j]_{q^{j}}=\prod_{j=1}^{(p-1) / 2} \frac{1-q^{j^{2}}}{1-q^{j}}
$$

Observe that

$$
[p]_{q}=\frac{1-q^{p}}{1-q}=\prod_{j=1}^{p-1}\left(q-\zeta^{j}\right)
$$

where $\zeta=e^{2 \pi i / p}$. Also we know that $\sigma_{s}: \zeta \longmapsto \zeta^{s}$ is an automorphism over $\mathbb{Q}(\zeta)$ provided that $p \nmid s$. Hence it suffices to show that

$$
\prod_{j=1}^{p-1} \frac{1-\zeta^{j^{2}}}{1-\zeta^{j}}=-1 \quad \text { and } \quad \prod_{j=1}^{(p-1) / 2} \frac{1-\zeta^{j^{2}}}{1-\zeta^{j}}=(-1)^{\frac{h(-p)+1}{2}} \zeta
$$

Let Q and N denote respectively the sets of quadratic residues and quadratic non-residues of p in the interval $[1, p-1]$. Then

$$
\prod_{j=1}^{p-1} \frac{1-\zeta^{j^{2}}}{1-\zeta^{j}}=\frac{\prod_{j=1}^{\frac{p-1}{2}}\left(1-\zeta^{j^{2}}\right)^{2}}{\prod_{j=1}^{p-1}\left(1-\zeta^{j}\right)}=\frac{U^{2}}{U V}=\frac{U}{V}
$$

where

$$
U=\prod_{k \in Q}\left(1-\zeta^{k}\right), \quad \text { and } \quad V=\prod_{k \in N}\left(1-\zeta^{k}\right)
$$

But since -1 is a quadratic non-residue modulo p,

$$
V=\prod_{k \in Q}\left(1-\zeta^{p-k}\right)=\prod_{k \in Q}\left(1-\zeta^{-k}\right)=U \prod_{k \in Q}\left(-\zeta^{k}\right)
$$

Now

$$
\sum_{k \in Q} k \equiv \sum_{j=1}^{(p-1) / 2} j^{2}=\frac{p\left(p^{2}-1\right)}{24} \equiv 0 \quad(\bmod p)
$$

as p is prime to 6 and so $p^{2} \equiv 1(\bmod 24)$. We conclude that

$$
U / V=(-1)^{\frac{p-1}{2}} \zeta^{-\sum_{k \in Q} k}=-1
$$

as desired.
Now let us begin to prove

$$
\begin{equation*}
\prod_{j=1}^{(p-1) / 2} \frac{1-\zeta^{16 j^{2}}}{1-\zeta^{16 j}}=\frac{\prod_{j=1}^{(p-1) / 2}\left(1-\zeta^{16 j^{2}}\right)}{\prod_{j=1}^{(p-1) / 2}\left(1-\zeta^{16 j}\right)}=(-1)^{\frac{h(-p)+1}{2}} \zeta \tag{2.1}
\end{equation*}
$$

Clearly the numerator of the left side of (2.1) is U. Let

$$
W=\prod_{j=1}^{(p-1) / 2}\left(1-\zeta^{16 j}\right)
$$

denote its denominator. Let $M=\{1,2, \ldots,(p-1) / 2\}$. Then $W=W_{+} W_{-}$where

$$
W_{+}=\prod_{j \in M \cap Q}\left(1-\zeta^{16 j}\right), \quad \text { and } \quad W_{-}=\prod_{j \in M \cap N}\left(1-\zeta^{16 j}\right) .
$$

Now

$$
W_{-}=\sum_{M^{\prime} \cap Q}\left(1-\zeta^{-16 k}\right)=\frac{U}{W_{+}} \prod_{k \in M^{\prime} \cap Q}\left(-\zeta^{-16 k}\right)
$$

where $M^{\prime}=\{(p+1) / 2, \ldots, p-1\}$. We know (see [10, Section 1.3]) that

$$
\begin{aligned}
h(-p) & =\frac{1}{2-\left(\frac{2}{p}\right)} \sum_{k=1}^{(p-1) / 2}\left(\frac{k}{p}\right)=\frac{1}{2-\left(\frac{2}{p}\right)}\left(\frac{p-1}{2}-2 \sum_{k \in M \cap N} 1\right) \\
& \equiv-1-2|M \cap N|=-1-2\left|M^{\prime} \cap Q\right| \quad(\bmod 4) .
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
\frac{p^{2}-1}{8} & =\sum_{k=1}^{(p-1) / 2} k=\sum_{k \in M \cap Q} k+\sum_{k \in M \cap N} k=\sum_{k \in M \cap Q} k+\sum_{k \in M^{\prime} \cap Q}(p-k) \\
& \equiv \sum_{k \in Q} k-2 \sum_{k \in M^{\prime} \cap Q} k \equiv-2 \sum_{k \in M^{\prime} \cap Q} k(\bmod p),
\end{aligned}
$$

whence $\sum_{k \in M^{\prime} \cap Q} 16 k \equiv 1(\bmod p)$. Thus

$$
\frac{U}{W}=\frac{U}{W_{+} W_{-}}=(-1)^{\left|M^{\prime} \cap Q\right|} \prod_{k \in M^{\prime} \cap Q} \zeta^{16 k}=(-1)^{(1+h(-p)) / 2} \zeta
$$

which confirms (2.1).

3. When $p \equiv 1(\bmod 4)$

Below suppose that p is a prime congruent 1 modulo 4 and $\zeta=e^{2 \pi i / p}$. Let $Q, N \subseteq[1, p-1]$ be the sets of quadratic residues and quadratic non-residues of p respectively. Let

$$
U=\prod_{k \in Q}\left(1-\zeta^{k}\right) \quad \text { and } \quad V=\prod_{k \in N}\left(1-\zeta^{k}\right) .
$$

In order to prove Theorem 1.3, we only need to show prove that

$$
\begin{equation*}
A+B \sum_{j \in N} \zeta^{j}=\prod_{j=1}^{p-1} \frac{1-\zeta^{j^{2}}}{1-\zeta^{j}}=\frac{\prod_{j \in Q}\left(1-\zeta^{j}\right)^{2}}{\prod_{j \in Q}\left(1-\zeta^{j}\right) \prod_{j \in N}\left(1-\zeta^{j}\right)}=\frac{U}{V} \tag{3.1}
\end{equation*}
$$

By the analytic class number formula [2, Chapter 1, Section 4, Theorem 2]

$$
U=\varepsilon_{p}^{-h(p)} \sqrt{p} \quad \text { and } \quad V=\varepsilon_{p}^{h(p)} \sqrt{p}
$$

Thus $U / V=\varepsilon_{p}^{-2 h(p)}=a-b \sqrt{p}$ where

$$
2 a=\varepsilon_{p}^{2 h(p)}+\varepsilon_{p}^{-2 h(p)} \in \mathbb{Z} \quad \text { and } \quad 2 b=\left(\varepsilon_{p}^{2 h(p)}-\varepsilon_{p}^{-2 h(p)}\right) / \sqrt{p} \in \mathbb{Z} .
$$

Also, by Gauss's formula for the quadratic Gauss sum

$$
\sqrt{p}=\sum_{j=1}^{p-1}\left(\frac{j}{p}\right) \zeta^{j}=\sum_{j=1}^{p-1} \zeta^{j}-2 \sum_{j \in N} \zeta^{j}=-1-2 \sum_{j \in N} \zeta^{j} .
$$

Hence

$$
\frac{U}{V}=a+b\left(1+2 \sum_{j \in N} \zeta^{j}\right)
$$

which is clearly equivalent to (3.1).
Remark. The first author used products like $\prod_{j \in N}\left(1-\zeta^{j}\right)$ extensively in [3].
Let us now consider the product

$$
\prod_{j=1}^{(p-1) / 2} \frac{1-\zeta^{16 j^{2}}}{1-\zeta^{16 j}}=\frac{U}{\Pi_{16}}
$$

where

$$
\Pi_{r}=\prod_{j=1}^{(p-1) / 2}\left(1-\zeta^{r j}\right)
$$

When r and s are prime to p, we have $\Pi_{r s}=\sigma_{s}\left(\Pi_{r}\right)$ where σ_{s} is the automorphism over $\mathbb{Q}(\zeta)$ mapping ζ to ζ^{s}. It turns out to be convenient to compute Π_{16} as $\sigma_{4}\left(\Pi_{4}\right)$.

As $p \equiv 1(\bmod 4)$ we know that $U=\varepsilon_{p}^{-h(p)} \sqrt{p}$. For each r prime to p,

$$
\left|\Pi_{r}\right|^{2}=\Pi_{r} \Pi_{-r}=\prod_{j=1}^{p-1}\left(1-\zeta^{j}\right)=p
$$

so $\left|\Pi_{r}\right|=\sqrt{p}$. Now

$$
\begin{aligned}
\frac{\Pi_{4}}{\left|\Pi_{4}\right|} & =\prod_{j=1}^{(p-1) / 2} \frac{1-\zeta^{4 j}}{\left|1-\zeta^{4 j}\right|}=\prod_{j=1}^{(p-1) / 2}\left(-\zeta^{2 j}\right) \frac{2 i \sin (4 \pi j / p)}{|2 i \sin (4 \pi j / p)|} \\
& =(-1)^{M} \prod_{j=1}^{(p-1) / 2}\left(-i \zeta^{2 j}\right)=(-1)^{M}(-i)^{(p-1) / 2} \zeta^{\left(p^{2}-1\right) / 4} \\
& =(-1)^{(p-1) / 4+M} \zeta^{\left(p^{2}-1\right) / 4}
\end{aligned}
$$

where

$$
M=|\{1 \leqslant j \leqslant(p-1) / 2: \sin (4 \pi j / p)<0\}| .
$$

Note that when $0<j<p / 2, \sin (4 \pi j / p)<0$ if and only if $p / 4<j<p / 2$. So $M=(p-1) / 4$, and

$$
\Pi_{4}=\zeta^{\left(p^{2}-1\right) / 4} \sqrt{p}
$$

Also,

$$
\sigma_{4}(\sqrt{p})=\sigma_{4}\left(\sum_{j=1}^{p-1}\left(\frac{j}{p}\right) \zeta^{j}\right)=\sum_{j=1}^{p-1}\left(\frac{j}{p}\right) \zeta^{4 j}=\sum_{j=1}^{p-1}\left(\frac{j}{p}\right) \zeta^{j}=\sqrt{p}
$$

Thus

$$
\Pi_{16}=\sigma_{4}\left(\zeta^{\left(p^{2}-1\right) / 4} \sqrt{p}\right)=\zeta^{p^{2}-1} \sqrt{p}=\zeta^{-1} \sqrt{p}
$$

Assume that $\varepsilon_{p}^{h(p)}=(c+d \sqrt{p}) / 2$ where c, d are integers with the same parity. Recall that the norm of ε_{p} is -1 and $h(p)$ is odd. Hence $\varepsilon_{p}^{-h(p)}=(-c+d \sqrt{p}) / 2$. So

$$
c=\varepsilon_{p}^{h(p)}-\varepsilon_{p}^{-h(p)} \quad \text { and } \quad d \sqrt{p}=\varepsilon_{p}^{h(p)}+\varepsilon_{p}^{-h(p)} .
$$

As $\sqrt{p}=-1-2 \sum_{j \in N} \zeta^{j}$, we have

$$
\varepsilon_{p}^{-h(p)}=\frac{-c+d \sqrt{p}}{2}=-\frac{c+d}{2}-d \sum_{j \in N} \zeta^{j} .
$$

Therefore

$$
\prod_{j=1}^{(p-1) / 2} \frac{1-\zeta^{16 j^{2}}}{1-\zeta^{16 j}}=\frac{U}{\Pi_{16}}=\frac{\varepsilon_{p}^{-h(p)} \sqrt{p}}{\zeta^{-1} \sqrt{p}}=-\frac{(c+d) \zeta}{2}-d \sum_{j \in N} \zeta^{j+1}
$$

This concludes that

$$
\prod_{j=1}^{(p-1) / 2}[j]_{q^{16 j}} \equiv-\frac{c+d}{2} q-d \sum_{j \in N} q^{j+1} \quad\left(\bmod [p]_{q}\right)
$$

We are done.
Acknowledgment. The second author thanks Professor Zhi-Wei Sun for his helpful suggestions on this paper.

References

[1] G. E. Andrews, q-Analogs of the binomial coefficient congruences of Babbage, Wolstenholme and Glaisher, Discrete Math., 204(1999), 15-25.
[2] Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Presss, New York and London, 1966.
[3] R. Chapman, Determinants of Legendre symbol matrices, Acta Arithmetica, 115(2004), 231244.
[4] S. Chowla, On the class number of real quadratic field, Proc. Natl. Acad. Sci. USA, 47(1961), 878.
[5] K. Ireland and M. Rosen, A classical introduction to modern number theory, 2nd ed., Graduate Texts in Mathematics 84, Springer-Verlag, New York, 1990.
[6] L. J. Mordell, The congruence $((p-1) / 2)!\equiv \pm 1(\bmod p)$, Amer. Math. Monthly, 68(1961), 145-146.
[7] H. Pan, Arithmetic properties of q-Fibonacci numbers and q-Pell numbers, Discrete Math., to appear, arXiv:math.CO/0508546.
[8] H. Pan and Z.-W. Sun, On q-Euler numbers, q-Salie numbers and q-Carlitz numbers, Acta Arith., to appear, arXiv:math.CO/0505548.
[9] B. E. Sagan, Congruence properties of q-analogs, Adv. Math., 95(1992), 127-143.
[10] J. Urbanowicz and K. S. Williams, Congruences for L-functions, Mathematics and its Applications 511, Kluwer Academic Publishers, Dordrecht, 2000.

Department of Mathematics, University of Exeter, Exeter, EX4 4QE, UK, 01392 263971

E-mail address: rjc@maths.ex.ac.uk
Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

E-mail address: haopan79@yahoo.com.cn

[^0]: 2000 Mathematics Subject Classification. Primary 11A07; Secondary 05A30, 11R29.

