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FIRST-ORDER ASYMPTOTIC
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This paper develops a framework for the construction and analysis of parametric
misspecification tests for generalized autoregressive conditional heteroskedastic
(GARCH) models, based on first-order asymptotic theory. The principal finding is
that estimation effects from the correct specification of the conditional mean (regres-
sion) function can be asymptotically nonnegligible. This implies that certain proce-
dures, such as the asymmetry tests of Engle and Ng (1993, Journal of Finance 48,
1749–1777) and the nonlinearity test of Lundbergh and Teräsvirta (2002, Journal
of Econometrics 110, 417–435), are asymptotically invalid. A second contribution
is the proposed use of alternative tests for asymmetry and/or nonlinearity that, it is
conjectured, should enjoy improved power properties. A Monte Carlo study supports
the principal theoretical findings and also suggests that the new tests have fairly good
size and very good power properties when compared with the Engle and Ng (1993)
and Lundbergh and Teräsvirta (2002) procedures.

1. INTRODUCTION

A great deal of research has been undertaken on modeling volatility clustering
in financial and economic time series, in which the generalized autoregressive
conditional heteroskedastic (GARCH) model of Bollerslev (1986) represents a
benchmark specification. The subsequent literature has provided generalizations
by, e.g., allowing for asymmetric and/or nonlinear behavior. Prominent among
these are the exponential GARCH (EGARCH) model of Nelson (1991), the GJR
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model of Glosten, Jagannathan, and Runkle (1993), the threshold GARCH
(TGARCH) model of Zakoı̈an (1994), and the smooth transition GARCH
(STGARCH) model of Hagerud (1997) and Gonzalez-Rivera (1998).

Notwithstanding these developments, the parametric GARCH model remains
a popular choice among applied workers. Therefore, and as noted by Lundbergh
and Teräsvirta (2002), it is important to perform misspecification tests to assess
the adequacy of the parametric model being employed. Developing misspecifica-
tion tests has not been a neglected area of research. Bollerslev (1986) suggested a
natural score type test for testing a GARCH model against a higher order GARCH
model. Asymmetry tests were proposed by Engle and Ng (1993), and these are
now widely used in empirical finance. Li and Mak (1994) constructed a test for the
adequacy of a GARCH(p,q) model with a null hypothesis that the squared stan-
dardized error process is serially uncorrelated. Lundbergh and Teräsvirta (2002)
proposed tests of (1) no remaining autoregressive conditional heteroskedasticity
(ARCH) in standardized errors, (2) linearity, and (3) parameter constancy. All of
these procedures are important inferential tools for empirical researchers who are
interested in obtaining accurate forecasts of financial volatility to make the appro-
priate decisions on portfolio selection, asset management, or pricing derivative
assets.

However, in this paper it is argued that, on closer inspection, the standard first-
order theory employed to justify the asymptotic validity of such procedures has
sometimes been misinterpreted. To establish this, a unifying framework for the
construction and analysis of parametric misspecification tests in GARCH models,
based on the conditional moment principle and first-order asymptotic theory, is
developed. This provides a useful contribution in at least two respects.

First, and most significantly, the theory predicts that the limit null distribution
of the relevant test indicators must take account of asymptotically nonnegligible
effects from the estimated conditional mean (regression) parameters in the null
GARCH(p,q) model. (The importance of such estimation effects was addressed
by Durbin, 1970, when testing for serial correlation with lagged dependent vari-
ables.) This issue has been apparently overlooked in the GARCH testing litera-
ture because in the null GARCH(p,q) model, under conditional symmetry of the
errors, the estimated conditional mean parameters are asymptotically orthogonal
to estimated conditional heteroskedasticity parameters. In particular, and because
of this orthogonality, it appears that the conditional mean estimation effects have
been simply (but erroneously) assumed away, e.g., by Engle and Ng (1993) and
Lundbergh and Teräsvirta (2002).1

The second contribution proposes “new” tests for asymmetry and/or nonlin-
earity. It is conjectured that these test procedures should have better power prop-
erties against the types of alternative models considered by both Engle and Ng
(1993) and Lundbergh and Teräsvirta (2002) in their Monte Carlo experiments,
because their construction takes into account the recursive nature of the condi-
tional heteroskedasticity (whereas the test procedures of Engle and Ng, 1993,
and Lundbergh and Teräsvirta, 2002, do not). The results of a small Monte Carlo
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study reveal that the new tests do indeed have good size properties and very good
power when compared with the tests of Engle and Ng (1993) and Lundbergh and
Teräsvirta (2002).

The paper is organized as follows, with supporting lemmas and propositions,
together with all proofs, relegated to Appendixes. Section 2 describes the null
GARCH model and briefly discusses quasi–maximum likelihood (QML) esti-
mation. Section 3 describes a framework for constructing a particular class of
parametric misspecification tests. In Section 4 the tests proposed by Lundbergh
and Teräsvirta (2002) and Engle and Ng (1993) are reviewed, and new asymptoti-
cally valid tests for asymmetry and nonlinearity are introduced. Section 5 presents
some Monte Carlo evidence in support of the theoretical findings, and Section 6
concludes.

2. THE NULL GARCH(p, q ) MODEL

2.1. Assumptions and Estimation Framework

The regression model for the variable of interest, yt , is defined as

yt = m (wt ;ϕϕϕ0)+ ε0t , t = 1, . . . ,T, (1)

where wt = (y′
t−1,z

′
t ), yt−1 = (1, yt−1, . . . , yt−l)

′ ∈ �l+1, zt = (zt1, . . . , ztk)
′ ∈

�k are exogenous variables, ϕϕϕ0 = (ϕ01, . . . ,ϕ0r )
′ is the true parameter vector, and

the conditional mean (regression) function, m(wt ;ϕϕϕ0), is possibly nonlinear.2 The
error {ε0t ,Ft } , where Ft−1 = σ

((
yt−1,z

′
t

)
,
(

yt−2,z
′
t−1

)
, . . .
)
, is a martingale

difference sequence given by

ε0t = ξt h
1/2
0t , (2)

where the standardized error process, ξt , is an independent and identically dis-
tributed (i.i.d.) sequence with mean zero and variance one and we define kc =
E[ξ4

t ] and vc = E[ξ3
t ], both finite constants. The conditional variance is specified

as

h0t =ηηη′
0s0,t−1 (3)

= α00 + A0(L)ε2
0t + B0(L)h0t ,

where s0,t−1 = (1,ε2
0,t−1, . . . ,ε

2
0,t−q ,h 0,t−1, . . . ,h0,t−p)

′, ηηη0=(α00,α01, . . . ,α0q ,

β01, . . . ,β0p)
′, A0(L) = α01L +·· ·+α0q Lq , and B0(L) = β01L +·· ·+β0p L p.

The preceding process is defined for the true parameter θθθ0 = (
ϕϕϕ′

0,ηηη
′
0

)′, and

correspondingly the model for the unknown parameter vector θθθ = (
ϕϕϕ′,ηηη′)′ is

defined as
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yt = m (wt ;ϕϕϕ)+ εt , t = 1, . . . ,T,

ht =ηηη′st−1

= α0 + A(L)ε2
t + B(L)ht

= at + B(L)ht, (4)

where at = α0 + A(L)ε2
t = α0 +∑q

k=1 αkε
2
t−k . The following assumptions ensure

the identifiability, stationarity, and ergodicity of the preceding process.

Assumptions A.

1. The parameter space, 


, is compact, and θθθ0 lies in the interior of 


.
2. The elements of (yt ,z

′
t ) are strictly stationary and ergodic, and m(wt ;ϕϕϕ) is

continuous and Ft−1 measurable for all ϕϕϕ ∈ 


.
3. (a) All the roots of 1− A(z)− B(z) = 0 lie outside the unit circle;

(b) the parameter space is constrained such that 0 < λ ≤ min{ηl} ≤ max{ηl}
< �, l = 1, . . . , p +q +1, where λ and � are independent of θθθ ;

(c) the polynomials A(z) and 1− B(z) are coprimes.

As in Ling and McAleer (2003), Assumption A3(a) is a stationarity assump-
tion imposed over the whole parameter space. Notice that, with A3(b), this im-
plies that roots of 1 − B(z) = 0 lie outside the unit circle. Thus, in addition to
A3(b), which restricts the parameter space so that zero values in ηηη are ruled out,
∑p

j=1 βj < 1. These restrictions are also imposed on 


 by Berkes, Horváth, and
Kokoszka (2003) and are employed here because they afford uniform convergence
of second derivatives of the log-likelihood over 


, removing the need for third
derivatives, thus greatly simplifying the algebra required to justify the substantive
contribution.3

Given Assumptions A3(a) and (b), the process for ht has the following repre-
sentation:

h∞
t = (1− B(L))−1at =

∞
∑
i=0

ψi at−i ,

where (1 − B(L))−1 = ∑∞
i=0 ψi Li , with ψ0 = 1, ψi > 0 and satisfying ψi =

∑p
j=1 βjψi− j , with ψs = 0, s < 0, 0 < ∑∞

i=0 ψi =
(

1−∑p
j=1 βj

)−1
< ∞. The

coefficients, ψi , decay exponentially fast, and there exist constants K > 0 and
0 < ρ < 1, independent of θ,θ,θ, such that ψi ≤ Kρi . Then, as in Ling and McAleer
(2003), but under (1), Assumption A2, and h0t = h∞

t (θθθ0), it can be shown that
{ε0t ,h0t } is strictly stationary and ergodic.

Asymptotic theory for GARCH models has been considered by several au-
thors. For example, Ling and McAleer (2003) required that E(ε6

0t ) < ∞ to en-
sure asymptotic normality of the QML estimator in the ARMA-GARCH model.
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Furthermore, Chan and McAleer (2002, 2003) argued that the results in Ling
and McAleer (2003) also hold for a smooth transition autoregressive–GARCH
(STAR-GARCH) model. Berkes et al. (2003) established the consistency and
asymptotic normality of the QML estimator, under weaker moment assumptions,
in the pure GARCH(p,q) model, these being E[ξ2

t ] = 1 for consistency and
E[ξ4

t ] < ∞ for asymptotic normality. Francq and Zakoı̈an (2004) established con-
sistency and asymptotic normality of the QML estimator in both a pure GARCH
and an ARMA-GARCH model under further weakened conditions that, in the
pure GARCH model, allow zero values in the parameter space. Recently, Francq
and Zakoı̈an (2007) have in addition extended the analysis to the case where
the true parameter, ηηη0, might also contain zero values. This assumption, how-
ever, precludes asymptotic normality for the quasi maximum likelihood estimator
(QMLE). All these authors assume, as here, that the ξt are i.i.d. Therefore, al-
though it is possible that the assumptions employed in this paper could be weak-
ened, it should be noted that the regression specification in (1) is more general
than that employed in the literature referred to earlier and the corresponding
assumptions employed are, nonetheless, sufficient and (importantly) permit a rel-
atively straightforward justification of the required first-order asymptotic theory,
without obfuscating the principal issue that is addressed in the paper. In practice,
and following Weiss (1986),4 the existence of moments is assumed when required
as follows, where ‖ · ‖ denotes the euclidean norm.

Assumptions B.

1. E|ε0t |4(1+s) < ∞ for some s > 0 and all t .
2. E |m(wt ;ϕϕϕ)−m(wt ,ϕϕϕ0)|2 > 0, for all ϕϕϕ 	= ϕϕϕ0.
3. m(wt ;ϕϕϕ) is at least twice continuously differentiable in ϕϕϕ, with, for all t ,

(a) supθθθ |m(wt ;ϕϕϕ)|4(1+s) < B(wt ), with E[B(wt )] < ∞, for some s > 0;
(b) E[supθθθ

∣∣∣∣εr
t ∂m (wt−i ;ϕϕϕ)/∂ϕϕϕ

∣∣∣∣2] < ∞, r = 0,2, and all i ≥ 0;
(c) E[supθθθ

∣∣∣∣εr
t ∂

2m (wt−i ;ϕϕϕ)/∂ϕϕϕ∂ϕϕϕ′∣∣∣∣2] < ∞, r = 0,1, and all i ≥ 0.

The (average) quasi log-likelihood, conditional on available presample values
ỹ = ( y0, . . . , y1−l)

′ is (ignoring constants)

LT (θθθ) = 1

T

T

∑
t=1

lt (θθθ) , lt (θθθ) = −1

2

[
ln(ht )+ ε2

t

ht

]
, (5)

although the ensuing asymptotic analysis does not restrict ξt to be normally dis-
tributed; see Bollerslev (1986). Note that (5) is not only conditional on available
presample values, ỹyy, from which εt , t = 1, . . . ,T, can be constructed, but
also on ε̃εε0 = (ε2

0, . . . ,ε
2
1−q ,h0, . . . ,h1−p)

′, from which ht can be constructed
using (4). However, εt and the process ht , t ≤ 0, are unobserved. To simplify
the algebra and asymptotic theory, it is assumed (in addition) that presample
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observations w0, . . . ,w1−q are also available and that ht = 0 for all t ≤ 0.5 The
simplifications in the analysis derive from the fact that now ht can be expressed as
ht = ∑t−1

i=0 ψi at−i = ∑t−1
i=0{B∗(L)}i at−i , t = 1, . . . ,T, where B∗ (L) = β1 +β2L +

·· ·+βp L p−1. (In practice, though, and for all inferential procedures described in
this paper, a constant value can be chosen for ε̃εε0 to generate ht , t = 1, . . . ,T ).
The unknown parameters can be estimated jointly by QML estimation of (5).

Throughout, the estimated parameter vector will be denoted θ̂θθ
′ = (ϕ̂ϕϕ′,η̂ηη′).

The unobserved log-likelihood function, conditioning on the infinite history of
all past observations (w′

0,w
′−1,w

′−2, . . .)
′, is L∞

T (θθθ) = 1
T ∑T

t=1 l∞t (θθθ) 	= LT (θθθ),

with l∞t (θθθ) = − 1
2

(
ln(h∞

t )+ (ε2
t /h∞

t )
)

and score vector contributions of d∞
θθθ t (θθθ)=

∂l∞t (θθθ)

∂θθθ
, where d∞

θθθ t (θθθ) = (d∞
ϕϕϕt (θθθ)′,d∞

ηηηt (θθθ)′)′ in an obvious manner. Assuming

L∞
T (θθθ) and LT (θθθ) are both twice continuously differentiable in θθθ, define

dθθθ t (θθθ)= ∂lt (θθθ)

∂θθθ
, DθθθT (θθθ)=T −1 ∑T

t=1dθθθ t (θθθ), PθθθθθθT (θθθ) = −T −1 ∑T
t=1

∂dθθθ t (θθθ)

∂θθθ ′ ,

and, correspondingly, D∞
θθθT (θθθ) and P∞

θθθθθθT (θθθ) for the unobserved L∞
T (θθθ). By in-

troducing the unobserved log-likelihood, the methodology of Ling and McAleer
(2003), Berkes et al. (2003), and Francq and Zakoı̈an (2004) is followed, whereby
it is established that θ̂θθ = argmaxθθθ LT (θθθ) has exactly the same first-order asymp-
totic properties as θ̂θθ

∞ = argmaxθθθ L∞
T (θθθ), with the latter being fairly easy to

verify.
To develop these arguments, it will be useful to illustrate, and distinguish

between, the various unobserved and observed quantities associated with L∞
T (θθθ)

and LT (θθθ), respectively, based on the assumed initial start-up values embodied
in ε̃εε0. Specifically, the unobserved scores are D∞

ϕϕϕT (θθθ) = T −1 ∑T
t=1 ×{

εt ft
h∞

t
+ 1

2

(
ε2

t
h∞

t
−1
)
c∞t
}

,D∞
ηηηT (θθθ) = T −1 1

2 ∑T
t=1

(
ε2

t
h∞

t
−1
)
x∞

t , where ft = ∂m(wt ;ϕϕϕ)
∂ϕϕϕ ,

and by exploiting the recursions ∂ht
∂ϕϕϕ = −2∑q

k=1 αkεt−kft−k + B(L) ∂ht
∂ϕϕϕ and ∂ht

∂ηηη =
st−1 + B(L) ∂ht

∂ηηη ,

c∞t = 1

h∞
t

∂h∞
t

∂ϕϕϕ
= −2

1

h∞
t

q

∑
k=1

αk

{ ∞
∑
i=0

ψiεt−k−i ft−k−i

}
(6)

and

x∞
t = 1

h∞
t

∂h∞
t

∂ηηη
= 1

h∞
t

∞
∑
i=0

ψis
∞
t−1−i , (7)

where s∞′
t−1 = (1,ε2

t−1, . . . ,ε
2
t−q ,h∞

t−1, . . . ,h∞
t−p)

′. Given ε̃εε0, the corresponding
observed score DθθθT (θθθ), associated with LT (θθθ), can be expressed analogously
but with

ct = −2
1

ht

q

∑
k=1

αk

{
t−1

∑
i=0

ψiεt−k−i ft−k−i

}
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= −2
1

ht

q

∑
k=1

αk

{
t−1

∑
i=0

{
B∗ (L)

}i
εt−i−kft−i−k

}
,

xt = 1

ht

t−1

∑
i=0

ψist−1−i = 1

ht

t−1

∑
i=0

{
B∗ (L)

}i
st−1−i

replacing c∞t and x∞
t , respectively. For example, in the GARCH(1,1) case

ht = ∑t−1
i=0 β i

1{α0 + α1ε
2
t−1−i }, ct = −2h−1

t α1 ∑t−1
i=0 β i

1εt−1−i ft−1−i , and

xt = h−1
t ∑t−1

i=0 β i
1st−1−i , with s′t−1 = (1,ε2

t−1,ht−1). In practice, however, ct and

xt can be constructed using the recursions for
∂ht

∂ϕϕϕ
and

∂ht

∂ηηη
described previously.

The consistency and asymptotic normality of the QMLE estimator θ̂θθ = argmaxθθθ

LT(θθθ) are presented in Section 2.2 together with a consistent variance-covariance
matrix estimator.

2.2. QML Estimation

The following theorem establishes the consistency and asymptotic normality
of θ̂θθ.

THEOREM 1. Given Assumptions A and B, θ̂θθ
p→ θθθ0 and

√
T (θ̂θθ −θθθ0)

d→ N (0,J−1
θθθθθθ ���θθθθθθJ

−1
θθθθθθ ),

where Jθθθθθθ = −E

[
∂ddd∞

θθθ t (θθθ0)

∂θθθ ′

]
and ���θθθθθθ = E

[
d∞

θθθ t (θθθ0)d
∞
θθθ t (θθθ0)

′] are both finite and

positive definite with

Jθθθθθθ =
[
Jϕϕϕϕϕϕ J′

ηϕηϕηϕ

Jηϕηϕηϕ Jηηηηηη

]
= 1

2 E

[
c∞t c∞′

t c∞t x∞′
t

x∞
t c

∞′
t x∞

t x
∞′
t

]
θθθ=θθθ0

+E

[
1

h∞
t
ft f

′
t 0

0 0

]
θθθ=θθθ0

and

���θθθθθθ =
[
���ϕϕϕϕϕϕ ���′

ηηηϕϕϕ

���ηηηϕϕϕ ���ηηηηηη

]

= (kc−1)
4 E

[
c∞t c∞′

t c∞t x∞′
t

x∞
t c

∞′
t x∞

t x
∞′
t

]
θθθ=θθθ0

+ vc
2 E

⎡
⎣ 1√

h∞
t
ftc

∞′
t

1√
h∞

t
ftx

∞′
t

1√
h∞

t
x∞

t f
′
t 0

⎤
⎦

θθθ=θθθ0

+E

[
1

h∞
t
ft f

′
t 0

0 0

]
θθθ=θθθ0

.
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Consistent standard errors follow from the next lemma, in which Ĉ, X̂, and F̂
are matrices with rows ĉ′t , x̂′

t , and f̂ ′t , respectively, and Ĥ= diag
(
η̂ηη′ŝt−1

)
, where

“hats” denote evaluation at θ̂θθ.

LEMMA 1. Under Assumptions A and B,

(i) �̂��θθθθθθ −���θθθθθθ = op(1), where

�̂��θθθθθθ = (k̂c −1)

4

1

T

[
Ĉ′Ĉ Ĉ′X̂
X̂′Ĉ X̂′X̂

]

+ v̂c

2

1

T

[
F̂′Ĥ−1/2Ĉ F̂′Ĥ−1/2X̂

X̂′Ĥ−1/2F̂ 0

]
+ 1

T

[
F̂′Ĥ−1F̂ 0
0 0

]
,

where k̂c −1 = 1
T ∑T

t=1

(
ε2

t

ht
−1

)2

θθθ=θ̂θθ

and v̂c = 1
T ∑T

t=1

(
εt√
ht

)3

θθθ=θ̂θθ

.

(ii) Ĵθθθθθθ −Jθθθθθθ = op(1), where

Ĵθθθθθθ = 1

2

1

T

[
Ĉ′Ĉ Ĉ′X̂
X̂′Ĉ X̂′X̂

]
+ 1

T

[
F̂′Ĥ−1F̂ 0
0 0

]
.

Exploiting these results, and the method of proof, affords a framework in which
to extend this asymptotic analysis to a specific class of misspecification tests.

3. A CLASS OF ASYMPTOTICALLY VALID TEST PROCEDURES

In this section, first-order asymptotic distribution results are developed for a class
of parametric test statistics. The corresponding test procedures are derived from
the conditional moment principle and are designed to detect misspecification in
the null GARCH(p,q) error process, ht = ηηη′st−1, while assuming a correct re-
gression function specification, m(wt ;ϕϕϕ).

If the GARCH model is correctly specified, then it follows from (2) that

E[(ξ2
t −1)|Ft−1] = 0.

Therefore, misspecification tests of GARCH models can be constructed as tests
of the following moment conditions:

E[(ξ2
t −1)rt (θθθ0)] = 0, (8)

where rt (θθθ0) is an Ft−1 measurable function. The intuition here is that if the
GARCH model is appropriate, then the squared standardized errors should be
serially uncorrelated with any function of past information.6
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Consistent with the notation introduced in the previous section, let dπππ t (θθθ) =
((ε2

t /ht ) − 1)rt (θθθ), where the (test) variables in rt will in general depend upon
past history and specifically the process ht . For example, rt (θθθ) could derive from
a (quasi) score principle in which πππ denotes the unknown parameter vector in
the alternative model, say, ha

t , and H0 : πππ = 0 is under test. In this case, and

ignoring irrelevant factors of proportionality, rt (θθθ) =
[

1
ha

t

∂ha
t

∂πππ

]
πππ=0; see Section

4.2. Therefore, as with ct and xt , let r∞t be the test variable constructed using h∞
t .

To test the null of (8), the generic conditional moment test indicator is con-
structed as

DπππT (θ̂θθ)= 1

T

T

∑
t=1

[(
ε̂2

t

ĥt
−1

)
r̂t

]
= 1

T
R̂′ϑ̂ϑϑ, (9)

where the matrix R has rows r′t = rt (θθθ)′ , ϑ̂ϑϑ is the vector with typical element{
ε̂2

t

ĥt
−1
}

, and “hats” denote that everything is evaluated at the consistent null pa-

rameter estimator, θ̂θθ. It should be noted that tests for nonlinearity and/or asymme-
try, discussed in Section 4, are special cases. Assessing the statistical significance
of (9), which requires estimation only under the null GARCH model, provides the
basis for a test procedure.

It is not being claimed that such procedures are consistent in the sense of reject-
ing any departure from the null model when the null hypothesis is false. Given the
framework set out in this paper, the general results of Godfrey and Orme (1996)
could be employed to suggest alternatives against which tests based on (9), for a
given choice of rt (θθθ), may be relatively insensitive. On the other hand, the condi-
tional moment framework suggests that the Newey (1985) results can be exploited
to determine the choice of rt (θθθ) that will provide optimal local power against par-
ticular forms of misspecification. Such issues are not the primary focus of the
current paper, however.

The following theorem provides sufficient conditions under which the familiar
limit distribution for

√
TDπππT (θ̂θθ) applies.7

THEOREM 2. Suppose that, in addition to Assumptions A and B, the following
conditions are satisfied:

(i) ∑t Esupθθθ |εt |l
∥∥r∞t −rt

∥∥= O(1), l = 0,2;
(ii) Esupθθθ

∥∥r∞t ∥∥2
< ∞, for all t ;

(iii) Esupθθθ

∥∥∥εl
t
∂r∞t
∂θθθ

∥∥∥< ∞, l = 0,2, for all t.

Then

√
TDπππT (θ̂θθ)

d→ N (0,���),
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where

��� =A���A′,

��� =
[

���θθθθθθ ���′
πππθθθ

���πππθθθ ���ππππππ

]
, A= [−JπππθθθJ

−1
θθθθθθ : Im ],

and Im is the identity matrix of rank m = rank(���ππππππ ),

���πππϕϕϕ = vcE

[
1√
h∞

t
r∞t f ′t

]
θθθ=θθθ0

+ (kc −1)

2
E
[
r∞t c∞′

t

]
θθθ=θθθ0

,

���πππηηη = (kc −1)

2
E
[
r∞t x∞′

t

]
θθθ=θθθ0

,

���ππππππ = (kc −1)E
[
r∞t r∞′

t

]
θθθ=θθθ0

,

and Jπππθθθ = [Jπππϕϕϕ : Jπηπηπη

]
with

Jπϕπϕπϕ = −E

[
∂d∞

πππ t (θθθ0)

∂ϕϕϕ′

]
= E

[
r∞t c∞′

t

]
θθθ=θθθ0

, (10)

Jπηπηπη = −E

[
∂d∞

πππ t (θθθ0)

∂ηηη′

]
= E

[
r∞t x∞′

t

]
θθθ=θθθ0

. (11)

From the preceding result, the general form of the misspecification test statistic is
the quadratic form

TDπππT (θ̂θθ)′�̂��−1
T DπππT (θ̂θθ), (12)

which has a χ2
m limiting distribution under the null, where �̂��T is any consistent

estimator for �;�;�; i.e., �̂��T =���+op(1). Similar in spirit to Lemma 1, the following
lemma gives an expression for �̂��T .

LEMMA 2. Under Assumptions A and B and those of Theorem 2, Â�̂̂�̂�Â′−��� =
op(1) where

�̂�� =
[
�̂��θθθθθθ �̂��

′
πθπθπθ

�̂��πθπθπθ �̂��ππππππ

]
, Â= [−Ĵπθπθπθ Ĵ

−1
θθθθθθ : Im],
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�̂��θθθθθθ and Ĵθθθθθθ are given in Lemma 1,

�̂��πϕπϕπϕ = v̂c
R̂′Ĥ−1/2F̂

T
+ (k̂c −1)

2

R̂′Ĉ
T

,

�̂��πηπηπη = (k̂c −1)

2

R̂′X̂
T

,

�̂��ππππππ = (k̂c −1)
R̂′R̂

T
,

and Ĵπθπθπθ = [Ĵπϕπϕπϕ : Ĵπηπηπη] with

Ĵπϕπϕπϕ = R̂
′Ĉ
T

, Ĵπηπηπη = R̂
′X̂
T

.

Observe that ���=A���A′ depends upon the “mode” of estimation only through
��� and not Jπθπθπθ , which is independent of the mode of estimation. In particular,
and of relevance for later discussion, if Jπϕπϕπϕ = E

[
r∞t c∞′

t

]
θθθ=θθθ0

= 0 then the limit

distribution of
√

TDπππT (θ̂θθ) is not influenced by the estimation of ϕϕϕ. Indeed, it
appears that this claim, Jπϕπϕπϕ = 0, is always made when constructing parametric
misspecification tests of GARCH models under the assumption of conditional
symmetry; see, e.g., Lundbergh and Teräsvirta (2002) and Engle and Ng (1993).
Using the framework introduced here, it is argued in the next section that this is
not the case, in general, and in particular it is not the case for the test procedures
proposed by Lundbergh and Teräsvirta (2002) and Engle and Ng (1993).

Section 4 describes how (9) accommodates existing misspecification tests and
also provides alternative asymptotically valid test procedures. Before that, how-
ever, the important effects of (known) conditional symmetry are considered,
although normality of ξt is not necessarily assumed.

3.1. The Effects of Conditional Symmetry

Conditional symmetry implies that E
[
ξ3

t

]= 0, E
[
ε3

0t |Ft−1
]= 0, and thus vc = 0.

Although it can be tested (see e.g., Bai and Ng, 2001), it is often just assumed as in
Lundbergh and Teräsvirta (2002) and Engle and Ng (1993), with the latter actually
assuming normality of ξt . The presence of conditional symmetry simplifies the
form ��� for the class of test indicators given by (9) as follows.

LEMMA 3. Under conditional symmetry

(i) Jηϕηϕηϕ = E
[
− ∂d∞

ηηηt (θθθ0)

∂ϕϕϕ′
]

= 0;
(ii) ���ηϕηϕηϕ = E[d∞

ηηηt (θθθ0)d
∞
ϕϕϕt (θθθ0)

′] = 0;
(iii) ���ϕϕϕϕϕϕ = (kc−1)

4 E[c∞t c∞′
t ]θθθ=θθθ0 +E

[
1

h∞
t
ft f

′
t

]
θθθ=θθθ0

;
(iv) ���πϕπϕπϕ = (kc−1)

2 E[r∞t c∞′
t ]θθθ=θθθ0 .
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Some simple algebra reveals that, under conditional symmetry, if it is erro-
neously assumed that Jπϕπϕπϕ = 0 in constructing the test statistic, the difference
between the assumed, ���A, and true, ���, variance matrices is

���A −��� = JπϕπϕπϕJ
−1
ϕϕϕϕϕϕ

[
(kc −1)Jϕϕϕϕϕϕ −���ϕϕϕϕϕϕ

]
J−1

ϕϕϕϕϕϕJϕπϕπϕπ ,

where (kc − 1)Jϕϕϕϕϕϕ − ���ϕϕϕϕϕϕ = ((kc −1)/2)E
[
c∞t c∞′

t

]+ (kc −2)E
[
(1/h∞

t )ft f
′
t

]
.

Under normality, kc −1 = 2, so that ���A −��� is positive definite when Jϕπϕπϕπ = J′
πϕπϕπϕ

has full column rank and remains so under excess (normal) kurtosis.8 Because
both ���A and ��� can be consistently estimated (see the discussion that follows),
the procedure that utilizes the incorrect ���A will be asymptotically undersized
(under normality) and increasingly so under heavier tailed distributions.

3.1.1. Variance Matrix Estimators. Correspondingly, and given Lemmas 2
and 3, a consistent estimator for ��� can be obtained as

�̂��T = 1

T

[
ϑ̂ϑϑ

′
ϑ̂ϑϑ

T
R̂′M̂XR̂− ϑ̂ϑϑ

′
ϑ̂ϑϑ

T
R̂′Ĉ

(
F̂′Ĥ−1F̂+1

2
Ĉ′Ĉ

)−1

Ĉ′R̂

+ R̂′Ĉ
(
F̂′Ĥ−1F̂+1

2
Ĉ′Ĉ

)−1
(
F̂′Ĥ−1F̂+ϑ̂ϑϑ

′
ϑ̂ϑϑ

4T
Ĉ′Ĉ

)

×
(
F̂′Ĥ−1F̂+1

2
Ĉ′Ĉ

)−1

Ĉ′R̂
]

, (13)

where, as before, “hats” denote evaluation at θ̂θθ and MX = I−X(X′X
)−1
X′.

Further modifications can be made according to whether Jπϕπϕπϕ and/or Jπηπηπη are null
matrices. The former case, Jπϕπϕπϕ = 0, yields

�̂��1T = 1

T

[
ϑ̂ϑϑ

′
ϑ̂ϑϑ

T
R̂′M̂XR̂

]
, (14)

which is the form assumed by Lundbergh and Teräsvirta (2002) and Engle and
Ng (1993), and the test statistic (12) has the simple interpretation as T times the

uncentered R2 from regressing ϑ̂ϑϑ on
[
R̂,X̂

]
. The latter case, Jπηπηπη = 0, yields

�̂��2T = 1

T

[
ϑ̂ϑϑ

′
ϑ̂ϑϑ

T
R̂′R̂− ϑ̂ϑϑ

′
ϑ̂ϑϑ

T
R̂′Ĉ

(
F̂′Ĥ−1F̂+1

2
Ĉ′Ĉ

)−1

Ĉ′R̂

+ R̂′Ĉ
(
F̂′Ĥ−1F̂+1

2
Ĉ′Ĉ

)−1
(
F̂′Ĥ−1F̂+ϑ̂ϑϑ

′
ϑ̂ϑϑ

4T
Ĉ′Ĉ

)

×
(
F̂′Ĥ−1F̂+1

2
Ĉ′Ĉ

)−1

Ĉ′R̂
]

. (15)
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If both Jπϕπϕπϕ and Jπηπηπη are null matrices, we obtain

�̂��3T = 1

T

[
ϑ̂ϑϑ

′
ϑ̂ϑϑ

T
R̂′R̂

]
, (16)

and the test statistic (12) becomes T times the uncentered R2 from regressing ϑ̂ϑϑ
on R̂.

3.1.2. Orthogonality. Importantly, Lemma 3 shows that ϕ̂ϕϕ and η̂ηη are asymp-
totically orthogonal within a QML framework.9 Thus, consistent estimation of ηηη0
can be achieved by exploiting the QML approach to obtain η̂ηη but utilizing any√

T -consistent estimator, ϕ̂ϕϕ (see Cox and Reid, 1987), without loss of asymptotic
efficiency in estimating ηηη0, although there will be a loss of efficiency in small
samples; e.g., the least squares estimator of ϕϕϕ could be employed. This might
suggest that tests for the adequacy of ht will not be influenced (asymptotically, at
least) by the estimation of ϕ.ϕ.ϕ. Although this intuition is correct, e.g., when con-
structing tests for unconditional heteroskedasticity in the linear model, it is flawed
when applied to certain misspecification tests for GARCH models (in particular,
asymmetry and nonlinearity tests). Formally, as the proof of Lemma 2 makes
clear, what is required is that Jπϕπϕπϕ = 0, and although this appears to have been
taken for granted by many authors the following example illustrates, quite nicely,
that it should not be. The example employs an ARCH model that is technically
not nested in the class of models characterized by Assumption A. However, as-
sumptions such as those in Weiss (1986) could be exploited to get the same form
of limit distribution as described in Theorem 2, with the obvious redefinitions of
xt and ct .

Example 1

Suppose we have the following model:

yt = ϕ + εt ,

ha
t = 1+α1ε

2
t−1 +πεt−1, 0 < α1 < 1, π > 0

and we want to test the null hypothesis that π = 0, such that the null model for
the conditional variance is

ht = 1+α1ε
2
t−1, 0 < α1 < 1

and the test indicator in (9) is rt = εt−1/(1 + α1ε
2
t−1) ≡ r∞

t , so that

var(εt ) = 1/(1 − α1) and ct = 1
ht

∂ht
∂ϕ = −2(α1εt−1)/(1 + α1ε

2
t−1) ≡ c∞

t .

We assume E[ε3
0t |Ft−1] = 0, so that Lemma 3(i) implies that Jηϕ = 0, a scalar,

and thus ϕ̂ and η̂ = α̂1 are asymptotically orthogonal. However, in this case, the
scalar Jπϕ = E[rt ct ]θθθ=θθθ0

is given by
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−2E

{
E

[
α1ε

2
t−1

(1+α1ε
2
t−1)

2

∣∣∣∣∣Ft−2

]}
θθθ=θθθ0

= −2E

[
α1ε

2
t−1

(1+α1ε
2
t−1)

2

]
θθθ=θθθ0

.

Then, assuming Pr(εt−1 	= 0) > 0, it follows that
α1ε

2
t−1

(1+α1ε
2
t−1)

2 > 0, almost every-

where. Moreover, Pr

(
α1ε

2
t−1

(1+α1ε
2
t−1)

2 < 1

)
= 1. Therefore Pr

(
0<

α1ε
2
t−1

(1+α1ε
2
t−1)

2 < 1

)
= 1,

so that Jπϕ exists and is bounded between −2 and 0.

This example is of relevance because it is a special case of the nonlinearity
test proposed by Lundbergh and Teräsvirta (2002). In the construction of that test
statistic, QML is employed, and it is explicitly “stated” that, because of symme-
try, E[TDπππT (θθθ0)DθθθT (θθθ0)

′] = 0 (Lundbergh and Teräsvirta, 2002, p. 433). From
this the researchers incorrectly assume that there are negligible estimation ef-
fects, i.e., that Jπϕπϕπϕ = E[r∞t c∞′

t ]θθθ=θθθ0 = 0. However, the preceding simple example
illustrates that this is not true. Generalizing this to the GARCH model, Section 4
shows that for the tests proposed by Lundbergh and Teräsvirta (2002) and Engle
and Ng (1993) Jπϕπϕπϕ is nonzero, rendering these test procedures asymptotically
invalid even under conditional symmetry.

4. TESTING FOR NONLINEARITY AND ASYMMETRY

In this section, we illustrate the usefulness of the general framework described
in Section 3 in two ways. First in Section 4.1, the general asymptotic analysis
is applied to the Lundbergh and Teräsvirta (2002) test for nonlinearity and the
Engle and Ng (1993) negative size bias test for asymmetry. It is shown that both
are asymptotically invalid procedures, even if the conditional distribution of ξt

is symmetric. Second the framework of Section 3 justifies two alternative, and
asymptotically valid, tests for nonlinearity and asymmetry in the conditional vari-
ance ht . All of the ensuing analysis is undertaken under the assumption of condi-
tional symmetry of the errors so that Lemma 3 applies, and a consistent estimator
for ���, in the limit distribution of

√
TDπππT (θ̂θθ) given in Theorem 2, is discussed in

Section 3.1.1.10

4.1. An Analysis of Existing Tests

4.1.1. Lundbergh and Teräsvirta Test. To test against nonlinearity in the
GARCH specification, Lundbergh and Teräsvirta (2002, Thm. 4.1) proposed the
following statistic:

TLT = T × ϑ̂ϑϑ
′
Ĝ(Ĝ′Ĝ)−1Ĝ′ϑ̂ϑϑ

ϑ̂ϑϑ
′
ϑ̂ϑϑ

, (17)
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where Ĝ is a matrix with rows ĝ′
t = (x̂′

t , v̂
′
t−1) and v̂t−1 = (v̂′

1,t−1, v̂
′
3,t−1, . . . ,

v̂′
n+2,t−1)

′, with v̂s,t−1 = (ε̂s
t−1, ε̂

s
t−2, . . . , ε̂

s
t−q)′. This can be interpreted as T

times the uncentered R2 following a regression of ϑ̂ϑϑ on Ĝ and is assumed to be
asymptotically distributed as a χ2

(n+1)q random variable under the null. In terms
of the general framework of Section 3, the test indicator is of the form (9), with
test variables r̂t = v̂t−1.

11 Lundbergh and Teräsvirta (2002) also advocated an
alternative regression-based procedure, following Wooldridge (1991), which they
suggested is robust to nonnormality. However, the modification employed is actu-
ally designed to make the statistic robust to heterokurticity (as Wooldridge, 1991,
p. 29, makes clear), not nonnormality. But heterokurticity is ruled out anyway by
the assumptions made on ξt , and so this alternative form is not considered further.

To focus discussion, consider a null GARCH(1,1) model with n = 1, so that
r̂t = (ε̂t−1, ε̂

3
t−1)

′. The following lemma generalizes the example of the previous
section and establishes that Jπϕπϕπϕ 	= 0 whereas Jπηπηπη = 0. The former result implies
that the test procedure proposed by Lundbergh and Teräsvirta (2002) is asymptot-
ically invalid.12

LEMMA 4. Assuming the GARCH(1,1) model under the null hypothesis and
the test variables considered by Lundbergh and Teräsvirta (2002) of r̂t = (ε̂t−1,
ε̂3

t−1)
′, (10) becomes

Jπϕπϕπϕ = −2α01E

[
1

h∞
t

(
εt−1

ε3
t−1

) ∞
∑
i=0

β i
1εt−1−i f

′
t−1−i

]
θθθ=θθθ0

	= 0,

in general, and (11) becomes

Jπηπηπη = E

[
1

h∞
t

(
εt−1

ε3
t−1

) ∞
∑
i=0

β i
1s

∞′
t−1−i

]
θθθ=θθθ0

= 0.

The implication of this is that, rather than employing the variance estimator �̂��1T ,
given in equation (14), Lundbergh and Teräsvirta (2002) should have employed
version �̂��2T , given in equation (15), or an asymptotically equivalent version
thereof.

4.1.2. Engle and Ng Test. Among the most popular asymmetry tests are those
proposed by Engle and Ng (1993). To confirm the asymmetric behavior of finan-
cial series, they constructed a number of score type tests. For purposes of expo-
sition, consider the negative size bias test that examines the significance of (9),
employing the (scalar) test variable r̂t = Ît−1ε̂t−1 where the indicator function
It−1 takes the value one if εt−1 ≤ 0 and zero otherwise.
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Specifically, the test statistic proposed by Engle and Ng (1993) is constructed
as follows:

TEN = T ×
ϑ̂ϑϑ

′
Ĝ
(
Ĝ′Ĝ

)−1
Ĝ′ϑ̂ϑϑ

ϑ̂ϑϑ
′
ϑ̂ϑϑ

, (18)

where here Ĝ has rows g′
t = (x̂′

t , Ît−1ε̂t−1) and TEN is assumed to be asymptot-
ically distributed as χ2

1 under the null. This can be computed as T times the un-
centered R2 following a regression of ϑ̂ϑϑ on Ĝ. The tests presented in their paper
are derived assuming a conditional normal distribution for ξt , although asymptot-
ically valid procedures can be derived assuming just conditional symmetry, as is
done here.

This case is not consistent with the assumption that DπππT (θ̂θθ) is continuously
differentiable, as required for the analysis of Section 3. A direct mean value ex-
pansion of

√
TDπππT (θ̂θθ) is not applicable because it entails terms such as ∂rt/∂θθθ

′,
and this issue was not discussed by Engle and Ng (1993). Therefore, in general
(and to deal with such a possibility), it will be assumed that

√
TDπππT (θ̂θθ) = 1√

T

T

∑
t=1

[(
ε̂2

t

ĥt
−1

)
rt (θθθ0)

]
+op(1). (19)

(Note that employing (19) does not alter the generic expressions for Jπϕπϕπϕ and Jπηπηπη

given by (10) and (11 ), respectively.) This assumption is innocuous when rt (θθθ) is
continuously differentiable in θ,θ,θ, because then rt (θ̂θθ)=r t (θθθ0)+(∂rt (θ̄θθ)/∂θθθ ′)(θ̂θθ−θθθ0)

and (θ̂θθ −θθθ0) is Op(T −1/2). When rt is not continuously differentiable, (19) will
have to be verified on a case by case basis, and the following result verifies this
for the negative size bias test procedure.

PROPOSITION 1. For the negative size bias test of Engle and Ng (1993), in
which rt = It−1εt−1 is not continuously differentiable in θ,θ,θ, the equality in equa-
tion (19) holds.

Again it is found that the Engle and Ng (1993) tests are asymptotically invalid,
in general, under the null hypothesis because (18) assumes that Jπϕϕϕ = 0, contrary
to the following lemma.

LEMMA 5. Assuming the GARCH(1,1) model under the null hypothesis and
test variable r̂t = Ît−1ε̂t−1, (10) becomes

Jπϕϕϕ = −2α01E

[
1

h∞
t

It−1εt−1

∞
∑
i=0

β i
1εt−1−i f

′
t−1−i

]
θθθ=θθθ0

	= 0,

in general.
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4.2. Alternative Tests

Section 4.1 detailed the asymptotic invalidity of tests proposed by both Lundbergh
and Teräsvirta (2002) and Engle and Ng (1993). Of course, asymptotically valid
test procedures can be obtained using the framework of Section 3, together with
the test variables employed by these authors.

However, these test variables are derived from a particular alternative specifi-
cation for the conditional heteroskedasticity. Specifically, the alternative model
employed by Lundbergh and Teräsvirta (2002, p. 422) is

εt = ςt
√

ht + gt ,

where ςt are i.i.d. (zero mean and unit variance) random variables, whereas that
proposed by Engle and Ng (1993, p. 1758) is of the form

εt = ςt
√

ht exp(gt )

in which ht = ηηη′st−1 and gt = g
(
πππ ; vt−1

)
characterizes the misspecification

where vt−1 is the vector of omitted variables. In particular, the nonlinearity test
of Lundbergh and Teräsvirta (2002) is constructed from the following alternative:

ha
t = α0 +

q

∑
j=1

αjε
2
t− j + g(πππ ; vt−1)+

p

∑
i=1

βi ht−i , (20)

whereas that of Engle and Ng (1993) is

ln
(
ha

t

)= ln

(
α0 +

q

∑
j=1

αjε
2
t− j +

p

∑
i=1

βi ht−i

)
+ g

(
πππ ; vt−1

)
. (21)

Within the QML approach, which uses (5), the tests actually constructed by Lund-
bergh and Teräsvirta (2002) and Engle and Ng (1993) can be interpreted as score
tests of ht against the alternatives of (20) and (21), respectively, i.e., tests of
H0 : πππ =0. Although this yields asymptotically valid (quasi-score) test proce-
dures using the framework of Section 3, the alternative models proposed in the
literature, and considered by Lundbergh and Teräsvirta (2002) and Engle and Ng
(1993) in their Monte Carlo studies, are not of the form (20) or (21). In those
studies, the power of the test is evaluated against alternative models for the condi-
tional heteroskedasticity (specifically GJR-GARCH and EGARCH models) that
are “recursive” in nature. This characteristic is not apparent in (20) or (21), where
ht−i , i = 1, . . . , p, appears on the right-hand side and not the lagged values of
ha

t . For example, the GJR-GARCH(1,1) model can be expressed in the following
form:

ha
t = α0 +α1ε

2
t−1 +α2 It−1ε

2
t−1 +β1ha

t−1,

indicating that the conditional heteroskedasticity is “recursive” in nature as a
result of the inclusion of ha

t−1 on the right-hand side. As a consequence, the
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nonlinearity/asymmetry tests, which neglect this recursive behavior under the
alternative, may well lack power against these specifications. Similar remarks
apply for the parameter constancy test constructed by Lundbergh and Teräsvirta
(2002).

With this in mind, alternative tests for nonlinearity and asymmetry are now
constructed with the following alternative specification in mind:

εt = ςt
(
ha

t

)1/2
,

ha
t =ηηη′sat−1 + gt = (at + gt )+ B(L)ha

t , (22)

where sat−1 = (1,ε2
t−1, . . . ,ε

2
t−q ,ha

t−1, . . . ,ha
t−p)

′ and gt = g (vt−1;πππ) is a non-
linear and/or asymmetric function of εt− j , j ≥ 1 with vt−1 being the vector of
omitted variables. Thus the test indicator is of the form (9), with test variables

constructed as r̂t =
[

1

ha
t

∂ha
t

∂πππ

]
πππ=0,θθθ=θ̂θθ

.

4.2.1. Testing for Nonlinearity. Following Lundbergh and Teräsvirta (2002),
nonlinearity is introduced in the intercept and the term containing the squared past
errors via a smooth transition function Fn(εt− j ; γ,c), j = 1, . . . ,q, i.e.,

gt =
q

∑
j=1

(α0 j +α1 jε
2
t− j )Fn

(
εt− j ; γ,c

)

with

Fn(εt− j ; γ,c) =
(

1+ exp

(
−γ

n

∏
l=1

(εt− j − cl)

))−1

− 1

2
,

γ > 0, c1 ≤ ·· · ≤ cn . (23)

For example, if the location parameter (threshold) of the transition function is
zero, i.e., c= 0, then the transition is made between the regime characterized by
negative shocks to the one characterized by positive shocks. Under the null of
γ = 0, it follows that Fn = 0, and taking a first-order Taylor expansion of Fn

around γ = 0 yields

gt = πππ ′vt−1, (24)

where vt−1= (v′
1,t−1,v

′
3,t−1, . . . ,v

′
n+2,t−1), with vs,t−1 =(εs

t−1,ε
s
t−2, . . . ,ε

s
t−q)′,

s = 1,3, . . . ,n +2.
Combining (22) and (24), a quasi-score test of πππ= 0 can be based on assessing

the significance of the test indicator (9) in which the test variables, given ε̃εε0, are
constructed as
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r̂t =
[

1

ha
t

∂ha
t

∂πππ

]
πππ=0,θθθ=θ̂θθ

= 1

ĥt

t−1

∑
i=0

ψ̂i v̂
′
t−1−i

= 1

ĥt

t−1

∑
i=0

{
B̂∗ (L)

}i
v̂′

t−1−i , (25)

where B̂∗ (L) = β̂1 + β̂2L + ·· · + β̂p L p−1 and, in practice, ∂ha
t

∂πππ can be derived

from the recursion ∂ha
t

∂πππ = vt−1 + B(L)
∂ha

t
∂πππ . For example, in the GARCH(1,1)

model assuming n = 1, the test variables take the form

r̂t = 1

ĥt

t−1

∑
i=0

β̂ i
1

(
ε̂t−1−i

ε̂3
t−1−i

)
,

compared with those employed by Lundbergh and Teräsvirta (2002), which are
simply r̂t = (ε̂t−1, ε̂

3
t−1

)′
in this case.

The following lemma, stated for the general GARCH(p,q) model, establishes
that Jπϕπϕπϕ cannot be guaranteed to be zero even under conditional symmetry,
although it turns out that Jπηπηπη = 0 (so that ���πηπηπη = 0 also).

LEMMA 6. Under the null GARCH(p,q) model with test variables given by
r̂t = 1

ĥt
∑t−1

i=0 ψ̂i v̂
′
t−1−i , and (for simplicity, but without loss of generality) n = 1,

so that vt−1 = (εt−1,εt−2, . . . ,εt−q ,ε3
t−1,ε

3
t−2, . . . ,ε

3
t−q)′,

Jπϕπϕπϕ = −2
q

∑
k=1

α0kE

[
1

(h∞
t )2

∞
∑
i=0

∞
∑
j=0

ψiψjεt−k− jvt−1−i f
′
t−k− j

]
θθθ=θθθ0

	= 0,

in general, but

Jπηπηπη = E

[
1

(h∞
t )2

∞
∑
i=0

∞
∑
j=0

ψiψjvt−1−is
∞′
t−1− j

]
θθθ=θθθ0

= 0.

Using these results and those of Section 3.1.1, an asymptotically valid non-
linearity test statistic can be constructed as

TN = TDπππT (θ̂θθ)
′
�̂��

−1
2TDπππT (θ̂θθ), (26)

which is asymptotically distributed as χ2
(n+1)q under the null, for the general n

case, where dim(vt−1) = (n +1)q and �̂��2T is given by (15).
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4.2.2. Testing for Asymmetry. The asymmetry test, of whether important neg-
ative shocks have more impact on volatility than important positive shocks, as-
sesses whether the variables vt−1 = (It−1εt−1, . . . , It−qεt−q

)′ have been omitted
from the null GARCH(p,q) model. Again a quasi-score test statistic is con-
structed from the “alternative” volatility model of (22), with asymmetry charac-
terized by gt = πππ ′vt−1. Within this framework and under the null of πππ= 0, the
test indicator in (9) employs test variables

r̂t = 1

ĥt

t−1

∑
i=0

ψ̂i v̂t−1−i

= 1

ĥt

t−1

∑
i=0

{
B̂∗ (L)

}i
v̂t−1−i . (27)

If the null model is the GARCH(1,1) specification, the (scalar) test variable is

r̂t = 1

ĥt

t−1

∑
i=0

β̂ i
1 Ît−1−i ε̂t−1−i .

(This test variable differs from the Engle and Ng, 1993, test variable of r̂t =
Ît−1ε̂t−1 in this case.)

For this test indicator, neither Jπϕπϕπϕ nor Jπηπηπη is a null matrix, in general, as stated
by the following lemma.

LEMMA 7. Under the null GARCH(p,q) model, with test variables given by
r̂t = 1

ĥt
∑t−1

i=0 ψ̂i v̂t−1−i , vt−1 = (It−1εt−1, . . . , It−qεt−q
)′

, Jπϕπϕπϕ 	= 0 and Jπηπηπη 	= 0,

in general.

The discussion in Section 3.1 provides the following test statistic:

TA = TDπππT (θ̂θθ)′�̂��−1
T DπππT (�̂��), (28)

where �̂��T is given by (13) and TA is asymptotically distributed as χ2
q .

As argued by Engle and Ng (1993), we can also test asymmetry for more
extreme values of past errors. The asymptotic distribution of the test in this case
is the same as the previous one except that the test indicator employs variables

r̂t = ĥ−1
t ∑t−1

i=0

{
B̂∗ (L)

}i (
Ît−1ε̂

2
t−1, . . . , Ît−q ε̂2

t−q

)′
.

5. MONTE CARLO STUDY

In this section, Monte Carlo evidence is presented on the finite-sample size and
power performance of the various asymmetry and nonlinearity tests discussed in
Section 4.
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The Monte Carlo experiment for assessing the size properties of the tests is
based on an AR(1)-GARCH(1,1) data generation process. We consider the fol-
lowing four sets of parameter values for the conditional mean:

M1: yt = εt ,

M2−M4: yt = ϕ0 +ϕ1 yt−1 + εt with ϕ0 = 1 and ϕ1 ∈ {0.1,0.5,0.9},
where εt = √

htξt with ξt ∼ N (0,1), or ξt ∼ t (υ) (standardized Student t-
distribution with υ degrees of freedom) with υ ∈ {7,5,3}. The inclusion of t (3),
e.g., offers some evidence on the robustness of the procedures to violations of the
moment assumptions employed. The conditional variance equation follows Engle
and Ng (1993), taking one of the following forms:

H (High persistence) : ht = 0.01+0.09ε2
t−1 +0.9ht−1,

M (Medium persistence) : ht = 0.05+0.05ε2
t−1 +0.9ht−1,

L (Low persistence) : ht = 0.2+0.05ε2
t−1 +0.75ht−1,

such that, without loss of generality, the unconditional variance of εt equals one.
Combining the conditional mean and variance specifications yields 12 models

to consider. For this purpose, a series of 1,200 data realizations was generated
using the random generator number in GAUSS 5.0, with the first 200 observations
being discarded to avoid initialization effects, yielding a sample size of 1,000
observations. Each model is replicated and estimated 1,000 times by QML. The
test statistics considered were TA of (28) with r̂t = 1

ĥt
∑t−1

i=0 β̂ i
1 Ît−1−i ε̂t−1−i ; TN

of (26) with r̂t = 1
ĥt

∑t−1
i=0 β̂ i

1ε̂
3
t−1−i ; the Engle and Ng statistic, TEN, of (18); and

the Lundbergh and Teräsvirta statistic, TLT, of (17) with v̂t−1 = ε̂3
t−1.

Table 1 reports the actual rejection frequencies, for the tests described previ-
ously, when the null is true. The results are reported for a nominal size of 5% and
where the correct model for the mean is estimated. When ξt ∼ N (0,1) and there
are no estimation effects (i.e., yt = εt ), the empirical sizes for TA and TEN are
close to the nominal size of 5%, with the exception of low persistence volatility
when the size of TA is 6%. When there are estimation effects from the condi-
tional mean generated as an autoregressive (AR) process, TEN tends to be slightly
undersized for the medium and low persistence volatility models, whereas TA is
slightly oversized for the low volatility models.

The empirical size of the nonlinearity test, TN , is close to the nominal size,
except for the low volatility persistence, whereas TLT is undersized in all the ex-
periments, especially for a high persistence volatility model and Student-t errors.
When the conditional mean is generated as an AR process, the empirical size of
TN is close to the nominal size, whereas that of TLT is lower than the nominal
size of 5% for all volatility models examined and significantly so under Student-t
errors. By ignoring asymptotically nonnegligible estimation effects, the theoret-
ical arguments of Section 3.1 imply that the procedures based on TEN or TLT

will be asymptotically undersized, and increasingly so under excess-kurtosis; the
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TABLE 1. Empirical size

N (0,1) t (7) t (5) t (3)

TA TEN TN TLT TA TEN TN TLT TA TEN TN TLT TA TEN TN TLT

M1-H 4.4 5.2 5.1 2.6 4.2 4.1 4.0 1.7 5.8 4.4 2.2 1.0 5.9 2.7 2.4 0.5
M2-H 4.5 4.9 5.6 2.1 4.4 3.6 3.8 1.5 6.2 4.1 2.5 0.9 7.2 2.7 2.8 0.5
M3-H 4.6 5.0 5.4 2.5 4.4 3.7 3.7 1.6 6.7 4.0 2.5 1.0 7.2 2.6 2.7 0.5
M4-H 4.9 5.0 5.4 2.6 4.0 3.7 3.7 1.4 6.1 4.0 2.4 1.0 8.0 2.5 2.6 0.5

M1-M 4.8 4.7 4.8 4.0 4.9 4.0 4.2 3.1 5.6 4.1 2.9 2.0 5.5 2.9 2.8 1.1
M2-M 5.0 4.4 5.2 4.3 4.4 4.1 3.8 3.4 5.1 3.7 2.8 2.0 5.9 2.9 2.7 1.1
M3-M 5.0 4.6 5.4 4.3 4.5 3.9 4.0 3.4 5.0 4.0 2.8 2.0 6.0 2.9 2.7 1.1
M4-M 5.1 4.6 5.4 4.0 4.4 3.8 4.2 3.3 5.3 4.0 3.1 2.1 6.7 3.2 2.6 1.1

M1-L 6.0 4.7 4.2 4.1 4.6 3.8 3.8 2.6 4.8 4.1 2.5 1.4 6.5 2.0 1.9 0.5
M2-L 5.7 4.7 5.3 3.9 4.7 3.8 4.0 2.8 4.0 4.0 2.6 1.5 6.4 1.5 2.3 0.6
M3-L 5.7 4.4 5.2 4.0 4.8 4.0 4.3 2.5 4.0 3.8 2.6 1.6 6.1 1.8 2.3 0.7
M4-L 5.7 4.6 5.2 3.9 4.6 4.0 3.7 2.7 4.6 4.0 2.5 1.5 5.8 1.9 2.1 0.6
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TABLE 2. Empirical size-adjusted power

GJR(1,1) model

N (0,1) t (7)

TA TEN TN TLT TA TEN TN TLT

ht = 0.005+0.23[|εt−1|−0.23εt−1]2 +0.7ht−1

M1 88.7 47.1 89.2 16.5 62.2 32.7 64.9 14.4
M2 84.6 38.3 87.4 14.5 59.0 27.1 59.0 12.2
M3 84.1 38.5 87.0 14.2 59.9 27.2 58.8 12.6
M4 84.6 37.9 87.8 16.6 58.7 28.0 59.7 12.8

ht = 0.005+0.23[|εt−1|−0.17εt−1]2 +0.7ht−1

M1 67.5 30.0 67.0 12.4 40.4 22.5 42.8 11.6
M2 62.1 26.1 65.3 10.5 39.7 19.7 37.3 10.2
M3 61.3 26.6 64.6 10.6 40.5 19.3 37.1 10.6
M4 61.3 24.5 66.2 12.2 40.2 20.0 37.6 10.9

STGARCH(1,1) model

N (0,1) t (7)

TA TEN TN TLT TA TEN TN TLT

ht = 0.005+0.136ε2
t−1 −0.212F(εt−1)ε2

t−1 +0.7ht−1

F(εt−1) = 1/(1+ exp(−100εt−1))− 1
2

M1 95.7 69.0 96.7 49.3 78.0 46.4 81.5 29.6
M2 95.8 64.7 97.0 45.9 75.0 43.4 80.6 27.1
M3 95.5 64.5 96.7 45.7 74.8 43.9 80.3 26.7
M4 95.2 63.9 96.5 47.3 75.9 45.5 81.3 26.9

ht = 0.005+0.136ε2
t−1 −0.17F(εt−1)ε2

t−1 +0.7ht−1

F(εt−1) = 1/(1+ exp(−100εt−1))− 1
2

M1 86.1 51.5 88.7 36.6 60.7 34.5 62.3 20.6
M2 84.7 46.9 88.2 41.8 59.0 34.0 62.0 18.9
M3 83.8 48.0 87.4 34.3 57.2 33.6 60.8 19.2
M4 84.1 46.9 87.2 35.2 59.1 34.2 62.3 19.3

Continued

Monte Carlo evidence supports this, although TEN is “relatively” more robust
than TLT.

The results of the Monte Carlo study for assessing the size-adjusted power of
the tests are reported in Table 2, where the nominal size is again 5%. The alter-
native models used are the GJR(1,1) model, with the parameter values considered
by Lundbergh and Teräsvirta (2002) in their simulations; the logistic smooth tran-
sition, STGARCH(1,1), model; the EGARCH(1,1) model with parameter values
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TABLE 2. Continued

EGARCH(1,1) model

N (0,1) t (7)

TA TEN TN TLT TA TEN TN TLT

log(ht ) = −0.23+0.9log(ht−1)+0.25[|ξt−1|−0.3ξt−1]

M1 83.9 29.7 76.5 35.9 64.9 23.3 52.8 23.8
M2 82.8 27.2 75.7 33.7 64.4 20.1 49.4 20.3
M3 82.1 27.0 75.5 34.2 63.1 19.9 49.3 20.9
M4 83.2 27.0 75.1 32.4 63.0 19.7 49.3 21.7

TGARCH(1,1) model

N (0,1) t (7)

TA TEN TN TLT TA TEN TN TLT

√
ht = 0.07+0.081(1− It−1)|εt−1|+0.193It−1|εt−1|+0.831

√
ht−1

M1 98.3 46.3 97.4 54.5 91.1 31.2 81.9 33.0
M2 98.8 40.4 96.7 48.5 90.1 26.6 80.6 29.3
M3 98.3 41.5 96.8 49.5 89.4 26.6 80.5 29.2
M4 98.9 40.3 96.9 49.9 89.6 27.1 81.0 29.7

considered by Engle and Ng (1993); and, the TGARCH(1,1) model. In the last
case, the parameter values used are estimates obtained by Zakoı̈an (1994) for the
CAC 40 daily stock index. Note that in these experiments, for the nonlinearity
tests, the “omitted” (scalar) variable is vt−1 = ε3

t−1 when the data are generated
from the GJR and STGARCH models but vt−1 = εt−1 for the EGARCH and
TGARCH models. The models for the conditional mean equation are M1–M4,
and we consider ξt ∼ N (0,1) and ξt ∼ t (7).

When the true data generating process is a GJR(1,1) model, the asymmetry test,
TA, performs remarkably well compared with the test proposed by Engle and Ng
(1993), TEN. This is true also when the distribution of ξt is nonnormal. Similarly,
for the model with larger asymmetry, and under normality, the simulated power
for the nonlinearity test TN is 89.2%, whereas that of the test proposed by Lund-
bergh and Teräsvirta (2002), TLT is 16.5%, when there are no estimation effects
from the conditional mean. This implies that TLT is relatively insensitive to this
alternative model.13 Similar conclusions can be drawn for the model with smaller
asymmetry.

For smooth transitions between negative to positive shocks (i.e., the true data
process is generated by the STGARCH(1,1) model), the differences between the
powers of TA and TEN, and TN and TLT, respectively, are quite large. When
estimation effects from the conditional mean are present, say, M2, and the model
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with larger asymmetry is examined, the power of TN is 97%, whereas that of TLT

is 45.9%. Similarly, the asymmetry test TA attains a simulated power of 95.8%,
whereas the actual rejection frequency of TEN is 64.7%. For the nonnormal distri-
bution, the differences are also significant.

For the other data generating processes, i.e., the EGARCH(1,1) and
TGARCH(1,1) models, the results are similar. The simulated power of the tests
TA and TN is much higher than the power of the tests proposed by Engle and Ng
(1993) and Lundbergh and Teräsvirta (2002).

Overall, the Monte Carlo simulations confirm the theoretical derivations under-
taken in the previous sections. The “new” tests, namely, TA and TN, have fairly
good size properties and very good power when compared with TEN and TLT.
Moreover, the simulations reveal that these tests can be employed as general mis-
specification tests of asymmetry and nonlinearity because they have power against
the asymmetry and/or nonlinear models proposed in the literature.

The theoretical results and Monte Carlo experiments are predicated on the cor-
rect specification for the conditional mean (regression) function. However, intu-
itively, because the test indicators are asymptotically sensitive to the conditional
mean estimation, one might expect the corresponding procedures to be sensi-
tive to local misspecification of m (wt ;ϕϕϕ). This can be investigated using the
tools of Godfrey and Orme (1996) and reveals that all the tests considered here,
TLT, TN , TEN, and TA, will indeed be sensitive to such misspecification (even
when conditional variance is correctly specified as GARCH). Some Monte Carlo
simulations14 support this finding but also suggest that TN and TA will be more
robust than TLT and TEN, respectively, to this form of (unconsidered) misspecifi-
cation.

6. CONCLUSION

This paper has provided some unifying results for parametric misspecification
testing in regression models with GARCH errors that have practical implications
for empirical research. First, a general analytical approach has been provided for
the construction of asymptotically valid test statistics that can accommodate, e.g.
misspecification tests for the STAR-GARCH model, something that has not been
considered in the literature to date. The principal theoretical finding from this
analysis is that even under conditional symmetry, implying that the estimated
conditional mean (regression) and variance parameters are asymptotically orthog-
onal, estimation effects from the conditional mean (regression) parameters cannot
be treated as asymptotically negligible. Exploiting this, it is established that the
nonlinearity and asymmetry tests proposed by Lundbergh and Teräsvirta (2002)
and Engle and Ng (1993), respectively, are not asymptotically valid (because they
ignore asymptotically nonnegligible estimation effects) and, more generally, all
test procedures that erroneously neglect such estimation effects will be asymptot-
ically undersized when the error distribution is fat-tailed. Second, new tests have
been introduced for nonlinearity and asymmetry that, it is conjectured, should
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have better power properties than some existing tests against many popular alter-
natives to the GARCH(p,q) model.

The principal theoretical findings are supported by Monte Carlo results that
also suggest that the new tests are quite powerful against various nonlinear models
proposed in the literature, suggesting that they can be useful as general misspec-
ification tests against nonlinearity and/or asymmetry in GARCH models. How-
ever, all procedures discussed here will (in general) be sensitive to (unconsidered)
misspecification of the conditional mean (regression) function, even when the
conditional variance is correctly specified, although limited Monte Carlo simu-
lations indicate that TN and TA are less sensitive in this respect. This suggests a
strategy of first testing for misspecification of the conditional mean (employing
conditional-hetereroskedasticity-robust procedures). Then, after estimating the
GARCH process, misspecification tests of the conditional variance can be per-
formed using the asymptotically valid procedures proposed in this paper.

NOTES

1. Although the conditional mean estimation effects appear to have been (erroneously) assumed
away the issue of estimation effects from the conditional heteroskedasticity parameters has been ac-
knowledged; see, e.g., Li and Mak (1994) and Lundbergh and Teräsvirta (2002).

2. For example, Lundbergh and Teräsvirta (1999) proposed the STAR-GARCH model, and the
statistical properties of this model were investigated by Chan and McAleer (2002).

3. As discussed by Nelson and Cao (1992), although sufficient, Assumption A3(b) is not necessary
to ensure nonnegative conditional variances.

4. Weiss (1986) established the asymptotic theory for the ARCH model allowing for exogenous
variables in the conditional mean.

5. Note that this is not the same start-up scheme employed by Ling and McAleer (2003), who
choose ε̃εε0 = 0, Berkes et al. (2003), or Francq and Zakoı̈an (2004).

6. Lundbergh and Teräsvirta (2002) employed a similar approach to test for no remaining
ARCH effects, in a GARCH model, but with an implicit null of E[(ξ2

t − 1)rGt ] = 0, where rGt =
(ξ2

t−1, . . . , ξ2
t−m )′ is Gt−m

t−1 = σ(ξt−1, . . . , ξt−m ) measurable; see Section 3.1 of Lundbergh and
Teräsvirta (2002). However, this could yield tests with lower power than those based on (8), because
test variables of the form rGt contain less information about Ft−1 than the test variables rt .

7. Assumption (ii) in Theorem 2 might require stronger moment conditions on ε0t than is de-
manded by Assumption B1.

8. Under normality, ��� is the conditional variance of d∞
πππ t (θθθ0) given d∞

ηt (θθθ0) and d∞
ϕϕϕt (θθθ0).

9. Although Bollerslev (1986, p. 318) asserts that ϕ̂ϕϕ and η̂ηη are asymptotically orthogonal within a
QML framework, under conditional symmetry, he does not show it. Engle (1982) provides a useful
theorem, exploiting symmetry, that enables this result to be established for the ARCH model. However,
because he assumes normality, the importance of the conditional symmetry assumption of ξt is not
stated explicitly.

10. In the proof of Theorem 2 it is established that all the test indicators considered in this section
satisfy the assumptions of the paper.

11. Lundbergh and Teräsvirta (2002) obtain this statistic from a quasi-score principle, but, given
the alternative entertained, the test variables should have been r̂t = ĥ−1

t v̂t−1.

12. However, it can be shown that the test for remaining ARCH effects, also proposed by Lundbergh
and Teräsvirta (2002), is asymptotically valid. The intuition for this is that because the alternative,
being GARCH(p,q + m), is of the same form as the null specification, asymptotic orthogonality
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between the mean regression parameter estimators and the estimated parameters of the GARCH pro-
cess ensures that inferences concerning the latter are unaffected (asymptotically) by the former. The
same intuition also applies to the parameter constancy test of Lundbergh and Teräsvirta (2002), in
which the alternative can be written as ha

t = γγγ ′
tst−1, γγγ t = ηηη + ∑n

i=1 t iπππ i , which is still linear in the
variables of st−1.

13. If the omitted variable vt−1 = (εt−1,ε3
t−1)′ is considered as in the Monte Carlo study of Lund-

bergh and Teräsvirta (2002) and for a nominal size of 10%, then the size-adjusted powers are 95.3%
for TN and 65.1% for TLT.

14. These Monte Carlo simulations are not reported here but are available from the authors upon
request.
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APPENDIX A

We shall exploit the results contained in the following three preliminary propositions.

PROPOSITION 2.

(i) For any vector c∈∈∈ �r , (∂m(wt ;ϕϕϕ)/∂ϕϕϕ′)c= 0, almost surely (a.s.), only if c= 0.

(ii) For any vector b∈∈∈ �p+q+1, (∂h∞
t /∂ηηη′)b= 0, a.s., only if b= 0.

Proof. The proof of (i) follows immediately from Assumption B2, which implies
that |m(wt ;ϕϕϕ)−m(wt ;ϕϕϕ0)|2 > 0, a.s., for all ϕϕϕ 	= ϕϕϕ0. Then, by Assumption B3 and a
mean value expansion, (ϕ −ϕϕ −ϕϕ −ϕ0)′(∂m(wt ;ϕϕϕ)/∂ϕϕϕ)(∂m(wt ;ϕϕϕ)/∂ϕϕϕ′)(ϕ −ϕϕ −ϕϕ −ϕ0) > 0, a.s., for
all ϕϕϕ 	= ϕϕϕ0 and some mean value ϕϕϕ. Correspondingly, the identification condition, A3(c),
establishes (ii); see, e.g., Ling and McAleer (2003) or Berkes et al. (2003). n

PROPOSITION 3. Under Assumptions B1 and B3(a), Esupθθθ∈


 |εt |4(1+s) < ∞, for
some s > 0, uniformly in t.

Proof. Let mt ≡ m(wt ;ϕϕϕ) and m0t ≡ m(wt ;ϕϕϕ0), so that εt ≡ εt (θθθ) = ε0t − (mt −m0t ).
By Assumptions B1 and B3(a) and the cr -inequality, for some constant C > 0 and 0 < r ≤
4(1+ s)

Esup
θθθ

|εt |r ≤ C
(
E |ε0t |r +2r E |B(wt )|

)
< ∞. (A.1)

n

DEFINITION 1. In the following exposition C, K , and ρ denote generic constants,
independent of θθθ, whose values might change from expression to expression but that always
satisfy C > 0, K > 0, and 0 < ρ < 1.

Remark 1.
(a) By Assumption A3(b), for all r > 0, Esupθθθ |at |r <∞, provided Esupθθθ |εt |2r < ∞,

uniformly in t.
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(b) The following inequalities will be useful: (1) h∞
t = ∑∞

i=0 ψi at−i ≥λ>0; (2) h∞
t ≥

α0 +ψi at−i , i ≥ 1; or (3) h∞
t ≥ α0 +ψi αmε2

t−i−m , i ≥ 0, m = 1, . . . ,q. Given the con-

struction of initial values, ε̃εε0, we can also write (1) ht = ∑t−1
i=0 ψi at−i ≥ λ > 0; (2) ht ≥

α0 +ψi at−i , i = 1, . . . , t −1; or (3) ht ≥ α0 +ψi αmε2
t−i−m , i = 0, . . . , t −1, m = 1, . . . ,q.

(c) The proofs will exploit the following results, which follow from Berkes et al. (2003)
and Francq and Zakoı̈an (2004). A particularly useful device, in this respect, is x/(1+ x) ≤
xs , for all x > 0 and any s ∈ (0,1).

∣∣h∞
t −ht

∣∣= ∞
∑
i=t

ψi
∣∣at−i

∣∣≤ K
∞
∑
i=t

ρi ∣∣at−i
∣∣ , (A.2)

∣∣∣∣h∞
t −ht

h∞
t

∣∣∣∣ ≤ ∞
∑
i=t

ψi at−i

α0 +ψi at−i
≤ K

∞
∑
i=t

ρi as
t−i . (A.3)

For r = 1,2,3,∣∣∣∣∣ 1(
h∞

t
)r − 1

(ht )
r

∣∣∣∣∣≤ C

∣∣∣∣h∞
t −ht

h∞
t

∣∣∣∣≤ K
∞
∑
i=t

ρi as
t−i . (A.4)

Let ∇θθθ , ∇θθθθθθ denote first- and second-order differentiation, respectively; e.g., x∞
t =

(1/h∞
t )∇ηηηh∞

t , ∇ϕηϕηϕηh∞
t = ∂2h∞

t
∂ϕϕϕ∂ηηη′ , etc. Then, by Assumption A3(b),

∥∥x∞
t
∥∥≤ K

{
1+

∞
∑
i=1

iρi as
t−i

}
; ‖xt‖ ≤ K

{
1+

t−1

∑
i=1

iρi as
t−i

}
, (A.5)

∥∥∥∥ 1

h∞
t

∇ηηηηηηh∞
t

∥∥∥∥≤ K

{
1+

∞
∑
i=2

i2ρi as
t−i

}
;

∥∥∥∥ 1

ht
∇ηηηηηηht

∥∥∥∥≤ K

{
1+

t−1

∑
i=2

i2ρi as
t−i

}
, (A.6)

1

h∞
t

∥∥∇ηηηh∞
t −∇ηηηht

∥∥≤ K

{
ρt +

∞
∑
i=t

iρi as
t−i

}
,

1

h∞
t

∥∥∇ηηηηηηh∞
t −∇ηηηηηηht

∥∥≤ K

{
tρt +

∞
∑
i=t

i2ρi as
t−i

}
. (A.7)

Define dt = ∑q
k=1

∥∥∥∂mt−k
∂ϕϕϕ

∥∥∥= ∑q
k=1

∥∥ft−k
∥∥ and gt = ∑q

k=1

{∥∥ft−k
∥∥2 +

∥∥∥∥ ∂2mt−k
∂ϕϕϕ∂ϕϕϕ′

∥∥∥∥
}

. Then

by similar methods, and using 0 ≤ x/(1+ x2) < 1 for all x ≥ 0, it can also be shown that

∥∥c∞t ∥∥≤ K
∞
∑
i=0

ρi dt−i ; ‖ct‖ ≤ K
t−1

∑
i=0

ρi dt−i , (A.8)
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∥∥∥∥ 1

h∞
t

∇ϕϕϕϕϕϕh∞
t

∥∥∥∥≤ K
∞
∑
i=0

ρi gt−i ;
∥∥∥∥ 1

ht
∇ϕϕϕϕϕϕht

∥∥∥∥≤ K
t−1

∑
i=0

ρi gt−i , (A.9)

1

h∞
t

∥∥∇ϕϕϕh∞
t −∇ϕϕϕht

∥∥≤ K
∞
∑
i=t

ρi dt−i ;

1

h∞
t

∥∥∇ϕϕϕϕϕϕh∞
t −∇ϕϕϕϕϕϕht

∥∥≤ K
∞
∑
i=t

ρi gt−i , (A.10)

∥∥∥∥ 1

h∞
t

∇ϕηϕηϕηh∞
t

∥∥∥∥≤ K

{
dt +

∞
∑
i=1

iρi dt−i

}
;

∥∥∥∥ 1

ht
∇ϕηϕηϕηht

∥∥∥∥≤ K

{
dt +

t−1

∑
i=1

iρi dt−i

}
, (A.11)

1

h∞
t

∥∥∇ϕηϕηϕηh∞
t −∇ϕηϕηϕηht

∥∥≤ K
∞
∑
i=t

iρi dt−i , (A.12)

1

h∞2
t

∥∥∥∥∂h∞
t

∂ϕϕϕ

∂h∞
t

∂ϕϕϕ′ − ∂ht

∂ϕϕϕ

∂ht

∂ϕϕϕ′
∥∥∥∥≤ K

∞
∑
i=t

ρi dt−i

{ ∞
∑
i=0

ρi dt−i

}
,

1

h∞2
t

∥∥∥∥∂h∞
t

∂ηηη

∂h∞
t

∂ηηη′ − ∂ht

∂ηηη

∂ht

∂ηηη′
∥∥∥∥≤ K

{
ρt +

∞
∑
i=t

iρi as
t−i

}{
1+

∞
∑
i=1

iρi as
t−i

}
,

1

h∞2
t

∥∥∥∥∂h∞
t

∂ϕϕϕ

∂h∞
t

∂ηηη′ − ∂ht

∂ϕϕϕ

∂ht

∂ηηη′
∥∥∥∥≤ K

∞
∑
i=t

ρi dt−i

{
1+

∞
∑
i=1

iρi as
t−i

}

+
{

ρt +
∞
∑
i=t

iρi as
t−i

} ∞
∑
i=0

ρi dt−i , (A.13)

where in (A.13) we have used, for conformable x,y,a, and b,

∥∥xa′ −yb′∥∥≤ ‖x−y‖‖a‖+‖a−b‖‖y‖ ,

or
∥∥xa′ −yb′∥∥≤ ‖a−b‖‖x‖+‖x−y‖‖b‖ .

Because ht/h∞
t ≤ 1, for conformable matricesA andB, and p = 1,3/2,2,3,

∥∥∥∥∥ 1(
h∞

t
)pA− 1

(ht )
pB

∥∥∥∥∥≤ K

{
1(

h∞
t
)p ‖A−B‖+

∥∥∥∥∥ 1

h p
t
B

∥∥∥∥∥
∣∣∣∣h∞

t −ht

h∞
t

∣∣∣∣
}

. (A.14)

PROPOSITION 4. Under Assumptions A and B, and exploiting (A.2)–(A.14), the
following moments are bounded uniformly in t :
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(i) Esupθθθ |εt |r
∥∥∥ 1

h∞
t

∇θθθ h∞
t

∥∥∥2
, 0 ≤ r ≤ 4,

(ii) Esupθθθ |εt |r
∥∥∥ 1

h∞
t

∇θθθθθθ h∞
t

∥∥∥ , r = 0,2,

whereas the following moments are O(ρt ), at most:

(iii) Esupθθθ

∥∥εr
t ft
∥∥∥∥∥∥ 1

(h∞
t )p ∇θθθ h∞

t − 1
h p

t
∇θθθ ht

∥∥∥∥ , r = 0,1, p = 1,3/2,2,

(iv) Esupθθθ |εt |r
∥∥∥∥ 1

(h∞
t )p ∇θθθθθθ h∞

t − 1
h p

t
∇θθθθθθ ht

∥∥∥∥ , r = 0,2, p = 1,2,

(v) Esupθθθ |εt |r
∥∥∥∥ 1

(h∞
t )p (∇θθθ h∞

t )(∇θθθ h∞
t )′ − 1

h p
t
(∇θθθ ht )(∇θθθ ht )

′
∥∥∥∥ , r = 0,2, p = 2,3.

Proof. (i) and (ii) follow in a straightforward manner from (A.5), (A.6), (A.8), (A.9),

and (A.11) and the fact that the following moments are bounded: Esupθθθ

∥∥∥ε4
t ft−kf

′
t− j

∥∥∥ ,

Esupθθθ

∥∥∥ε2
t ∇θθθ ft−k

∥∥∥ , Esupθθθ

∣∣∣ε4
t ε2s

t− j ε
2s
t−k

∣∣∣ , s ∈ (0,1). For example, by an application of

Hölder’s inequality and then Cauchy–Schwarz inequality,

Esup
θθθ

∣∣∣ε4
t ε2s

t− j ε
2s
t−k

∣∣∣≤ (Esup
θθθ

|εt |4(1+s)
)1/(1+s)(

Esup
θθθ

∣∣εt− j εt−k
∣∣2(1+s)

)s/(1+s)
< ∞

because, for some s ∈ (0,1) , Esupθθθ |εt |4(1+s) < ∞. For (iii) use (A.14), (A.10), (A.7),
(A.8), (A.5), (A.3), and the fact that Esupθθθ ‖εt ft f

′
t−k‖, E supθθθ ‖εt ft f

′
t−kε2s

t− j ‖,
Esupθθθ ‖εt ftε

2s
t−k‖, Esupθθθ ‖εt ftε

2s
t−kε2s

t− j ‖ are all bounded, by Cauchy–Schwarz and/or
Hölder’s inequality, for s ∈ (0,1). In particular,

[
Esup

θθθ

∥∥∥εt ftε
2s
t−kε2s

t− j

∥∥∥]2
≤ Esup

θθθ
‖εt ft‖2 Esup

θθθ

∣∣εt−kεt− j
∣∣4s

< ∞,

because, by Hölder’s inequality and 4s (1+ s) ≤ 4(1+ s) , s ∈ (0,1),

Esup
θθθ

∣∣εt−kεt− j
∣∣4s ≤

(
Esup

θθθ

∣∣εt−k
∣∣4s(1+s)

)1/(1+s)(
Esup

θθθ

∣∣εt− j
∣∣4(1+s)

)s/(1+s)
< ∞.

Similarly (iv) holds because all the following moments are bounded: Esupθθθ |εt |2
∣∣εt− j

∣∣2s∥∥ft−k
∥∥2

, Esupθθθ |εt |2
∣∣εt− j

∣∣2s ∥∥∇ϕϕϕft−k
∥∥ , s ∈ (0,1) . In particular,

[
Esup

θθθ
|εt |2

∣∣εt− j
∣∣2s ∥∥ft−k

∥∥2
]2

≤ Esup
θθθ

∥∥∥ε2
t ft−k

∥∥∥2
Esup

θθθ

∥∥∥ε2s
t− j ft−k

∥∥∥2
< ∞,

[
Esup

θθθ
|εt |2

∣∣εt− j
∣∣2s ∥∥∇ϕϕϕft−k

∥∥]2
≤ Esup

θθθ

∥∥εt∇ϕϕϕft−k
∥∥2 Esup

θθθ

∣∣∣εtε
2s
t− j

∣∣∣2 < ∞.

Finally, (v) follows in a similar manner, noting that the following moments are bounded:

Esupθθθ

∥∥∥ε2
t ft−kε2s

t− j ε
2s
t−l

∥∥∥ , Esupθθθ

∣∣∣ε2
t ε2s

t− j ε
2s
t−kε2s

t−l

∣∣∣ , s ∈ (0,1) . In particular,
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[
Esup

θθθ

∥∥∥ε2
t ft−kε2s

t− j ε
2s
t−l

∥∥∥]2
≤
(

Esup
θθθ

∥∥∥ε2
t ft−k

∥∥∥2
)(

Esup
θθθ

∣∣εt−kεt−l
∣∣4s
)

< ∞,

[
Esup

θθθ

∣∣∣ε2
t ε2s

t− j ε
2s
t−kε2s

t−l

∣∣∣]2
≤
(

Esup
θθθ

∣∣∣ε4
t ε4s

t− j

∣∣∣)(Esup
θ

∣∣εt−kεt−l
∣∣4s
)

< ∞,

and, by Hölder’s inequality,

Esup
θθθ

∣∣∣ε4
t ε4s

t− j

∣∣∣≤ (Esup
θθθ

|εt |4(1+s))1/(1+s)(Esup
θθθ

|εt− j |4(1+s))s/(1+s) < ∞. �

The following three propositions follow the approach of Ling and McAleer (2003),
Berkes et al. (2003), and Francq and Zakoı̈an (2004) and are used to establish the con-
sistency and asymptotic normality of the QMLE θ̂θθ.

PROPOSITION 5. Under Assumptions A, B1, B2, and B3(a):

(i) E
[
l∞t (θθθ)

]
exists for all θθθ ∈ 
.
.
.

(ii) supθθθ∈




∣∣L∞
T (θθθ)−E

[
l∞t (θθθ)

]∣∣= op(1).

(iii) E
[
l∞t (θθθ)

]
achieves a unique maximum at θθθ0.

(iv) supθθθ∈




∣∣L∞
T (θθθ)− LT (θθθ)

∣∣= op(1).

Proof.

(i) First, by Assumption A3(b), h∞
t ≥ λ > 0, uniformly in θθθ ; therefore, Esupθθθ∈
∈
∈
 ×∣∣∣ε2

t /h∞
t

∣∣∣ ≤ λ−1Esupθθθ |εt |2 < ∞, by Proposition 3. Second, by Assumption A3,
∣∣h∞

t
∣∣ ≤

K ∑∞
i=0 ρi

∣∣at−i
∣∣ . Thus, Esupθθθ

∣∣h∞
t
∣∣ < ∞, and by Jensen’s inequality Esupθθθ

∣∣ln ∣∣h∞
t
∣∣∣∣ ≤∣∣lnEsupθθθ

∣∣h∞
t
∣∣∣∣< ∞, so that E

[
l∞t (θθθ)

]
exists for all θ ∈θ ∈θ ∈ 
.
.
.

(ii) By a uniform law of large numbers (ULLN) (e.g., Ling and McAleer 2003, Thm.
3.1, p. 287), it follows that supθθθ∈
∈
∈


∣∣L∞
T (θθθ)−E

[
l∞t (θθθ)

]∣∣= op (1) .
(iii) Write

2E
[
l∞t (θθθ)

]= {−E[ln(h∞
t )]−E[ε2

0t/h∞
t ]}−{E[(mt −m0t )

2/h∞
t ]}

= {L1(θθθ)}+{L2(θθθ)}
because E

[
ε0t mt/h∞

t |Ft−1
] = 0. First, L2 (θθθ) = −

{
E
[
(mt −m0t )

2/h∞
t

]}
achieves a

maximum value of zero only when mt = m0t , for all t a.s., which, by Assumption B2,
holds only if ϕϕϕ = ϕϕϕ0. Second (and as argued by Ling and McAleer, 2003, Lem. 4.4) using
Proposition 2(ii) and given ϕϕϕ = ϕϕϕ0, L1(θθθ) achieves a maximum only if ηηη = ηηη0. Thus
E
[
l∞t (θθθ)

]
achieves its unique maximum at θθθ = θθθ0.

(iv) We have

2
∣∣L∞

T (θθθ)− LT (θθθ)
∣∣≤ T −1

T

∑
t=1

∣∣∣∣ln h∞
t

ht

∣∣∣∣+ T −1
T

∑
t=1

∣∣∣∣ε2
t

(
1

h∞
t

− 1

ht

)∣∣∣∣ .
Equation (A.2) and ln(x) ≤ x − 1, for all x > 0, yield Esupθθθ∈
∈
∈
 | ln(h∞

t /ht )| ≤ λ−1

Esupθθθ∈
 |h∞
t −ht | = O(ρt ), at most. Therefore T −1 ∑T

t=1 Esupθθθ∈
 | ln(h∞
t /ht )| = o(1),
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implying (by Markov’s inequality) T −1 ∑T
t=1 supθθθ |ln (h∞

t /ht )
∣∣ = op(1). Next,

T −1 ∑T
t=1 supθθθ∈
 |ε2

t ((1/h∞
t )−(1/ht ))| = T −1 ∑T

t=1 Xt ut where Xt = supθθθ ε2
t is strictly

stationary and ergodic with E |Xt | < ∞ and |ut | ≤ 2λ−1. By (A.4), Esupθθθ∈
 |(1/h∞
t )−

(1/ht )| = O(ρt ), so that T −1 ∑T
t=1 ut = op (1) and T −1 ∑T

t=1 supθθθ∈


∣∣ε2
t
(
(1/h∞

t ) −
(1/ht )

)∣∣ = op (1) , applying Lemma 4.5 of Ling and McAleer (2003, p. 288). This
completes the proof. n

PROPOSITION 6. Under Assumptions A and B

(i) ���θθθθθθ ≡ ���θθθθθθ (θθθ0) is finite and positive definite, where ���θθθθθθ (θθθ) = E[d∞
θθθ t (θθθ)×

d∞
θθθ t (θθθ)′].
(ii)

1√
T

∑T
t=1

∥∥d∞
θθθ t (θθθ0)−dθθθ t (θθθ0)

∥∥= op(1).

(iii)
√

TDθθθT (θθθ0)
d→ N (0,���θθθθθθ ).

Proof.

(i) We first show that �θθθθθθ = E
[
d∞

θθθ t (θθθ0)d∞
θθθ t (θθθ0)′

]
is finite. Denoting ζ∞

0t =
((ε2

0t/h∞
0t )−1), we have

d∞
θθθ t (θθθ0) = 1

2
ζ∞

0t
1

h∞
0t

∂h∞
0t

∂θθθ
+
[

ε0t
1

h∞
0t

∂m0t
∂ϕϕϕ

0

]
,

and it is sufficient to show that E

∥∥∥∥ζ∞2
0t

{
1

h∞
0t

}2 ∂h∞
0t

∂θθθ
∂h∞

0t
∂θθθ ′

∥∥∥∥ and E

∥∥∥∥ε2
0t

{
1

h∞
0t

}2 ×
∂m0t
∂ϕϕϕ

∂m0t
∂ϕϕϕ′

∥∥∥ are both finite. Because h∞
0t ≥ λ > 0 for all t , ξt = ε0t/

√
h∞

0t and

E[ξ2
t |Ft−1] = 1, this follows immediately from Assumption B3(b) and Proposition 4.

Furthermore, �θθθθθθ is positive definite because E[ζ∞2
0t ] = kc − 1 > 0 is independent

of h∞
0t and, by Proposition 2, for any vectors c, b of the same dimension of ϕϕϕ and ηηη,

respectively: (1) c′d∞
ϕϕϕt (θθθ0) = 0, for all t a.s., only if c= 0 and (2) b′d∞

ηηηt (θθθ0) = 0, for all
t a.s., only if b= 0.

(ii) The proof is similar to that of Proposition 5. First, with the preceding notation and
ζ̃0t = ε2

0t/h̃0t − 1, where h̃0t = ht (θθθ0), to distinguish it from h∞
0t = h∞

t (θθθ0), d∞
ϕϕϕt (θθθ0)−

dϕϕϕt (θθθ0) = 1
2

{
ζ∞

0t
1

h∞
0t

∂h∞
0t

∂ϕϕϕ − ζ̃0t
1

h̃0t

∂ h̃0t
∂ϕϕϕ

}
+
{

ε0t
∂m0t
∂ϕϕϕ

(
1

h∞
0t

− 1
h̃0t

)}
, so that

∣∣∣∣∣
∣∣∣∣∣ 1√

T

T

∑
t=1

(
d∞

ϕϕϕt (θθθ0)−dϕϕϕt (θθθ0)
)∣∣∣∣∣
∣∣∣∣∣ ≤ 1

2

∣∣∣∣∣
∣∣∣∣∣ 1√

T

T

∑
t=1

{
ζ∞

0t
1

h∞
0t

∂h∞
0t

∂ϕϕϕ
− ζ̃0t

1

h̃0t

∂ h̃0t

∂ϕϕϕ

}∣∣∣∣∣
∣∣∣∣∣

+
∣∣∣∣∣
∣∣∣∣∣ 1√

T

T

∑
t=1

{
ε0t

∂m0t

∂ϕϕϕ

(
1

h∞
0t

− 1

h̃0t

)}∣∣∣∣∣
∣∣∣∣∣

= 1

2
||RT ||+ ||QT || .

It is sufficient to show that E‖QT ‖ = o(1) and E‖RT ‖ = o(1). By Assumption A3, and

because h∞
t ≥ α0 +ψi at−i (i ≥ 1) and ξt = ε0t/

√
h∞

0t is i id (0,1),
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E||QT || ≤ λ−1 1√
T

T

∑
t=1

E

∣∣∣∣
∣∣∣∣ξt

∂m0t

∂ϕϕϕ

∣∣∣∣
∣∣∣∣
∣∣∣∣∣∣
h∞

0t − h̃0t√
h∞

0t

∣∣∣∣∣∣

≤ C
1√
T

T

∑
t=1

E

[∣∣∣∣
∣∣∣∣ξt

∂m0t

∂ϕϕϕ

∣∣∣∣
∣∣∣∣
{∞

∑
i=t

ψi0a0,t−i√
α00 +ψi0a0,t−i

}]

≤ K
1√
T

T

∑
t=1

E

[∣∣∣∣
∣∣∣∣ξt

∂m0t

∂ϕϕϕ

∣∣∣∣
∣∣∣∣
{∞

∑
i=t

ρi ∣∣a0,t−i
∣∣1/2

}]

because 0 < α00 < ∞ and x/
√

1+ x ≤ √
x, for all x ≥ 0. Now, by Cauchy–Schwarz

inequality, iterative expectations, and Assumption B3(b), E[||ξt (∂m0t/∂ϕϕϕ)a1/2
0,t−i ||] ≤√

E
∥∥∥ ∂m0t

∂ϕϕϕ

∥∥∥2
E|a0,t−i | < ∞, so that

E||QT || ≤ O(1)
1√
T

T

∑
t=1

O(ρt ) = o(1).

Next, by (A.14) and E[ε2
0t |Ft−1] = h∞

0t ,

E‖RT ‖

≤ 1√
T

T

∑
t=1

E

{
ε2

0t

∥∥∥∥∥ 1

(h∞
0t )2

∂h∞
0t

∂ϕϕϕ
− 1

(h̃0t )
2

∂ h̃0t

∂ϕϕϕ

∥∥∥∥∥+
∥∥∥∥∥ 1

h∞
0t

∂h∞
0t

∂ϕϕϕ
− 1

h̃0t

∂ h̃0t

∂ϕϕϕ

∥∥∥∥∥
}

≤ K
1√
T

T

∑
t=1

E

{
1

h∞
0t

∥∥∥∥∥∂h∞
0t

∂ϕϕϕ
− ∂ h̃0t

∂ϕϕϕ

∥∥∥∥∥+
∥∥∥∥∥ 1

h̃0t

∂ h̃0t

∂ϕϕϕ

∥∥∥∥∥
∣∣∣h∞

0t − h̃0t

∣∣∣
}

.

It follows from (A.10), (A.8), (A.2), and arguments similar to Proposition 4 that
E‖RT ‖ = o (1).

Second, and in a similar fashion, by (A.5) and (A.7)

E

∣∣∣∣∣
∣∣∣∣∣ 1√

T

T

∑
t=1

(d∞
ηηηt (θθθ0)−dηηηt (θθθ0))

∣∣∣∣∣
∣∣∣∣∣

≤ K
1√
T

T

∑
t=1

E

{
1

h∞
0t

∥∥∥∥∥∂h∞
0t

∂ηηη
− ∂ h̃0t

∂ηηη

∥∥∥∥∥+
∥∥∥∥∥ 1

h̃0t

∂ h̃0t

∂ηηη

∥∥∥∥∥
∣∣∣h∞

0t − h̃0t

∣∣∣
}

= o(1).

Thus
∥∥∥ 1√

T
∑T

t=1(d∞
ηηηt (θθθ0)−dηηηt (θθθ0))

∥∥∥= op(1), by Markov’s inequality.

(iii) As in Lemma 5.2 of Ling and McAleer (2003), a martingale difference central

limit theorem (CLT) yields
√

TD∞
θθθT (θθθ0)

d→ N (0,�0,�0,�θθθθθθ ) so that (ii) yields
√

TDθθθT (θθθ0)
d→

N (0,���θθθθθθ ). n
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PROPOSITION 7. Under Assumptions A and B,

(i) supθθθ∈




∥∥P∞
θθθθθθT (θθθ)−Jθθθθθθ (θθθ)

∥∥ = op(1), where Jθθθθθθ (θθθ) = −E

[
∂d∞

θθθ t (θθθ)

∂θθθ ′
]

is finite

for all θθθ ∈ 


 and Jθθθθθθ = Jθθθθθθ (θθθ0) is positive definite.

(ii) supθθθ∈




∥∥P∞
θθθθθθT (θθθ)−PθθθθθθT (θθθ)

∥∥= op(1).

Proof.

(i) We show that Jθθθθθθ (θθθ) = −E

[
∂d∞

θθθ t (θθθ)

∂θθθ ′
]

is finite for all θθθ ∈ 
;
;
; it is then straightfor-

ward to show that Jθθθθθθ (θθθ0) is positive definite. The result then follows from Theorem 3.1
of Ling and McAleer (2003). We have

∂d∞
ϕϕϕt (θθθ)

∂ϕϕϕ′ = − 1

h∞
t

∂mt

∂ϕϕϕ

∂mt

∂ϕϕϕ′ − εt(
h∞

t
)2

∂mt

∂ϕϕϕ

∂h∞
t

∂ϕϕϕ′

− εt(
h∞

t
)2

∂h∞
t

∂ϕϕϕ

∂mt

∂ϕϕϕ′ + εt

h∞
t

∂2mt

∂ϕϕϕ∂ϕϕϕ′

−1

2

{(
2

ε2
t

h∞
t

−1

)
1(

h∞
t
)2

∂h∞
t

∂ϕϕϕ

∂h∞
t

∂ϕϕϕ′ −
(

ε2
t

h∞
t

−1

)(
1

h∞
t

∂2h∞
t

∂ϕϕϕ∂ϕϕϕ′

)}
,

∂d∞
ηηηt (θθθ)

∂ηηη′ = −1

2

{(
2

ε2
t

h∞
t

−1

)
1

(h∞
t )2

∂h∞
t

∂ηηη

∂h∞
t

∂ηηη′ −
(

ε2
t

h∞
t

−1

)(
1

h∞
t

∂2h∞
t

∂ηηη∂ηηη′

)}
,

∂d∞
ηηηt (θθθ)

∂ϕϕϕ′ = − εt

h∞
t

∂h∞
t

∂ηηη

∂mt

∂ϕϕϕ′

−1

2

{(
2

ε2
t

h∞
t

−1

)
1(

h∞
t
)2

∂h∞
t

∂ηηη

∂h∞
t

∂ϕϕϕ′ −
(

ε2
t

h∞
t

−1

)(
1

h∞
t

∂2h∞
t

∂ηηη∂ϕϕϕ′

)}
.

Thus, exploiting h∞
t ≥ λ > 0 and where K = max

{
λ−1,2λ−2,1/2

}
,

∥∥∥∥∂d∞
ϕϕϕt (θθθ)

∂ϕϕϕ′
∥∥∥∥≤ K

{∥∥∥∥∂mt

∂ϕϕϕ

∥∥∥∥2
+
(
ε2

t +1
)(∥∥∥∥ 1

h∞
t

∂h∞
t

∂ϕϕϕ

∥∥∥∥2
+
∥∥∥∥∥ 1

h∞
t

∂2h∞
t

∂ϕϕϕ∂ϕϕϕ′

∥∥∥∥∥
)

+
∥∥∥∥εt

∂mt

∂ϕϕϕ

1

h∞
t

∂h∞
t

∂ϕϕϕ′
∥∥∥∥+

∥∥∥∥∥εt
∂2mt

∂ϕϕϕ∂ϕϕϕ′

∥∥∥∥∥
}

.

By Assumption B3(b), Proposition 4(i) and (ii), and Cauchy–Schwarz inequality,

Esupθθθ

∥∥∥∥ ∂d∞
ϕϕϕt (θθθ)

∂ϕϕϕ′

∥∥∥∥< ∞.
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By similar arguments,

Esup
θθθ

∥∥∥∥∂d∞
ηηηt (θθθ)

∂ηηη′
∥∥∥∥≤ K E sup

θθθ

{
(ε2

t +1)

(∥∥∥∥ 1

h∞
t

∂h∞
t

∂ηηη

∥∥∥∥2
+
∥∥∥∥∥ 1

h∞
t

∂2h∞
t

∂ηηη∂ηηη′

∥∥∥∥∥
)}

< ∞,

Esup
θθθ

∥∥∥∥∂d∞
ηηηt (θθθ)

∂ϕϕϕ′
∥∥∥∥≤ C

{
(ε2

t +1)

(∥∥∥∥ 1

h∞
t

∂h∞
t

∂ηηη

1

h∞
t

∂h∞
t

∂ϕϕϕ′
∥∥∥∥+

∥∥∥∥∥ 1

h∞
t

∂2h∞
t

∂ηηη∂ϕϕϕ′

∥∥∥∥∥
)

+
∥∥∥∥εt

1

h∞
t

∂h∞
t

∂ηηη

∂mt

∂ϕϕϕ′
∥∥∥∥
}

< ∞.

(ii) Note that supθθθ

∥∥P∞
θθθθθθT (θθθ)−PθθθθθθT (θθθ)

∥∥ ≤ T −1 ∑t supθθθ ‖(∂2l∞t /∂θθθ∂θθθ ′)−
(∂2lt/∂θθθ∂θθθ ′)‖, and we consider the latter. First,

∥∥∥∥∂d∞
ϕϕϕt (θθθ)

∂ϕϕϕ′ − ∂dϕϕϕt (θθθ)

∂ϕϕϕ′
∥∥∥∥ ≤

{∥∥∥∥∂mt

∂ϕϕϕ

∥∥∥∥2
+
∥∥∥∥∥εt

∂2mt

∂ϕϕϕ∂ϕϕϕ′

∥∥∥∥∥
}∣∣∣∣ 1

h∞
t

− 1

ht

∣∣∣∣

+2

∥∥∥∥εt
∂mt

∂ϕϕϕ

∥∥∥∥
∥∥∥∥∥ 1(

h∞
t
)2

∂h∞
t

∂ϕϕϕ
− 1

h2
t

∂ht

∂ϕϕϕ

∥∥∥∥∥

+ε2
t

∥∥∥∥∥ 1(
h∞

t
)3

∂h∞
t

∂ϕϕϕ

∂h∞
t

∂ϕϕϕ′ − 1

h3
t

∂ht

∂ϕϕϕ

∂ht

∂ϕϕϕ′

∥∥∥∥∥

+1

2

∥∥∥∥∥ 1(
h∞

t
)2

∂h∞
t

∂ϕϕϕ

∂h∞
t

∂ϕϕϕ′ − 1

h2
t

∂ht

∂ϕϕϕ

∂ht

∂ϕϕϕ′

∥∥∥∥∥

+1

2
ε2

t

∥∥∥∥∥ 1(
h∞

t
)2

∂2h∞
t

∂ϕϕϕ∂ϕϕϕ′ − 1

h2
t

∂2ht

∂ϕϕϕ∂ϕϕϕ′

∥∥∥∥∥

+1

2

∥∥∥∥∥ 1

h∞
t

∂2h∞
t

∂ϕϕϕ∂ϕϕϕ′ − 1

ht

∂2ht

∂ϕϕϕ∂ϕϕϕ′

∥∥∥∥∥
=

6

∑
j=1

∥∥Rjt
∥∥ .

Consider 1/T ∑T
t=1 supθθθ∈
 ‖R1t‖ , where R1t = Xt ut , with ut = supθ |(1/h∞

t )−(1/ht )|,
and apply Lemma 4.5 of Ling and McAleer (2003). We know that ut < 2λ−1 and T −1

∑T
t=1 ut = op (1) , and because Esupθθθ

{∥∥∥ ∂mt
∂ϕϕϕ

∥∥∥2 +
∥∥∥εt

∂2mt
∂ϕϕϕ∂ϕϕϕ′

∥∥∥}< ∞, by Assumptions B3

(b) and (c), we have 1/T ∑T
t=1 supθθθ∈
‖R1t‖ = op(1). By Proposition 4, Esupθθθ

∥∥Rjt
∥∥=

O(ρt ), j = 2, . . . ,6, so that 1/T ∑T
t=1 supθθθ∈


∥∥Rjt
∥∥= op(1), by Markov’s inequality.
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Similarly, supθθθ∈

1
T ∑T

t=1

∥∥∥(∂d∞
ηt (θ)/∂ϕϕϕ′)− (∂dηt (θ)/∂ϕϕϕ′)

∥∥∥= op(1), because

∥∥∥∥∂d∞
ηηηt (θθθ)

∂ϕϕϕ′ − ∂dηηηt (θθθ)

∂ϕϕϕ′
∥∥∥∥ ≤ ε2

t

∥∥∥∥∥ 1(
h∞

t
)3

∂h∞
t

∂ηηη

∂h∞
t

∂ϕϕϕ′ − 1

h3
t

∂ht

∂ηηη

∂ht

∂ϕϕϕ′

∥∥∥∥∥
+1

2

∥∥∥∥∥ 1(
h∞

t
)2

∂h∞
t

∂ηηη

∂h∞
t

∂ϕϕϕ′ − 1

h2
t

∂ht

∂ηηη

∂ht

∂ϕϕϕ′

∥∥∥∥∥
+1

2
ε2

t

∥∥∥∥∥ 1(
h∞

t
)2

∂2h∞
t

∂ηηη∂ϕϕϕ′ − 1

h2
t

∂2ht

∂ηηη∂ϕϕϕ′

∥∥∥∥∥
+1

2

∥∥∥∥∥ 1

h∞
t

∂2h∞
t

∂ηηη∂ϕϕϕ′ − 1

ht

∂2ht

∂ηηη∂ϕϕϕ′

∥∥∥∥∥
+2

∥∥∥∥εt
∂mt

∂ϕϕϕ

∥∥∥∥
∥∥∥∥ 1

h∞
t

∂h∞
t

∂ηηη
− 1

ht

∂ht

∂ηηη

∥∥∥∥
= K

5

∑
j=1

∥∥Rjt
∥∥ ,

and by Proposition 4 Esupθθθ

∥∥Rjt
∥∥= O(ρt ), j = 1, . . . ,5.

Finally, and analogously,∥∥∥∥∂d∞
ηηηt (θθθ)

∂ηηη′ − ∂dηηηt (θθθ)

∂ηηη′
∥∥∥∥≤ ε2

t

∥∥∥∥∥ 1(
h∞

t
)3

∂h∞
t

∂ηηη

∂h∞
t

∂ηηη′ − 1

h3
t

∂ht

∂ηηη

∂ht

∂ηηη′

∥∥∥∥∥
+1

2

∥∥∥∥∥ 1(
h∞

t
)2

∂h∞
t

∂ηηη

∂h∞
t

∂ηηη′ − 1

h2
t

∂ht

∂ηηη

∂ht

∂ηηη′

∥∥∥∥∥
+1

2
ε2

t

∥∥∥∥∥ 1(
h∞

t
)2

∂2h∞
t

∂ηηη∂ηηη′ − 1

h2
t

∂2ht

∂ηηη∂ηηη′

∥∥∥∥∥
+1

2

∥∥∥∥∥ 1

h∞
t

∂2h∞
t

∂ηηη∂ηηη′ − 1

ht

∂2ht

∂ηηη∂ηηη′

∥∥∥∥∥
so that, by Proposition 4, Esupθθθ

∥∥∥(∂d∞
ηηηt (θθθ)/∂ηηη′)− (∂dηηηt (θθθ)/∂ηηη′)

∥∥∥= O
(
ρt).

This completes the proof. n

Proof of Theorem 1. By Proposition 5, and as in Ling and McAleer (2003),
θ̂θθ = argmaxθθθ LT (θθθ) is consistent. The limit distribution then follows from a standard
mean value expansion of DθθθT (θ̂θθ) = 0, exploiting Propositions 6 and 7, as follows. First,
0=√

TDθθθT (θθθ0) −PθθθθθθT (θ̃θθ)
√

T (θ̂θθ −θθθ0), where θ̃θθ is the usual “mean value” satisfying
θ̃θθ = θθθ0 + op(1). By Propositions 6 and 7,

√
TDθθθT (θθθ0) = Op(1) and PθθθθθθT (θ̃θθ) =

Op(1), so that
√

T (θ̂θθ −θθθ0) = Op(1). Second, by Proposition 7 and the triangle inequality,

PθθθθθθT (θ̃θθ) = Jθθθθθθ + op(1). Third, because Jθθθθθθ is positive definite,
√

T (θ̂θθ −θθθ0) =
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J−1
θθθθθθ

√
TDθθθT (θθθ0)+ op(1), and the result follows from Proposition 6. Finally, the expres-

sions for ���θθθθθθ and Jθθθθθθ are also easily obtained from the previous results in Propositions 6
and 7. n

Proof of Lemma 1. The proof follows from previous results. We know from these
results and/or assumptions made that Esupθθθ

∥∥q∞
t q

∞′
t
∥∥ < ∞, for q∞′

t = ((1/
√

h∞
t )f ′t ,

c∞′
t ,x∞′

t ). Moreover, T −1 ∑T
t=1 supθθθ

∥∥q∞
t q

∞′
t −qtq

′
t
∥∥= op(1) because

T −1
T

∑
t=1

∥∥q∞
t q

∞′
t −qtq

′
t
∥∥≤ 2T −1

T

∑
t=1

∥∥q∞
t −qt

∥∥∥∥q∞
t
∥∥+ T −1

T

∑
t=1

∥∥q∞
t −qt

∥∥2
.

It is readily shown, using Proposition 4 and related results, that 1√
T

∑T
t=1 supθθθ ‖q∞

t −
qt‖ = op(1), so that T −1 ∑T

t=1 supθθθ

∥∥q∞
t −qt

∥∥2 = op(1) (because 1
T ∑T

t=1 z2
t ≤{

1√
T

∑T
t=1 zt

}2
, when zt ≥ 0 for all t). In addition,

T −1
T

∑
t=1

sup
θθθ

∥∥q∞
t −qt

∥∥∥∥q∞
t
∥∥≤

√√√√T −1
T

∑
t=1

sup
θθθ

∥∥q∞
t −qt

∥∥2 T −1
T

∑
t=1

sup
θθθ

∥∥q∞
t
∥∥2 = op(1)

because T −1 ∑T
t=1 supθθθ

∥∥q∞
t
∥∥2 = Op(1). Therefore, by a ULLN and the triangle inequal-

ity, T −1 ∑T
t=1

(
qtq

′
t
)
θθθ=θ̂θθ

−E
[
q∞

t q
∞′
t
]
θθθ=θθθ0

= op(1).

We also need to show that k̂c = kc +op(1) and v̂c = vc +op(1). By similar arguments,

Esupθθθ

(
(ε2

t /h∞
t )−1

)2
< ∞ and

1

T

T

∑
t=1

sup
θθθ

∥∥∥∥∥∥
(

ε2
t

h∞
t

−1

)2

−
(

ε2
t

ht
−1

)2
∥∥∥∥∥∥≤ K

1

T

T

∑
t=1

sup
θθθ

∣∣∣ε4
t − ε2

t

∣∣∣
∣∣∣∣ 1

h∞
t

− 1

ht

∣∣∣∣= op(1)

by (A.4) and Lemma 4.5 of Ling and McAleer (2003). Finally, Esupθθθ

(
εt√
h∞

t

)3
< ∞, and

by exactly the same reasoning

1

T

T

∑
t=1

sup
θθθ

∥∥∥∥∥∥
(

εt√
h∞

t

)3

−
(

εt√
ht

)3
∥∥∥∥∥∥≤ 1

T

T

∑
t=1

sup
θθθ

∣∣∣ε3
t

∣∣∣
∣∣∣∣∣ 1

h∞3/2
t

− 1

h3/2
t

∣∣∣∣∣= op(1),

because |(1/h∞3/2
t )− (1/h3/2

t )| ≤ K |h∞
t −ht |. n

APPENDIX B

Proof of Theorem 2. We shall establish the following results:

(a) ��� = E[d∞
t (θθθ0)d∞

t (θθθ0)′] is finite and positive definite, where d∞
t (θθθ)′ = (d∞

ϕϕϕt (θθθ)′,
d∞

ηηηt (θθθ)′,d∞
πππ t (θθθ)′);
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(b)
1√
T

∑T
t=1 supθθθ

∥∥d∞
πππ t (θθθ)−dπππ t (θθθ)

∥∥= op(1);
(c) Jπθπθπθ (θθθ) is finite for all θ ∈θ ∈θ ∈
,
,
, so that supθθθ

∥∥P∞
πθπθπθT (θθθ)−Jπθπθπθ (θθθ)

∥∥= op (1) , where

P∞
πθπθπθT (θθθ) = 1

T ∑T
t=1

∂d∞
πππ t (θθθ)

∂θθθ ′ .

Given (a) and similarly to Proposition 6,
√

TD∞
T (θθθ0)

d→ N (0,���), where D∞
T (θθθ) =

T −1 ∑d∞
t (θθθ) and ��� is positive definite provided r∞t does not contain redundant terms

(e.g., linear combinations of c∞t and/or x∞
t ). By (b)

sup
θθθ

∥∥∥√TD∞
πππT (θθθ)−√

TDπππT (θθθ)
∥∥∥≤ 1√

T

T

∑
t=1

sup
θθθ

∥∥d∞
πππ t (θθθ)−dπππ t (θθθ)

∥∥= op(1),

so that
√

TDπππT (θ̂θθ) = √
TD∞

πππT (θ̂θθ)+ op(1) and we can deal with
√

TD∞
πππT (θ̂θθ). A mean

value expansion of
√

TD∞
πππT (θ̂θθ) about θ̂θθ = θθθ0 yields

√
TD∞

πππT (θ̂θθ) = √
TD∞

πππT (θθθ0)−P∞
πθπθπθT (θ̃θθ)

√
T (θ̂θθ −θθθ0),

where θ̃θθ is the usual “mean value” satisfying θ̃θθ = θθθ0 + op(1). Because θ̂θθ is consistent for
θθθ0, the triangle inequality and (c) ensure that P∞

πθπθπθT (θ̃θθ) = Jπθπθπθ + op(1), and, substituting√
T (θ̂θθ −θθθ0) = J−1

θθθθθθ

√
TD∞

θθθT (θθθ0)+op(1) from Theorem 1, yields

√
TD∞

πππT (θ̂θθ) = √
TD∞

πππT (θθθ0)−JπθπθπθJ
−1
θθθθθθ

√
TD∞

θθθT (θθθ0)+op(1)

=A√
TD∞

T (θθθ0)+op(1),

and the result follows.
For the particular class of tests characterized by the test indicator (9),

∂d∞
πππ t (θθθ)

∂ϕϕϕ′ = −2
εt

h∞
t

∂mt

∂ϕϕϕ′ r
∞
t − ε2

t
h∞

t
r∞t

(
1

h∞
t

∂h∞
t

∂ϕϕϕ′
)

+
(

ε2
t

h∞
t

−1

)
∂r∞t
∂ϕϕϕ′ ,

∂d∞
πππ t (θθθ)

∂ηηη′ = − ε2
t

h∞
t
r∞t

(
1

h∞
t

∂h∞
t

∂ηηη′
)

+
(

ε2
t

h∞
t

−1

)
∂r∞t
∂ηηη′ ,

so that Jπϕπϕπϕ = E[r∞t c∞′
t ]θθθ=θθθ0 and Jπηπηπη = E[r∞t x∞′

t ]θθθ=θθθ0 and similarly, from expressions

ford∞
θθθ t (θθθ0) in the proof of Proposition 6 andd∞

πππ t (θθθ0) = ζ∞
0t r

∞
0t , where ζ∞

0t = ε2
0t/h∞

0t −1,

���πϕπϕπϕ = vcE

[
1√
h∞

t
r∞t f ′t

]
θθθ=θθθ0

+ (kc −1)

2
E
[
r∞t c∞′

t
]
θθθ=θθθ0

,

���πηπηπη = (kc −1)

2
E
[
r∞t x∞′

t
]
θθθ=θθθ0

,

���ππππππ = (kc −1)E
[
r∞t r∞′

t
]
θθθ=θθθ0

.

We now establish that (a)–(c) hold:
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(a) Because ���θθθθθθ is finite (Proposition 6), by Cauchy–Schwarz inequality we only have
to show that E

[
d∞

πππ t (θθθ0)d∞
πππ t (θθθ0)′

]
is finite. The latter is true because

Esup
θθθ

∥∥r∞t ∥∥2
< ∞,so that E

∥∥∥(ζ∞
0t
)2
r∞0t r

∞′
0t

∥∥∥= (kc −1)E
∥∥r∞0t

∥∥2
< ∞.

(b) It can be shown that

∥∥d∞
πππ t (θθθ)−dπππ t (θθθ)

∥∥ ≤ K

{∣∣∣ε2
t +1

∣∣∣∥∥r∞t −rt
∥∥+ ε2

t
∥∥r∞t ∥∥

∣∣∣∣h∞
t −ht

h∞
t

∣∣∣∣
+ ε2

t
∥∥r∞t −rt

∥∥∣∣∣∣h∞
t −ht

h∞
t

∣∣∣∣
}

= K
3

∑
j=1

Rjt .

By assumption, 1√
T

∑T
t=1 Esupθθθ R1t = o(1).

By (A.3) and because Esupθ

∥∥∥ε2
t r

∞
t ε2s

t−i

∥∥∥ ≤
√

Esupθθθ

∥∥r∞t ∥∥2 Esupθθθ

∣∣∣ε4
t ε4s

t−i

∣∣∣ < ∞,

Esupθθθ R2t = O
(
ρt) , so that 1√

T
∑T

t=1 Esupθθθ R2t = o(1). Thus, by Markov’s inequality,
1√
T

∑T
t=1 supθθθ Rjt = op(1), j = 1,2. Finally, note that

1√
T

T

∑
t=1

sup
θθθ

R3t ≤
√√√√ 1

T

T

∑
t=1

sup
θθθ

ε4
t
∥∥r∞t −rt

∥∥2
T

∑
t=1

sup
θθθ

∣∣∣∣h∞
t −ht

h∞
t

∣∣∣∣2

≤
{

1√
T

T

∑
t=1

sup
θθθ

ε2
t
∥∥r∞t −rt

∥∥}{ T

∑
t=1

sup
θθθ

∣∣∣∣h∞
t −ht

h∞
t

∣∣∣∣
}

because ∑T
t=1 z2

t ≤
{

∑T
t=1 zt

}2
when zt ≥ 0 for all t .

Now, ∑T
t=1 Esupθθθ ε2

t
∥∥r∞t −rt

∥∥= O(1), by assumption, and Esupθθθ

∣∣(h∞
t −ht )/h∞

t
∣∣=

O(ρt ) by (A.3) and previous results, so that 1√
T

∑T
t=1 supθθθ R3t = op(1), and the result

follows.
(c) In a similar manner to the proof of Proposition 7, we have∥∥∥∥∂d∞

πππ t (θθθ)

∂ϕϕϕ′
∥∥∥∥≤ K

{∥∥∥∥εt
∂mt

∂ϕϕϕ
r∞t
∥∥∥∥+

∣∣∣ε2
t +1

∣∣∣(
∥∥∥∥ 1

h∞
t

∂h∞
t

∂ϕϕϕ

∥∥∥∥∥∥r∞t ∥∥+
∥∥∥∥∂r∞t

∂ϕϕϕ′
∥∥∥∥
)}

∥∥∥∥∂d∞
πππ t (θ)

∂ηηη′
∥∥∥∥≤ K

{∣∣∣ε2
t +1

∣∣∣(
∥∥∥∥ 1

h∞
t

∂h∞
t

∂ηηη

∥∥∥∥∥∥r∞t ∥∥+
∥∥∥∥∂r∞t

∂ηηη

∥∥∥∥
)}

.

Then because h∞
t ≥ λ > 0 for all t and θθθ , using Cauchy–Schwarz inequality, the assump-

tions of Theorem 2, and previous results, Esupθθθ

∥∥∥∥∂d∞
πππ t (θθθ)

∂ϕϕϕ′
∥∥∥∥<∞ and Esupθθθ

∥∥∥∥∂d∞
πππ t (θθθ)

∂ηηη′
∥∥∥∥

< ∞. These are sufficient for a ULLN to apply, ensuring supθθθ

∥∥P∞
πθπθπθT (θθθ)−Jπθπθπθ (θθθ)

∥∥ =
op (1).
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Finally we briefly show that the additional assumptions of Theorem 2 are satisfied for
the test variables considered in this paper in Section 4.

First, consider the Lundbergh and Teräsvirta (2002) nonlinearity (scalar) test variable
rt = ε3

t−k = r∞
t . Trivially, assumption (i) is satisfied.

For (ii) we require E
[
ε6

0t

]
< ∞, which is stronger than Assumption B1.

For (iii), Esupθθθ∈


∥∥∥ε2
t (∂r∞t /∂ϕϕϕ)

∥∥∥= 3Esupθθθ

∥∥∥ε2
t ε2

t−k(∂mt−k/∂ϕϕϕ)
∥∥∥< ∞, by Cauchy–

Schwarz inequality. We can proceed similarly for the asymmetry test variable of It−1εt−1
but taking into account (19).

For the nonlinearity test variable, with
∥∥r∞t ∥∥ having typical element r∞

kt = 1
h∞

t
∑∞

i=0

ψi ε
3
t−k−i , k = 1, . . . ,q, and noting h∞

t ≥ α0 +ψi αkε2
t−k−i ,

∣∣r∞
kt

∣∣≤ 1√
αk

∞
∑
i=0

√
ψi αk

∣∣εt−k−i
∣∣

α0 +ψi αkε2
t−k−i

√
ψi ε

2
t−k−i ≤ K

∞
∑
i=0

ρi ε2
t−k−i ,

∣∣r∞
kt − rkt

∣∣≤ K
∞
∑
i=t

ρi ε2
t−k−i ,

∥∥∥∥∂r∞
kt

∂ϕϕϕ

∥∥∥∥≤ 3
1

h∞
t

∞
∑
i=0

ψi ε
2
t−k−i

∥∥∇ϕϕϕft−k−i
∥∥+ 1

h∞
t

∞
∑
i=0

ψi

∥∥∥ε3
t−k−ic

∞
t

∥∥∥

≤ 3
1√
αk

∞
∑
i=0

√
ψi αk

∣∣εt−k−i
∣∣

α0 +ψi αkε2
t−k−i

√
ψi
∥∥εt−k−i ∇ϕϕϕft−k−i

∥∥

+ 1√
αk

∞
∑
i=0

√
ψi αk

∣∣εt−k−i
∣∣

α0 +ψi αkε2
t−k−i

√
ψi ε

2
t−k−i

∥∥c∞t ∥∥

≤ K

{ ∞
∑
i=0

ρi ∥∥εt−k−i ∇ϕϕϕft−k−i
∥∥+

∞
∑
i=0

ρi ε2
t−k−i

∥∥c∞t ∥∥
}

,

∥∥∥∥∂r∞
kt

∂ηηη

∥∥∥∥≤ K

{ ∞
∑
i=1

iρi ε2
t−k−i +

∞
∑
i=0

ρi ε2
t−k−i

∥∥x∞
t
∥∥} .

It is then straightforward to show that assumptions (i)–(iii) are satisfied. We can proceed
similarly for the asymmetry test variable r∞

t = 1
h∞

t
∑∞

i=0 ψi It−kεt−k−i but taking into

account (19). n

Proof of Lemma 2. The proof is similar to that of Lemma 1. We can show that
Esupθθθ

∥∥r∞t q∞′
t
∥∥< ∞ , so that T −1 ∑T

t=1 supθθθ

∥∥r∞t q∞′
t −E

[
r∞t q∞′

t
]∥∥= op(1), by pre-

vious arguments. It remains to establish that T −1 ∑T
t=1 supθθθ

∥∥r∞t q∞′
t −rtq′

t
∥∥ = op(1),
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because this then ensures that T −1 ∑T
t=1

(
rtq

′
t
)
θθθ= θ̂̂θ̂θ

−E
[
r∞t q∞′

t
]
θθθ=θθθ0

= op(1). Note that

T −1
T

∑
t=1

∥∥r∞t q∞′
t −rtq′

t
∥∥≤ T −1

T

∑
t=1

∥∥r∞t −rt
∥∥∥∥q∞

t
∥∥+ T −1

T

∑
t=1

∥∥q∞
t −qt

∥∥∥∥r∞t ∥∥

+T −1
T

∑
t=1

∥∥r∞t −rt
∥∥∥∥q∞

t −qt
∥∥ ,

and it can easily be shown that each term on the right-hand side is op(1). We also know
that k̂c = kc + op(1) and v̂c = vc + op(1), from the proof of Lemma 1, and the result
follows. n

Proof of Lemma 3.

(i) First, from the expression for
∂d∞

ηηηt (θθθ)

∂ϕϕϕ′ in the proof of Proposition 7, it is easy to

see that Jηϕηϕηϕ = 1
2 E[x∞

t c
∞′
t ]θθθ=θθθ0 . Now,

E
[
x∞

t c
∞′
t
]
θθθ=θθθ0

= −2
q

∑
k=1

α0kE

[
1

h∞2
t

∞
∑
i=0

∞
∑
j=0

ψi ψjs
∞
t−1−i εt−k− j f

′
t−k− j

]
θθθ=θθθ0

, (B.1)

which exists, provided E[(1/h∞2
t )εt−ls

∞
t−mf

′
t−l ]θθθ=θθθ0 exists (for all l,m),

because
∣∣∣∑∞

i=0 ∑∞
j=0 ψi ψj

∣∣∣= ∣∣∑∞
i=0 ψi

∣∣2 ≤ {∑∞
i=0 |ψi |

}2
< ∞.

Thus E[(1/h∞2
t )εt−ls

∞
t−mf

′
t−l ]θθθ=θθθ0 has to be examined for the cases l = m,

l < m, and l > m, where s∞t−m = (1,ε2
t−m , . . . ,ε2

t−m−q+1,h∞
t−m , . . . ,h∞

t−m−p+1)′.
Specifically, for l = m, E

[
(1/h∞2

t )εt−ls
∞
t−l f

′
t−l

]
θθθ=θθθ0

is

E

{
E

[
1

h∞2
t

(εt−l , ε3
t−l , . . . ,εt−lε

2
t−l−q+1,

εt−l h
∞
t−l , . . . ,εt−l h

∞
t−l−p+1)′

∣∣∣Ft−l−1

]
f ′t−l

}
θθθ=θθθ0

,

which is zero if the preceding expression for the conditional expectation, given
Ft−l−1, is zero. To establish the latter, follow Engle (1982) and treat this condi-
tional expectation in two steps, observing that εt−l−n, n = 1,2, . . . , are Ft−l−1
measurable. First, construct the conditional expectation given Ft−l , which is[
(εt−l , ε3

t−l , . . . ,εt−lε
2
t−l−q+1, εt−l h

∞
t−l , . . . ,εt−l h

∞
t−l−p+1)′

× E

{
1

h∞2
t

∣∣∣∣∣Ft−l

}]
θθθ=θθθ0

≡ φ(εt−l ),
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where it is implicit that φ(·) is evaluated at θθθ = θθθ0. Because h∞
t is symmetric

in εt−l and the elements in εt−l s
∞
t−l are all antisymmetric in εt−l , the elements

in (h∞
t )−2εt−l s

∞
t−l are antisymmetric in εt−l , which forms part of Ft−l , and, at

the second step, expectations with respect to Ft−l−1 are taken only with random
elements. Now, because h∞

t is symmetric in εt−l , its conditional density given
εt−l is also symmetric in εt−l . Therefore, by Engle (1982, lem., p. 1006), φ(εt−l )
is antisymmetric in εt−l . Finally, the second step involves E[φ(εt−l )|Ft−l−1],
which is zero, because the conditional density of εt−l given Ft−l−1 is symmetric
and φ(·) is antisymmetric.

The other typical expectation in (B.1) for l < m and l > m is

E

{
E

[
1

h∞2
t

εt−ms
∞
t−l

∣∣∣∣∣Ft−m−1

]
f ′t−m

}
θθθ=θθθ0

,

which is zero if the conditional expectation, given Ft−m−1, is zero. The latter can
be expressed as

E

[
1

h∞2
t

εt−ms
∞
t−l

∣∣∣∣∣Ft−m−1

]
θθθ=θθθ0

= E

{
E

[
1

h∞2
t

εt−ms
∞
t−l

∣∣∣∣∣Ft−m

]∣∣∣∣∣Ft−m−1

}
θθθ=θθθ0

.

For l > m, the elements of s∞t−l belong to Ft−m−1, and the preceding arguments

show that E[(h∞
t )−2εt−m |Ft−m−1]θθθ=θθθ0 = 0. For m > l, note that the elements

of (h∞
t )−2s∞t−l are symmetric in εt−m , so that E[(h∞

t )−2εt−ms
∞
t−l |Ft−m ]θθθ=θθθ0 ≡

φ(εt−m) is antisymmetric in εt−m and, again, E[φ(εt−m)|Ft−m−1]θθθ=θθθ0 = 0,
where elements included in the conditioning set Ft−m−1 are treated as nonran-
dom when taking the conditional expectation. It follows that Jηϕηϕηϕ = 0.

Because vc = 0, (ii)–(iv) follow immediately, given previous definitions. n

Proof of Lemma 4. Note that c∞′
t = (h∞

t )−1 ∑∞
i=0 βi

1εt−1−i f
′
t−1−i and rt = (εt−1,

ε3
t−1)′, so that Jπϕπϕπϕ can be written as

Jπϕπϕπϕ = −2α01E

{
E

[
1

h∞
t

(
ε2

t−1
ε4

t−1

)∣∣∣∣∣Ft−2

]
f ′t−1

+
∞
∑
i=1

βi
1E

[
1

h∞
t

(
εt−1

ε3
t−1

)
εt−1−i

∣∣∣∣∣Ft−2

]
f ′t−1−i

}
θθθ=θθθ0

= −2α01E

{
E

[
1

h∞
t

(
ε2

t−1

ε4
t−1

)∣∣∣∣∣Ft−2

]
f ′t−1

}
θθθ=θθθ0

,

which is nonzero, in general, because E

[
1

h∞
t

(
ε2

t−1

ε4
t−1

)∣∣∣∣∣Ft−2

]
θθθ=θθθ0

> 0, a.s. The second

term (after the second equality) is zero because, for j ≥ 2,
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E

[
1

h∞
t

(
εt−1

ε3
t−1

)
εt− j

∣∣∣∣∣Ft−2

]
θθθ=θθθ0

=
(

εt− j E

[
1

h∞
t

(
εt−1

ε3
t−1

)∣∣∣∣∣Ft−2

])
θθθ=θθθ0

and

E

[
1

h∞
t

εs
t−1

∣∣∣∣Ft−2

]
θθθ=θθθ0

= E
[
φ
(
εt−1

) |Ft−2
]
θθθ=θθθ0

,

where E
[(

h∞
t
)−1

εs
t−1|Ft−1

]
= φ(εt−1), s = 1,3, which is antisymmetric in εt−1,

so that E
[
φ(εt−1)|Ft−2

] = 0 because the conditional density of εt−1 given Ft−2 is
symmetric. Thus, in general, Jπϕπϕπϕ 	= 0.

Second, with x∞′
t = (h∞

t
)−1 ∑∞

i=0 βi
1s

∞′
t−1−i , Jπηπηπη can be written as

Jπηπηπη = E

{
E

[
1

h∞
t

(
εt−1

ε3
t−1

)
s∞′

t−1

∣∣∣∣∣Ft−2

]

+
∞
∑
i=1

βi
1E

[
1

h∞
t

(
εt−1

ε3
t−1

)∣∣∣∣∣Ft−2

]
s∞′

t−1−i

}
θθθ=θθθ0

.

Similar arguments to those employed previously imply that Jπηπηπη is the null vector. n

Proof of Proposition 1. The method of proof follows very closely that of Godfrey
(1996). Consider the negative size bias test of Engle and Ng (1993) in which r̂t = Ît−1ε̂t−1
and for simplicity, in this case, m(wt ;ϕϕϕ) = w′

tϕϕϕ. Define the following dummy variables,
which will be employed in the ensuing asymptotic analysis:

Dt1 = 1, if ε0,t−1 ≤ 0 and ε̂t−1 ≤ 0, Dt1 = 0, otherwise,

Dt2 = 1, if ε0,t−1 > 0 and ε̂t−1 ≤ 0, Dt2 = 0, otherwise,

Dt3 = 1, if ε0,t−1 ≤ 0 and ε̂t−1 > 0, Dt3 = 0, otherwise,

Dt4 = 1, if ε0,t−1 > 0 and ε̂t−1 > 0, Dt4 = 0, otherwise

for t = 1, . . . ,T . Note that both Pr (Dt2 = 1) and Pr (Dt3 = 1) tend to zero as T → ∞,
under fairly general conditions onwt , because ε̂t−1 −ε0,t−1 = −w′

t−1

(
ϕ̂ϕϕ −ϕϕϕ0

)
and ϕ̂ϕϕ is√

T -consistent for ϕϕϕ0.
Then, noting that r̂t − r0t = 0 when Dt4 = 1, the difference between

√
T DπππT (θ̂θθ) and

1√
T

T
∑

t=1

[(
ε̂2

t

ĥt
−1

)
r0t

]
can be expressed as

1√
T

T

∑
t=1

[(
ε̂2

t

ĥt
−1

)(
r̂t − r0t

)]

= 1√
T

T

∑
t=1

[(
ε̂2

t

ĥt
−1

){
Dt1

(
ε̂t−1 − ε0,t−1

)+Dt2ε̂t−1 −Dt3ε0,t−1
}]

= �1 +�2 +�3,
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where

�1 = 1√
T

T

∑
t=1

[
Dt1

(
ε̂2

t

ĥt
−1

)(
ε̂t−1 − ε0,t−1

)]

= − 1

T

T

∑
t=1

[
Dt1

(
ε̂2

t

ĥt
−1

)
w′

t−1

]√
T
(
ϕ̂ϕϕ −ϕϕϕ0

)
,

�2 = 1√
T

T

∑
t=1

[
Dt2

(
ε̂2

t

ĥt
−1

)
ε̂t−1

]
,

�3 = − 1√
T

T

∑
t=1

[
Dt3

(
ε̂2

t

ĥt
−1

)
ε0,t−1

]
,

are all op(1), for j = 1,2,3, implying
1√
T

∑T
t=1 [((ε̂2

t /ĥt )− 1)(r̂t − r0t )] = op(1). For

example, �3 can be written as

�3 = −
(

T

∑
t=1
Dt3/T

)1/2
⎡
⎣( T

∑
t=1
Dt3

)−1/2 T

∑
t=1
Dt3

(
ε̂2

t

ĥt
−1

)
ε0,t−1

⎤
⎦

= − (M3/T )1/2

[
(M3)−1/2 ∑

t∈T3

(
ε̂2

t

ĥt
−1

)
ε0,t−1

]
,

whereM3 = ∑T
t=1Dt3 is the number of observations for which Dt3 = 1 and T3 denotes

the subsample of observations with Dt3 = 1. Now, M3/T is the proportion of sample
observations for which Dt3 = 1. Because Pr(Dt3 = 1) → 0,M3/T is thus op(1).

Similar to the preceding analysis, because M3 → ∞, a mean value expansion of

(M3)−1/2 ∑t∈T3

(
ε̂2

t

ĥt
−1

)
ε0,t−1 reveals that it is Op(1). Therefore, �3 = op(1), and, in

a similar fashion, it can be shown that �2 = op(1).
Turning to �1,

�1 = − (M1/T )

[
M−1

1 ∑
t∈T1

(
ε̂2

t

ĥt
−1

)
w′

t−1

]√
T
(
ϕ̂ϕϕ −ϕϕϕ0

)
,

whereM1 = ∑T
t=1Dt1 is the number of observations for which Dt1 = 1 and T1 denotes

the subsample of observations with Dt1 = 1. Now, M1/T is the proportion of sample

observations for which Dt1 = 1. In this case, Pr(Dt1 = 1) → 1, so thatM1/T
p→ 1, and

a mean value expansion ofM−1
1 ∑t∈T1

((ε̂2
t /ĥt )−1)w′

t−1 reveals that it is op(1). Hence,
�1 = op(1), also. n
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Proof of Lemma 5. Specifically, Jπϕπϕπϕ can be written as

Jπϕπϕπϕ = −2α01E

{
E

[
1

h∞
t

It−1ε2
t−1

∣∣Ft−2

]
f ′t−1

+
∞
∑
i=1

βi
1E

[
1

h∞
t

It−1εt−1εt−1−i
∣∣Ft−2

]
f ′t−1−i

}
θθθ=θθθ0

,

which is nonzero (certainly, E
[
(1/h∞

t )It−1ε2
t−1|Ft−2

]
is nonnegative). n

Proof of Lemma 6. The proof is similar to that of Lemma 3. First, for nonnegligible
estimation effects from the conditional mean,

Jπϕπϕπϕ = −2
q

∑
k=1

α0kE

[
1

h∞2
t

∞
∑
i=0

∞
∑
j=0

ψi ψj εt−k− jvt−1−i f
′
t−k− j

]
θθθ=θθθ0

is nonzero, in general, if at least one element in Jπϕπϕπϕ is nonzero. This amounts to examining

the typical expectation E

[
1

h∞2
t

εs
t−lεt−mf

′
t−m

]
θθθ=θθθ0

for l = m, l < m, and l > m, where

s = 1,3. First, for l = m,

E

[
1

h∞2
t

εs
t−lεt−l f

′
t−l

]
θθθ=θθθ0

= E

{
E

[
1

h∞2
t

εs
t−lεt−l

∣∣∣∣∣Ft−l−1

]
f ′t−l

}
θθθ=θθθ0

with the conditional expectation given by E[(h∞
t )−2εu

t−l |Ft−l−1] for u = 2,4.

Similar to the arguments in Lemma 4, E[(h∞
t )−2εu

t−l |Ft−l−1] > 0, a.s., and thus

E[(1/h∞2
t )εs

t−lεt−l f
′
t−l ]θθθ=θθθ0 is nonzero. Further, for l < m,

E

{
f ′t−mE

[
1

h∞2
t

εs
t−lεt−m

∣∣∣∣∣Ft−m−1

]}
θθθ=θθθ0

= E

{
f ′t−mE

[
εt−mE

[
1

h∞2
t

εs
t−l

∣∣∣∣∣Ft−l−1

]∣∣∣∣∣Ft−m−1

]}
θθθ=θθθ0

,

and arguments similar to those employed in the proof of Lemma 3 establish that E[(h∞
t )−2×

εs
t−l |Ft−l−1] = 0 for s = 1,3. For l > m, because Ft−l−1 ⊆ Ft−m−1,

E

[
1

h∞2
t

εs
t−lεt−mf

′
t−m

]
θθθ=θθθ0

= E

{
f ′t−mεs

t−l E

[
1

h∞2
t

εt−m

∣∣∣∣∣Ft−m−1

]}
θθθ=θθθ0

,

where the elements εs
t−l , s = 1,3 belong to Ft−m−1 and previous arguments show that

E[(h∞
t )−2εt−m |Ft−m−1]θθθ=θθθ0 = 0.

Second, for Jπηπηπη, the expectation to be examined is E[(1/h∞2
t )εs

t−ls
∞′
t−m ]θθθ=θθθ0 , s = 1,3

for l = m, l > m, and l < m. Arguments similar to those used in the proof of Lemma
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3(i) show that Jπηπηπη = 0. In particular, notice that for s = 1, the preceding expectation was
shown to be zero for all three cases in Lemma 3. Similar arguments also apply for s = 3. n

Proof of Lemma 7. First, with c∞′
t = (

h∞
t
)−1 ∑∞

i=0 ψi εt−1−i f
′
t−1−i and r∞t =(

h∞
t
)−1 ∑∞

i=0 ψivt−1−i , Jπϕπϕπϕ can be written as

Jπϕπϕπϕ = −2
q

∑
k=1

α0kE

[
1

h∞2
t

∞
∑
i=0

∞
∑
j=0

ψi ψj εt−k− jvt−1−i f
′
t−k− j

]
θθθ=θθθ0

.

For a typical element in Jπϕπϕπϕ, the expectation to be examined is E[(1/h∞2
t )It−lεt−lεt−m×

f ′t−m ] for the cases l = m, l < m, and l > m. Consider just l = m; here we have E[(1/h∞2
t )×

It−lε
2
t−l f

′
t−l ]θθθ=θ0 = E{E[(1/h2

t )It−lε
2
t−l |Ft−l−1]f ′t−l }θθθ=θθθ0 , which is certainly nonzero.

Second, with x∞′
t = (h∞

t )−1 ∑∞
i=0 ψis

∞′
t−1−i , Jπηπηπη in (11) can be written as

Jπηπηπη = E

[
1

h∞2
t

∞
∑
i=0

∞
∑
j=0

ψi ψjvt−1−is
∞′
t−1− j

]
θθθ=θθθ0

.

For a typical element in Jπηπηπη, the expectation to be examined is E

[
1

h∞2
t

It−lεt−ls
∞′
t−m

]

for the cases l = m, l < m, and l > m. Arguments similar to those employed previously
show that this is nonzero in general. n


