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Abstract

This thesis contends that the human parser has a repair mechanism. It is fur-
ther contended that the human parser uses this mechanism to alter previously-
built structure in the case of unexpected disambiguation of temporary syntactic
ambiguity. This position stands in opposition to the claim that unexpected dis-
ambiguation of temporary syntactic ambiguity is accomplished by the usual first
pass parsing routines, a claim that arises from the relatively extraordinary capa-
bilities of computational parsers, capabilities which have recently been extended
by hypothesis to be available to the human sentence processing mechanism. The
thesis argues that, while these capabilities have been demonstrated in computa-
tional parsers, the human parser is best explained in the terms of a repair based
framework, and that this argument is demonstrated by examining eye movement
behaviour in reading. In support of the thesis, evidence is provided from a set
of eyetracking studies of reading. It is argued that these studies show that eye
movement behaviours at disambiguation include purposeful visual search for lin-
guistically relevant material, and that the form and structure of these searches
vary reliably according to the nature of the repairs that the sentences necessi-
tate.
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Introduction

There follows an overview of the rest of the document.

The thesis is arranged into chapters as follows.

Chapter 1 covers reading in its visual, linguistic, and computational aspects.
Eye movement metrics are explained here. Complement ambiguity is presented
here. Chapter 2 explains how probabilistic approaches to reading are imple-
mented. Chapter 3 presents a review of theories of sentence processing, fo-
cussing on disambiguation. Chapter 4 sets out the issues that the rest of the
thesis focusses on in detail. The thesis uses mixed effects regression models
for hypothesis testing. The relevant advantageous properties of these models
are compared with those of traditional models for hypothesis testing (5). Chap-
ters presenting simulation and eyetracking data from experiments are chapters
7, 8, 9, 10, 11, and 12. The first three experiments (in chapters 7, 8, and 9) are
concerned with how the spatial arrangement of text affects measures of parsing.
The next three experiments (in chapters 10, 11, and 12) are concerned with how
regressive eye movements differ according to what kind of repair the partial rep-
resentation of the sentence needs in order to accommodate new material. The
final chapter (13) draws together the evidence across the experiments to evaluate
the theories explored in the background material in the light of the evidence, and
offers some guidance for future work.
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Chapter 1

The reading process

This chapter focusses on the processes that are involved in reading. The chapter
has three parts dealing respectively with reading as a visual process, a linguistic
process, and a computational process.

In this thesis I will use the word reading to indicate skilled fluent reading that is
undertaken with the intention of understanding the text. A reader then is someone
who is engaged in gathering information from the text and does not resort to
skimming or similar behaviour. The reading process involves coordination of the
linguistic system and the visual system.

1.1 Reading as a visual process

The oculomotor muscles move the eyes in a series of jumps through the words of
a sentence. The landing points between jumps are referred to as fixations, and
the jumps themselves are called saccades. This contrasts with other oculomotor
routines such as those involved in smooth pursuit where the eyes glide smoothly.
The retina has a small area of high density of photoreceptors called the fovea,
surrounded by a lower density in the periphery. By making saccades the oculo-
motor system is able to position the fovea to receive light reflected from the word
that is currently being read.

When a word is fixated foveally it is represented with high resolution in the
visual cortex. Information passes from visual cortex to the linguistic system that
is charged with identifying the word from its physical representation in text and
retrieving semantically associated properties. While the reading process is going

16



1.1: Reading as a visual process

smoothly the eyes tend to keep moving through the text. However there are times
when the reading process does not go smoothly. Under these circumstances the
eyes pause for longer in fixations, and sometimes move back into parts of the
sentence that have already been fixated, before moving on to fixate new material.
In this way there can be several passes over the text, and it is useful to distinguish
first pass routines from those associated with second and subsequent passes.

Basic properties of eye movements in reading In order to make sensible
inferences from eye movements to word integration events, it is important to con-
sider fundamental information about how the eyes move in reading more gen-
erally, and how those movements vary. Eye movements in fluent reading are
characterised by a series of fixations and saccades: an observation made by
Emile Javal in the late nineteenth century if not before. While Javal relied on
observing with the naked eye the eye movements made by another individual,
subsequent technologies have allowed more detailed measurements that help
delimit the scope of these fixations and saccades.

Fixations are typically 200 ms to 250 ms long ranging between 150 ms to
500 ms so that the eyes move about 4 or 5 times a second in reading Rayner,
Pollatsek, Ashby, and Clifton Jr (2012). Some of the variance in fixation durations
is due to linguistic properties of the text. There are constant small movements of
the eye muscles that are made so that neurons in the retina can continue to fire
(this avoids synaptic fatigue). These tiny movements are called tremor or nys-
tagmus. They are such small movements that they do not get considered when
it comes to reading. The eyes also drift slightly while reading, and small micro
saccades are made to correct for drift. Again these are not typically considered in
reading research. Typically, experimenters might pool micro saccades by adding
their durations to nearby ‘proper’ fixations.

Saccades typically last for about 20-35 ms. The typical range of a saccade in
fluent reading is about 7 to 9 characters. Saccades cannot be changed once they
start, like other ballistic movements. The phenomenon of saccadic suppression
(Matin, 1974) indicates that no information is taken in during a saccade. Campbell
and Wurtz (1978) found that at best a smeared image of what is presented during
a saccade can be extracted, but they had to prevent visual stimulation before and
after the saccade to get this result. In normal circumstances, Wolverton and Zola
(1983) demonstrated that replacing text with a mask during each saccade was
not perceived by participants, and nor did it exert an influence on any measure of
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Ch 1: The reading process

processing.

The amount of text that can be taken in at a fixation is sometimes called
the perceptual span. Early research in this area using a tachistoscope (Marcel,
1974) indicated that it is about 3 to 4 words. Taylor (1965) used a simple number
of words per fixation measure and offered 1.11 words as an estimate. This low
estimate fails to take into account the suggestion that perceptual spans might
overlap, under which circumstances the estimate is revealed to be conservative.
Moving window techniques (McConkie & Rayner, 1975), in which a sentence is
displayed for self-paced reading in such a way that the current word (the one in
the window) is presented normally while the other words are replaced, typically
with a series of dashes, or ‘x’ characters, indicated that allowing 31 letter spaces
for the moving window, reaching 15 characters either side of the fixation, resulted
in no loss of reading speed. This finding has appeared stable in subsequent
work (DenBuurman, Boersma, & Gerrisen, 1981; Miellet, O’Donnell, & Sereno,
2009; Rayner & Bertera, 1979; Rayner, Castelhano, & Yang, 2009; Rayner, Inhoff,
Morrison, Slowiaczek, & Bertera, 1981). Since the fovea extends 3 characters
either side of a fixation, it is clear that much of the perceptual span is spread
over the parafovea, and that – depending on the word lengths involved – the span
covers some part of new words to the right of the word being fixated. In other
words, the fovea is not the limit of what can be perceived in a fixation. Pollatsek,
Raney, Lagasse, and Rayner (1993) showed that although the perceptual span
may extend horizontally beyond the currently fixated word, it does not extend
vertically below the currently fixated line. This changes in visual search where
the span may extend beyond the currently fixated line.

In the event that a short word appears in the right parafovea, and that it is
sufficiently frequent, like ‘the’, one might imagine that this word need not be fix-
ated itself, and there is evidence that word skipping is a normal part of fluent
reading. This skipping of words represents one departure from straightforwardly
word-by-word eye movements. Frequency of skipping increases as words get
more frequent, and increases for shorter words. Skipping frequency ranges be-
tween about 10% for little-known long words up to about 70% for some very fre-
quent and very short words like articles (Brysbaert, Drieghe, & Vitu, 2003; Rayner
& McConkie, 1976; Rayner, Slattery, Drieghe, & Liversedge, 2011).

Another departure from word-by-word eye movements in fluent reading oc-
curs when words are revisited having once been read. This happens when re-
gressive eye movements are launched from one word and visit words that were
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1.1: Reading as a visual process

read earlier. There are broadly 3 types. One is a simple regression to the imme-
diately previous word. These are common and quick. Another is the conscious
deliberate and slow re-inspection of earlier material. Yet another is the very rapid
regression that the reader is unaware of that is launched from a given word and
takes in some earlier words before moving on so fast that the reader is still un-
aware of having made the movements. Frequency of regressing is estimated be-
tween 10% to 15% (Buswell, 1922; Rayner et al., 2012) with the highest estimate
15.3% coming from a large corpus of adults reading a novel (Vitu & McConkie,
2000). Even higher estimates of 30% have been made for subsets of readers
(Radach & McConkie, 1998).

Immediacy and eye-mind assumptions Data from eye tracking is widely used
in research on parsing (a review of 100 papers may be found in Clifton Jr, Staub,
and Rayner (2007)). The logic of using eye movements to infer parser activity
rests on two assumptions that were made explicit by Just and Carpenter (1980).
These are: the immediacy assumption; and the eye-mind assumption. The im-
mediacy assumption says that a reader tries to interpret each content word of
a text as it is encountered, even at the expense of making guesses that some-
times turn out to be wrong. (Just & Carpenter, 1980, p. 330). The eye-mind
assumption says that the eye remains fixated on a word as long as the word is
being processed . . . [S]o the time it takes to process a newly fixated word is
directly indicated by the gaze duration (Just & Carpenter, 1980, p. 331). The
balance of the evidence supports the view that eye movements during reading
admit treatment under the immediacy and eye-mind assumptions – although see
Vitu (1991) for an extreme view where low-level characteristics entirely determine
eye movements during reading.

Definitions of eye-movement measures Rayner et al. (2012, p. 93) set out
some eye tracking measures in common use. The designation eye tracking tem-
poral measures is used in the thesis to cover the following measures: First Fixa-
tion Duration (FFD); First Pass Reading Time (FPRT); Regression Path Duration
(RPD); Time Spent Regressing (TSR); Probability of Regression (PREG). These
measures are defined here, along with their standard interpretations, taken from
Rayner et al. (2012) .

First fixation duration (FFD) is the mean duration of the first fixation on a
word regardless of other possible fixations on the word. It has traditionally been
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treated as a measure of early processing. First fixation duration is interpreted to
index lexical access.

First pass reading time (FPRT) also known as gaze duration, is the sum
of the durations of all fixations on the word that occur before leaving the word in
any direction. This still captures the early processing (FFD is a subset of FPRT)
but FPRT also includes any refixations that there might be on the word before
a regression is launched from it. First pass reading time is often interpreted to
index lexical integration into the phrase marker.

Regression path duration (RPD) includes FPRT but adds to it the durations
of fixations on preceding words that the eyes regress to before leaving the word to
the right to take in new material, as well as any refixations on the launch word that
occur before new material is taken in. In this way RPD is sensitive to integration
difficulties that yield regressive eye movements but is also confounded by early
processing. Regression path duration is often interpreted to index incremental
syntactic integration of the new word into the sentence’s representation including
any semantic problems that arise from this.

Time spent regressing (TSR) is a custom measure that I use in the thesis
and is calculated by subtracting FPRT from RPD to give a measure that reflects
the duration of regressive eye movement events including subsequent refixations
on the launch word before new material is taken in. TSR is the only measure that
is sensitive to variance in time spent on the regression path without also being
confounded by early processing of the low level properties of the disambiguating
word, since those properties are removed by subtracting FPRT. In the thesis this
time spent regressing is valued, and analysed, as a measure of how long it took
the parser to seek out a new solution, over and above how long it took the parser
to realise initially that there was a problem with the phrase marker. It is contended
in this thesis that time spent regressing is time spent seeking solutions.

Total reading time (TRT) is the sum of all fixations on the word regardless
whether they were from the first or subsequent passes over the text. This mea-
sure is often used when comparing computational parser actions to reading times.

Proportion of regressions (PREG) A standard binomially distributed mea-
sure Proportion of regressions (PREG) was also computed. This measure is
insensitive to temporal factors but gives an indication of whether any first-pass
regressions were launched from the disambiguation. Proportion of regressions is
often taken to index difficulty integrating the current word into the current exist-
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ing partial representation of the sentence. Probability of (first-pass) regression is
a measure that indicates whether a given trial resulted in a regression from the
critical word on the first pass, often the disambiguating word. When aggregated
over items nested in conditions, for example, it represents how likely the average
participant was to make a regression in that condition. Because it is a binary
valued measure before aggregation, it is well modelled by the binomial link func-
tion in the Linear Mixed Effects Regression (LMER) framework, but rather poorly
modelled in the ANOVA framework because in the aggregate it is a proportion.
Jaeger (2008) presents compelling arguments to the effect that analysing propor-
tions with ANOVA is wrong and unnecessary. The measure is used by Rayner,
Ashby, Pollatsek, and Reichle (2004) to show that the parser is influenced by lexi-
cal anomaly, and by Frazier and Rayner (1982) to show how parsing is influenced
by unexpected disambiguation of syntactic ambiguity. In this thesis probability of
regression is taken to index the likelihood that solutions need seeking. The term
PREG is used in the thesis as a shorthand for probability of regression.

Two metrics that focus on the spatio-temporal distribution of regression paths
saccades are given in chapter 4.3

1.2 Reading as a linguistic process

A sentence can be described as a sequence of states, where a state is a word
and the sequence is the order of words in a sentence. The goal of sentence pro-
cessing is to achieve a representation of the sequence that carries the intended
meaning of the sentence. In order to achieve a representation of a sentence, peo-
ple must have a way to combine the individual words that make up the sentence.
This representation of the intended meaning of the sentence is built from the sen-
tence’s constituent parts. A grammar is assumed to be available that specifies
rules for the combination of constituents.

Phrase structural grammar One proposal for how people combine words into
sentences appeals to the notion of constituency to provide units of meaning at a
level intermediate between the word and the sentence. When a group of words
behaves as an intermediate-level unit in a sentence, the unit is referred to as a
constituent of the sentence.

21



Ch 1: The reading process

One type of constituent is the noun phrase. The sentence The tall man loves
Phoebe contains two examples of a noun phrase: one is the bare noun Phoebe
and the other is the tall man, where a person is individuated with reference to
some property that he exhibits, and the sequence of words means something
that is not conveyed by any of its elements taken on its own.

The observation that constituents of the same type often appear in similar
syntactic contexts is taken to support the idea of constituency. For example the
words preceding a verb often constitute a noun phrase.

Evidence that constituents behave as units can be seen in the observation
that prepositional phrases can be moved without affecting the grammaticality of a
sentence. For example In January the weather is cold. can be re-phrased as The
weather is cold in January. without affecting the meaning of the sentence.

Evidence that constituents have properties that the individual words that make
them up do not have can be seen from the ungrammaticality of moving one of the
words that comprises the prepositional phrase, relative to the grammaticality of
moving the entire phrase. For example, these sentences are both grammatical: At
5 o’clock they have a meal. and They have a meal at 5 o’clock.; but the following
is not grammatical: At 5 they have o’clock a meal. Radford (1988) gives more
examples of groups of words behaving as a single constituent.

The context-free grammar (also known as phrase structure grammar ) pro-
vides a way to describe how constituents are related to each other in a structure.
This grammar formalism assumes constituency as a primitive. Essentially the
claim is that parses can be represented by hierarchical trees that connect words
into nodes, where a node is a phrasal unit or constituent. The idea can be traced
back to Wundt (1900) but was formalised by Chomsky (1956).

In phrase structure grammar each constituent has a head. While noun phrases
have nouns at their heads, verb phrases have verbs at their head. Nouns have
feature structure that determines how the elements of the noun phrase are gov-
erned by their head nouns. Verbs have argument structure that determines how
the elements of the verb phrase relate to the head verb. Verb phrases consist of
a verb and some other constructions (e.g., NP; PP; NP+PP; NP+SC, described
in Table 1.1). These other constructions are referred to as complements of the
verb.

Within a verb phrase the relations between the verb and each constituent can
be described. Different verbs admit different complements. The possible set of
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1.2: Reading as a linguistic process

Table 1.1: Some common grammatical constituents

Label Description Example

NP Noun phrase The tall man bought a book.
VP Verb phrase Luke loves Phoebe.
PP Prepositional phrase The weather is cold in January.
SC Sentential complement The man believed the government was lying.

Table 1.2: Some common thematic rolesa

Role Definition

agent The volitional causer of an event
experiencer The experiencer of an event
force The non-volitional causer of the event
theme The participant most directly affected by the event
result the end product of an event
content The proposition or content of a propositional event
instrument An instrument used in the event
beneficiary The beneficiary of an event
source The origin of the object of a transfer event
goal The destination of an object of a transfer event
a from Jurafsky and Martin (2009, p. 655)

complements that a particular verb admits is referred to as that verb’s subcategor-
isation frame. The verb find subcategorises for a NP: find the ball ; the verb want
subcategorises for either an N: want the food ; or for a non-finite VP: want the food
to be nice.

Subcategorisation frames allow description of the syntactic relations that a
verb may participate in, whereas descriptions of the semantic relations that a
verb may participate in are termed thematic roles (Fillmore, 1968; Gruber, 1965).
For example the agent of a verb is the volitional causer of an event expressed in
the verb; where the force of a verb is the non-volitional cause of the event (see
Table 1.2). The set of thematic role arguments that a verb can take is sometimes
called its thematic grid ; θ-grid ; or case frame.

Dependency grammar Dependency grammar is an example of a grammar
formalism that does not assume constituency: there are no phrasal nodes in
a dependency grammar. Instead dependency grammar describes sentences
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as words; and binary semantic or syntactic relations between pairs of words.
Work on dependency grammars stems from the work of Tesnière (1959) who de-
scribed sentences as sequences of "word-to-word connections”. Typed depen-
dency parsers label these relations, e.g., subject, direct object, but the simplest
dependency parsers merely establish that there is a relation between pairs of
words, one element of the pair being the head and the other element being the
dependent.

Ambiguity In a sentence with no structural ambiguity from start to finish, as
each new word is encountered, there is only one way for it to be integrated into
the partial structure that exists at the time the new word is processed. This lack of
ambiguity is unusual. Recall the idea of a sentence as a sequence of states. The
sentence John loves Mary. has four transitions across states: (1) the appearance
of John; (2) the appearance of loves; (3) the appearance of Mary ; and (4) the
appearance of a punctuation marker indicating the completion of the sentence,
i.e., the full stop. At each of these four transitions the grammar indicates only
one possible integration with the partial structure that has been built at the last
transition.

The more common pattern as a parser effects state transitions is for the gram-
mar to indicate several possibilities for integration at some state. To make this
more concrete it is necessary to introduce an example of a sentence and a gram-
mar where for some transition it is not clear what the correct integration is as
the parser transitions from one state to the next. Example 1.1 provides such a
sentence.

(1.1) The horse raced past the barn.

It is also necessary to provide a more complex grammar, given in Table 1.3.
This grammar introduces determiners which were not present in the simple ex-
ample; and two ways of composing a verb phrase where the simple grammar only
offered one way; as well as offering two rules that are satisfied by the same input
word raced.

Consider the state transitions in this sentence. There are 7 transitions but the
focus is on transition 3: (1) start → The; (2) The → horse; (3) horse → raced ;
(4) raced → past (5) past → the (6) the → barn; (7) barn → full stop . The initial
assumption that what follows is a sentence permits the first high-level partition
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Table 1.3: A grammar that contains ambiguity

rule 1: S → NP + VP
rule 2: NP → DET + N
rule 3: VP → V [active] + NP
rule 4: VP → V
rule 5: DET → the, The
rule 6: N → barn
rule 7: N → horse
rule 8: V [active] → raced
rule 9: V [passive] → raced
rule 10: NP → P + NP
rule 11: P → past
rule 12: PP → P + NP

into NP and VP with reference to rule 1. The first state transition from the start
to The involves attaching The as a determiner with reference to rule 5, and as
part of a noun phrase by reference to rule 2. The next transition from The to
horse is straightforwardly handled by rule 7 identifying horse as a noun, and rule
2 integrating that noun into the existing partially formed NP.

At this point there is no ambiguity. Ambiguity is introduced by transition (3)
from horse to raced. Ambiguity arises because there are two rules that could
integrate raced : rules 8 and 9 both have raced as the right hand side of the rule,
but each rule maps the word to a different syntactic unit: active verb (rule 8) and
passive participle (rule 9).

The general form of the question which rule applies to raced is the subject
of some controversy. The general form of the question can be considered to be
this: when a given constituent can be integrated into the existing partial phrase
marker in more than one way, how should the transition be handled by the parser?
The next two sections each offer a different way of approaching the integration of
a word like raced that satisfies more than one rule from the grammar into the
existing partial phrase marker. The two approaches differ according to whether
the parser requires a single integration to be made, or whether the parser permits
multiple integrations to co-exist.
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Complement ambiguity Sentential complement ambiguities exploit the prop-
erties of ‘complement’ verbs like believe that can be followed either by a com-
plement clause or by a direct object, or by no complement. When such verbs
are followed by complements and an overt complementiser like that is used, no
temporary syntactic ambiguity is present: however, when the complementiser is
omitted, which may be done without violating the grammar, temporary syntactic
ambiguity arises with respect to the first few words of the complement. These
words may be taken as a direct object instead, and then when the complement
verb appears, disambiguation ensues as the words that were taken to be part of
a direct object of the verb are revealed necessarily to be part of a complement.
Another possibility afforded by the multiple subcategorisation frame of words like
believe is that the words immediately following could properly be the start of a
main clause where the clause containing believe is properly a subordinate clause.
Such cases are sometimes referred to as reduced complements. In these cases
only the presence of a main verb resolves the temporary syntactic ambiguity,
and when it appears, some major restructuring is involved. Complement am-
biguities of both kinds have been used to investigate the parsing of ambiguous
clauses (Clifton Jr, 1993; Ferreira & Henderson, 1991b; Holmes, Kennedy, & Mur-
ray, 1987; Pickering & Traxler, 1998; Rayner & Frazier, 1987; Sturt, Pickering, &
Crocker, 1999; Trueswell, Tanenhaus, & Kello, 1993).

Sentences 1.2 and 1.3 provide an example of the sentential complement am-
biguity that is used in this thesis.

(1.2) John knows the truth. (direct object analysis)

(1.3) John knows the truth hurts. (sentential complement analysis)

This ambiguity type has been used to provide evidence for claims about how
reanalysis is implemented (Ferreira & Henderson, 1991b, 1998; Frazier & Rayner,
1982; Rayner, 1998; Warner & Glass, 1987), questions about whether ultimately
incorrect analyses are retained or deleted (Christianson, Hollingworth, Halliwell, &
Ferreira, 2001; Staub, 2007b), and the nature of the use of verb-subcategorisation
preferences in parsing (Adams, Clifton Jr, & Mitchell, 1998; Mitchell, 1987; Staub,
2007a; Traxler, 2005; van Gompel, Pickering, & Traxler, 2001).

Below three cases of the ambiguity are considered.

Case 1: Consider the following example sentences. Slashes mark analysis
region boundaries.
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(1.4) The maid disclosed / the safe’s location within the house / to the / officer.
(No complementiser, noun phrase complement)

(1.5) The maid disclosed that / the safe’s location within the house / had been /
changed. (Overt complementiser, sentential complement)

(1.6) The maid disclosed / the safe’s location within the house / had been /
changed. (No complementiser, reduced sentential complement)

Holmes et al. (1987) used sentences like Examples 1.4 – 1.6 in a self-paced
reading paradigm, presenting cumulatively one word at a time so that the final
display was of the whole sentence. They found that the reduced complement
sentences like 1.6 were not harder to read than the overt complement sentences
like 1.5, which finding led them to propose that the supposed Minimal Attachment
effect was really an effect of the greater clause complexity in 1.6 and 1.5 versus
1.4. On this interpretation, the two sentential complement conditions do not differ
in difficulty, and are both harder than the direct object condition – the direct object
condition has only one set of clausal relations, but the complementiser conditions
each have two sets (the second is introduced by the verb had been changed)
and therefore the difficulty should be attributed to differential complexity of clausal
relations, and not to any Minimal Attachment-related garden-pathing caused by
complementiser omission.

Case 2: Consider the following sentences.

(1.7) The contestant imagined that the small tropical islands would be
completely deserted. (Overt complementiser, sentential complement)

(1.8) The contestant imagined the small tropical islands would be completely
deserted. (No complementiser, sentential complement)

(1.9) The contestant imagined the small tropical islands to be completely
deserted. (Infinitival clausal complement)

(1.10) The contestant imagined the small tropical islands in the middle of the
Pacific. (Direct object noun phrase complement)
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Rayner and Frazier (1987) used sentences like Examples 1.7 – 1.10 to show,
using a measure they called mean first-pass reading time per character, that par-
ticipants experienced more difficulty with unmarked complements than marked
complements, consistent with the predictions of Minimal Attachment. They showed
using regression probability that the unmarked complement condition induced
more regression probability than the marked complement condition, also con-
sistent with the predictions of Minimal Attachment. Rayner and Frazier (1987)
interpreted the difference between their findings and the findings of Holmes et al.
(1987) in several ways. Firstly they argued that the effects of Minimal Attachment
are expected to exert themselves in initial syntactic processing, and that therefore
self-paced reading might obscure these effects by adding time due to different,
later, processing to the measure for the disambiguation. Secondly, they consid-
ered specifically the cumulative self-paced reading paradigm used by Holmes et
al. (1987). This method allows readers to look back into the sentence, but, in
the absence of concurrent eye movement recording, it is not possible to tell for a
given region how much of the time was spent looking at the region versus looking
back into earlier material, since both patterns contribute to the same button-press
latency. Third they noted that the cumulative nature of the paradigm has been
shown to induce readers to decouple button-pressing from linguistic processing.
Just, Carpenter, and Woolley (1982) showed that subjects press rapidly to get the
whole sentence up on screen first, and then read it. Fourth they noted that the
imposition of a secondary task in self-paced reading slows reading down versus
eye-tracking, and that because the syntactic effects predicted by Minimal Attach-
ment exert their influence early in the reading process, slowing down the process
with a secondary task will obscure the influence of the effects of interest.

Case 3: From cases 1 and 2 it is possible to conclude that complementiser
omission causes readers difficulty by forcing them to reanalyse, and that it is bet-
ter to examine this difficulty using eye-tracking than by using self-paced reading.
In order to examine the difficulty caused by reanalysis at the disambiguation of
these complement ambiguities, it is useful to examine a case where the difficulty
of reanalysis is modulated by some other factor.

In cases 1 and 2, each verb was obliged to take a complement of some kind.
Some verbs, like remember have several legitimate options with respect to com-
plements: they may take no complement (e.g., 1.11 below); they may take a
noun phrase direct object as a complement (e.g., 1.12 below); or they may take a
sentential complement (e.g., 1.13 below).
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(1.11) The man remembered. (Verb takes no complement)

(1.12) The man remembered the anniversary. (Verb takes a noun phrase
complement)

(1.13) The man remembered the anniversary was a disaster. (Verb takes a
sentential complement)

Other verbs license only a subset of these possibilities. For example, verbs
like salute take only a noun phrase complement or no complement at all, which
makes temporarily ambiguous sentences like 1.14 possible; and verbs like notice
take sentential complements or noun phrase complements, but must take some
complement, which makes temporarily ambiguous sentences like 1.15 possible.

Following Sturt et al. (1999) I will use the term noun phrase / no complement
(NP/Z) ambiguity to indicate a verb that may take a noun phrase as a complement
or, also legitimately, may take no complement at all, where Z stands for ‘zero’. I
will use the term noun phrase / sentential complement (NP/S) ambiguity to indi-
cate a verb that must take some complement, either a noun phrase complement
NP or, also legitimately, a sentential complement S.

(1.14) After the cadet saluted the captain walked to the gates of the enclosure.
NP/Z, ambiguous

(1.15) The cadet noticed the captain walked to the gates of the enclosure. NP/S
ambiguous

Ignoring for a moment that 1.14 starts with After, the other words in the sen-
tences can be held constant except for the first verb. In this way we can manip-
ulate the type of complement ambiguity independently from the rest of the words
in the sentences.

Pritchett (1988, 1992) recorded his non-empirical intuition that NP/Z struc-
tures like 1.14 caused him more reanalysis difficulty than NP/S structures like
1.15. Empirical support for this claim was obtained by Sturt et al. (1999). The-
oretical attention was directed at the distinction by Fodor and Inoue (1998), who
offered an explanation of the differential difficulty in their Diagnosis model of re-
analysis. In 1.15 the ultimately correct interpretation of the sentence requires the
sentential complement relation. Therefore if the parser assigns the more frequent
direct object relation, some revision of that assignment will have to take place in
order to arrive at the correct interpretation of the sentence.
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Table 1.4: A simple grammar

rule 1: S → NP + VP
rule 2: NP → N
rule 3: VP → VP + NP
rule 4: VP → V

Table 1.5: A simple lexicon

N → {John, Mary}
V → loves

1.3 Reading as a computational process

Parsing as search A parser can be seen as implementing a search through the
space of possible parses in order to find the appropriate parse for the sentence it
is parsing. The goal of parsing is then to identify all the trees whose root is in the
top level S node, and which contain exactly the words of the sentence. There are
two kinds of constraint on the search: constraints imposed by the requirement to
include all of the string of words in the sentence; and constraints imposed by the
grammar – the parse must have one root and that root must be the start symbol
S. For purposes of illustration of the basic machinery of parsing, an example of
sentence processing in the simplest case follows, with reference to a sentence
given in Example 1.16; a grammar given in Table 1.4, a lexicon given in Table 1.5,
and a phrase marker in Figure 1.1. Top-down parsers start from the root node S
at the top of these inverted trees, and work their way down the inverted tree to the
words at the leaves of the tree. Bottom-up parsers start with the words and work
their way up the tree until they reach the root node S. Some parsing algorithms
combine these strategies, such as the left-corner parser.

(1.16) John loves Mary.

Top-down parsing The top-down parser begins with the assumption that the
sentence has a root node S. The next move is to find the tops of all trees that
begin with S: these are yielded by the grammar, in rules that have S as their left
hand side. In the simple grammar in Table 1.4 there is only one such rule, rule
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NP

N

John
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VP

V

loves
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Figure 1.1: A simple phrase marker for John loves Mary.

Subj Obj

John
NNP

loves
VBD

Mary
NNP

Figure 1.2: Dependency parse of John loves Mary.

1. Thus the next level of the search space has one partial tree. The constituents
NP and VP of this rule are expanded next. The constituents are looked up in the
grammar rules. NP has one expansion, from rule 2. The right hand side of this
rule provides an expectation for a N node. Since no rule in the grammar expands
N, it is sought for in the lexicon. The lexicon informs the parser that N expands to
either John or Mary. John is found in the input string at position 1, so the parser
has worked its way all the way down one branch of the tree at this point.

The next step is to go back to the expectation for a VP that was set up by
grammar rule 1. VP is found on the left hand side of rules 3 and 4. Two expan-
sions of the tree are made, one to account for the right hand side of rule 3 (VP
→ VP + NP) and one to account for the right hand side of rule 4 (V). Taking rule
3 first, VP expands to V, for which the lexicon contains loves, which matches a
word in the input, and NP expands to N which is satisfied by Mary. Pursuing rule
4 yields V and loves, but cannot account for Mary, so the partial structure repre-
senting rule 4 is removed, leaving only the successful parse indicated in Figure
1.1.

Bottom-up parsing The bottom-up parser starts by looking up each input word
in the lexicon and building three partial trees that contain the part of speech for
each word that was yielded by the lexicon. Each of these trees is then expanded.
Rule 2 is applied to each of the nouns, enabling the parser to work up to NP from
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each of the nouns. The verb enables the parser to build up to VP by applying rule
4. The parser expands one level to the next by looking for places in the partial
trees where the right hand side of some grammar rule might fit. In the example,
NP John and VP loves Mary constitute the right hand side of a rule that has the
goal node S on its left hand side and the parser succeeds.

Both top down and bottom up parsing algorithms have advantages and disad-
vantages. The top-down strategy is efficient in the sense that it does not consider
any partial trees that do not lead to S, because it starts out from S. In contrast, a
strict bottom-up strategy proposes potentially very many ways to combine termi-
nals that can never lead to S. The top-down strategy does involve some redun-
dancy though. This is because it can explore many trees that start with S but do
not go on to match the words of the input. The bottom-up strategy prevents this
kind of inefficiency by only proposing partial trees that do match the input.

There is a parsing strategy that combines top-down and bottom-up parsing
in a way which prevents the worst inefficiencies of both these strategies when
applied strictly: this combined strategy is known as left-corner parsing. The left
corner of a rule is the left-most part of the right hand side of the rule. In the simple
grammar in Table 1.4 the left-corner of rule 1 is NP, and the left-corner of rule 3 is
VP. The left-corner strategy alternates steps of top down and bottom-up parsing.

Left corner parsing Assuming that the parser has identified that John matches
a grammar rule with NP at its left hand side, the left-corner parser then seeks
NP at the left-corner of a grammar rule. In the simple grammar this is rule 1.
In order to be able to make use of this rule, the parser must be able to find VP
as the next item in the input string. This sets up a top-down expectation for VP.
A top-down strategy can then be used to match VP to words in the input string.
If they are not found, the parser can reject the rule at this stage, but if words
can be found to match VP, the parser can make use of the rule identified by the
left-corner strategy. The left-corner parser begins by stating the assumption that
what follows is a sentence, which gives the initial highest level decomposition into
noun phrase and verb phrase, in the same way as a pure top-down strategy. Next
it switches to bottom-up mode, taking in the input word John, and identifying it as
a N with reference to the lexicon. This is a bottom-up step made with reference
to the lexicon. Then a grammar rule is sought that has N as its left corner: rule
2, NP → N. This is a bottom-up step made with reference to the grammar. Next
it seeks a rule that has NP as its left corner: rule 1, S → NP + VP. This is a
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1.3: Reading as a computational process

bottom-up rule made with reference to the grammar. Because this step has the
goal node S as its left hand side the parser has succeeded for that branch of the
tree. Also an expectation has been created top-down for a VP because of the
presence of VP in the rule that identified an S. The next step is to take in input:
loves. Its category V is recognised bottom-up with reference to the lexicon. The
left corner rule supplies the expansion to VP by rule 4 in the grammar, applied
bottom-up. This represents a match with the top-down expectation for a VP and
yields an accurate tree for the whole sentence.

Dependency parsing So far the focus has mainly been on phrase-structural
grammar. An alternative grammar formalism is dependency grammar (Tesnière,
1959). In a dependency grammar there are no phrasal nodes in contrast with a
phrase structure grammar. However dependency grammar parses still represent
the structure of the sentence. Figure 1.2 shows the dependency parse for John
loves Mary. It is possible to convert between phrase-structural representations
and dependency representations of a sentence’s structure. Conversion from a
phrase structure parse to a dependency tree is done by making the head of each
non-head child of a node depend on the head of the head child. This conversion
is illustrated below in: Figure 1.3, which represents a phrase structural parse of
the sentence in Example 1.17; and Figure 1.4, which shows the resulting depen-
dency parse after conversion. Although a dependency parse can be written out
vertically, as in Fig 1.4, it is more common to see dependency parses written out
horizontally, as in Fig 1.5 with curved arrows indicating the head and dependent
of each dependency relation. Notice that there are no phrasal nodes.

(1.17) John liked the dog in the pen.

The equivalent of a phrase structure grammar in dependency parsing is the
transition system, described below in section 2.3.
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Figure 1.3: Phrase structural representation of John liked the dog in the pen.

liked 

John dog 

pen 

in the 

the 

Figure 1.4: Dependency representation of John liked the dog in the pen. Arrows
point from heads to dependents.

Figure 1.5: Dependency parse of the sentence Phoebe loves Luke more, showing
the dependency relations. Arrows point from heads to dependents.
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Chapter 2

Reading as a probabilistic process

This chapter focusses on ambiguity of sentence structure, and how parsers pro-
ceed when faced with ambiguous structure. The approaches can be divided into
single path and parallel types.

2.1 PCFGs

A probabilistic context-free grammar (PCFG; T. L. Booth (1969); Manning and
Schütze (1999)) is a collection of context-free grammatical rewrite rules of the
form X → α which specify how a constituent may decompose into more con-
stituents or a terminal. For each constituent that decomposes, the probabilities
of its decompositions must sum to one. Table 2.1 illustrates a small probabilis-
tic context-free grammar (PCFG) with weights on the rules, and which generates
phrase markers for main clause and direct object analyses of the partial sentence
When the dog scratched the vet and his new assistant.

(2.1) When the dog scratched the vet and his new assistant removed the
muzzle.

2.2 A top-down probabilistic phrase-structure parser

A top-down probabilistic parser TDPARSE is provided by Roark (2013) and de-
scribed in Roark (2001) and Roark (2004). The parser is set up to generate mea-
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Table 2.1: A small probabilistic context-free grammar (PCFG) that generates
example 2.1a

Rule Prob Rule Prob

S → SBAR S 0.3 N → dog 0.2
S → NP VP 0.7 N → vet 0.2
SBAR → COMPL S 0.5 N → assistant 0.2
SBAR → COMPL S COMMA 0.5 N → muzzle 0.2
COMPL → When 1.0 N → owner 0.2
NP → DET N 0.33 Adj → new 1
NP → DET Adj N 0.33 VP → V NP 0.5
NP → DET Conj NP 0.33 VP → V 0.5
Conj → and 1.0 V → scratched 0.25
Det → the 0.8 V → removed 0.25
Det → its 0.1 V → arrived 0.5
Det → his 0.1 COMMA → comma 1
a When the dog scratched the vet and his new assistant removed the muzzle

sures of psycholinguistic interest (Roark, Bachrach, Cardenas, & Pallier, 2009).
As presented in Roark (2004), the probabilities in the PCFG used in the parser
are smoothed so that the parser is guaranteed not to fail due to garden-pathing,
despite following a beam search strategy. Hence there is always a non-zero prefix
probability as defined in Equation 2.7. The parser was trained on the Wall Street
Journal part of the Penn Treebank (Charniak, 2000).

The parser follows a top-down leftmost derivation strategy. The parser main-
tains a set of possible connected derivations, weighted via the PCFG. It uses a
beam search, whereby the highest scoring derivations are worked on first, and
derivations that fall outside of the beam are discarded. The model conditions the
probability of each production on features extracted from the partial tree, includ-
ing non-local node labels such as parents, grandparents and siblings from the
left-context. The final step in parsing, following the last word in the string, is to
complete all non-terminals in the yield of the tree. The parser is a k-best parallel
parser whose beam width varies as described below.

The parser takes as input a string of n words wn0 ; a PCFG G; and a queue
of candidate analyses. A candidate analysis C = (D,S, PD, F, w

n
1 ) where D is

a derivation, S is a stack, PD is a derivation probability, and wn1 is the string of
remaining words in the sentence. The first word in the string remaining to be
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2.3: Nivre’s non-projective transition system parser

parsed, wn1 , is called the lookahead word. The derivation D is a sequence of
rules used from G. The stack S contains a sequence of nonterminal symbols and
an end-of-stack marker $. The symbol 〈/s〉 denotes the end-of-sentence terminal.
The probability PD is the product of the probabilities of all rules used in D. F is
the product of PD and a look-ahead probability PAD(S,wi) which measures the
likelihood of the stack S rewriting with wi as its left corner.

The parse begins with a single candidate analysis on the queue. Next the
top-ranked candidate is popped from the queue. If S = $ and wi = 〈/s〉 then the
analysis is complete. If not, all C ′ such that C derives C ′, denoted C ⇒ C ′ are
pushed onto the queue.

This is implemented as beam search. For each word position i there is a
separate queue Hi with look-ahead word wi. When there are ‘enough’ analyses
on Hi+1 all candidate analyses on H1 are discarded. All parses pushed onto Hi+1

are complete. The parse on H1 with the highest probability is returned for evalua-
tion. In the event that no complete parse is found, a partial parse is returned and
evaluated.

The beam threshold at word wi is a function of the probability of the top-ranked
candidate analysis on Hi+1 and the number of candidates on Hi+1. Essentially,
the beam width should be wide when there are few analyses onHi+1, but relatively
narrow when there are many analyses on Hi+1. If p is the probability of the top-
ranked parse on Hi+1 then an analysis is discarded if its probability falls below
pf(γ, |Hi+1|), where γ is an initial parameter calleed the base beam factor set to
10−11 and f(γ, |Hi+1|) is γ|Hi+1|)3. So, if 100 analyses have already been pushed
onto Hi+1 then a candidate analysis must have a probability greater than 10−5p

to avoid being pruned. After 1, 000 candidates, the beam has narrowed to 10−2p.
There is also a maximum number of allowed analyses on H1 in case the parse
does not put an analysis for Hi+1 and this maximum was 10, 000.

2.3 Nivre’s non-projective transition system parser

Nivre (Nivre, 2004b, 2006) defines each parser state as consisting of a tuple:

state = (Σ, B,A) (2.2)
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Table 2.2: Transitions for the Nivre non-projective transition systema

transition definition condition

Left–arc ([σ|i, j], B, T, A) ⇒ ([σ|j], B, T, A ∪ {(j, i)}) i 6= 0
Right–arc ([σ|i, j], B, T, A) ⇒ ([σ|i], B, T, A ∪ {(j, i)})
Shiftβ (σ, [i|β], T, A) ⇒ ([σ|i], β, T, A) β 6= 0
Shiftr (σ,B, [i|τ ], A) ⇒ ([σ|i], B, τ, A) τ 6= 0
Swap ([σ|i, j], β, T, A) ⇒ ([σ|j], [i|β], T, A) 0 < i < j
a Table taken from Boston (2012, p.50)

Σ is a stack consisting of already-parsed words that still require heads or depen-
dents. B is a buffer of upcoming words, and A holds the dependency analysis
information. This transition system handles non-projective analyses by allowing
already-parsed words to be pushed back onto the buffer B so that the sentence
can be reordered and attachments can be made locally. One problem with this
transition system is that buffered, already-parsed and unparsed words are held
in one data structure, B, which could lead to problems for incrementality. For ex-
ample, the parser should be blind to any words that haven’t been parsed yet, but
already-parsed words should be available.

To meet this requirement a data structure is added to Nivre’s tuple, T , as in
equation (2.3). Following Nivre (2004a), T holds all words that have not yet been
parsed. B only holds words that have been taken off the stack for reordering.

state = (Σ, B, T, A) (2.3)

To transition from one state to the next, Nivre defines four actions: Left–arc;
Right–arc; Shift; and Swap. Aside from the distinction between Shiftβ and Shiftr,
the definitions in Table 2.2 are directly from Nivre (2009, p. 353). Following his
conventions, Σ’s top appears on the right and B and T ’s tops appear on the left.

Dependencies can be formed only between the two top elements in the stack,
σ1 and σ2. For left-arc transitions σ1 (or j) becomes the head of σ2, i, and i is
removed from the stack. For right-arc transitions, the opposite occurs: σ1 (or
j) becomes the dependent of σ2, i, and j is removed from the stack. In the
implementation, shift is one action: until β is empty, shift pops elements off β and
onto σ. Once β is empty shift pops elements off τ . In this way the extra data
structure does not make any changes to the way the parser itself works (Boston,
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2.3: Nivre’s non-projective transition system parser

2012).

Finally, the Swap action is what gives this parser its ability to handle non-
projective structures. Essentially, Swap reorders elements so that two discontin-
uous elements can be side-by-side in the stack as σ1 and σ2. Swap pops σ2, in
this case i, off of σ and pushes it onto β. This allows a new word, originally σ3, to
be available for dependencies with σ1. Additionally, this reorders the sentence: if
σ2 is pushed back onto the stack, the two words are inverted.

The parser know which actions to take to generate the correct analysis by
reference to an oracle. This section shows how the oracle is created in steps:
(1) convert treebank to state-action bank: The treebank was the full Wall Street
Journal corpus of the Penn Treebank; the tool PENNCONVERTER (Johansson &
Nugues, 2007) was used to convert from CFG to DG form. For each sentence,
the sequence of parser states necessary to build the correct dependency analysis
is listed, as well as the correct actions to take to get to the next parser state.
This treebank of state-action pairs is then used to train probabilistic features.
(2) generate feature banks from state-action banks: The state-and-action banks
contain all the information in each parser state: all the words in the stack, all
the words in the buffer, all the dependency analyses created. If the exact parser
state is not found in the treebank, the parser can still use its experience with the
treebank to decide on a parser action This is done by extracting features and only
using some of them at a given state transition. (3) machine learn the probabilistic
features from the feature banks. The feature banks consist of transitions and
feature instances. But, the parser requires probabilities for taking each action.
Machine learning provides a method for learning the patterns in the feature banks,
which result in weights for each transition and feature instance. The machine
learning implementation used here is LIBLINEAR1.5 (Lin, Weng, & Keerthi, 2008).
The output of LIBLINEAR1.5 is a list of feature instances, along with weights for
each parser action. These weights are then normalised: each weight is divided
by the sum of the four action weights, resulting in probabilities for each parser
action. A set of probabilistic features with weights constitutes the oracle.

The particular implementation of a non-projective transition system that I use
in the thesis is HUMDEP3.0 (Boston, 2013). It is a k-best parallel parser where
beam width k is a parameter that the user specifies. All the results in the thesis
were generated using the default beam width k = 3. HUMDEP uses four data
structures as follow. σ is a stack of already-parsed non-reduced words; τ is an
ordered input list of unparsed words; h is a function from dependent words to head
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Ch 2: Reading as a probabilistic process

words; d is a function from dependent words to arc types. Permissible transition
types for HUMDEP are given here:

Left-arc a left arc is drawn from the current word being parsed i to the first word
j of σ

Right-arc a right arc is drawn from the first word j on σ to the current word being
parsed i making i the head of j; j is pushed onto σ

Shift shifts the current word being parsed j onto σ without drawing any arcs.

Reduce pops σ (applies only if the top word has a head)

Figure 2.1 illustrates how a Nivre parser’s configuration changes during the
processing of the sentence Phoebe loves Luke. In the initial configuration (Figure
2.1a) the stack σ is empty, the input list τ contains the full input string, and the
h and d functions are empty. Because LEFT-ARC, RIGHT-ARC, and REDUCE are
not viable options, the parser must SHIFT the first word Phoebe onto the stack,
leading to the configuration in Figure 2.1b. A LEFT-ARC from loves to Phoebe
pops Phoebe off the stack and adds head information to h (the head of Phoebe
is loves) and arc-type information to d (the arc from loves to Phoebe could be
labeled with the Subject function). Similarly, once the parser is in the state shown
in Figure 2.1d, a RIGHT-ARC transition leads to configuration Figure 2.1e, which
now defines the Object function of the sentence. Finally, when no inputs are left,
the parser uses the REDUCE action to pop the stack until the parser is in the final
configuration, with σ and τ empty (Figure 2.1g). What remains is the information
in h and d, which is used to draw the dependency analysis for the sentence.

The parser follows Nivre (2004b) in using a generative probability model to
rank parser actions. A k-best search algorithm explores the top k=3 parser con-
figurations according to the ranking established by the probabilities. There follows
a specification of the model’s features. Some features take into account the parts
of speech to be connected by potential dependency arcs, while others explicitly
model the width or direction of a potential arc:

Configuration The probability of a transition T is the probability of the transition
given the current configuration (conditioned by the top three elements in σ

and the first element in τ )
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Figure 2:  A parse of "Phoebe loves Luke". 

 
Figure 1: A DG sentence.1 
We apply four kinds of statistical features (Figure 
4) in a non-deterministic incremental dependency 
parser, examining each one's usefulness for 
targeting garden-path analyses that ensnare human 
readers in three well-studied cases (Sections 3.1-
3.3). The results support models of human 
sentence processing that attend more to parser-state 
and part-of-speech pair information than surface 
distance or dependency direction. Before 
proceeding to the results, Section 2 sketches the 
overall methodology. 

2 Methodology 

Nivre's (2004a) incremental dependency parser 
assigns a dependency graph to each initial 

                                            
1 All dependency graphs were output using Matthias 
Kromann's DGGraph tool (2002). 

substring of a well-formed sentence. It does this by 
keeping track of a parser configuration that 
aggregates four data structures, listed in definition 
(2). 
 
(2) Nivre-defined parser configuration (2006). 

 
   

As with other pushdown automata, Nivre's parser 
defines stack-manipulating operations, or 
transitions, between configurations, defined in (3). 
 

1. σ : A stack of already-parsed non-reduced 
words. 

2. τ:  An ordered input list of unparsed words. 
3. h:  A function from dependent words to head 

words. 
4. d: A function from dependent words to arc  

types. 

Figure 2.1: How a shift-reduce parser processes the sentence Phoebe loves
Luke. in stages (a) to (g).

Part-of-Speech (POS) Pair The probability of an arc R from wordi to wordj is
the probability that POS(wordi) heads POS(wordj)

Surface Distance The probability of arc R from wordi to wordj is the probability
of the number of words between POS(wordi) and POS(wordj).

Directionality The probability of an arc R from wordi to wordj with direction d

(left or right) is the probability that an arc from POS(wordi) to POS(wordj) is
of type d

These features, when weighted, give probabilistic advice to the parser for
carrying out a particular action. This can be used to model human garden-path
processing. Boston and Hale (2007) show how the parser handles a particular
syntactic ambiguity: the subject object ambiguity, an example of which is given
here, where the answer may initially be attached as the object of knew or as the
subject of a new VP – the answer was wrong.

(2.4) John knew the answer very well.
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(2.5) John knew the answer was wrong
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3.3 Subject-Object Ambiguities 

A Subject-Object ambiguity arises when a parser 
assumes a noun to be the direct object (DO) of a 
verb (Figure 10a), unaware that further input may 
reveal a second verb to which the noun can attach 
as a subject (S) (Figure 10b).  The human 
preference is for the reading in Figure 10a, which 
leads to a garden path in Figure 10c. 

a)           

b)          

c)          
Figure 10: Subject-Object 

ambiguity. 

 

Both the POS Pair and the Directionality 
features favor the S reading of the sentence, where 
the noun "answer" is not immediately attached as 
an object of the verb "knew".  The POS Pair 
feature rates a Shift transition higher than a Right-

arc transition (Figure 11a), and Directionality 
slightly prefers a Left-arc from a verbal head "was" 
to a noun "answer". But, the Configuration feature 
(11c) is able to produce the correct human garden 
path by choosing a Right-arc transition to attach 
the noun "answer" to the verb "knew". 

The Configuration feature prefers the action 
that leads to the garden path DO reading over 
alternatives leading to the S reading.   This 
particular type of ambiguity is not as difficult for 
the human processor in the sense that both readings 
of the sentence (10a and 10b) are acceptable 
(Kimball 1973; Ferreira & Henderson 1990). 
Therefore, models of the human processor that 
weight these features more closely would best 
reflect this situation. 

3.4 Analysis 

The feature set in Section 2 is able to model human 
garden-pathing in MV vs. RR, PP-Attachment, and 
Subject-Object ambiguities.  In all three cases, the 
Configuration feature agrees with the human 
preference while the other features combine to 
demonstrate the alternative grammatical readings.  
Figure 12 shows a hierarchy of the features based 
on our results. 

 

* 

Figure 2.2: How HumDep parses subject-object ambiguity

With reference to the panels (a) to (c) in Figure 2.2, a Subject-Object ambi-
guity arises when a parser assumes a noun to be the direct object (DO) of a verb
(panel a), unaware that further input may reveal a second verb to which the noun
can attach as a subject (S) (panel b). The human preference in this case is for the
reading in (a), which leads to a garden path in Figure (c). Both the POS Pair and
the Directionality features favour the S reading of the sentence, where the noun
answer is not immediately attached as an object of the verb knew. The POS Pair
feature rates a SHIFT transition higher than a RIGHT-ARC transition and Direction-
ality slightly prefers a LEFT-ARC from a verbal head was to a noun answer.

However, the Configuration feature is able to produce the correct human gar-
den path by choosing a RIGHT-ARC transition to attach the noun answer to the
verb knew. The Configuration feature prefers the action that leads to the garden
path DO reading over alternatives leading to the S reading. This particular type
of ambiguity is not as difficult for the human processor in the sense that both
readings of the sentence (a) and (b) are acceptable (Ferreira & Henderson, 1990;
Kimball, 1973).
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2.4 Metrics of incremental probabilistic parser load

“The point of the working cognitive model is that it should be able to predict when
humans will find certain sentences difficult. But, in order to do this, there must be
a way to measure parser difficulty." (Boston, 2012, p. 68).

This section describes two such metrics of parser difficulty which are used in
this thesis. The models of parsing described above (humdep and tdparse) both
yield surprisal either with respect to a probabilistic grammar or the dependency
equivalent, a list of features that specify the probability of each parser action at
a given state in the sentence. TDPARSE also yields entropy reduction. Both met-
rics are used to formulate linking hypotheses that link parser actions to cognitive
load. The sentence processing theories that embody these linking hypotheses
are discussed in Chapter 3.

2.4.1 Surprisal

When a grammar is augmented with probabilities, as in a PCFG, it becomes
possible to assign probabilities to sentence parses. This is done by multiplying
together the probabilities on all rules that were used to construct that parse. In
the event that the sentence being parsed is globally ambiguous with 2 alternative
parses, each of the alternatives would be assigned its own probability composed
of the product of the probabilities on all the rules used in the particular parse. In
this event the probability of a sentence with two alternative parses would be the
sum of the probabilities of each parse.

Because a parse is constructed incrementally, it is possible, following the effi-
ciency gains in the work of Stolcke (1995), to examine each state transition in the
process, and ask what the probability is of the partial sentence seen so far at that
state transition. The probability of a parse of a partial sentence is computed the
same way as a parse of a full sentence – by multiplying together the probabilities
of the rules that generated the partial string at that state transition.

When we can find what the probability is for a parse of a sentence fragment
as it stands after n words have been processed, and when we can find what the
probability is for a parse of an extended fragment of the same sentence after
the next word n + 1 has been processed, we can then ask questions about the
contribution of a word n+ 1 to the probability of the parse that contains it, making
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reference to the previous probability of that parse at word n. One way to quantify
this contribution is to measure the ratio of the probability of the parse at word
n to the probability of the parse at word n + 1. Surprisal is derived from this
quantity using the equations provided below. When this quantity is large we can
say that word n + 1 contributed greatly to the probability of the current parse,
and when it is small, we know this is because word n + 1 contributed little to the
probability of the current parse. Words which contribute little extend parses in
ways which are found frequently in the corpus over which the probabilities were
computed, whereas words that contribute greatly extend parses in ways which
are less common in the training corpus.

Surprisal is computed using two other quantities. These quantities are: (1) the
probability of a derivation: a derivation is a set of weighted rule productions that
result in the current partial string of input words, such that a sentence fragment
with two alternative parses is represented as two derivations; (2) prefix probability:
this is the probability of the parse of the fragment seen so far, which is composed
of the sum of the probabilities of the two derivations if the fragment is syntactically
ambiguous with two alternatives.

Let d be a derivation composed of a series of applications of grammar rules.
Let i index these applications so that di is the ith application in d, and let j be the
total number of applications in the derivation. Then the probability of a derivation
is given by the product of the probability of each rule applied in the derivation,
thus:

probability(d) =

j∏
i=1

probability(di) (2.6)

Let D represent the set of all derivations d that are present for the current sen-
tence fragment – when there are two alternative parses available for the sentence
fragment seen so far, D has two elements. Let w be the set of words in the sen-
tence fragment seen so far. Let wk be the word that the parser encountered most
recently at the current state. Let wk+1 be the first word of the rest of the sentence.
As the parser transitions from its state at wk to its state at wk+1 we can derive a
prefix probability at wk+1 that represents the sum probability of the derivations of
the string w1...k+1. So the prefix probability of word wk+1 with respect to grammar
G and the prefix w1...k is given by the sum of the probability of all derivations of
the string w1...k+1 that the grammar generates.

prefix probability(wk+1, G, w1...k) =
∑
d∈D

probability(d) (2.7)
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The conditional probability of the next word given a grammar and a prefix is the
ratio of the prefix probability of the next word wk+1 to the prefix probability of the
current word wk.

conditional probability(wk+1, G, w1...k) =
prefix probability(wk+1, G, w1...k)

prefix probability(wk, G, w1...k)
(2.8)

The surprisal of the next word given a grammar and a prefix is the negative log of
the conditional probability of the next word.

surprisal(wk+1, G, w1...k) = −log(conditional probability(wk+1, G, w1...k)) (2.9)

2.4.2 Entropy reduction

In general, the entropy (Shannon, 1948) of a random variable is the uncertainty
associated with that variable. Specifically, for a discrete random variable X with
outcomes x1, x2, . . . with probabilities p1, p2, . . .

entropy(X) = −
∑
x∈X

px log2 px (2.10)

When all outcomes are equally likely, entropy is maximal. For example, a fair die
has six equally probable outcomes. The probability of a particular outcome, e.g.,
the probability of rolling a five, is 1/6. The entropy of the die is then

entropy(die) = −
∑
x∈die

1

6
log2

1

6

= −
(

6 ∗
(

1

6
∗ log2

(
1

6

)))
= 2.58 bits

(2.11)

Putting this in sentence processing terms, let D be a set of derivations d

for a string containing the words read up to the current word k, words w1...k. A
derivation d is the set of rule productions for that string w1...k. Let pp(w1...k) be the
prefix probability of the string w1...k. The entropy of D for the string w1...k is given
by:

entropy(D|w1...k) = −
∑
d∈D

pp(w1...k+1) log2 pp(w1...k+1) (2.12)

The first k words of a sentence are words w1...k. The set of derivations given
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the string w1...k is D|w1...k. The information I conveyed by the set of derivations
for words w1...k is denoted I(D|w1...k) and defined by subtracting the entropy at the
current word from the entropy at the previous word:

I(D|w1...k) = entropy(D|w1...k−1)− entropy(D|w1...k) (2.13)

The amount of information that a parser gets from the current word is the amount
by which uncertainty about the derivation of the string containing the current word
is reduced from the uncertainty about the derivation of the string as it was before
the current word was processed. Finding this quantity requires us to know what
the entropy of the current string is. Equation 2.12 shows us that in order to com-
pute the entropy of the current string we need to do computations over words that
have not been seen yet. In Hale’s theory, the computations are done over all pos-
sible extensions that are consistent with the current sentence fragment, but this
requires a fairly small grammar. In Roark’s implementation, fairly large grammars
are used. To keep the computations over a large grammar tractable, Roark ex-
tends the current string by one word only, and calculates the entropy of that set.
The limits on what the next word could be are that adding the word has to result
in a string that the grammar generates, and that the end of sentence marker </s>
counts as a possible next word. Because Roark’s measure is calculated from just
one additional word beyond the current word, it is an approximation to Hale’s con-
ditional entropy of grammatical continuations, which is over complete derivations.
In the thesis I use Roark’s approximation.

Subtracting entropy at the current word from entropy at the last word gives
a positive quantity if entropy at the current word is less than entropy at the last
word, and entropy reduction is large to the extent that a word takes a sentence
from a state of high uncertainty to a state of relatively lower uncertainty. In the
case that entropy at the last word has a higher value than entropy at the current
word, the subtraction gives a negative quantity. Hale describes this situation as
one in which the new word leaves the processor in a more uncertain state than
before. In this case “no progress disambiguating the string has occurred, analo-
gous to pushing against a heavy boulder on an incline, which nonetheless drives
the pusher backward” (Hale, 2006, p. 650). Hale’s formula for the ER measure
given here imposes a lower bound at zero so that the value of ER itself is never
negative:

ER = max(0, I(D|w1...k)) (2.14)
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Chapter 3

Theories of sentence processing

This chapter gives the main theories of sentence processing, and their predic-
tions for differential processing difficulty at disambiguating words.

3.1 Garden-path theory

The label garden-path theory is given to a cluster of accounts that take a similar
approach. They are serial models that construct an initial analysis by means of
heuristics until it is inconsistent with an input word. This is typically a disambig-
uating word, in which case these models propose that the initial analysis is revised
in line with the information conveyed by the new input word.

Recall the example sentence fragment The horse raced . . . . Perhaps the
simplest answer to the question how a word like raced (that has more than one
way of being integrated into the sentence) should be handled by the parser is
offered by Bever (1970). Bever suggests a simple rule that states a preference:
prefer to attach a verb as an active main verb instead of as a passive participle.
This rule would have to be represented somewhere in the parser itself since it is
not derivable from the grammar or from the string of words, but it offers a way for
the parser to make a choice at the onset of ambiguity.

There are some hidden assumptions underlying a proposal like Bever’s that
can be brought into light and which are characteristic of this class of approaches
to the onset of ambiguity. The statement of a preference for one alternative over
another hides an assumption that the parser’s response to the onset of ambiguity
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is to pursue one alternative and not to pursue others. Such a parser can be
described as having a narrow beam of width one, because it pursues a single
analysis, where a logically possible alternative would be to pursue both analyses
in a parser whose beam is of width two. Parsers whose beam is of width greater
than one are considered in the section after this one, while the present section
deals with a variety of ways that a parser with beam width of one can identify that
single analysis at the onset of ambiguity.

One disadvantage of a system like Bever’s is that it requires a great many
rules additional to those in the grammar: one for each type of ambiguity that the
parser could encounter in sentences across the language. For this requirement
to be met, the number of individual rules must be very large, and this may be
incompatible with human memory limitations. One way for the number of rules
to be limited without departing from the commitment to a single analysis at the
onset of ambiguity is to express them in a more general form such that a smaller
number of rules has the same coverage of sentences that are possible in the
language. Whereas Bever’s rule for the main clause / reduced relative clause
ambiguity is hard-coded for that ambiguity, an ideal more general set of rules
would abstract over particular ambiguities and provide the parser with a set of
principles for dealing with any ambiguity that it might come across.

There are proposals for such general heuristics in the literature. In order
for these heuristics to apply more generally than per-ambiguity rules, they must
appeal to some higher order notion that subsumes individual ambiguities under
a common banner. There are heuristics that appeal to minimality to abstract
over particular ambiguities and heuristics that appeal to locality to abstract over
particular ambiguities.

Minimality heuristics appeal to a notion of syntactic simplicity to abstract over
particular ambiguities. The most general form of the minimality heuristics says:
prefer to build a structurally more simple analysis than to build a structurally com-
plex analysis. Minimality accounts differ as to how they measure structural sim-
plicity. In the Sausage Machine model of Frazier and Fodor (1978) structural
simplicity is measured by the number of syntactic nodes that would have to be
built to accommodate each alternative analysis. The analysis that mandates the
fewest nodes to be built is considered to be the structurally simplest analysis,
and choosing this analysis satisfies the assumption that exactly one single parse
should be favoured and pursued. The heuristic is called minimal attachment in
this framework. The way that minimal attachment generalises over particular am-
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biguities to provide a heuristic is to operate on the number of nodes that must
be built, and not on some preference order for one path over the other at some
particular ambiguity onset.

Whereas minimality heuristics abstract over particular ambiguities with ref-
erence to a count of syntactic nodes, locality heuristics abstract over particular
ambiguities by leading the parser to combine nearby constituents in preference
to combining farther away constituents. The appeal is to notions of distance,
which may be expressed as distance between words, or more abstractly as dis-
tance between higher-order constituents in the phrase marker like noun phrases
or main clauses. Late closure (Frazier, 1978) is a locality heuristic that privileges
attachment of the incoming word into the currently considered constituent and
disprefers attachment of the incoming word into a new constituent. The effect
of applying this principle is to use new material to pursue, depth-first, the exist-
ing clause. It prevents the parser from pursuing the alternative and starting a
new clause. Right association (Kimball, 1973) also says that incoming syntactic
material is preferentially construed with recently built structures rather than with
long-ago built structures and thus appeals to the same notion of locality as does
late closure. Local association (Frazier & Fodor, 1978) is another guise for the
same appeal to locality. The recency preference of Gibson (1991) is another
locality-based principle.

Within locality heuristics there are two kinds: windowing models and right-
to-left models. Windowing models include the 3 constituent window of M. Mar-
cus (1978) which constrains the number of constituents in the current processing
window; and the Sausage Machine model of Frazier and Fodor (1978) which con-
strains the number of words in the processing window to 5 or 6 words. Locality
effects fall out of windowing models because only within-window attachments are
available for parsing, so that if a constituent or word can be attached locally, it
will be attached locally, regardless of any availability of non-local attachments
outside the window. Windowing models became unpopular as it became clear
that for any window size, counter examples can be found to demonstrate that the
given window size is unable to account for empirically-established human parsing
preferences. Right to left models include the recency preference of Gibson (1991)
in which whenever there are several attachment points for an adverbial phrase,
only the most recent is considered. Such models need to stipulate that recency
is preferred, in contrast with the way that locality effects fall out of windowing
models.

49



Ch 3: Theories of sentence processing

Verbs are particularly important in accounts of the onset of ambiguity since
many ambiguities concern the attachment of arguments to verbs. This requires
a notion of the verb as the head of a clause, and a notion of the verb having
arguments. This is often indicated by using the terminology of θ to represent
any word that has arguments - typically a verb which might have an agent and
a recipient as well as adverbial clauses that qualify the manner of action. For
example in the following sentence:

(3.1) The spy shot the policeman with the rifle.

the theta-assigning word is the verb shot, which has a scope (or domain) that
includes its agent spy and its patient policeman. Both the agent and the patient
are considered to be roles that are assigned by the verb: they are part of its theta-
domain. The adverbial clause giving the manner of shooting with the rifle is also
considered to be part of the theta-domain. The fact that the manner of shooting is
considered to be an argument of the verb shot shows how a notion of locality can
be expressed that operates higher up than the level of the words in the sentence.
To see this, consider that the string with the rifle is not particularly close to the
verb shot in this case: the patient of the verb the policeman intervenes between
the words shot and with the rifle, but appealing to theta-assignment permits a
theory to treat a verb and its arguments as “close”, and it is in this sense that
such theories can be considered to be locality-based.

An example of a parsing principle that honours theta-assignment relations is
Pritchett’s theta-reanalysis constraint (Pritchett, 1992) that states “syntactic re-
analysis that reinterprets a theta-marked constituent as outside of the current
theta-domain is costly”. While this principle is expressed as a reanalysis con-
straint, the prior notion of a domain that a constituent is inside or outside is really
a theory of locality expressed over syntactic units rather than words.

Frazier and Rayner (1982) observed two kinds of eye movement behaviour at
disambiguation and explained them in a serial reanalysis framework. In Frazier
and Rayner’s garden-path model, repair is choosing a new analysis of the exist-
ing left-context that is compatible with the disambiguation. The first they called
chaos, where fixations were very long in the disambiguating region of the sen-
tence but “eye movements generally continued in a forward direction through the
sentence. Upon reading the end of the sentence, the subject then made a long
regression to the beginning of the sentence and reread the sentence” (Frazier &
Rayner, 1982, p. 196). This was taken to indicate that subjects had great difficulty
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understanding the sentence, but that they had “no insights as to what the nature
of the processing difficulties were” (Frazier & Rayner, 1982, p. 197). The sec-
ond pattern disruption was associated with long fixation durations or regressions
where the “reader fixated on the disambiguation region for an average amount of
time and then immediately made a regression back to the ambiguous region of
the sentence” (Frazier & Rayner, 1982, p. 197). This was taken to indicate that
“the reader was able to reanalyse the sentence and resolve the ambiguity, but it
took some additional processing after encountering the disambiguation”.

While minimality and locality heuristics are intended to meet the assumption
that a parser must achieve a single analysis at the onset of ambiguity, this is not
the only logically possible approach to the onset of ambiguity. An alternative class
of accounts shares a different assumption that the parser responds to the onset
of ambiguity by generating each alternative. The terms serial and parallel are
often used to describe this difference.

3.2 Decay model

The decay model (Ferreira & Henderson, 1991b, 1998) uses the minimal attach-
ment and late closure heuristics to make initial attachments. When a phrasal
head or other theta-assigner is encountered, all argument structures associated
with the theta-assigner are activated in parallel with weights on the structures ac-
cording to their relative frequency. A thematic role is assigned to a phrase as
soon as the head of that phrase is encountered (Ferreira & Henderson, 1998,
p. 84).

The model makes use of the notion of a Thematic Processing Domain (TPD)
to explain how reanalysis is initiated. The TPD refers to the scope of the theta-
assigner including all its arguments, and the decay of activated theta-assigned
roles. Reanalysis is triggered by any of these conditions: when one TPD is
embedded inside another; when two TPD’s must interact; or when two theta-
assigners are adjacent. If any of these occur, the parser will detect an error at
disambiguation, and will retrieve a previously-discarded theta-domain. When the
syntactic analysis breaks down, syntactic and thematic reanalysis occurs.

Differential reanalysis difficulty is based on how easily the required argument
structure can be retrieved. This depends on both the amount of the weighted ini-
tial activation for the structure and the amount of decay that has occurred since it
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was activated. The claim that thematic roles associated with unadopted argument
structures of a theta assigner start to decay once theta roles are assigned seems
reasonable: if this was not the case then a very large number of roles would have
to be maintained in working memory during sentence processing.

Repair is more difficult in the model when the onset of ambiguity is further
back in the sentence because the activation of the structure decays more over
the greater number of intervening words than when the onset of ambiguity is
nearer to disambiguation. Since thematic assignment has to wait for the head of
a phrase to be processed, less decay will have occurred at disambiguation in the
case of a head-final NP than in the case of a head-initial NP. So, assuming equal
initial activation, reanalysis for ambiguously attached head-initial NPs is predicted
to be more difficult than for ambiguously attached head-final NPs, because the
role associated with the unadopted argument structure of a head-final NP will be
easier to retrieve.

Ferreira and Henderson (1991a) used sentences like the following examples
to show differential reanalysis costs based on the length of an ambiguous re-
gion and the associated decay of an initially-activated structure. The percentages
following them indicate grammaticality judgements, so that 100% would indicate
that everyone tested considered the sentence grammatical. The sentences come
from two different experiments with different participants.

(3.2) After the Martians invaded the town the people were evacuated. (82%)

(3.3) After the Martians invaded the town that the city bordered the people were
evacuated. (64%)

(3.4) After the Martians invaded the town was evacuated. (69%)

(3.5) After the Martians invaded the town that the city bordered was evacuated.
(18%)

The first finding to be discussed, using Examples 3.2 – 3.3 and Examples
3.4 – 3.5, is that a longer ambiguous region leads to lower grammaticality judge-
ments. Examples 3.2 – 3.3 are early closure sentences and Examples 3.4 – 3.5
are late closure sentences and thus not expected to cause difficulty under the
garden-path model. Examples 3.2 and 3.4 have short ambiguous regions and
Examples 3.3 and 3.5 have long ambiguous regions. The effect of lengthening
the ambiguous region was to reduce grammaticality judgements. Surprisingly,
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the effect obtained for the non-garden-path pair as well as the garden-path pair
but this aspect was not pursued in this incarnation of the decay model. A simple
decay interpretation is that the alternative argument structures made available at
the theta assigner, but not immediately used, had longer to decay during a rel-
atively long ambiguous region than during a short ambiguous region, and were
thus harder to bring back into the analysis upon disambiguation.

(3.6) If the clerk forgets the customer typically yells. (63%)

(3.7) If the clerk forgets the customer that likes Bobby typically yells. (35%)

(3.8) If the clerk forgets the customer with turquoise shoes typically yells. (35%)

An alternative explanation that Ferreira and Henderson (1991a) sought to rule
out is that it is not syntactic complexity that is responsible for the grammaticality
judgement gradient. To spell out this alternative possibility, consider that 3.8 re-
quires more nodes than 3.7. Yet the grammaticality judgements did not differ
significantly across the two cases. From this, Ferreira and Henderson (1991a)
concluded that whatever might be responsible for the disadvantageous effect of
lengthening the ambiguous region, it could not be syntactic complexity.

The next finding we will consider uses Examples 3.9 and 3.10.

(3.9) While the boy scratched the dog that Sally hates yawned loudly. (24%)

(3.10) While the boy scratched the big and hairy dog yawned loudly. (51%)

Here ‘dog’ is the head of the misanalysed phrase and ‘yawned’ is the disambig-
uation. When the head of the misanalysed phrase is further from the disambig-
uation (as in 3.9) the sentence is perceived to be less grammatical than when the
head is closer to the disambiguation (as in 3.10). This explanation also works for
Examples 3.2 to 3.5.

Finally we consider effects of argument structure frequency, and see how
a modified decay model can accommodate them. We will use Examples 3.11
and 3.12 which both resolve to complements but where the verb ‘knew’ is more
frequent with a complement than with an object whereas for ‘saw’ the reverse is
true. From Ferreira and Henderson (1991b) :

(3.11) The woman knew the nervous man would leave. (easy )
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(3.12) The woman saw the nervous man would leave. (hard)

Greater difficulty was found for the sentence with saw indicating that when reso-
lution is against frequency, comprehension is harder. If argument structures are
accessed in parallel and weighted by frequency, then more frequent structures
will be more readily accessed at disambiguation than will less frequent structures,
accounting for the frequency effect here.

It is only necessary to add this assumption of weighting by frequency to the
decay model to extend it to cope with these data. Furthermore, the structure not
chosen on the first pass will be a more frequent structure for biased-to-correct
than for balanced verbs, where biased-to-correct means that, of the available
argument structures, one is more frequent than the other, and the more frequent
structure turns out to be correct; and where balanced means that the available
argument structures are equally frequent.

This offers an opportunity for reanalysis to benefit from the greater activation
of the not-chosen structure of biased verbs relative to the not-chosen structure
of balanced verbs. Support for this comes from Ferreira and Henderson (1991b)
who showed that using biased verbs rather than balanced verbs reduced the
disadvantageous effect of a long ambiguous region on grammaticality in Early
Closure sentences.

Garnsey, Pearlmutter, Myers, and Lotocky (1997) investigated effects of verb
bias (called subcategorisation frequency in this thesis) in direct object vs senten-
tial complement (DO/SC) ambiguity using sentences like the following, which all
require a SC interpretation:

(3.13) The talented photographer accepted the money could not be spent yet.
(DO-bias, plausible DO)

(3.14) The talented photographer accepted the fire could not have been
prevented. (DO-bias, implausible DO)

(3.15) The sales clerk acknowledged the error should have been detected
earlier. (EQ-bias, plausible DO)

(3.16) The sales clerk acknowledged the shirt should have been marked down.
(EQ-bias, implausible DO)

(3.17) The ticket agent admitted the mistake had been careless and stupid.
(SC-bias, plausible DO)
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(3.18) The ticket agent admitted the airplane had been late taking off. (SC-bias,
implausible DO)

They found that varying the plausibility of the ambiguously attached NP (e.g., the
money, the fire) as a direct object of the verb (e.g., accepted) resulted in no effect
of plausibility in sentences with SC-biased verbs (like admitted), but resulted in
effects of plausibility for sentences with verbs that had other biases (e.g., DO-bias
like accepted, or equi-bias like acknowledged). They interpreted this finding as
evidence that sub-categorisation frequency / verb bias guides readers away from
the DO interpretation of the NPs in sentences with SC-biased verbs.

3.3 Monotonicity proposal

Sturt et al propose that a generalized monotonicity constraint can explain dif-
ferential processing difficulty (Sturt & Crocker, 1996, 1997, 1998). Revisions
to the existing representation of the sentence are proposed to be easy in the
case where the appropriate revision effects only monotonic changes, and difficult
in the case where the appropriate revision requires destructive (non-monotonic)
changes. Easy reanalysis is predicted for sentences that can be parsed by the
core parser, and difficult reanalysis is predicted for sentences that “do not receive
a parse” Sturt and Crocker (1996) from the core parser. The question which sen-
tences can be parsed by the core parser is taken up in this section.

The following sentences will be used as examples in this section. The model
predicts that the core parser can process 3.19 and 3.20 but that the core parser
cannot process 3.21 (i.e., the core parser “does not assign a parse” to 3.21). To
see why the core parser is restricted to handling only some of these examples, it is
necessary to give the restrictions on the operations that the core parser is claimed
have at its disposal, and then show that 3.19 and 3.20 can be parsed within these
restrictions but that 3.21 results in a contradiction within these restrictions.

(3.19) John knows the truth.

(3.20) John knows the truth hurts.

(3.21) While John was washing the dishes crashed on to the floor.
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The model is expressed in terms of trees in Description Theory (M. Marcus,
Hindle, & Fleck, 1983): trees adhere to the the following conditions. Dominance
and precedence are both defined as transitive relations. Dominance is reflexive
(every node dominates itself) and precedence is irreflexive.

Single root condition there is a single node, the root node, which dominates
every node in the tree: ∃x∀y · dom(x, y)

Exclusivity condition no two nodes can stand in both a dominance and a prece-
dence relation: ∀x, y · prec(x, y) ∨ prec(x, y)↔ ¬dom(x, y) ∧ ¬dom(y, x)

Inheritance (no-tangling) condition) all nodes inherit the precedence proper-
ties of their ancestors: ∀w, x, y, z · prec(x, y) ∧ dom(x,w) ∧ dom(y, a) ←
prec(w, z)

The conditions on trees are compatible with many possible implementations
of a parser (e.g., Gorrell, 1995). Some additional constraints serve to identify the
Sturt and Crocker (1996) implementation. These are:

Strict incrementality each word must be connected to the current tree descrip-
tion at the point at which it is encountered through the addition of a non-
empty set of relations to the description

Structural coherence at each state, the tree description should obey the condi-
tions on trees: (a) single root condition; (b) exclusivity condition; (c) inheri-
tance.

Full specification of nodes tree-descriptions are built through the assertion of
dominance and precedence relations between fully specified nodes. In the
current implementation, each node is a triple 〈Cat,Bar, Id〉, consisting of
category Cat, bar-level Bar and an identification number Id. Each of these
three arguments must be fully specified once the structure has been as-
serted.

Informational monotonicity the tree-description at any state nmust be a subset
of the tree-description at state n+1. Thus the parser may not delete relations
from the tree description.

Obligatory assertion of precedence if two or more nodes are introduced as
sisters, then precedence relations between them must be specified.
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Grammatical coherence at each state, each local branch of the phrase marker
described must be well-formed with respect to the grammar.

Two operations that the parser can perform are simple attachment and tree-
lowering. There are two kinds of simple attachment, left and right attachment.
These are defined here, and illustrated in Figure 3.1:

Left attachment let D be the current tree description, with root node R. Let S
be the subtree projection of the new word, whose left-most attachment site,
A, is of identical syntactic category with R. The updated tree description is
S ∪D, where A is identified with R.

Right attachment let D be the current tree description, with the first right attach-
ment site A. Let S be the subtree projection of the new word, whose root,
R, is of identical syntactic category with A. The updated tree description is
S ∪D, where A is identified with R.

The parser is also capable of creating a new attachment site with reference to
a verb’s argument structure. If simple attachment is not possible, then the parser
attempts to perform a second mode of attachment, tree-lowering. Tree-lowering
is defined using the notion of accessibility. Both terms are defined here, with an
illustration in Figure 3.2:

accessibility Let N be a node in the current tree description. Let W be the last
word to be attached into the tree. N is accessible iff N dominates W , and
N does not dominate any unsaturated attachment sites.

tree lowering Let D be the current tree description. Let S be the subtree pro-
jection of the new word. The left attachment site A of S must match a node
N accessible in D. The root node R of S must be licensed by the gram-
mar in the position occupied by N . Let L be the set of local relations in
which N participates. Let M be the result of substituting all instances of
N in L with R. The attachment node A is identified with N . The updated
tree-description is D ∪ S ∪M .

Tree-lowering will succeed only if the operation is performed on an accessible
node. Figure 3.3 illustrates successful tree-lowering. Sometimes tree-lowering
will be attempted for some node such that checking whether that node can occupy
its position R in Fig 3.2 requires subcategorisation information to be retrieved that
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LEFT ATTACHM ENT

RIGHT ATTACHM ENT

FIG. 1. Left and right attachment.

Simple Attachment

The parser is capable of performing simple right and left attachment,
illustrated schematically in Fig. 1. A lexical subtree may contain attachment
sites to the left or the right of the word from which it is projected. These are
distinguished empty nodes, which must be élled in accordance with the
conditions on trees (the parser effectively keeps these nodes on a stack; see
Appendix for details). Intuitively, left attachment consists in attaching the
current global tree onto the left corner of the subtree projection of the new
word, while right attachment consists in attaching the subtree projection of
the new word onto the right corner of the current global tree. This is done by
simply identifying the root node of one subtree with an attachment site from
the other subtree, and adding the required structural relations to the global
representation. The attachment operations are similar to Abney’s (1987,
1989) Attach-L and Attach , respectively. In the following deénitions, we use
the term “current tree description” to refer to the set of relations describing
the global phrase-marker currently in the parser’s memory; in other words,
the parser’s left-context. The term “subtree projection”  is used to refer to the
set of relations corresponding to the lexical category of the new word
encountered in the input.

Figure 3.1: An illustration of left and right attachment in the model of Sturt and
Crocker (1996). R is the root node. B is the node that is not the root node. A is
the attachment site. Figure taken from (Sturt & Crocker, 1996, p. 461).

466 STURT AND CROCKER

15Note that tree-lowering constrained by accessibility results in a system which is very similar
to that of Stevenson’s (1993, 1994) competitive attachment model. See pp. 487–488 for a
discussion.

FIG. 4. Schematic illustration of tree-lowering. The node R must be licensed in the position
previously occupied by N .

D E F IN IT IO N : Accessibility
Let N be a node in the current tree description. Let W be the last word to
be attached into the tree.
N is accessible iff N dominates W , and N does not dominate any
unsaturated attachment sites.15

Note that it is not necessarily the case that all nodes on the right edge of the
tree are accessible, nor that all accessible nodes are on the right edge of the
tree. For example, a “dangling node” will not dominate any lexical material,
even though it might be on the right edge of the tree, and therefore it will not
be accessible. Also, there may be a node which dominates the last word to be
attached, and which is therefore accessible, but which precedes a dangling
node, and is therefore not on the right edge of the tree.

The tree-lowering operation is deéned as follows, and illustrated
diagrammatically in Fig. 4:

D E F IN IT IO N : Tree-lowering
Let D be the current tree description. Let S be the subtree projection of
the new word. The left attachment site A of S must match a node N
accessible in D. The root node R of S must be licensed by the grammar in
the position occupied by N . Let L be the set of local relations in which N
participates. Let M be the result of substituting all instances of N in L with
R. The attachment node A is identiéed with N .
The updated tree-description is D È S È M .

Figure 3.2: Schematic illustration of tree-lowering. The node R must be licensed
in the position previously occupied by N . Figure taken from (Sturt & Crocker,
1996, p. 466).
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13In the current implementation, lexical information for the verb know is re-accessed in order
to énd the alternative subcategorisation frame.

14Though accessibility can be derived from the theory of trees, the actual parser does not
reason from érst principles in order to énd accessible nodes, but explicitly uses the above
deénition. This is done for eféciency reasons.

FIG. 3. Reanalysis as the insertion of one tree inside another. The inserted material is
enclosed inside the dotted lines.

6. John knows the truth hurts.

Schematically, what we need in the above case is illustrated in Fig. 3. Here,
the nodes corresponding to root and foot nodes of the auxiliary tree are the S
node and NP (subject) node of the embedded clause, respectively. In order
to accommodate b9 into a9 in the desired monotonic fashion, therefore, we
will have to drop the requirement for root and foot nodes to be of identical
syntactic category. However, we must constrain this operation so that it may
only be employed in cases where the root node of the auxiliary tree is
licensed in its new adjoined position. In the above case, it is licensed, since
know may subcategorise for a clause.13

In order to maintain structural coherence, the new word attached via
tree-lowering must be preceded by all other words previously attached into
the description. We can guarantee this by requiring the lowered node to
dominate the last word to be attached. We also need to ensure that, to avoid
crossing branches, the lowered node does not dominate any unsaturated
attachment sites (or “dangling nodes”). In other words, in order to obey the
theory of trees, the node selected for tree-lowering must be accessible in the
following sense:14

Figure 3.3: Successful tree-lowering, monotonic reanalysis for accessible nodes.
Reanalysis as the insertion of one tree inside another. The inserted material is
enclosed inside the dotted lines. Figure taken from (Sturt & Crocker, 1996, p. 465)

is associated with some word that is in the left-context, but is no longer itself
accessible in sense in which the term is used in the model. This thesis takes
up the question whether this kind of retrieval of subcategorisation information is
reflected in eye movements in reading.

We are now in a position to concisely state how the model of Sturt and Crocker
(1996) operates. It is a parser that carries out simple attachment until that fails,
whereupon the accessible nodes of the current tree-description are considered
until a node is found at which tree-lowering may be applied. The parser succes-
sively considers higher and higher nodes until either tree-lowering succeeds, and
the parser continues to the next input word, or the current node path is exhausted,
in which case the core parser fails, and the string is rejected.

If the parser was attempting to process an ungrammatical sentence then
tree-lowering would fail and the string would be rejected, but in the model, tree-
lowering also fails for grammatical sentences like Example 3.21, which Sturt et al
call conscious garden-path sentences to indicate that processing at a higher level
than that provided by the core parser is necessary for successful processing of
these sentences. The model appeals to the distinction whether a sentence can
be fixed by tree-lowering or not to explain the greater human difficulty observed
for sentences like 3.21 (which cannot be fixed by tree-lowering) versus sentences
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ADVP

while S’

NP

John

I’

I

was

VP

V

washing

NP

the dishes

S

ADVP

While S”

NP

John

I’

I

was

VP

V

washing

S’

NP

the dishes

VP

crashed onto
the floor.

Figure 3.4: Illustration of a case that tree-lowering rejects. Top: an adverbial
phrase formed by attaching the dishes low, as a sister node of washing. Bottom: A
phrase-marker for the whole sentence formed by attaching the dishes high, as the
first constituent of the main clause of the sentence. In Sturt et al’s monotonicity
proposal, attempts at tree-lowering fail for this type of conscious garden-path
sentence.
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like 3.20 (which can be fixed by tree-lowering).

Figure 3.4 illustrates why tree-lowering fails when the new word cannot be
attached into the existing clause (i.e., the new word must be must be attached
high). In the representation of the full sentence, it can be derived that the original
VP now precedes the NP (through the inheritance condition), but this leads to a
contradiction, because we now have dom(V P,NP ) ∧ prec(V P,NP ) which goes
against the exclusivity condition. The result of this violation of the exclusivity
condition is that the parse cannot be achieved by the core parser.

The way in which the term monotonicity is used by Sturt and Crocker (1996) is
as follows. Monotonic revisions are those that tree-lowering can implement. Non-
monotonic revisions are those that tree-lowering cannot fix. Thus the parser does
not offer an explanation of graded difficulty within the set of conscious garden
path sentences, in contrast with, for example, the diagnosis model described in
section 3.4, where gradations of difficulty come about as a result of the varying
number of times that a given fixing principle must be carried out.

3.4 Diagnosis model

The Diagnosis model (Fodor & Inoue, 1994, 1998, 2000) explains repair with ref-
erence to the grammar and whether the grammar licenses a given attachment.
The model treats reanalysis as an extension of the routines that bring about pars-
ing itself.

First we consider the assumptions of the model, as follows. This is a member
of the class of limited repair models. The model assumes that syntactic structure
is built. This stands in contrast to the view that initially-activated parses are either
deselected by entropy or pruned in a parallel parser. The model assumes that
repairs are effected. This stands in contrast to the position that there is no repars-
ing, as in strictly incremental parsers. The observed difficulty at disambiguation
is explained as the parser’s difficulty in deducing which repairs are called for -
whereas the majority view is that the explanation is difficulty in effecting repairs.
In the diagnosis model there is no special machinery for revisions. Instead the
model invokes existing first pass machinery and calls it as a function repeatedly
with different parameters. The model’s coverage extends to the possibility that
diagnosis may fail, as a way of covering the evidence for re-reading the sentence
from the beginning as a consequence of unexpected disambiguation.
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Parsing is implemented in the diagnosis model by a principle called Attach,
which is described thus:

Attach “On receiving a word of the input sentence, connect it to the current par-
tial phrase marker for the sentence in such a way that the resulting current
partial phrase marker is syntactically well-formed, though possibly incom-
plete at its right edge” (Fodor & Inoue, 1998, p. 103).

In the event that no syntactically well-formed current partial phrase marker
can be brought about by the application of Attach, the diagnosis model applies a
principle called Attach Anyway, which is described thus:

Attach anyway “Having established that there is no legitimate attachment site
in the current partial phrase marker for the current input word, attach the
input word into the current partial phrase marker wherever it least severely
violates the grammar, and subject it to the usual preference principles that
govern Attach.” (Fodor & Inoue, 1998, p. 105)

This leaves the current partial phrase marker in an ill-formed state, albeit the
least ill-formed state consistent with the Attach principle. The parser now applies
a principle called Adjust, which is described thus:

Adjust “When a grammatical conflict has been created between two nodes X and
Y in the current partial phrase marker, by either Attach Anyway or Adjust,
eliminate the problem by altering minimally (i.e., no more than is necessary
for conflict resolution) whichever of X and Y was less recently acted on,
without regard for grammatical conflicts thereby created between that node
and others in the current partial phrase marker.” (Fodor & Inoue, 1998,
p. 106).

Note that the Adjust principle is recursive: it can be applied to its own output.
This allows for the situation where Adjust leaves the current partial phrase marker
in an ill-formed state - the current partial phrase marker in this ill-formed state is
itself subjected to a further round, or series of rounds, of application of the Adjust
principle, and it is in this way that adjustments can be propagated up through
the current partial phrase marker to bring about an ultimately well-formed current
partial phrase marker.
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A further principle called the Grammatical Dependency Principle (GDP) guides
the parser mechanistically to the source of the ill-formedness in the current partial
phrase marker:

Grammatical Dependency Principle “When a grammatical violation has been
created in the current partial phrase marker by an action on node n in accord
with Attach Anyway or Adjust, attempt to eliminate the problem by acting on
a node that is grammatically incompatible with n” (Fodor & Inoue, 1998,
p. 109).

In the Diagnosis model of Fodor and Inoue (1998) the difference between
NP/S and NP/Z sentence types is critical, and the model offers reasons why am-
biguous NP/S sentence types are found easier to process than ambiguous NP/Z
sentence types (these two cases have been shown to differ in difficulty, by Sturt et
al. (1999)). The diagnosis explanation is cast in terms of stealing - the disambig-
uating word steals the initially misattached noun away from the first clause and
into the second. There are two types of stealing: capture and theft . Descriptions
of each term follow.

Capture In the case that a verb has multiple subcategorisation frames, and in
the event that the parse involving the wrong subcategorisation frame is
initially pursued, then, upon disambiguation, the parser can reinspect the
subcategorisation frames of the verb and select an alternative. Crucially,
because there is a grammatical link between the material that has been
wrongly attached and the verb that it has been wrongly attached to, the
parser can traverse this link and directly find the verb whose subcategor-
isation frames must be reinspected. The diagnosis model claims that sen-
tence types for which the verb has an alternative subcategorisation frame
can be fixed more quickly by the parser than sentence types for which the
verb does not have an alternative subcategorisation frame. The term cap-
ture is used to describe the process by which the wrongly attached material
is stolen into a new clause in sentences where the verb does have at least
one alternative subcategorisation frame. Below there is a worked example
of the NP/S sentence type that uses capture, using Example 3.22.

Theft In the case that the verb does not have an alternative subcategorisation,
the wrongly attached material can still be stolen into a new clause, but it
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cannot be attached as a complement of the verb. The parser has to project
a lot of new structure in cases like this, both to demote the initial part of the
sentence to an adverbial clause, and to nest this clause into the new rep-
resentation of the sentence by projecting a new main NP and VP. The term
theft is used to identify cases where the verb does not have an alternative
subcategorisation frame, and to describe the process by which the wrongly
attached material must be stolen into a new clause in sentences where the
verb does not have any alternative subcategorisation frames. Below there is
a worked example of the NP/Z sentence type that uses theft, using Example
3.29

A worked example of NP/S ambiguity There follows a worked example of how
the diagnosis model parses a sentential complement ambiguity:

(3.22) Alice saw Bob limped.

The example starts with processing Alice saw. The verb saw has two sub-
categorisation frames, for a NP and for a sentential complement. Each frame has
a different attachment site for an NP at word 3. The direct object attachment site
for a noun in position 3 is:

(3.23) S

Alice VP

saw NP

The ambiguity typically resolves to a direct object reading. The parser is
assumed to pursue the direct object reading first. Word 3 is Bob. The parser
attaches Bob in NP position using attach:

(3.24) S

Alice VP

saw Bob

Word 4 is limped. The parser tries to use attach, but because there is no valid
attachment site for limped, the attach anyway principle is used to attach the word
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in the place of least violation, which is as a sister node of saw and Bob, as shown
in the example below, where the words that are affected by the attachment are
boxed:

(3.25) S

Alice VP

saw Bob limped

The parser is led to the words which are affected by the bad attachment. The
parser looks up alternative subcategorisation frames for saw and recalls that saw
can take a sentential complement, illustrated below:

(3.26) S

Alice VP

saw S′

NP VP

In applications of the adjust principle, the parser checks whether the constit-
uents required by the new subcategorisation frame unify with constituents avail-
able among the words affected by the bad attachment. The new subcategor-
isation frame requires a NP and a VP from among the words in red. The NP
requirement is satisfied by Bob:

(3.27) S

Alice VP

saw S′

Bob VP

The VP requirement is met by limped. At the full stop the structure is com-
plete:
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(3.28) S

Alice VP

saw S′

Bob limped.

A worked example of NP/Z ambiguity Now we turn to NP/Z ambiguity and
see how the diagnosis model handles it, using example 3.29:

(3.29) While Chris believed Dave doubted.

At While Chris believed Dave doubted there are several possible subcategor-
isation frames for believed. One frame is for believe to take a direct object as a
complement, as in example 3.30 below.

(3.30) S

ADVP

While S′

Chris VP

V

believed

NP

Dave

NP VP

doubted

This is the more common frame and it is pursued first. The next word is
doubted. It is first ‘attached anyway’ in the place of least violation as part of the
VP (boxed in example 3.30). This means leaving the NP constituent empty which
the GDP forbids. The parse attempts to fill the NP constituent but the GDP also
forbids reaching across to the NP in the subordinate clause (Fodor & Inoue, 1998,
p. 125). The parser must resort to searching the partial string of terminals rather
than constituents in this case. The authors describe this as follows:
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“Because there is no grammatical dependency along which the parser
can travel from the matrix to the lower clause, the parser is forbidden
by the GDP to steal the object NP node or make any other structural
change in the lower clause. But it could try stealing at a different level
where access to structural facts is not at issue. That is, it could grab
some nearby words in the word string to fill up the hole in the matrix
clause where the subject ought to be. This is to steal linearly and very
superficially from the word string, rather than structurally and legiti-
mately from the tree” (Fodor & Inoue, 1998, p. 125)

Once believed is considered, the parser retrieves the alternative subcategor-
isation where believed takes no complement. Then contents of the NP Dave are
available for consideration as components of the main NP, and this succeeds.
Eventually the correct representation using the “no complement" frame for be-
lieved is achieved as in example 3.31 below.:

(3.31) S

ADVP

While S′

Chris VP

believed

NP

Dave

VP

doubted

The crucial difference between (1) Alice saw Bob limped. and (2) While Chris
believed Dave doubted. in the Diagnosis model is that in (1) the process of inte-
grating limped can be done at constituent level whereas in (2) the GDP prevents
the integration of doubted being done at constituent level and it must be done
at terminal level by terminal search instead, which takes longer than constituent
search in the model.

In the model, the cost of implementing terminal search is claimed to grow with
the number of terminals. However, the cost of implementing constituent search
does not grow with the number of constituents. This is why the model predicts an
interaction between sentence type and head-position: early-head capture is no
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harder than late-head capture but early-head theft is harder than late-head theft
due to increasing search size in theft only.

It is because the parser has a mechanistic way to reach the source of the
initial error in the current partial phrase marker that the diagnosis model parsimo-
niously avoids postulating a repair agent that must be endowed with the capacity
to reason abstractly about the current partial phrase marker in order to calcu-
late what changes would bring about a well-formed current partial phrase marker.
Consider briefly what such an agent would have to be able to do. It would have to
be able to identify that the current partial phrase marker was ill-formed. It would
have to be able to calculate what changes needed to be made. It would have to
be able to establish that those revisions do lead to a well-formed current partial
phrase marker.

In summary, the diagnosis model assumes that the parser must expend effort
in order to revise an ill-formed current partial phrase marker. This effort is quan-
tified in terms of how many times Adjust needs to be deployed before the current
partial phrase marker is rendered well-formed. Some revisions can be achieved
by few deployments of Adjust, but others will require many deployments of Adjust
before the original misattachment is rectified. The model distinguishes itself from
models that assume that certain types of structure are harder to build than others
(e.g., those involving raising rather than lowering a node) by attributing the ob-
served differential difficulty of different revisions to differences in how many times
a simple mechanistic principle needs to be applied to reach and rectify the orig-
inal misattachment, implementing the intervening revisions as it goes along. In
this way the diagnosis parser is able to predict graded difficulty for revisions.

Eye movements in capture and theft The Diagnosis model offers an explana-
tion of the differences in reading time for capture and theft sentence types. It does
not explicitly link the two sentence types to any particular distribution of regressive
saccades. However one extension of the model that is tested in the thesis makes
the link as follows. Disambiguation in capture sentences can be done with the
benefit of the syntactic links between terminals and constituents established on
the first pass. In this case the proposed link with eye movements is that in capture
the eyes are directed straight to a particular word representing the ambiguously
attached NP or the verb that it attaches to. The regressive scan path should have
few elements, and the elements present should be over-distributed across the the
ambiguously attached NP and the verb that it attaches to. Disambiguation of theft
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sentences requires that those syntactic links between terminals and constituents
be established again in a different way. In this case it is proposed that the link with
eye movements is that the eyes are directed back over all the previous terminals,
with no privileged direction towards words by reference to the constituent that
they represent, since the links from terminals to constituents must be built again
differently than they were on the first pass. The regressive scan path should have
more elements, and the elements should be randomly distributed over all previ-
ous terminals, weighted by distance from the launch site so that short-distance
movements are more likely.

3.5 PDP accounts

An example of the class of Parallel Distributed Processing (PDP) parsers is the
parser in Tabor, Juliano, and Tanenhaus (1997). Their model considers parsing as
a dynamical system. A metric space contains attractors and potential parses can
be described in terms of how near they are to the attractors. The model integrates
many sources of information to carry out its computations, from the syntactic level
but also from the lexical level. The model also computes conditional probabilities
based on verb argument frequencies.

Tabor et al. (1997) specify that their model is not a repair model “[The cur-
rent model] is not equivalent to serial garden-path models, which assume that
slowed reading times following an ambiguous region of a sentence typically re-
flect an incorrect first parse commitment followed by a time-consuming revision.
Rather long reading times often reflect a competition process in the spirit of most
constraint-based models.” (Tabor et al., 1997, p. 263).

3.6 Bayesian accounts

An example of the class of parsers that use dynamically-updated conditional
probability rather than just static frequencies is the parser in Jurafsky (1996);
Narayanan and Jurafsky (1998, 2002).

Jurafsky’s model operates on conditional probabilities computed over con-
structions. It integrates information from several layers of linguistic processing
(lexical, syntactic). It is a rank-and-prune parallel parser. Ranking is done by
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computing conditional probabilities for given constructions. Pruning is done by
removing from the candidate set constructions whose probability falls below a
threshold confidence ratio (Narayanan & Jurafsky, 1998). The threshold confi-
dence ratio is the ratio of the probability of the currently-considered parse to the
probability of the best parse in the currently-considered set. Applying this thresh-
old removes from consideration all constructions whose posterior probability falls
enough below that of the best parse.

3.7 Competition-Integration

The competition-integration model (McRae, Spivey-Knowlton, & Tanenhaus, 1998)
is a model of a sub-part of sentence processing. It is tailor-made for resolving the
main clause / reduced relative ambiguity. It does this by satisfying multiple con-
straints acting in concert. Although implemented for a specific ambiguity, and thus
not readily generalisable (it would need one such model per ambiguity), the model
is well-enough specified that, provided we work with an implementation, we can
examine its workings step by step and generate its predictions. The model is
also sufficiently complex that its predictions must be generated (Green & Mitch-
ell, 2006) and not merely inferred (van Gompel, Pickering, Pearson, & Liversedge,
2005). The model operates bottom-up, considering multiple sources of informa-
tion at the same time, distributing activation over two discrete alternative parses,
with the most highly-activated parse pursued. A systematic diagram of the model
is in Figure 3.5.

3.8 Retrieval

Retrieval is a breadth-first theory. A central notion in breadth-first responses to the
onset of ambiguity is the notion of activation. The notion of activation is actually
present implicitly in the depth-first approaches where activation is all-or-none:
either the parse in question is the parse being pursued or it is not. Its activation
is one if it is the parse being pursued and zero if it is not. In a breadth-first parser
activation can be a more subtle business. If such a parser has three candidate
analyses in play then each can have a different level of activation. This makes the
candidates capable of being ranked by activation. This means that the ordering
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exposition, we therefore restrict ourselves to the case in
which just two structural interpretations are in conten-
tion. In these circumstances, the ‘‘yoked clusters of input
units’’ referred to above become yoked pairs. Within
each such pair, one unit is linked to (and reports to)
Interpretation Node 1 and the other reports only to
Interpretation Node 2. A schematic representation of
this structure is given in Fig. 1, which is a simplified
generic form of the basic competition–integration
model.

With the model in its working state, each interpreta-
tion node recruits evidence in support of the syntactic
reading it represents. The pooling or integration process
consists of carrying out a simple (weighted-sum) calcula-
tion over the subset of ‘‘subservient’’ constraints deemed
to be active at the point of interest. The weight used here
is a pre-set parameter of the model with a value between
0 and 1. Thus, the newly computed activation for the
interpretation node becomes the weighted sum of the
activations of its feeder input units. To distinguish
between input and output activations, we follow a con-
vention of using square brackets to represent the activa-
tion values of a pair of input units—as in [v, w]—and
curly brackets to report the calculated activation levels
of the corresponding output units {x, y}. In each case,
the first member of the ordered pair refers to the activa-
tion level for {Interpretation Node 1} or its [feeder
units], while the second member quantifies activations
for Node 2.

A distinctive feature of the model is that output acti-
vation is recalculated over and over again, with progres-
sive adjustments to the input activation values from one
cycle to the next. It is this property that allows the active
constraints to compete with one another and for one
Interpretation Node steadily to dominate at the expense
of the other. This is all achieved by means of Spivey-

Knowlton’s normalized recurrence algorithm. This is a
three-step operation which is repeated until a stopping
condition is met. The steps are as follows: (1) Normalize
the activation levels across the units of each input pair.
Basically, this re-expresses each activation level as a pro-
portion of the total activation for the pair in question.
So, using capital letters to represent pre-normalized acti-
vations, if the preliminary activations are [A1,A2] (A1 for
the unit supporting Interpretation Node 1, and A2 for its
partner), then using lower-case letters for normalized
activations, the new values become [a1,a2] = [A1/
(A1 + A2), A2/(A1 + A2)]; (2) input activations are
pooled yielding integrated output activations of {I1,I2}
= {

P
i wi*a1i,

P
i wi*a2i}, where wi is the connection

weight between the ith active input pair and each of
the output nodes (the weight is the same for both nodes),
and a1i and a2i are, respectively, the normalized activa-
tion levels of the Node 1 and Node 2 supporting mem-
bers of the ith active input pair. The weighted sums
are calculated over the i different active input pairs; (3)
finally, positive feedback is returned to each of the input
units. Specifically, the activation for the ith input unit is
reset to [a1i + I1*wi*a1i, a2i + I2*wi*a2i]. In other words,
the revised activation of each input unit is raised from
its previous level by an amount proportional to the most
recent activation level of the interpretation node it sup-
ports. This ensures that units feeding the ‘‘winning’’
node benefit from a more substantial activation boost
than that sent back to their partner unit. These mecha-
nisms virtually guarantee that from cycle to cycle there
is a steady increment in the activation levels of winner-
linked input units. (Exceptions to this increase in bias
occur in the special cases when either a1i or a2i are exact-
ly zero and when the output activations start off being
perfectly balanced [i.e., when I1 = I2]). Given the same
exceptions, this accentuation of the input bias results

Interpretation
Node 1

Interpretation
Node 2

Input Pair 1

Input Pair 2

Input Pair N

Fig. 1. A simplified generic diagram of the competition–integration model. Different kinds of constraint are introduced to the system
by a series of paired input units. Within each pair, one unit activates Interpretation Node 1 and the other supports its competitor. The
number of input pairs and their participation order are details that vary from instantiation to instantiation.

4 M.J. Green, D.C. Mitchell / Journal of Memory and Language 55 (2006) 1–17

Figure 3.5: Schematic diagram of the competition-integration model. A simplified
generic diagram of the competition-integration model. Different kinds of constraint
are introduced to the system by a series of paired input units. Within each pair,
one unit activates Interpretation Node 1 and the other supports its competitor.
The number of input pairs and their participation order are details that vary from
instantiation to instantiation.

of candidates may change over the course of a sentence such that a dispreferred
parse may become the preferred parse at some later point. This provides a way
for parallel parsers to select, at disambiguating input, a newly preferred parse by
appeal to changed activation levels. The means by which activation may change
at new input are central to such accounts.

One factor that plausibly affects the degree of activation at a given point in a
sentence is the distance between the current input word, for example a disambig-
uating word, and some earlier point in the sentence, for example the onset of
ambiguity. Another factor that plausibly affects the degree of activation of a candi-
date constituent at some given point in a sentence is decay, which may be thought
of as the rate of loss of activation. Long-ago activated constituents may be ex-
pected to have less activation than recently activated constituents with the same
initial degree of activation. Another influence on activation levels is interference.
This is a result of the size of the candidate set. The activation of individual can-
didate constituents in large sets (like nouns) is diminished by the large number of
competitors. In contrast if the set is small (like determiners) then the activation of
its constituents will be less diminished because of the relatively few competitors.

The retrieval account of Lewis and Vasishth (2005) appeals to decay and
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interference to explain fluctuating levels of activation of candidate parses in a
cohort. The model explains sentence processing difficulty at each word in a sen-
tence as the difficulty of retrieving structures from working memory. The link
with working memory constraints is achieved by embedding the account in the
general cognitive framework Adaptive Control of Thought-Rational (ACT-R) (An-
derson, 2005; Anderson & Lebiere, 1998). High demand on working memory
motivates a prediction of how much reading time a word will involve, with higher
demands leading to longer reading times.

Parsing in retrieval is accomplished by condition-action pairs generated with
reference to a phrase structure grammar. A series of memory buffers stores ele-
ments in short-term and long-term buffers. Parallel associative retrieval (McElree,
Foraker, & Dyer, 2003), fluctuation of activation of elements already in a memory
buffer, and retrieval interference as a function of similarity are combined to pre-
dict the amount of time that it takes to read a word (Vasishth, Brüssow, Lewis, &
Drenhaus, 2008).

A word’s activation is based on two quantities: the baseline activation of the
word, which is taken to decay given the passage of time; and the amount of sim-
ilarity based interference with other words that have been parsed. The baseline
activation B for a word i is given in Equation 3.32 (taken from Lewis & Vasishth,
2005; Patil, Vasishth, & Kliegl, 2009), where tr is the time since the rth retrieval
of the word, the summation is over all n retrievals, and d is a decay factor set
to 0.5 as in other ACT-R models (Anderson, 2005). The equation tracks the log
odds that a word will need to be retrieved, given its past usage history. It yields
not a smoothly decaying activation from initial encoding to the current time, but a
"series of spikes corresponding to the retrieval events" (Lewis & Vasishth, 2005).

Bi = ln

(
n∑
r=1

tr − d

)
(3.32)

The overall activation A for word i is given in Equation 3.33 from Lewis and
Vasishth (2005). In this equation, Bi is the fluctuating baseline level of activation
for word i which is subject to time-based decay. This quantity Bi is yielded by
Equation 3.32. In the model, a goal buffer contains retrieval cues for integrating
the current word. Overall activation A for word i is found by adding to the baseline
activation for word i an associative activation boost received from retrieval cues
in the goal buffer that are associated with i. The variable j indexes those retrieval
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cues in the goal buffer. Wjs are weights on the retrieval cues in the goal buffer.
The weight on a retrieval cue represents the proportion of the total activation
available for the whole goal buffer that is assigned to the particular retrieval cue
j in the goal buffer. Sjis are the strengths of association from each retrieval cue
j of the goal buffer to word i. This equation is effectively adding to the baseline
activation an activation boost received from retrieval cues in the goal buffer.

Ai = Bi +
∑
j

WjSji (3.33)

The amount of similarity based interference is estimated by the weighted
strengths of association between the word to be retrieved and retrieval cues from
other words already parsed and with a trace in memory. In Equation 3.34, word i
is the current word, and retrieval cue j is from a word that is similar to word i, with
reference to its part of speech tag, so that nouns interfere with other nouns but not
with verbs. If retrieval cue j is similar to word i then the amount by which retrieval
cue j interferes with word i varies according to how many words have already
been associated with retrieval cue j. The array of words that is associated with
retrieval cue j is considered to form a fan so that fanj gives the number of words
in the fan for cue j. The constant S refers to the maximum associative strength of
1.5 (Lewis & Vasishth, 2005). This equation is effectively reducing the maximum
associative strength S by the log of the "fan" of cue j, that is, the number of items
associated with j.

Sji = S − ln(fanj) (3.34)

The mapping from activation level to retrieval latency is given by equation
3.35. F is a scaling constant set to 0.14 in Lewis and Vasishth (2005). Ai is
the word’s activation from Equation 3.33 and e is Euler’s constant. Ti is retrieval
latency for word i.

Ti = FeAi (3.35)

Having given the details of the computations involved in normal parsing, the
focus now moves to how the model copes at the onset of ambiguity. Lewis and Va-
sishth explicitly state that the model implements “serial, probabilistic repair pars-
ing” (2005, p. 389). Lexical access is achieved by ordered access modulated by
frequency and context, and competition results in one candidate being proposed.
This follows from equations 3.32, 3.33, and 3.34.
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d. Based on the retrieved constituent and lexical content, a production fires (6) that creates
new syntactic structure and attaches it to the retrieved constituent. The control buffer is
also updated with a new syntactic prediction (7).

e. Finally, other productions fire that guide attention to the next word.

The two production rules and retrieval processes in (3), (4), and (6) (in gray in the figure) are
the critical processes of interest in this article; we refer to the time taken by all these processes
jointly as the attachment time for a word. Apart from the new lexical buffer and parallel lexical
access mechanisms, the structure of the architecture in Fig. 2 is standard ACT–R.

We now derive the details of the sentence-processing theory from a combination of
ACT–R’s assumptions and existing psycholinguistic evidence and theory. We first describe the
major choice points in developing the model.

4.1. Major choice points in developing the sentence-processing model

Practically speaking, building an ACT–R model means specifying the contents of proce-
dural and declarative memory. For sentence processing, there are a few immediate major
choices to be made:

• How should linguistic knowledge be distributed across the procedural memory and de-
clarative memory?
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LEXICAL ACCESS
of subordinate lexical entry

LEXICAL ACCESS
of dominant lexical entry

LEXICAL BUFFER
holding subordinate  lexical entry

ATTEND TO
NEXT WORDproduction cycle

50 ms 50 ms50 ms

retrieval time

LEXICAL BUFFER
holding dominant lexical entry

CONTROL BUFFER
holding current goal category,

other control state

CONTROL BUFFER
holding new goal category

and control state

SET WM
RETRIEVAL

CUES

CREATE
STRUCTURE
& ATTACH

WORKING
MEMORY ACCESS

RETRIEVAL BUFFER
holding retrieved constituent

attachment time

3

1

2

4

5

6

7

8

Fig. 2. Overview of the model, showing the critical focus buffers (control buffer, lexical buffer, and retrieval buffer)
and processing dynamics (time flows left to right). The three key working-memory processes are shown in gray: (3)
a production rule encoding grammatical knowledge sets cues for retrieval of a prior constituent; (4) a prior constitu-
ent is retrieved from working memory via parallel associative access; and (6) a second production rule creates the
new structure and attaches it to the retrieved constituent.

Figure 3.6: Figure taken from Lewis and Vasishth (2005, p. 383). Overview of
the model, showing the critical focus buffers (control buffer, lexical buffer, and
retrieval buffer) and processing dynamics (time flows left to right). The three key
working-memory processes are shown in grey: (3) a production rule encoding
grammatical knowledge sets cues for retrieval of a prior constituent; (4) a prior
constituent is retrieved from working memory via parallel associative access; and
(6) a second production rule creates the new structure and attaches it to the
retrieved constituent.

Structural ambiguity is resolved by a probabilistic process that combines work-
ing memory factors (recency) and the rational production choice rules of ACT-R.
Multiple possibilities for attachments are locally generated in parallel, but then a
single structural analysis is pursued. Associative retrieval interference mitigates
against maintaining multiple alternatives that have similar structure.

In the event that the parser pursues an analysis that later becomes unten-
able, limited recovery is possible. Recovery is construed as the reactivation of
structures that were initially activated as possible attachments but which lost the
competition on the first pass. These structures remain in memory but their acti-
vation has decayed since they were first activated: the decay contributes to their
difficulty of resurrection.

Figure 3.6, from Lewis and Vasishth (2005), gives a high-level overview of
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the retrieval model, showing the critical buffer usage and production rule firings
unfolding over time. The typical processing cycle is as follows; the numbers refer
to the circled numbers in the figure:

(a) A word is attended and a lexical entry is accessed from declarative memory
(1) containing syntactic information, including argument structure. The lexical
entry resides in the lexical buffer (2).

(b) Based on this syntactic goal category (a kind of syntactic expectation) and
the contents of the buffers, a production fires (3) that sets retrieval cues for a
prior constituent to attach to.

(c) The working-memory access takes some time (4), and eventually yields a
single syntactic chunk that resides in the retrieval buffer (5).

(d) Based on the retrieved constituent and lexical content, a production fires
(6) that creates new syntactic structure and attaches it to the retrieved con-
stituent. The control buffer is also updated with a new syntactic prediction
(7).

(e) Finally, other productions fire that guide attention to the next word.

3.9 NL-SOAR

NL-SOAR (Lewis, 1993) is a language comprehension model based on the Soar
cognitive architecture (Newell, 1990).

NL-SOAR is a single-path model: it pursues only one interpretation at a time.
However the machinery of attachment is temporarily parallel in the sense that two
syntactic alternatives may co-exist for a short time.

As the model proceeds through a sentence it maintains two kinds of represen-
tation of the sentence: an utterance model that represents the syntactic relations
in the sentence so far; and a situation model that represents the semantics of the
discourse, where the discourse extends beyond the current sentence so that the
model can take advantage of semantic information that comes from previously-
processed sentences in order to process the current sentence where syntax may
be ambiguous.

75



Ch 3: Theories of sentence processing

The utterance model uses two sets of operators: constructors and destruc-
tors. The main constructor operator is link. The main destructor operator is snip.
In this section I will describe how these operators generate the utterance model
in simple cases.

Nodes are indexed by the syntactic relations that they can enter into. These
relations form a set of relation assigners and relation receivers. The term A/R set
is used to refer to these sets of relations and the A/R set is perhaps the central
notion in NL-SOAR’s account of parsing. Links between nodes are formed by
matching assigners and receivers that share the same relation.

A node can only have one parent in the tree. As a result of this constraint,
once a link is made, the receiving is removed from the set of available receivers.
In contrast, the assigning node is maintained in the set. The reason for main-
taining the assigning node in the set is so that it can play a role in subsequent
semantic analysis. If the assigning node were removed from the set once a link
is made, it would then be unavailable in working memory to any subsequent pro-
cesses. By this rule, the assigner set can continue to provide access to partially
completed syntactic structures for the benefit of interpretation processes, and this
will be called upon later in the discussion of how NL-SOAR deals with ambiguity
resolution. For now the focus is on how NL-SOAR implements the process that
follows lexical access through to syntactic construction.

Lexical access provides a set of nodes that correspond to all the terminal
positions (or leaf nodes) that the identified lexical entity can occupy. This provides
coverage of simple lexical ambiguity such as the word square which may be either
the head of an adjectival phrase (the square box) or the head of a simple noun
phrase (a square is not a circle). Lexical access in NL-SOAR is then both context-
free, since a word is considered without reference to words that came before,
and parallel in that all the possible lexical entries for a word are considered at the
same time.

Syntactic construction proceeds by linking nodes by means of the application
of the operator link. Link operations are constrained. Constraints include number-
and person- agreement, left-to-right order, subcategorisation (for verbs and their
arguments), and grammatical case.

Parsing in NL-SOAR is then both bottom-up and head-driven. Lexical heads
are identified in lexical access (which indicates how the word may enter into syn-
tactic relations), and phrasal nodes are projected from these possible relations.
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There are no explicit phrase structure grammar rules in NL-SOAR. Instead the
utterance model follows from the interaction of Xbar structures projected from
lexical heads, and independently specified constraints (the constraints on agree-
ment, order, subcategorisation and case). Bottom-up parsing is useful for con-
sidering fragments of a sentence. Head-driven parsing helps to avoid what Lewis
calls the “spurious ambiguity” (1993, p. 86) engendered by the presence of multi-
ple grammar rules that contain the fragment so far. Such ambiguity is considered
to be spurious because it is not motivated by the actual string of words that has
been encountered part of the way through a sentence.

The mechanism proposed so far provides a way to link structures that at-
tach as projections (structures that occupy specifier or complement positions).
Other types of attachment include adjunction, which is taken to include all non-
projective attachments. Adjunction involves the creation of new nodes which is
simply handled in NL-SOAR by the link constructor, which creates the additional
node necessary.

Because lexical access is parallel in the model, temporary structural ambi-
guity can arise. However because NL-SOAR is a single-path comprehender, this
structural ambiguity must be resolved quickly. In the following sentence ambiguity
is local in scope and lexical in origin.

(3.36) The square table is large.

When the parser encounters square, both NP and AP nodes are created and
co-exist in the problem space. At this time the determiner the is attached to
neither. However, the determiner’s syntactic relation is present in the A/R set
(as spec-NP, the specifier of a noun phrase). At this time there are three struc-
tures present in working memory: the orphan determiner the; the NP structure
for square; and the AP structure for square.

Next the determiner is attached into the NP structure in spec-IP position form-
ing the NP the square, and leaving as an orphan in working memory the AP
structure.

Then the word table appears and is projected to NP. Now there are three
structures in memory: NP [the square]; AP [square]; and NP [table]. Next the AP
[square] is adjoined to table forming NP [square table]. This means that there
are now two structures in working memory that both incorporate square. Both
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of these structures are well-formed, but they are mutually incompatible because
square cannot play both roles simultaneously.

The model cannot leave things like this because it is committed to pursue a
single path. This follows from the architecture of the model that does not permit
two interpretations (as distinct from structures) to coexist.

The operator snip is available: it breaks a link formerly established by the link
operator. Snip is triggered immediately by the presence of syntactic structure that
is attached to both senses of the same lexical token.

As a way of determining which structure should be remedied, snip exhibits a
preference to preserve recent structure and to operate on non-recent structure.
Since the AP adjunction of square to table is most recent and therefore preserved,
snip operates on the determiner attachment and breaks the NP [the square].

This leaves in memory the orphan NP [square]; the orphan determiner the;
and the AP [square table]. The link operator then attaches the determiner in the
specifier position of the AP [square table] to form the NP [the square table].

The snip operator considered as a repair mechanism has the following prop-
erties that Lewis (1992) describes as simple destructive repair. Firstly it operates
only on the structures already present in working memory: it does not make any
appeal to previously built structure. Secondly its scope of operation is limited to
destruction: it breaks links but does not create any.

This accounts for the attachment and repair of structural ambiguity that is lex-
ical in origin. Next an account is given of how Lewis’s NL-SOAR model processes
syntactic ambiguity, using the following example of noun phrase complement /
sentential complement ambiguity, and with reference to Figure 3.7.

(3.37) John knows Shaq is tall.

At the word knows, both of its possible subcategorisation frames are avail-
able in the A/R set. These two frames are: subcategorisation for a nominal com-
plement, representing the interpretation John is familiar with Shaq. of the full
sentence John knows Shaq.; and subcategorisation for a sentential complement,
representing the interpretation John knows (that) Shaq has some property . . . for
the partial sentence John knows Shaq is . . . . In NL-SOAR jargon, it can be said
that knows permits adjunction (adjoin-V’) of a sentential complement as well as
the attachment of a nominal complement (comp-V’).
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FIGURE 3.16: Repairing a complement inconsistencywith snip. The incomingCP vies for the same
complement position as the NP (Shaq), triggering a snip to detach Shaq. Next, Shaq is attached as
the subject of the incoming clause.

Figure 3.7: From Lewis (1993, p. 95). Figure illustrates repair in NL-SOAR for noun
phrase complement / sentential complement ambiguity
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Shaq is initially attached as the nominal complement of knows. When is ar-
rives, it is projected to an IP and a CP. Lewis follows Pritchett (1992) in proposing
a CP in the absence of an overt complementiser. Because knows is still in the
assigner set, and one of the permitted relations is adjoin-V’ the CP is attached in
the complement position of knows. At this point the V’ unit [knows Shaq is] is well-
formed because knows permits each of the nominal and sentential complement
relations. The utterance model at this point exhibits momentary parallelism. The
parallelism takes the form of a kind of super-position of two syntactic structures:
the nominal complement structure and the sentential complement structure. In
other words the nominal and sentential complements are both claiming the same
structural attachment position as comp-V’ complement of knows.

The presence of two structures both claiming the same relation triggers the
snip operator in the same way that the two interpretations of square resulted in
mutually incompatible structures both attached to square. To make this clearer,
although knows licenses a nominal complement and a sentential complement, it
does not license both at the same time. This contrasts with a verb like give which
licenses two different complement types at the same time, as in She gave the
ball to the boy, where the ball represents the source of the transfer event and to
the boy represents the goal of the transfer event, and both relations apply at the
same time.

The snip operator protects the most recent attachment (the CP attachment),
it operates instead on the non-recent attachment of Shaq to knows. This frees
up Shaq as an orphaned unit, which makes it available to the link operator. Link
attaches Shaq in spec-IP position of is, as its syntactic subject. This application
of the link operator completes the repair of the temporary structural ambiguity,
leaving exactly one well-formed syntactic structure (with no orphans) in working
memory as required by the single-path nature of the NL-SOAR architecture.

So far I have given two ways in which the snip operator may apply. The first
was in the description of the resolution of the lexically-based structural ambiguity
in The square table; the second in the subcategorisation ambiguity in John knows
Shaq is tall. In fact these are the only two ways in which snip may apply. Each is
a particular example of a general pair of rules for the application of snip. The two
general cases are as follows:

snip 1 When incompatible projections of one lexical item are both simultaneously
attached to other lexical structure: multiple incompatible structures triggers
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snip, as in the multiple attachment of square.

snip 2 When inconsistency is detected local to a particular maximal projection:
multiple incompatible attachments locally into the same maximal projection
(or node) triggers snip, as in the two attachments into the knows maximal
projection.

Although it would be possible to propose a snip operator that would apply
more generally, limiting the scope to these two general cases is necessary within
the NL-SOAR architecture. This is for two reasons.

Firstly, an unconstrained snip operator would give the potential for a large
number of partial detached structures in working memory. Lewis shows how this
affects the properties of the model’s knowledge search: it leads to exponential
match cost in the model’s recognition memory (Lewis, 1993), and this would pre-
vent the real time performance of the model.

Secondly, unconstrained snip would lead to a too-large problem space which
would make the problem search intractable, even for relatively simple syntactic
structures. This too would make the model’s real time performance impossible,
especially for complex syntactic structures.

By constraining the snip operator to the two general cases outlined above,
Lewis provides a repair mechanism that he claims avoids the worst extremes of
impossibly-large search, while still accounting for human performance on his set
of target ambiguities.

3.10 Surprisal theory

The sentence processing theory that claims that differential disambiguation diffi-
culty is related to the information theory metric surprisal is given in Hale (2001)
and Levy (2008). Hale directly proposed surprisal as an analogue of human read-
ing times. The surprisal framework does not commit to the assumption of repair.
Instead, the observed human difficulty at disambiguation is construed as “the
work incurred by resource reallocation during parallel, incremental, probabilistic
disambiguation in sentence comprehension” (Levy, 2008, p. 1126).

For practical purposes, the surprisal value for each word in a sentence is
generated as a by-product of the Earley parser algorithm (Earley, 1970) which is
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Figure 3.8: Main clause analysis (partial, annotated with probabilities for each
application of a rule from the grammar)

available in several implemented forms (since Stolcke, 1995).

Applying the probabilities in the PCFG grammar in Table 2.1 to the sentence
fragment When the dog scratched the vet and his new assistant, the derivation
involving the tree representing the main clause analysis of the vet and his new
assistant (Fig 3.8) has probability 0.174, and the derivation involving the tree rep-
resenting the direct object analysis of the vet and his new assistant (Fig 3.9) has
probability 0.826. Taking in word wk+1 which is removed results in surprisal of
4.85 bits (Levy, 2013). Part of this is due to removed taking out the direct object
reading from the set of derivations because there is no combination of rules in
the grammar that generates a direct object reading of the string w1...k+1 so it does
not contribute to the prefix probability at the new word wk+1.

Surprisal offers a theoretical reason why a given word in a given sentence
should vary in comprehension difficulty on the basis of knowledge from a proba-
bilistic grammar. The approach is to "model processing difficulty as a logarithmic
function of the probability mass eliminated by the most recently added word" (Patil
et al., 2009). Surprisal is a measure of the information value of the most recently
processed word, as rated by the grammar’s probability model.
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The surprisal model frames incremental sentence processing as step-by-step
disconfirmation of the possible analyses of the sentence, and this casts cognitive
load as the amount of work taken to disconfirm structures, where this load is
greater for high-probability structures than for low-probability structures (Levy,
2013).

So far the focus has been on surprisal with respect to probabilistic phrase
structural grammars. However, surprisal can also be computed over the state
transitions in a Nivre-style (Nivre, 2004b) probabilistic dependency grammar in
just the same way that it is computed over a probabilistic phrase-structural gram-
mar’s state transitions. In fact, surprisal is representation-agnostic, and can be
computed over any grammar that represents a parse of a sentence as a sequence
of state transitions and associated probabilities. In this thesis, surprisal mea-
sures are obtained both for a phrase-structural grammar, using Roark’s TDPARSE

(Roark, 2013), and a dependency grammar, using Boston’s HUMDEP (Boston,
2013).

There is some empirical data from studies (e.g., Boston, Hale, Kliegl, Patil, &
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Vasishth, 2008; Boston, Hale, Vasishth, & Kliegl, 2011; Demberg & Keller, 2008)
comparing surprisal with corpora of eye movements in reading e.g., Potsdam
sentence corpus (Kliegl, Nuthmann, & Engbert, 2006), Dundee eye movement
corpus (Demberg & Keller, 2008). These studies show that surprisal is a good
predictor of (normal) reading times in such corpora. This thesis contributes tests
of surprisal against regressive eye movement patterns generated from experi-
mental sentences focussing on syntactic disambiguation, rather than from corpus
sentences.

3.11 Entropy reduction hypothesis

Hale’s Entropy Reduction Hypothesis (Hale, 2004, 2006) states that “a person’s
processing difficulty at a word in a sentence is directly related to the number of
bits signalled to the person by that word with respect to a probabilistic grammar
the person knows.” (Hale, 2004, p. 1). The link from entropy reduction (ER) to
human performance is made explicit in (Hale, 2006, p. 650): “ER is positively
related to human sentence processing difficulty”.

3.12 Dependency theory

For Dependency theory, sentence processing is establishing word to word rela-
tions. These relations are head→dependent pairs. The main verb in a sentence
has special status and is denoted root. Thematic subjects and objects depend
on the main verb. Other constituents depend on their head (e.g., a determiner
depends on its noun).

Dependency theory has ancient roots: it was used to describe 4th century
B.C. Sanskrit by Panini (cited in Cardona, 1998). Modern dependency theory
dates back to Tesnière (1959) who described sentences as sequences of “word-
to-word connections”. Work by Hays (1964) and Mel’čuk, I (1988) led to a full
scale dependency theory of language, both explanatory and descriptive.

All theories of sentence processing use the notion of dependency – they differ
in how much structure they claim exists over and above word-to-word dependen-
cies. For example, phrase structural theories claim that sentences have phrasal
nodes as well, whereas dependency theory does not claim phrasal nodes. Using
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dependency grammar for modeling human sentence processing allows models to
focus on what different formalisms have in common.

The simplicity of the dependency theory approach makes it suitable for com-
putational linguistics. For example, it was the syntactic component in early ma-
chine translation Hays (1964). It is well-suited to representing non-configurational
(free word order) languages like Czech and therefore more generally applicable.
Dependency grammar relations can be derived from existing syntactically parsed
corpora (like the Penn Treebank) so models can take advantage of previous work.

Dependency grammar relations can be established incrementally, allowing for
comparison with incremental metrics of human sentence processing, including a
direct comparison for words of special psycholinguistic interest (like the disambig-
uating word in a sentence with temporary syntactic ambiguity). Probabilities for
establishing a particular dependency relation where several are possible can also
be automatically computed. So dependency theory offers incremental and prob-
abilistic predictions of human sentence processing difficulty.

This fact, that a parser operating over a dependency grammar makes incre-
mental probabilistic predictions, makes the approach suitable for empirical eval-
uation. Boston et al. (2011) showed that surprisal and retrieval computed over a
dependency grammar predict fixation durations in the Potsdam Sentence Corpus
(an eye movement corpus obtained from participants reading a corpus of Ger-
man newspaper text) and therefore that such a dependency parser does capture
some part of human sentence processing difficulty. Boston et al. (2008) found
that dependency grammar predictions accounted for different types of difficulty
than phrase structure grammar predictions in the Potsdam Sentence Corpus.

The existing evaluations have been done over all the words in the sentences
in the corpus. In this thesis I will focus on comparing predictions for the disambig-
uating word in sentences with temporary syntactic ambiguity against regressive
eye movements made at the same word by human participants in eye tracking
experiments.

3.13 Underspecification

The good-enough language processing account of parsing (Ferreira & Patson,
2007) takes as its starting point the claim that readers often under-specify parses
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for sentences and thus never resolve many of the ambiguous sentences that are
commonly held to yield information about ambiguity resolution.

This underspecification claim represents an unusual stance on incrementality
in the human parser. Most models of parsing assume that the parser is incremen-
tal, with words representing increments, and that the parser seeks to do as much
processing as it possibly can, making the most of new information straight away.
However the good-enough account suggests that integration may not happen in-
crementally, even by the end of the sentence.

Weinberg’s (1988; 1993) Minimal Commitment parser is incremental because
the processing is done straight away at new input - however it does not make all
the commitments that it possibly could as a result, restricting itself to making only
some.

In Construal (Frazier & Clifton Jr, 1995) the loose attachment of non-primary
adjuncts is a kind of underspecification.

Marcus’s (2013) treelet hypothesis is a kind of underspecification account.

3.14 Reprocessing model

The reprocessing model Grodner, Gibson, Argaman, and Babyonyshev (2003)
described here is not a repair parser. Grodner et al. (2003) give what they de-
scribe as a potentially simpler alternative to the proposition that reanalysis pro-
ceeds by repair. This alternative is that “reanalysis proceeds by reprocessing
(some portion of) the input using just those grammatical operations available to
first-pass parsing” (Grodner et al., 2003, p. 144). They make it clear that the term
reprocessing is intended to cover reparsing and reranking, phenomena that they
consider to be separable from a commitment to repair. They use evidence from
extreme garden paths to show that reparsing is a necessary part of a model of
sentence processing. In contrast, they argue, repair is not a necessary part of
a model of sentence processing. Sentences like the following must typically be
re-read several times, demonstrating that reparsing is necessary for a model of
the human parser.

(3.38) The horse raced past the barn fell. (Bever, 1970)

(3.39) Tom told the children the story scared a riddle. (Frazier, 1978)
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Sentences like the following (from Frazier and Rayner (1987); MacDonald (1993))
where the alternative readings are either dissimilar in syntax or dissimilar in se-
mantics constitute cases where the parser cannot benefit from the preservation
of representations: in such cases reprocessing is necessary because the correct
structure is not derivable from structure built so far at disambiguation.

(3.40) The warehouse fires cause a lot of damage.

(3.41) The warehouse fires many employees each spring.
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Chapter 4

Spatio-temporal distribution of
regression path fixations

This chapter focuses on some theoretical issues that are not answered by the
existing literature and which the rest of the thesis will take up. The chapter cov-
ers the following: the purpose of regressive eye movements; and the question
whether disambiguation proceeds by repair or replacement.

4.1 Introduction

There is a special class of eye movements made during reading, i.e., regressive
movements, for which it is not clear whether the immediacy and eye-mind as-
sumptions hold, but which are used in a vast body of literature since Frazier and
Rayner (1982) as though they indexed syntactic load. Frazier and Rayner (1982)
took a position on regressive eye movements that has become canonical in work
on parsing. Their position, dubbed selective reanalysis, was that regressive eye
movements were tightly coupled to parsing. They identified two main classes of
such regressive eye movements, which they dubbed chaos and disruption. In
Frazier and Rayner (1982, pp. 196–197), they describe the chaos pattern, which
can be summarised as long fixations on the disambiguation together with regres-
sion from the end of the sentence in order to re-read. The second class they
dubbed disruption. Disruption took two forms, which can be summarised as (1)
long fixations on the disambiguation, and (2) averagely long fixations in the dis-
ambiguation followed by a regression to the ambiguous region.
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Some basic facts about regressions set the section in context. Baseline re-
gression rates in reading are estimated between 10% and 15% (Buswell, 1922;
Rayner et al., 2012; Vitu & McConkie, 2000). There is some evidence that regres-
sion rates increase in the disambiguation regions of syntactically ambiguous sen-
tences (Frazier & Rayner, 1982; Meseguer, Carreiras, & Clifton Jr, 2002; Rayner,
Carlson, & Frazier, 1983; Traxler, Pickering, & Clifton Jr, 1998; Trueswell et al.,
1993; van Gompel et al., 2001). As for the targets of these regressions, there is
evidence that readers regress more to words of low predictability with no effect of
an additional manipulation of frequency (Kliegl, Grabner, Rolfs, & Engbert, 2004;
Rayner et al., 2004), although see also Bicknell and Levy (2011) who note that
these studies did not control for word skipping.

4.2 Models of eye movement control in reading

There are some good models of eye movements during reading that model early
processes in reading and predict first pass reading times well: SWIFT (Engbert,
Nuthmann, Richter, & Kliegl, 2005); GLENMORE, (Reilly & Radach, 2006); EZ-
READER, (Reichle, Warren, & McConnell, 2009), MR. CHIPS (Legge, Klitz, & Tjan,
1997), EMMA (Engelmann, Vasishth, Engbert, & Kliegl, 2013), a machine learning
model, (Nilsson & Nivre, 2009, 2010). There are fewer that model late processes
in reading (only EMMA does), and none that focus on the spatio-temporal proper-
ties of regression path fixations.

Most eye-movement control models focus on relatively low level phenomena
(e.g., the extent of the perceptual span in reading). There is only some prior
work that uses eye movement data to model parsing (Binder, Duffy, & Rayner,
2001; Ferretti & McRae, 1999; Just & Carpenter, 1992; Konieczny & Döring, 2003;
Spivey & Tanenhaus, 1998; Tanenhaus, Spivey-Knowlton, & Hanna, 2000; Va-
sishth et al., 2008). Because the prior work is of limited extent, there are plenty
of fundamental issues that still need addressing when it comes to the use of eye
movement data. For example, when the eyes regress, are the eye movements
under linguistic guidance, or are the movements better characterised as spatially
constrained under oculomotor control?
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4.3 Metrics for regressions

There are some metrics of the spatio-temporal properties of fixations in regres-
sion paths. These start with qualitative descriptions such as those in Frazier and
Rayner (1982), and include the regression signatures of Mitchell, Shen, Green,
and Hodgson (2008), and scan path similarity (von der Malsburg & Vasishth,
2012),

4.3.1 Qualitative descriptions

Frazier and Rayner (1982) observed patterns which they gave descriptions as fol-
low. One pattern was chaos, where fixations were very long in the disambiguating
region of the sentence but “eye movements generally continued in a forward di-
rection through the sentence. Upon reading the end of the sentence, the subject
then made a long regression to the beginning of the sentence and reread the sen-
tence” (Frazier & Rayner, 1982, p. 196). This was taken to indicate that subjects
had great difficulty understanding the sentence, but that they had “no insights as
to what the nature of the processing difficulties were” (Frazier & Rayner, 1982,
p. 197). The second pattern disruption was associated with long fixation dura-
tions or regressions where the “reader fixated on the disambiguation region for
an average amount of time and then immediately made a regression back to the
ambiguous region of the sentence” (Frazier & Rayner, 1982, p. 197). This was
taken to indicate that “the reader was able to reanalyse the sentence and re-
solve the ambiguity, but it took some additional processing after encountering the
disambiguation”.

4.3.2 Regression signature

Regression signatures are described in Mitchell et al. (2008, p. 274). A regres-
sion signature is the distribution of landing site regions for the set of regressive
saccades launched from a given region on the first pass. The signature gives a
value for each landing site region, which is the proportion of first pass regressive
saccades that a given participant made that landed in that region. Because the
regression signature is a proportional distribution, it has the virtue that it allows
comparison between conditions with very different frequencies. The regression
signature metric has some disadvantages too. It tends to be sparse in the sense
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that not all trials result in a regression; and in the sense that if a participant fails
to make a regression in any of the conditions being compared, then that partic-
ipant’s data are removed from the other conditions too regardless whether they
made a regression in those other conditions: this constitutes a major reduction of
the data in the service of the requirement for balance in classical ANOVA. In order
to achieve a balanced analysis, a lot of rare events are being discarded. This is a
rather undesirable state of affairs where rare movements are the focus of investi-
gation. In the next section we will discuss an alternative framework for analysing
the regressive movements that we care about which has a different cost-benefit
profile, and which does not discard data in the same way.

4.3.3 Scan path similarity

Like regression signature this measure addresses eye movements at the level
of the scan path. It considers the pattern of spatio-temporal movements across
whole sentences or parts thereof to be the unit of analysis. Scan path similarity
analysis is a spatio-temporal edit-distance method (von der Malsburg, 2010; von
der Malsburg & Vasishth, 2011, 2012). The method is new, and there are still
some unresolved issues, but it is a method well-suited to studying reanalysis
processes.

A scan path is a sequence of symbols. The symbols represent fixations,
which are spatial locations with associated temporal durations. The scan path
has properties of its own, at a level above the level of the symbols, and these
properties are due to how the fixations form patterns. There are several metrics
designed to capture the properties of sequences as patterns, mostly due to re-
search in areas other than psycholinguistics. For example, in bioinformatics, it is
of interest to find the best alignment between fragments of DNA, and this involves
comparing sequences of symbols (Durbin, 1998). In psycholinguistics it is of in-
terest to compare scan paths launched in response to linguistic events that are
hypothesised to be qualitatively different. If two such patterns of fixations can be
shown to be different, according to some measure of similarity, this can help to
resolve theoretical psycholinguistic questions empirically.

If two scan paths s and t have the same number n of fixations, and fixate the
same locations in the same order, but with different temporal dynamics, then
the sum of the absolute difference of their fixation durations dur is a natural
way to express the difference between them. This is the Manhattan metric, or
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Minkowski− 1 metric of sdur and tdur. Using k to index the scan path’s elements:

ddur(s, t) =
n∑
k=1

|sdurk − tdurk | (4.1)

If s and t have the same number n of fixations and the same temporal dynam-
ics but some of the fixations are in different locations, then a simple metric is
the number of fixations that fixate different locations. This is Hamming distance
(Hamming, 1950). When the fixations in such sequences target locations that are
far from each other, we might want the similarity measure to penalise this to a
greater extent than the case where the different locations are close. This can be
achieved by summing the Euclidean distance between the fixations:

dloc(s, t) =
n∑
k=1

deuclid(s
loc
k , t

loc
k ) (4.2)

The possibilities mentioned so far (i.e., Manhattan metric and Hamming dis-
tance) share the same limitations: (1) they are only applicable to sequences that
are of the same length; and (2) they are not sensitive to the similarity of sub-
sequences within the sequences being compared if those sub-sequences occur
at different positions in the larger sequences. Both of these are serious limita-
tions for the application to scan paths in reading, which can be of arbitrary length,
and where repeated patterns that are shifted within the larger sequence are likely
to hold information about the cognitive process, parsing, and therefore to be of
value.

Another class of sequence dissimilarity (or distance) metrics is the class of
edit-distance metrics. An edit-distance is the minimum number of edit operations
that must be made in order to transform one sequence into another. Permitted
operations usually include deletion, insertion, and substitution of symbols. An
example of an edit-distance is the Levenshtein metric (Levenshtein, 1966). Anal-
yses based on this edit-distance have been applied to scan paths outside the area
of reading research. For example Brandt and Stark (1997) analysed eye move-
ment patterns in response to checkerboards with a Levenshtein metric; Joseph-
son and Holmes (2002a, 2002b) used a Levenshtein metric to analyse scan paths
in response to viewing web sites; and Cristino, Mathôt, Theeuwes, and Gilchrist
(2010) used a Levenshtein metric to analyse eye movements in a visual search
task. The Levenshtein metric has the advantage that it can cope with sequences
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of arbitrary length. It does this by aligning sequences through the use of null ele-
ments. In the same way, similar patterns that occur shifted within their sequences
can be aligned and their similarity recognised, using for example, the Needleman-
Wunsch algorithm, which uses a dynamic programming technique to find those
optimal alignments that minimise the dissimilarity of two sequences (Needleman
& Wunsch, 1970). However, while the Levenshtein metric yielded a suitable mea-
sure for the studies in Brandt and Stark (1997), Josephson and Holmes (2002a),
Josephson and Holmes (2002b), and Cristino et al. (2010), where the sequence
of locations of fixations was at issue, it is not ideal for reading research where
the duration of fixations is equally important. In fact it is possible, but impractica-
ble, to make the Levenshtein metric take account of durations by representing a
long fixation with a series of repetitions of the same location. However, in order
to achieve sufficient temporal resolution, the number of symbols involved in the
repetition method becomes extremely large. Unfortunately the algorithm’s scaling
properties are O(m∗n) where m and n are the length of the two sequences, with
the consequence that the approach is impracticable in reasonable time.

Another drawback of the Levenshtein metric for reading analysis is that it pe-
nalises spatial difference irrespective of how great the difference is. However, in
reading studies, small versus large divergence in fixation location can represent
a discrete difference in cognitive processes: for example, this could be the differ-
ence between a saccade to the next word that indicates normal processing, and
a regressive saccade to the beginning of the sentence that indicates processing
breakdown.

A further drawback of the Levenshtein metric for reading research is that, by
applying an all-or-nothing penalty to location differences, it does not take account
of the gradient of acuity across the human field of vision, due to: the higher den-
sity of photoreceptors in the central part of the retina; differences in how photore-
ceptors converge on retinal ganglion cells; and how they in turn converge in the
projection to the lateral geniculate nucleus (Grill-Spector & Malach, 2004). This
yields an effect dubbed cortical magnification whereby foveally fixated objects are
represented in the cortex with higher resolution than parafoveally fixated objects,
and thus with greater cognitive acuity. Cortical magnification was measured by
Daniel and Whitteridge (1961) and is approximated by the function mδ, where δ

is the eccentricity in degrees and m is 0.83. For reading research, a good metric
of scan path similarity should take account of the degree of spatial divergence of
two fixations in the projection to the cortex, and not merely on the screen: doing
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this would take account of the difference in visual acuity at the two locations.

The scan path similarity, or SCASIM, metric developed by von der Malsburg
(2009, 2010); von der Malsburg and Vasishth (2007, 2008, 2009, 2011, 2012) is
a promising candidate for a better metric for reading studies. The method is im-
plemented in the R function SCASIM (von der Malsburg, 2010) which computes
scan path similarity. The measure is a specialised kind of edit-distance. It is spe-
cialised for spatio-temporal patterns, particularly scan paths, and can cope with
scan paths of different temporal and spatial dynamics, unlike other edit distance
measures.The measure computes a dissimilarity matrix for all the scan paths in
the set.

It is possible to define the distance between two scan paths that have the
same length as a function of their fixation locations and durations, as a weighted
sum of two terms: the magnitude of the difference between their fixation durations
|sdurk − tdurk |; and the sum of their fixation durations sdurk + tdurk . The first summand
corresponds to the case where the fixations target the same location for different
durations, and the second summand corresponds to the case where the fixations
target very far apart locations: it represents the cost associated with removing sk
and replacing it with tk. The weights are derived from the distance between the
two fixations in the approximation to visual cortex, using the function mδ. If δ(x, y)

is the angle between two fixation targets x = slock and y = tlock , then the overall
distance between two scan paths s and t is then:

d(s, t) =
n∑
k=1

mδ(slock ,tlock )|sdur − tdur|+ (1−mδ(slock ,tlock ))(sdurk + tdurk ). (4.3)

When fixations are far apart, then the longer the fixations are, the larger the
penalty should be. If the fixations are both short, the penalty should be small.
Summing the fixation durations allows the small penalty for short far apart fixa-
tions, and the large penalty for long far apart fixations.

Once a dissimilarity value has been obtained for each scan path, the value
can be submitted to conventional analysis of variance like any other scalar mea-
sure. However, because participants make the scan paths of interest quite rarely,
it is often difficult to achieve a balanced design for conventional analysis of vari-
ance. scan path similarity is also amenable to cluster analysis which does not
need to assume balance in the same way. A cluster in similarity space is a set of
self-similar scan paths that correspond with a reading strategy (von der Malsburg
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& Vasishth, 2011). This allows the researcher to ask whether a given reading
strategy is overrepresented in a particular experimental condition.

In order to analyse the distribution of reading strategies, it is first necessary
to reduce the dimensionality of the pairwise dissimilarity matrix yielded by the
SCASIM function. To this end, the dissimilarity matrix returned by scasim is sub-
mitted to multidimensional scaling. Multidimensional scaling seeks to represent
the large matrix in a lower-dimensional form that is still faithful to the patterns
in the original matrix. There are (at least) three options for doing the multidi-
mensional scaling in R: CMDSCALE; ISOMDS; and SAMMON. There are some
restrictions which determine which method to use. These restrictions are on the
form of the input, which is a distance structure of the kind returned by SCASIM:
some methods do allow distances of zero, representing exactly equivalent scan
paths, and some do not.

Once a lower-dimensional representation has been achieved, it can be sub-
mitted to cluster analysis to yield reading strategies. There are (at least) two op-
tions for doing the cluster analysis in R: KMEANS; and MCLUST. For KMEANS, the
number of clusters must be specified. However, the function MCLUST computes
the optimal number of clusters with reference to Bayesian Information Criterion
(BIC), and because it is not obvious what the optimal number of clusters is in this
case, the MCLUST function was used here. The function MCLUST computes the
optimal number of clusters to fit the data by generating a selection of models,
and choosing the one that maximises the BIC. The technical description of the
optimal model given in the function’s help file is: The optimal model according to
BIC for EM initialized by hierarchical clustering for parameterized Gaussian mix-
ture models. . . The Expectation-maximization algorithm can be used to compute
the parameters of a parametric mixture model distribution. . . A ‘best’ model can
be estimated by fitting models with differing parameterizations and/or numbers of
components to the data by maximum likelihood, and then applying a statistical cri-
terion for model selection. The Bayesian Information Criterion or BIC (Schwarz,
1978) is the model selection criterion provided in the MCLUST software. It adds
a penalty term on the number of parameters to the log likelihood. For details of
model-based clustering, see McLachlan and Peel (2000) and Fraley and Raftery
(2002).

Once reading strategies have been identified by the cluster analysis it then
becomes possible to ask what the distribution is of the strategies over the exper-
imental conditions. In the same way one can ask whether a particular reading
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strategy is over-represented in a particular experimental condition.

4.4 Hypotheses about the purpose of regressions

There are some hypotheses about the purpose of fixations in the regressive path.
These are selective reanalysis (Frazier & Rayner, 1982), time out (Mitchell et al.,
2008), a perceptual uncertainty account (Levy, Bicknell, Slattery, & Rayner, 2009),
and a combined retrieval and surprisal account (Engelmann et al., 2013).

4.4.1 Selective reanalysis

The selective reanalysis hypothesis is the proposal that readers make use of
a strategy that enables the sentence processor to exploit "whatever information
it has available about the type of error it has committed to guide its reanalysis
attempts" (Frazier & Rayner, 1982)

4.4.2 Time-out hypothesis

The time-out hypothesis (Mitchell et al., 2008) proposes that regressions are the
result of the linguistic system halting the progress of the eyes into new material
before existing material has been fully integrated, in the event that the currently
processed material takes longer than usual to integrate. The parser instigates a
time-out allowing the integration to be carried out before moving the eyes into new
material. The eyes are inhibited from going forwards, and so saccades can only
be intra-word fixations on the launch word or inter-word regressions. The time-
out hypothesis predicts that the landing sites of these saccades should not be
patterned, but should instead follow a distribution over the words preceding that
launch site, with higher probability of landing on a word close to, but not further
than the launch site.

4.4.3 Perceptual uncertainty account

A different sort of explanation for regressions comes from Bicknell and colleagues
(Bicknell & Levy, 2010a, 2010b, 2011; Levy et al., 2009). Their explanation is that
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there is perceptual uncertainty with respect to what has been read. Regressions
in tho framework are made in order to gain information about words that are
represented with higher uncertainty, in the face of disambiguation.

4.5 Linguistic and oculomotor co-ordination

An open question is whether we can use the distribution of fixations in regressive
paths to adjudicate between theories. The Diagnosis model predicts different pro-
cessing of NP/S and NP/Z disambiguations and this prediction implies different
eye movement distributions in regressive paths. It is also possible to sketch a
proposal for how the operations proposed by replacement theories might mani-
fest in the distribution of fixations in the regression path. With these two propos-
als turned into claims about the distribution of fixations on the regressive path for
NP/S and NP/Z sentence types, it is possible to carry out an evaluation against
regression paths collected in experiments that manipulate NP/S versus NP/Z dis-
ambiguations. There are some assumptions that underly the claims given above
about the purpose of regressions. These are the tight versus loose coupling
possibilities, and the overt versus covert repair alternatives. These are dis-
cussed next.

4.5.1 Tight coupling

The assumption of tight coupling is widespread, that the linguistic system and the
eye movement system are in lock-step, and what is fixated is what the linguistic
system is processing. Just and Carpenter treated this as part of their eye-mind
assumption when they wrote "the eye remains fixated on a word as long as the
word is being processed . . . [S]o the time it takes to process a newly fixated word
is directly indicated by the gaze duration" (Just & Carpenter, 1980, p. 331)

4.5.2 Loose coupling

While Frazier and Rayner (1982) saw regressive eye movements as tightly cou-
pled to parser operations, the assumption of tight coupling has been challenged
in the literature. For example, Mitchell et al. (2008) argue that a loose coupling
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explanation can account for the data too. They offer the time-out hypothesis,
under which the fixation locations in regressive eye movements are partly decou-
pled from linguistic operations. Such a loose coupling account needs an expla-
nation for the distribution patterns of regression fixation locations. The time-out
hypothesis provides a possible explanation: the patterns are held to be spatially
determined, with location a function of distance from the launch site with random
noise. The time-out hypothesis was considered in Vasishth, von der Malsburg,
and Engelmann (2013) where it is used to model short regressions in ACT-R
architecture. There are two possible extremes for the role of spatial layout. (1)
Spatial layout could have no influence on eye movements in regressions. (2) Influ-
ences of spatial layout could overwhelm linguistic influences on eye movements.
Because the influence of spatial layout on regressions is largely unknown, com-
mon measures that are taken to index parsing processes might turn out to reflect
effects of layout instead unless linguistic influences are shown to exist indepen-
dently of layout effects. Consider that if RPD was shown to be more sensitive
to layout than linguistic manipulation, then the whole body of literature that uses
RPD to index parsing would become subject to doubt. There is some evidence
to be found in the fundamental properties of eye movements in reading of loose
coupling between linguistic drivers of eye movements and eye movements them-
selves (Rayner et al., 2012). For example, spillover effects, where the conse-
quences of disambiguation are not realised in eye movements until the following
word or words, indicate that the eyes sometimes move past the word that carried
disambiguating information without acting on that information, and also indicate
that the word that launches the regression may not be the word that licensed or
motivated the regression. Evidence for parafoveal preview benefit indicates that
the eyes take in information from a word that is not yet fixated foveally, and that
eye movements can be influenced by that word’s linguistic properties (e.g., se-
mantic anomaly) which in itself breaks the notion of strict tight coupling. The fact
that words are often skipped as a function of the frequency of the word being
skipped indicates a further breaking point for the notion of tight coupling.

4.5.3 Overt and covert repair

Another way the link between the linguistic system and the eye movement sys-
tem can be challenged is by saying that perhaps reanalysis might the covert -
that is to say done without observable behaviour. Under these circumstances no
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amount of eye movement studies would yield information about linguistic process-
ing. There are suggestions of decoupling between syntactic reanalysis and eye
movements, as well as reanalysis by covert repair (Lewis, 1998, p. 253). Overt
repair is the term used for repair when it has an observable behavioural phe-
nomenon to indicate that repair has taken place - typically a set of regressive eye
movements - whereas covert repair is the term used to indicate that while repair
has taken place, it has taken place in the absence of observable behavioural phe-
nomena - for example, a search through memory that is done without moving the
eyes. These suggestions serve to raise doubt that regressions are under linguistic
control and determined by target-seeking. Such doubts are amplified in Mitchell
et al. (2008). If proposals of covert repair and decoupling hold, then modeling
regressions in theories of sentence processing is fundamentally misguided and
misleading. However it is more likely that control of eye movements at disambig-
uation is shared between linguistic and non-linguistic controllers. Examples of
non-linguistic control include evidence that eye movements are influenced by the
spatial details of the print; evidence that the frequency of a word influences the
duration of fixations on it; evidence that the overall discourse coherence of the text
influences eye movements; evidence that the nature of the task demands faced
by the participant influences eye movements, such as whether the participant is
proofreading or reading for comprehension (Rayner et al., 2012).

4.5.4 Are the eyes seeking targets or avoiding new informa-
tion in regressions?

Regressions in the selective reanalysis framework are linguistically guided and
target-seeking. Regressions in the time-out hypothesis are subject to particular
limited influences from the linguistic system and are launched away from the ini-
tiating word rather than directed at some target. The influence of the linguistic
system under the time-out hypothesis is limited to the right to veto and sanction
progressive eye movements as part of the decision to take in a new word, a de-
cision shared by the low-level linguistic drivers that respond to, for example, word
frequency and which themselves can impose delays. The notion of the parser li-
censing a progression finds a home in Yang (2006) where a proposal is made that
fixation duration is basically the elapsed time while a progression to the next word
is inhibited by the linguistic system in the service of time needed to process a word
with particular consequences for the linguistic system. The time-out framework

99



Ch 4: Spatio-temporal distribution of regression path fixations

can be described as both overt repair and covert repair. Overt because while it
withholds the sanction to move on it manifests in the eye movement record as in-
creased duration and possibly increased frequency of regression: covert because
the target of regressions is uninformative for the nature of the parsing processes
involved - regressing away is considered to be buying time for the parser, and the
landing sites of these regressions away are distributed as a function of distance
from the launch site with some noise and therefore the identity of the targeted
word is irrelevant for information about parsing.

In work on anaphor resolution there is evidence for target-seeking regres-
sions (Inhoff & Weger, 2005; Kennedy & Murray, 1987; Murray & Kennedy, 1988;
Weger & Inhoff, 2007), but the task faced by the participant has only superficial
similarity with the task faced by the reader of syntactically disambiguating mate-
rial. Anaphor resolution work also provides examples of under- and over-shooting
in target-directed regressions. This finds parallels with the ‘stepping stone’ strat-
egy identified by Mitchell et al. (2008) which they considered to be essentially
range-finding in regressions for syntactic disambiguation This suggests that a
syntactic mechanism might be target-oriented without necessarily succeeding in
hitting the target, at least on the first regressive fixation. To explore this Mitch-
ell et al. (2008) also considered all subsequent regressive fixations in the same
regression sweep looking for evidence that, after a little range-finding, the eyes
succeed in picking out some target. In this analysis they reported some weak ev-
idence that regressions are target-seeking. The evidence for range-finding error
implies that a measure that focuses on landing-sites is not likely to find strong
evidence for a target-seeking mechanism even if the driver of the movements is
actually destination-based and target-seeking. One escape from this bind is of-
fered by scan path similarity analysis which abstracts over the precise landing
sites to reveal self-similar patterns of regression that should still hold up in the
face of range-finding error.

In the collection of regression paths for analysis in the evaluation it is impor-
tant to use materials that control the placement within the sentence of the am-
biguous and disambiguating parts. Using materials in which the disambiguation
region is placed adjacent to the ambiguous region makes it impossible to distin-
guish between fixations that are made in the ambiguous region, and regressions
that are made in the region adjacent to launch. Interposing material between
the onset of the ambiguous material and the disambiguation region allows this
distinction to be made.
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4.5.5 Can we distinguish repair from replacement theories us-
ing regressions?

One response to problematic disambiguation is repair. Repair accounts are char-
acterised as those that make use of previously-built structure to effect a new
analysis. They start from the analysis that disambiguation reveals to be a wrong
analysis, and make changes to that analysis until it fits the new input. There are
several variants of the repair proposal, according to how it is proposed that the
repairs are identified and applied. Constraints applied to the repair process vary
across particular accounts. These accounts are treated separately below.

Another response to problematic disambiguation is replacement. Replace-
ment parsers are those that maintain several parses in parallel, and update the
representation of the sentence so far in response to disambiguating input by re-
placing the top-ranked parse with another from the set.

Does the human sentence processing mechanism carry out repair or replace-
ment to fix a temporarily syntactically ambiguous partial parse that turns out to
be inconsistent with disambiguation? A sign that repair is used would be if eye
movements at disambiguation include purposeful visual search for text that has
already been read. Such movements are unnecessary, and difficult to account
for, under a replacement hypothesis. If there are no such patterned eye move-
ments at disambiguation this suggests that linguistic operations at disambiguation
can be accomplished without taking in again any of the previously-parsed mate-
rial, and this would be consistent with a re-ranking of partial parses that are still
available to the linguistic system.

4.5.6 The link from regressions to disambiguation

Most models of eye movement control in reading operate below the level of syn-
tactic processing. This makes it difficult to make inferences from eye movements
to parsing processes. In fact the link between syntactic disambiguation and re-
gressions is not well demonstrated. There is theory for the linguistic operations
that might be involved at disambiguation. For example, various linguistic the-
ories propose that parse repairs are mandated at unexpected disambiguation
(Ferreira & Henderson, 1991b, 1993; Fodor & Inoue, 1994, 1998; Sturt, 1998;
Sturt & Crocker, 1998; Sturt et al., 1999; Van Dyke & Lewis, 2003). This theory
work does not specify how repairs are implemented in regressions, although the
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following papers do take up this question: Frazier and Rayner (1982); Meseguer
et al. (2002); Mitchell et al. (2008); von der Malsburg and Vasishth (2011).

Regressions in the selective reanalysis framework are linguistically guided
and target-seeking. Regressions in the time-out hypothesis are subject to partic-
ular limited influences from the linguistic system and are launched away from the
initiating word rather than directed at some target. The influence of the linguistic
system under the time-out hypothesis is limited to the right to veto and sanction
progressive eye movements as part of the decision to take in a new word, a de-
cision shared by the low-level linguistic drivers that respond to, for example, word
frequency and which themselves can impose delays. The notion of the parser li-
censing a progression finds a home in Yang (2006) where a proposal is made that
fixation duration is basically the elapsed time while a progression to the next word
is inhibited by the linguistic system in the service of time needed to process a word
with particular consequences for the linguistic system. The time-out framework
can be described as both overt repair and covert repair. Overt because while it
withholds the sanction to move on it manifests in the eye movement record as in-
creased duration and possibly increased frequency of regression: covert because
the target of regressions is uninformative for the nature of the parsing processes
involved - regressing away is considered to be buying time for the parser, and the
landing sites of these regressions away are distributed as a function of distance
from the launch site with some noise and therefore the identity of the targeted
word is irrelevant for information about parsing.

4.5.7 Subpopulations of regressions

An interesting possibility and a further complication for using regressions as evi-
dence of parser operations is raised by Mitchell et al. (2008, p. 270), where they
point out that “It is perfectly possible for one sub-population of regressive move-
ments to be generated by one kind of mechanism and the rest by another”. One
consequence of this possibility is that researchers who treat regressions as a
homogeneous population might be falling into the trap of treating a multi-modal
distribution as a uni-modal one. Under these circumstances such researchers
might commit a ‘failure to find’, or Type 2 error when their statistical test can-
not detect differences in the data because the test is rendered insensitive due
to the multi-modality. It is worth considering that the probability of making a re-
gression (of any type), which is a measure in common use, cannot distinguish
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these subpopulations, and that the Frazier and Rayner qualitative descriptions
of subpopulations in regressions did not give rise to a quantitative measure that
has the potential to provide empirical underpinning. An important recent develop-
ment that seeks to provide quantification, empirical underpinning, and associated
statistics for the consideration of subpopulations of regressions is the work of von
der Malsburg (2010); von der Malsburg and Vasishth (2011, 2012) on a scan path
similarity measure called SCASIM. Here its important characteristics are that it is
an edit-distance metric that quantifies the similarity of two scan paths, and which
therefore permits a clustering of scan paths to be identified in a data-driven way. If
the proposal holds that there are coherent and distinct subpopulations of regres-
sions, then given sufficiently non-sparse data, then these clusters should identify
the subpopulations. Before the SCASIM scan path similarity measure had been
developed, Mitchell et al. (2008) could not avail themselves of it, and relied in-
stead on examining the distribution of the landing sites of regressions. This was
done in an attempt to test whether the patterns of target-seeking predicted by
selective reanalysis were present in the data. The logic of this approach is that
if regressions are indeed targeting particular locations then this would support
destination-oriented target-seeking behaviour like that indicated in the selective
reanalysis hypothesis. In the other outcome where the distribution of landing sites
did not pick out particular locations and regressions were instead distributed as
a function of distance from the launch site with some random error component,
the this would support launch-based regression in the manner predicted by the
time-out account.
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Chapter 5

Statistical analysis tools

This chapter introduces the statistical tools used in the thesis. This charts the re-
cent move away from using classical Analysis of Variance (ANOVA) with separate
by-participants and by-items analyses towards using a unified regression model
(LMER) that includes the random effects of participant and item as well as other
covariates (e.g., word length, word frequency) in a single model. Advantages and
disadvantages of the LMER framework are laid out.

5.1 Introduction

Consider the data that are yielded by a typical eye tracking study of reading.
Such experiments measure the performance of individual participants in some
sentences from each of four cells derived from the factorial manipulation of two
treatment variables. Across an experiment, each sentence is responded to the
same number of times in each of the four conditions by the same number of read-
ers. No one reader is exposed to the same sentence in more than one condition.
In practice this is achieved by implementing a split plot design that was familiar to
farmers in the nineteenth century who sought from it a way to rotate crops over
fields in the most productive way. Data from these split plot designs have a multi-
level structure that can be decomposed into systematic and random components.

The systematic structure is the structure imposed by the factorial manipula-
tion of independent variables. It represents the notion that in a 2 x 2 factorial
design there are four treatment conditions, and that the data can be grouped ac-
cording to which condition yielded them. The systematic structure is responsible
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for some part of the variability observed in behaviour. For example in a temporar-
ily ambiguous sentence, the disambiguating word will yield different behaviour as
a function of whether there is still syntactic ambiguity at the point at which the
word is processed. A model that is faithful to the systematic structure of the data
may be given as follows. Where Xijk represents any observation, µ is the grand
mean of the observations, αi is the effect of Factor Ai = µAi

−µ, βj is the effect of
Factor Bj = µβj − µ, αβij represents the interaction effect of Factor Ai and Factor
Bj, and εijk represents the unit of error associated with observation Xijk

Xijk = µ+ αi + βj + αβij + εijk (5.1)

Within a given cell of the systematic structure, there is variability in behaviour.
This is attributable to the differences between the individuals who contributed the
behaviour, and to differences between the sentences that yielded the behaviour,
and to other sources. Such variability is described in the random structure of
a statistical model. In a typical psycholinguistic reading experiment, participants
and items are crossed so that each participant reads one version of all sentences,
but never the same sentence in more than one version. Similarly each item yields
responses from all participants, but an item in a given version is responded to by
only some readers, and never by the same reader more than once.

Until the advent of more advanced techniques, such data were submitted to
ANOVA. Doing so violated at least one of the assumptions of ANOVA: that for con-
ditional independence of observations. The problem alluded to is when observa-
tions in any given cell of the design are treated as though they were independent
of observations in some other cell whereas in fact some of them come from the
same sentence or participant. Any experiment that uses repeated measures vio-
lates the assumption of independence of observations. The traditional response
has been to aggregate over the dependent cases to yield single values that are
then conditionally independent. This is undesirable because the variability lost in
the aggregation can be properly accounted for by modern methods, and may be
of direct theoretical significance.

Extra errors are committed when data that are binomially- or poisson- dis-
tributed are transformed to proportions and then treated as gaussian-distributed,
ignoring the hard floor at zero and the hard ceiling at 1. One problem with this is
that confidence intervals for low mean values can encroach into negative propor-
tions which are undefined, or into proportions greater than one which are similarly
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undefined. Another is that backing off from zero and one in order to remedy this
problem by arcsine transformation and then modeling the arcsine value is unlikely
to achieve homogeneity of variance in conditions in practice. Logistic regression
is one preferred framework. We shall see how this approach can be extended to
cope with the random structure of our data.

The statistical models implemented in LMER are well-suited to analysing eye
tracking data. LMER copes naturally with data that constitute samples from any
distribution (binomial, poisson, gaussian). This enables e.g., binomial outcomes
to be appropriately modelled in the raw without suffering by aggregation. The
systematic structure of the data is readily represented in these models by using
terms for each main effect and each interaction effect. The random structure is
also readily represented in such models (where observations are nested within in-
dividuals for example). A further benefit is that all this can be done simultaneously
in LMER without recourse to separate F1 and F2 analyses.

The history of the analysis of variance has important developments brought
about by approaches described in articles dated 1973 and 2008. Clark (1973)
demonstrated a way round the problem of the fallacy of language as fixed effect,
achieved by modeling by-participant variance and by-item variance separately
and then taking minF ′ as a composite measure. The next big shift in the his-
tory of the analysis of variance is well captured in papers combined in the 2008
special issue of Journal of Memory and Language (Forster & Masson, 2008).
This shift used a single analysis to model variance arising from any of several
different sources, and at any of several different levels. Thus it was possible to
account separately, but in the same model, for the variance in a given measure-
ment across trials that was due to the item presented on that trial, as well as
variance that was due to the participant being presented the trial, leaving cleaner
accounts of the variance due to treatment effects. Research into this methodol-
ogy is approaching maturity at the time of writing. While it is currently fit enough
for purpose that it is used in the thesis, we will also see that it is sufficiently im-
mature that there are still serious disagreements on some fundamental practical
issues.

Early history Stigler (1986) indicates that astronomers before 1800 had devel-
oped methods (i.e., the personal equation) to identify and reduce observational
errors in astronomical measurements, where errors were those introduced by ob-
servers. This can be taken as the origin of the analysis of variance because errors
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were identified in terms of the extent to which an observation varied from others of
the same phenomenon. The argument that significance testing should be carried
out for experiments in verbal behaviour was reiterated by Coleman (1964). His
reasoning was that it was desirable to know how far beyond the linguistic sample
the findings from experiments could be generalised, and that without significance
testing the findings from contemporary experiments on verbal behaviour could
not be generalised beyond the sample of linguistic materials employed. He gave
advice in terms of contemporary statistical methods, including recommending F ′.

ANOVA and the F-ratio A standard method used to analyse eye movement
data is ANOVA (Fisher, 1918, 1921, 1925; Howell, 2009), adapted to take sepa-
rate account of both subjects effects and items effects by Clark (1973). ANOVA
compares the means of different experimental conditions and decides whether to
reject the null hypothesis that the means do not differ, given the observed sam-
ple variances within and between the conditions. Simple one-way ANOVA can
be described as follows. The F statistic is calculated as the ratio of the variance
explained by the model to the variance unexplained by the model.

F =
explained variance

unexplained variance
=

variance between subjects (or items)

variance within subjects (or items)
(5.2)

The formula for assigning values to these quantities is as follows. Where Ȳi is the
sample mean in the ith group, ni is the number of observations in the ith group, Ȳ
is the overall mean of the data, Yij is the jth observation in the ith out of K groups,
K is the number of groups, N is the overall sample size:

F =

∑
i

ni
(
Ȳi − Ȳ

)2
/ (K − 1)∑

ij

(
Yij − Ȳi

)2
/ (N −K)

(5.3)

Limitations of ANOVA There are several reasons why ANOVA may be unsuit-
able for statistical inference over eye movement data, particularly over regression
signature data, but also over the standard measures.

Firstly, for regression signature data, which are categorical data (whereas the
standard measures constitute continuous data), we are dealing with proportions
calculated over a categorical variable, that being the proportion of a binary valued
presence / absence of a fixation in a given word, when we are considering the
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location of the very first regressive fixation of a regressive sequence; and the
proportion of a number of discrete instances of a fixation in a given word, when we
are considering the location of all regressive fixations in a regressive sequence.
For continuous data, the interpretation of mean values, variance, and confidence
intervals can be clear. For categorical data however, confidence intervals can
extend beyond the permissible values in the data of zero and one. It is for this
reason that Jaeger (2008) argues that ANOVA may lead to spurious results, or at
the very least, problems of interpretation.

Secondly, eye movement data exhibit crossed random effects of participant
and item. ANOVA can cope with this in Latin square designs by providing sepa-
rate by-participant F1 and by-item F2 analyses of aggregated measures. LMER
improves on this by accounting for both participant and item level variance in the
same model.

Thirdly, the assumption of independence between observations (Barr, Levy,
Scheepers, & Tily, 2013; Coco, 2011) presents a problem. This is violated in the
case of repeated measures in any given cell of the design. Traditional ANOVA
deals with this by aggregating each observation in the cell and then submitting
the aggregate value to analysis. In LMER the data reduction caused by the ag-
gregation is unnecessary provided that the random effects structure in the design
is specified in the model.

Fourthly, the multilevel structure of the data (Richter, 2006); (Coco, 2011, p.
29) presents a problem. This has more impact in the example where students
are nested in schools that are themselves nested in states, all of which exert an
effect at their own level that contributes to the value of the measurement at the
lowest level of the student.

The need to account for multilevel effects Following on from Clark (1973),
work in an age of vastly increased desktop computer power has yielded a further
framework for statistical analysis of data from psycholinguistic designs, where lin-
guistic items are sampled from a population of linguistic items, and participants
are sampled from the population of people. This framework is set out for psy-
cholinguists in papers collected in a special issue of the Journal of Memory and
Language (Forster & Masson, 2008). The framework is variously called mixed
effects modeling, hierarchical modeling; multilevel modeling, all referring to the
notion that sources of variance exist at more than one level in the data. For ex-
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ample, when a given trial in particular levels of the treatment variables yields a
response time with a particular value v, the value depends on the particular par-
ticipant, the particular linguistic item, and the treatment effect(s) with some error
attributable to the natural variability of response times. In the case that the reader
is a slow reader, his slowness will increase the value of v independently of the
treatment effect(s), so to attribute the values of repeated measurements of v to
the treatment effect(s) is to attribute too much to the treatment effect(s). A proper
treatment would take into account item-level and participant-level variance in the
estimation of coefficients for the levels of the treatment effect(s). So far, minF ′

fits the bill, but multilevel models go further. To see why, we will need to refer to
the details of the General Linear Model, to see how it can be extended to cover
the demands set out in this paragraph.

5.2 LMER

In this section I deal with the recent introduction of linear mixed effects models
into psycholinguistic data analysis.

In recent years there has been a movement in psycholinguistics away from
ANOVA and towards linear mixed effects regression models (LMER). This move-
ment is captured in the Journal of Memory and Language Special Issue on Emerg-
ing Data Analysis (Forster & Masson, 2008). In this thesis I use the Generalized
Linear Mixed Effects Regression Model (GLMM) framework to carry out inferential
statistical analysis, particularly the Linear Mixed Effect class of models, with ran-
dom effects for subjects and items (Baayen, Davidson, & Bates, 2008; Pinheiro
& Bates, 2009), implemented in the R package LME4 (Bates, Maechler, & Bolker,
2011) that provides the function LMER.

The simplest model of regression is a linear model assuming a linear rela-
tionship between the observed response variable (e.g., regression path duration)
and the explanatory variables (e.g., ambiguous / unambiguous). The explanatory
variables are expressed as regression coefficients β which give information about
the strength and direction of their linear effect on the response variable y. A lin-
ear model is a collection of coefficients βi, one for each explanatory variable i and
one term for each of i’s interactions. This yields

y = β0 + β1x1 + . . .+ βixi (5.4)
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where β0 is the mean of the response variable and βi is the contribution of the
ith variable to the value of the predicted variable. The sign of the coefficient
is a measure of the direction of the effect the predictor exerts on the predicted
variable: a positive coefficient signals that the predictor increases the value of
the response variable, and a negative coefficient signals that the predictor tends
to reduce the value of the response variable. The value of the coefficient is a
measure of the size of the effect, with larger values signalling larger effects.

In a GLM, the linear relationship between the response variable and the ex-
planatory variables can be established for different distributions by using different
link functions (e.g., Poisson, logistic, etc). When dealing with continuous variables
(the standard scalars), a gaussian link function is appropriate: when dealing with
regression signatures, which are proportions calculated over binary outcomes, a
logit link function is appropriate. The logit function is the logarithm of the odds of
the response variable

logit(y) = log(
y

1− y
) (5.5)

where the odds of event a is an expression of the ratio of the probability of a
occurring to the probability of a not occurring. In regression signatures, a is a
fixation in the word or region under consideration. The logit is the odds on a
logarithmic scale, yielding a value that may be treated as normally distributed.
LMER has the virtue that it can distinguish between random and fixed effects in
a way that GLM cannot. Participants and items constitute random effects in our
experiments, and LMER treats them appropriately. This yields

y = β0 + β1x1 + . . .+ βixi + b1x1 + . . .+ bjxj + ε (5.6)

where β0 is a term for the intercept, β is a fixed effect and b is a random effect,
i indexes participants, j indexes items, and ε is the error term that we seek to
minimise.

The justification for the use of LMER is that LMER allows us to quantify the
strength and direction of the contribution towards the value of the response vari-
able of each explanatory variable, taking proper account of whether the explana-
tory variable exerts a fixed or a random effect, and taking proper account of dif-
ferent multilevel components.

One scenario in which LMER is useful is when there are very many factors
that represent candidates for inclusion in the best model of the data. In this case,
it is important to have a principled way to decide which terms should be retained in
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the eventual model. Complex experimental designs yield many different models,
and many of these can be equally good at fitting the data. Under these circum-
stances, one (flawed) approach is to set the explanatory variables in a pattern
that fits the experimental design. However, to do this is to test a unique hypothe-
sis, and to assume wrongly that no other hypotheses are possible. An alternative
approach is to assume that we are sampling from a space of models, and through
a bottom-up exploration of the data we bootstrap the best hypothesis.

There are two main approaches to this bootstrapping in model selection, wh-
ereby explanatory variables are included or removed one at a time. In forward
selection, the final model is built from a minimal model to which explanatory vari-
ables are added if they are significant until no further improvement in goodness
of fit is yielded. In backward model selection, one starts with a fully-specified
model, and removes predictors that exert non-significant effects to yield an effi-
cient model.

In both cases a measure of goodness-of-fit is required. LMER uses the log-
likelihood test to provide the measure. A series of pairwise comparisons tells us
when to stop adding / taking way predictors. We start by removing random effects
first, then fixed effects, then interactions.

LMER can also be used in cases where the model specification is known in
advance. The design of a psycholinguistic experiment represents the terms that
will be fixed effects, and the participants and items provide the random effects
at each level of which the fixed terms may be arranged systematically. In these
cases the purpose of LMER is to tell us whether our fixed effects exerted signif-
icant influences on a response variable bearing in mind the contributions to the
response variable of idiosyncrasies of participants and items.

In the years intervening between the JML special issue (Forster & Masson,
2008) and the time of writing, there has been some inconsistency in the spec-
ification of LMER models, noted by Barr et al. (2013). In the worst cases, no
model specification is given by the authors, which means that we have no basis
on which to evaluate claims of significance. Even in cases where model spec-
ification is given, the specified model is often a random intercepts only model
characterised by increased power without increased protection against Type 1
error (i,e., the error made when one incorrectly rejects a null hypothesis that is
actually true). This leads to much the same situation described in Clark (1973)
where we cannot be sure if the null hypotheses rejected in these studies were cor-
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rectly rejected. Since it is still not common practice to publish raw data (although
see http://read.psych.uni-potsdam.de/pmr2 for a psycholinguistics repository
of raw data and analysis scripts), it is not possible to formulate more appropriate
models to facilitate testing whether null hypotheses were incorrectly rejected.

This leads to the reasonable question “How should we choose a multilevel
model specification that increases power without increasing Type 1 error rates?”.
This is the question taken up by Barr et al. (2013). They report a series of per-
mutation tests of several model specifications, and compare their performance on
simulated data in terms of their respective Type 1 error rates at several given lev-
els of α. This gives us an empirical basis on which to prefer a given model specifi-
cation. Here I note that the best performing model specification that emerges from
this testing is the maximal model, and that random-intercepts-onlyspecifications
perform worse even than F1 in isolation.

The maximal model is defined as a model in which all sampling units get a
random intercept; any factor gets a by-unit random slope if it is both within-unit
and has multiple observations per level per unit; and any interaction term gets
a by-unit random slope in the case that all factors are within-unit, and there are
multiple observations per unit or cell, where a ‘cell’ is a combination of factor
levels (Barr et al., 2013).

Advantages of maximal models Maximal models survive the intense scrutiny
of Barr et al. (2013), who identify several reasons for preferring maximal LMERs to
ANOVA, listed here: (1) They have greater power than minF ′, especially for data
with relatively small variance. (2) They can better handle unbalanced data. This
is a real benefit when the observation at issue is of a phenomenon that occurs
rarely in the data, such as measures conditional on a regressive eye movement
having been launched from a disambiguating word, where ANOVA would insist
on data being discarded in the case that they are not balanced in respect of
the design. (3) They offer a principled alternative to the improper application of
ANOVA to count data and categorical data (like PREG): maximal LMERs model
such data properly by allowing values only to approach zero and one. A thorough
elucidation of this point may be found in Jaeger (2008). (4) Continuous predictors
can be accommodated naturally, in contrast to ANOVA.
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Interpreting LMER coefficient significance The LMER function in R’s LME4
package does not compute p values for the fixed effects in a mixed model. The
function’s author Doug Bates defends this choice on the grounds that relevant
necessary information is not precisely available in a LMER analysis. This leaves
us with the question how we should evaluate the fixed effects for significance.

One approach is to estimate the degrees of freedom: this is the approach
taken by Kuznetsova, Brockhoff, and Christensen (2013). This makes use of
Satterthwaite’s approximation for degrees of freedom.

Another approach is to compare a model that includes the term against a
model that is identical in all other respects but lacks the term of interest. This
constitutes fitting the model with and without the term at issue and seeing whether
the model with the term included is better with reference to some information
criterion that penalises appropriately the additional free parameter in the model
with the term at issue included. Suitable information criteria include Bayesian
Information Criterion (BIC); Akaike’s Information Criterion (AIC). Barr et al. (2013)
found that model comparison outperforms the t as z strategy, described in the
next paragraph, in their permutation testing.

Another approach is to treat model t as though it was model z. This con-
stitutes treating the t-statistic as if it were a z-statistic, i.e., using the standard
normal distribution as a reference. An absolute t-value of 1.96 or greater is taken
to indicate statistical significance at α = 0.05. The t-values in a mixed-effects
models are only approximations because determining the exact degrees of free-
dom is non-trivial (Gelman & Hill, 2007). Boston et al. (2008) used the t as z

approach, citing Gelman and Hill (2007) as their authority. The analyses in this
thesis contain a fairly large number of participants and items, and only a few fixed
and random effects are estimated. Following Angele and Rayner (2012) I as-
sume that the distribution of the t values estimated by each LMER approximates
the normal distribution. Therefore I use the two-tailed criterion |t| ≥ 1.96 which
corresponds with a significance test at the 5% level of α. In the case of binomially
distributed dependent variables, the z values are interpreted in exactly the same
way.
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Overview of experiments

This chapter describes the type of syntactic ambiguity that is used throughout the
thesis. Next there is an overview of each of the seven experiments in the thesis
that shows how the syntactic ambiguity is manipulated in each experiment, to-
gether with a description of other manipulations used in the experiments.

The experiments in this thesis are all concerned with some form of comple-
ment ambiguity (shown in Table 6.1).

Experiment One uses the NP/Z variant to provoke regressions caused by res-
olution to the dispreferred Z option. These regressions are constrained to be
launched from different spatial locations on screen. A strict interpretation of the
Selective Reanalysis hypothesis predicts that the difference in spatial location
should not influence patterns of regression from disambiguation since it is the lin-
guistic content that is purported to guide regressions under that hypothesis. The
experiment shows that layout affected regression probability and scan path distri-
bution but not the other standard measures of parsing. This experiment draws its
raw data from Experiment 1 in Mitchell et al. (2008) but the LMER analyses and
scan path analyses are novel.

Experiment Two uses the same materials as in Experiment One (the NP/Z
form), but implements a different manipulation on layout. Spatial layout affected
probability of a regression and distribution of regressive scan paths, but not the
other standard eye movement measures measures of parsing.
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Experiment Three uses the same difficult NP/Z form of the complement ambi-
guity. The spatial location of the misanalysis area was manipulated so that there
were sentences with the misanalysis area located late, near to the disambig-
uation, and sentences with the misanalysis area located early, and thus further
away from the disambiguating verb. A strict interpretation of the Selective Reanal-
ysis hypothesis predicts that regressions should be drawn to the linguistic content
of the misanalysed words, and thus that there should be a misanalysis location
effect on regressive scan paths. There was only a non-significant tendency for
regressive scan path shape to be influenced by the location of misanalysis. This
experiment drew its raw data from experiment 2 of Mitchell et al. (2008) but the
LMER analyses and scan path analyses are novel.

Experiment Four introduces verbs like noticed that have NP/S form and com-
pares them with verbs that have NP/Z form). These verbs with NP/S form are
paired with overt complementisers to produce pre-disambiguated forms that se-
lect the sentential complement reading. Commas are used to pre-disambiguate
the NP/Z forms to Z as before. This experiment shows that the extra difficulty of
disambiguating the NP/Z forms shows up in longer reading times, greater regres-
sion frequencies, and also the relative over-dispersal of scan path patterns that
target the onset of ambiguity.

Experiment Five maintains the comparison between NP/Z forms and NP/S
forms that yielded the relatively greater disambiguation effects in the previous
experiments. This experiment focuses on the NP that serves as the alternative
possible structure in the comparison. The NP is extended and its contents are
manipulated. The NP is expanded to include a qualifier which is placed either
before or after the bare noun at the head of the NP. On a repair view, lengthening
the NP like this increases the amount of material that must be moved as a unit
to effect a successful parse following an initial misparse. On a replacement view,
lengthening the NP like this means the ultimately-correct parse is unlikely to be
highly-ranked at disambiguation.

In this expanded NP, placing the noun before the qualifier effectively increases
the distance from the noun the head of the misattached noun phrase to the dis-
ambiguating verb, and placing the noun after the qualifier decreases this distance
from disambiguation. The experiment shows that this relatively small manipula-
tion of distance from disambiguation does not exert a consistent enough effect
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Table 6.1: Overview of the experiments in the thesisa

verb and licensed complements ambiguity sentence type other manipulation

1 watched (,) Z NP - X × layout

2 watched (,) Z NP - X × layout

3 watched (,) Z NP - X × misanalysis location

4
saluted (,) Z NP -

X X -
noticed (that) - NP S

5
saluted Z NP - × X head position
noticed - NP S

6
saluted Z NP - × X head position
noticed - NP S

a Abbreviations. Header line: verb and licensed complements = example verb from each con-
dition followed by all the complement-types that the verb licenses - boldface is used to indicate
the complement relation that was used in the correct analysis; amb = whether temporary syntac-
tic ambiguity was manipulated; sentence type = whether sentence type was manipulated; other
manipulation = if there was another manipulation it is given here. Abbreviations: in table: Z
= no complement; NP = noun phrase direct object complement; S = sentential complement.
(,) indicates that disambiguation was by punctuation, (that) indicates that disambiguation was by
complementiser; [...] (,) indicates that some material intervened between the verb and the comma

to achieve significance, although there are trends towards an over-dispersion of
search-for-onset regressions.

Experiment Six takes as its starting point the observation that the previous ex-
periment found non-significant trends for increasing the distance from disambig-
uation to increase indicators of reading difficulty, and asks whether the manipula-
tion was not extreme enough to demonstrate any real effect that there might be of
the manipulation. This experiment tests whether those non-significant trends are
significant when the manipulation of distance from disambiguation grows more
extreme. distance from disambiguation is increased by lengthening the qualifier,
and varied by putting the qualifier before or after its head noun. Similar trends
were observed but did not reach significance even when the manipulation was
more extreme, suggesting either that this is not a real effect, or that the effect
varied so much over subjects and items that its significance was washed out.

116



Chapter 7

E1: Spatial layout affects
regression behaviour

This chapter presents novel computational parser simulation results for the ma-
terials used in the eye tracking study reported in Experiment One in Mitchell et
al. (2008). The eye tracking data from that experiment are submitted to mixed
effects statistical models that were not in common use at the time of the original
experiment. The data are also submitted to scan path analysis, revealing an over
distribution of linguistically targeted regression scan paths when disambiguation
is on the same line as the ambiguous material versus on the line below.

7.1 Introduction

In work on regressions in reading, a common assumption is that selection of
saccadic landing-sites is linguistically supervised. This assumption is implicit in
the selective reanalysis hypothesis first set out in Frazier and Rayner (1982). A
logically possible alternative is that, in regressions, what determines saccadic
landing-sites is a combination of low-level spatial properties of the landing sites,
such as their proximity to the launch site. This alternative is set out as the time-out
hypothesis in Mitchell et al. (2008) and later in Vasishth et al. (2013).

The importance of the distinction between selective reanalysis and time-out
lies in the consequences of the widespread uncritical acceptance of the selective
reanalysis hypothesis. The standard eye movement metrics were premised on
this hypothesis. Particularly, the regression path duration measure assumes that
regressions are under linguistic control. Regression path duration has been used
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as a yardstick for syntactic integration difficulty to evaluate theoretical claims in the
literature. If the assumption is flawed, that would mean that conclusions drawn
from regression path duration comparisons in the past would be unsound. So it
is important to test the null hypothesis that regressions are governed by spatial
properties of the text, something which had not been done prior to Mitchell et al.
(2008).

A problem with the materials in Frazier and Rayner (1982) was that the on-
set of ambiguity was also launch-adjacent. In the example below, the onset of
ambiguity at a mile is adjacent to the disambiguating word seems:

(7.1) Since Jay always jogs a mile seems like a very short distance to him.

A problem with these materials is that returns to a mile could be due to its linguistic
properties under selective reanalysis (it is the ambiguous region) or, under time-
out, could be due to its spatial properties i.e., proximity to the disambiguation. In
order to have power to discriminate between the two hypotheses, materials must
separate the onset of ambiguity from launch-adjacent material. This was done
by interposing an unambiguous relative clause as below. Unambiguous versions
(disambiguated by punctuation) were used to serve as a baseline for measuring
ambiguity effects.

(7.2) While those men hunted(,) the moose that was sturdy and nimble hurried
into the woods and took cover.

With these materials it is possible to distinguish between regressions to the onset
of ambiguity at the moose under selective reanalysis and regressions away from
the launch word hurried in time-out.

A strong version of the selective reanalysis hypothesis predicts that since
regressions are under linguistic control, regressions should not vary as a function
of line break, but only as a function of ambiguity. A strong version of the time-out
hypothesis predicts that, since regressions are governed by spatial layout, they
should be influenced both by ambiguity, and also by proximity to the launch site.
Selective reanalysis predicts returns to the moose. Time-out predicts returns to
the relative clause, with relatively more returns aimed at nimble, the most launch-
adjacent word.

A first experiment showed some support for the time-out prediction of an inter-
action ambiguity x line break: the overall probability of making a regression in the
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ambiguous versions changes significantly, by as much as 4 times, as a function
of line break position, the way in which the material is laid out.

The presence of ambiguity effects mitigates against the time-out hypothesis -
if regressions are not under linguistic guidance, how could ambiguity affect their
landing sites?

In a second experiment, we varied the location of the onset of ambiguity so
that it was either early – near the start of the sentence, or late – disambiguation-
adjacent. In both cases, the disambiguating word is preceded by words with the
same number of characters with a tolerance of two characters.

(7.3) While those men hunted, the moose that was sturdy and nimble hurried
into the woods and took cover

(7.4) One sole hiker spotted that while those men hunted, the moose hurried
into the woods and took cover

The results showed that regressions can be placed under some kind of lin-
guistic control (against time-out, there was a tendency for saccades to land in
the misanalysis area, wherever that was) but also that a strict selective reanal-
ysis (saccades directly to a linguistically informative word) was not borne out at
conventional levels of significance. The Mitchell et al. (2008) experiments found
some evidence of a stepping stone strategy whereby regressive saccades did not
target critical words on the first saccade, but landed on intermediate words on the
way back to landing on the critical word. This can be thought of as an interme-
diate position between selective reanalysis and time-out, and this position was
recommended by the authors. Under this proposal, regressions are launched in
response to the linguistic system vetoing the move to the word after disambig-
uation on the grounds that first-pass parsing has not been successful in time to
license a move to new material. Spatial factors influence the landing sites of
regressive saccades but are not the sole driver of saccade landing site selection.

This chapter uses the data from Experiment One of Mitchell et al. (2008). I
submit the data to a mixed effects analysis rather than the F1 and F2 analyses
that were reported in that paper. I also report novel simulation results from run-
ning implemented computational parsers on the same materials that the human
participants read. The computational simulations used the following parsers: the
HUMDEP version (3.0) parser (Boston, 2013) and the TDPARSE parser (Roark,
2013).
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7.2 Method

This section gives details of participants, apparatus, materials and procedure.

Participants This is quoted from the original paper: “Twenty-eight volunteers
participated in this study. All were students or employed at the University of Exeter
and aged between 18 and 38. Six were male and 22 were female. They were
either paid 3 to 6 pounds or granted equivalent course credit for their participation
if they were first year Psychology students. In total, eight of the participants were
paid in cash. The whole experiment normally took up to 30–50 min depending on
the reading speed of different participants.”

Apparatus This is quoted from the original paper: “The apparatus was an Eye-
Link II eye tracker developed by SR Research Ltd., connected to two Dell com-
puters. The eye tracker has a head mounted system with two miniature cameras
mounted on a comfortable padded helmet and an extra camera in the middle of
the helmet to determine the central position of the head. The two eye cameras al-
lowed binocular eye tracking with built-in illuminators in each of them. The screen
was set to the resolution of 800*600 pixels and the top left of the first letter of
each sentence was located at screen coordinate (6, 218). The experimenter’s
computer was equipped with the EyeLink II setup and control programme so that
all the calibration and validation could be controlled through this screen.”

Materials The materials concentrate on the disambiguation of complement am-
biguity. An example of the materials follows below (7.5): the disambiguated ver-
sion includes the comma that appears in parentheses. A correct analysis of the
sentence is given in Figure 7.2 below. A typical misanalysis where the initial
clause is extended too deeply is given in Figure 7.3 below.

(7.5) While the mob watched (,) the juggler who was gifted and nimble
swallowed a silver sword that was very sharp.

The design crossed two factors. These were ambiguity (the sentence either
was or was not disambiguated by a comma immediately following the first verb)
and layout (the disambiguating verb either appeared at the end of the first line or
at the beginning of the second line).
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Under the selective reanalysis hypothesis (Frazier & Rayner, 1987) the manip-
ulation of layout should not have any effect on regressions from disambiguation,
because it is the linguistic properties of the earlier words that attract regressions
under that hypothesis and not their spatial position. Under the assumption that
oculomotor constraints exert effects on sentence processing, it is expected that
regressions will be less attractive as a strategy for the parser if the regressions
involve a move to the line above rather than a move leftwards within the same
line. Under this proposal one would expect that regressions to the line above are
less frequent even for the same linguistic content.

While the mob watched the juggler who was gifted and nimble swallowed

a silver sword that was very sharp.

While the mob watched the juggler who was gifted and nimble

swallowed a silver sword that was very sharp.

While the mob watched, the juggler who was gifted and nimble swallowed

a silver sword that was very sharp.

While the mob watched, the juggler who was gifted and nimble

swallowed a silver sword that was very sharp.

1

While the mob watched the juggler who was gifted and nimble swallowed

a silver sword that was very sharp.

While the mob watched the juggler who was gifted and nimble

swallowed a silver sword that was very sharp.

While the mob watched, the juggler who was gifted and nimble swallowed

a silver sword that was very sharp.

While the mob watched, the juggler who was gifted and nimble

swallowed a silver sword that was very sharp.

1

While the mob watched the juggler who was gifted and nimble swallowed

a silver sword that was very sharp.

While the mob watched the juggler who was gifted and nimble

swallowed a silver sword that was very sharp.

While the mob watched, the juggler who was gifted and nimble swallowed

a silver sword that was very sharp.

While the mob watched, the juggler who was gifted and nimble

swallowed a silver sword that was very sharp.

1

While the mob watched the juggler who was gifted and nimble swallowed

a silver sword that was very sharp.

While the mob watched the juggler who was gifted and nimble

swallowed a silver sword that was very sharp.

While the mob watched, the juggler who was gifted and nimble swallowed

a silver sword that was very sharp.

While the mob watched, the juggler who was gifted and nimble

swallowed a silver sword that was very sharp.

1

Figure 7.1: Illustration of how the spatial layout manipulation was implemented.
The conditions were as follows, in the same order as the illustration: ambiguous,
late line break ; ambiguous, early line break ; pre-disambiguated late line break ;
pre-disambiguated early line break

Figure 7.1 indicates how the materials were broken over lines. The full list
of materials is given in Appendix A. The actual materials used a monospaced
font so the illustration of layout below uses a monospaced font and is faithful to
the relative positions of the words in the materials. The disambiguating word
is underlined. The materials were all NP/Z ambiguities that resolved to the Z
reading. The experimental materials were included with 48 filler sentences that
were not ambiguous and an equal number (24) of foil sentences that were NP/Z
ambiguities that resolved to the NP reading.

Procedure This is quoted from the original paper: “On entering the test cubi-
cle, each participant was asked to put on the eye-tracking helmet. One of the
EyeLink cameras was directed at the participant’s right pupil. At the beginning
of the session approximately 10 min was set aside for tracker calibration. The
experiment proper was started only after calibration and validation was classi-
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S

ADVP NP VP

IN VP NP S' VBD NP

While NP V the juggler WHNP VP swallowed NP S'

the mob watched who VBD ADJP a silver sword that was very sharp.

was gifted and nimble

Figure 7.2: A correct analysis of Example 7.5

S

ADVP NP VP

IN VP ??? VBD

While NP VP swallowed

the mob VBD NP

watched NP S'

the juggler WHNP VP

who VBD ADJP

was gifted and nimble

Figure 7.3: A typical misanalysis of Example 7.5. The attachment of swallowed is
unsuccessful because its syntactic subject is missing - denoted by ???
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fied as being “Good” within the standard EyeLink system. Once this had been
achieved, participants were presented with five practice sentences. In each case
the display was initiated when the participant pressed a button to advance to the
next trial. A further press triggered the display of a question (where this was in-
cluded). Comprehension questions were answered by pressing game controller
buttons marked either “Yes” or “No”. Calibration and validation were freshly ad-
justed between the presentations of successive sentences. A fixation point was
displayed at pixel (10,200) to mark the starting point of the sentence. Participants
were instructed to press the Advance button once they had focused on this dot.
Provided the tracker returned the same coordinates at this point (modulo small
pre-specified tolerances), the dot display was removed and replaced immediately
by the display of the new sentence. In cases where the discrepancy threshold was
exceeded, there followed an automatic recalibration prior to the display of the new
text. Participants were invited to ask questions during the practice session. On its
completion, the experimenter left the test cubicle, allowing the participant to work
their way through the full experimental session.”

7.3 Simulation data

In this section I report the outcome of computational simulations on materials of
which an example is Example 7.5. There were four such simulations: two based
on the HUMDEP parser (Boston, 2013) and two based on the TDPARSE parser
(Roark, 2013). In the subsections below each simulation is described in detail.
The value of each parser’s metric of difficulty is given in Table 7.1. The approach
to comparing eye movement data with the output of surprisal and retrieval parsers
has a parallel in Patil et al. (2009).

Dependency surprisal The parser was given as input an example of an am-
biguous and a disambiguated version of each of the 24 materials. The surprisal
value for the comma was added to the preceding word. Figure 7.4 shows that al-
though the parser was sensitive to differences at the verb at the onset of ambiguity
(word 4 which appeared either without a comma in the ambiguous conditions or
with a comma in the disambiguated conditions), the metric had settled down by
the time of disambiguation and there was no difference between the ambiguous
and disambiguated versions of the sentences at the disambiguating word, word
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Figure 7.4: Computational measures ambiguity effect across a whole sentence,
with a vertical line indicating the disambiguating word
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12. In order to test this formally, an LMER model was constructed for dependency
surprisal at the disambiguating word 12, with the output metric dependency sur-
prisal as the dependent variable and the following independent variables: word
length, word frequency, ambiguity, line position and the interaction between line
position and ambiguity1; and terms for the random effects of participant and item,
as well as terms for the main effects of ambiguity and line position and their inter-
action at each level of item2. The interaction effect over items had to be dropped
to achieve model convergence but a term for item was retained. There was very
little variation in dependency surprisal at the disambiguating word. Such variance
as there was is accounted for by the parser’s sensitivity to grammatical number
in items earlier in the sequence than disambiguation3. This yielded a spurious
significance for variation at the disambiguating word in word length, with longer
words leading to more surprisal (β < .01, SE < .01, t = 3.6) and word frequency,
with more frequent words leading to more surprisal (β < .01, SE < .01, t = 5.9),
but there was no variance left over to be explained by ambiguity and line position,
all of whose t values were 0.0.

Dependency retrieval Figure 7.4 shows that this measure was again sensitive
to the presence of the disambiguating comma for values of words immediately
following the comma (words 3 and 4) but that the difference had evened out by the
disambiguating word 12. The formal model that tested this apparent insensitivity
at the disambiguating word showed that there was no sign of a difference. The
interaction effect over items had to be dropped to achieve model convergence
but a term for item was retained. The model indicated a spuriously significant
coefficient for word length (β < −.01, SE < .01, t = −9.5) with no variation
accounted for by frequency (t = .3) or ambiguity and line position or the ambiguity
x line position interaction (all of whose t values were 0.0).

Phrase structure surprisal Figure 7.4 shows that this measure was also sen-
sitive to differences at the comma. The differences at the disambiguating word
are very small but the formal test revealed that the small differences at the dis-

1The term for line position is included in the model to facilitate comparison with the human
data which are described later in the chapter.

2These models did not include random effects for subject because surprisal only varied over
items.

3The grammatical number of the first noun in the sequence at word 3 was sometimes singular
and sometimes plural - a distinction to which the parser is sensitive.
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Table 7.1: Computational measures at the disambiguating worda

ambiguity line break DSURP DTIME TSURP ER

ambiguous early 2.51 219.86 13.45 1.67
ambiguous late 2.51 219.86 13.45 1.66
disambiguated early 2.51 219.86 13.17 0.85
disambiguated late 2.51 219.86 13.17 0.85
a Please see page 14 for the abbreviations used in the table

ambiguating word were significant. This marks a departure from the pattern
for the dependency based measures discussed immediately above where there
were no differences at all at the disambiguating word. The interaction effect
over items had to be dropped to achieve model convergence but a term for item
was retained. Effects of word length and word frequency were non-significant:
(β = .10, SE = .62, t = .17 and β = −.20, SE = .31, t = −.64 respectively). There
was a significant effect of ambiguity with ambiguous sentences attracting more
surprisal than disambiguated controls (β = .29, SE = .07, t = 4.539). The effect of
line position was not significant and nor was the ambiguity x line position interac-
tion: (β < .01, SE = .06, t = −.06 and β < .01, SE = .07, t = −.11 respectively).

Phrase structure entropy reduction Figure 7.4 shows that there were again
differences near to the comma for this metric. However, for this metric differ-
ences persist throughout the sentence. The plot suggests that there was a big
difference at the disambiguating word for this measure. The formal test sup-
ports this impression. The interaction effect over items had to be dropped to
achieve model convergence but a term for item was retained. Effects of word
length and word frequency were non-significant: (β = .09, SE = .24, t = .38

and β = .14, SE = .11, t = 1.21 respectively). There was a significant effect
of ambiguity with ambiguous sentences attracting more entropy reduction than
disambiguated controls (β = .81, SE = .02, t = 46.21). The effect of line po-
sition was not significant and nor was the ambiguity x line position interaction:
(β < .01, SE = .02, t = −.15 and β < .01, SE = .02, t = .05 respectively).
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Table 7.2: Human measures at the disambiguating worda

ambiguity line break FFD FPRT RPD TSR PREG

ambiguous early 216 369 463 94 0.07
ambiguous late 278 347 657 311 0.30
disambiguated early 227 344 415 71 0.05
disambiguated late 231 292 435 143 0.19
a Please see page 14 for the abbreviations used in the table

7.4 Eyetracking data

In this section I submit the data from Experiment One of Mitchell et al. (2008) to
scan path analysis. I show that layout affects scan path patterns when spatial and
temporal properties of the regressive scan paths are taken into account. This rep-
resents additional information over the analyses presented in that paper because
the original analyses were only able to deal with spatial properties of the regres-
sive scan paths (using regression signatures), or temporal properties (e.g. using
regression path duration) separately. I also report new analyses of the standard
eye movement analyses from the data from the original experiment. These anal-
yses differ from those presented in the original paper because here I use mixed
effects models to simultaneously account for effects of participant and item in a
single analysis whereas in the original paper traditional separate by-participants
and by-items analyses were reported. Furthermore, because the single mixed
model approach is robust with respect to missing data, some of the limitations
of those original analyses are overcome. For example in the original analyses
data had to be discarded from participants if they did not contribute data to one
of the conditions – here I can take advantage of the data that they did contribute
without violating the assumptions of the statistical test. In this section I give the
results of the new analyses (not just reporting the original results). Mean times
and probabilities are given in Table 7.2.

The results from human behavioural measures are given first, followed by the
results of model evaluation against these results. The behavioural measures are:
first fixation duration; first pass reading time; regression path duration; time spent
regressing; probability of regression; scan path analysis; distribution of scan path
behaviours at disambiguation; distribution of regression strategies at disambig-
uation. The computational parsers give their account of processing difficulty in
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the following measures: surprisal from a dependency grammar parser; retrieval
time from a dependency grammar parser; surprisal from a phrase structure gram-
mar parser; entropy reduction from a phrase structure grammar parser.

For each experimental sentence I examined fixation time on the disambig-
uating word. If a fixation was less than 80 ms and located within 1 degree of
visual angle of another fixation, it was merged into (added to) that fixation. If
there were two such neighbouring fixations, the short fixation was merged into
the larger of the two neighbours. If there were no such neighbouring fixations, the
short fixation was deleted. In another pass over the data, any remaining fixations
that were less than 80 ms or greater than 800 ms were deleted.

The data analyst must decide how to treat a value of 0 for reading time data.
This value is yielded when the critical word is skipped. I take the view that zero
values for reading time measures are properly transformed into missing values
denoted NA in R. However, since words are frequently skipped, the transforma-
tion of zeroes into missing values yields a data set where some combinations of
subject and item contain only missing values. In some cases this can cause the
maximal model to fail to converge properly because slopes are computed at each
level of the interaction between ambiguity and line break separately over each
participant and separately over each item. All such cases are noted in the text,
and I state how the model was adapted to cope (either by leaving the zeros in
the data, or by relaxing the model specification). As it turns out, the probability
of skipping a word was approximately equal across the linguistic manipulations,
with the consequence that leaving the zeros in the data rarely affected the direc-
tion or significance of any of the results reported below. Nevertheless the reader
may have confidence that unless otherwise stated, each model is maximal, and
skipped words are treated as yielding missing values for reading time measures.

Four fixation based measures and one non-time based measure were com-
puted, including standard measures described in Rayner (1998) and Rayner (2009).

For each of the five measures a multilevel linear model was fitted, with terms
for the low level covariate word properties word length and word frequency, which
were both centred; fixed effects for ambiguity and line break and their interaction;
and random intercepts for participant and item; as well as random slopes for the
fixed main effects and interaction effect at each level of participant and item. Such
a model may be described as a maximal model (Barr et al., 2013).
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The mathematical designation of such a model is

y = β0 + β1 + β2 + β3x1 + . . .+ βixi + b3x1 + . . .+ bjxj+ ∈ (7.6)

where β is a fixed effect and b is a random effect and ∈ is the error. The R syntax
for such a model is: measure ∼ length + frequency + effect + (effect|subj)

+ (effect|item) where effect is a contrast matrix that specifies the main effects
and their interaction.

First fixation duration The model of FFD showed no effect of word length (β =

4.5, SE = 5.2, t = .86); no effect of frequency (β = −2.9, SE = 2.5, t = −1.73); no
main effect of ambiguity (β = 10.2, SE = 6.4, t = 1.6); and no main effect of layout
(β = −20.1, SE = 12.5, t = −1.6); but a significant ambiguity x layout interaction
(β = −15.7, SE = 7.7, t = −2.0).

First pass reading time The model of FPRT showed no effect of word length
(β = −13.2, SE = 15.7, t = −.84); no effect of frequency (β = 4.2, SE = 7.7,
t = .55); and no main effect of layout (β = 15.4, SE = 15.8, t = .98). There was
a significant main effect of ambiguity (β = 20.1, SE = 10.3, t = 1.96); but no
ambiguity x layout interaction (β = −9, SE = 9.2, t = −1.0).

Regression path duration The model of RPD showed only a main effect of
ambiguity (β = 65.4, SE = 27.9, t = 2.3). The other effects were not significant:
word length (β = −25.3, SE = 40.4, t = −.6); frequency (β = −9.3, SE = 19.8,
t = −.47); layout (β = −49.0, SE = 31.7, t = −1.55); ambiguity x layout (β =

−44.3, SE = 28.3, t = −1.57).

Time spent regressing The model of TSR showed only a significant main effect
of layout (β = −64.1, SE = 29.3, t = −2.184). Other effects were not significant:
word length (β = 4.38, SE = 33.9, t = .13); word frequency (β = −19.55, SE =

16.7, t = −1.17); ambiguity (β = 43.6, SE = 27.6, t = 1.57); ambiguity x layout
(β = 35.4, SE = 29.3, t = −1.21).

Probability of a regression The model of PREG converged only after dropping
the interaction term over items. Only the main effect of layout was significant
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(β = −6.5, SE = 1.33, z = −4.882, p < .001). Other effects were not significant:
word length (β = −.49, SE = .4, z = −1.2); word frequency (β = −.29, SE = .19,
z = −1.48); ambiguity (β = 1.48, SE = 1.0, z = 1.4): ambiguity x layout (β = .21,
SE = .98, z = .22).

Scan path analysis In this section I present analyses of the spatio-temporal
dynamics of scan paths that were launched from the disambiguating word and
that ended just before a fixation in new material. When one considers behaviour
at the disambiguating word, one can categorise this behaviour into several types.
These are: (1) skip: the word was skipped on the first pass; (2) progress: the
word received a single first pass fixation that was followed (immediately and with-
out any intervening fixations) by a fixation in new material to the right; (3) RE-
FIXATE: the word received a first pass fixation and was then refixated, possibly
more than once, before taking in new material to the right; (4) REGRESS: the
word received one or more fixations that were followed not by a movement to the
right to take in new material, but by a movement to the left to take in material
already passed through, regardless whether those words fixated to the left had
been fixated or not on the first pass. This classification is complete and without
redundancy, in the sense that it results in every trial receiving exactly one value.
First the distribution of these behaviours over the treatment conditions is consid-
ered. This permits answers to questions like “Were people more likely to skip
the word in some condition?”; “Did some condition have a tendency to result in
simple progress behaviour?” Next I will concentrate on the regress cases and fur-
ther subdivide them into various types of regression. This will allow questions like
“Did the ambiguous theft conditions make people more likely to re-examine the
words intervening between disambiguation and the upstream onset of syntactic
ambiguity, as opposed to making a direct movement from disambiguation to up-
stream ambiguity onset?” First I consider the distribution of coarse behaviours at
disambiguation, plotted in Figure 7.5. The regress behaviour appears to be over
represented in the ambiguous late line break condition.

Next the regress cases were separated off for further analysis.

The analysis starts by computing for each regression scan path its pairwise
dissimilarity from all other scan paths. This involves making several choices
about parameters which are detailed here. I chose the formula fixation dura-
tion as a function of word number rather than using the raw x,y coordinates. This
is because the main interest in this analysis is to compare the words visited in
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Figure 7.5: Distribution of coarse behaviours at disambiguation

each condition, rather than the abstract spatio-temporal pattern of the movements
themselves. I set the modulator to zero in order to bypass the machinery for tak-
ing into account foveal eccentricity. This is because when the participants’ heads
are free to move, as in a head mounted eyetracker, it is not possible to get a rea-
sonable estimate of viewing distance for each trial, and so the modulator would in
effect be being applied inconsistently is it was used. I normalized the raw scasim
values by fixations to avoid arbitrary effects of number of fixations in a scan path
(the alternative is to normalize by durations).

The first run of scasim is done to check for outliers: none were observed using
a 2.5. sd threshold. This leaves a corpus of 87 regressions for more detailed
analysis.

Fig 7.6 plots stress against number of dimensions and number of clusters.
This plot is used to choose a dimensionality for the scaled-down data. I chose 6
dimensions as a reasonable compromise between aiming for a low stress (good
fit) without allowing too many clusters (5 in this case) in the solution.

The WHICH.MEAN function in the SCANPATH package allows identification of
a single scan path that lies nearest the centroid of a given cluster. Applying this
method yielded the scan paths plotted in Fig 7.7. Pattern D is the only one that
takes in the onset of ambiguity - it goes back as far as the head of the misattached
noun phrase. There were 34 such regressions1. I constructed a LMER model of
this cluster by recording for each trial whether it resulted in a cluster D type scan
path, and then asking whether a trial’s membership of this cluster was significantly
predicted by ambiguity and layout, taking proper account of the contributions of

1Because there were so few regressions, it is possible that this might have led to problems
with R’s backing off algorithms where proportions approach zero.
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Figure 7.6: Choosing a dimensionality, experiment one
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Figure 7.7: Regression shapes for Experiment 1

individual subjects and items. The term for the interaction of ambiguity and layout
over each level of item had to be dropped so that the model converged. This
left a model that had terms for ambiguity and layout and the ambiguity x layout
interaction, as well as separate terms for the random effects of subject and item,
and for the ambiguity and line break main effects over subjects, and the ambiguity
x line break main effects and interaction over each level of item. The R syntax for
the model was:

(7.7) lmer(data=mydata, isD ∼ ambiguity*line break + (ambiguity*line

break|subject) + (ambiguity+line break|item), family

="binomial")

The result of the model indicated that the cluster D regressions were more
likely to be made in the late line break condition (probability of coming from
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early conditions = .02; probability of coming from late conditions = .08, β =

−1.16, SE = .45, z = −2.6, p < .05). The ambiguity main effect was non-significant
(β = .41, SE = .45, z = .9, p = .34) as was the ambiguity x line break interaction
(β = −.57, SE = .43, z = −1.4, p = .17).

7.5 Discussion

The new analyses of the Mitchell et al. (2008) data reveal that the spatiotemporal
properties of regressions launched from disambiguation vary as a function of how
the materials are arranged on screen. This means that regressions can only be
at best partly guided by purely linguistic factors.

The data also show that people seek out material that is relevant for repair
purposes – that is to say that there were enough regressions of the D type to
form a distinct cluster. In this case people either regressed one or two words
(which is a pattern that is compatible with time-out), or, in a distinct cluster (D),
sought out the word juggler which is the head of the misattached noun phrase
and the unit that must be moved away from being the object of the subordinate
clause to the head of the matrix clause in a repair operation.

The results of the simulations with computational parsers show that only the
phrase structure parsers were sensitive to differential difficulty at the disambig-
uating word. The dependency grammar parsers were sensitive to differences at
the onset of ambiguity but these differences did not persist into the disambiguating
word, at which the same difficulty was predicted regardless of whether ambigu-
ity persisted up to the disambiguating word. An explanation for the dependency
parser’s lack of coverage here could be due to differences in how a dependency
parser and a phrase structure parser handle punctuation. Punctuation is consid-
ered as a terminal in its own right in the dependency grammar, and dependency
arcs are assigned to the relations between the punctuation terminals and the
lexical terminals. The phrase structure parser also treats the punctuation as a
terminal in its own right, but makes much more out of the information provided by
the punctuation. Since the phrase structure parser explicitly assigns hierarchical
structure to the input where the dependency parser does not, it is better placed
than the dependency grammar parser to benefit from the clause boundary infor-
mation that is inherent in the punctuation but speaks to a level higher than the
terminal level.
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In summary, at disambiguation, people either made time-out consistent small
regressions, or they made regressions that are compatible with a repair based
explanation that requires the parser to have kept track of points at which more
than one analysis was available such that they can be sought out for repair. The
data favour a repair based account of disambiguation as well as a parser that
operates over a phrase structural grammar.

Did the LMER and SCASIM analyses shed any additional light on the data
over and above that shed by the original ANOVA and Regression Signature re-
sults from Mitchell et al. (2008)? I will take LMER and ANOVA first, for the stan-
dard eye movement measures at the disambiguating word, and then compare
scan path similarity with the regression signature analysis.

The original ANOVA analyses detected the following effects at the disambig-
uating word (where an effect is required to reach significance on both by-participant
(F1) analysis and by-item (F2) analysis): ambiguity main effects in RPD, PREG
and TRT; and a layout effect in PREG. LMER found the most important of these
effects too: ambiguity main effects in RPD and TRT1, and the layout main effect
in PREG. LMER missed the ambiguity main effect in PREG, and also the layout
effect in TRT. LMER found an ambiguity x layout interaction in FFD that ANOVA
missed, but this seems unlikely to play a theoretically relevant role in interpreta-
tion. LMER found an ambiguity main effect in FPRT that ANOVA missed.

For the standard measures then, the original ANOVAs and the new LMERs
tell more or less the same story which can be summarised thus: (1) people were
more likely to regress from disambiguation on the same line than from disambig-
uation on the line below and (2) people spent longer regressing from disambig-
uation on the same line than from the line below in the ambiguous conditions.

However, SCASIM analysis outperformed the original Regression Signature
analyses, as follows. SCASIM revealed a cluster of regressions back to the lin-
guistically relevant head of the ambiguously attached NP that was over distributed
in the late line break conditions. This indicates that people were able to make lin-
guistically targeted regressions better when disambiguation was on the same line
versus the line below. The original Regression Signature analyses were not di-
rectly comparable because those analyses had to omit participants and items for
which a regression was not made in one of the four conditions. This meant that

1this measure TRT is not computed for most of the analyses in the thesis but it was computed
for purposes of comparison for this experiment. The results were an ambiguity main effect (β =
87.39, SE = 16.45, t = 5.314), but no layout main effect (β = 22.53, SE = 24.26, t = 0.929)
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it was not possible to carry out orthogonal comparisons with enough data. The
response to this in the Regression Signature analyses was to enlarge the corpus
of regressions to include those from spillover region as well as the disambiguating
word itself, and to restrict the analyses to compare only the ambiguous early and
ambiguous late conditions. The closest that the Regression Signature Analyses
could come to the LMER result was the finding, for all first-landing-site regres-
sions, of a main effect of Landing Site that showed that the distribution over all
words was uneven. More targeted analysis on individual words in ambiguous
and unambiguous conditions failed to show significant differences at any word
except the word before disambiguation. It is the SCASIM analysis that provides
the clearest evidence for targeted repair operations based on the Mitchell et al.
(2008) Experiment One data.

What layout effects say about reading and parsing There is a temptation to
use models of regression-control as though regression-control were sensitive to
linguistic manipulation only. The data show that regression-control is sensitive to
layout. The risk of failing to include layout effects in models of regression-control
when we know that they exert an influence on regressions is that we ascribe an
observed phenomenon to the wrong generative process. This becomes serious
when we use the observable phenomena to distinguish between implemented
accounts of eye movements in reading.

Layout effects matter because the best approach to reading is to study it in
the round. Modelling only the linguistic aspects of reading and not the ocular
and motor aspects of reading must lead to models that underfit the data – they
underestimate the complexity of the data. Adding layout markers to a model
of regression control would increase the fit of statistical models of reading scan
paths generators, giving a clearer view of the effects of linguistic manipulations,
making the statistical more suitable for adjudicating between competing theories.

Perhaps the most promising of the currently implemented models of eye move-
ment control in reading from this point of view is EMMA . This is because it offers
an easy way to build visual properties in to the model of the cognitive process.
Adding the capability to represent the visual layout of the text would be a promis-
ing way to develop EMMA.

The contrast between the performance of the dependency parser on corpus
data and its performance on disambiguating words illuminates a possibility for a
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dual-mode model of parsing, alluded to in Mitchell et al. (2008). A dual-mode
model of parsing could adopt dependency parsing for first pass analysis, and
switch modes to phrase structure parsing when dependency parsing fails to pro-
duce the correct analysis. This would explain both the co-presence of effects of
linguistic manipulations and of layout manipulations in the present experiment;
and the disparity between the performance of the dependency parser on non-
disambiguating and disambiguating word.
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Chapter 8

E2: Spatial layout affects
disambiguation scan paths

This chapter describes a new experiment that manipulates the layout of materials
on screen. I show that layout exerts an effect on the spatiotemporal properties of
regressive scan paths. I argue that these effects are covered poorly by the com-
putational parsers. The human reading time measures did not generally reveal
effects of layout, but the likelihood of making a regression, and the shape of the
regressive scan paths that were made did reveal effects of layout. These layout
effects were not predicted by either of the computational parsers, but the phrase
structure parser was sensitive to the manipulation of ambiguity. It is argued that
the results support repair models of parsing implemented over a phrase structure
grammar.

8.1 Introduction

In the Mitchell et al. (2008) paper, the manipulation of line break resulted in dis-
ambiguation at the start of a line (this was compared against the same material
with a line break that presented the disambiguating word at the end of the pre-
ceding line). As a consequence of the line-initial position of the disambiguation in
that condition, we could not be sure whether the disinclination to regress that we
observed in that condition was due to line-initial placement rather than to merely
different placement. A plausible reason for the observed disinclination was that
there was no material to regress to within-line, with the consequence that any
regression that was made would have to cross the line-boundary between launch
and target. People might have been more willing to regress in this condition if we
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had provided some within-line material (perhaps by padding the line). This could
have increased regression rates in the control condition, and that would have di-
minished the observed effects in Mitchell et al. (2008), possibly even to the point
of nullifying the effects. In short the findings of Mitchell et al. (2008) are subject
to doubt because there was no same-line material to serve as an attractive target
of regressions.

The present experiment seeks to remedy the deficiency in the Mitchell et al.
(2008) materials by offering a case where there is some within-line material to
regress into, but using the same linguistic materials as the Mitchell et al. (2008)
experiment to facilitate comparison. In the present experiment I show that like-
lihood of regression is significantly modulated by the line position of the word
from which the regression is potentially launched when linguistic content is held
constant and when same-line material is offered. This is interpreted as evidence
that control of regressive eye movements is shared between controllers from the
linguistic system and from the oculomotor system, and evidence against a strong
selective reanalysis linguistic-guidance-only account, as well as against a strong
decoupled-linguistic-system account.

I crossed the factor line break with the ambiguity factor to bring about two am-
biguous conditions with the disambiguating word in different places and two base-
line conditions that pre-disambiguated the sentences with a clause boundary-
marking comma. In each ambiguous case the linguistic sequence was held con-
stant so that participants were dealing with the same parsing problem.

Under the assumption that eye movements in regressions are subject only
to linguistic governance - a strong form of selective reanalysis - no effect of line
break is expected because the layout of the text should exert no influence. Under
the assumption that eye movements in regressions are a random walk - a strong
version of the time-out hypothesis - no effect of line break is expected because the
layout of the text should not exert a patterned effect. Under the assumption that
control of eye movements in regressions is a constraint-based system of control
that takes influences from the linguistic system and the oculomotor system, the
hypothesis is that there should be main effects of ambiguity (linguistic constraint)
and line break (oculomotor constraint), and that they should interact, in the later
measures of parsing.

In these materials the layout is manipulated. Example 8.1 shows one of the
sentences used - the materials from Experiment 1 were used again.
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8.2: Method

(8.1) While the mob watched (,) the juggler who was gifted and nimble
swallowed a silver sword that was very sharp.

Figure 8.1 shows the materials as they were laid out in the experiment, with
true line breaks and a monospaced font like the one used in the experiment to
preserve the relative positions of the words on screen. The disambiguating word
is underlined here. In the figure, the top sentence shows the ambiguous, early
line break condition; below that is the ambiguous late line break condition; below
that is each of the disambiguated controls. The full list of materials is given in
Appendix A.
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Figure 8.1: Illustration of how the spatial layout manipulation was implemented in
experiment 2. The conditions were as follows, in the same order as the illustration:
ambiguous, late line break ; ambiguous, early line break ; pre-disambiguated late
line break ; pre-disambiguated early line break

8.2 Method

The method section gives details of participants, apparatus, and procedure.

Participants In total 21 participants were tested. Of these, 16 were retained
and entered into analysis. 2 were compromised by a programming error, leaving
19. Of these, 3 were discarded so that balance could be maintained with respect
to the Latin square design. Participants were native speakers of British English
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who were students of Psychology at the University of Exeter, were given partial
course credit to participate in the experiment. All had normal or corrected to nor-
mal vision, were naive to the purpose of the experiment, and were aged between
eighteen and thirty-four.

Apparatus An SR Research Eyelink II head-mounted eyetracker was used to
record participants’ eye movements with a sampling rate of 500 Hz. Participants
read sentences displayed on a 19- inch Iiyama Vision Master Pro video monitor
at 1024 x 768 resolution at a refresh rate of 60 Hz. Viewing was binocular but
only the right eye was recorded. Participants sat in a dimly lit room in front of
the computer at a viewing distance of approximately 75 cm. The average view-
ing distance was approximately 75 cm. At this viewing distance, and assuming
that 1 character had 2 mm width on screen, a single character subtended 0.153°
of visual angle, and approximately 6.5 characters subtended 1° of visual angle.
The font used was Courier New 12 point. All sentences in this experiment were
displayed on a single line with a maximum length of 100 characters. A 9 point
calibration procedure was used, on which participants were required to achieve
a score of ‘good’. Each trial started with a drift correction routine where the par-
ticipant was required to fixate a target that appeared in the same location as the
first character of the sentence would subsequently occupy, and then required to
press a button on the gamepad while fixating this point to start the trial.

Procedure Participants were instructed to read silently for comprehension at a
comfortable speed. The practice trials and experimental trials were implemented
as separate consecutive blocks. The experimental trials were randomised each
time the experiment was run, i.e., in a different order for each participant, with the
constraint that a maximum of two trials of a given type could appear in a continu-
ous sequence. There were four practice sentences, followed by a drift correction
routine preceding the experimental block containing 96 sentences, comprising
24 in experimental conditions (6 in each of 4 conditions); 24 foils and 48 fillers.
Participants were rotated over one of four lists, implementing a Latin square de-
sign. 32 of the trials (including 8 of the experimental conditions) were followed
immediately by a comprehension question. This was a simple question about the
sentence immediately preceding that required the participant to make a yes or
no response using the appropriate trigger button on the gamepad. The full list of
questions asked may be found in the Appendix. The whole procedure took about

140



8.3: Simulation data

Table 8.1: Computational measures at the disambiguating worda

ambiguity line break DSURP DTIME TSURP ER

ambiguous early 2.51 219.86 13.45 1.67
ambiguous late 2.51 219.86 13.45 1.66
disambiguated early 2.51 219.86 13.17 0.85
disambiguated late 2.51 219.86 13.17 0.85
a Please see page 14 for the abbreviations used in the table

20 to 40 minutes, depending on the participant.

8.3 Simulation data

Because the computational parsers used in the thesis have no way to represent
the spatial arrangement of text, the results from the computational simulations are
the same as reported in the previous chapter in section 7.3 on page 123. In this
section I summarise those simulation results for convenience. Table 8.1 shows
the mean values per condition.

Dependency surprisal There were no differences at disambiguation.

Dependency retrieval There were no differences at disambiguation.

Phrase structure surprisal There was a significant effect of ambiguity in line
with the human data.

Phrase structure entropy reduction There was a significant effect of ambigu-
ity in line with the human data.
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Table 8.2: Human measures at the disambiguating worda

ambiguity line break FFD FPRT RPD TSR PREG

ambiguous early 290 343 791 448 0.41
ambiguous late 288 341 575 234 0.26
comma early 276 300 442 142 0.22
comma late 264 280 446 167 0.16
a Please see page 14 for the abbreviations used in the table

8.4 Eyetracking data

In this section I give the results from the standard eye movement measures at the
disambiguating word, and for spatio-temporal analysis of scan paths. For each
standard eye movement measure a LMER model was fitted with the following
model specification: fixed effects for centred word frequency and centred word
length; fixed effects for line break position and ambiguity and their interaction;
and random effects for the main effects and interaction at each level of subject
and item, i.e., a maximal model. The results are given in Table 8.2.

First fixation duration There were no significant effects in first fixation duration.
The effect of word length was non-significant (β = 9.21, SE = 9.23, t = .99); the
effect of frequency was non-significant (β = 1.63, SE = 4.53, t = .36). The main
effect of ambiguity was non-significant (β = 19.14, SE = 13.51, t = 1.42). The
main effect of line break was non-significant (β = 6.43, SE = 14.20, t = 0.45)

as was the ambiguity x line break interaction effect (β = −3.00, SE = 12.49, t =

−0.24).

First pass reading time Effects of word length and word frequency were non-
significant (β = 13.29, SE = 15.69, t = .85); (β = −3.85, SE = 7.68, t = −.50).
There was a significant main effect of ambiguity. Ambiguous conditions resulted
in more first pass reading time (β = 48.73, SE = 24.97, t = 1.95). The effect of
line break was non-significant (β = 11.33, SE = 26.67, t = −0.43). The ambiguity
x line break interaction effect was not significant (β = −12.28, SE = 23.21, t =

−0.53).
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Regression path duration Regression path duration did not yield significant
effects. Effects of word length and word frequency were non-significant: (β =

1.28, SE = 54.38, t = .02); (β = −14.73, SE = 26.63, t = −.55). There was a slight
non-significant tendency for the ambiguous conditions to produce more RPD and
a non-significant tendency for there to be more RPD for ambiguous early line
break than for ambiguous late line break (β = −239.63, SE = 131.72, t = 1.82).
The effect of line break was not significant (β = 116.33, SE = 91.32, t = 1.28).
The ambiguity x line break interaction effect was not significant (β = 115.92, SE =

79.86, t = 1.45).

Time spent regressing No effects were significant in time spent regressing.
Effects of word length and word frequency were non-significant (β = −14.33,
SE = 56.82, t = −.25; β = −4.219, SE = 27.88, t = −.15). The main effect
of ambiguity was a trend towards increased time in the ambiguous conditions
(β = 188.88, SE = 126.76, t = 1.49). The main effect of line break was a ten-
dency toward increased time in the early line break condition (β = 107.91, SE =

126.76, t = 1.29). There was a non-significant interaction effect, with the ambiguity
disadvantage greater in the early line break conditions than in the late line break
positions (β = 126.67, SE = 74.68, t = 1.70).

Probability of a regression Effects of word length and word frequency were
non-significant: (β = −.19, SE = .26, z = −.72, p = .47); (β = −.04, SE =

.13, z = −.31, p = .76). There was a significant main effect of ambiguity (β =

1.37, SE = 0.55, z = 2.50, p < .05) and a significant main effect of line position
(β = 1.32, SE = 0.44, z = 2.99, p < .01) but no interaction effect (β = −0.03, SE =

0.38, z = −0.70, p = 0.95).

Scan path analysis Here I give an overview of behaviours at disambiguation
arranged by type: progress; refixate; regress; and skip.

First the data were restricted to movements launched from the disambiguating
word. Trials on which readers skipped the disambiguation were removed from the
analysis. This left 3 types of movement: simple progression where readers fix-
ated the disambiguation once and then moved to take in later post-disambiguation
material; refixation followed by progression, where readers fixated the disambig-
uation and then refixated it some number of times before moving to take in new
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Figure 8.2: How coarse eye movement behaviours launched from disambiguation
were distributed over conditions

post-disambiguation material; and regression, where people fixated the disambig-
uation (possibly including refixations) and then launched regressive movements
into earlier pre-disambiguation material. Cases of simple progression were re-
moved from the analysis on the grounds that simple progression provides no
evidence of difficulty.

This left two classes of behaviour that were considered to indicate problems
with disambiguation: refixation and regression. There were 110 trials on which
these classes of behaviour were observed. 81 of these were regressions and 29
were refixations.

Scan path similarity was computed between each pair of scan paths in the
set. For each scan path this yielded a vector of that scan path’s dissimilarity from
every other scan path. No outliers were identified using a 2.5 sd threshold.

Multi-dimensional scaling was employed to yield a lower-dimensional repre-
sentation of dissimilarity space that was still faithful to the original larger space.
The lower dimensional representations were computed for each of 2 to 10 dimen-
sions. For each of these 9 dimensionalities, lower-d maps were constructed. For
each of the lower-d maps, a measure of faithfulness to the original space were
obtained. This measure is denoted stress in the function ISOMDS. Each lower-d
map was analysed to derive the optimal number of clusters at that dimensionality,
using the function MCLUST that carries out cluster analysis and returns the opti-
mal number of clusters in the data for a given lower-d space, using a Bayesian
Information Criterion (BIC) to select a clustering. Using this criterion penalises
adding to the number of clusters which prevents over-fitting the data: without this
penalty the best fit would be obtained by having one cluster per scan path.
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Figure 8.3: How a 7 dimension map was selected.

This offered a way to select a dimensionality with respect to the stress of the
map at that dimensionality (stress values between 10 and 5 are considered to
be reasonably faithful to the original space), and also with respect to the number
of clusters in the lower-d space (all other things being equal one would prefer
fewer clusters in the space). See Figure 8.3 for an illustration of the method for
choosing a dimensionality. A map was selected that had 7 dimensions. At this
dimensionality stress was reduced to nearly 5, and there was a reasonably small
number of clusters (6 clusters) in the best clustering of that space.

Having identified a lower-d space to work in that was still faithful enough
to the original space and which contained a reasonably small number of clus-
ters, the clusters in the space became the focus of analysis. For each cluster,
the scan path nearest the centre of the cluster was identified using the function
WHICH.MEAN. Usually there is no scan path at the exact centre of the cluster,
which is why the scan path nearest the centre is used to represent the central
tendency of the data.

Figure 8.4 shows the shape of the scan path that sat nearest the centre of
each of the 6 clusters identified in the best clustering of the data. Cluster A rep-
resented the trials on which participants refixated the disambiguation and then
progressed. Clusters C, D, and E represented trials on which participants made
small regressions of one or two words and then progressed to new material.
These clusters differed according to how long the fixations were and whether
the disambiguation was refixated before moving on. Cluster F represented a re-
gression to the first noun phrase of the ambiguous region - there were only 3
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Figure 8.4: Regression strategy scan paths. Plot shows the shape of the scan
path that represents the central tendency of each of the identified clusters

such regressions in the set. Cluster B represented a regression that moved back
to fixate the first verb in the sentence, which participated in the ambiguity: it was
the verb with the ambiguous subcategorisation frame, e.g. watched.

The cluster B regressions were indicative of selective reanalysis in that they
mostly targeted the verb at the onset of ambiguity, and thus were selective, but
which were made in materials where the onset of ambiguity was not also launch-
adjacent, which could have been explained by time-out. This disambiguation
strategy accounted for 46% of the 110 movements launched from disambiguation
that were not simple progression cases. The fact that these movements targeted
a non launch adjacent part of the sentence that instigated the syntactic ambiguity
in the sentences supports the view that people made these movements in or-
der to provide the linguistic system with disambiguation-relevant information like
whether the verb licensed an alternative subcategorisation which might have re-
quired another lexicon look-up.

Having identified these regressions as theory-relevant, they were analysed in
more detail. Specifically, a data set was constructed for the 110 trials on which
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Table 8.3: Distribution of strategy B

not-B B

ambiguous end of line 15 23
ambiguous middle of line 19 13
comma end of line 14 9
comma middle of line 11 6

non-progression was observed that linked the cluster to which that trial ended up
being assigned to the subject, item, and experimental condition for that trial. This
made it possible to ask whether the experimental conditions predicted the B-type
regressions while also accounting for the subject and item that produced an indi-
vidual data point. Remaining sensitive to the subject and item that were involved
on the trial prevents the model being misled by any possible over-dispersion over
subjects or items. In other words a multilevel model should prevent the analyst be-
ing misled by a situation in which particular readers or sentences account for the
prevalence of a given behaviour, such that the analyst does not wrongly attribute
that variance to the treatment conditions.

Table 8.3 shows that the B type regressions were most common in the am-
biguous end-of-line condition, as would be expected on a selective reanalysis
account but not on a time-out account. However, the multilevel model gives rea-
son to reserve judgement about this pattern since it does not significantly attribute
the variance in these simple counts to the treatment conditions.

The multilevel model had the following structure. If a trial was assigned to the
B cluster, this was coded as 1, with the alternative coded 0, yielding a binomi-
ally distributed dependent variable. This dependent variable was modelled as a
function of ambiguity and line position and the ambiguity x line position interaction
treated as fixed effects, as well as random effects representing subject and item,
and the main effects modelled at each level of subject and item. Terms represent-
ing the interaction effect over subjects and items were dropped after the maximal
model failed to converge. The resulting model indicated that the main effects and
interaction did not significantly predict a B-type regression once subject and item-
level variance was taken into account (effect of ambiguity: β = .35, SE = .41, z =

.87, p = .39; effect of line position: β = .63, SE = .37, z = 1.72, p = .09; interaction
effect: β = .32, SE = .31, z = 1.05, p = .30).
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So far the scan path analysis has included measures from the disambiguated
conditions. When analysing reading times this is appropriate because the dis-
ambiguated conditions are predicted to cause some reading time that acts as
a baseline for the ambiguous conditions. This logic does not hold so well in
scan path analysis after progressive fixations are excluded. This is because un-
problematic words (like the critical word in a pre-disambiguated condition) are
expected to yield progressive fixations. Any regressive scan paths made in these
conditions must reflect non-disambiguation events. Therefore a further model
was constructed that restricted the data to the ambiguous conditions and asked
whether there was variance in the scan path outcomes of the ambiguous cases
as a result of line position.

This model included terms for line position, and for the effect of line position at
each level of subject and item. The model showed that the effect of line position
exerts a significant influence on the shape of the regressive scan paths that are
made from the disambiguating word when per-subject and per-item influences
are also taken into account. The effect of line position was significant: regressive
scan paths that sought out the onset of ambiguity were more likely to be made
from the end of the line than from the middle of the line: (β = .85, SE = .34, z =

2.4, p = .01).

8.5 Discussion

In this discussion section I cover reading time measures, regression behaviour,
and scan path measures.

Reading time measures Early reading time measures showed an ambiguity
disadvantage (in FPRT). This was predicted by the phrase structure parser in
both the surprisal and entropy reduction measures. The dependency parser did
not predict this effect, or even its direction, either in the retrieval time measure or
in the surprisal measure.

Effects of ambiguity and line position were not significant in the late reading
time measures (RPD and TSR). However there were trends towards longer times
for ambiguous conditions and longer times for disambiguation at the end of a line
than in the middle. These trends were present in the phrase structure parser but
not in the dependency parser.
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Regression behaviour: probabilistic aspect There was evidence in the PREG
measure that people deployed regressions differently according to whether the
sentence was ambiguous. people were more likely to deploy a regression when
the sentence was ambiguous. Surprisal computed over a phrase structure gram-
mar does predict more difficulty in the ambiguous cases, although it does not
follow from high surprisal values that a regression is predicted. Nevertheless the
existing surprisal mechanism could be augmented fairly straightforwardly with a
module that deploys a regression if the surprisal measure reaches a threshold.
Surprisal computed over a dependency grammar was insensitive to the ambiguity
effect.

There was evidence from PREG that people were more likely to deploy a
regression from disambiguation at the end of a line than they were from dis-
ambiguation in the middle of the line. Both the dependency and phrase structure
computational parsers were unable to represent this difference. Furthermore in
the case of line position effects neither parser is equipped to predict line position
effects at all since neither parser has a representation of the physical layout of
the text. This is a serious limitation for both parsers that could not be overcome
by the addition of a threshold-based module.

Regression behaviour: spatio-temporal aspect The regressions that people
deployed had different spatio-temporal properties. 46% of these regressions were
classified as indicative of selective reanalysis rather than being refixations on
the disambiguation or short regressions that went back only one or two words.
Within the regressions that were indicative of selective reanalysis, the ambiguous
end of line condition yielded a greater proportion than any other condition (45%)
although the ambiguity x line position interaction effect was not significant. When
the disambiguated conditions were removed from the analysis there was a clear
effect of line position such that the end of line position was more likely to yield
selective reanalysis scan paths than the middle of line position.

Overall conclusion In this experiment the reading time measures considered
together did not produce significant effects. Instead the behavioural variance was
exhibited in the the frequency of producing a regressive scan path, and in the
shape of the regressive scan paths that people made. The dependency parser
was completely insensitive to experimental manipulation. The phrase structure
parser predicted the direction of the trend for an ambiguity disadvantage that was

149



Ch 8: Experiment Two

weakly present in the human data, but was not sensitive to the significant effects
of layout on the frequency and shape of regressive scan paths.

I now consider the contribution of the experiment to the focal theoretical ques-
tions of this thesis. (1) Repair or replacement; (2) The purpose of regressive eye
movements; and (3) the coverage of the different grammar formalisms.

1. The human data showed that propensity to make a regressive scan path
was greater in the ambiguous conditions than in the disambiguated condi-
tions and greatest in the end of line ambiguous conditions. The patterned
variance in probability of making a regression does not by itself adjudicate
between the repair and replacement positions unless the target of the re-
gression also varies. Evidence that the regressions tended to be directed
at different targets according to the position of the disambiguating word on
screen is taken to be support for the repair account. This is because re-
placement does not offer a reason for targeting a particular part of the input
so far for re-inspection whereas repair offers that the onset of ambiguity is
targeted for re-inspection because of the information that it contains with
respect to a successful parse of the sentence. When the verb with ambigu-
ous subcategorisation is re-inputted by a regressive scan path this allows
a lexicon look-up to propose an alternative subcategorisation, and that al-
ternative subcategorisation yields the correct parse of the sentence. The
identity of the target matters for evaluating repair against replacement: the
fact that the target was not the beginning of the sentence is important. If
the parser was targeting the beginning of the sentence this would indicate
that the parser was merely starting again and was unable to make use of
the structure so far. The fact that the regressions targeted a non-sentence-
initial location suggests that replacing the whole parse was unnecessary,
and that only the structurally ambiguous verb needed to be repaired.

2. This experiment supports the view that regressive scan paths are made with
the purpose of re-analysing a linguistically relevant part of the sentence so
far. This can be seen by comparing the results with the time-out hypothesis
that predicts a random distribution of regression targets as a function of
distance from the launch site. Such an account is ruled out by the finding
that regressions tend to target the onset of ambiguity.

3. The different grammar formalisms differed greatly with respect to their cov-
erage of the human data. The dependency parser was unable to distinguish
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between the conditions: the disambiguating word was predicted to cause
equal difficulty in each condition. The performance of the phrase structure
parser was better in that it was sensitive to ambiguity, although not to line
position. For this reason the phrase structure parser does not offer com-
plete coverage of the human data, and this boils down to the inability of
these parsers to accommodate the physical layout of the text that clearly
plays a role in the human processing of these sentences. This is a only
result of the parser’s training data not including line breaks.
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Chapter 9

E3: Effects of the location of
misanalysed material

In this chapter I take the data from (Mitchell et al., 2008) Experiment 2 and submit
it to novel analyses of eye movement measures and scan path analysis. Novel
results from computational parser simulations are also reported. The location
of the misanalysed area of the sentences was manipulated and expected to in-
fluence regressive eye movements and scan paths. However, there was only a
non-significant tendency for regressive scan path shape to be influenced by the
location of misanalysis.

9.1 Introduction

In this chapter I take the data from (Mitchell et al., 2008) Experiment 2 and submit
it to novel analyses of eye movement measures and scan path analysis.

The design crossed ambiguity with the location of misanalysed material. The
manipulation of the location of misanalysed material can be seen in Figure 9.1.
The verb with ambiguous subcategorisation (i.e., watched) and the first noun
following it (e.g., the juggler ) are kept close together, but the group of words
(i.e., watched the juggler ) appears either on the left of the sentence or shifted
across the sentence to the right by lengthening the start of the sentence. Whether
the material appears more leftwards on screen or more rightwards on screen is
referred to as a manipulation of the location of the misattached material.

A strict interpretation of the Selective Reanalysis hypothesis predicts that lin-
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guistic content attracts regressions. In this experiment it is the onset of ambigu-
ity at watched the juggler (called the misanalysis area in Mitchell et al. (2008))
that is linguistically informative for correct processing of the disambiguating word
swallowed. Since the location of this misanalysis area onscreen is manipulated
across the conditions, under this proposal returns should be made to an earlier
(more leftwards) part of the sentence for early misanalysis conditions, and to later
(more rightwards) parts of the sentence in late misanalysis area conditions. How-
ever, the original Mitchell et al. (2008) data analysis was unable to demonstrate
significant effects of this kind.

The materials used sentences like Examples 9.1 and 9.2.

(9.1) While the mob watched(,) the juggler who was gifted and nimble swallowed
a silver sword that was very sharp.

(9.2) The busy guide noted that while the mob watched(,) the juggler swallowed
a silver sword that was very sharp.

Figure 9.1 shows the manipulation of misanalysis area for Early misanalysis
area and Late misanalysis area respectively. The figure shows the materials as
they were laid out in the experiment, with true line breaks and a monospaced font
like the one used in the experiment to preserve the relative positions of the words
on screen. The misanalysis area is underlined here.

While the mob watched the juggler who was gifted and nimble swallowed

a silver sword that was very sharp.

While the mob watched the juggler who was gifted and nimble

swallowed a silver sword that was very sharp.

While the mob watched, the juggler who was gifted and nimble swallowed

a silver sword that was very sharp.

While the mob watched, the juggler who was gifted and nimble

swallowed a silver sword that was very sharp.

While the mob watched(,) the juggler who was gifted and nimble swallowed

a silver sword that was very sharp.

The busy guide noted that while the mob watched(,) the juggler swallowed

a silver sword that was very sharp.

1

While the mob watched the juggler who was gifted and nimble swallowed

a silver sword that was very sharp.

While the mob watched the juggler who was gifted and nimble

swallowed a silver sword that was very sharp.

While the mob watched, the juggler who was gifted and nimble swallowed

a silver sword that was very sharp.

While the mob watched, the juggler who was gifted and nimble

swallowed a silver sword that was very sharp.

While the mob watched(,) the juggler who was gifted and nimble swallowed

a silver sword that was very sharp.

The busy guide noted that while the mob watched(,) the juggler swallowed

a silver sword that was very sharp.

1

Figure 9.1: Figure shows how the manipulation of misanalysis area was imple-
mented

9.2 Method

The method section gives details of participants, apparatus, and procedure.

Participants This is quoted from the original paper: “32 volunteers participated.
All were students at the University of Exeter and aged between 18 and 23. Nine
were male and 23 were female. 21 of the participants were paid in cash.”
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Apparatus The apparatus was the same as in section 7.2 on page 120.

Procedure The procedure was the same as in section 7.2 on page 121.

9.3 Simulation data

In the models of the computational parsers’ predictions, the interaction term spec-
ified at each level of item had to be dropped before the models would converge,
leaving only main effects specified at each level of item.

Dependency surprisal The dependency parser’s surprisal predictions showed
an ambiguity x location interaction (β = .48, SE = .003, t = 147.92) such that the
early head position conditions showed no effect of the location of the misattached
material, whereas in the late head position conditions the disambiguated condi-
tion was predicted to be more difficult than the ambiguous condition. The human
data showed no sign of this pattern.

Dependency retrieval The dependency parser’s predictions for retrieval time
were for a small disadvantage for late head position in the ambiguous conditions
turning into a larger disadvantage for late head position in the disambiguated
conditions (β = 39.5, SE = .47, t = 84.06). There was no sign of this pattern in the
human data.

Phrase structure surprisal The phrase structural parser’s predictions for sur-
prisal were for a disadvantage for early head position in the ambiguous conditions
and a larger disadvantage for late head position in the disambiguated conditions
(β = .38, SE = .02, t = 21.50). There was no sign of this pattern in the human
data.

Phrase structure entropy reduction The phrase structural parser’s predic-
tions for entropy reduction showed an ambiguity effect with the ambiguous cases
leading to more entropy reduction than the disambiguated conditions (β = .32, SE =

.05, t = 6.75). There was also a significant tendency for a smaller disadvantage
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Table 9.1: Computational measures at the disambiguating word

Ambiguity Misanalysis Area DSURP DTIME TSURP ER

ambiguous early 2.55 229.88 13.45 1.67
ambiguous late 1.93 300.65 11.76 1.95
disambiguated early 2.55 218.93 13.73 0.80
disambiguated late 4.13 442.15 10.49 1.37
a Please see page 14 for the abbreviations used in the table

for late head position in the ambiguous cases to grow larger in the disambiguated
conditions (β = .03, SE = .0016, t = 18.083) The entropy reduction parser made
the best predictions of the human data for ‘late’ eye movement measures. The
human measures are presented in the next section.

9.4 Eyetracking data

This section gives the results from the eyetracking data. The data are sum-
marised in Table 9.2. For each measure, a LMER model was constructed that
modelled the measure as a function of word length, word frequency, ambiguity,
the location of the misanalysed material, the ambiguity x location interaction, as
well as random effects of participant and item and slopes for the ambiguity, lo-
cation, and ambiguity x location interaction at each level of participant and item.
Where the model had to be simplified, the necessary simplification is described
in the section for that measure.

First fixation duration No effects were significant in FFD. Effects of word length
and word frequency were β = 6.26, SE = 6.70, t = .937 and β = −5.82, SE =

3.42, t = −1.7 respectively. There was a marginal main effect of ambiguity with
ambiguous condition tending to lead to longer times than disambiguated controls:
β = 14.95, SE = 9.39, t = 1.59. The location of the misattached noun phrase did
not exert a significant influence on times: β = −1.01, SE = 7.68, t = −.13. The
ambiguity x location interaction was non-significant: β = 6.33, SE = 7.81, t = .81.
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Table 9.2: Human measures at the disambiguating word

Ambiguity Misanalysis Area FFD FPRT RPD TSR PREG

ambiguous early 226 304 498 194 0.24
ambiguous late 221 287 498 212 0.30
disambiguated early 215 222 236 14 0.10
disambiguated late 199 265 349 84 0.17
a Please see page 14 for the abbreviations used in the table

First pass reading time Effects of word length and frequency were not signifi-
cant in the model: β = 8.18, SE = 11.15, t = .73 and β = −9.21, SE = 5.70, t =

−1.62 respectively. There was a significant main effect of ambiguity with ambigu-
ous conditions leading to longer times than disambiguated controls: β = 28.46,
SE = 12.39, t = 2.30. The location of the misattached noun phrase did not ex-
ert a significant influence on first pass reading time as a main effect (β = −8.5,
SE = 11.56, t = −.74) and the ambiguity x location interaction was non-significant
(β = 20.12, SE = 13.44, t = 1.50).

Regression path duration Effects of word length and word frequency were
non-significant: β = 19.95, SE = 28.23, t = .71 and β = −10.16, SE = 14.27,
t = −.71 respectively. There was a significant main effect of ambiguity with
ambiguous conditions leading to more regression path duration than disambig-
uated controls: β = 95.84, SE = 31.25, t = 3.1. The location of the misattached
noun phrase did not exert a significant main effect (β = −28.96, SE = 33.69,
t = −.86), and the ambiguity x location interaction was not significant (β = 25.52,
SE = 32.20, t = .79).

Probability of a regression Effects of word length and word frequency were
non-significant: β = .17, SE = .17, z = .98, p = .33 and β = −.13, SE = .08,
z = −1.57, p = .12 respectively. There was a significant main effect of ambiguity
with ambiguous conditions leading to greater probability of regression than dis-
ambiguated controls: β = .73, SE = .32, z = 2.30, p < .05. The main effect of
the location of the misattached noun phrase did not exert a significant influence
on probability of a regression, although there was a tendency for early location
to reduce regression probability: β = −.52, SE = .30, z = −1.72, p = .09. The
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Figure 9.2: Distribution of coarse eye movement behaviours at disambiguation

ambiguity x location interaction was not significant: β = .309, SE = .30, z = 1.03,
p = .30.

Scan path analysis First I consider the distribution of coarse eye movement be-
haviours, plotted in Figure 9.2. We can see that the most common behaviour was
to progress, and that for the regress cases, they appear to be over-represented
in the ambiguous conditions. Two sets of scan path analyses were carried out.
The first included all regressions and the second discarded regressions that only
went back one word. Each analysis is described separately below.

Analysis of full data set For the analysis that included all regressions, Figure
9.3 shows the ten clusters returned by scan path similarity analysis. The patterns
that regressed to the preceding word (i.e, A,B,C,D,E,F,J) were grouped into a
supercluster that represented a regression to the preceding word. Then a model
of membership of this supercluster was constructed to see whether the strategy
of regressing to the previous word was over-distributed in any particular condition.
Figure 9.4 shows the mean proportion of trials that ended up as members of this
supercluster for each condition. There was a tendency for people to regress to
the preceding word more often in the early head position sentences than in the
late head position sentences, and more in the ambiguous conditions than the
disambiguated conditions. The LMER model had to be simplified before it would
converge. Per-subject and per-item slopes had to be dropped. The model showed
that the ambiguity effect was not significant (β = .19, SE = .28, z = .68, p = .49),
that the head position effect was marginal (β = .55, SE = .29, z = 1.92, p = .054)
and that the ambiguity x head position effect was non-significant (β = .11, SE =
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Figure 9.3: scan path strategies at disambiguation in the full analysis

.29, z = .26, p = .71).

Analysis of restricted data set For the analysis that discarded regressions to
the preceding word, Figure 9.5 shows the most common strategies after the re-
striction was applied. These were then classified according to whether or not
they constituted a move back to the ambiguously attached main clause verb
watched. Figure 9.6 shows the probability that a given condition would lead to
a regression of this type. On average, this type of movement was over repre-
sented in the ambiguous late head position sentences (as would be expected
under a selective reanalysis account). The LMER model had to be simplified
before it would converge: per-item terms for the ambiguity x head position ef-
fect had to be dropped. However the LMER model of this outcome showed
that the over-representation was not statistically significant (main effect of am-
biguity: β = .32, SE = .36, z = .986, p = .37, main effect of head position:
β = −.2, SE = .31, z = −.65, p = .52, ambiguity x head position interaction:
β = −.29, SE = .30, z = −.974, p = .33).
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Figure 9.4: Distribution, over the conditions, of regressions to the preceding word,
in the full analysis
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Figure 9.5: scan path strategies at disambiguation in the restricted analysis
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Figure 9.6: Probability of a regression to word 9: watched in the late head po-
sition sentences or gifted in the early head position conditions, for the restricted
analysis

9.5 Discussion

Although there were significant main effects of ambiguity in FPRT, RPD, and
PREG, the location of the misanalysed material did not exert significant influences
on standard eye movement measures. This echoes the data from the Mitchell et
al (2008) ANOVA analyses, except that the LMER analysis also detected a main
effect of ambiguity in PREG that the ANOVA analyses missed. In the more de-
tailed Regression Signature analyses from the original paper, there were hints of
differential returns to the ambiguously attached material – when the material was
in the early misanalysis position, more returns to that location were observed in
the ambiguous conditions than the unambiguous conditions, and when the am-
biguously attached material was in late misanalysis position, more returns were
made to that location in the ambiguous than the unambiguous conditions, but this
pattern was not significant on materials analysis. SCASIM analysis was unable to
add to this evidence. The SCASIM analysis of all regressive movements showed
that a strategy of regressing to the immediately preceding word was not over-
distributed in any particular condition. When these one-word regressions were
discarded from the data set and the remaining longer regressions were analysed,
these too were not over distributed in any particular condition. The novel analy-
ses were able to add only the main effect of ambiguity in PREG (that the ANOVA
analysis missed) to the original Mitchell et al. (2008) conclusions.
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For the matter of which computational parser best approximated the human
data, the phrase structure grammar parser’s entropy reduction measure was the
only computational measure that anticipated the shape of the human disambig-
uation difficulty.
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Chapter 10

E4: Verb subcategorisation frames
affect regressions

This experiment introduce verbs that have a different subcategorisation pref-
erence than those examined so far. These verbs are those like ‘noticed’ that
can take a sentential complement. The Diagnosis model of Fodor and Inoue
(1998) predicts that these verbs are processed differently from verbs like ’saluted’.
This experiment tests for effects of different subcategorisation frames in their
interaction with effects of ambiguity. Overt complementisers are used to pre-
disambiguate the ’noticed’ forms. This experiment shows that the extra difficulty
of disambiguating the NP/Z forms shows up in longer reading times, greater re-
gression frequencies, and also the relative over-dispersal of scan path patterns
that target the onset of ambiguity.

10.1 Introduction

The linguistic phenomenon under consideration is the difficulty people have re-
solving an ambiguity afforded by particular verbs with more than one subcategor-
isation frame. In Example 10.1 the verb saluted has only one subcategorisation
frame for a direct object. In Example 10.2 the verb noticed has two subcategor-
isation frames, one for a direct object - e.g., noticed the siren and the other for
a complement such as a clause - e.g., noticed the siren had been sounded. A
noun phrase like the captain that follows a verb with multiple subcategorisation
frames like noticed can be attached preferentially as its object, or alternatively
as the subject of its complement. Such a noun phrase, if attached as the object
of a subordinate clause, is revealed to be the subject of the main (complement)
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clause instead, when the main clause is indicated by the appearance of its verb
at disambiguation.

Ambiguity with respect to subcategorisation can be resolved by cues in the
text that indicate which subcategorisation is appropriate. For example, a clause
barrier can be overtly marked by punctuation: a complement clause can be ini-
tialised overtly by a complementiser. When sentences are pre-disambiguated in
this way, difficulty at the first verb can be measured when it is not carrying dis-
ambiguating information, which provides a baseline for comparison with reading
difficulty at the first verb in ambiguous versions of the sentences, when the first
verb has additional consequences for parsing.

The design crossed two factors. These were ambiguity (the sentence either
was or was not disambiguated by a comma immediately following the first verb)
and subcategorisation frame (the verb was either NP/S or NP/Z).

With reference to the descriptions of capture and theft given in section 3.4, we
can say that the diagnosis model predicts an interaction between ambiguity and
sentence type such that a theft sentence should have a larger ambiguity cost than
an equivalent capture sentence. The larger ambiguity cost is due to the parser’s
inability to attach the initially wrongly attached material as a complement of the
verb to which it is wrongly attached in the theft condition - in the capture condition
the parser is able to attach this material easily as a complement.

Twenty-four experimental sentences were generated in each of the four con-
ditions. Examples of each condition follow. Example 10.1 represents the ambigu-
ous and disambiguated versions of the theft sentences (disambiguating comma
in parentheses), and Example 10.2 represents the ambiguous and disambig-
uated versions of the capture sentences (disambiguating overt complementiser
in parentheses). A phrasemarker showing the correct analysis of the theft sen-
tences may be found in Figure 10.2 and a phrasemarker representing the correct
analysis of the capture sentences may be found in Figure 10.3. Please note that
one item (item 18) had to be removed from the analysis because in one condition,
a programming error introduced an additional word into the text display. The addi-
tional word was an adjective that would not be expected to unduly complicate the
parsing for that sentence, but which rendered the sentence inconsistent in terms
of word numbering and word order with other sentences in the set. The full set of
sentences presented may be found in Appendix A.

(10.1) After the cadet saluted(,) the captain walked to the gates of the
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enclosure. (Theft)

(10.2) The cadet noticed (that) the captain walked to the gates of the enclosure.
(Capture)

BRIEF ARTICLE

THE AUTHOR

After the cadet saluted the captain walked to the gates of the enclosure.

The cadet noticed the captain walked to the gates of the enclosure.

After the cadet saluted, the captain walked to the gates of the enclosure.

The cadet noticed that the captain walked to the gates of the enclosure.

1

Figure 10.1: Sentence layout showing how the materials were arranged on
screen, in the following order: ambiguous NP/Z; ambiguous NP/S; control NP/Z;
control NP/S

10.2 Method

The method section gives details of participants, apparatus, and procedure.

Participants Participants were forty native speakers of British English who were
students of Psychology at the University of Exeter, were given partial course credit
to participate in the experiment. All had normal or corrected to normal vision,
were naive to the purpose of the experiment, and were aged between eighteen
and thirty-four.

Apparatus An SR Research Eyelink II head-mounted eyetracker was used to
record participants’ eye movements with a sampling rate of 500 Hz. Participants
read sentences displayed on a 19 inch Iiyama Vision Master Pro video monitor at
1024 x 768 resolution at a refresh rate of 60 Hz. Viewing was binocular but only
the right eye was recorded. Participants sat in a dimly lit room in front of the com-
puter at a viewing distance of approximately 75 cm the average viewing distance
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Figure 10.2: Phrasemarker for theft sentences
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Figure 10.3: Phrasemarker for capture sentences
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was approximately 75 cm. At this viewing distance, and assuming that 1 char-
acter had 2 mm width on screen, a single character subtended 0.153° of visual
angle, and approximately 6.5 characters subtended 1° of visual angle. The font
used was Courier New 12 point. All sentences in this experiment were displayed
on a single line with a maximum length of 100 characters. A 9 point calibration
procedure was used, on which participants were required to achieve a score of
‘good’. Each trial started with a drift correction routine where the participant was
required to fixate a target that appeared in the same location as the first character
of the sentence would subsequently occupy, and then required to press a button
on the gamepad while fixating this point to start the trial.

Procedure Participants were instructed to read silently for comprehension at a
comfortable speed. The practice trials and experimental trials were implemented
as separate consecutive blocks. The experimental trials were randomised by Ex-
periment Builder each time the experiment was run, i.e., in a different order for
each participant, with the constraint that a maximum of two trials of a given type
could appear in a continuous sequence. There were four practice sentences, fol-
lowed by a drift correction routine preceding the experimental block containing 96
sentences, comprising 24 in experimental conditions (6 in each of 4 conditions);
24 foils and 48 fillers. Participants were rotated over one of four lists, imple-
menting a Latin square design. 32 of the trials (including 8 of the experimental
conditions) were followed immediately by a comprehension question. This was
a simple question about the sentence immediately preceding that required the
participant to make a yes or no response using the appropriate trigger button on
the gamepad. The full list of questions asked may be found in the Appendix. The
whole procedure took about 20 to 40 minutes, depending on the participant.

10.3 Simulation data

The following predictions of processing difficulty at the disambiguating word were
derived: surprisal from the dependency parser; surprisal from the phrase struc-
ture parser; and entropy reduction from the phrase structure parser.

The predictions are given in Table 10.1. For each predicted measure a mul-
tilevel model was constructed. Each model included terms for centred log word
frequency and centred word length; terms for the fixed effects ambiguity, sentence
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Table 10.1: Computational measures at the disambiguating word

Ambiguity sentence type DSURP DTIME TSURP ER

ambiguous NP/S 1.26 209 9.36 2.37
ambiguous NP/Z 1.26 209 10.28 2.64
unambiguous NP/S 1.08 280 8.76 2.07
unambiguous NP/Z 1.43 209 8.29 1.67
a Please see page 14 for the abbreviations used in the table

type and the ambiguity x sentence type interaction; and terms for the random ef-
fects of ambiguity, sentence type and the ambiguity x sentence type interaction at
each level of item. These models did not include terms for subjects because the
computational measures did not vary over subjects. The results of each model
are given in the relevant section below.

Dependency surprisal The mean values of dependency surprisal at the dis-
ambiguating word show that ambiguous NP/S and ambiguous NP/Z are predicted
to be equal. For the unambiguous cases NP/Z is predicted to be more difficult
than NP/S. The term for the interaction effect over items had to be dropped in
order to achieve model convergence, but individual terms for ambiguity and sen-
tence type could be computed at each level of item. The model indicated that
word length and word frequency did not exert significant effects on the depen-
dency surprisal measure (β = −0.002, SE = 0.008, t = −0.29 and β = −0.008,
SE = 0.007, t = −1.12 respectively). Ambiguity did not exert a significant effect on
dependency surprisal (β = 0.0002, SE = 0.01, t = 0.01). The effect of sentence
type was significant, with NP/Z causing more dependency surprisal (β = −0.09,
SE = 0.01, t = −6.26). The ambiguity x sentence type interaction was very sig-
nificant in the model (β = 0.09, SE = 0.002, t = 39.67). For the NP/S sentences
the control sentence was easier – there was an ambiguity disadvantage. For the
NP/Z sentences, the control condition was more difficult – there was an ambiguity
advantage.

Dependency retrieval The mean values for retrieval predicted that ambiguous
NP/S, ambiguous NP/Z and unambiguous NP/Z should be equally difficult, with
unambiguous NP/Z predicted to cause the most difficulty The term for the interac-
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tion effect over items had to be dropped in order to achieve model convergence,
but individual terms for ambiguity and sentence type could be computed at each
level of item. Word length and word frequency did not influence the dependency
retrieval measure (β = −0.01, SE = 0.20, t = −0.06 and β = −0.004, SE = 0.17,
t = −0.02 respectively). Main effects of ambiguity and sentence type were signif-
icant in the model (β = −17.7, SE = 0.60, t = −29.72 and β = 17.7, SE = 0.6,
t = 29.72 respectively). There was a significant ambiguity x sentence type inter-
action (β = −17.7, SE = 0.09, t = −191.25).

Phrase structure surprisal Phrase structure surprisal predicted that the am-
biguous cases would be harder then the unambiguous cases; and that the NP/Z
disadvantage in the ambiguous cases would turn around into a NP/S disadvan-
tage in the unambiguous conditions. The term for the interaction effect over
items had to be dropped in order to achieve model convergence, but individual
terms for ambiguity and sentence type could be computed at each level of item.
Word length was not important in the phrase structure parser’s surprisal mea-
sure (β = −0.18, SE = 0.18, t = −1.03). Word frequency did exert a significant
effect (β = −0.97, SE = 0.15, t = −6.41). Effects of ambiguity, sentence type
and the ambiguity x sentence type interaction were all significant in the model
(β = 0.65, SE = 0.05, t = 12.32, β = −0.11, SE = 0.03, t = −3.25, and β = −0.35,
SE = 0.01, t = −62.35 respectively).

Phrase structure entropy reduction The directions of the entropy reduction
hypothesis predictions were the same as for phrase structure surprisal, although
there was a relatively greater difficulty with the NP/S cases versus surprisal. The
term for the interaction effect over items had to be dropped in order to achieve
model convergence, but individual terms for ambiguity and sentence type could
be computed at each level of item. Word length and word frequency were both
unimportant in the model (β = .05, SE = .11, t = .44 and β = .02, SE = .09,
t = .17 respectively). Effects of ambiguity, sentence type and the ambiguity x
sentence type interaction were all significant in the model (β = 0.32, SE = 0.02,
t = 14.04, β = −0.03, SE = 0.02, t = −2.05, and β = −0.17, SE = 0.002,
t = −55.79 respectively).
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10.4 Eyetracking data

For each dependent variable a model was constructed that contained terms for
word length, word frequency, ambiguity, sentence type, the ambiguity x sentence
type interaction, and terms for the random effects of subject and item, as well as
terms for the main effects of ambiguity and sentence type and the ambiguity x
sentence type interaction at each level of subject and item.

First fixation duration First fixation duration detected a main effect of ambigu-
ity, and a marginal effect of sentence type but no interaction effect. The effect of
word length was not significant (β = 4.74, SE = 3.59, t = 1.32) and neither was the
effect of word frequency (β = −4.01, SE = 2.93, t = −1.37). The ambiguous con-
ditions resulted significantly in approximately 30 ms more FFD than the disambig-
uated controls (β = 29.13, SE = 7.90, t = 3.69). The main effect of sentence type
was a weak trend towards approximately 14 ms more FFD in the NP/Z conditions
than in the NP/S conditions (β = −14.23, SE = 8.11, t = −1.76). The NP/Z dis-
advantage tended to be larger in the ambiguous cases than in the disambiguated
cases, but the interaction effect was very weak (β = −2.82, SE = 6.93,t = −.41).

First pass reading time Word length exerted a non-significant influence (β =

10.22, SE = 5.58, t = 1.83). More frequent words resulted in less FPRT and the
effect was significant (β = −9.66, SE = 4.63, t = −2.09). There was a significant
ambiguity disadvantage of 31 ms (β = 29.28, SE = 12.36, t = 2.37). There
was a significant effect of sentence type with NP/S reducing FPRT (β = −19.78,
SE = 10.36, t = −1.91), but hardly any hint of an interaction effect (β = 1.33,
SE = 11.32, t = .12).

Regression path duration Word length and word frequency both exerted non-
significant influences (β = −0.82, SE = 14.31, t = −0.06 and β = −16.32, SE =

11.72, t = −1.40 respectively). There was a significant effect of ambiguity with
the ambiguous conditions leading to 146 ms more RPD than the disambiguated
conditions (β = 135.15, SE = 37.60, t = 3.56). There was a significant NP/Z
disadvantage of 79 ms as a main effect (β = −68.59, SE = 30.66, t = −2.27);
and a significant interaction effect with the NP/Z disadvantage increasing in the
ambiguous conditions (β = −64.28, SE = 31.33, t = −2.05).
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Table 10.2: Human measures at the disambiguating worda

Ambiguity sentence type FFD FPRT RPD TSR PREG

ambiguous NP/S 257 295 382 87 0.16
ambiguous NP/Z 275 317 534 217 0.24
unambiguous NP/S 231 265 309 43 0.09
unambiguous NP/Z 241 284 314 29 0.07
a Please see page 14 for the abbreviations used in the table

Time spent regressing Word length and word frequency exerted non-significant
effects (β = −8.92, SE = 11.81, t = −0.80 and β = −10.50, SE = 9.74,
t = −1.08 respectively). Ambiguity significantly increased TSR by 116 ms on aver-
age (β = 106.30, SE = 35.55, t = 2.99). There was a non-significant main effect of
sentence type with the NP/Z conditions tending to attract more TSR (β = −49.97,
SE = 30.47, t = −1.64). The ambiguity x sentence type interaction approached
significance, with the ambiguity disadvantage tending to be much greater in the
NP/Z conditions than in the NP/S conditions (β = −63.86, SE = 34.01, t = −1.88).

Probability of a regression Probability of regression was conditionalised on
there being a valid first pass fixation in the word: i.e., if the word was skipped,
a missing value was recorded. This model was implemented with a binomial
link function appropriate to the binary-valued data representing whether on the
trial a first pass regression was launched from the disambiguating word. This
was effected by adding the argument family = ”binomial” to the call to the
LMER function. This explains why the statistic reported for this measure is z

rather than t. Word length did not significantly affect PREG (β = −.20, SE =

.11, z = −1.70, p = .09). Word frequency exerted a significant influence (β = −.28,
SE = .09, z = −3.02, p < .01). The effect of ambiguity was significant, taking the
proportion of trials from .08 to .20 (β = 1.57, SE = .32, z = 4.88, p < .001). The
effect of sentence type was non-significant (β = .30, SE = .34, z = .89, p = .37).
There was a marginal ambiguity x sentence type interaction (β = −.60, SE =

.32, z = −1.88, p = .059).

scan path analysis In this section I present analyses of the spatio-temporal
dynamics of scan paths that were launched from the disambiguating word and
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Figure 10.4: Distribution of coarse behaviours at disambiguation

that ended just before a fixation in new material.

Distribution of disambiguation behaviours In this section I consider a coarse-
grained analysis of behaviour at disambiguation using the classification set out in
the section above. 920 trials remained from 960, after excluding all trials from
item 18 as described above. The most common pattern was progress, with 589
trials (64%). The next most frequent pattern was regress with 115 trials (13%).
Skip accounted for 109 trials (12%). 107 trials resulted in refixate (11%). One
can see that the critical ambiguous NP/Z condition was the least frequent cause
of progress behaviour, and the most frequent cause of regress behaviour.

Distribution of regression strategies In this section I will limit the scope of
enquiry to the spatio-temporal regress cases. I will retain each of the 115 tri-
als (representing 13% of all trials) that resulted in this behaviour and discard the
others. This leaves a set of scan paths that started with a legitimate first pass
fixation in the disambiguating word, and then possibly refixated it some number
of times, and then took in upstream words, and then possibly refixated the dis-
ambiguating word some number of times, and then ended by including the last
fixation before new material was taken in. One wishes to know whether within
this set there were any patterns across the treatment conditions. I approach the
problem by clustering the scan paths into self-similar groups, and asking for each
group of scan paths whether the likelihood that a given scan path is a member of
the group varies as a function of the fixed factors ambiguity and sentence type
and their interaction ambiguity x sentence type.
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This approach requires a measure of self-similarity. The measure should ide-
ally tell us for each scan path in a pair of scan paths how self-similar each is to
the other. Ideally the measure should be sensitive to spatial as well as temporal
differences between the scan paths. The measure I use is SCASIM (scanpath
similarity), provided in the R library SCAN PATH (von der Malsburg, 2010), as used
in von der Malsburg and Vasishth (2011) to investigate syntactic reanalysis.

This initial scasim run is done in order to check for outlier trials that could
skew the later parts of the analysis. I applied a threshold at 2.5 s.d. either side of
the mean which excluded one trial.

At this stage the matrix of pairwise dissimilarity values is very large (114∗114 =

12996 dimensions). This needs to be scaled down to a more manageable unit.
From the tools available in R I use the function ISOMDS because it considers
various dimensionalities and assigns to each dimensionality a stress value that
serves as a measure of goodness of fit and an optimal number of clusters. This
allows one to choose a dimensionality with reference to how much goodness of fit
one is willing to sacrifice in order to get a reasonable number of clusters. Consider
briefly that one could in the limit have a model with a cluster for each scan path
with no loss of goodness of fit at all, but which would be useless as a model. At
the other limit one could derive the single most typical scan path at the cost of
nearly all goodness of fit: again useless for present purposes. Figure 10.5 shows
that stress reduces smoothly with increased number of dimensions, and that a
5 dimensional model with 8 clusters is available at a stress of about 10%. The
optimal number of clusters at a given dimensionality is identified by the function
Mclust using a mixture of gaussians approach and the information criterion BIC
to prefer the model that minimises BIC.

For each cluster, I obtained the scan path closest to its centroid. This is a sort
of measure of central tendency, similar to the mean, but for cases like these where
the mean scan path is not a coherent notion – instead one chooses the scan path
that was actually made that sits closest to the centroid of the cluster. Note that I
use the term centroid rather than center because the clusters are imposed on the
data, and there may be no data point at the theoretical centroid of a given cluster.
These scan paths are plotted in Figure 10.6.

The next step is to consider how these 8 patterns might constitute eye move-
ment strategies for disambiguation. In so doing one may legitimately group some
of these patterns together if they identify the same eye movement strategy (von
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der Malsburg & Vasishth, 2011). In these data the 8 patterns form 4 reading
strategies that are illustrated in Figure 10.7. These are checking back one word ;
checking back two words; direct to onset (i.e., direct to onset of ambiguity) and
search for the onset of ambiguity.

Figure 10.8 shows that the search for onset supercluster appears to be dis-
tributed unevenly in the manner predicted by the Diagnosis model, with the am-
biguous NP/Z condition generating more than other conditions.

I tested this formally with a multilevel model describing membership of this
supercluster as a function of condition. Trials that did not lead to a regression of
this type were coded 0 1 and the outcome was treated as binomially distributed.
The maximal model failed to converge, so I dropped the by-participant and by-
item random slopes from the model but retained their intercepts. Results are

1the other option was to encode non-regressions as missing data, but I feel that every trial
had the opportunity to be a member and that therefore failing to become a member constitutes
non-membership (0) rather than exclusion from the possibility of membership (NA).
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reported with Bonferroni-corrected p values. The model showed that the am-
biguous conditions resulted in greater likelihood of the regression type search for
onset (β = 1.38, SE = .42, z = 3.27, Bonferrroni-adjusted p < .01): mean proba-
bility for ambiguous was .09; mean for control was .02. There was no significant
main effect of sentence type. There was a significant ambiguity x sentence type
interaction (β = 1.08, SE = .42, z = −2.54, Bonferroni-adjusted p = 0.04). This
took the form of no sentence type effect in the control conditions, but a large and
significant NP/Z disadvantage in the ambiguous conditions.

Model evaluation results In this section the predictions from the computa-
tional parsers are evaluated against the human behavioural results. RPD cor-
related positively with ER and TSURP (Pearson’s r(809) = .16, p < .001 and
r(809) = .24, p < .001 respectively). Dependency surprisal bore no relationship
to RPD (r(809) = −.03, p = .42) while dependency retrieval time was negatively
correlated with RPD (r(809) = −0.12, p < .001).

10.5 Discussion

First I consider the results from analysis of the standard em measures. First
I will recapitulate the results. In every measure, the ambiguous cases signifi-
cantly caused much more difficulty than the disambiguated versions. This shows
both that disambiguation was effective on the whole, and that people found the
ambiguous cases hard to process at disambiguation: there was a parser load as-
sociated with carrying out disambiguation processes. The fact that FFD captured
this effect suggests that it exerts its influence immediately. The fact that the ef-
fect manifested in the later measures too indicates that there was a load imposed
by ambiguity on higher-order parsing processes such as integration. Considered
as a main effect, sentence type influenced only RPD, where temporally longer
regressions were found as a result of NP/Z compared with NP/S. However, sen-
tence type exerted an influence on the ambiguity disadvantage in its interaction
effect that was captured in the RPD measure as well as the PREG measure,
where the fairly large disadvantage associated with ambiguous NP/Z (versus am-
biguous NP/S) was significantly greater than the disadvantage associated with
disambiguated NP/Z (which was often negligible or even negligibly reversed ver-
sus disambiguated NP/S).
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Now I consider the theoretical implications of the results. The prediction that
the Diagnosis model makes for these sentences, of a NP/Z disadvantage in inte-
gration processes and repair processes, holds up fairly well under this scrutiny.
The evidence shows that early measures were relatively unaffected by sentence
type, consistent with the prediction, and that late measures were subject to the
predicted inflation, but only in the ambiguous cases. This latter caveat is im-
portant because it shows that the disadvantage associated with NP/Z obtains
in late measures at disambiguation, but not when the same linguistic material is
pre-disambiguated. Therefore it is safe to conclude that the ambiguous NP/Z con-
dition is throwing the parser into difficulties, and that these difficulties take longer
to resolve than the equivalent difficulties in ambiguous NP/S.

However, these analyses of standard measures have not yet licensed the
claim that the repairs are in fact different in nature across the two conditions, only
that they take longer for NP/Z (measured in RPD). The demonstration that repairs
are qualitatively different is found in the spatio-temporal dynamics of the scan
paths launched from the disambiguating word. The pattern denoted “search for
onset" was significantly overrepresented in the ambiguous NP/Z condition. This
shows that the regressive landing points are not simply the result of a random
walk over the preceding words. Instead it is clear that certain sentence types lead
to strategic patterns of eye movements. A natural interpretation of these strategic
patterns is that when parsing breaks down at disambiguation in the ambiguous
NP/Z case, readers are seeking out the onset of ambiguity.

The surprisal measures present different coverage of the human data de-
pending on whether the surprisal was computed over a dependency parser or a
phrase structure grammar. The phrase structure grammar tracked human diffi-
culty in late parsing measures well, in the aggregate measure and also in both
of its lexical and syntactic subcomponents. In contrast, the dependency parser’s
surprisal was sensitive to the ambiguity in the NP/S cases in the same way as
humans but made the wrong prediction for the effect of ambiguity in the NP/Z
cases.

One explanation for the wrong prediction of the dependency parser for the
NP/Z cases is that the ambiguity on the NP/Z cases was effected by leaving out
a piece of clause-marking punctuation. While the phrase structure parser pro-
cessed the disambiguation following punctuation in line with the human data, the
dependency parser appears to predict that processing the comma makes dis-
ambiguation harder not easier. This may be because the punctuation is consid-
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ered as a terminal in its own right in the dependency grammar, and dependency
arcs are assigned to the relations between the punctuation terminals and the
lexical terminals. The phrase structure parser also treats the punctuation as a
terminal in its own right, but makes much more out of the information provided by
the punctuation. Since the phrase structure parser explicitly assigns hierarchical
structure to the input where the dependency parser does not, it is better placed
than the dependency grammar parser to benefit from the clause boundary infor-
mation that is inherent in the punctuation but speaks to a level higher than the
terminal level. This clause-marking information makes parsing at disambiguation
easier for both the human parser and the phrase structure parser but not for the
dependency parser.

In contrast the dependency parser is indeed capable of responding in a human-
like way to the overt complementiser in the NP/S conditions. This complementiser
carries both sequential terminal information and higher-level clause marking in-
formation. The phrase structure parser benefits from this information, but so does
the dependency parser. One explanation for the dependency parser’s capitalisa-
tion on the complementiser’s presence, but not on the punctuation’s presence is
the suggestion that the complementiser might have better signal to noise ratio
than the comma. The reasoning here is that commas demarcate, for example,
lists or prosodic boundaries just as commonly as they do clauses, whereas the
only irrelevant use of the string that is as a demonstrative pronoun, so that the
clause-marking information conveyed by an overt complementiser to a depen-
dency parser might be more useful than the clause-marking information carried
by a comma to a dependency parser.
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Chapter 11

E5: Head position interaction
effects: part 1 short phrases

In this experiment, an ambiguously attached NP is manipulated. The NP is ex-
tended by adding a qualifier. For example, a noun phrase like the captain is
extended by a qualifier like of the squadron to yield the extended NP the captain
of the squadron. A further manipulation is the location of the head noun of the
extended NP within the extended NP. When the qualifier comes before the head
noun, the head noun is said to be in late head position, and is closer to the dis-
ambiguating word. When the qualifier comes after the head noun, the result is
that the head noun is in early head position, increasing the distance between the
head noun and the disambiguation. Early head position is said to be harder than
late head position because the misattached head is further away from disambig-
uation.

11.1 Introduction

This section builds upon the findings of the previous chapter and provides a test
of the Diagnosis model. We will see that the results provide some support for the
Diagnosis model’s prediction in terms of how likely it is that a regression will be
made in the service of disambiguation: and what spatio-temporal shape such a
regression will take.

The linguistic phenomenon under consideration is the difficulty people have
resolving an ambiguity afforded by particular verbs with more than one sub-
categorisation frame. A noun phrase that follows such a verb can be attached
preferentially as its object, or alternatively as the subject of its complement. Such
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a noun phrase, if attached as the object of a subordinate clause, is revealed to
be the subject of the main (complement) clause instead, when the main clause is
indicated by the appearance of its verb at disambiguation.

In the sentences used in this pair of experiments, I manipulate whether the
verb preceding the critical noun phrase does, or does not, permit a sentential
complement. This affects the ease with which the critical phrase can be moved.
Within the critical noun phrase, the head of the relative clause is either the initial
or the final constituent of the clause. When at the start of the relative clause, there
is a long distance between the head and the disambiguating verb: when at the
end of the clause, a short distance. This distance is also affected by the length of
the relative clause itself, which was varied across the two experiments.

This experiment used sentences with a short ambiguous phrase. The ma-
nipulation of head position amounted to putting the syntactic head of the phrase
in a phrase-initial or a phrase-final position in the surface form. Fixed effects
were head position, sentence type, and their interaction effect head position X

sentence type. Head position referred to whether the syntactic head of the am-
biguous noun phrase appeared early in the clause or late in the clause and had
two levels: early, and late. sentence type referred to whether the required repairs
were licensed or not by the GDP (section 3.4) and had two levels: NP/S for li-
censed cases, and NP/Z for unlicensed cases. Random effects were participant
and item.

The head position effect is predicted by the Decay model and others that
share its commitment to the decay of activation with increasing content interven-
ing between the onset of activation and its later measurement at disambiguation.
The prediction is that the early head position sentences should cause more diffi-
culty than the late head position sentences because of more intervening material
between the onset and resolution of syntactic ambiguity. There is no prediction
for a difference between the sentence types used here, so no head position by
sentence type interaction is predicted either. The Decay model is compatible with
the interaction but does not predict it, and cannot account for it.

The Diagnosis model predicts that sentence type will modulate the head posi-
tion effect, with NP/S yielding benefits only while the activation has not yet fallen
below a threshold for detection. The prediction is that NP/Z should be harder
than NP/S and that the extra difficulty due to NP/Z should be greater only for the
late head position sentences. For the early head position sentences the Diagno-

179



Ch 11: Experiment Five

sis model predicts that insufficient error signal remains at disambiguation for the
NP/S sentence type to bring about a benefit versus NP/Z.

In these materials, the syntactic head of the ambiguous noun phrase appears
either early in phrase-initial position or late in phrase-final position. The ambigu-
ous noun phrase has two forms. The early form is achieved by adding words after
the noun whereas the late form is achieved by adding words before the noun. The
words appended in the early condition constituted a prepositional phrase like ’of
the squadron’. In the late condition, the noun was preceded by an adjective to
give an adjectival noun phrase like ‘the distressed patient’, or a noun to give a
compound noun phrase like ‘the squadron captain’. Examples of the sentences
used in this experiment follow. The sentences were presented in a monospaced
font and with all the words on a single line.

(11.1) The cadet noticed the captain of the squadron walked to the gates of the
enclosure. (Early NP/S)

(11.2) The cadet noticed the squadron captain walked to the gates of the
enclosure. (Late NP/S)

(11.3) After the cadet saluted the captain of the squadron walked to the gates of
the enclosure. (Early NP/Z)

(11.4) After the cadet saluted the squadron captain walked to the gates of the
enclosure. (Late NP/Z)

Materials like these that exhibit head-position effects have been used in previ-
ous work by, e.g., Ferreira and Henderson (1991b); Sturt et al. (1999); Tabor and
Hutchins (2004).

11.2 Method

The method section gives details of participants, apparatus, and procedure.
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BRIEF ARTICLE

THE AUTHOR

After the cadet saluted the captain walked to the gates of the enclosure.

The cadet noticed the captain walked to the gates of the enclosure.

After the cadet saluted, the captain walked to the gates of the enclosure.

The cadet noticed that the captain walked to the gates of the enclosure.

The cadet noticed the captain of the squadron walked to the gates of the enclosure.

The cadet noticed the squadron captain walked to the gates of the enclosure.

After the cadet saluted the captain of the squadron walked to the gates of the enclosure.

After the cadet saluted the squadron captain walked to the gates of the enclosure.

1

Figure 11.1: Figure shows how the sentences were arranged on screen

Participants Participants were twenty-four native speakers of British English
who were students of Psychology at the University of Exeter, were given partial
course credit to participate in the experiment. All had normal or corrected to nor-
mal vision, were naive to the purpose of the experiment, and were aged between
eighteen and thirty-four.

Apparatus The apparatus used was the same as in the previous chapter. The
description is given again here for convenience. An SR Research Eyelink II head-
mounted eyetracker was used to record participants’ eye movements with a sam-
pling rate of 500 Hz. Participants read sentences displayed on a 19 inch Iiyama
Vision Master Pro video monitor at 1024 x 768 resolution at a refresh rate of
60 Hz. Viewing was binocular but only the right eye was recorded. Participants
sat in a dimly lit room in front of the computer at a viewing distance of approx-
imately 75 cm the average viewing distance was approximately 75 cm. At this
viewing distance, and assuming that 1 character had 2 mm width on screen, a
single character subtended 0.153° of visual angle, and approximately 6.5 char-
acters subtended 1° of visual angle. The font used was Courier New 12 point.
All sentences in this experiment were displayed on a single line with a maximum
length of 100 characters. A 9 point calibration procedure was used, on which
participants were required to achieve a score of ‘good’. Each trial started with a
drift correction routine where the participant was required to fixate a target that
appeared in the same location as the first character of the sentence would subse-
quently occupy, and then required to press a button on the gamepad while fixating
this point to start the trial.
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Procedure The procedure was the same as the procedure in the previous ex-
periment. The description is given again here for convenience. Participants were
instructed to read silently for comprehension at a comfortable speed. The practice
trials and experimental trials were implemented as separate consecutive blocks.
The experimental trials were randomised by Experiment Builder each time the
experiment was run, i.e., in a different order for each participant, with the con-
straint that a maximum of two trials of a given type could appear in a continuous
sequence. There were four practice sentences, followed by a drift correction rou-
tine preceding the experimental block containing 96 sentences, comprising 24 in
experimental conditions (6 in each of 4 conditions); 24 foils and 48 fillers. Partici-
pants were rotated over one of four lists, implementing a Latin square design. 32
of the trials (including 8 of the experimental conditions) were followed immediately
by a comprehension question. This was a simple question about the sentence im-
mediately preceding that required the participant to make a yes or no response
using the appropriate trigger button on the gamepad. The full list of questions
asked may be found in Appendix A. The whole procedure took about 20 to 40
minutes, depending on the participant.

11.3 Simulation data

The following measures of processing difficulty at the disambiguating word were
computed: surprisal from the dependency parser; retrieval time from the depen-
dency parser; surprisal from the phrase structure parser; entropy reduction from
the phrase structure parser. The predictions are given in Table 11.1. For each
predicted measure a multilevel model was constructed. Each model included
terms for the following: centred log word frequency; centred word length; the
fixed effects of head position and sentence type and their interaction; and terms
for the fixed effects and their interaction at each level of item. These models did
not include terms for subject because the measures did not vary over subjects.
The results of each prediction model are given below in the relevant section.

Dependency surprisal The interaction effect over items had to be dropped to
achieve model convergence but individual terms for head position and sentence
type could be computed at each level of item. The model indicated that effects of
word length and word frequency were not significant (β = .01, SE = .04, t = .38
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Table 11.1: Computational measures at the disambiguating verb

Head Position sentence type DSURP DTIME TSURP ER

early NP/S 1.21 356 11.66 0.79
early NP/Z 1.65 351 12.85 0.98
late NP/S 1.30 228 9.74 1.14
late NP/Z 1.37 220 10.66 1.22

and β = .010, SE = .03, t = .31 respectively). There was no main effect of head
position (β = .05, SE = .07, t = .68). There was only a marginal main effect of
sentence type with NP/Z tending to be harder than NP/S (β = −.13, SE = .07,
t = −1.69). The sentence type x head position interaction effect was significant
(β = −.09, SE = .01, t = −8.27): the NP/Z disadvantage was greater in the early
head position sentences than in the late head position sentences.

Dependency retrieval The interaction effect over items had to be dropped to
achieve model convergence but individual terms for head position and sentence
type could be computed at each level of item. Word length and word frequency
had significant effects in the model (β = 57.8, SE = 21.99, t = 2.63 and β = 106,
SE = 5.4, t = 19.64 respectively). The head position effect was significant, with
early head position more difficult than late head position (β = 66.72, SE = 6.21,
t = 10.75). There was no main effect of sentence type (β = 1.1, SE = 2.4, t = .45).
The sentence type x head position interaction was just significant, with a smaller
NP/S disadvantage in early than late head position (β = .99, SE = .53, t = 1.893).

Phrase structure surprisal The interaction effect over items had to be dropped
to achieve model convergence but individual terms for head position and sentence
type could be computed at each level of item. Word length and word frequency
had significant effects in the model (β = −.33, SE = .17, t = −1.93 and β =

−1.22, SE = .11, t = −10.72 respectively). The main effect of head position was
significant with early harder than late (β = 1.00, SE = .14, t = 7.16), as was the
main effect of sentence type with NP/Z harder than NP/S (β = −.51, SE = .10, t =

−4.97), and the head position x sentence type interaction (β = −.09, SE = .02,
t = −5.22) with the sentence type effect bigger for early than late head position.

183



Ch 11: Experiment Five

Table 11.2: Human parser measures at the disambiguating verb

Head Position sentence type FFD FPRT RPD TSR PREG

early NP/S 277 331 453 122 0.16
early NP/Z 273 338 563 225 0.25
late NP/S 255 306 374 68 0.11
late NP/Z 267 302 432 130 0.17

Phrase structure entropy reduction The interaction effect over items had to
be dropped to achieve model convergence but individual terms for head position
and sentence type could be computed at each level of item. Word length and
word frequency had significant effects in the model (β = −.27, SE = .13, t = −2.1

and β = −.35, SE = .04, t = −8.56 respectively). There was no main effect of
head position (β = −.15, SE = .17, t = −.89) but there was a significant main
effect of sentence type (β = −.06, SE = .02, t = −3.16) and a significant head
position x sentence type interaction (β = −.03, SE = .004, t = −7.64).

11.4 Eyetracking data

This section gives the results from analyses of the human data. For each human
measure, a LMER model was fitted, with model specification given here: fixed
effects for head position and sentence type and their interaction; covariates for
centred word length and centred logged word frequency; random intercepts for
participants and items, and random slopes for the head position x sentence type
interaction effect at each level of participants and items, i.e. a maximal model.

First fixation duration There were no significant effects in first fixation du-
ration. Effects of word length and word frequency were both non-significant
(β = 2.70, SE = 4.22, t = 0.64 and β = −1.31, SE = 3.42, t = −0.38 respec-
tively). The main effect of head position was a non-significant disadvantage for
early head position (β = 14.208, SE = 10.45, t = 1.35); the main effect of sentence
type was a small non-significant NP/Z disadvantage (β = −3.75, SE = 11.46, t =

−.33). There was a non-significant trend towards an interaction (β = −8.02, SE =

9.74, t = .82).
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First pass reading time Effects of word length and word frequency were both
non-significant (β = 9.03, SE = 6.20, t = 1.48 and β = −.26, SE = 5.09, t = −.05

respectively). There was a robust disadvantage for early head position in first
pass reading time as a main effect (β = 30.67, SE = 12.49, t = 2.45). Neither the
main effect of sentence type nor the head position x sentence type interaction
was significant in FPRT (β = −3.85, SE = 19.59, t = −0.19 and β = −3.82, SE =

13.22, t = −.29 respectively).

Regression path duration Effects of word length and word frequency were
both non-significant (β = 9.11, SE = 18.25, t = −.50 and β = −11.04, SE =

14.91, t = −.74 respectively). There was a significant main effect of head position
with a disadvantage for early head position (β = 105.79, SE = 48.98, t = 2.16).
There was a trend towards a disadvantage of NP/Z as a main effect that did not
reach significance (β = −87.49, SE = 46.45, t = −1.88). The interaction effect
was non-significant (β = −27.66, SE = 42.90, t = −.65).

Time spent regressing Effects of word length and word frequency were both
non-significant (β = −15.41, SE = 16.08, t = −.96 and β = −9.53, SE = 13.14, t =

−.73 respectively). A trend towards a disadvantage for early head position ap-
proached significance (β = 77.85, SE = 47.20, t = 1.65). There was a significant
disadvantage for NP/Z (β = −86.07, SE = 41.71, t = −2.06). The interaction was
not significant (β = −23.97, SE = 42.26, t = −0.57).

Probability of a regression Effects of word length and word frequency were
both non-significant (β = −.10, SE = .12, t = −.84, p = .40 and β = −.12, SE =

.09, t = −.13, p = .19 respectively). The trend towards a disadvantage of early
head position approached reliability (β = .66, SE = .35, z = 1.86, p = .06). There
was a significant disadvantage for NP/Z (β = −.85, SE = .30, z = −2.76, p < .01).
The interaction was not significant (β = .12, SE = .30, z = .41, p = .68).

Scan path analysis In this section the focus is on the sequence and duration of
regressive fixations launched from disambiguation. The distribution of disambig-
uation behaviours is treated in the next part, and the distribution of regression
strategies over the conditions in the following part).
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Distribution of disambiguation behaviours Here I give an overview of be-
haviours at disambiguation arranged by type. Types were: (1) skip; (2) progress;
(3) refixate; (4) regress. The distribution of these behaviours over the treatment
conditions is plotted in Figure (11.2). We can see that the progress behaviour is
the most common, and that skipping was very uncommon. The regress cases
appear to be unevenly distributed over the conditions.
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Figure 11.2: How coarse eye movement behaviours launched from disambig-
uation were distributed over conditions

Distribution of regression strategies Here the scope narrows to include only
regressions (from disambiguation). An initial scasim run was done to look for
outliers. The initial scasim run did not yield any outliers using a 2.5 s.d. threshold
so the full data set numbering 93 regressions was carried forward and subjected
to multidimensional scaling and cluster analysis. Figure (11.3) shows the method
for selecting a number of dimensions for the scaled down map. A 3 dimensional
map provided stress of 13.57 and 3 clusters. in a model described as ‘spherical,
varying volume (VII) with 3 components’. These components are represented
in Figure (11.4). Cluster A contained long regressions into early parts of the
sentence.

Table 11.3: Coefficients for fixed effects from a multilevel model of member-
ship of distribution of cluster A

Estimate Std. Error z value Pr(> |z|)

Head Position 0.13 0.22 0.60 0.55
Sentence Type -0.25 0.23 -1.10 0.27
Head Position x Sentence Type 0.58 0.22 2.58 0.01
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Figure 11.3: Plot illustrates how a lower dimensional representation of scan path
similarity space was chosen
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Figure 11.4: Plot shows the scan path that sits nearest the centroid of each
cluster. scan paths from different conditions had different numbers of words be-
fore disambiguation. Sentences were aligned with disambiguation at word 10 by
padding the start of sentences with fewer words using null words. This means
that the word number 10 is the disambiguation in every condition, but leftmost
extent of the regression pattern typified as A is a fixation that falls in different
words across conditions. The reason for pursuing cluster A is not that it targeted
a particular word, but that it moved furthest away from disambiguation.
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Figure 11.5: Distribution of category A scan paths

The focus is now on the question whether cluster A regressions were evenly
distributed over the treatment conditions. Every trial was treated as either belong-
ing or not belonging to cluster A. A multilevel model was constructed that treated
head position and their interaction as fixed effects with corresponding random ef-
fects in a maximal model. This model showed that although neither main effect
was significant there was a significant interaction. The effect of head position
manifested differently according to sentence type, with a bigger sentence type
difference in late than in early head position.

Model evaluation results In this section the predictions from the computational
parsers are evaluated against the human behavioural results. Entropy reduc-
tion correctly predicts a NP/Z disadvantage but wrongly predicts a disadvantage
for late head position. Entropy reduction was negatively correlated with RPD
(r(539) = −.10, p = .02). Phrase structure surprisal correctly predicts a NP/Z
disadvantage and also correctly predicts a disadvantage for early head posi-
tion. Phrase structure surprisal was positively correlated with RPD (r(539) = .16,
p < .001). Dependency surprisal correctly predicts the NP/Z disadvantage, but
only correctly predicts the direction of the early head position disadvantage in
the NP/Z cases. In the NP/S cases it wrongly predicts an early head position
advantage. Dependency surprisal was weakly positively correlated with RPD
(r(539) = .06, p = .18). Dependency retrieval time correctly predicts an early
head position disadvantage but wrongly predicts a disadvantage for NP/S. De-
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pendency retrieval was positively correlated with RPD (r(539) = .15, p < .001).

11.5 Discussion

First pass reading time and regression path duration showed the expected main
effect that early head position induced more reading time than late head posi-
tion. This disadvantage for early head position was also marginal in frequency of
regression.

The crucial question for this experiment was whether the early head disad-
vantage would manifest differently in the NP/Z (NP, Z ) cases than in the NP/S
NP/S conditions. It was expected that early head position would induce more
difficulty than late head position and that NP/Z would be harder than NP/S, and
that the disadvantage of NP/Z would be greater in the early head positions than
it would be in the late head position sentences.

There was a very significant interaction in the distribution of scan paths that
went back further than the ambiguously attached NP, but this interaction effect
was not the one predicted. When these scan paths were made from early head
position sentences, they were more common in early NP/S than in early NP/Z.
When these scan paths were made from late head position sentences this turned
around, with more made from late NP/Z than from late NP/S.

Phrase structure surprisal performed best out of the computational predic-
tions.
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Chapter 12

E6: Head position interaction
effects: part 2 long phrases

This experiment implements a head position manipulation in sentences with longer
ambiguously-attached noun phrases. The longer phrases showed significant ef-
fects of head position in regression path duration and time spent regressing, as
well as interaction effects between head position and sentence type in regression
path duration.

12.1 Introduction

This section provides a further test of the Diagnosis model, especially the pre-
diction that sentence type modulates the head position effect. I report the effects
of extending the material in the ambiguously attached noun phrase further than
was done in the previous experiment. The phrase is extended with an embedded
relative clause.

The linguistic phenomenon under consideration is the difficulty associated
with moving syntactic units that have some non-negligible internal structural com-
plexity themselves. The question whether this difficulty is influenced by sentence
type is addressed.

Fixed effects were head position, sentence type, and their interaction effect
head position X sentence type. Head position referred to whether the syntactic
head of the ambiguous noun phrase appeared early in the clause or late in the
clause and had two levels: early, and late. sentence type referred to whether the
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required repairs were licensed or not by the GDP and had two levels: NP/S for
licensed cases, and NP/Z for unlicensed cases. Random effects were participant
and item.

The head position effect is predicted by the Decay model and others that
share its commitment to the decay of activation with increasing content interven-
ing between the onset of activation and its later measurement at disambiguation.
The prediction is that the early head position sentences should cause more diffi-
culty than the late head position sentences because of more intervening material
between the onset and resolution of syntactic ambiguity. There is no prediction
for a difference between the sentence types used here, so no head position by
sentence type interaction is predicted either. The Decay model is compatible with
the interaction but does not predict it, and cannot account for it.

The Diagnosis model predicts that sentence type will modulate the head posi-
tion effect, with NP/S yielding benefits only while the activation has not yet fallen
below a threshold for detection. The prediction is that NP/Z should be harder
than NP/S and that the extra difficulty due to NP/Z should be greater only for the
late head position sentences. For the early head position sentences the Diagno-
sis model predicts that insufficient error signal remains at disambiguation for the
NP/S sentence type to bring about a benefit versus NP/Z.

In these materials, the syntactic head of the ambiguous noun phrase appears
either early in phrase-initial position or late in phrase-final position. For the early
conditions, the ambiguous noun phrase is achieved by adding a relative clause
like ‘who was smart’. For the late conditions, the ambiguous noun phrase was
achieved by adding an adjectival phrase like ‘the tall and smart’ before the noun.
Examples of the sentences used in the experiment follow. The sentences were
presented in a monospaced font and with all the words on a single line.

(12.1) After the cadet saluted the captain who was smart walked to the gates of
the enclosure. (Early NP/Z

(12.2) After the cadet saluted the tall and smart captain walked to the gates of
the enclosure. (Late NP/Z)

(12.3) The cadet noticed the captain who was smart walked to the gates of the
enclosure. (Early NP/S)
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(12.4) The cadet noticed the tall and smart captain walked to the gates of the
enclosure. (Late NP/S)

3

After the cadet saluted the captain who was smart walked to the gates of the enclosure.

After the cadet saluted the tall and smart captain walked to the gates of the enclosure.

The cadet noticed the captain who was smart walked to the gates of the enclosure.

The cadet noticed the tall and smart captain walked to the gates of the enclosure.

Figure 12.1: Figure shows how the materials were arranged on screen

12.2 Method

The method section gives details of participants, apparatus, and procedure.

Participants Participants were forty native speakers of British English who were
students of Psychology at the University of Exeter, were given partial course credit
to participate in the experiment. All had normal or corrected to normal vision,
were naive to the purpose of the experiment, and were aged between eighteen
and thirty-four.

Apparatus The apparatus used was the same as in the previous chapter. The
description is given again here for convenience. An SR Research Eyelink II head-
mounted eyetracker was used to record participants’ eye movements with a sam-
pling rate of 500 Hz. Participants read sentences displayed on a 19 inch Iiyama
Vision Master Pro video monitor at 1024 x 768 resolution at a refresh rate of
60 Hz. Viewing was binocular but only the right eye was recorded. Participants
sat in a dimly lit room in front of the computer at a viewing distance of approx-
imately 75 cm the average viewing distance was approximately 75 cm. At this
viewing distance, and assuming that 1 character had 2 mm width on screen, a
single character subtended 0.153° of visual angle, and approximately 6.5 char-
acters subtended 1° of visual angle. The font used was Courier New 12 point.
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All sentences in this experiment were displayed on a single line with a maximum
length of 100 characters. A 9 point calibration procedure was used, on which
participants were required to achieve a score of ‘good’. Each trial started with a
drift correction routine where the participant was required to fixate a target that
appeared in the same location as the first character of the sentence would subse-
quently occupy, and then required to press a button on the gamepad while fixating
this point to start the trial.

Procedure Participants were instructed to read silently for comprehension at a
comfortable speed. The practice trials and experimental trials were implemented
as separate consecutive blocks. The experimental trials were randomised by Ex-
periment Builder each time the experiment was run, i.e., in a different order for
each participant, with the constraint that a maximum of two trials of a given type
could appear in a continuous sequence. There were four practice sentences, fol-
lowed by a drift correction routine preceding the experimental block containing 96
sentences, comprising 24 in experimental conditions (6 in each of 4 conditions);
24 foils and 48 fillers. Participants were rotated over one of four lists, imple-
menting a Latin square design. 32 of the trials (including 8 of the experimental
conditions) were followed immediately by a comprehension question. This was
a simple question about the sentence immediately preceding that required the
participant to make a yes or no response using the appropriate trigger button on
the gamepad. The full list of questions asked may be found in the Appendix. The
whole procedure took about 20 to 40 minutes, depending on the participant.

12.3 Simulation data

Both types of parser reproduced the head position effect in their surprisal mea-
sures, but only phrase structure surprisal also accounted for the interaction with
sentence type. Dependency retrieval time produced wrong predictions. Entropy
reduction predicted the wrong head position effect but was sensitive to the sen-
tence type effect.

Dependency surprisal The model had to be greatly simplified before it would
converge, retaining only a random intercept for items. Effects of word length and
word frequency were both non-significant (β < .01, SE < .01, t = .6 and β < .01,
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Table 12.1: Computational measures at the disambiguating word

Head Position sentence type DSURP DTIME TSURP ER

early NP/S 2.47 199.41 13.04 1.25
early NP/Z 2.47 199.41 13.72 1.40
late NP/S 1.21 211.49 9.93 2.05
late NP/Z 1.21 211.49 10.87 2.16

SE < .01, t = 1.1 respectively). The head position effect was significant (β < .01,
SE < .01, t = 383.3). Effects of sentence type and the sentence type x head
position interaction were both effectively incalculable (β < .01, SE < .01, t = 0.0

and β < .01, SE < .01, t = 0.0 respectively).

Dependency retrieval Dependency retrieval did not capture any of the human
effects. It was insensitive to sentence type and predicted the wrong direction for
the head position effect. Effects of word length and word frequency were both
non-significant (β < −.01, SE < .01, t = −.48 and β < −.01, SE < .01, t = −.50

respectively). The head position effect was significant, but in the wrong direction
(β = −6.0, SE < .01, t = −23.44). Effects of sentence type and the sentence type
x head position interaction were both effectively incalculable (β < −.01, SE < .01,
t = 0.0 and β < .01, SE < .01, t = 0.0 respectively).

Phrase structure surprisal The model had to be simplified before it would con-
verge. The interaction effect over items had to be dropped but slopes were re-
tained for each of the main effects over items. The effect of word length was not
significant (β = −.22, SE = .14, t = −1.5). The effect of word frequency was sig-
nificant (β = −1.06, SE = .12, t = −8.93). Phrase structure surprisal has the right
slope for the head position effect, which was significant (β = 1.49, SE = .14, t =

10.71). The effect of sentence type was significant and in the same direction as
the human measures (β = −.40, SE = .11, t = −3.71). It is also sensitive to the
interaction effect with sentence type, with the effect in the same direction as in
the human measures (β = .07, SE = .01, t = 6.09).

Phrase structure entropy reduction The model had to be simplified before it
would converge. The interaction effect over items had to be dropped but slopes
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were retained for each of the main effects over items. Word length and word
frequency were not significant in the model (β = .06, SE = .08, t = .758 and
β = .03, SE = . − 7, t = .502 respectively). The main effect of head position
was significant, showing a disadvantage of late head position in the opposite
direction to phrase structure surprisal (β = −.39, SE = .10, t = −4.09). The main
effect of sentence type was a significant NP/Z disadvantage (β = −.07, SE =

.02, t = −2.67). There was a significant head position x sentence type interaction
(β = −.007, SE = .003, t = −2.47).

12.4 Eyetracking data

In this section I give the results from analysis of the standard em measures. For
each measure, a LMER model was fitted, with model specification given here:
fixed effects for head position and sentence type and their interaction; covariates
for centred word length and centred logged word frequency; random intercepts for
participants and items, and random slopes for the head position x sentence type
interaction effect at each level of participants and items, i.e. a maximal model.

First fixation duration No effects were significant in FFD. Effects of word length
and word frequency were β = 3.01, SE = 2.8, t = 1.06 and β = −1.468, SE =

2.2, t = −0.66 respectively. There was a slight tendency towards a disadvantage
of early head position, but it was non-significant (β = 7.30, SE = 6.59, t = 1.11).
There was no effect of sentence type (β = −1.24, SE = 8.19, t = −.15). The
head position x sentence type interaction was non-significant (β = −3.78, SE =

6.34, t = −.60).

First pass reading time The only significant effect in FPRT was of word length
(β = 9.8, SE = 4.05, t = 2.44). The effect of frequency was non-significant (β =

−2.17, SE = 3.25, t = −0.67). The main effect of head position was not significant
(β = −.43, SE = 8.85, t = −.05). The main effect of sentence type was not
significant (β = −14.80, SE = 10.01, t = −1.48). The interaction effect was not
significant (β = 9.08, SE = 9.13, t = .99).

195



Ch 12: Experiment Six

Table 12.2: Human measures at the disambiguating word

Head Position sentence type FFD FPRT RPD TSR PREG

early NP/S 248 285 438 153 0.21
early NP/Z 253 291 508 218 0.29
late NP/S 246 276 385 108 0.17
late NP/Z 242 300 382 82 0.11

Regression path duration Effects of word length and word frequency were
non-significant (β = 16.72, SE = 16.43, t = 1.02 and β = −8.76, SE = 13.09, t =

−0.67 respectively). RPD yielded a significant disadvantage of early head position
(β = 87.38, SE = 30.31, t = 2.88). The main effect of sentence type was non-
significant (β = −32.29, SE = 28.17, t = −1.15). There was a trend for the early
head position disadvantage to be larger for NP/Z than for NP/S but this was non-
significant. (β = −34.63, SE = 28.71, t = −1.21)

Time spent regressing Effects of word length and word frequency were non-
significant (β = 3.82, SE = 16.09, t = 0.24 and β = −9.78, SE = 12.71, t = −0.77

respectively). The results from analysis of TSR were the same as for RPD, with a
disadvantage of early head position (β = 86.93, SE = 30.87, t = 2.82) but no main
effect of sentence type (β = −17.16, SE = 28.44, t = −.60), and no significant
interaction (β = −43.10, SE = 28.88, t = −1.49) although there was again a trend
for the early head position disadvantage to be greater in the NP/Z conditions than
in the NP/S conditions.

Probability of a regression The model of PREG had to be simplified before it
would converge. The least simple model that converged successfully contained
no random slopes but only random intercepts. Effects of word length and word
frequency were non-significant (β = 0.09, SE = 0.09, z = 0.95, p = 0.34 and
β = −0.06, SE = 0.07, z = −0.80, p = 0.42 respectively). PREG yielded a disad-
vantage of early head position (β = .40, SE = .09, z = 4.32, p < .001. There was
no main effect of sentence type (β = .03, SE = .09, z = .29, p = .77). The head
position x sentence type interaction effect was significant, with NP/Z tending to
be harder than NP/S in the early head position cases, but NP/S harder than NP/Z
in late head position (β = −.27, SE = .09, z = −2.83, p < .05).
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Figure 12.2: How coarse behaviours were distributed over conditions

Scan path analysis I divided scan paths into 4 types for a coarse-grained view
of behaviours at disambiguation. These types were (1) skip; (2) progress; (3)
refixate; (4) regress. Next I focused on the regress cases and asked whether
within this class of behaviour there were subtypes that were over-distributed in
the early NP/Z condition purported to be most difficult for the human parser.

Distribution of disambiguation behaviours A description of the distribution
of behaviours at disambiguation follows. Progress 562, 58%; regress 168, 18%;
refixate 130, 14%; skip 100, 10%. The way in which counts varied over conditions
within this classification is plotted in Figure 12.2.

Distribution of regression strategies In this section I limit the scope to re-
gressions from disambiguation and consider their shape. An initial scasim run
was computed to check for outliers using a 2.5 sd threshold. The initial scasim
run did not identify any outliers so the full data set numbering 168 regressions
was submitted to multidimensional scaling and cluster analysis. Figure (12.3)
shows the method for choosing a lower-dimensional representation of the scan
path similarity space. A 4 dimensional map provided stress 11.0 and 12 clusters
in a model described “VEI (diagonal, equal shape) model with 12 components”.
These 12 components are represented in Figure 12.4 which plots the scan path
that sits nearest the centroid of each cluster or component. Cluster E was indica-
tive of long regressions back to early parts of the sentence.
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Figure 12.3: Plot illustrates how a lower dimensional representation of scan path
similarity space was chosen
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Figure 12.4: Plot shows the scan path that sits nearest the centroid of each cluster
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Distribution of cluster E regressions In this section I focus on the distribu-
tion of Cluster E regressions over the treatment conditions. Diagnosis predicts
that this pattern should be more common in NP/Z than in capture. This is be-
cause Diagnosis predicts that capture should be resolvable by consultation with
the grammar. There should be no need for such movements seeking out termi-
nals in capture. In the early head position cases Diagnosis predicts that this extra
difficulty for NP/Z will be exacerbated versus the late head position cases.

Every trial was treated as either leading to membership of cluster E or not
leading to it, as a binary dependent variable. A multilevel model of membership
was constructed that treated head position and sentence type and their interac-
tion as fixed effects, with corresponding random effects in a maximal model. This
model failed to converge. A simpler model was constructed in response, that left
out only the term representing the interaction effect over items. This model, only
slightly simpler, converged. No effects were significant in the model, indicating
that the strategy of interest was approximately equally distributed over the treat-
ment conditions (head position effect, β = 5.82, SE = 4.63, z = 1.26, p = 0.21;
sentence type effect, (β = −5.89, SE = 4.65, z = −1.27, p = 0.21); head position
x sentence type interaction, (β − 3.56, SE = 4.07, z = −0.88, p = 0.38).

Model evaluation results In this section the predictions from the computational
parsers are evaluated against the human behavioural results. Entropy reduction
is sensitive to the NP/Z disadvantage but wrongly predicts that the late head po-
sition conditions were harder than the early head position conditions. Entropy
reduction was very weakly negatively correlated with regression path duration
(r(858) = −.005, p = .87). Phrase structure surprisal is sensitive to the NP/Z
disadvantage and the early head position disadvantage. However it predicts
that the NP/Z disadvantage is greater in late head position sentences whereas
the human data show that the NP/Z disadvantage diminishes or turns around
into a NP/S disadvantage in late head position. Phrase structure surprisal was
significantly positively correlated with regression path duration at disambiguation
(r(858) = .11, p = .002). Dependency surprisal is sensitive to the early head posi-
tion disadvantage but predicts no effect of sentence type and no interaction effect.
Dependency surprisal was significantly positively correlated with regression path
duration at disambiguation (r(858) = .13, p < .001). Dependency retrieval time
wrongly predicts a disadvantage for late head position. It is not sensitive to the
effect of sentence type and neither does it predict the interaction effect. There
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was a weak negative correlation with regression path duration at disambiguation
(r(858) = −.02, p = .49).

12.5 Discussion

There were no significant effects on FFD or FPRT. The late temporal measures
detected significant head position effects, with early head position causing longer
RPD and TSR, making a difference of about 86 ms. The percent regressions
measure indicated that participants were significantly more likely to make a re-
gression in the early head conditions, and that this likelihood was significantly
modulated by sentence type.

The shape of the interaction indicates that while there was only a small disad-
vantageous effect of early head position for the NP/S sentence type, there was a
relatively large early head position cost for the theft sentence type. Although the
‘late’ human measures indicate trends towards longer regression times in theft
than capture, these trends do not emerge significantly. The pattern of human
measures can be interpreted in line with the Diagnosis model. Because the GDP
licenses the repair operations in capture by means of a subcategorisation frame
look-up, there is less need to revisit earlier material in capture than theft. In con-
trast, because there are no GDP links in the theft sentence type, repair operations
for theft sentence types must be conducted at the terminal level. The eyes are
employed to seek out a promising terminal.

Turning now to the scan path level analysis, the mere presence of a disambig-
uation strategy like E provides some support for the argument that repair is nec-
essary. Participants did make these movements in response to the materials, and
the fact that the distribution over the treatment conditions is approximately equal
may indicate that this strategy was deployed on a subset of each of the sentence
types. Such an account claims that some subset of participants resolves ambigu-
ity by repair, but that participants are not more likely to deploy repair in any one
of the treatment conditions.
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Chapter 13

Conclusions

This chapter summarises the conclusions that can be drawn from the experimen-
tal work in the thesis, and presents some suggestions for future work.

13.1 A note on sparseness of data

Because the regressive eye movements of interest in this thesis happen quite
rarely this can lead to sparse data when examining the distribution of those events
over another variable (e.g., which word a regression saccade landed in). This
sparseness can prevent lmer models converging. It can also lead to type II er-
rors. It can also distort the calculations in scasim. It can also weaken claims
about the representativeness of patterns observed over these variables. The
experiments in this thesis used sample sizes that became standard when aggre-
gated ANOVA was the main statistical framework - the results from the analyses
in the thesis suggest that larger sample sizes should become standard for ana-
lysing rare events like regressions in reading now that modern methods like lmer
that can gain better purchase with very rich data have supplanted ANOVA. How-
ever, analyses with small sample sizes like those used in the thesis can still reach
statistical significance, and we should not disregard altogether such significant
effects as we observe, even when they are computed over small sample sizes -
rather we should take the sample size into account when interpreting the effects.
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13.2 Regressions: spatial and linguistic properties

In the three experiments that manipulated a spatial factor (experiments one to
three) there is evidence that regressive eye movements are initially driven by lin-
guistic factors and then modulated by spatial factors. In these experiments, the
manipulated linguistic factor was ambiguity and the manipulated spatial factor was
the layout of the materials on screen. In experiments one and two the position
of the disambiguation was manipulated. In experiment three the position of the
ambiguously attached material was manipulated. Overall these experiments sug-
gest that regressive eye movements are initially driven by linguistic factors and
then modulated by spatial factors.

In experiment one, the early measure FPRT was sensitive to ambiguity (see
7.4 on page 129). In experiment two the early measure FPRT was sensitive to
ambiguity (see 8.4 on page 142). In experiment three the early measure FPRT
was sensitive to ambiguity (see 9.4 on page 155).

Layout affected the later measures in the experiments that manipulated the
spatial position of the launch site, and tended to affect the later measures in
the experiment that manipulated the spatial location of the ambiguously attached
material. In experiment one, effects of layout were present in TSR, PREG, and
scan path shape (see 7.4 on page 129; 7.4 on page 129; and 7.4 on page 133).
In experiment two, effects of layout were present in PREG and scan path shape
(see 8.4 on page 143 and 8.4 on 148). When the location of the misanalysed
ambiguous material was manipulated, the early measure FPRT was sensitive to
ambiguity (see 9.4 on page 155). There were trends towards effects of location
of misanalyses material in the later measure scan path shape (see 9.4 on page
158).

13.3 Evidence for human repair parsing

Models of parsing that do not execute repair have only limited coverage of the
human data. The extent of their coverage is that the model’s dependent variable
increases when human reading times increase and when regression frequency
increases. The models lack coverage of variance in regressive scan path char-
acteristics. Human difficulty produces responses of qualitatively different kinds,
different reading time patterns on the one hand and different regression strategies
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on the other hand, but the models produce responses of only one kind - they can
index the reading time effects but not the distribution of regression strategies.

Most accounts of sentence parsing assume that the reader accomplishes
word recognition successfully as a precursor to the syntactic process of integrat-
ing a newly identified word into the partial syntactic structure of the sentence.
Bicknell and Levy (2010a, 2010b, 2011); Levy et al. (2009) consider the conse-
quences of an alternative assumption about word recognition. They start from the
observation that perceptual input is inherently noisy, and note that this introduces
doubt into the word recognition process, particularly in case where the word
in question has orthographic near neighbours, e.g., flour which has the near-
neighbour floor. Given the assumption of noisy perception, floor must sometimes
be mis-read as flour and vice versa. Levy et al propose that readers maintain
"probability distributions [. . . ] extended over the content of the sentence as well
as over its analysis" (Levy et al., 2009, p. 21087, my emphasis).

This contrasts with the general assumption that readers maintain a veridical
representation of prior content. If readers do maintain probabilistic beliefs about
the prior contents of a sentence, then when they encounter a word that is impossi-
ble to integrate with the existing partial representation of the sentence’s meaning,
this could cause a change in those beliefs: perhaps the the failure to integrate the
new word is due to having mis-perceived an earlier word of the sentence, which
would lead to an incorrect representation of the sentence’s meaning so far. Levy
et al suggest that such changes of belief about prior contents "would be likely to
trigger regressive eye movements to earlier parts of a text and the locus of uncer-
tainty." (p. 21087). This account offers an explanation for the fact of regression,
and it also offers an explanation of where regressions are directed. However, the
regressions indicated by this model would only target words with orthographic
near neighbours. In its current form the model fails to offer an explanation for
regressions that arise, not as a result of having mis-identified an earlier word, but
as a result of having made an incorrect choice from among the various structural
roles that a correctly-identified word can play in a representation of a sentence’s
structure. As a consequence, the model in its current form does not offer explana-
tory purchase on the cases examined in this thesis. However, if the model was
extended so that words with alternative syntactic realisations had their syntactic
realisation represented probabilistically rather than all-or-none, this would offer a
good explanation of regressions that target words that have ambiguous syntactic
assignments. This would explain regressions that target the onset of ambiguity in
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this thesis as regressions that target words with alternative syntactic realisations.
However this does not obviate a repair mechanism, because once the parser has
regressed to a word with alternative syntactic realisations, it must have a way
to follow through the syntactic consequences of alternative realisations, and this
latter process is equivalent with the notion of repair that is used in the thesis.

In order for the replacement models to offer an accurate account of human
parsing while retaining their central commitments they would have to show that
there is a threshold in the value of their response variable, such that when the
threshold is exceeded this triggers a particular type of regression strategy. Cur-
rently the models can predict the fact of a regression but they cannot predict its
shape. To the extent that regressions have shapes that are linked to the linguistic
manipulations, the replacement parsers fall short of covering the data.

What is the best case scenario for replacement theories with respect to eye-
tracking evidence? The nature of their coverage is that they predict the time
that the parser takes to settle on a replacement parse. This settling time could
be linked to regressions such that small settling times lead to short regressions
that extend backwards only a short way, and large settling times lead to long
regressions that extend backwards a long way. If this was sufficient to account
for the observed evidence then we would be unable to reject the replacement
theories. My claim is that accounts that link settling time to regression shapes
using this simple index are not sufficient to account for the data. In what follows I
take each experiment in turn and show that a simple index linking settling time to
regression length (spatial length) is insufficient to account for the data from that
experiment.

In experiment one, an account that links settling time to regression length
would predict that there should be regressions of length one word, two words,
three words and so on up to the maximum possible regression length of twelve
words. However in that experiment the best clustering of the regression shape
data indicates (see Figure 7.7 on page 132) that there are clusters of regressions
of length 0 (regressions that comprise only refixations); two types of regressions
back one word (one type that refixates the disambiguation and another type that
does not); regressions back two words followed by a refixation on the disambig-
uation; regressions back six words; and regressions back eight words. There
are no clusters going back three words; no clusters going back four words; no
clusters going back five words; no clusters going back seven words; and no clus-
ters going back for numbers of words between nine and twelve words. Although
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the absence of these clusters could be due to sparse data, the unevenness of
the distribution of regressions over the possible targets suggests that there is no
smooth function linking settling times to regression lengths. Instead it seems that
there is a space near the disambiguation that attracts regressive fixations as a
function of distance from disambiguation, and then particular words that have lin-
guistic importance and that serve as attractors for regressive fixations over longer
distances.

In experiment two these words that serve as attractors are the head of the
misattached noun phrase (attracting the cluster of regressions that goes back six
words in Figure 8.4 on page 146) and the verb to which this noun phrase is mis-
attached (attracting the cluster of regressions that goes back eight words). There
were too few regressions going back six words for analysis: however, there were
enough regressions going back eight words for an analysis that shows that these
regressions were unevenly distributed over the conditions (see 8.4 on page 148).
For a replacement account to predict these accurately, it would have to propose
that there are different indices linking settling time to regression length depend-
ing on how the materials are laid out on screen. Since no replacement account
does propose such a thing, replacement accounts would have to be endowed
with a representation of spatial layout of materials before they could start to offer
a principled account of regressions that have different spatio-temporal properties
as a function of text layout. Also replacement accounts do not explicitly have a
notion of ambiguity, except to the extent that ambiguity earlier in the sentence af-
fects settling time on the disambiguation. Repair accounts offer a more principled
treatment of these phenomena. The way in which they account for regression
shapes in this experiment is that they grant privileged status to linguistically rel-
evant word-targets, and cast the process of regressing as a search for these
word-targets. Repair accounts only have to be augmented with a notion that re-
gressions to the line above the launch site are inhibited for oculomotor reasons
before they can account for the uneven distribution (over conditions of text layout)
of regressions that go back eight words. To account for the uneven distribution of
these regressions over different conditions of ambiguity, repair accounts can ap-
peal to linguistic relevance - words that take part in the structural ambiguity serve
as more attractive targets of regressions that seek information that can help to
resolve ambiguity by repair.

In experiment three scan path analysis did not reveal any statistically sig-
nificant patterning of regression destination and linguistic manipulation (see the
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analyses in 9.4 starting on page 158).

In experiment four, there is more evidence for linguistically targeted regres-
sions. Regressions that targeted the onset of ambiguity were significantly over
represented in the ambiguous theft condition that readers found most difficult (see
Figure 10.8 on 174). Replacement accounts struggle to account for this target-
ing - they could claim that increasing difficulty as measured by the settling metric
leads to longer regressions, but they cannot account for the over-representation
of linguistic targeting in a given condition.

In experiment five, long regressions were made unevenly over the conditions
(see 11.4). These long regressions targeted different words in each condition
but always went back further than the misattached noun phrase. Replacement
accounts could cope with this if it were not also for the uneven distribution of
these movements. There was a significant interaction between head position and
sentence type in this experiment for scan path shape, showing that non-launch-
adjacent regressions are distributed differently over the conditions. Replacement
accounts struggle to account for this distribution.

In experiment six the long and complex regressions were approximately equally
distributed over the conditions (see 12.4). This does not offer any additional rea-
sons to prefer repair accounts.

Selectivity of regressions The evidence from this thesis and from other inves-
tigations (e.g., Inhoff & Weger, 2005; Weger & Inhoff, 2007) into the selectivity of
regressions made in reading suggest that regressive eye movements are at least
partially selective.

Purpose of regressions R. Booth and Weger (2012, Experiment 3) changed
the target words in normal sentences after reading. They found that when the
eyes later regressed to these words, “participants generally remained unaware of
the change, and their answers to comprehension questions indicated that the new
meaning of the changed word was what determined their sentence representa-
tions”. The authors claim that these results suggest that readers use regressions
“to reread words and not to cue their memory for previously read words”.

Should replacement accounts be discarded in favour of repair accounts?
The best-performing replacement account (a phrase structure parser generating
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an Entropy Reduction measure) is capable of indexing the human reading time
and regression probability data for most of the experiments in the thesis. On
this basis, there is an argument that since this parser does not implement repair,
and yet manages to index some kinds of human data, it is not necessary to as-
sume a repair mechanism in the human parser. However, the scan path analyses
in the thesis show that there is another dimension to human behaviour at dis-
ambiguation, a spatio-temporal aspect to the human regressions data, and that
none of the replacement parsers is endowed in principle with the ability to cover
this kind of data. If the scan path analyses did not add anything to the findings
from standard temporal and probabilistic measures, then the proper conclusion
would be that the performance of the entropy reduction parser shows that it is
not necessary to endow the human parser with a repair strategy. So the question
whether replacement models of the human parser can be disregarded amounts
to the question whether the results of the scan path analyses show anything ad-
ditional to the standard analyses. The thesis provides evidence that regression
spatio-temporal strategies are deployed differently according to the linguistic de-
mands of the particular disambiguation required, in some situations. I argue that
this amounts to a demonstration that full coverage of the human parser at dis-
ambiguation requires machinery for repair over and above the machinery used in
normal parsing.

In normal first pass parsing, the problem can be characterised as one of as-
signing new words to an incrementally built representation of the sentence’s struc-
ture. In repair parsing, the problem can be characterised as finding, in response
to an error signal, a representation of the sentence’s structure that does away
with the error signal. These seem to me to be fundamentally different problems,
both of which the human parser is good at solving. There seems to be good ev-
idence that normal first pass parsing is well modelled by a replacement parser
that operates over a sufficiently rich grammar formalism. There also seems to
be good evidence that human behaviours at disambiguation include targeted,
linguistically-guided sequences of regressive movements which a straightforward
entropy reduction parser is under-equipped to model. The human parser may be
a hybrid of the two strategies – on the one hand a set of probabilistic, exposure-
sensitive first pass parsing routines that can maintain several candidate analyses
ranked in memory and replace one with another in response only to the prop-
erties of the incoming word and the existing partial representation; and on the
other hand a set of problem-solving strategies that can take the existing currently-
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preferred candidate analysis and carry out repair operations to yield a different
representation that is both compatible with what has been read so far, consistent
with the grammar, and also capable of offering a place for the new word to fit in.

Such a hybrid parser might seem to lack mathematical elegance when com-
pared with the entropy reduction parser considered in the thesis, and is certainly
less parsimonious. However, an appeal on the basis of parsimony should not
be allowed to succeed if the most parsimonious model is unable to cover such a
great part of the range of human behavioural responses to disambiguation, just
as the replacement parsers are unable to account for the spatio-temporal aspect
of the human regression behaviour in the thesis. On this basis the existing data
from the thesis and from previous work showing patterned linguistically-guided
search behaviour in regressions from disambiguation support a hybrid model of
the human parser: one that carries out first-pass parsing in the style of the TD-
PARSE parser, but is capable of repairing a currently-favoured analysis to create a
new analysis that is not part of the existing set of top-ranked alternatives and that
can support the integration of the new word. The justification for recommending a
parser that does have machinery for repair is to have a model that achieves broad
coverage of the human behavioural phenomena at the expense of parsimony of
mechanism where these principles conflict.

What kind of repair does the best evidence support? Given that the evi-
dence supports the inclusion of machinery for repair into a model of the human
parser, and that there are several proposals for constraints on the repair machin-
ery, it is natural to ask whether the data favour any particular repair proposal over
the others.

The principal claim of the Diagnosis model (Fodor & Inoue, 1998) for the sen-
tences examined in this thesis is that repairs are more difficult for NP/Z sentences
than for NP/S sentences, and that head position should interact with this effect of
sentence type. Experiment Four deals with the prediction for extra disambig-
uation difficulty for NP/Z sentences versus NP/S sentences; and Experiments
Five and Six deal with the prediction for an interaction with head position.The
data from Experiment Four show that disambiguation (and not just normal pars-
ing) is harder for theft (NP/Z) than for capture (NP/S) and that the difficulty is
manifest in RPD and marginally in PREG. Also scan path analysis showed that
a regression strategy that can be characterised as search for the onset of am-
biguity was over-distributed in the ambiguous theft cases. This shows that the
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disambiguation response in theft (but not capture) requires the onset of ambigu-
ity to be re-examined, possibly to retrieve alternative subcategorisation frames for
the ambiguous verb and its temporarily attached NP. In capture cases the parser
appears to be able to carry out disambiguation without re-inspecting earlier ma-
terial. The Diagnosis claim that repairing capture sentences can be done with the
aid of the grammar under the GDP, but that theft sentences can only be resolved
by re-inspecting the string of terminal words, is entirely compatible with the data
from this experiment. In Experiment Five, with a short ambiguous phrase that
either had the head at the beginning or at the end of the short phrase, Diagnosis
predicted an interaction between head position and sentence type, with the cap-
ture cases both being soluble with reference to the grammar and the theft cases
requiring a terminal search that must be longer for early head position than for
late head position because of the relative numbers of intervening words. While
head position affected FPRT, RPD, and marginally PREG as a main effect, head
position did not affect sentence type in these measures. The standard measures
do not support the Diagnosis prediction for the sentence type x head position
interaction. The scan path analyses do not offer any support for the Diagnosis
prediction either. In Experiment Six, with longer ambiguous phrases, the num-
ber of terminals that the parser must revisit in the early head position increases,
and this seems to offer a better chance for the theft disadvantage to be modu-
lated by head position, since in capture the length in terminals is irrelevant due
to capture using the grammar to perform disambiguation. In this case early head
position exerted a main effect on RPD that was not modulated by sentence type,
and so does not support the Diagnosis prediction. Early head position exerted
an effect as part of a head position x sentence type interaction in PREG in the
direction predicted by the Diagnosis model. However this only speaks to how
likely a regression was and the Diagnosis claim is cast in terms of the duration
of a search through terminals, so this PREG interaction offers limited support for
the Diagnosis claim.

The Decay model (Ferreira & Henderson, 1991b, 1998) claims only that early
head position is harder then late head position because roles get assigned ear-
lier in early head position and have therefore decayed more in early head po-
sition cases by the time disambiguation is reached. Experiments Five and Six
manipulated head position. In Experiment Five the main effect of head position
manifested in FPRT, RPD, and marginally in PREG - all of these effects can be
taken as support for the Decay model. The fact that head position did not interact
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with sentence type in these measures does not diminish the support for Decay
in the same way that it does for Diagnosis. In Experiment Six, the main effect
of head position manifested in RPD, and PREG. An interaction was also found
with sentence type in PREG. The main effects support the Decay model, and the
interaction does not diminish the support for Decay. So the Decay model finds
some support in the evidence from the thesis. However it is a model that makes
only limited claims relative to the Diagnosis claims, so it is perhaps not surprising
that the Decay claims are borne out by the evidence.

Deciding on a recommendation for the type of repair that the human parser
carries out requires a comparison between a model that makes strong claims
(Diagnosis) with moderate support and one that makes relatively weak claims
(Decay) but with strong support. The head position main effects do not adjudi-
cate between Diagnosis and Decay – both predict these main effects. The head
position x sentence type interaction effects do not offer additional support for Di-
agnosis – they are predicted but not detected in the human data. The ambiguity
x sentence type Experiment Four showed that when ambiguous NP/Z sentences
are compared with ambiguous NP/S sentences and their unambiguous counter-
parts, the extra difficulty due to sentence type was thrown into sharp relief, and it
was possible to see how regression shapes differed in this experiment according
to sentence type. The evidence from this experiment tips the balance in favour of
the Diagnosis model as a candidate for explaining how repair is carried out.

The Diagnosis model belongs in a space of models that distinguish between
destructive and non-destructive repair in the explanation of differential repair dif-
ficulty. For the Diagnosis model, the case where destructive repair is mandated
is labeled theft, and the case where non-destructive repair is possible is called
capture. As such the Diagnosis model is a particular example of a class of mono-
tonic repair model in the sense of Sturt (1998) and Sturt and Crocker (1996, 1997,
1998).

13.4 Importance of grammar formalism

Grammar formalism matters when it comes to modelling human reading data from
the laboratory with temporarily syntactically ambiguous sentences, even if not for
modelling eye movement corpus data for normal sentences. In the laboratory,
parsers that operate over a phrase structure grammar outperform parsers that
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Table 13.1: Summary table showing the coverage of the computational
measuresa

Parser Measure E1 E2 E3 E4 E5 E6 overall

Dependency Surprisal × × × X × (X) 1.5
Dependency Retrieval × × × × (X) × 0.5
Phrase Structure Surprisal (X) (X) × X X X 4.0
Phrase Structure Entropy Reduction (X) (X) X X (X) (X) 4.0

a Key. X represents good coverage of the human data; (X) indicates partial coverage; ×
indicates poor coverage of the human data. Assigning one point for good coverage, half
a point for partial coverage, and no point for bad coverage yields the overall score in the
final column.

operate over a dependency grammar, when performance is measured as the
extent to which the model’s response variable predicts the shape of reading time
effects (see Table 13.1). However, neither parsers operating over phrase structure
grammars nor parsers operating over dependency grammars are equipped to
predict particular regressive scan path strategies.

In experiment one, both dependency grammar measures were insensitive to
effects of ambiguity and line position by the disambiguating word (sections 7.3
and 7.3). Both phrase structure grammar measures for the disambiguating word
detected the effect of ambiguity that was present in RPD and PREG, and so are
marked in the table as constituting partial coverage of the human data, but neither
was sensitive to the layout manipulation (sections 7.3 and 7.3).

In experiment two, the eyetracking effect of ambiguity was present in PREG
(section 8.4). Neither of the dependency parser measures was sensitive to this
(sections 8.3 and 8.3), but both of the phrase structure parser’s measures were
sensitive to the effect of ambiguity (sections 8.3 and 8.3). The eyetracking data
showed an effect of line position too in PREG, but none of the parser measures
detected this. This is represented in the table as partial coverage for the phrase
structure grammar measures.

In experiment three, the human data at the disambiguating word showed a
significant main effect of ambiguity in RPD and PREG (sections 9.4 and 9.4).
There was also a non-significant main effect of layout in the eyetracking data.
The dependency parser made wrong predictions for these sentences, in both
measures (sections 9.3 and 9.3). For the phrase structure parser the picture
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was mixed: the surprisal measure made the wrong predictions, but the entropy
reduction measure made predictions in line with the eyetracking results (sections
9.3 and 9.3).

In experiment four, the eyetracking data (regression path duration) showed
main effects of ambiguity and sentence type and their interaction (section 10.4).
Dependency surprisal made the wrong predictions (section 10.3). Dependency
retrieval made the wrong predictions (section 10.3). Both of the phrase structure
grammar parser’s predictions were in line with the human data (sections 10.3 and
10.3).

In experiment five the eyetracking data showed a significant disadvantage
for theft in PREG (section 11.4) and a significant disadvantage for early head
position in RPD (section 11.4). Dependency surprisal made the wrong predictions
(section 11.3). Dependency retrieval predicted the head position effect (section
11.3). Phrase structure surprisal predicted both effects (section 11.3). Phrase
structure entropy reduction predicted the theft disadvantage but also predicted
the wrong direction for the head position effect (section 11.3).

In experiment six the human data showed an interaction between ambigu-
ity and head position with a theft disadvantage in the early head position cases
and a capture disadvantage in the late head position cases. Overall there was
disadvantage for early head position (sections 12.4 and 12.4). The dependency
surprisal measure had the right slope for the head position effect (section 12.3).
Dependency retrieval predicted the wrong slope for the head position effect (sec-
tion 12.3). Phrase structure surprisal was sensitive to the head position main
effect as well as to the interaction with sentence type, with directions of effects
lining up well with the human measures (section 12.3). Phrase structure entropy
reduction had the wrong slope for the head position effect, but the right slope for
the sentence type effect (section 12.3).

In experiment seven, across a series of comparisons with the human data, the
phrase structure parser emerged better than the dependency parser, but neither
managed to track the human data particularly well (section 12.5).

Parsers operating over phrase structure grammars have greater potential to
predict particular regression strategies, although they lack this ability in current
implementations. This is because dependency parsers are limited to probabilis-
tically weighted dependency tuples for their prediction of difficulty in a response
variable. These tuples do not distinguish between dependency tuples that have
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the same relation but vary in the difficulty exhibited by the human parser when one
of the members of the dependency is involved in resolving syntactic ambiguity.

Because a phrase structure parser can appeal to already-built structure, it can
in principle represent the difference between attaching a complement minimally or
maximally, whereas dependency grammar only allows the representation of com-
plement attachment itself. The limited representational capacity of dependency
grammar suffices for coverage of eye movement corpora but not for experimental
manipulations of the resolution of syntactic ambiguity. By distinguishing between
minimal and maximal attachments of a given complement, a phrase structure
grammar parser could in principle be adapted so that it could represent the com-
plexity of attaching a word as well as the differential difficulty of attaching the word
in different places in the hierarchy of the partially built phrase marker.

One caveat that applies to the conclusions is that the influence of the number
of parses maintained in memory (the influence of the value of k in a k-best parser)
was not explored. At higher values of k, the parsers might have been better
equipped to cover the human data. However, allowing this value to vary as a free
parameter has a disadvantage. It allows the computational parser to maintain
in memory numbers of alternatives that seem implausible given constraints on
human working memory. This carries the danger that models of parsing employ
methods that are not available to the human parser in order to better fit the human
data.

13.5 Suggestions for future work

Models of parsing need to output more than one dependent variable if they are to
successfully cover the human data on syntactic ambiguity resolution. The exist-
ing dependent variables that they output only cover reading time and regression
frequency at best. It would be possible for the models to be extended to output
another response variable that described the type of difficulty, and the type of
regression employed, for particular disambiguation problems.

Producing such a response variable would be more difficult for parsers op-
erating over simple dependency grammar formalisms than for parsers operating
over hierarchical phrase structure grammar formalisms. The parsers that would
result from the requirement to cover both the amount and the nature of the diffi-
culty induced by integrating a new word into a sentence would be better tools for
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investigating the details of the human sentence processing mechanism.

Currently most work is directed at parallel parsers that use probabilistic gram-
mars to process input. These models now cover first pass parsing quite well.
However none as currently implemented can hope to offer complete coverage of
human parsing because of the regression behaviours that the human parser de-
ploys and which they do not model. The most promising avenue for research in
parsing seems to be to take the existing models that have good coverage of nor-
mal first pass passing, and to explore how they might be augmented with routines
for carrying out repair. Adding repair to existing first pass routines would require
an interface between the two to be well specified. How, and when, should control
of the parser be ceded from first pass routines to repair routines and then back
again? Should there be an executive part of the parser that handles the transi-
tions of control between first pass and repair routines? Could repair functions be
written into extended versions of the existing first pass routines? These would be
promising questions for future research.
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Appendix A

This appendix lists the sentences and questions for each experiment.

Experiment One materials The early line break conditions have the line break
at \. The late line break conditions have the line break at \\. The ambiguous ver-
sions omitted the comma in parentheses, the disambiguated conditions included
the comma in parentheses.

While the mob watched(,) the juggler who was gifted and nimble\ swallowed\\
a silver sword that was very sharp. While those men hunted(,) the moose that
was sturdy and nimble\ hurried\\ into the woods and took cover. Though both lads
phoned(,) the coach who was furious and bitter\ refused\\ to permit them to join
the team. While the baby watched(,) her mother who was tired and fragile\ pre-
pared\\ a new bottle of powdered milk. After the vet visited(,) the farmer who was
shifty and evasive\ admitted\\ that some of his animals were ill. Though the dog
sniffed(,) his trainer who was peeved and grumpy\ avoided\\ all further attempts to
teach him tricks. While the fox stalked(,) the geese that were plump and healthy\
continued\\ to peck at grain on the ground. After the nun helped(,) the refugee
who was sickly and afraid\ recovered\\ slowly in the camp near the river. While the
maid dressed(,) the queen who was grouchy and aloof\ dismissed\\ all the other
ladies in waiting. After the girl awoke(,) her father who was drunken and drowsy\
exploded\\ in anger about being disturbed so early. After the cadet saluted(,)
the major who was brusque and remote\ ordered\\ the sergeant to punish the
whole company. After the diva married(,) her agent who was dynamic and astute\
secured\\ her a lucrative contract with the theatre. While the team trained(,) the
striker who was injured and unfit\ wondered\\ whether the damage would take long
to heal. After the crowd heckled(,) the comic who was nervous and scared\ ap-
peared\\ to cut his act short in humiliation. After the reps lobbied(,) the union that
was divided and weary\ directed\\ its committee to approve the proposal. While
the crew filmed(,) the actress who was fuming and cursing\ stormed\\ off the set
of the film in a tantrum. After the boxer fought(,) the medic who was anxious and
worried\ carried\\ a stretcher to the side of the ring. Though the horse kicked(,) the
trainer who was quick and agile\ remained\\ calm and managed to avoid getting
hurt. After the woman taught(,) the pupils who were bright and smart\ realised\\
that they could now solve the equations. After the boss ordered(,) the waiter who
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was ancient and doddery\ mumbled\\ the details to the chef incorrectly. While the
woman bathed(,) her husband who was muddy and bruised\ announced\\ that he
wanted to have a shower. After the army attacked(,) the rebels who were quiet
and swift\ launched\\ a counter attack and inflicted huge losses. After the fire
burned(,) the workman who was careful and dutiful\ laboured\\ to make sure the
area was secure. While the temp assisted(,) the tycoon who was pompous and
aloof\ committed\\ a series of white collar financial crimes.

Experiment Two materials Short line sentences are given first followed by long
line sentences. The comma in parentheses is removed for the ambiguous ver-
sions.

While the mob watched(,) the juggler\ who was gifted and nimble swallowed\
a silver sword that was very sharp. While the mob watched(,) the juggler who was
gifted\ and nimble swallowed a silver sword that was very\ sharp. While those men
hunted(,) the moose\ that was sturdy and nimble hurried\ into the woods and took
cover. While those men hunted(,) the moose that was sturdy\ and nimble hur-
ried into the woods and took cover. Though both lads phoned(,) the coach\ who
was furious and bitter refused\ to permit them to join the team. Though both lads
phoned(,) the coach who was furious\ and bitter refused to permit them to join the
team. While the baby watched(,) her mother\ who was tired and fragile prepared\
a new bottle of powdered milk. While the baby watched(,) her mother who was
tired\ and fragile prepared a new bottle of powdered milk. After the vet visited(,)
the farmer \ who was shifty and evasive admitted\ that some of his animals were ill.
After the vet visited(,) the farmer who was shifty\ and evasive admitted that some
of his animals were\ ill. Though the dog sniffed(,) his trainer\ who was peeved
and grumpy avoided all\ further attempts to teach him tricks. Though the dog
sniffed(,) his trainer who was peeved\ and grumpy avoided all further attempts to
teach him\ tricks. While the fox stalked(,) the geese\ that were plump and healthy
continued\ to peck at grain on the ground. While the fox stalked(,) the geese that
were plump\ and healthy continued to peck at grain on the ground. After the nun
helped(,) the refugee\ who was sickly and afraid recovered\ slowly in the camp
near the river. After the nun helped(,) the refugee who was sickly\ and afraid re-
covered slowly in the camp near the\ river. While the maid dressed(,) the queen\
who was grouchy and aloof dismissed\ all the other ladies in waiting. While the
maid dressed(,) the queen who was grouchy\ and aloof dismissed all the other
ladies in waiting. After the girl awoke(,) her father\ who was drunken and drowsy
exploded\ in anger about being disturbed so\ early. After the girl awoke(,) her
father who was drunken\ and drowsy exploded in anger about being disturbed\ so
early. After the cadet saluted(,) the major\ who was brusque and remote ordered\
the sergeant to punish the whole\ company. After the cadet saluted(,) the major
who was brusque\ and remote ordered the sergeant to punish the whole\ com-
pany. After the diva married(,) her agent\ who was dynamic and astute secured\
her a lucrative contract with the\ theatre. After the diva married(,) her agent who
was dynamic\ and astute secured her a lucrative contract with\ the theatre. While
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the team trained(,) the striker\ who was injured and unfit wondered \ whether the
damage would take long\ to heal. While the team trained(,) the striker who was
injured\ and unfit wondered whether the damage would take long\ to heal. After
the crowd heckled(,) the comic\ who was nervous and scared appeared\ to cut his
act short in humiliation. After the crowd heckled(,) the comic who was nervous\
and scared appeared to cut his act short in humiliation. After the reps lobbied(,)
the union\ that was divided and weary directed\ its committee to approve the pro-
posal. After the reps lobbied(,) the union that was divided\ and weary directed its
committee to approve the proposal. While the crew filmed(,) the actress\ who was
fuming and cursing stormed\ off the set of the film in a tantrum. While the crew
filmed(,) the actress who was fuming\ and cursing stormed off the set of the film
in a\ tantrum. After the boxer fought(,) the medic\ who was anxious and worried
carried\ a stretcher to the side of the ring. After the boxer fought(,) the medic who
was anxious\ and worried carried a stretcher to the side of the\ ring. Though the
horse kicked(,) the trainer\ who was quick and agile remained calm\ and man-
aged to avoid getting hurt. Though the horse kicked(,) the trainer who was quick\
and agile remained calm and managed to avoid getting\ hurt. After the woman
taught(,) the pupils\ who were bright and smart realised\ that they could now solve
the equations. After the woman taught(,) the pupils who were bright\ and smart
realised that they could now solve the equations. After the boss ordered(,) the
waiter\ who was ancient and doddery mumbled\ the details to the chef incorrectly.
After the boss ordered(,) the waiter who was ancient\ and doddery mumbled the
details to the chef incorrectly. While the woman bathed(,) her husband\ who was
muddy and bruised announced\ that he wanted to have a shower. While the
woman bathed(,) her husband who was muddy\ and bruised announced that he
wanted to have a\ shower. After the army attacked(,) the rebels\ who were quiet
and swift launched\ a counter attack and inflicted huge\ losses. After the army
attacked(,) the rebels who were quiet\ and swift launched a counter attack and
inflicted\ huge losses. After the fire burned(,) the workman\ who was careful and
dutiful laboured\ to make sure the area was secure. After the fire burned(,) the
workman who was careful\ and dutiful laboured to make sure the area was secure.
While the temp assisted(,) the tycoon\ who was pompous and aloof committed\
a series of white collar financial\ crimes. While the temp assisted(,) the tycoon
who was pompous\ and aloof committed a series of white collar financial\ crimes.
questions Did the mother prepare food as well as milk? Were the geese plump?
Was the girl’s father happy to be woken up? Was the injured player a striker? Did
the actress walk off quietly? Was the teacher a woman? Did the rebels attack
first?

Experiment Three materials The early misanalysis area conditions are given
first, followed by the late misanalysis area conditions. For the disambiguated
versions, include the comma in parentheses: for the ambiguous conditions, omit
the comma. The line break was always at \\.

While the mob watched(,) the juggler who was gifted and nimble swallowed\\
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a silver sword that was very sharp. The busy guide noted that while the mob
watched(,) the juggler swallowed\\ a silver sword that was very sharp. While those
men hunted(,) the moose that was sturdy and nimble hurried\\ into the woods and
took cover. One sole hiker spotted that while those men hunted(,) the moose
hurried\\ into the woods and took cover. Though both lads phoned(,) the coach
who was furious and bitter refused\\ to permit them to join the team. Their sad
tutor moaned that though both lads phoned(,) the coach refused\\to permit them
to join the team. While the baby watched(,) her mother who was tired and fragile
prepared\\ a new bottle of powdered milk. The idle boy noticed that while the
baby watched(,) her mother prepared\\ a new bottle of powdered milk. After the
vet visited(,) the farmer who was shifty and evasive admitted\\ that some of his
animals were ill. The local man stated that after the vet visited(,) the farmer admit-
ted\\ that some of his animals were ill. Though the dog sniffed(,) his trainer who
was peeved and grumpy avoided\\ all further attempts to teach him tricks. The
alert judge mused that though the dog sniffed(,) his trainer avoided\\ all further
attempts to teach him tricks. While the fox stalked(,) the geese that were plump
and healthy continued\\ to peck at grain on the ground. The farm hand believed
that while the fox stalked(,) the geese continued\\ to peck at grain on the ground.
After the nun helped(,) the refugee who was sickly and afraid recovered\\ slowly
in the camp near the river. The calm aide stressed that after the nun helped(,) the
refugee recovered\\ slowly in the camp near the river. While the maid dressed(,)
the queen who was grouchy and aloof dismissed\\ all the other ladies in waiting.
The high lord implied that while the maid dressed(,) the queen dismissed\\ all
the other ladies in waiting. After the girl awoke(,) her father who was drunken
and drowsy exploded\\ in anger about being disturbed so early. The wary guest
related that after the girl awoke(,) her father exploded\\ in anger about being dis-
turbed so early. After the cadet saluted(,) the major who was brusque and remote
ordered\\ the sergeant to prepare the ammunition. The new NCO recorded that
after the cadet saluted(,) the major ordered\\ the sergeant to prepare the ammu-
nition. After the diva married(,) her agent who was dynamic and astute secured\\
her a lucrative contract with the theatre. The nosy hack revealed that after the
diva married(,) her agent secured\\ her a lucrative contract with the theatre. While
the team trained(,) the striker who was injured and unfit wondered\\ whether the
damage would take long to heal. The news show stated that while the team
trained(,) the striker wondered\\ whether the damage would take long to heal. Af-
ter the crowd heckled(,) the comic who was nervous and scared appeared\\ to cut
his act short in humiliation. The daily rag claimed that after the crowd heckled(,)
the comic appeared\\ to cut his act short in humiliation. After the reps lobbied(,)
the union that was divided and weary directed\\ its committee to approve the pro-
posal. The miners all gloated that after the reps lobbied(,) the union directed\\ its
committee to approve the proposal. While the crew filmed(,) the actress who was
fuming and cursing stormed\\ off the set of the film in a tantrum. The wise agent
heard that while the crew filmed(,) the actress stormed\\ off the set of the film
in a tantrum. After the boxer fought(,) the medic who was anxious and worried
carried\\ a stretcher to the side of the ring. The keen fan lamented that after the
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boxer fought(,) the medic carried\\ a stretcher to the side of the ring. Though the
horse kicked(,) the trainer who was quick and agile remained\\ calm and man-
aged to avoid getting hurt. The old groom showed that though the horse kicked(,)
the trainer remained\\ calm and managed to avoid getting hurt. After the woman
taught(,) the pupils who were bright and smart realised\\ that they could now solve
the equations. The new head observed that while the woman taught(,) the pupils
realised\\ that they could now solve the equations. After the boss ordered(,) the
waiter who was ancient and doddery mumbled\\ the details to the chef incor-
rectly. The grill cook remarked that after the boss ordered(,) the waiter mumbled\\
the details to the chef incorrectly. While the woman bathed(,) her husband who
was muddy and bruised announced\\ that he wanted to have a shower. The ho-
tel maid joked that while the woman bathed(,) her husband announced\\ that he
wanted to have a shower. After the army attacked(,) the rebels who were quiet
and swift launched\\ a counter attack and inflicted huge losses. The war diary
argued that after the army attacked(,) the rebels launched\\ a counter attack and
inflicted huge losses. After the fire burned(,) the workman who was careful and
dutiful laboured\\ to make sure the area was secure. The male nurse spotted that
after the fire burned(,) the workman laboured\\ to make sure the area was secure.
While the temp assisted(,) the tycoon who was pompous and aloof committed\\ a
series of white collar financial crimes. The desk clerk swore that while the temp
assisted(,) the tycoon committed\\ a series of white collar financial crimes.

Experiment Four materials Capture sentences are given first followed by Theft
sentences. For the ambiguous version, include the material in parentheses.

The cadet noticed (that) the captain walked to the gates of the enclosure. After
the cadet saluted(,) the captain walked to the gates of the enclosure. The trustees
regretted (that) the proposal attracted attention from the press. After the trustees
debated(,) the proposal attracted attention in the press. The class believed (that)
the model cooked a meal in the kitchen of the flat. After the class painted(,) the
model cooked a meal in the kitchen of the flat. The thief reported (that) the guard
called out to his colleague to bring tea. After the thief awoke(,) the guard called
out to his colleague to bring tea. The nurse remembered (that) the patient asked
for a bowl of fruit in her room. After the nurse visited(,) the patient asked for
a bowl of fruit in her room. The manager announced (that) the player resigned
from the football team. After the manager phoned(,) the player resigned from the
football team. The lecturer recommended (that) the students tried to understand
the theory. After the lecturer taught(,) the students tried to understand the theory.
The youths observed (that) the lion died from the wounds they inflicted. After
the youths hunted(,) the lion died from the wounds they inflicted. The crew knew
(that) the actress retired to her room on the set. After the crew filmed(,) the
actress retired to her room on the set. The horse saw (that) the jockey rushed
out of the enclosure in a panic. After the horse kicked(,) the jockey rushed out
of the enclosure in a panic. The crowd noted (that) the comedian decided to
cut short his act. After the crowd heckled(,) the comedian decided to cut short
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his act. The jury decided (that) the matter took only a short time to resolve.
After the jury settled(,) the matter took only a short time to resolve. The temp
forgot (that) the tycoon bought the oil company from a competitor. After the temp
assisted(,) the tycoon bought the oil company from a competitor. The pilot found
(that) the trainee became an excellent officer. After the pilot helped(,) the trainee
became an excellent officer. The critics understood (that) the film received an
award in the ceremony. After the critics watched(,) the film received an award in
the ceremony. The general advised (that) the rebels changed their plans quickly.
After the general attacked(,) the rebels changed their plans quickly. The teacher
denied (that) the pupils cheated in their final examinations. After the teacher
trained(,) the pupils cheated in their final examinations. The chauffeur recognised
(that) the car crashed into the wall by the gate. After the chauffeur parked(,) the
car crashed into the wall by the gate. The maids accepted (that) the queen made
a grand entrance into the room. After the maids dressed(,) the queen made a
grand entrance into the room. The visitor felt (that) the dog moved very slowly into
the small garden. After the visitor washed(,) the dog moved very slowly into the
small garden. The mother promised (that) the kids behaved very well sometimes.
After the mother bathed(,) the kids behaved very well sometimes. The princess
admitted (that) the prince became rather quiet and withdrawn. After the princess
married(,) the prince became rather quiet and withdrawn. The couple respected
(that) the neighbours wanted to thank them. After the couple entertained(,) the
neighbours wanted to thank them. The officials checked (that) the committee
agreed to change its policy. After the officials lobbied(,) the committee agreed to
change its policy. questions Did the captain drive to the gates? Did the tycoon
sell the oil company? Did the patient ask for fruit? Did the comedian make his act
longer? Did the driver win his race? Did the proposal attract attention from the
press? Did the player resign from the team? Did the lion die from its wounds?
Did the trainee become a useless officer?

Experiment Five materials Capture sentences are given first followed by Theft
sentences. For early head position versions use the first argument in the brace,
for the late head position versions use the second argument in the brace.

The cadet noticed {the captain of the squadron, the squadron captain} walked
to the gates of the enclosure. After the cadet saluted {the captain of the squadron,
the squadron captain} walked to the gates of the enclosure. The trustees regret-
ted {the proposal of merger, the merger proposal} attracted attention in the press.
After the trustees debated {the proposal of merger, the merger proposal} attracted
attention in the press. The class believed {the model of swimwear, the swimwear
model} cooked a meal in the basement of the flat. After the class painted {the
model of swimwear, the swimwear model} cooked a meal in the basement. The
thief reported {the guard of the prison, the prison guard} called out to his col-
league to bring tea. After the thief awoke {the guard of the prison, the prison
guard} called out to his colleague. The nurse remembered {the patient in dis-
tress, the distressed patient} asked for a bowl of fruit in her room. After the nurse
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visited {the patient in distress, the distressed patient} asked for a bowl of fruit in
the room. The manager announced {the player of dignity, the dignified player}
resigned from his place on the team. After the manager phoned {the player of
dignity, the dignified player} resigned from his place on the team. The lecturer
recommended {the students of politics, the politics students} tried to understand
the theory. After the lecturer taught {the students of politics, the politics students}
tried to understand the theory. The youths observed {the lion of beauty, the beau-
tiful lion} died from the injuries it had sustained. After the youths hunted {the lion of
beauty, the beautiful lion} died from the wounds they inflicted. The crew knew {the
actress of elegance, the elegant actress} retired to her room on the film set. After
the crew filmed {the actress of elegance, the elegant actress} retired to her room
on the film set. The horse saw {the jockey in trouble, the troubled jockey} rushed
out of the enclosure in a panic. After the horse kicked {the jockey in trouble, the
troubled jockey} rushed out of the enclosure in a panic. The crowd noted {the
comedian of renown, the renowned comedian} decided to cut short his act. After
the crowd heckled {the comedian of renown, the renowned comedian} decided to
cut short his act. The jury decided {the matter of culpability, the culpability matter}
took only a short time to resolve. After the jury settled {the matter of culpability,
the culpability matter} took only a short time to resolve. The temp forgot {the ty-
coon of retail, the retail tycoon} bought the company from a competitor. After the
temp assisted {the tycoon of retail, the retail tycoon} bought the company from a
competitor. The pilot found {the trainee with insight, the insightful trainee} became
an excellent officer in the army. After the pilot helped {the trainee with insight, the
insightful trainee} became an excellent officer in the army. The critics understood
{the film of documentary, the documentary film} received an award in the cere-
mony. After the critics watched {the film of documentary, the documentary film}
received an award in the ceremony. The general advised {the rebels of courage,
the courageous rebels} changed their plans quickly. After the general attacked
{the rebels of courage, the courageous rebels} changed their plans quickly. The
teacher denied {the pupils of intelligence, the intelligent pupils} cheated in their
final examinations. After the teacher trained {the pupils of intelligence, the intelli-
gent pupils} cheated in their final examinations. The driver recognised {the car of
aluminium, the aluminium car} crashed into the wall by the gate. After the driver
parked {the car of aluminium, the aluminium car} crashed into the wall by the gate.
The maids accepted {the queen of the colony, the colonial queen} made a grand
entrance into the room. After the maids dressed {the queen of the colony, the
colonial queen} made a grand entrance into the room. The visitor felt {the dog of
the family, the family dog} moved very slowly into the small garden. After the visi-
tor washed {the dog of the family, the family dog} moved very slowly into the small
garden. The mother promised {the children with autism, the autistic children} be-
haved very well sometimes. After the mother bathed {the children with autism,
the autistic children} behaved very well sometimes. The princess admitted {the
prince of the region, the regional prince} became rather quiet and withdrawn. Af-
ter the princess married {the prince of the region, the regional prince} became
rather quiet and withdrawn. The couple respected {the family of importance, the
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important family} wanted to thank them formally. After the couple entertained
{the family of importance, the important family} wanted to thank them formally.
The officials checked {the committee for ethics, the ethics committee} agreed to
change its policy. After the officials lobbied {the committee for ethics, the ethics
committee} agreed to change its policy. questions Did the queen make a grand
entrance? Did the tycoon buy the company? Did the prince become loud and
outgoing? Did the driver win the race? Was the jockey completely calm? Did the
captain walk to the gates? Were the students politics students? Did the rebels
stick to the same plan?

Experiment Six materials Capture sentences are given first followed by Theft
sentences. For early head position versions use the first argument in the brace,
for the late head position versions use the second argument in the brace.

The cadet noticed {the captain who was smart, the tall and smart captain}
walked to the gates of the enclosure. After the cadet saluted {the captain who
was smart, the tall and smart captain} walked to the gates of the enclosure. The
trustees regretted {the proposal that was harsh, the cold and harsh proposal}
attracted attention in the press. After the trustees debated {the proposal that was
harsh, the cold and harsh proposal} attracted attention in the press. The class
believed {the model who was pretty, the young and pretty model} cooked a meal
in the basement of the flat. After the class painted {the model who was pretty,
the young and pretty model} cooked a meal in the basement of the flat. The
thief reported {the guard who was tired, the old and tired guard} called out to his
colleague to bring tea. After the thief awoke {the guard who was tired, the old and
tired guard} called out to his colleague to bring tea. The nurse remembered {the
patient who was hungry, the hungry and thirsty patient} asked for a bowl of fruit
in her room. After the nurse visited {the patient who was hungry, the hungry and
thirsty patient} asked for a bowl of fruit in her room. The manager announced {the
player who was famous, the rich and famous player} resigned from his place on
the team. After the manager phoned {the player who was famous, the rich and
famous player} resigned from his place on the team. The lecturer recommended
{the students who were clever, the keen and clever students} tried to understand
the theory. After the lecturer taught the {the students who were clever, the keen
and clever students} tried to understand the theory. The youths observed {the
lion that was fierce, the fierce and proud lion} died from the wounds they inflicted.
After the youths hunted {the lion that was fierce, the fierce and proud lion} died
from the wounds they inflicted. The crew knew {the actress who was quiet, the
quiet and serious actress} retired to her room on the set. After the crew filmed {the
actress who was quiet, the quiet and serious actress} retired to her room on the
set. The horse saw {the jockey who was scared, the scared and worried jockey}
rushed out of the enclosure in a panic. After the horse kicked {the jockey who was
scared, the scared and worried jockey} rushed out of the enclosure in a panic. The
crowd noted {the comedian who was nervous, the nervous and timid comedian}
decided to cut short his act. After the crowd heckled {the comedian who was
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nervous, the nervous and timid comedian} decided to cut short his act. The jury
decided {the matter that was serious, the serious and weighty matter} took only
a short time to resolve. After the jury settled {the matter that was serious, the
serious and weighty matter} took only a short time to resolve. The temp forgot {the
tycoon who was ruthless, the hard and ruthless tycoon} bought the oil company
from a competitor. After the temp assisted {the tycoon who was ruthless, the
hard and ruthless tycoon} bought the oil company from a competitor. The pilot
found {the trainee who was careful, the careful and quiet trainee} became an
excellent officer in the army. After the pilot helped {the trainee who was careful,
the careful and quiet trainee} became an excellent officer in the army. The critics
understood {the film that was boring, the long and boring film} received an award
in the ceremony. After the critics watched {the film that was boring, the long and
boring film} received an award in the ceremony. The general advised {the rebels
who were strong, the tough and strong rebels} changed their plans quickly. After
the general attacked {the rebels who were strong, the tough and strong rebels}
changed their plans quickly. The teacher denied {the pupils who were bright, the
bright and smart pupils} cheated in their final examinations. After the teacher
trained {the pupils who were bright, the bright and smart pupils} cheated in their
final examinations. The driver recognised {the car that was rusty, the black and
rusty car} crashed into the wall by the gate. After the driver parked {the car that
was rusty, the black and rusty car} crashed into the wall by the gate. The maids
accepted {the queen who was noble, the quiet and noble queen} made a grand
entrance into the room. After the maids dressed {the queen who was noble, the
quiet and noble queen} made a grand entrance into the room. The visitor felt {the
dog that was brown, the brown and white dog} moved very slowly into the small
garden. After the visitor washed {the dog that was brown, the brown and white
dog} moved very slowly into the small garden. The mother promised {the kids
who were unruly, the wild and unruly kids} behaved very well sometimes. After
the mother bathed {the kids who were unruly, the wild and unruly kids} behaved
very well sometimes. The princess admitted {the prince who was wealthy, the
young and wealthy prince} became rather quiet and withdrawn. After the princess
married {the prince who was wealthy, the young and wealthy prince} became
rather quiet and withdrawn. The couple respected {the family who were pleasant,
the kind and pleasant family} wanted to thank them. After the couple entertained
{the family who were pleasant, the kind and pleasant family} wanted to thank
them. The officials checked {the committee that was weak, the weak and greedy
committee} agreed to change its policy. After the officials lobbied {the committee
that was weak, the weak and greedy committee} agreed to change its policy.
questions Did the captain drive to the gates? Did the proposal attract attention
from the press? Did the trainee become a useless officer? Did the player resign
from the team? Did the driver win his race? Did the tycoon sell the oil company?
Did the comedian make his act longer? Did the patient ask for fruit? Did the lion
die from its wounds?
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Experiment Seven materials The disambiguated versions of the materials in-
cluded the comma in parentheses below; the ambiguous versions did not contain
the comma.

After the cadet saluted(,) the captain the men drove to the port ate a hearty
lunch. After the cadet saluted the captain(,) the men driven to the port ate a
hearty lunch. After the trustees debated(,) the change the committee took to be
useful was started that afternoon. After the trustees debated the change(,) the
committee taken to be useful was started that afternoon. After the class painted(,)
the model the artist drew for the museum was heard to disapprove. After the class
painted the model(,) the artist drawn for the museum was heard to disapprove.
After the thief awoke(,) the guard the official outran to the boat cried out in frus-
tration. After the thief awoke the guard(,) the official outrun to the boat cried out
in frustration. After the nurse visited(,) the thief the solicitor knew to be vindictive
made an official complaint. After the nurse visited the thief(,) the solicitor known
to be vindictive made an official complaint. After the fire burned(,) the workman
the lawyer proved to have lied lost the court case. After the fire burned the work-
man(,) the lawyer proven to have lied lost the court case. After the manager
phoned(,) the player the captain chose for the team gave up his place. After the
manager phoned the player(,) the captain chosen for the team gave up his place.
After the lecturer taught(,) the students the staff outdrank in the pub tried to ex-
plain the theory. After the lecturer taught the students(,) the staff outdrunk in the
pub tried to explain the theory. After the youths hunted(,) the lion the leopard bit at
the waterhole died from its injuries. After the youths hunted the lion(,) the leopard
bitten at the waterhole died from its injuries. After the crew filmed(,) the actress
the press forgot in the hallway waved to attract attention. After the crew filmed
the actress(,) the press forgotten in the hallway waved to attract attention. After
the horse kicked(,) the jockey the owner outrode in the derby retired the same
year. After the horse kicked the jockey(,) the owner outridden in the derby retired
the same year. After the crowd heckled(,) the magician the assistant sawed in
two left the stage feeling unhappy. After the crowd heckled the magician(,) the
assistant sawn in two left the stage feeling unhappy. After the temp assisted(,)
the tycoon the executive outdid in the exercise bought a round of drinks. After the
temp assisted the tycoon(,) the executive outdone in the exercise bought a round
of drinks. After the stuntman helped(,) the trainee the pilot outflew in the display
resolved to win next year. After the stuntman helped the trainee(,) the pilot out-
flown in the display resolved to win next year. After the audience watched(,) the
film the studio gave the prize was ridiculed in all the reviews. After the audience
watched the film(,) the studio given the prize was ridiculed in all the reviews. After
the general attacked(,) the rebels the soldiers beat in the desert changed their
strategy. After the general attacked the rebels(,) the soldiers beaten in the desert
changed their strategy. After the teacher trained(,) the girls the boys showed up
in the exam decided to revise even harder. After the teacher trained the girls(,)
the boys shown up in the exam decided to revise even harder. After the chauffeur
parked(,) the saloon the van overtook in the car park was taken to be cleaned.
After the chauffeur parked the saloon(,) the van overtaken in the car park was
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taken to be cleaned. After the maids dressed(,) the queen the women hid in the
kitchen made a grand entrance. After the maids dressed the queen(,) the women
hidden in the kitchen made a grand entrance. After the visitor washed(,) the dog
the boy spoke to by the sofa got up and ran round the garden. After the visitor
washed the dog(,) the boy spoken to by the sofa got up and ran round the garden.
After the mother bathed(,) the kids the guests awoke at daybreak complained that
it was too early. After the mother bathed the kids(,) the guests awoken at day-
break complained that it was too early. After the princess married(,) the prince
the duke forbade to attend felt very angry about it. After the princess married
the prince(,) the duke forbidden to attend felt very angry about it. After the couple
entertained(,) the neighbours the men saw earlier smiled as they walked past. Af-
ter the couple entertained the neighbours(,) the men seen earlier smiled as they
walked past. After the officials lobbied(,) the board the bank underwrote in the
recession had to pay its debts. After the officials lobbied the board(,) the bank
underwritten in the recession had to pay its debts. questions Was it the captain
who made the phone call? Was it the captain who saluted? Was it the maids who
hid in the kitchen? Did someone wave to attract attention? Was it the princess
who got married? Did someone get beaten in the desert? Was it the tycoon who
gave assistance? Did they run to a boat?
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