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Abstract 
Meta-analysis for adverse events resulting from medical interventions has many 

challenges, in part due to small numbers of such events within primary studies. 

Furthermore, variability in drug dose, potential differences between drugs within the 

same pharmaceutical class, and multiple indications for a specific treatment, can all 

add to the complexity of the evidence base.  

This paper explores the use of synthesis methods, incorporating mixed treatment 

comparisons, to estimate the risk of adverse events for a medical intervention, while 

acknowledging and modelling the complexity of the structure of the evidence base. 

The motivating example was the effect on malignancy of three anti-TNF drugs 

(etanercept, adalimumab and infliximab) indicated to treat rheumatoid arthritis. Using 

data derived from 13 primary studies, a series of meta-analysis models of increasing 

complexity were applied. Models ranged from a straightforward comparison of anti-

TNF against non-anti-TNF controls, to more complex models in which a treatment 

was defined by individual drug and its dose. Hierarchical models to allow ‘borrowing 

strength' across treatment classes and dose levels, and models involving constraints 

on the impact of dose level, are described. 

These models provide a flexible approach to estimating sparse, often adverse, 

outcomes associated with interventions. Each model makes its own set of 

assumptions, and approaches to assessing goodness of fit of the various models will 

usually be extremely limited in their effectiveness, due to the sparse nature of the 

data. Both methodological and clinical considerations are required to fit realistically 

complex models in this area, and to evaluate their appropriateness. 

 

 

Keywords: network meta-analysis; mixed treatment comparisons; hierarchical 

models; anti-TNF drugs; rheumatoid arthritis. 
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1. Introduction 

Meta-analysis of adverse outcomes is frequently used [1-2], and is valuable because 

individual studies often lack power to detect adverse outcomes. Application of meta-

analysis methods to adverse event data is associated with a specific set of 

challenges [3], including the often infrequent occurrence of such adverse events. 

This issue is compounded when combined with issues whereby data may be 

available for similar but not identical treatments (and for different treatment 

indications). Ignoring such subtleties in the structure of the evidence base and 

pooling all ‘intervention’ vs ‘control’ data into an overall estimate would maximise the 

power of the analysis to detect an increased risk. However, this approach would 

potentially lose valuable information regarding individual treatment aspects (such as 

dose or individual drug), or the indications for treatment. This information would be 

conserved using a ‘splitting’ approach across treatments and/or indications, but the 

data would inevitably be ‘spread thinner’ across a greater number of nodes within a 

meta-analysis network. 

The aim of this paper is to explore, develop and apply evidence synthesis methods 

for the synthesis of adverse event data, drawing on recent developments in evidence 

synthesis methodology used in other contexts. Section 2 briefly reviews relatively 

recent developments in evidence synthesis (primarily under a Bayesian paradigm), 

highlighting approaches which are adopted in our modelling of adverse event data. 

Section 3 describes the motivating dataset on the use of anti-TNF drugs for 

rheumatoid arthritis and the risk of malignancy. Section 4 describes the models 

developed, with Section 5 describing the results of fitting the different models to the 

motivating dataset. Finally, Section 6 discusses how these models can be applied in 

clinical scenarios and how the appropriateness of models may be determined. 

 

2. Recent developments in evidence synthesis with potential relevance for 

adverse event synthesis  

Many recent developments in evidence synthesis methodology have used Bayesian 

approaches, as implemented using Markov Chain Monte Carlo (MCMC) techniques 

due to the flexibility offered by such an approach [4], and the ability to perform 

complex statistical modelling [5]; for these reasons, Bayesian approaches are 

implemented in the adverse event scenario considered here.  
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The Bayesian approach allows the use of ‘exact’ simulation approaches to the 

synthesis of sparse data, an advantage of which is that they circumvent the need for 

continuity corrections (adding a constant to the event numbers across all cells of the 

2 x 2 table where one arm has no events [6]), unlike many classical statistical meta-

analytical approaches.  

Furthermore, mixed treatment comparison (MTC) methods  [7–15], also referred to 

as network meta-analysis, offer great potential to model differences in intervention 

definitions, by allowing the synthesis of evidence across arbitrarily complex networks 

of treatment comparisons; such methods have been applied in a simple approach to 

adverse events analyses previously [16]. Graphical representations of evidence 

networks in relation to MTC analyses have been considered in detail [17], and the 

challenges of defining such networks [18] have been given recent consideration, 

acknowledging that alternative approaches may also be viable. The concept of 

‘connectedness' in a network of treatments is central to the application of MTC 

analysis, as it ensures that the randomisation of the primary studies is maintained 

whilst allowing inclusion of all available comparisons between treatments [16]. 

Recent extensions to MTC approaches encompass the inclusion of (fixed) covariate 

effects [19]. 

The use of hierarchical models has a long history in Bayesian methods generally; 

such models, which facilitate the implementation of assumptions of exchangeability, 

are commonly used in evidence synthesis applications [20]. The exchangeability 

assumption acknowledges potential differences between study results despite the 

fact that they cannot be explained by fixed covariate effect, thus allowing a 

‘borrowing of strength’ across studies [21], which then  allows the synthesis of 

primary studies with acknowledged differences.  Advanced application of Bayesian 

hierarchical models has also allowed constraints to be placed on the parameters to 

be estimated, an example of which acknowledges the differences in reliability of 

evidence across study types when combining RCTs and observational studies [22]. 

Hence, by considering these recent developments in evidence synthesis 

methodology, this paper brings together concepts of MTC modelling with hierarchical 

models and constraints, to address issues in adverse events meta-analysis that are 

characterised by (i) sparsity of events; and (ii) multiple treatments, which are 

connected in terms of the evidence network and may vary according to how the 

treatments are defined.
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3. Motivating dataset 

The motivating topic used in this paper is that of risk of malignancy in patients with 

rheumatoid arthritis who take anti-tumour necrosis factor (anti-TNF) drugs to 

alleviate their symptoms and modify the course of their disease. A possible 

association between anti-TNF drugs and malignancy risk has been investigated 

previously using pairwise meta-analysis methods [23–25]. The earliest of these 

meta-analyses [23] concentrated on two anti-TNFs, infliximab and adalimumab, but 

combined data across both drugs and did not consider dose effects.  This meta-

analysis purposively excluded a third anti-TNF, etanercept, which has a different 

molecular structure and mechanism of action compared with infliximab and 

adalimumab. The odds ratio (OR) for malignancy of anti-TNFs vs. placebo was 3.3, 

with a 95% confidence interval (CI) of 1.2; 9.1. When etanercept was considered 

separately in a time-to-event meta-analysis of data from trials [25], the pooled hazard 

ratio (HR) for malignancy of etanercept vs. controls (not receiving etanercept) was 

1.84 (95% CI 0.79; 4.28). These analyses provided the motivation to carry out a 

synthesis of all three drugs simultaneously, with specific interest in addressing the 

issues surrounding the effect of dose and specific anti-TNF with regard to 

malignancy risk. 

The dataset used in this paper was derived from previous reviews [23, 25] and in 

some cases, by recourse to primary sources [26–27], and is set out in Table 1. Data 

are included for six etanercept studies [28–33] – noting that Weisman et al. 2007 is 

referenced by an earlier citation (Baumgartner et al. 2004) in Bongartz et al. 2009 – 

five adalimumab studies [27, 34–37], and two infliximab studies [26, 38]. All 13 

primary studies included a non-anti-TNF arm. Studies that included no malignancy 

events in any trial arm were excluded as these studies do not provide any 

information on relative treatment effects [6]. For ease of classification of different 

treatments, the definitions of ‘low’, ‘recommended’ and ‘high’ dose of anti-TNF are 

used [24]. Over the 13 studies there were 76 malignancy events in the 7233 

participants. This breaks down to 14 in the control treatments out of 2275 

participants (0.62%), and 62 in the anti-TNF treatments out of 4958 participants 

(1.25%). Non-anti-TNF therapies were assumed to have no malignancy risk, and 

were therefore collapsed with placebo controls.  The dataset comprised six studies 

with two arms, five studies with three arms, and two studies with four arms. 
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4. Description of the models used 

4.1. Overview  

A series of random effects network meta-analyses, increasing in complexity, were 

performed. The initial random effects meta-analysis was a simple comparison 

between anti-TNF therapy and non-anti-TNF controls (Model A). This was followed 

by a network meta-analysis with each of the three anti-TNFs considered as having a 

distinct treatment effect, but synthesising across (i.e. ignoring) all doses for each 

drug (Model B). The third model was a network meta-analysis where the treatments 

were defined by dose of anti-TNF alone (i.e. regardless of the specific drug); Model 

C. Model D defined each treatment as a combination of specific anti-TNF and dose. 

Hierarchical models were then imposed over the network structure defined in Model 

D. Model E placed random effects across individual drug within each dose level (i.e. 

dose was considered to have a stronger influence on malignancy risk than drug), 

while Model F placed random effects across dose levels within each individual drug 

(i.e. drug was considered to have a stronger influence on malignancy risk than 

dose).  Finally, constraints were added to Model E, with the assumption that 

malignancy risk increased with dose of anti-TNF (Model G). All models included a 

non-anti-TNF control treatment for comparison purposes. Each model is discussed 

individually in more detail below and the results considered in Section 5. All models 

are applied to the same dataset, with treatment groupings varying according to the 

model which meant that, in some instances, data were pooled across multiple arms 

of the same study (e.g. when different doses of the same drug had been included in 

a trial, but dose was ignored in the model; we had no interest in differences in 

administration regime if the overall dose was the same for each regime, and this 

approach simplified the analyses and reduced the likelihood of an arm with zero 

events). In this dataset, every study had a control arm in which no anti-TNF 

treatment was given, although the methodology which follows is still relevant in the 

broader context where there is no common arm across all studies, but the network is 

connected (all nodes are directly linked to at least one other node in the network, i.e. 

by having both nodes present in the same study, and all nodes are connected to all 

other nodes, either directly, or indirectly via one or more intermediate nodes). 
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4.2. Model A: Pairwise meta-analysis comparing anti-TNFs with non-anti-TNF control 

The simplest analysis considered is a straightforward pairwise comparison, defining 

treatments as being either ‘anti-TNF’ or ‘non-anti-TNF’ and thus treating each study 

as providing the same two-group comparison. Figure 1a displays the classification of 

treatments graphically in the form of a network diagram; a format which will become 

more informative for the analysis of the more complex networks which follow. This 

allows a standard (pairwise) random effects meta-analysis model to be fitted to the 

data [39]: 

   k = 1, 2 and j = 1, 2, …, N studies      

                              [1] 

, 

where  is the number of events that have occurred out of a total of  patients 

randomised to treatment-arm k of trial j. These are assumed to be sampled from a 

binomial distribution with underlying true event probability .  Thus is the true 

log-odds of an event for treatment k = 1  (in this case the non-anti-TNF control), δj  is 

the true trial-specific log-odds ratio of the active treatment (k = 2) relative to 

treatment k =1 in the jth trial. The trial-specific log-odds are assumed to be 

generated from a normal distribution with mean d and variance σ2, which is the 

standard random effects assumption. Vague prior distributions for the unknown 

parameters are specified as: 

. 

 

This model can be thought of as a special two-treatment case of the more general 

network meta-analysis model presented in the next section. For this model, and all 

subsequent models, in order to produce an absolute goodness of fit statistic for the 

model, the deviance for each datapoint is calculated. This deviance can then be 

summed and compared to the total number of datapoints. The fitted value for each of 

i datapoints is given by: 

                                 [2] 

These are then used to calculate the deviance for each datapoint via [40]: 
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These deviances are summed to give the overall sum of deviance.To provide a 

contrast with the Bayesian pairwise analysis, an equivalent frequentist random 

effects meta-analysis [41] was also performed, using Stata v.12.  

 

4.3. Model B: Network meta-analysis comparing individual anti-TNFs with non-anti-

TNF control 

A network meta-analysis model is applied to the dataset, in which each drug (i.e. 

etanercept, adalimumab and infliximab) is treated distinctly, but different dose levels 

are ignored. A network diagram for this four node model is shown in Figure 1b. This 

model has been described in depth [10, 42] and is outlined below. A standard mixed 

treatment random effects model with a binary outcome can be specified. Suppose 

that K treatments (where ) are being compared in a meta-analysis of j 

= 1, 2, …., N trials, and treatment 1 (non-anti-TNF in this case) is taken to be the 

reference or baseline treatment in the analysis. Let the number of events, , that 

have occurred out of a total of  patients randomised to treatment-arm k of trial j, 

be sampled from a binomial distribution with underlying true event probability .  

Thus, the likelihood of an event and the logistic regression model are the same as 

those in Model A, but here it involves K rather than 2 treatments:  

arm-level likelihood:     

 

, 

where is the true log-odds of an event in baseline treatment b in trial j, δjbk  is the 

true trial-specific log-odds ratio of treatment k relative to treatment b,  

, and d11 = 0. 

The trial-specific log-odds are assumed to be normally distributed with mean dbk and 

variance σ2 under a homogenous variance assumption [7, 19]. As before, vague prior 

distributions are specified for all unknown parameters: 

  . 

 

 

 



9 
 

4.4. Model C: Network meta-analysis comparing dose of anti-TNF with non-anti-TNF 

control 

Model C changes the intervention definitions used compared to Model B by not 

distinguishing between the different anti-TNF drugs, but categorising by dose level, 

defined as recommended, low and high doses. The resulting evidence network is 

presented in Figure 1c. As some of the primary studies trialled multiple doses, three 

or more distinct treatment regimes exist for certain studies, whereas in models A and 

B, multiple active treatment arms could always be pooled, as no trial compared two 

or more anti-TNFs.  This means multiple, correlated, comparisons were available for 

some studies, hence the network meta-analysis model required adjustment to 

account for this correlation [21]. Multi-arm trials introduce a correlation between each 

pair (  k≠h, of ½ and a covariance of   for homogeneous variance models 

[10, 42]. Thus, the correlated treatment effects in multi-arm trials, with p distinct 

arms, are assumed to be sampled from a multivariate (MVN) normal distribution 

given by Equation (3). The model is fitted in WinBUGS by decomposing the MVN as 

a series of conditional univariate distributions [7, 42] as in Equation (4). 
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The MTC model specified above assumes prior independence 

between  parameters [7], with the  parameters  treated as fixed 

nuisance parameters.  

This model is first in the series to introduce loops into the model; in this model, there 

are seven loops in total, four with three nodes and three with four nodes. Hence, the 

possibility of inconsistency [12] within the model is encountered for the first time. 

 

 

 

 (3) 

 (4) 
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4.5. Model D: Network meta-analysis comparing active treatments defined by dose-

drug combination with non-anti-TNF control 

Model D distinguishes distinct intervention nodes by the combination of specific anti-

TNF used and its dose (e.g. infliximab at high dose); all active interventions were 

compared against a non-anti-TNF control, as in previous models. The network used 

for this analysis is presented in Figure 1d. As some trials contributed more than two 

‘arms’ to the analysis, the network model that accounts for multi-arm trials was 

utilised, as described for Model C above. As with Model C, Model D includes 

treatment loops, hence there is a possibility for inconsistency within the model (also 

applying to Models E, F and G, which are based on the same treatment network). In 

Model D, there are nine loops in total, six with three nodes and three with four nodes.  

 

4.6. Model E: Network meta-analysis, assuming exchangeability of individual anti-

TNF drug across dose level 

The use of random effects models to assume exchangeability between treatment 

effects from multiple studies has a long history in evidence synthesis [4]. Very 

recently, exchangeability has also been assumed across certain nodes in a network 

meta-analysis [43],  which we also consider here.  

In Model E, we define treatment nodes by both drug and dose, in exactly the same 

way as for Model D. However, Model E makes the assumption that the specific dose 

has a stronger influence on malignancy risk than the specific drug that defines an 

individual ‘treatment’, whereas in Model D, drug and dose combined to create an 

individual treatment, with no assumptions regarding the relative strength of influence 

of either drug or dose on malignancy risk. Hence, using Model E, information within a 

dose level is ‘exchangeable’ across drugs, thus allowing ‘borrowing of strength’ 

across a dose level.   

The additions to Model D that are required to implement the exchangeability 

assumptions are formally outlined below:  

 (5) 

where ,  and  are the population log-odds ratios for low, 

recommended and high doses of anti-TNF respectively, and  is the between-

estimate variance of study results within each of the three doses. The degree of 
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heterogeneity within the dose levels is assumed to be equal for each of the three 

levels, due to the sparsity of the data. Vague prior distributions were placed on these 

new parameters: 

   

 

 

4.7. Model F: Network meta-analysis, assuming exchangeability of different dose 

levels within individual anti-TNF drug 

Model F is of the same format as Model E, but here it is assumed that the individual 

anti-TNF drugs have a stronger influence on malignancy risk compared to dose. 

Hence, this model incorporates exchangeability of information across dose level 

within anti-TNF drug, allowing ‘borrowing of strength’ across an individual anti-TNF 

drug. Formally: 

 (6) 

where ,  and  are the population log-odds ratios for 

etanercept, adalimumab and infliximab, and  is the between-estimate variance 

of study results within each of the three drugs. As for Model E, heterogeneity within 

the (drug) levels is assumed to be equal for each of the three levels, due to the 

sparsity of the data. The following vague priors are specified: 

   

. 

 

4.8. Model G: Applying constraints on the effect of dose to Model E 

The hierarchical network meta-analysis model was extended further by placing 

constraints on parameters in the model. The network meta-analysis model in which 

dose is considered to have a stronger association with malignancy risk (Model E), 

leading to the assumption that information on individual anti-TNF drugs is 

exchangeable within dose, is developed further, by specifying constraints that 

enforce the assumption that the effects of lower anti-TNF doses on risk of 

malignancy cannot be greater than those of higher doses: 

                                                              (7) 
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To achieve this, the prior distributions placed on each dose level were truncated to 

ensure that only higher values for the log-odds ratio of malignancy (compared with 

the non-anti-TNF control group) could be sampled for each dose level compared with 

the dose level immediately below it. Using recommended dose as the baseline, as 

this dose was present across all three anti-TNFs, the log-odds ratio for malignancy in 

the low and high doses were set to be related to the log-odds ratio for the 

recommended dose, by addition of a difference factor for each dose. The difference 

factor for the log-odds ratio comparing the low with recommended dose was then set 

to be negative, based on a half-normal distribution truncated to be below zero; 

similarly, the difference factor for the log-odds ratio for the high dose compared with 

the recommended dose was set to be positive (truncated above zero). The changes 

required to Model E to implement these constraints are presented below: 

                                           (8) 

 

where  and  are the differences in the log-odds ratios between low and 

recommended doses,  and high and  recommended doses, respectively; I(,0) 

indicates that the normal distribution is truncated above zero (can take only negative 

values); and I(0,) indicates that the normal distribution is truncated below zero (can 

take only positive values). 

 

4.9. Implementation in WinBUGS 

All models were implemented using WinBUGS v.1.4.3. Three chains with different 

initial values were used for each model, with assessment for convergence using the 

Brooks–Gelman–Rubin method [44], as well as visual inspection of the trace. 

Convergence was confirmed prior to the selection of an adequate burn-in period 

which was always at least 10,000 iterations. Following burn-in, at least 50,000 

iterations were performed to provide the results for each model. The WinBUGS code 

used for the most complex model, Model G, is provided in Appendix A. Highest 

posterior density (HPD) credible intervals (CrIs) were derived using the boa package 

[45] for R. 
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4.10. Sensitivity analysis to choice of prior distributions 

In all the analyses presented above, with the exception of the constraints specified in 

Model G, all prior distributions were intended to be vague. Our desire is for all such 

prior distributions to have minimal impact on the modelling, indeed a Bayesian 

analysis in WinBUGS was utilised because it provides the flexibility to fit the desired 

models, rather than due to the ability of such analyses to include external information 

(although in some contexts this may be advantageous). While very vague priors can 

be placed on location parameters, such as those specified on the log-odds ratios, 

previous work [46] has highlighted the difficulties in achieving this for scale 

parameters, such as variance components for random effects where data are limited, 

i.e. where there are few estimates (studies) contributing to the estimation of random 

effects. Due to this, we believe it is necessary to check robustness of estimation to 

the specification of such priors.  To this end, we conducted a sensitivity analysis 

changing all priors on random effects standard deviations from Uniform(0, 2) to half-

Normal(0, 1), i.e. a normal distribution truncated above 0; also, we placed Inverse-

Gamma(0.001, 0.001) distributions on the variance for models B, E, F and G (where 

multiple random effects were specified, some of which were informed by small 

numbers of studies). 

 

5. Results 

Table 2 presents all the relative treatments effects, compared with control, for each 

of the anti-TNF treatment categories as defined by each of the models. The overall 

mean sum of deviance(s), in conjunction with the number of datapoints, are set out 

in Table 3. The assessment of model fit, based on comparing the sum of deviances 

with the number of datapoints (which varies across models due to the merging of 

arm data for some trials in some models) suggested all models would appear to be a 

good fit to the data, and thus has little discriminatory ability. This is probably due to 

the fact that there is relatively little information in the data on which the evaluation is 

based, due to the sparseness of events, and thus highlights a universal problem 

when analysing sparse data. Furthermore, in a random effects analysis, the 

heterogeneity parameter can increase to accommodate wide variation in effects 

across studies.  

Model A provided evidence that anti-TNFs are associated with higher risk of 

malignancy than non-anti-TNF controls (OR 2.48, 95% credible interval (CrI) 1.19; 
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7.35), but, due to the model specification, was unable to provide insight as to 

whether the risk was different across anti-TNFs and/or dose levels. The equivalent 

random effects frequentist meta-analysis yielded contrasting results: OR 1.52, 95% 

CI 0.86; 2.67. These dissimilar results are due to (i) the inclusion of a continuity 

correction of 0.5 for all studies with zero events in one arm (a smaller continuity 

correction of 0.05 yielded similar results to those derived by use of 0.5); and (ii) the 

application of a prior distribution to the between-studies heterogeneity in the 

Bayesian model – although non-informative, such a distribution may impact on the 

posterior distribution of the between-studies standard deviation.  Model B, which 

estimated the risk for each anti-TNF separately, indicated that all three drugs exhibit 

a higher risk of malignancy than the non-anti-TNF control groups, although there was 

considerable uncertainty around all three estimates with the CrIs including an OR of 

1 in each instance. 

The third model, Model C, provided estimates for each dose level, ignoring specific 

anti-TNF effects. This model was illuminating because the OR for the high dose 

group was elevated considerably (OR 7.36, 95% CrI 1.94; 39.95), indicating at least 

a doubling of risk of malignancy for the high dose anti-TNF compared with controls. 

This was in contrast to the recommended and low dose treatments, for both of which 

an OR of approximately 2 (compared with non-anti-TNF controls) was estimated, 

with a CrI including 1 in both cases. 

Model D defined the treatments by both dose and specific anti-TNF, resulting in a 

potential of nine different treatment combinations (three drugs and three dose 

levels), of which seven had observed data from the available trials. However, this 

degree of resolution for the treatment definitions, in conjunction with the sparsity of 

data, resulted in very wide credible intervals, making it difficult to discern whether 

any specific anti-TNF/dose combination was associated with greater malignancy risk, 

with all CrIs including an OR of 1. Notably, the ordering of the point estimates for 

doses within drugs was consistent with that expected for a dose–response 

relationship.  

The motivation for Models E and F, which make the assumption of exchangeability 

across certain treatment categorisation factors, was to try and reduce uncertainty in 

treatment effects, through borrowing strength across units in the hierarchy, while still 

being able to estimate distinct drug/dose combinations. Thus, these models can be 

seen as a ‘half-way house’ between the assumptions made in models B and C, 
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which pool across doses and drugs respectively, and model D, which allows 

estimation of each drug/dose combination independently. 

The impact on the estimation of the treatment effects is somewhat predictable for 

both of these models. In each case there is a degree of shrinkage across the 

treatment groups assumed to be exchangeable. For example, with Model E, within 

each dose, the treatment effects for each individual drug became more similar, 

compared with the equivalent treatment effects for Model D. For completeness, the 

parameter estimates for the random effects relating to dose (Models E and G) and 

drug (Model F) are given in the Appendix in Table A1. The standard deviation across 

doses (Model E; 0.361, 95% highest posterior density (HPD) CrI 0.0008; 1.152) was 

very similar to that across drugs (Model F; 0.352, 95% HPD CrI 5.0 e-5; 1.187). For 

Model F, the three levels of dosage were shrunk towards each other within each 

drug (in comparison with Model D). In addition, for both Models E and F, the 

uncertainty, and thus the width of the CrIs, was also reduced throughout. While the 

estimated median treatment effect for each drug/dose combination remained 

elevated in both models E and F, the CrI for high dose infliximab no longer included 

an OR of 1, despite the point estimate being considerably reduced (the OR of 10.00 

from Model D was reduced to 3.75 and 3.17 in Models E and F respectively). Based 

on the sum of deviances (Table 3), Model E appeared to be a fractionally improved 

fit to the data over Models D and F, perhaps supporting (although very weakly) the 

notion that dose has a stronger influence on malignancy risk than individual drug. 

Model G modified Model E by placing constraints on the effect of drug dose, 

enforcing the assumption that lower doses cannot have higher risks of malignancy 

(in terms of the log-odds ratio compared with non-anti-TNF controls) associated with 

them. These constraints made the differences between dose levels more 

pronounced; although conclusions remain similar to previous models, with all 

treatment/dose combinations having inflated ORs, using this model, the CrIs for high 

doses of both infliximab and adalimumab did not include an OR of 1. 

Table A2 in the appendix presents the results of the sensitivity analyses where the 

prior distributions were changed on all variance components in models B, E, F and 

G, to ascertain the influence of such prior specifications on parameter estimation. 

These analyses demonstrated that the prior distributions used do indeed have some 

influence on parameter estimation; we would suggest the differences are not of a 

magnitude that would influence the overall conclusions of any of the analyses. 
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6. Discussion 

In this paper we have outlined a number of network meta-analysis models for 

estimating the risk of adverse events. Sparse data has been shown to be challenging 

for standard pairwise meta-analysis in the past, especially if there were no events at 

all in some studies or no events in at least one treatment arm within a study [6].  The 

analyses presented here demonstrate the range of potential models available; at one 

extreme are models that are unrestricted in terms of making assumptions regarding 

treatment effects according to different treatment parameters (such as drug and 

dose in Model D), for which the parameter estimates are very uncertain; at the other 

extreme are models which explicitly make stronger assumptions through expressions 

of exchangeability (Models E and F) and the addition of constraints on parameter 

estimation (Model G). Although there may be concerns that these approaches are 

overly complex, and make too many strong assumptions, it is important not to forget 

that a simple pairwise meta-analysis of this data (Model A), which implicitly assumes 

all treatments (in this example all combinations of individual drug and dose) to have 

exactly the same effect, does in fact make the strongest assumptions of all the 

models presented here. 

It is very difficult to answer the question of how strong the assumptions should be 

(and therefore which approach to modelling should be used) in any particular clinical 

context. We have shown here and elsewhere that usual approaches to establishing 

best fitting models are problematic in a sparse data context [6]. In this paper, global 

measures of fit had very little discriminatory value, and relying on statistical 

significance of model parameters will often be inappropriate due to the often low 

power of the analysis. Previous simulation work showed that, in a frequentist 

paradigm, between-study variance parameters will be estimated as zero even when 

the data have been simulated from a scenario with considerable heterogeneity [6]; 

this suggests that informative prior distributions for variance components in these 

models would be advantageous [21] and circumvent problems that the (unintended) 

influence of intentionally vague prior distributions can have [46]. The use of multiple 

models making different assumptions, as done here in the form of a sensitivity 

analysis, is possibly the most sensible approach to address these issues.  

Alternatively, prior distributions that are empirically based and informative have been 

proposed for the heterogeneity parameter [47], although not specifically with regard 

to adverse events or sparse data. Heterogeneity was seen to be considerably higher 
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for Models B and D. This reflects the fact that in these models the nodes were 

defined by the individual anti-TNF only, without reference to dose, the more 

dominant factor in influencing malignancy risk (Model B), or by anti-TNF and dose 

(Model D), but without any specific modelling to impose any form of exchangeability 

across anti-TNFs/doses (as in Models E, F and G). 

A simple solution to these problems would be simply to collect more data so that 

sparseness (in terms of number of events and numbers of trials) becomes less of an 

issue. However, this will often be time-consuming, costly, and potentially unethical in 

some contexts. As an alternative to further research, it may be possible to extend the 

potential number of trials that provide data of relevance to the clinical issue, for 

example by including data from trials where a specific intervention is used for 

indications other than those directly of interest. In the motivating example considered 

here, data were derived from studies using anti-TNF drugs to treat rheumatoid 

arthritis, but these drugs are licensed for other conditions, so data may be available 

from trials of anti-TNFs used for other indications. Data derived from trials for 

different indications would not be uncritically pooled; but it would be possible to 

extend the hierarchical network models presented here to allow data from trials for 

differing interventions to be incorporated, using the methods presented here, for 

example, to allow exchangeability within indications.   A further, and less far-

reaching, extension to the modelling presented here would be to specify 

simultaneous random effects for drug and dose levels, and in a sense combine the 

modelling extensions presented in Models E and F. Such modelling would have 

similarities with synthesis approaches pioneered in the context of extrapolating 

exposure risks across both species and dose levels simultaneously [48].  However, 

this modelling approach was not pursued here due to concerns with over-

parameterising a dataset of modest size. 

Within a network meta-analysis including loops, there is a possibility of inconsistency 

of evidence. In this example, Model C, and Models D, E, F and G, all have the 

potential for inconsistency, as they include multiple loops and trials with up to four 

arms. Additional investigation into inconsistencies within the models is warranted, for 

example using techniques of node-splitting [12], but such analyses are, due to the 

mixture of multi-arm trials (i.e. trials with two, three or four arms), inherently 

technically difficult and thus beyond the scope of this paper.  
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In summary, synthesis of sparse event data presents unique challenges. Novel 

modelling approaches have been developed and applied to a dataset that 

incorporates sparsity of events. Although these approaches may be valuable in this 

context, none provide a generic solution to the issue of data sparsity. Hence, 

consideration should be given to both methodological and clinical issues in order to 

fit realistically complex and contextually appropriate models in this area. 
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Table 1. Anti-TNF rheumatoid arthritis trial data used in synthesis models.  

First author 
(Year) 

Treatment 
Anti-TNF 

regime(s)* 

Anti-
TNF 
dose 

Number 
of 

patients 

Number of 
malignancies 

Etanercept 
Ericson (1999) Control NA  NA 105 0 

” Etanercept 25mg biw Rec 111 0 
” Etanercept 10mg qw or 

25mg qw or  
10mg biw 

Low 343 2 

Moreland (1999) Control NA  NA 80 0 
” Etanercept 25mg biw Rec 78 1 
” Etanercept 10mg biw Low 76 0 

Genovese (2002) Control NA  NA 217 4 
” Etanercept 25mg biw Rec 207 5 
” Etanercept 10mg biw Low 208 5 

Combe (2006) Control NA  NA 50 0 
” Etanercept 25mg biw Rec 204 1 

Van der Heijde 
(2006) 

Control NA NA 228 1 

” Etanercept 25mg biw Rec 454 10 
Weisman(2007)/ 

Baumgartner 
(2004) 

Control NA  NA 269 2 

” Etanercept 25mg biw Rec 266 2 
Adalimumab 

Furst (2003) Control NA  NA 318 0 
” Adalimumab 40mg eow Rec 318 4 

Weinblatt (2003) Control NA  NA 62 0 
” Adalimumab 40mg eow Rec 67 0 
” Adalimumab 20mg eow Low 69 0 
” Adalimumab 80mg eow High 73 1 

Keystone (2004) Control NA  NA 200 1 
” Adalimumab 20mg qw or 

40mg eow
  

Rec 419 8 

Van de Putte 
(2004) 

Control NA  NA 110 1 

” Adalimumab 20mg qw or 
40mg eow
  

Rec 225 2 

” Adalimumab 20mg eow Low 106 1 
” Adalimumab 40mg qw High 103 1 

Breedveld (2006) Control NA  NA 257 4 
” Adalimumab 40mg eow Rec 542 6 

Infliximab 
Maini (2004) Control NA  NA 88 1 

” Infliximab 3mg/kg q8w Rec 86 1 
” Infliximab 3mg/kg q4w 

or 10mg/kg 
q8w or 
10mg/kg 
q4w 

High 254 8 

St Clair (2004) Control NA  NA 291 0 
” Infliximab 3mg/kg q8w  Rec 372 0 
” Infliximab  6mg/q8w  High 377 4 

* Key: biw: twice weekly; eow: every other week; NA: not applicable; Rec: recommended; q4w: 4-weekly; 
q8w: 8-weekly; qw: weekly 
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Table 2. Odds ratios obtained from fitting models A to G (anti-TNF compared 
against non-anti-TNF control). 

Treatment Odds 
Ratio* 

95% Credible 
Interval 

(equal-tailed) 

Model  A : Pairwise meta-analysis, all anti-TNFs combined 

Anti-TNF 2.480 1.192; 7.354 

Model B : Network meta-analysis, comparing individual anti-
TNFs 

Etanercept 2.485 0.730; 13.44 
Adalimumab 2.399 0.685; 13.45 

Infliximab 6.878 0.664; 285.8 

Model C : Network meta-analysis, distinguishing only by dose 
of anti-TNF  

Low dose (Anti-TNF) 2.012 0.531; 8.627 
Recommended dose (Anti- TNF) 2.099 0.961; 5.455 

High dose (Anti-TNF) 7.362 1.942; 39.95 

Model D : Network meta-analysis: comparing active treatments 
defined by dose–drug combination  

Etanercept – low dose 2.279 0.378; 19.42 
Etanercept – recommended dose 2.423 0.627; 12.64 

Adalimumab – low dose 1.336 0.035; 30.91 
Adalimumab – recommended 

dose 
2.253 0.595; 12.95 

Adalimumab – high dose 4.110 0.275; 85.83 
Infliximab – recommended dose 0.881 0.016; 47.71 

Infliximab  - high dose 10.00 0.948; 393.3 

Model E : Network meta-analysis, assuming exchangeability of 
anti-TNF drugs within dose levels 

Etanercept – low dose 2.311 0.761; 8.145 
Etanercept – recommended dose 2.288 0.936; 6.620 

Adalimumab – low dose 2.290 0.484; 9.398 
Adalimumab – recommended 

dose 
2.255 0.938; 6.665 

Adalimumab – high dose 3.170 0.927; 16.55 
Infliximab – recommended dose 1.965 0.453; 6.973 

Infliximab  - high dose 3.753 1.253; 23.02 

Model F : Network meta-analysis, assuming exchangeability of  
dose levels within anti-TNF drugs 

Etanercept – low dose 2.323 0.795; 8.198 
Etanercept – recommended dose 2.369 0.954; 7.253 

Adalimumab – low dose 2.280 0.501; 9.194 
Adalimumab – recommended 

dose 
2.299 0.914 ; 7.315 

Adalimumab – high dose 2.538 0.776; 12.20 
Infliximab – recommended dose 2.109 0.398; 9.309 

Infliximab  - high dose 3.167 1.061; 23.08 

Model G : Applying constraints on the effect of dose to Model 
E 

Etanercept – low dose 1.440 0.401; 5.027 
 

Etanercept – recommended dose 2.170 0.865; 6.650 
 

Adalimumab – low dose 1.313 0.212; 5.933 
 



21 
 

Adalimumab – recommended 
dose 

2.275 0.915; 7.323 
 

Adalimumab – high dose 6.711 1.449; 48.58 
 

Infliximab – recommended dose 2.048 0.426; 8.716 
 

Infliximab  - high dose 8.311 2.060; 67.40 
 

 * Median of samples from posterior distribution
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Table 3. Goodness of model fit statistics for models A to G.  

Model 

Between study 
standard 

deviation – i.e. 
heterogeneity 

parameter: 
median (95% 

highest posterior 
density credible 

interval) 

Sum of 
deviance: 

mean  
(number of 
data points) 

A 
0.583 (0.0005; 

1.558) 
24.14 (26) 

B 
0.802 (4.0 e-5; 

1.775) 
25.06 (26) 

C 
0.548 (0.0003; 

1.485) 
32.41 (35) 

D 
0.862 (0.007; 

1.811)  
34.28 (35) 

E 
0.550 (0.0002; 

1.460) 
33.13 (35) 

F 
0.550 (0.0003; 

1.489) 
33.61 (35) 

G 
 0.590 (0.001; 

1.541) 
32.67 (35) 
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Appendix A. WinBUGS code for Model G.  
# ================================= 
# Notes 
# 13 trials (6 with 2 arms,  5 with 3 arms, 2 with 4 arms, 35 arms total),  
# 35 data points, 
# 8 treatments:  
 
# i indexes datapoints 
# j indexes trials 
# k indexes treatments   
 
#Treatments coding: 
# 1: Placebo and/or DMARD 
# 2: Etanercept Recommended 
# 3: Etanercept Low 
# 4. Adalimumab Recommended 
# 5. Adalimumab Low 
# 6. Adalimumab High 
# 7. Infliximab Recommended 
# 8. Infliximab High 
 
# ================================== 
 
model{ 
for(i in 1:NS){  

w[i,1] <-0 
delta[i,t[i,1]]<-0 

 mu[i] ~ dnorm(0,.0001)            # vague priors for trial baselines 
 for (k in 1:na[i])  {  
  r[i,k] ~ dbin(p[i,t[i,k]],n[i,k])                  # binomial likelihood 
  logit(p[i,t[i,k]])<-mu[i] + delta[i,t[i,k]] }                                                              
 

# model 
       for (k in 2:na[i]) { 
                   delta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],taud[i,t[i,k]])          

md[i,t[i,k]] <-  d[t[i,k]] - d[t[i,1]]  + sw[i,k]                    
                    taud[i,t[i,k]] <- tau *2*(k-1)/k                                     
                    w[i,k] <- (delta[i,t[i,k]]  - d[t[i,k]] + d[t[i,1]]) #adjustment, multi-arm 
RCTs 
                    sw[i,k] <-sum(w[i,1:k-1])/(k-1) }  } 

for(i in 1:NS){  
      for (k in 1:na[i]){  
         #Deviance residuals for data i                                                                                        
       rhat[i,k] <- (p[i,t[i,k]] * n[i,k])                                                                                                           
    dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))  +  (n[i,k]-r[i,k]) * (log(n[i,k]-
r[i,k]) - log(n[i,k]-rhat[i,k])))  } 

sumdev[i] <- sum(dev[i,1:na[i]])   }             
   ssumdev <- sum(sumdev[]) 

d[1]<-0 
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#D.d[1] refers to recommended dose, D.d[2] refers to low dose, D.d[3] refers to high 
dose 
 
d[2]~dnorm(D.d[1], prec.d) 
d[3]~dnorm(D.d[2], prec.d) 
d[4]~dnorm(D.d[1], prec.d) 
d[5]~dnorm(D.d[2], prec.d) 
d[6]~dnorm(D.d[3], prec.d) 
d[7]~dnorm(D.d[1], prec.d) 
d[8]~dnorm(D.d[3], prec.d) 
 
#  vague priors for basic parameters 
 
sd~dunif(0,2)                                             
tau<-1/pow(sd,2) 
 
prec.d<-1/(sd.d*sd.d) 
sd.d~dunif(0,2) 
 
# Constraints model for D.d  
 
D.d[2] <- D.d[1] + diff1 
D.d[3] <- D.d[1] + diff2 
 
diff1 ~ dnorm(0,0.0001)I(,0) 
diff2 ~ dnorm(0,0.0001)I(0,) 
 
D.d[1] ~ dnorm(0,0.0001) 
 
pdiff1 <- 1-step(diff1) 
pdiff2 <- step(diff2) 
 
} 
 
 
# DATA 
 
# NS=no. studies;   
# NB : set up M vectors each r[,]. n[,] and t[,],  where M is the maximum number of 
# treatments per trial in the dataset. In this dataset M is 4. 
 
list(NS=13) 
 

r[,1] n[,1] r[,2] n[,2] r[,3] n[,3] r[,4] n[,4] t[,1] t[,2] t[,3] t[,4] na[] 

1 228 10 454 NA 1 NA 1 1 2 NA NA 2 

0 50 1 204 NA 1 NA 1 1 2 NA NA 2 

0 80 1 78 0 76 NA 1 1 2 3 NA 3 

4 217 5 207 5 208 NA 1 1 2 3 NA 3 

2 269 2 266 NA 1 NA 1 1 2 NA NA 2 

0 106 0 111 2 343 NA 1 1 2 3 NA 3 

0 318 4 318 NA 1 NA 1 1 4 NA NA 2 
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0 62 0 67 0 69 1 73 1 4 5 6 4 

1 200 8 419 NA 1 NA 1 1 4 NA NA 2 

1 110 2 225 1 106 1 103 1 4 5 6 4 

4 257 6 542 NA 1 NA 1 1 4 NA NA 2 

1 88 1 86 8 254 NA NA 1 7 8 NA 3 

0 291 0 372 4 377 NA 1 1 7 8 NA 3 
END 
 
 
 
# INITIAL VALUES 
 
# d refers to number of treatments, mu refers to number of studies,  
# delta refers to number of datapoints 
 
list(d=c(NA,0.75,0.70,0.77,0.65,1.87,0.54,2.1),  mu=c(-5,-7,-7,-4,-5,-7,-6,-7,-5,-6,-4,-5,-
7),sd=0.7,sd.d=0.6, D.d=c(0,NA,NA),diff1=-1,diff2=1, 
delta = structure(.Data=c( 
            NA,1, NA, NA, NA, 
            NA, NA, NA, NA, 0.8, 
            NA, NA, NA, NA, NA, 
            NA, NA,1.0, 0.6, NA, 
            NA, NA, NA, NA, NA, 

0.5, 0.5, NA, NA, NA, 
            NA, NA, NA, 0.7, NA, 
            NA, NA, NA, NA, NA, 
            NA, 0.7, 0.9, NA, NA, 
            NA, NA, NA, NA, NA, 
            NA, 1.2, NA, NA, NA, 
            NA, NA, NA, NA, 0.7, 

0.6, 2.0, NA, NA, NA, 
            NA, NA, 0.9, NA, NA, 
            NA, NA, NA, NA, NA, 

0.7, 0.5, 1.5, NA, NA, 
            NA, NA, NA, 0.3, NA, 
            NA, NA, NA, NA, NA, 
            NA, NA, NA, NA, 0.4, 

1.86, NA, NA, NA, NA, 
            NA, NA,0.5,2.4), 
.Dim = c(13,8))) 
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Table A1. Dose and drug random effect parameter estimates from Models E, F 
and G. 

Model Parameter 

Median (95% Credible 

Interval)1 

E  2.389 (0.691 to 8.950) 

  2.259 (0.813; 6.931) 

  3.135 (1.046; 15.25) 

  0.361 (0.0008; 1.152)* 

F  2.380 (0.808; 8.277) 

  2.391 (0.796; 8.539) 

  2.515 (0.749; 11.84) 

  0.352 (5.0 e-5; 1.187)* 

G  1.228 (0.232; 3.948) 

  2.274 (0.802; 7.989) 

  7.758 (1.984; 64.54) 

  0.394 (0.0008;  1.409)* 
1
Credible interval is equal-tailed unless indicated by * (highest posterior density interval).
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Table A2. Results of sensitivity analysis changing the prior distributions 
placed on variance parameters. 

 Prior Distributions on Variance Components 

Treatment 
effect/parameters 

Standard 
Deviations  

~ Uniform(0,2) 

Standard Deviations  
~ Half-Normal(0,1) 

Variances 
 ~ Inverse-

Gamma(0.001,0.001) 

Model B : Network meta-analysis, comparing individual anti-TNFs 

 Odds 
Ratio

1
 

95% 
CrI

2 
Odds 
Ratio

1
 

95% CrI
2 

Odds 
Ratio

1
 

95% 
CrI

2 

Etanercept 2.485 0.730; 
13.44 

2.353 0.797; 
10.22 

2.302 0.828; 
10.87 

Adalimumab 2.399 0.685; 
13.45 

2.264 0.735; 
10.39 

2.134 0.758; 
10.82 

Infliximab 6.878 0.664; 
285.8 

6.054 0.741; 
174.4 

5.998 0.785; 
273.3 

       
 Median 95% 

CrI
3 

Median 95% CrI
3 

Median 95% 
CrI

3 

 
0.802 4.0 e-5; 

1.775 
0.590 0.0003; 

1.513 
0.313 0.013 ; 

1.690 

Model E : Network meta-analysis, assuming exchangeability of different anti-TNF 
drugs within dose levels  

 Odds 
Ratio

1
 

95% 
CrI

2 
Odds 
Ratio

1
 

95% CrI
2 

Odds 
Ratio

1
 

95% CrI
2 

Etanercept – low 
dose 

2.311 0.761; 
8.145 

2.320 0.830; 
7.123 

2.178 0.904; 
5.432 

Etanercept – 
recommended 

dose 

2.288 0.936; 
6.620 

2.284 1.002; 
6.005 

2.143 1.068; 
4.902 

Adalimumab – low 
dose 

2.290 0.484; 
9.398 

2.349 0.644; 
8.269 

2.169 0.772 ; 
6.061 

Adalimumab – 
recommended 

dose 

2.255 0.938; 
6.665 

2.231 0.974; 
6.036 

2.099 0.997; 
4.791 

Adalimumab – high 
dose 

3.170 0.927; 
16.55 

3.053 1.055; 
13.67 

2.538 1.059; 
8.692 

Infliximab – 
recommended 

dose 

1.965 0.453; 
6.973 

1.977 0.519; 
6.090 

1.979 0.664; 
4.870 

Infliximab  - high 
dose 

3.753 1.253; 
23.02 

3.472 1.292; 
17.57 

2.774 1.251; 
11.21 

       

 2.389 0.691; 
8.950 

2.397 0.814;7.611 2.205 0.919; 
5.759 

 2.259 0.813; 
6.931 

2.236 0.898; 
6.126 

2.114 0.996; 
4.890 

 3.135 1.046; 
15.25 

2.991 1.126; 
12.11 

2.524 1.153; 
8.128 

       
 Median 95% 

CrI
3 

Median 95% CrI
3 

Median 95% CrI
3 

 0.361 0.0008; 
1.152 

0.313 0.0002; 
0.923 

0.170 0.014; 
0.679 

 
0.550 0.0002; 

1.460 
0.440 0.002; 

1.182 
0.192 0.014; 

0.957 

Model F : Network meta-analysis, assuming exchangeability of different dose 
levels within each anti-TNF drug 
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 Odds 
Ratio

1
 

95% 
CrI

2 
Odds 
Ratio

1
 

95% CrI
2 

Odds 
Ratio

1
 

95% CrI
2 

Etanercept – low 
dose 

2.323 0.795; 
8.198 

2.258 0.840; 
6.591 

2.174 1.016; 
5.532 

Etanercept – 
recommended 

dose 

2.369 0.954; 
7.253 

2.293 0.985; 
5.989 

2.201 1.085; 
5.377 

Adalimumab – low 
dose 

2.280 0.501; 
9.194 

2.194 0.628; 
7.771 

2.154 0.852; 
5.889 

Adalimumab – 
recommended 

dose 

2.299 0.914; 
7.315 

2.219 0.969; 
6.002 

2.157 1.061; 
5.252 

Adalimumab – high 
dose 

2.538 0.776; 
12.20 

2.390 0.796; 
9.673 

2.259 0.977; 
6.852 

Infliximab – 
recommended 

dose 

2.109 0.398; 
9.309 

2.061 0.462; 
7.488 

2.099 0.729; 
6.188 

Infliximab  - high 
dose 

3.167 1.061; 
23.08 

2.907 1.097; 
18.03 

2.533 1.137; 
10.39 

       

 2.380 0.808; 
8.277 

2.292 0.884; 
6.655 

2.199 1.056; 
5.577 

 2.391 0.796; 
8.539 

2.277 0.881; 
7.037 

2.195 1.039; 
5.641 

 2.515 0.749; 
11.84 

2.401 0.831; 
9.386 

2.276 1.015; 
6.911 

       
 Median 95% 

CrI
3 

Median 95% CrI
3 

Median 95% CrI
3 

 
0.352 5.0 e-5; 

1.187 
0.295 3.0 e-5; 

0.959 
0.146 0.013; 

0.666 

 
0.550 0.0003; 

1.489 
0.464 0.0002; 

1.194 
0.211 0.014; 

0.992 

Model G : Applying constraints on the effect of dose to Model E 

 Odds 
Ratio

1
 

95% 
CrI

2 
Odds 
Ratio

1
 

95% CrI
2 

Odds 
Ratio

1
 

95% CrI
2 

Etanercept – low 
dose 

1.440 0.401; 
5.027 

1.466 0.448; 
4.505 

1.388 0.498; 
3.632 

Etanercept – 
recommended 

dose 

2.170 0.865; 
6.650 

2.151 0.924; 
5.668 

2.051 0.988; 
4.681 

Adalimumab – low 
dose 

1.313 0.212; 
5.933 

1.342 0.288; 
5.030 

1.345 0.391; 
3.953 

Adalimumab – 
recommended 

dose 

2.275 0.915; 
7.323 

2.241 0.975; 
6.190 

2.089 1.038; 
4.851 

Adalimumab – high 
dose 

6.711 1.449; 
48.58 

6.727 1.610; 
36.15 

6.493 1.918; 
27.07 

Infliximab – 
recommended 

dose 

2.048 0.426; 
8.716 

2.055 0.525; 
7.144 

2.012 0.770; 
5.308 

Infliximab – high 
dose 

8.311 2.060; 
67.40 

7.919 2.208; 
46.23 

7.024 2.238; 
32.54 

       

 1.228 0.232; 
3.948 

1.281 0.305; 
3.701 

1.313 0.409; 
3.307 

 2.274 0.802; 2.239 0.903; 2.088 1.001; 
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7.989 6.495 5.046 

 7.758 1.984; 
64.54 

7.475 2.091; 
43.73 

6.824 2.188; 
30.46 

       
 Median 95% 

CrI
3 

Median 95% CrI
3 

Median 95% CrI
3 

 0.394 0.0008; 
1.409 

0.465 0.0005; 
1.111 

0.145 0.015; 
0.767 

 
0.590 0.001; 

1.541 
0.326 7.0 e-5; 

1.237 
0.209 0.015; 

1.035 
1
 Median of samples from posterior distribution. 

2 
Equal-tailed credible interval. 

3
 Highest 

posterior density credible interval.  
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Figure 1 Network diagrams showing categorisation of treatment 
definitions used in the various models considered (numbers on lines 
represent the total number of studies which make each comparison; 
where there is a second number, this indicates the number of studies 
within the total for which there are zero events in both groups making 
the comparison).  
 
 
 
 
 

a) Pairwise meta-analysis comparing all anti-TNF data to non-anti-TNF 
control; used in Model A. 
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b) Network meta-analysis comparing individual anti-TNFs (combining all 

doses) with non-anti-TNF control; used in Model B. 
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c) Network meta-analysis comparing distinct dose level of anti-TNFs 
(combining individual drugs at the same dose) with non-anti-TNF 
control; used in Model C. 
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d)  Network meta-analysis comparing individual anti-TNFs/dose 
combinations with non-anti-TNF control; used in Models D, E, F and G. 
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