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Abstract

We describe a new class of identities, which hold for certain general theta series,
in two completely independent variables. We provide explicit examples of these iden-
tities involving the Dedekind eta function, Jacobi theta functions, and various theta
functions of Ramanujan.
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1. Introduction

Let z ∈ H = {x + iy | x, y ∈ R, y > 0} and set q = e(z) where e(x) = exp(2πix). The
Dedekind eta-function is defined by

η(z) = q1/24
∞∏
n=1

(1− qn).
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Up to normalisation it is a 24-th root of the discriminant of an elliptic curve C/Λ where
Λ is the lattice [1, z]. The Dedekind eta function also appears in the Chowla-Selberg for-
mula, which gives a closed form expression for the value at 1 of the L-series associated to
unramified Abelian extensions of imaginary quadratic number fields. As such, the Dedekind
eta function is intimately tied up with the theory of complex multiplication and explicit class
field theory.

Relations in one variable for the Dedekind eta function (known as modular equations)
have played an important part in construction of class invariants (generators for class field
extensions of imaginary quadratic number fields). See [Cox] and [We] for details.

In [BH] the following striking identity in two variables was proved using Jacobi’s triple
product identity.

27η3(3z)η3(3w) = η3
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3

)
η3
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3

)
+ iη3

(
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3

)
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(
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3

)
−η3

(
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3

)
η3

(
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3

)
, (1.1)

for all z, w ∈ H.
Köhler [Koh] subsequently also used the triple product identity to give another proof of

the above.
Two variable relations such as the above can be viewed as giving rise to permanent

identities, i.e. infinite families of one variable identities. For example, one may make the
substitution w = τ , z = nτ . The identity then becomes a relation between η(τ) and η(nτ)
which does not vary as n varies. In fact the above identity was discovered in the second
author’s thesis [H] by noting such a permanent family of identities for the eta function.

In this paper we generalize identity (1.1) for a very general class of theta functions. In
particular we define a general theta function in the following way:

Θν,a,b,m,ψ(z) =
∞∑

n=−∞
ψ(n)(an+ b)νq

(an+b)2

m , (1.2)

where z ∈ H, ν, a, b,m ∈ Z, m > 0, (a, b) = 1, and ψ is an additive character modulo a.
Many well known functions in number theory, including η3(z), falls into this class of theta
function. We will describe some examples in Section 3.

The general theta function bears some resemblance to the theta function defined by
Shimura [S]. However we note that unlike Shimura’s theta function, our definition includes
functions which are not modular forms (see Example 5 below).

2. Generalized Identities

Fix two sets ν, a, b,m, ψ and ν ′, a′, b′,m′, ψ′, satisfying the above conditions and, for sim-
plicity, denote

f(z) = Θν,a,b,m,ψ(z), g(z) = Θν′,a′,b′,m′,ψ′(z).

The main result that we prove in this paper is the following identity.
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Theorem 1. Let p be an odd prime such that a | (p− 1) and a′ | (p− 1), then

p−1∑
j=0

f

(
z +mj

p

)
g

(
z′ −m′jk

p

)
= ψ(c)ψ′(c′) pν+ν

′+1 f(pz)g(pz′),

for all z, z′ ∈ H, where k is any quadratic nonresidue modulo p, c = b(p − 1)/a and
c′ = b′(p− 1)/a′.

In particular when p ≡ 3 (mod 4) then

p−1∑
j=0

f

(
z +mj

p

)
g

(
z′ +m′j

p

)
= ψ(c)ψ′(c′) pν+ν

′+1 f(pz)g(pz′),

since −1 is a quadratic nonresidue.

When the theta function involved is a half integer weight modular form, the identity
can be interpreted in terms of the half integer weight modular form being annihilated by the
Hecke operator Tp. See [Kob] for details. However, as noted, our definition includes theta
functions which are not modular forms, so no general proof along these lines is known to
the authors.

Proof of Theorem 1. Let

fj(z) = f

(
z +mj

p

)
,

and note that

fj(z) =
∞∑

n=−∞
ψ(n)(an+ b)νe((an+ b)2j/p)q

(an+b)2

mp .

Thus fj depends only on the congruence class of j modulo p. The vector

α(z) =
(
f0(z), f1(z), . . . , fp−1(z)

)
∈ Cp,

lies in the linear subspace Vp of Cp spanned by the vectors

vd =
(
1, e(d2/p), e(2d2/p), . . . , e((p− 1)d2/p)

)
,

where d runs through the integers.
There are (p+ 1)/2 distinct squares modulo p, so there are (p+ 1)/2 distinct vd; these

are linearly independent. Hence Vp has dimension (p+ 1)/2.
Now let

f∞(z) = ψ(c)pν+1/2f(pz) = ψ(c)pν+1/2
∞∑

n=−∞
ψ(n)(an+ b)νq

(an+b)2p
m ,

where c = b(p− 1)/a.

3



We express f∞ in terms of fj , i.e. we derive an identity involving only one variable z,
for these functions. Consider

p−1∑
j=0

fj(z) =
∞∑

n=−∞
ψ(n)(an+ b)νq

(an+b)2

mp

p−1∑
j=0

e((an+ b)2j/p)

= p
∞∑

n=−∞
p|(an+b)

ψ(n)(an+ b)νq
(an+b)2

mp .

But p | (an+ b) if and only if n = ps+ c where s ∈ Z. Thus

p−1∑
j=0

fj(z) = p

∞∑
s=−∞

ψ(ps+ c)(aps+ bp)νq
(aps+bp)2

mp

= pν+1ψ(c)
∞∑

s=−∞
ψ(s)(as+ b)νq

(as+b)2p
m

=
√
p f∞(z).

Now we see that

F (z) =
(
f0(z), f1(z), . . . , fp−1(z), f∞(z)

)
lies in the vector subspace Wp of Cp+1 spanned by the vectors

w0 =
(
1, 1, 1, . . . , 1,

√
p
)

and
wd =

(
1, e(d2/p), e(2d2/p), . . . , e((p− 1)d2/p), 0

)
,

where d runs through the integers prime to p. Again Wp has dimension (p+ 1)/2.
Now, if we let

gj(z′) = g

(
z′ −m′jk

p

)
and g∞(z′) = ψ′(c′)pν

′+1/2g(pz′),

a similar argument proves that

G(z′) =
(
g0(z′), g1(z′), . . . , gp−1(z′), g∞(z′)

)
∈W ′p

where W ′p is the subspace of Cp+1 spanned by

w′0 = w0 =
(
1, 1, 1, . . . , 1,

√
p
)

and
w′d =

(
1, e(−kd2/p), e(−2kd2/p), . . . , e(−(p− 1)kd2/p), 0

)
.

Next, for v, u ∈ Cp+1, we define

B(v, u) =
p−1∑
j=0

vjuj − v∞u∞,
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a bilinear form on Cp+1.
Clearly for d1, d2 not both zero modulo p,

B(wd1 , w
′
d2) =

p−1∑
j=0

e

(
j(d2

1 − kd2
2)

p

)
= 0,

since k is a quadratic nonresidue of p.
Also

B(wd1 , w
′
0) =

p−1∑
j=0

e(d2
1j/p) = 0

for d1 nonzero modulo p. Similarly B(w0, w
′
d2

) = 0 for d2 nonzero modulo p.
Finally,

B(w0, w
′
0) =

p−1∑
j=0

1− (
√
p)2 = 0.

Thus B(v, u) = 0 for all v ∈Wp, u ∈W ′p. In particular, B(F (z), G(z′)) = 0, i.e.

p−1∑
j=0

fj(z)gj(z′) = ψ(c)ψ′(c′) pν+ν
′+1 f(pz)g(pz′),

as was to be shown.

Theorem 1 required that a | (p− 1) and a′ | (p− 1). We can make a small modification
to deal with the case where a | (p + 1). Indeed we simply note that for the original theta
function we defined,

Θν,a,b,m,ψ(z) = (−1)ν
∞∑

n=−∞
ψ(−n)(an− b)νq

(an−b)2

m .

Now our argument goes through much the same as before, except that we now require
ψ(n) = ψ(−n), etc., i.e. ψ and ψ′ must now be real-valued characters taking only the
values ±1. We thus have the following.
Theorem 1.1. Let p be an odd prime such that a | (p+ 1) and a′ | (p+ 1), then

p−1∑
j=0

f

(
z +mj

p

)
g

(
z′ −m′jk

p

)
= −ψ(c)ψ(c′) (−p)ν+ν′+1 f(pz)g(pz′),

for all z, z′ ∈ H, where k is any quadratic nonresidue modulo p, c = b(p + 1)/a and
c′ = b′(p+ 1)/a′.
Theorem 1.2. Let p be an odd prime such that a | (p− 1) and a′ | (p+ 1), then

p−1∑
j=0

f

(
z +mj

p

)
g

(
z′ −m′jk

p

)
= (−1)ν

′
ψ(c)ψ(c′) pν+ν

′+1 f(pz)g(pz′),

for all z, z′ ∈ H, where k is any quadratic nonresidue modulo p, c = b(p − 1)/a and
c′ = b′(p+ 1)/a′.

Remark. We note that the space Vp is essentially the same as Q in [Ch], which played
a rôle as complex analogue of the quadratic residue code.
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3. Examples

The theta function that we introduced in (1.2) is clearly a generalization of the null values
of the classical Jacobi theta functions [WW, p. 463]:

θ′1(q) =
∞∑

n=−∞
i(2n−1)(2n+ 1)q(2n+1)2/4,

θ2(q) =
∞∑

n=−∞
q(2n+1)2/4,

θ3(q) =
∞∑

n=−∞
qn

2
,

θ4(q) =
∞∑

n=−∞
(−1)nqn

2
.

The Jacobi theta functions have several important applications to number theory. For
example θ3

3 can be used to compute class numbers of imaginary quadratic number fields,
see [W] for details.

We shall describe below, several important functions satisfying the definition in (1.2).
Example 1: Jacobi’s formula gives,

η3(z) =
∞∑

n=−∞
(4n+ 1)q(4n+1)2/8,

corresponding to Θν,a,b,m,ψ(z) with ν = 1, a = 4, b = 1, m = 8 and ψ the trivial
character.

Theorem 1 and 1.1, with f(z) = η3(z) and g(z′) = η3(z′), then yields:

p3η3(pz)η3(pz′) =
p−1∑
j=0

η3

(
z + 8j
p

)
η3

(
z′ − 8jk

p

)
, (3.3)

for any odd prime p.
The case p = 3 and k = −1 reduce to identity (1.1) on using the fact that η3(z + 1) =

e(1/8)η3(z).
Example 2: Let f(z) = η(z) and g(z′) = η(z′). Then by Euler’s pentagonal number

formula,

η(z) = q1/24
∞∑

n=−∞
(−1)nqn(3n+1)/2 =

∞∑
n=−∞

(−1)nq(6n+1)2/24,

corresponding to Θν,a,b,m,ψ(z) with ν = 0, a = 6, b = 1, m = 24 and ψ(n) = (−1)n.
It follows that for p > 3,

pη(pz)η(pz′) =
p−1∑
j=0

η

(
z + 24j

p

)
η

(
z′ − 24jk

p

)
, (3.4)
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where k is a quadratic nonresidue modulo p.
Example 3: If we let f(z) = η(z) and g(z′) = η3(z′). Since −3 is a quadratic

nonresidue for primes p ≡ 11 (mod 12), we have

p2η(pz)η3(pz′) =
p−1∑
j=0

η

(
z + 24j

p

)
η3

(
z′ + 24j

p

)
. (3.5)

Example 4: In [B, p.114] Entry 8 (ix) and (x), Ramanujan studied two theta func-
tions which are consequences of the quintuple product identity [B, p.83], [Coo]. Using his
notation for φ(q), ψ(q) and f(−q), these are

q1/24φ2(−q)f(−q) =
η5(z)
η2(2z)

=
∞∑

n=−∞
(6n+ 1)q

(6n+1)2

24 ,

q1/3ψ(q2)f2(−q) =
η2(4z)η2(z)

η(2z)
=

∞∑
n=−∞

(3n+ 1)q
(3n+1)2

3 .

A simple transform of the latter function gives the following,

η5(2z)
η2(z)

=
∞∑

n=−∞
(−1)n(3n+ 1)q

(3n+1)2

3 .

All three clearly satisfy the definition given in (1.2).
Example 5: The preceding examples all involved the case where ν = 0 or 1. Ramanu-

jan [R, p. 369] , [AB, p.355–362] also studied theta functions involving higher values for
ν. Let

U2α+1(q) =
∞∑

n=−∞
(4n+ 1)2α+1q

(4n+1)2

8 ,

V2α(q) =
∞∑

n=−∞
(−1)n(6n+ 1)2αq

(6n+1)2

24 .

Ramanujan showed that

U2α+1(q) = η3(z)
∑

i+2j+3k=α

aijkE
i
2E

j
4E

k
6 ,

V2α(q) = η(z)
∑

i+2j+3k=α

bijkE
i
2E

j
4E

k
6 ,

where aijk and bijk are rational numbers and En are the normalized Eisenstein series of
weight n. See [CCT] and references therein for more information about these two classes
of theta functions.

Note that this example includes theta functions under our definition which are not mod-
ular forms, due to the presence of E2.
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Summary and Concluding Remarks

We have used elementary methods to prove our main identity for a general class of theta
functions and given several well known examples of such theta functions.

Our general theorem can be used to construct infinite families of identities for such theta
functions. It is unknown whether there is a link between such permanent identities and the
identities of Nathan Fine [F].
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[Koh] G. Köhler, Note on an eta identity presented by B. C. Berndt and W. B. Hart, Bull.
Lond. Math. Soc. 40 (2008), 172–173.

[R] S. Ramanujan, The lost notebook and other unpublished papers, Narosa, New Delhi,
1988.

8



[S] G. Shimura, On modular forms of half integral weight, Ann. of Math. 97 (1973), 440-
481.

[W] Watson, G. N. Generating functions of class-numbers, Compositio Math. 1 (1935),
39–68.

[We] Heinrich Weber, Lehrbuch der Algebra, Dritter Band, 3rd ed., Chelsea, New York,
1961.

[WW] E. T. Whittaker and G.N. Watson, A course of modern analysis, 4th ed., Cambridge
University Press, Cambridge, 1966.

9


	Introduction
	Generalized Identities
	Examples

