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Abstract

This thesis primarily concerns kinematic dynamo action by the 1:1:1 ABC flow,

in the highly conducting limit of large magnetic Reynolds number Rm. The flow

possesses 24 symmetries, with a symmetry group isomorphic to the group O24 of

orientation-preserving transformations of a cube. These symmetries are exploited

to break up the linear eigenvalue problem into five distinct symmetry classes, which

we label I–V. The thesis discusses how to reduce the scale of the numerical problem

to a subset of Fourier modes for a magnetic field in each class, which then may be

solved independently to obtain distinct branches of eigenvalues and magnetic field

eigenfunctions.

Two numerical methods are employed: the first is to time step a magnetic field in a

given symmetry class and obtain the growth rate and frequency by measuring the

magnetic energy as a function of time. The second method involves a more direct

determination of the eigenvalue using the eigenvalue solver ARPACK for sparse

matrix systems, which employs an implicitly restarted Arnoldi method. The two

methods are checked against each other, and compared for efficiency and reliability.

Eigenvalue branches for each symmetry class are obtained for magnetic Reynolds

numbers Rm up to 104 together with spectra and magnetic field visualisations. A

sequence of branches emerges as Rm increases and the magnetic field structures in

the different branches are discussed and compared. All symmetry classes are found

to contain a dynamo, though dynamo effectiveness varies greatly between classes,

suggesting that the symmetries play an important role in the field amplification

mechanisms.
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A closely related problem, that of linear hydrodynamic stability, is also explored

in the limit of large Reynolds number Re. As the same symmetry considerations

apply, the five symmetry classes of the linear instability can be resolved indepen-

dently, reducing the size of the problem and allowing exploration of the effects of

the symmetries on instability growth rate. Results and visualisations are obtained

for all five classes for Re up to 103, with comparisons drawn between the struc-

tures seen in each class and with those found in the analogous magnetic problem.

For increasing Re, multiple mode crossings are observed within each class, with

remarkably similar growth rates seen in all classes at Re = 103, highlighting a lack

of dependence on the symmetries of the instability, in contrast with the magnetic

problem.

This thesis also investigates the problem of large-scale magnetic fields in the 1:1:1

ABC flow through the introduction of Bloch waves that modify the periodicity of

the magnetic field relative to the flow. Results are found for a field with increased

periodicity in a single direction for Rm up to 103; it is established that the optimal

scale for dynamo action varies as Rm increases, settling on a consistent scale for

large Rm. The emerging field structures are studied and linked with those of the

original dynamo problem. On contrasting this method with a previous study in

which the flow is instead rescaled, it is shown that the use of Bloch waves drasti-

cally increases the range of possible scales, whilst cutting required computing time.

Through a multiple-scale analysis, the contribution from the α-effect is calculated

for the 1:1:1 ABC flow and is seen in growth rates for Rm � 1.
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Chapter 1

Introduction

Everything starts somewhere, although many physi-

cists disagree.

Terry Pratchett

We begin this thesis with a comprehensive introduction to the general subject area

within which this research lies. Starting with the key concepts and equations of

fluid dynamics, we move on to the subfield of magnetohydrodynamics (MHD),

which concerns the interaction of electrically conducting fluids and magnetic fields,

and lay out the broad context in which these investigations take place. Within

MHD, we focus on dynamo theory, which seeks to explain how astrophysical bodies

generate and maintain magnetic fields against ohmic decay. We outline several

fundamental concepts that are relevant to the investigations in this thesis before

moving on to develop the immediate context of our study through discussion of the

background literature. The specific objectives of this thesis are then set out and

finally a breakdown of the layout of the thesis is given.
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20 CHAPTER 1. INTRODUCTION

1.1 Governing equations of Fluid Dynamics

In 1687, Isaac Newton published his Philosophiæ Naturalis Principia Mathematica

and its contents have since been critical in the development of the physical sciences.

Of great significance are the three fundamental laws of motion (taken from Newton

et al., 1999):

1. Every body perseveres in its state of being at rest or of moving uniformly

straight forward, except in so far as it is compelled to change its state by

forces impressed.

2. A change in motion is proportional to the motive force impressed and takes

place along the straight line in which that force is impressed.

3. To any action, there is always an opposite and equal reaction; in other words,

the action of two bodies upon each other are always equal and always opposite

in direction.

In using these laws, it has been possible to explain many physical phenomena,

from the macroscopic orbits of the planets (when combined with Newton’s law

of universal gravitation) to the relatively microscopic friction forces caused by an

object being dragged along a surface. Of course, the situations described were

highly idealised, for example the objects were considered point masses, but the ideas

of inertia, conservation of momentum and reaction forces had been established.

These ideas, when applied (with some modifications) to fluids, were to become the

basis of Fluid Dynamics as it is known today.

The fundamental properties of fluids are radically different to those of solids. For

instance fluids are deformable, can be compressed and have the ability to flow and

so, describing the motion and behaviour of fluids therefore requires an approach

that accounts for these properties.

Core to the modelling of fluids are two assumptions: continuity of the fluid and

the conservation of fluid properties. The first of these, continuity, is the idea that
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a fluid is a continuous entity and, as such, properties such as velocity, pressure and

density (amongst others) are well-defined at all infinitesimal points in the fluid.

Of course, in reality this is not the case, as all fluids consist of numerous discrete

molecules and so on small enough scales, this assumption will not hold. In the

typical macroscopic scales dealt with when modelling fluids, the assumption of

continuity holds well. The second assumption, conservation, is actually a set of

assumptions, dealing with individual properties of the fluids. With regards to fluid

dynamics, the properties considered important are mass, energy and momentum

and it is sensible to assume that, within a closed system, these properties are

conserved.

The momentum equation (1.1) and continuity equation (1.2) were originally in-

troduced by Leonhard Euler in 1757 and described the evolution of a non-viscous

(inviscid) flow through its velocity field. One form of the momentum equation is

given as

ρ (∂t + u · ∇)u+∇p = 0, (1.1)

with the continuity equation as

∂tρ+∇ · (ρu) = 0, (1.2)

and with u being the velocity, p as the pressure term and ρ as the fluid density.

Further approximations can be made, a typical one being that the fluid is incom-

pressible, and (1.2) can be reduced to

∇ · u = 0. (1.3)

This is referred to as the divergence-free condition and is interpreted as the fluid

having no sources or sinks. The Euler equations are not capable of describing the

behaviour of viscous fluids, however, and alternative systems of equations can be

used, such as the Navier–Stokes equations.
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The Navier–Stokes equations (named after Claude–Louis Navier and George Stokes)

describe the motion of fluids which are viscous, differing from the Euler equations,

and as such include a term for the viscosity; a measure of a fluid’s resistance to

shearing flows. The equations were derived to describe fluid behaviour whilst al-

lowing for conservation of mass, energy and momentum and can, like the Euler

equation, describe both compressible and incompressible fluids. The incompress-

ible form of the Navier–Stokes equation can be written as

ρ (∂t + u · ∇)u = −∇P + µ∇2u+ F , (1.4)

with P being the pressure term and F representing body forces applied to the fluid

with velocity profile u. The viscosity component is represented by the diffusion

of momentum, shown by ∇2u, with a corresponding parameter µ; the dynamic

viscosity. The non-dimensionalised form of (1.4) is given by multiplying both sides

through by L/ρU2, giving

∂tu+ u · ∇u = −∇p+ ε∇2u+ f , (1.5)

where L is the characteristic length-scale of the flow and with U = ū being the

mean velocity. Now p and f represent the scaled pressure and forcing terms, with

ε = µ/ρUL = R−1e being the inverse Reynolds number. As a further consequence

of incompressibility, (1.3) also holds.

With regards to the physical interpretation of terms in (1.5), the first term ∂tu is the

local acceleration, that is change of velocity at a given point. This is very different

from the second term, u · ∇u which is termed the advective acceleration, which

describes the acceleration of a particle due to having moved with the flow. These

two terms constitute the material acceleration (material derivative, with respect

to time, of u). The fourth term ε∇2u is related to the viscosity and behaves as

a dissipation term, in this case acting to dissipate kinetic energy. The final term

f represents any external forcing, such as gravity. Lastly, the inverse Reynolds

number (ε = R−1e ) can be interpreted as the scale of the diffusive (viscous) forces
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to the advective forces. It can then be determined, for a flow u, how important

these respective forces are in the evolution of the flow.

The Navier–Stokes equations are used to solve a huge range of problems in Ap-

plied Fluid Dynamics, from the classic model of flow through a pipe to modelling

atmospheric processes for weather and climate forecasts. In Theoretical Fluid Dy-

namics, the evolution of less physical flows may be studied and understanding how

these flows behave for varying Re is often of interest.

The Navier–Stokes equations, when combined with Maxwell’s equations, can be

used in the study of Magnetohydrodynamics.

1.2 Magnetohydrodynamics

As a discipline of Fluid Dynamics, Magnetohydrodynamics (abbreviated as MHD)

concerns the interaction of magnetic fields and electrically-conducting fluids. The

term MHD was initially coined by Hannes Alfvén in 1942, though experiments that

are generally considered to be of this field pre-date this term’s usage by more than

a century. For instance, in 1832, Michael Faraday made an attempt to measure

the voltage in the River Thames induced by the motion of its water through the

Earth’s magnetic field, however his attempt was considered a failure.

Despite the isolated studies of the 19th Century, it wasn’t until the middle of the

20th Century that MHD emerged as a field of its own. Often cited is the hypothesis

put forward by Joseph Larmor in 1919 (see Larmor, 1919), where the process by

which the Sun generates and maintains its magnetic field is through the flow of an

electrically conducting fluid, termed Dynamo Theory. This explanation was not

well received at the time and took more accurate equipment, detailed observations

and significant theoretical developments for scientists to realise its actual value

as a theory. An experiment detailed in Hartmann (1937), but carried out much

earlier, involved using magnetic fields to drive the flow of liquid mercury; a simple

electromagnetic pump, though by his own admission, the pump was not at all



24 CHAPTER 1. INTRODUCTION

efficient. These two initial examples, however, mark the first steps in what is now

a very active and important field of study.

Current MHD research can be divided, as most areas of mathematical physics can,

into two categories: applied and theoretical. Theoretical MHD, with which Lar-

mor’s theory resides, is concerned with describing complex phenomena through

‘chunked’, or idealised, models using the governing equations of MHD. Much re-

search in theoretical MHD concerns attempts to describe naturally occurring self-

sustaining magnetic fields, or dynamos. Initially, the dynamos of the Earth and

Sun were considered, but as technology and the quality of observations improved,

it became known that other astrophysical phenomena, such as accretion discs and

galaxies, contain dynamos. It is well-accepted that the flow of the respective fluids

– for instance, liquid metal in the outer core of the Earth and plasma in stars

– generates and maintains a magnetic field through rotation and convection, but

accurately and fully modelling these processes has still not been achieved. The

difficulty being faced is that current technology does not allow us to observe and

measure the flows that are driving these dynamos in addition to the fact that com-

puting power limits the number of processes included in any given model. The

current challenges in this area lie in identifying the most important processes and

flow features for dynamo action to occur. Some of these processes will be discussed

in section 1.3.

In addition to solving the “dynamo problem”, descriptions of other observable

phenomena are also being sought. For example, a highly active area is in modelling

the processes behind the creation and demise of sunspots, which are seen as a

consequence of the complex plasma flows in the Sun’s convective zone. Although

it is now known that sunspots are formed in pairs by emerging loops of magnetic

field, with a sunspot surrounding each “end” of the loop, the dynamics of how

these coronal loops originally form and are forced out into the photosphere is not

fully understood. In recent years, there has been a spate of interest in the causes

of solar flares and how magnetic reconnection in the coronal loops can produce

such events, in part due to the damage that these high-energy events can cause to
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man-made satellites.

In parallel to the theoretical understanding of magnetohydrodynamical problems

such as natural dynamos, real physical applications have also been realised. One

major area of research is in power generation, more specifically nuclear fission and

nuclear fusion. Fast (breeder) reactors are one such example in which the heat

is transferred away from the fissile material through the electromagnetic pumping

of a liquid metal, often sodium. In the development of nuclear fusion as a viable

method of power generation, magnetic confinement, which restricts the motion of

high-energy plasma through strong magnetic fields, is seen as a promising field of

study. There are also many industrial applications, particularly in the handling of

molten metals. Magnetic fields are routinely used to stir liquid metals, drive flows

or even inhibit flows in them. For instance in the casting of metals, homogeneity

of the resulting object is often desired and so stirring the liquid metal without the

use of a physical stirrer is required. The use of magnetofluids in propulsion has also

been considered with magnetohydrodynamic principles applied to water-based and

space-based propulsion systems. Such examples include the well-known “Yamato

1” boat (see Takezawa et al., 1995) and the Magnetoplasmadynamic (MPD), space-

based, thrusters in development by several independent institutes. Many practical

problems, such as the magnitude of current required to power such devices, still

need to be overcome.

The theoretical and applied areas of MHD are not completely separate and are

often complementary fields of study. In more recent years, due to improvements in

technology, laboratory-scale dynamos have become mechanically and economically

possible. Through ventures such as the Riga Dynamo experiment (see Gailitis et al.,

2003) and the Von Kármán Sodium experiment (Monchaux et al., 2009), dynamo

action has been shown to be possible on small scales and in different geometries

and the important processes, at least on the laboratory scale, are beginning to be

understood. This allows the theories of the geodynamo, as well as astrophysical

dynamos, to be backed up by actual empirical data.

The key equations of MHD can be derived from Maxwell’s equations, originally
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published between 1861 and 1862, and which expanded on the work of Faraday,

Ampère and Gauss. Maxwell unified prior theories on electricity and magnetism

into a set of four fundamental laws which, when used in combination, can describe

nearly all electromagnetic phenomena. The equations, listed in differential form

are given by

∇ ·E = ρ/ε, (1.6)

∇ ·B = 0, (1.7)

∇×E = −∂tB, (1.8)

∇×B = µ (J + ε∂tE) , (1.9)

with E being the electric field, B the magnetic field and J being the (electric)

current density. Differing from their earlier usage with respect to the Navier–Stokes

equations, ρ, ε and µ now represent the quantities of charge density, permittivity

(also referred to as the dielectric constant) and magnetic permeability, respectively.

As a simplification, or rather as part of a series of approximations, the latter two

parameters often take their free-space values ε0 and µ0.

Gauss’ law of magnetism (1.7), may be interpreted as non-existence of magnetic

monopoles. It can be seen as the magnetic equivalent of the continuity equation

(1.3), as it requires the magnetic field to contain no sources and sinks. In (1.8),

Faraday’s law of induction is given, describing the interaction between a changing

magnetic field B and the corresponding electric field E. Ampère’s law, suitably

modified by Maxwell and given in (1.9), describes how magnetic fields can be pro-

duced by either (or both) the flow of electrical current or a change in the electric

field, and completes the link between the magnetic fields and electric fields. As

with the Navier–Stokes equations, these are classical relations and break down in

specific circumstances, such as when dealing with intensely strong fields or ex-

ceptionally short distances. Maxwell’s equations, however, are seen as near-perfect

approximations in describing macroscopic-scale phenomena, such as those of MHD.

In the MHD equations, Ampère’s original law, stating ∇ ×B = µJ , is used and
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results in the requirement that ∇ · J = 0. This is not unreasonable, as the term

∂tE in (1.9), often referred to as the displacement current, has a corresponding

coefficient µε with a free-space value, µ0ε0 = 1/c2 by definition, where c is the speed

of light. The typical fluid velocities (of MHD problems) are of the order of V , with

V = L/T a ratio of the typical spatial and temporal scales L and T (respectively),

and are far smaller than the speed of light c. Therefore the displacement current

can be neglected: it is a factor of V 2/c2 smaller than ∇ ×B and thus negligible

for V 2 � c2. Equations (1.8) and (1.9), without the displacement current, are

combined with Ohm’s Law, given by

J = σ (E + u×B) , (1.10)

to produce the induction equation

∂tB = ∇× (u×B)−∇× (η∇×B) . (1.11)

The parameter σ is the conductivity (of the fluid) and η = (µσ)−1 is the magnetic

diffusivity. Although η is dependent on the temperature and density, it is common

to assume that it is constant (that is, incompressible and constant temperature

fluid) and so (1.11) when combined with (1.7) gives

∂tB = ∇× (u×B) + η∇2B. (1.12)

In parallel with the Navier–Stokes equation, to which the induction equation is

similar in form, the Magnetic Reynolds number Rm = UL/η is the ratio of the

advection, ∇ × (u×B), to the diffusion, ∇2B. Of course, if the Lorentz force

is significant enough to affect the fluid flow, the Navier–Stokes equation (1.5) also

requires solving, with f = J ×B (in a closed system) as the Lorentz force acting

back on the flow. In this case, (1.12) is non-linear in B, as the resulting u depends

on B. Due to flow and magnetic field being divergence free, it is often worth
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reducing the advective term to give a simplified form of the induction equation:

∂tB + u · ∇B = B · ∇u+ η∇2B. (1.13)

Dependent on the phenomenon studied, various approximations can be made. One

of these is that the Lorentz force is negligible relative to the strength of the flow.

In this case, the Navier–Stokes equation need no longer be solved, as the flow u is

no longer dependent on B. This is the core assumption in the study of kinematic

dynamos, in which the effects of particular flows on the evolution of certain seed

fields are investigated.

It is clear that the dimensionless parameter Rm = UL/η is very important in

determining the evolution of the flow. If Rm � 1, it is seen that diffusion is the

major contributing term in the evolution of the field, whereas if Rm � 1, advection

dominates. In laboratory dynamos, Rm is low, owing to the low velocities and

short length scales; for example, in the Riga dynamo experiment the magnetic

Reynolds number was calculated to be Rm ≈ 23 at the maximum power level. For

astrophysical objects, however, Rm is far larger; O (103) in the Earth’s core, O (108)

for the solar convection zone and O (1012) in the solar corona. With such extreme

values of Rm, it is often of interest to study the limiting case of Rm →∞ (η → 0)

which implies zero diffusivity (i.e. that the fluid is perfectly conducting) and the

magnetic field is essentially ‘frozen-in’ or Lie dragged by the flow. Ideal MHD uses

this assumption, which is accurate on short timescales or over long length scales.

1.3 Dynamo Theory

Dynamo Theory is one of the most important theories to emerge from the develop-

ing field of MHD. It describes how a magnetic field is generated and perpetuated

through the rotation and convection of electrically conducting fluids. Dynamo the-

ory is applicable to any situation in which dynamo action is possible, but is most

often applied to astrophysical objects such as the Earth and Sun. In the Earth, it is
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believed that convection is driven by both temperature gradients in the fluid outer

core (thermal convection) and compositionally buoyant fluid formed through the

solidification of heavier elements, such as iron, at the inner core boundary (compo-

sitional convection). In the Sun, it is the motion of plasma in the convective zone

that is important. The earliest such ideas can be dated back to 1919, when Joseph

Larmor proposed that the Sun’s magnetic field may be generated and maintained

against ohmic decay through the internal motions of its fluids, this marking the

beginning of an important paradigm shift in the scientific community of the time.

The leap between the proposal of such an idea and formulating a formal mathemat-

ical description of the processes is long and convoluted. Only in the past twenty

years or so have numerical models successfully demonstrated some of the more

prominent characteristics of the geodynamo (see Glatzmaier and Roberts, 1995),

thanks to extensive research on the fundamental processes at work and massive

improvements in computing power. The difficulty with such models is that the

physical systems are extremely complex with a multitude of processes occurring on

a huge range of scales.

This section provides an outline of some of the basic ideas and concepts within

dynamo theory, but focuses more on the considerations of kinematic dynamo theory

that are most relevant to this thesis.

1.3.1 Antidynamo theorems

Within MHD, one of the best ways to help identify potential dynamo mechanisms is

to establish situations where dynamo action cannot occur. One of the best examples

of an antidynamo theorem was demonstrated by Cowling (1933), in which he proves

analytically that an axisymmetric magnetic field cannot be self-sustaining, and so

it must be impossible for dynamo action to produce a purely axisymmetric field,

as originally assumed by Larmor. Cowling’s antidynamo theorem was critical, as

it identified that other mechanisms must be at work to maintain the seemingly

axisymmetric magnetic fields of the Earth and Sun.
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Another form of Cowling’s theorem, but stated in Cartesian coordinates, shows that

a magnetic field which is a function of two spatial variables in three-dimensional

space cannot be maintained by dynamo action. In such a case, the flow must also

be a function of the same two spatial variables, meaning that there is no source for

two of the three magnetic field components. Moffatt (1978) (see also Gilbert, 2003)

proves that this is the case by showing that the growth rate γ of such dynamos

cannot be greater than that of the slowest decaying mode, which is negative by

definition.

Furthermore, it is possible to show that planar flows, those that are functions

of all three spatial variables but only have two non-zero components, are unable

to amplify magnetic fields and thus are not dynamos. This is demonstrated by

Zeldovich (1957) and later generalised to spherical geometries (i.e. flows restricted

to spherical shells) by other authors.

One result of the development of antidynamo theorems is that effective dynamos

tend not to be highly symmetric, lacking, in particular, reflectional symmetries.

1.3.2 Mean-field theory and the α-effect

In many physical systems, the need to reduce the complexity of these systems in

order to model them is essential. Mean field theory, which is not just confined to

MHD, requires replacing small-scale or short-term processes with their averages

or combining many complex interacting processes by a single process describing

their average effects. The α-effect is the result of one such application to modelling

of dynamos in flows with stochastic elements. The effect was initially realised by

Parker (1955), though was given its current name when described by Steenbeck et

al. (1966).

When modelling dynamos in astrophysical objects, mathematical descriptions of

the flows are often unattainable because of the multitude of different scales present,

making them too complex to describe analytically, and because observation of the

motions themselves is not possible with current observational equipment. In models



1.3. DYNAMO THEORY 31

of the solar dynamo, for example, the turbulent flows may be resolvable (at the

surface of the photosphere) to a reasonably fine scale but subsurface flow profiles

may be impossible to discern.

Moffatt (1978) details the method, and we give a brief summary here. A flow U

can be described as a sum of a mean flow U 0, a known function of space and time,

and a fluctuating (i.e. random or turbulent) flow u, which averages out, over some

scale, to zero (〈u〉 = 0). Similarly a magnetic field B can be written as a sum of

a mean field B0 and a fluctuating field b, which averages to zero (〈b〉 = 0). The

induction equation (1.12) can then be written as its mean and fluctuating parts by

∂tB0 = ∇× (U 0 ×B0) +∇× E + η∇2B0, (1.14)

∂tb = ∇× (U 0 × b) +∇× (u×B0) +∇× (u× b− E) + η∇2b, (1.15)

with E = 〈u × b〉 being the mean electromotive force (e.m.f.). If the e.m.f. can

be described as a function of U 0 and B0, then (1.14) can be solved without ever

explicitly needing to know b. By taking the leading term in the expansion of E , it

is seen that the contribution of the e.m.f. to the mean field B0 is

E (0)i = αijB0j, (1.16)

that is, a contribution proportional to the strength of the mean field itself. If the

fluctuating field u is statistically isotropic, i.e. rotationally invariant, then α can

also be approximated as symmetric with the contribution as

E (0) = αB0, (1.17)

with α a scalar. This formulation is central to much of dynamo theory, as it offers a

way to handle small-scale turbulence, by using its average properties. Additionally,

the poloidal 
 toroidal field cycle is completed as the α-effect describes a mech-

anism in which poloidal field can be generated from toroidal field. (On a sphere,

poloidal field would be parallel to lines of longitude, whereas toroidal field would
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be parallel to lines of latitude.) Critically, the α-effect shows that it is possible for

small-scale motions (such as convective turbulence) to drive large-scale magnetic

fields.

Importantly, the α-effect cannot arise in small-scale flows u that contain reflective

symmetry, as it is a pseudo-scalar and so changes sign under a coordinate inversion

(reflection). One way in which these flows can avoid containing reflective symmetry

is if they contain helicity H = u · ∇ × u, which does not necessarily destroy the

required homogeneity of u. This requirement is not unphysical, as for flows with

large-scale differential rotation, such as those of the Sun, the Coriolis force leads

to the generation of helicity.

Following from the concept of the α-effect, α2- and αω-dynamos are those for

which the α-effect is important in different ways. If the differential rotation is not

significant (and so is negligible as a source of toroidal field), the α-effect serves

as a source for both poloidal and toroidal field, with such dynamos termed as

‘α2-dynamos’. Alternatively, if the dominant source of toroidal field is through

differential rotation, referred to as the ω-effect, and the α-effect is a source of

poloidal field, the dynamos are described as ‘αω-dynamos’. The α-effect will be

revisited in chapter 7, as part of the investigation into the effect of large-scale

magnetic fields on dynamo growth.

1.3.3 Kinematic dynamo theory

In the previous section, the main assumption for kinematic dynamo theory was

given by explaining that the Lorentz force remains negligible as the magnetic field

evolves. This identifies that the magnetic field is not strong enough to change the

flow, meaning that the flow is prescribed and only the kinematic induction equation

(1.13) requires solving. Realistically this arrangement is unphysical, though it

does help to explain why astrophysical bodies possess magnetic fields and is useful

in describing the initial stages of non-linear dynamo evolution. On a theoretical

basis this allows for interesting analysis of the given flow u such as identifying the
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particular mechanisms responsible for effective field amplification.

Kinematic (linear) dynamo theory is useful for ascertaining whether specific flows

are capable of dynamo action, that is for a range of Rm, the growth rate γ of

the magnetic field is positive. Unlike in non-linear dynamos, where the magnetic

field reaches saturation after sufficiently changing the flow, the magnetic energy

can grow exponentially, with γ as the rate of exponential growth. Due to the

linearity of (1.13) in B, this is equivalent to solving an eigenvalue problem with

many eigenvalues λ, and for which γ0 = Re(λ0) is the growth rate of the fastest

growing eigenmode. Additionally, kinematic dynamo theory is useful for stability

analysis of equilibria states of fully non-linear dynamo problems, as it is able to

identify whether equilibria (in which there is no magnetic field) are stable states

(γ ≤ 0) or unstable states (γ > 0).

1.3.4 Fast and slow dynamos

In the kinematic regime, one important distinction (originally made by Vainshtein

and Zeldovich, 1972) between particular (laminar) flows is that of their respective

dynamos being ‘fast’ or ‘slow’. A fast dynamo is one which for which γ → γ0 > 0

for Rm →∞, that is in the perfectly conducting limit, the growth rate has reached

an asymptotic limit which is greater than zero. Alternatively, a slow dynamo is

one for which γ → γ0 ≤ 0 as Rm → ∞, that is in the perfectly conducting limit,

the flow is unable to support dynamo action. It is impossible to resolve growth

rates in the limit of Rm →∞, owing to the ever-smaller diffusive scales needing to

be resolved as Rm increases. Even for large Rm, particularly for three-dimensional

flows, the growth rates can be difficult to obtain. However, since fast dynamos

reach an asymptotic limit, the application of asymptotic theory to such dynamos

is often possible.

The need to find fast dynamos is driven by our understanding of astrophysical

dynamos. The solar dynamo is considered to have features of a fast dynamo, as its

magnetic field evolves on the time scale of months or years. Though the evolution of
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the Sun’s magnetic field is not kinematic, the mechanisms for field amplification are

considered to be similar (see Childress and Gilbert, 1995). The Stretch-Twist-Fold

mechanism is discussed in section 1.3.5.

Conclusive proof of fast dynamo action in physically realistic flows is not possible

through current mathematical theories and so relies on numerical evidence and

asymptotic analysis for classification. The main difficulty in classifying dynamos

is that the smallest scales (diffusive) to be resolved are O
(
R
−1/2
m

)
and so in the

high-Rm regimes, numerical analysis is limited by computational power, owing to

the high resolutions needed, particularly in fully three-dimensional dynamos.

The Ponomarenko dynamo (Ponomarenko, 1973) is perhaps the most basic example

of a dynamo, and is described as solid body rotation of a cylinder of fluid, with

a vertical velocity component, and with zero fluid velocity outside this cylinder:

the discontinuity of the fluid flow at the boundary is critical in the generation

and amplification of magnetic fields. Through high-Rm numerical analysis (and

asymptotic approximations), it is seen that the fastest growing modes appear to be

independent of Rm, implying that this may be a fast dynamo (see Gilbert, 1988).

By contrast, the smooth Ponomarenko dynamo, which is a modification of the

Ponomarenko dynamo that avoids the discontinuity, has been identified as being

slow.

The existence of slow dynamos has been analytically and numerically proven, with

one example being the spatially-periodic Roberts dynamo. As the flow is integrable,

it is more amenable for asymptotic analysis, which identifies a decreasing growth

rate with increasing Rm (see Soward, 1987), confirming the findings of the original

numerical analysis (see Roberts, 1970). Soward (1987) argues that, although it

is a slow dynamo, it is actually close to being fast, with the growth rate γ =

O (log logRm/ logRm). The Roberts flow is a special case of the ABC flows, with

A = B,C = 0. These flows are discussed in section 1.4.
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1.3.5 Stretch, twist and fold

The stretch-twist-fold (STF) mechanism builds on the original models put forward

by Alfvén (1950) for dynamo action in the presence of strong advection and weak

diffusion (i.e. high-Rm regimes). The mechanism describes how field lines are

advected with the flow which, if the flow is sufficiently complicated, can stretch and

twist these field lines in a constructive sense, resulting in tubes of magnetic flux of

the same polarity that are aligned. STF is perhaps the best known of the proposed

fast dynamo mechanisms, and was described by Vainshtein and Zeldovich (1972),

with further development by Childress and Gilbert (1995). Figure 1.1 illustrates

Figure 1.1: The stretch-twist-fold process of magnetic field amplification, from
Gilbert (2003).

the idealised STF mechanism, which relies on the conservation of magnetic flux

within the flux tubes. The process involves the stretching of a flux tube depicted

in (a) to (b). The flow then twists the field, shown in (b) to (c), and then folds

it back on itself in such a way that the flux tubes are aligned, polarity-wise, seen

in (d). On repeating the process, the two flux tubes are doubled to four and in

continued repetition of the process, the effective number of flux tubes increases

exponentially. The process depicted does not necessarily consider diffusion, but

in such an example, diffusion would serve to smooth field without cancellation of

opposing fields, as folding is constructive. This, of course, relies on the very weak
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diffusion seen in the high-Rm regimes of fast dynamo mechanisms.

The magnetic flux in a single flux tube is defined as the flux density B that passes

through the cross-sectional area A of the tube and is calculated as BA, this quantity

being conserved for a given flux tube. In being stretched by the flow, the flux tube’s

cross-sectional area decreases and so to conserve flux, the flux density increases

accordingly. For instance, a reduction of the area to A/2 will result in a flux

density of 2B passing through this reduced area. Through constructive folding of

the tubes, assuming that the process results in two (connected) flux tubes of the

same length as the original, each flux tube has half the cross-sectional area and twice

the flux density, resulting in twice the total flux of the original tube. With repeated

iterations, the number of flux tubes increases exponentially and the magnetic flux

density (and thus magnetic energy) also experiences exponential growth. In non-

perfectly conducting regimes, flux is lost through diffusion and so the growth rate

of an STF dynamo is dependent on the efficiency of these amplifying mechanisms

relative to the diffusive losses.

The whole STF process relies on the ability of the flow to exponentially stretch

magnetic field lines, thus a chaotic flow is required; these are discussed in the next

subsection.

1.3.6 Chaotic flows

To emulate the stochastic nature of small-scale flows in the solar dynamo, kine-

matic models can be applied to chaotic flows. In chaotic flows, two fluid particles

placed infinitesimally close may experience exponential divergence on being ad-

vected through the flow. For such flows, the streamlines will be space-filling in the

regions that are chaotic, though it may only be small areas of the flow that actu-

ally contain ‘chaos’, with the rest of the flow being integrable. One possible way

to achieve this is through turbulence, in which the flows either contain an element

of randomness or are time-dependent (i.e. unsteady) flows. As detailed above, the

ability to stretch magnetic field lines admits the possibility of mechanisms (includ-
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ing STF) that are considered essential for fast dynamos, thus chaos is considered

an important ingredient of a fast dynamo.

It is possible to create chaotic trajectories in flows that only depend on two spatial

variables by introducing time-dependence. The CP and LP flows of Galloway and

Proctor (1992) are such an example. A Poincaré section identifies that the flows

indeed have chaotic trajectories and by numerical simulations it is seen that the

CP flow may be fast, while the LP flow shows indications of being slow.

It is also possible for steady three-dimensional flows to be chaotic and thus amenable

for fast dynamo action. In an artificial 3-D flow defined on a Riemannian manifold,

Arnold et al. (1981) demonstrate that exponential growth of magnetic energy is

possible, concluding that streamline chaos, in such flows, favours magnetic field

amplification, with the growth rate controlled by the largest Lyapunov exponent

(maximum rate of line stretching possible in the flow). The flows which are the sub-

ject of this thesis are perhaps the best-known example of steady three-dimensional

chaotic flows; the ABC flows. These flows are interesting as the (Lagrangian) chaos

is restricted to thin bands, surrounded by integrable flow, and may be candidates

for fast dynamos. These flows are the subject of the next section.

1.4 ABC flows and ABC dynamos

In this section, we review the literature surrounding the ABC flows, which are

the subject of the investigations in this thesis. We refer to studies both in hy-

drodynamic and dynamo contexts and aim to provide a synopsis of prior studies,

to bring the reader up to speed with the current level of understanding of these

flows. Although the literature on ABC flows is not particularly extensive, we have

endeavoured to include those studies that have direct relevance to this thesis.

The ABC flows are a family of flows, defined on T3 (the 3-torus), that are given as

u = (C sin z +B cos y, A sinx+ C cos z,B sin y + A cosx), (1.18)
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with A,B,C ∈ R and x, y and z periodic, with period 2π. Although the flows were

originally introduced in Beltrami (1889) (see figure 1.2) as an example of a class of

flows with the Beltrami property, given by

∇× u = ku, (1.19)

the flows have, much more recently, become the subject of many studies, owing to

their interesting properties and features.

Figure 1.2: The original flow profile in Beltrami (1889), satisfying the ∇×u = ku
condition. Note that T1, T2 and T3 are equivalent to A,B and C.

It is noted that in (1.18), the parameters A, B and C have been assigned, respec-

tively, to the functions of x, y and z. This differs to the original usage seen in

Arnold (1965), Hénon (1966) up to Bouya and Dormy (2013) but coincides with

the form given in Gilbert (1992) and Childress and Gilbert (1995) and seems a

more logical definition.

This section aims to explore the relevant literature for the ABC flows, with the ob-

jective of providing the reader with enough information to understand the context

of the work carried out for this thesis.

1.4.1 Early investigations of the ABC flows

The flows were first introduced in their current form by Arnold (1965), due to them

being exact three-dimensional steady solutions to the Euler equations (1.1,1.2) and

Navier–Stokes equations (1.5), provided that, for the latter, the correct forcing term

(to counter viscous dissipation) is included. One flow, A =
√

3, B =
√

2, C = 1, is
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identified by Hénon (1966) as chaotic through numerical calculations.

With respect to dynamo action, ABC flows are first considered by Childress (1970),

in which the A = B = C = 1 (1:1:1) flow

u = (sin z + cos y, sinx+ cos z, sin y + cosx), (1.20)

is introduced as a potential model for a space-periodic three-dimensional kinematic

dynamo, however all calculations are purely analytical. It is not until Arnold and

Korkina (1983) that the first numerical calculations are undertaken using the 1:1:1

flow. In their investigation, they identify that kinematic dynamo action is indeed

possible for (1.20) and find that the magnetic field only grows for a limited range

of η = R−1m . The values are given as Rm ≈ 8.93 and Rm ≈ 17.5 as the respective

lower and upper limits of this ‘window’ (with a maximum at Rm ≈ 12.5), and with

the field decaying for values outside this range. They also note the form of the

growing field in this window as

b = (cos y − sin z, cos z − sinx, cosx− sin y), (1.21)

similar to the 1:1:1 flow, except with the sines negated. As an extension to this

investigation, Arnold (1984) discusses the numerical work of the previous paper

in more detail but admits that the inherent symmetry of the flow (1.20) is clearly

important, as in his Galerkin approximation, he finds certain spectral modes to be

zero-valued. Arnold presents the generating symmetries as

g4(x, y, z) 7→ (x+ π/2, z − π/2, π/2− y), g3(x, y, z) 7→ (y, z, x), (1.22)

with g44 = g33 = i. The full group, G, of 24 orientation-preserving symmetries is

then generated by these symmetries. A description of how this can be achieved

for the different ABC flows will be given in chapter 2. Also noted by Arnold is

that the group G is isomorphic to the group of proper rotations of a cube. By

proper rotations, Arnold refers to those that are orientation-preserving, i.e. those
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involving no reflections, as reflections are orientation-reversing transformations.

He then details how one would go about deconstructing spheres of spectral modes,

that is those for given wavenumber k2, into linear combinations of their irreducible

representations. The process will not be described here but this thesis will be taking

elements of this approach, specifically reducing the problem into its constituent

symmetry classes. The breakdown of the 1:1:1 ABC dynamo into these classes is

the subject of chapter 3.

1.4.2 Structure of the ABC flows: chaotic and integrable

flow

Dombre et al. (1986) provides an in-depth analysis of the structure of different

ABC flows and helps to justify why they are so compelling to study. It is in this

investigation that the term “ABC flows” is coined, with the A, B and C making

reference to Arnold, Beltrami and Childress. As in Arnold (1984), they note the

various symmetries, both time-reversing and time-preserving, and use these to

restrict the parameters A,B and C so that

1 = A ≥ B ≥ C ≥ 0, (1.23)

with any choice of parameters being transformable to this situation. By studying

where the velocity vanishes, they obtain equations for the stagnation points, finding

that eight (four pairs) exist in the periodic cube for the case A = B = C and that

for ABC flows with (1.23) and B2 +C2 < 1, none exist at all. These pairs of stag-

nation points (in all ABC flows that contain them) are formed of one α-type (two-

dimensional stable manifold) and one β-type (two-dimensional unstable manifold)

stagnation point with a heteroclinic line, or separatrix, joining the two. Stream-

lines of the flow are drawn in at the α-type, stretched along the separatrix and

are expelled at the β-type. They also note that there are areas of integrable flow,

away from the stagnation points and separatrices. They term these the “principal

vortices” and are loosely defined as areas of the flow for which motion is predom-
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inantly in one direction, that is in the x, y or z directions. The original diagram

identifying these is given in figure 1.3. Through numerical integration, Poincaré

Figure 1.3: Diagram showing the six principal vortices of the ABC flows, taken
from Dombre et al. (1986). These are areas of flow that have motion in largely one
direction (along the length of the tube).

sections were produced for the various flows studied with clear areas of Lagrangian

chaos (non-integrable flow). Particularly in the case of A = B = C = 1, the areas

of chaos are restricted to the stagnation points and along the separatrices. Thin

bands of chaos also exist joining the non-paired stagnation points, though these

bands are curved and so avoid intersecting the principal vortices.

1.4.3 The 1:1:1 ABC dynamo: the second window

Galloway and Frisch (1986) are the next to address the ABC dynamo problem,

in an effort to determine whether the 1:1:1 flow, and others, produce fast or slow

dynamos. With access to more computing power, they are able to extend the range

of Rm studied from Rm ≈ 20 as seen in Arnold and Korkina (1983) to Rm = 550

in the 1:1:1 flow. For low Rm, they confirm the existence of a window of dynamo

action found by Arnold and Korkina (1983) but also discover that a new window

of dynamo action appears at Rm ≈ 27 and persists to the limit of their simulations
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(Rm = 550). The growth rate of the dynamo in the second window is distinctly

higher than that of the first, with a maximum of γ = 0.079 at Rm = 550 in

comparison to a maximum of γ = 0.0096 at Rm = 12.5. Computational difficulties

are encountered, as identified by error bars showing the uncertainty in their results.

They indicate that a change from an oscillating mode seen for Rm < 200 to a steady

mode for Rm > 350 is possibly the cause of these difficulties and increasingly long

simulations are required to discover if this is the case. Figure 1.4 is taken from

Figure 1.4: Graph of growth rates versus Rm from Galloway and Frisch (1986).
Conjectures on three possibilities for future behaviour are shown with dashed,
dotted and dash-dotted lines. Error bars indicate uncertain measurements.

Galloway and Frisch (1986) and shows their results for the 1:1:1 dynamo. They

go on to provide conjectures for future growth rates, distinguishing three separate

cases: a slow dynamo (dotted line) with γ → 0 as Rm → ∞, a fast dynamo

(dashed line) with γ > 0 for Rm →∞ and an “intermediate” dynamo with which

the growth rate, for some Rm > 550, becomes negative and the dynamo re-emerges

at a larger Rm.

Unlike in previous studies, the authors are able to visualise the areas of strong

magnetic field and discover that it is restricted to “cigar-like” structures centred

on the α-type stagnation points. The strong field appears to be generated at the α-

type stagnation points, where the flow draws in the field near to a two-dimensional
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stable manifold and then ejects it near to a one-dimensional unstable manifold. On

approaching the β-type stagnation point, the magnetic field lines are dispersed by

the flow, forming the ends of the cigar structure. The width of these structures is

directly linked to Rm, with the authors citing the diffusive scale of R
−1/2
m . In their

investigation of magnetic field structures in the 1:1:1 flow and others, such as the

21/2 : 1 : 1 flow, it is clear to the authors that the strongest areas of field are those

in which the Lagrangian chaos exists.

On further analysis of the field in the first dynamo window, Galloway and Frisch test

the field for “symmetry-breaking” structure by choosing random initial conditions

and then checking the values of Fourier modes against expected values (this process

is similar to the representation “fingerprinting” used in Arnold (1984)). They note

that symmetry-breaking does not occur in this window, with the field identified

as that in (1.21), which is even under g3 and odd under g4 of Arnold (1984).

On analysis of the field in the second window, however, the authors argue that

symmetry-breaking occurs as none of the symmetries found in the first window

are found to be present in the second. This leads the authors to conclude that

the magnetic fields in each window are distinctly different modes, with the mode-

crossing occurring at Rm ≈ 24.

As a result of the helical nature of the flow, the α-effect is investigated for these

flows. The authors calculate α for values of Rm in both windows of the 1:1:1

flow but note that α saturates in the first window but grows exponentially (with

the dynamo mode) in the second. The authors admit that the argument for the

importance of the α-effect may not be valid, as the dynamo mode contributes to the

mean e.m.f. and so values calculated for the second window may not be sensible.

Galloway and Frisch (1986) outline their numerical procedure and describe that,

because of the form of the ABC flows, the calculations can be carried out in spectral

space; the numerical method is fully spectral. The resolution scales proportionally

with R
1/2
m and so the number of Fourier modes scales like R

3/2
m , a scaling which will

be adopted in the numerical work of this thesis.
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Part of the investigation by Lau and Finn (1993) explores the ABC dynamo, re-

producing the results of the 1:1:1 flow dynamo (to within small error margins) of

Galloway and Frisch (1986). They calculate that the change from oscillating mode

to steady mode in the second window is between Rm = 300 and Rm = 350. The

authors determine a growth rate γ = 0.076 for Rm = 1000 in the 1:1:1 ABC flow.

When considered with the growth rates of Galloway and Frisch (1986), it appears

that the growth rate has not changed and may support the fast dynamo conjec-

ture, of Galloway and Frisch, that the growth rate has reached an asymptotic limit.

Indeed, Lau and Finn attempt to extrapolate this and previous results to provide

the estimate that γ → γ0 = 0.077 for η → 0 (Rm →∞), though later studies have

shown that Rm = 1000 is not sufficiently large to make such a judgement.

1.4.4 Linear hydrodynamic stability of the ABC flows

In a parallel investigation to that of 1986, Galloway and Frisch (1987) discuss

the purely hydrodynamical analogue of the dynamo problem. In adding a zero-

divergence perturbation v to the ABC flow, applying the Navier–Stokes equation

and neglecting non-linear terms, the authors derive the (linear) equation for evo-

lution of the perturbation, given as

∂tv + u · ∇v + v · ∇u = −∇p/ρ+R−1e ∇2v, (1.24)

with p as the perturbed pressure. The equation is very similar to that of the

magnetic problem, though with an extra pressure term which is eliminated through

a projection in Fourier space. The same numerical scheme is adopted as with the

magnetic case. Results are reported for three different ABC flows; 1:0:1, 2:1:1 and

1:1:1, with the original graph provided in figure 1.5. At Re = 100, the most unstable

(fastest growing) perturbation belongs to that of the 1:0:1 flow, however the growth

rate of the 2:1:1 flow perturbation shows signs of overtaking that of the 1:0:1 flow

at high Re. The most stable of the flows is the 1:1:1 flow with an oscillatory mode

that first becomes unstable at Re ≈ 13. The perturbation grows as Re increases
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Figure 1.5: Graph of instability growth rates versus Re for three flows (taken from
Galloway and Frisch, 1987).

and by Re = 200, it appears that the growth rate has levelled off at 0.216. The

structure of the energy density of the perturbation for the 1:1:1 flow (but not other

flows) is visualised at Re = 250 and clearly show cigar-like structures, reminiscent

of those in Galloway and Frisch (1986). The authors associate this with the strong

advection and straining near to the α- and β-type stagnation points discussed in

Dombre et al. (1986), as the structures occupy the same locations as with the

magnetic problem.

1.4.5 Symmetries and irreducible representations of the

ABCS flow

In investigating steady chaotic flows in the absence of diffusion (with η = 0), two

forms of the ABC flows are considered by Gilbert (1992); the 1:1:1 flow and the

ABCS (A = B = 1, C � 1) flow. Of particular relevance to this thesis is that the

symmetries of both flows are considered. The ABCS flow contains two generating

symmetries: r is a π/2 rotation (quarter turn) about the axis x = y = π/2, whereas

s is a π rotation (half turn) about the axis y = z = 0. These transformations

generate a group of eight elements, with this group being isomorphic to the group
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D8, the symmetries of a square. In the method described by Arnold (1984) for the

1:1:1 flow, the five irreducible representations (labelled I–V) of this group are found

through use of the group’s character table. This allows the author to construct

magnetic fields that belong to each of the representations, of which there are five

for this flow, and from these fields, initial conditions are generated for numerical

calculation. The resulting computations identify large differences in the growth of

the field in different representations, suggesting that the symmetries of the field

are important in determining how fast a dynamo will grow.

Results are also given from applying the same methods to the 1:1:1 flow. The

author provides the complete list of 24 symmetries for this flow and displays the

character table, identifying five irreducible representations, again labelled I–V. The

initial conditions in each representation lead to roughly similar growth rates, apart

from representation I, which shows little or no growth. In drawing a comparison

of these results to those of Arnold and Korkina (1983) and Galloway and Frisch

(1986), the author identifies that in the first window of dynamo action (in the

kinematic 1:1:1 flow dynamo), the field belongs to representation II whereas in the

second window, the dominant field belongs to representation V.

1.4.6 Large-scale magnetic fields in the ABC flows

An alternative way to describe the ABC flows is to include a term, k0 ∈ N, that

controls the periodicity (given by 2π/k0) of the flows. Galanti et al. (1992) define

the ABC flows by

u = (C sin k0z +B cos k0y, A sin k0x+ C cos k0z,B sin k0y + A cos k0x), (1.25)

which when k0 = 1 gives the original flows (1.18). In driving the evolution of a

magnetic field using the flow (1.25) in a [0, 2π]3 box, the magnetic field is allowed

to evolve on spatial scales greater than those of the flow, something which is not

possible with the original ABC flows.
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In addition to the investigations of the kinematic dynamo for k0 = 1 by varying

the ratio B/A and of the non-kinematic dynamo problem (also for k0 = 1), the

authors compare growth rates for kinematic dynamos driven by ABC flows with

k0 = 1 and k0 = 2. The amplitudes are scaled by setting A = B = C = k0, so

that Rm remains comparable as k0 is varied. In addition, the growth rates found

with a specific k0 need to be scaled by 1/k20. They find that for k0 = 2, the growth

rates are considerable larger than those of k0 = 1 and that the distinct windows

of dynamo action of the latter do not exist for the former. Although results are

limited to Rm up to 45, it is clear that a dynamo driven by (1.25) with k0 = 2 is

far more effective. In fact, for Rm = 12 and 20, simulations with k0 from 1 to 10

reveal that for k0 ≥ 2 the growth rates are very similar; as the k0 = 2 mode exists

in simulations for which k0 = 2n, for n ∈ N, then the lack of improvement as k0

is increased suggests that the optimal scale for dynamo action is when the flow is

approximately twice the period (i.e. for k0 ≈ 2), at least for these low values of

Rm.

Notably, in studying the temporal evolution of individual Fourier modes, those

with wavenumbers close to k0 are oscillatory, as opposed to lower wavenumber

modes (representing large-scale magnetic fields relative to the flow’s scale) which

grow monotonically. The authors associate this with the α-effect, determining

(from multiple-scale analysis) a monotonic growth rate of αk for a mode with

wavenumber k.

As a brief extension to this work, Galanti et al. (1993) provide additional results by

varying k0 for Rm = 35, 60 and 100. It is seen that the dynamo growth rate is lower

at k0 = 2 as Rm is increased. Furthermore, by interpolating the growth rates, it

is observed that the optimal scale is actually decreasing as Rm increases and goes

from k0 ≈ 2.2 at Rm = 20 to k0 ≈ 1.8 at Rm = 100. Exploring non-integer values,

however, is not possible with this method.

The methods adopted and results achieved in these articles are discussed further

in chapter 7, where a comparison is drawn to the method of imposing large-scale

fields through the use of Bloch waves, which we use to study the optimal magnetic
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field scales for a range of Rm.

1.4.7 Non-linear hydrodynamic stability of the 1:1:1 ABC

flow

Podvigina and Pouquet (1994) investigate the stability of the 1:1:1 ABC flow in

a non-linear regime, through solving the Navier–Stokes equation (1.5) with initial

flow (1.20). From the results it is seen that the onset of instabilities occurs over

a very short range of Reynolds number Re. For instance, at Re = 13, the flow

is stable, but at Re = 13.05 the switch to an unstable mode occurs. The nature

of these instabilities changes until the flow is again stable in the interval Re ∈

[13.5, 13.9] and for Re = 13.95 it again becomes unstable. Interestingly, the authors

choose to identify the symmetries of the stable and unstable modes, by comparing

spectral mode values to expected symmetric values, and note that when stable, the

flow contains all listed symmetries. When unstable, the flow may be asymmetric

or contain some of the symmetries and eventually as Re is increased past 16, no

symmetries are present.

In Podvigina (1999), the branches of stable solutions found by Podvigina and Pou-

quet (1994) are investigated further by applying tangent predictions to steady

solutions of lower Rm computations to approximate solutions of the same branch

at higher Rm. The Fourier space decompositions of each representation (of the

1:1:1 flow) are also provided and it is here that we see the restrictions on mode

values. Similar restrictions will be used for the magnetic field in this thesis, when

decomposing a general field into its constituent symmetry classes; see chapter 4.

1.4.8 Growth rate bounds for the 1:1:1 ABC flow

The answer to the question of whether any of the ABC flows contain fast dynamos

is still highly sought after. Childress and Gilbert (1995) attempt to place poten-

tial bounds on the growth rate of a kinematic dynamo, specifically for the 1:1:1
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flow. The flux is calculated through a triangular plane centred on the midpoint

of a separatrix (heteroclinic line joining two stagnation points in the flow) and a

growth rate is calculated from this. Using the initial condition (1.21), which is

the dominant eigenmode of the first window, the authors calculate a figure (for

the flux growth rate) of ΓS ' 0.055, however the growth rate already far exceeds

this in calculations made by Galloway and Frisch (1986) and Lau and Finn (1993).

Childress and Gilbert acknowledge that the growth rate of the dynamo with initial

condition (1.21) is in fact negative for 100 ≤ Rm ≤ 400 (see Galloway and O’Brian,

1994).

The rate of line-stretching hline is also calculated for the 1:1:1 flow, giving it as

hline ' 0.09, which they assert is an upper bound for γ as Rm → ∞. In referring

to the results of Galanti et al. (1992), however, the growth rates of magnetic fields

with twice the period of the ABC flow are given as 0.17 at Rm = 250; considerably

higher than that of hline, lending credence to the suggestion that the values of

Rm reached, in numerical calculations that include diffusion effects, are still not

sufficiently large for the growth rate to have become asymptotic.

Also raised by the authors is a question regarding how much the magnetic field

in numerical computation can “see” the chaos of the flows. The separation of

grid points in the largest simulation undertaken (that of Lau and Finn, 1993, at

Rm = 1000) is rather large when compared to the size of the bands of chaos and

so it may be open to discussion whether the full effect of the chaos could yet be

seen. In visualising field evolution for a seed field (1.21) with η = 0, it is seen that

bands of field build up in the chaotic region, with evidence of constructive folding

of the field.

1.4.9 Field structure of the 1:1:1 ABC dynamo: investiga-

tions into two windows of dynamo action

The ABC dynamos are revisited in Galloway and O’Brian (1994), with simula-

tions carried out for the 1:1:1 flow, the 5:2:2 flow and a third flow, defined by
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u = (sin z, sinx, sin y), which is also investigated by Galloway and Proctor (1992).

The magnetic field visualisations produced by Galloway and O’Brian are clearer

than those of Galloway and Frisch (1986) owing to improvements in visualisation

techniques and computer processing power. In the 1:1:1 flow dynamo, these im-

provements allow the authors to observe (for Rm = 100) that the areas of strong

field, based around the α-type stagnation points and separatrices, each consist of

two distinct cigar-like structures formed on opposing sides of the separatrices. On

further investigation, it is found that each cigar has opposing polarity. As the

dynamo for Rm = 100 is oscillatory, they also resolve the field structure for one

quarter of a period later and observe that only one cigar remained where pre-

viously there were two, suggesting that the structure evolves significantly over a

single cycle.

In taking the initial condition given in (1.21), which is the eigenmode of the first

window of dynamo action, Galloway and O’Brian calculate growth rates for Rm =

100, 200 and 400, finding that γ ≈ −0.03 for all three values, suggesting that this

eigenmode is a “fast non-dynamo”. Visualising this eigenmode at Rm = 100 reveals

a single cigar along the separatrix, with three rotationally symmetric “fins” of field

with the opposite polarity to the cigar. Fields of this description can be seen in

chapter 5, in the visualisations of fields in symmetry class II.

Archontis and Dorch (1999) discuss the magnetic field structures found in two

kinematic ABC dynamos; those of the 1:1:1 and 5:2:2 flows, the latter of which

has no stagnation points. Of interest is their discussion of the flow topology, par-

ticularly in the region of the stagnation points. The streamlines converge at the

α-type stagnation points in three-fold, rotationally-symmetric ‘leaves’ that lie on

the plane perpendicular to the heteroclinic orbit (separatrix) that joints the α-type

and β-type stagnation points. Similarly, the streamlines leave the β-type stagna-

tion points in the same three-fold leaf formations.

In their numerical work, growth rates are not explicitly provided, though it is

assumed for formerly resolved values of Rm, that the growth rate agrees with those

of previous studies. Following prior investigations, the initial condition (1.21) is
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used and compared with a uniform seed field. As expected, in the first window

(8 ≤ Rm ≤ 17), the results are identical for the two seed fields. In the second

window, from a uniform seed, the field settles to the oscillating, exponentially

growing energy profile that is expected. Using the initial condition (1.21) at first

gives an oscillating, exponentially decaying field that visually resembles that of

the first window, though eventually it settles to the dominant field of the second

window. Over sufficient time steps, the rounding error becomes large enough to

break the symmetry of (1.21) and settles to the fastest growing dynamo mechanism.

This makes it difficult to resolve any modes other than the dominant one for a given

Rm.

The authors also describe the process of field amplification in the dynamo mecha-

nism of the second window. The two-cigar structure seen in Galloway and O’Brian

(1994) is reconfirmed, though they are able to visualise the fields at different times

and so observe the field evolution over a cycle. At the start of a cycle (mini-

mum energy), only one cigar exists near the α-type stagnation point. Over time

a secondary cigar of opposite polarity forms and grows, while the primary cigar

diminishes. By the following minimum, only the secondary cigar remains so that

the configuration at this point in the cycle is the same as the start but reversed in

polarity. This describes a half-cycle, with the second half-cycle effectively identical

so that after a full cycle, the field’s original configuration is restored. Essential in

the operation of the dynamo mode is the magnetic field reconnection that occurs

between the cigars of opposing polarity. According to the authors, this reconnec-

tion process is critical for replenishing the magnetic field at the β-type stagnation

points and vital in the amplification of the magnetic field. For the non-oscillatory

regime, this mechanism remains the same, though the field configuration is now

static, with two cigars; one weaker than the other and both with opposing polarity.

A subsequent study, Archontis et al. (2003), investigates the magnetic field struc-

ture of a dynamo generated by the 1:1:1 ABC flow with k0 = 2, in a similar fashion

to Galanti et al. (1992). For k0 > 1, the flow can be seen as multiple smaller

“copies” of the original (k0 = 1) ABC flow; for k0 = 2, there are eight (23) such
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copies and so the computational domain contains eight periodic cells. In the fastest

growing eigenmode for k0 = 2, the familiar cigar-like structures are seen but these

vary in size and strength from cell to cell, which is to be expected as the mag-

netic field is able to evolve on scales larger than that of the individual cells. It is

concluded that the ABC dynamo for k0 = 2 is a fast dynamo, as the growth rate

appears to saturate at γ ≈ 0.3.

1.4.10 The most effective ABC dynamo

Through the simulations of Galloway and Frisch (1986), it is seen that the 1:1:1

ABC flow is not the most effective in the generation of magnetic field. Alexakis

(2011) further investigates the effectiveness of dynamos in different ABC flows by

parameterising A,B and C as spherical coordinates φ and ψ and restricting the

parameter space through the flows’ symmetries. The author’s findings show that

the effectiveness of the majority of flows varies greatly as Rm is modified, though

it is clear that flows with A = B ' 2C/5 (and permutations), are consistently the

most effective up to Rm = 103. Whether this remains true for Rm = O(104) is yet

to be seen.

In solving the same problem with the ABC flow defined as in (1.25) with k0 = 2,

the author reports that, at least for low and intermediate Rm, the most effective

ABC flow has parameters A = B = C.

1.4.11 The 1:1:1 ABC dynamo in the high-Rm regime

A recent investigation of the 1:1:1 ABC flow dynamo problem by Bouya and Dormy

(2013) extends the results of Galloway and Frisch (1986). The authors report results

up to Rm = 2.5×104, far exceeding the range of previous results achieved (see figure

1.6). The growth rate of the dominant dynamo mode appears to decrease in the

range Rm ∈ [400, 2000] but increases again for Rm > 2000. At Rm = 2.5 × 104,

the growth rate has reached γ ≈ 0.1, which exceeds both the flux growth rate
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ΓS ' 0.055 and the maximum rate of line-stretching hline ' 0.09. The former of

these terms, ΓS, is the growth rate of flux in the absence of diffusion (for some

initial magnetic field) and Finn and Ott (1988a,b) speculate that ΓS is equal to

the dynamo growth rate in the limit of vanishing diffusion, that is ΓS = γ0 for

Rm →∞: this is often referred to as the flux conjecture. The latter term, hline, is

the maximum possible rate of stretching that any (frozen-in) curve will experience

as it is carried by the flow.

That the largest growth rate obtained by Bouya and Dormy exceeds ΓS ' 0.055 is

unsurprising, as this value was calculated for a field of the form (1.21) and so it is

unlikely to be realistic limit for the second window. The growth rate exceeding the

maximum rate of line-stretching, however, suggests either that the flux conjecture

does not hold (for the 1:1:1 ABC flow) or that the values of Rm are not sufficient

for the growth rate to have reached an asymptote. The authors’ results seem to

support the latter suggestion, as the growth rate appears to be increasing in the

limit of Rm = 2.5×104, though this highlights that the question on whether or not

this is a fast dynamo, is not easily answered.

Figure 1.6: Growth rates of the 1:1:1 ABC dynamo for Rm up to 2.5× 104, taken
from Bouya and Dormy (2013).

The paper also follows, numerically, the growth rate of the seed field (1.21) for as

high Rm as possible. The limiting factor when resolving this mode is the length
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of time that the rounding error remains negligible. Upon reaching a sufficient

magnitude (after sufficient time steps), the rounding error leads to the fastest

growing mode emerging, meaning that the time evolution of the seed field is seen

as transient behaviour. The authors are able to resolve this branch past the mode-

crossing at Rm ≈ 24 but growth rates are given for Rm up to 50, so they have been

unable to verify the results of γ ≈ −0.03 for Rm = 100, 200 and 400 (Galloway and

O’Brian, 1994).

The difficulties encountered by Galloway and Frisch (1986), and later studies, in

resolving the growth rate of the fastest growing dynamo mode for Rm ≈ 300 have

been overcome by Bouya and Dormy. As expected, the fastest growing eigenmode

switches from an oscillatory mode to a steady mode and the authors have identified

that this occurs for Rm ≈ 215, far lower than the previously accepted range of

Rm ∈ [300, 350]. On further analysis, the authors find that the apparent kink in

growth rates is not due to another mode crossing (as is suspected by Lau and Finn,

1993), but is instead due to ‘coalescence’ of eigenvalues in the dominant eigenmode.

1.5 Thesis aims

Now that the context of this work has been described, the purpose of this thesis,

and constituent investigations, can be detailed.

This thesis deals with kinematic dynamo action in the 1:1:1 ABC flow. Core to all

components of this thesis are the 24 symmetries of the flow. As already discussed,

the symmetries are well-known, but as of yet they have not been imposed in any

investigations on dynamos or fluid stability. Arnold (1984) details how, for the

kinematic problem, a general magnetic field (whose evolution is described by (1.5)),

can be described as a linear combination of five irreducible representations. The

principal aim of this thesis is to take this decomposition to reduce the full kinematic

dynamo problem into five subproblems and solve these independently through time

stepping. This has two purposes. Firstly it allows independent investigation of the

five possible types of structure than can exist in a general field, two of which (it is
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theorised) identify with each of the separate windows of dynamo action. Secondly,

solving all five subproblems is time-saving in comparison to solving the full problem,

allowing a greater range of Rm to be explored.

In the kinematic dynamo problem, the fluid flow u is prescribed; therefore in solving

(1.13), we are solving an eigenproblem with a distinct set of eigenvalues for each

Rm. In time stepping, magnetic energy evolution is used to identify the eigenvalue

with the largest real part (i.e. the dominant eigenmode) from the growth rate

and, if complex, the imaginary part from the oscillation frequency. A more direct

method of solving these eigenproblems could be adopted, by applying an eigenvalue

solver to the matrix of Fourier mode relations. As the symmetries are applicable

here, the aim is to verify the results of time stepping within each representation,

and compare the effectiveness of this method to time stepping.

As detailed in Galloway and Frisch (1987), the full linear fluid stability problem can

be solved with only minor modifications, which involve projecting the pressure term

out and can be incorporated into the numerical scheme. The symmetries can also be

applied to this problem, as a result of the linearity in the perturbation term, leading

to five independent subproblems; achieving this requires minimal modification to

the symmetry-reduced time stepping codes of the magnetic problem. A secondary

aim of this thesis is to extend the range of Re investigated, while resolving all five

subproblems.

Following the work of Galanti et al. (1992), an investigation into large-scale mag-

netic fields in the 1:1:1 flow will also be undertaken. Instead of increasing the

periodicity of the ABC flow (by using (1.25)), the magnetic field will be rescaled

through the introduction of Bloch waves. This is advantageous in that the scale

of the magnetic field is not restricted to integer multiples of the scale of the flow,

and can be adapted from the full (non large-scale) dynamo problem with relative

ease. The symmetries, however, are dependent on the rescaling of the field and so

the same decomposition (as in the magnetic and fluid problems) is not used. The

aim is to resolve the optimum scale-separation for dynamo action by varying the

scale of the magnetic field for as large a range of Rm as possible, with the intent
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of exploring and understanding the structures of the resulting magnetic fields.

1.6 Objectives

Summarising the aims as specific objectives allows essential goals to be identified.

Each main goal comprises of several smaller goals. The objectives are:

1. Numerically solve the dynamo problem for the five independent symmetry

classes

(a) Reproduce the results of Galloway and Frisch (1986), and identify the

symmetries of the two windows of dynamo action

(b) Resolve the five independent classes for as high Rm as possible

(c) Parallelise the codes and compare efficiency against serial codes

(d) Investigate differences in structure between each of the five classes

2. Solve the kinematic ABC dynamo problem using eigenvalue solver

(a) Reproduce results of time stepping codes for each of the five classes

(b) Compare accuracy and efficiency of solving through time stepping to

eigenvalue solver

(c) If possible, investigate subdominant branches of solutions in each class

3. Investigate the linear hydrodynamic stability problem by studying the five

symmetry classes

(a) Reproduce the results of Galloway and Frisch (1987) for the 1:1:1 ABC

flow

(b) Solve the hydrodynamic stability problem for highest possible values of

Re

(c) Investigate the types of structure: compare between each class and com-

pare to magnetic (dynamo) problem



1.7. STRUCTURE OF THESIS 57

4. Study the effect of large-scale magnetic fields through the use of imposed

Bloch waves

(a) Contrast Bloch wave formulation against Galanti et al. (1992) and de-

termine α-effect for this method

(b) Investigate symmetries and representations of rescaled magnetic fields

and reduce system accordingly

(c) Numerically resolve dynamo over numerous scales for as large a range

of Rm as is possible

(d) Identify most effective dynamos and their corresponding field structures

1.7 Structure of thesis

To summarise, this thesis is divided into eight chapters, of which this introduction

is the first. Chapter 2 deals with the symmetries of the problem, with chapter 3

detailing the irreducible representations relevant to these symmetries. Chapter 4

concerns the numerical methods used in this thesis, including exploration of both

time stepping and eigenvalue solver routines. Results for the ABC dynamo simu-

lations are given in chapter 5. Chapters 6 and 7 are self-contained and detail the

fluid stability and large-scale (magnetic) field problems respectively, with numerical

results. The concluding discussion is provided in chapter 8.

The next chapter gives the symmetries of the 1:1:1 ABC flow. First, some back-

ground information is given on the three main types of symmetry, with formal

definitions of how symmetries apply to vector and scalar fields. Following this,

the symmetries of the group D8 are given and described. The robust process for

constructing the symmetries of the ABC flows, by testing permutations of vari-

ables, is laid out, with a few specific examples given to identify symmetries and

non-symmetries. Finally a brief discussion of the symmetries of other ABC flows

is given for completeness.

The subject of chapter 3 is Representation theory and its application to this prob-
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lem. The content of this chapter was intentionally kept separate from the sym-

metries in an effort to avoid presenting too much information at once. With the

symmetries established, this chapter first explores irreducible representations in

the very simplest case, that of Z2, to understand the basics of matrix representa-

tions. The group D8, the symmetries of a square, is then explored with a clear

demonstration of how the irreducible representations of its five symmetry classes

are constructed through knowledge of its conjugacy classes and character tables.

This is then applied to the full group G of 24 symmetries of the 1:1:1 ABC flow,

using the fact that this group is isomorphic to O24, the group of proper rotations of

a cube, and the relevant representation matrices are provided for all five symmetry

classes.

Chapter 4 explores the numerical methods adopted, first without any symmetry

considerations. The symmetric problem is then depicted within fundamental do-

mains GN and HN , the latter including Hermitian symmetry. Parallelisation of

the time stepping problem in HN is sketched and results of scaling performance

are presented. The method for solving the eigenvalue problem in GN with the Im-

plicitly Restarted Arnoldi Method (IRAM) is elaborated, with technical details on

reducing the problem to a minimal state. Convergence conditions are also inves-

tigated with some results on optimal parameters. The IRAM is compared with

the equivalent time stepping problem in GN , with advantages and disadvantages of

both methods discussed.

Results of the 1:1:1 ABC dynamo are given in chapter 5. The five distinct branches

of solutions corresponding to each symmetry class are resolved, with growth rates

and structures (both oscillating and steady) explored. Differences between the

classes are identified and results are placed in the context of previous investigations

and literature. Eigenvalue coalescences and separations are investigated, along with

mode crossings within the classes. Magnetic energy spectra are also analysed.

In chapter 6, the equivalent fluid stability problem is studied. The chapter begins

with the equivalent formulation of the problem and follows with numerical methods

to be used. The results for the five symmetry classes are given, with exploration
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of the resulting structures. Comparison is drawn with the magnetic problem and

a brief discussion of the results is carried out.

Chapter 7 deals with the problem of large-scale magnetic fields in the 1:1:1 ABC

flow. The problem is constructed using Bloch wave formulation and this is then

related to both the α-effect and the alternative formulation of Galanti et al. (1992),

with a detailed comparison to the latter. The numerical breakdown of this prob-

lem is then detailed, with symmetries and four symmetry classes identified for a

particular case; a magnetic field stretched in only one spatial direction. Results of

numerical calculations for the full problem (i.e. without symmetry considerations)

are given and the optimal scales for dynamo action are found for the range of Rm

investigated. The structures of these fields at the optimal scales are also studied

and compared to those known for the non-large scale problem.

The final chapter, 8, brings the thesis to its conclusion. This short chapter provides

an overview of the results and conclusions of chapters 5, 6 and 7 with the aim of

understanding these results in the wider context of the problems. In addition, the

main difficulties faced in both time stepping and use of the IRAM are explained,

along with each method’s shortcomings. Finally, the possible future application

of methods developed in this thesis are set out, with the purpose of identifying

potentially interesting investigations.
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Chapter 2

Symmetries

Wisdom is one of the few things that looks bigger

the further away it is.

Terry Pratchett

The aim of this chapter is to provide a basic introduction to the different types

of symmetries and how they are relevant to the problems explored in this thesis.

Firstly, the three main types of isometry are briefly explored. The isometries, these

being reflection, rotation and translation are, by themselves or composed with one

another, the basis for symmetries in most systems. Once these are established,

clear and intuitive examples are given of geometric constructs (equilateral triangle,

square and triangular grid) in which these symmetries are plainly visible. Helical

symmetry, being a composition of rotation and translation, is also discussed. The

discussion then moves on to how symmetries are formally defined for both scalar

and vector functions.

In the next chapter, prior to explaining how symmetries apply to a sufficiently

general magnetic field driven by the ABC flow (1.18), a simpler and more easily

visualised example needs to be explored. For this purpose, we construct the sym-

metry group D8, the symmetries of a square, in this chapter. This allows us to

61
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show how to produce a group of symmetries from their generators and identify

each symmetry’s physical meaning in relation to the fundamental domain. Next,

the symmetries of the ABC flows are discussed, with an explanation on the robust

method of testing all possible permutations of variables composed with arbitrary

translations, owing to the helical nature of the flow. The methods identify, using

a specific example, how orientation-reversing symmetries are not valid symmetries

of the flows and show that, dependent on the values of A,B and C, a given permu-

tation of variables can supply a symmetry, given an appropriate translation. The

symmetries of the case A = B = C = 1 are listed and related to the 24 orientation-

preserving symmetries of the cube. The symmetry groups of more general cases

are shown to be subsets of the group for A = B = C = 1 and the group for each

of these other three cases is also listed. The chapter ends with a summary of the

main points discussed.

2.1 Definition of symmetries

As explored in the first chapter, a number of sources refer to, and in some cases

list, the various symmetries of the ABC flows. Although these symmetries are well-

known, it is worth spending some time understanding the concept of symmetries

and how they are generated.

One starting point is the definition of the word itself. The Oxford English Dictio-

nary (2013) defines the word symmetry as

Mutual relation of the parts of something in respect of magnitude and

position; relative measurement and arrangement of parts; proportion.

In a scientific context, the word takes on a more precise meaning:

[A] property by virtue of which something is effectively unchanged by a

particular operation; an operation or set of operations that leaves some-

thing effectively unchanged; in Physics, a property that is conserved.
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Although the word symmetry itself has a few meanings, ranging in technicality,

they are based around the same concept; a symmetric object is one in which some

property is preserved under a given transformation. We paraphrase the formal

mathematical definition from Johnson (2001): Given a metric space X and a subset

of X, referred to by F , a symmetry of F is then defined as an isometry of X that

fixes F as a set. There may be multiple isometries that meet this requirement and

so the set of all symmetries of the subset F can be defined as:

Sym(F ) = {u ∈ Isom(X)|Fu = F}, (2.1)

where u is given to be an isometry of X. That is, the symmetries of a particular

subset of points are the set of distance-preserving maps (also known as isometries),

that when acting on the particular subset F , returns the subset F . This does not

imply that the symmetries fix every element of F but does mean that F and Fu

are equal as (sub)sets.

In Geometry, distance is a well-defined and easily understood concept and so allows

the concept of symmetries to be easily visualised and interpreted. As an example,

in n-dimensional Euclidean space, Rn, (Euclidean) distance is simply defined as

the shortest distance between two points x and y:

d =

(
n∑
i=1

|xi − yi|2
)1/2

. (2.2)

The next section will discuss the main types of isometries (distance-preserving

maps) that form a basis for most types of symmetry.
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2.2 Types of symmetry

2.2.1 Reflection

There are three main types of isometries in geometry. Perhaps the most obvious of

these is reflection operator, s, this being for us the most intuitive of the isometry

types. A reflection is a map that in an n-dimensional space, moves every point to

its mirror-image in a fixed (n − 1)-dimensional hyperplane. Mathematically, this

could be written as

s : Rn → Rn, (x1, x2, . . . , xn) 7→ (−x1, x2, . . . , xn) , (2.3)

for a plane described by x1 = 0. Although the reflection hyperplanes may differ in

definition, a coordinate transformation can always be carried out so that a reflection

of this type can always be written as in (2.3) (by defining x1 as perpendicular to

the hyperplane).

A reflection is not, however, restricted to mapping points to their mirror-images

through a hyperplane of dimension 1 less than the space that we are operating

in. For example, reflections are possible through k-dimensional hyperplanes for

k = 0, . . . , n− 1 in n-dimensional space. Such a transformation would reverse the

sign of j = n− k elements of x:

s : Rn → Rn, (x1, x2, . . . , xn) 7→ (−x1, . . . ,−xj, xj+1, . . . , xn) . (2.4)

Reflection through a point (k = 0, j = n) is a special case of reflection and is aptly

named point reflection. Mathematically it is written as:

s : Rn → Rn, (x1, x2, . . . , xn) 7→ (−x1,−x2, . . . ,−xn) , (2.5)

and can be thought of as a map of every point to its diametrically opposite coun-

terpart through the point of reflection (the origin in this case). In the case of

generalised reflections, they can be separated into two categories; those that pre-
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serve the orientation of the system and those that do not - we are typically more

accustomed to the latter, an example of which would be mirror-symmetry. In

relation to (2.4), orientation-preserving reflections are those for which j is even,

whereas orientation-reversing reflections require j to be odd. As will be explained,

orientation-preserving reflections can always be described through rotations, ren-

dering these reflections redundant. Thus, unless explicitly stated, all references to

reflections should be taken as orientation-reversing reflections.

An important feature of the reflection operator is that it is an involution meaning

that s2 = i, or alternatively s−1 = s.

2.2.2 Rotation

The second type of isometry is rotation, indicated by the symbol r. A rotation is

a map that moves every point of a two-dimensional space through a fixed angle

about an axis through a fixed point, called the centre of rotation. Similarly, for

three-dimensional Euclidean space, a rotation moves every point through a fixed

angle about a fixed axis. The centre is often fixed at the origin and likewise, the

axis of rotation typically passes through the origin. In k-dimensional Euclidean

space, rotations through a fixed angle α about the origin are described by

r : R2 → R2, (x, y) 7→ (x cosα− y sinα, x sinα + y cosα) , for k = 2, (2.6)

r : R3 → R3, (x, y, z) 7→ (x cosα− y sinα, x sinα + y cosα, z) , for k = 3, (2.7)

in Cartesian coordinates. Note that a rotation in R3 involves only one angle, as such

a rotation acts as an ordinary two-dimensional rotation in the plane orthogonal to

the rotation axis. If the axis of rotation is not defined as one of the coordinate

axes, a coordinate transformation can always be carried out so that a rotation can

be defined as above. Bear in mind that, in the above definition, for α > 0 rotations

are anticlockwise, whereas for α < 0 rotations are clockwise. Consequently, unless

explicitly stated, any rotations defined or used will be anticlockwise.
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We can write a rotation as r = r (n, α), where n = 0 for rotations in R2 or is

the unit vector in the direction of the axis of rotation in R3. In this thesis, angles

will be measured in radians and so angles should be assumed to be in this unit

unless stated otherwise. We therefore have that −π < α ≤ π, as angles are defined

mod2π.

For two rotations r1 = r(n, α) and r2 = r(n, β) with the same centre (or axis) of

rotation, their composition is simply r1r2 = r2r1 = r(n, α + β). If their centres (or

axes) of rotation are different, the composition of r1 and r2 creates a unique rotation,

which itself can be described as a single rotation through a fixed angle around its

own centre or axis of rotation. Because angles are defined mod2π and to compose

two rotations, we simply sum the angles, then it can be seen that rotations can

be cyclic, with the property rp = i, which implies that pα = 0 mod 2π for some p.

Rotations are not implicitly cyclic however, as if the fraction α
2π

is irrational, then

no integer p exists such that rp = i.

For the special case of α = π, the rotation is also an involution, since

r2 = r(n, 2π) = r(n, 0) = i, (2.8)

or in other words, applying this rotation twice returns all points to their original

position. In our definition of rotations, we define proper (orientation-preserving)

rotations. Improper (orientation-reversing) rotations are not considered in the sub-

sequent sections and all references to rotations are proper rotations unless specifi-

cally stated.

2.2.3 Translation

The third type of isometry is called translation. A translation, t, is a map that

moves every point of n-dimensional Euclidean space through a fixed distance in a

fixed direction and can be written as

t : Rn → Rn, (x1, x2, . . . , xn) 7→ (x1 + a1, x2 + a2, . . . , xn + an) , (2.9)
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where (a1, a2, . . . , an) = a is a constant vector. Translations can be written as

t = t(a) and the direction of a is known as the axis of t.

Translations are easily composable, as translating all points by a, then by b is the

same as translating all points by a+ b, or

t(a)t(b) = t(a+ b). (2.10)

More general isometries are composed of different types of isometries. For example,

a reflection and then a rotation or a rotation followed by a translation. One com-

position particularly relevant to this thesis is that of translation composed with

rotation, which is required when working with helical structures such as those of

the ABC flows.

2.3 Symmetries in Geometry

Symmetries are best understood through the use of geometry. Triangles and squares

are examples of two-dimensional shapes that contain both reflectional and rota-

tional symmetry. In geometry, the particular invariant properties are the locations

(a)

r2s

s

rs

O

1

(b)

srs

r2s

r3s

O

1

Figure 2.1: The axes of symmetry of (a) an equilateral triangle and (b) a square.
The grey areas mark one possible choice for the fundamental domain.

of vertices and equations of edges. When transforming the coordinates of the ver-
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tices and the equations of lines using an isometry, that isometry is a symmetry if the

resulting description of the transformed shape, by means of its vertex coordinates

and edge equations, is the same as the original description. In a geometric con-

struct, this means that an isometry is a symmetry if an object is visually identical

before and after the isometry is applied.

In figure 2.1 are visualisations of the two examples with their axes of reflection

marked and centres of rotation located at the origin for ease. The triangle (figure

2.1(a)) has three-fold rotational symmetry, that is, r = r (0, 2π/3) and so r3 = i.

The triangle also has reflectional symmetry about three axes, though a shape is

often described by its unique axes of reflection. For example, a reflection in the

blue axis can be described by a reflection in the red axis and a 4π/3 rotation about

O; only one axis of reflection is therefore required.

The square has four axes of reflection though only one of them is considered unique,

owing to the square’s four-fold rotational symmetry whose transformation is given

by r = r (0, π/2). The choice of unique reflection axis is arbitrary. In this case the

line x = 0 has been set and is identified by the red dashed line. Reflection through

the other three (coloured) axes can instead be described in terms of the symmetries

rs (green), r2s (blue) and r3s (orange), that is a reflection using s (through the red

axis) followed by a π/2, π or 3π/2 rotation respectively. Combining the rotation

and reflection operators means that only one reflection axis is required to construct

the whole square from its fundamental domain.

For an n-sided polygon, there is rotational symmetry of order n with r = r(0, 2π/n),

rn = i and of course a single unique reflection s with an axis intersecting opposing

sides, for even n, or intersecting a face and its opposing vertex, for odd n. For finite

n, these rotations are referred to as discrete rotations. In the limiting case n→∞,

the regular polygon becomes a circle, though the circle cannot be considered a

polygon due to their respective definitions. In this case, the rotations are considered

continuous, as opposed to discrete, with its symmetry group, the two-dimensional

special orthogonal group, denoted by SO2, being an example of a continuous group.

This idea also extends to three dimensions with the sphere having (continuous)
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symmetry group SO3.

Examples of translational symmetry in geometry require different geometric con-

structions, as translations move all points and do not have fixed points or axes.

Figure 2.2 visualises two triangular grid constructs that could be considered to

(a) (b)

Figure 2.2: Constructs containing translational symmetry with (a) infinite and (b)
periodic domains.

have translational symmetry. In the first case, we have a triangular tiling pattern

that we can consider infinite in all directions. The second case is that of the same

pattern filling a periodic finite domain; the dotted and dashed lines respectively

show connected edges. In the infinite domain there are, in theory, infinitely many

symmetries. In the periodic domain, however, we have that tp1 = tq2 = i for some p

and q. In either case, there are only two unique translations t1 and t2; for an n-

dimensional domain, there are n unique translations t1, . . . , tn, with each defined in

the direction of the corresponding spatial axis. Rotation and reflection symmetries

are also seen in these examples, particularly in the infinite domain.

In some situations, it is the case that certain transformations are not symmetries

of the system but their compositions are. One example that is highly relevant to

this thesis is helical symmetry. Figure 2.3 identifies a blue helical curve, C1, and its

transformed counterpart, C2 (in green), with two transformations also indicated: a

rotation r about the x-axis and a translation t along the x-axis in the direction of

positive x. Although it is easily seen that C2 is a translation of C1, it is not so clear

that C2 is also a rotated form of C1. The position at x = 0 of each curve is marked
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by a circle of the respective colour to aid in showing this relation by rotation. In

C2

x

y

z

C1 r

t

1

Figure 2.3: Circular helices C1 and C2 with relevant isometries r and t. C2 can be
considered the product of C1 and either r or t.

the figure, C2 represents C1 after a rotation by π/2 about the x-axis but can also be

described as a translation by x = T/4, where T is the period of the helical curve. It

is plain to see that a rotation r by an angle α > 0, followed by a translation by a < 0

will be a symmetry of this curve if 2π/α = −T/a. As the curves in this example

are circular helices they will have continuous (as opposed to discrete) symmetries

owing to the composed rotation-translation isometries being continuous by nature.

We can note that if this structure is infinite in the x-direction, more symmetries

arise as rotations (still defined mod2π) can be composed with an infinite number of

translations, each translating first by a and then by an integer multiple of T . Under

the assumption that these curves are periodic or even infinite, then a translation

by x = T will be equivalent to the action of the identity i.

When discussing symmetries, the fundamental domain is also an important concept.

In a geometric sense, the fundamental domain is the smallest piece of a geometric

object that is required to be able to reconstruct the object using the symmetries.

In figure 2.1, the fundamental domains of the triangle and square are shown by

the shaded areas. As any one of the triangle’s six or square’s eight sections can be

chosen, the definition typically restricts the fundamental domain to be a section

for which x, y ≥ 0, or in a more general case, xi > 0 for all i.

In the case of the geometric pattern used to discuss translations, the fundamental
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domain for all three cases is a single tile, non-unique examples of which are shaded

in Figure 2.2. Of course, in these cases we are neglecting rotations and reflections

which certainly exist in all three examples. With these extra symmetries, the

fundamental domain could potentially be reduced to an area resembling that in

the triangle example of figure 2.1(a).

2.4 Symmetric Functions

In the same way that geometric objects or spaces can be symmetric, so can func-

tions. As an immediate example, the function φ(x, y) = x2 +y2 is symmetric about

the line y = x. That is, if we switch x and y, the function remains unchanged.

This is one of the multiple axes of reflectional symmetry inherent in this function.

One way that this reflection could be formally described is how it acts on the

function’s domain

s : R2 → R2, (x, y) 7→ (y, x), (2.11)

but the problem here is that we could easily see that the function φ is invariant

under this transformation, yet for many functions it may not always be so obvious

as to what symmetries are present. We can, instead, define symmetries by how

they act on the functions themselves.

2.4.1 Scalar functions

Take φ to be a scalar function that maps Rn onto R. We can define g as a general

symmetry that maps Rn onto Rn, as we have done previously. We can then say

that g induces a map on functions such as φ, which we can define as

g∗ : S → S, (g∗φ)(x) = φ(g−1x), (2.12)
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where S is simply the set containing all such functions, φ

S = {φ : Rn → R}. (2.13)

To simplify, we can define ψ = g∗φ to get

ψ(x) = φ(g−1x). (2.14)

Referring back to the previous example with φ(x, y) = x2 + y2, we can define ψ by

ψ(x, y) = φ(s−1(x, y)) = φ(y, x), (2.15)

where ψ is the function φ reflected through the axis y = x.

Of course, g is a symmetry of the function φ if

ψ(x) = φ(g−1x) = φ(x), (2.16)

which is equivalent to saying

φ(x) = φ(gx), (2.17)

identifying an important feature of symmetries: if a transformation g is a symmetry

of a function, the transformation g−1 is also a symmetry of that function.

2.4.2 Vector functions

For scalar functions, we have a single map from Rn to R, that is, we have a single

value as an output of such a function. With a vector function, however, we have

a vector of scalar functions meaning that we have a map from Rn to Rn. The

function is not assigning values to individual points but vectors, the dimension

of these corresponding to the number of variables in the space (n). We define a
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function f by

f : Rn → Rn, f(x) = (f1(x), f2(x), . . . , fn(x)), (2.18)

so we can think of f as a vector (of length n) of scalar functions (f1, . . . , fn). We

are operating in a space of dimension n, so our symmetry g will be defined as in

the scalar function case. When we use g to induce a map on such functions f , we

now have

g∗ : S → S, (g∗f)(x) = Jgf(g−1x), (2.19)

where S is now the set of all vector functions f and Jg is the Jacobian matrix of

g, defined by

Jg =


∂g(1)

∂x1
· · · ∂g(1)

∂xn
...

. . .
...

∂g(n)

∂x1
· · · ∂g(n)

∂xn

 , (2.20)

with g =
(
g(1), . . . , g(n)

)
a function of x = (x1, . . . , xn). As with the scalar function,

we can simply define g∗f as another function F giving us a distinct function that

is defined as a rotated form of our original function evaluated at the preimage of

the point x.

If F (x) = f(x), then g (and thus g−1) is a symmetry of the function f . By

finding all such symmetries g, the group of all symmetries (G) of the function can

be constructed. It is often the case that there are only a few truly independent

symmetries of a system, with all other transformations being compositions of these.

The independent symmetries are referred to as generators, as they are used to

generate the group of symmetries of a system.

2.5 Symmetries of the square

We will first explore the symmetries of the square, prior to those for the ABC flows,

as this example will be used to introduce the ideas and help develop the methods

for constructing the irreducible group representations in the next chapter. The
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symmetries of a square are easily visualised due to the 2-dimensional geometry,

providing a more comprehensible understanding of the irreducible representations

and their physical meanings. Furthermore, the group of symmetries of the square,

D8, is well-known and easily appreciated, even by those with little background in

group theory.

Referring to figure 2.1, there are four possible reflection axes, though for the purpose

of this example the axis we choose is horizontal, passing through the square’s centre

at the origin O (see figure 2.4). Formally, the reflection operator is defined as

s(x, y) = (x,−y), (2.21)

with the assumption that the sides of the square are parallel to the x and y axes.

The rotation transformation can be clockwise or anticlockwise, but in keeping with

the definitions in section 2.2.2, the rotation in this system will be defined as an-

ticlockwise. This choice isn’t necessarily important, as the groups of symmetries

constructed through either choice will be isomorphic to one another, as with the

axes of reflection. The π/2 rotation about O is given as

r(x, y) = (−y, x). (2.22)

Through compositions of these two symmetries, it is possible to construct the entire

group of symmetries for a square. Firstly, we can produce all rotational symmetries

by repeatedly rotating the square, as if r is a symmetry, then rj must also be,

though we have that r4 = i, leaving r, r2 and r3 as valid symmetries. Of course,

r0(x, y) = (x, y) is unique but is already described by the identity transformation i,

which exists as the trivial symmetry in every system. Secondly, by composing each

of the rotational symmetries with a reflection we produce a set of rotoreflections.

For example, applying a reflection s(x, y) = (x,−y) and then a single rotation

r(x, y) = (−y, x) will give us r(s(x, y)) = (y, x), which can also be seen as a reflection

through the axis x = y. We will shorten r(s) to rs for brevity. The full group of

eight symmetries is listed in (2.23). Due to the size of the group D8, it is more
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convenient to represent symmetries as compositions of their generators.

i(x, y) = (x, y), s(x, y) = (x,−y),

r(x, y) = (−y, x), rs(x, y) = (y, x),

r2(x, y) = (−x,−y), r2s(x, y) = (−x, y),

r3(x, y) = (y,−x), r3s(x, y) = (−y,−x), (2.23)

Since we have acknowledged that if an isometry is a symmetry, then the isometry’s

inverse is also a symmetry, then it needs to be pointed out that each symmetry

in (2.23) also has its inverse listed. In figure 2.4, each section has been assigned a

number so that the equivalence of symmetries can be demonstrated. If we “start”

s

r

O

12

3

4

5 6

7

8

1

Figure 2.4: Diagram depicting the geometry of a square with symmetry group D8.

in position 1, the section highlighted in grey, an application of r3s will first reflect

through the horizontal, taking us to position 6 and then three rotations by π/2

will leave us at position 4. To find the inverse of this symmetry, we simply have

to identify which in (2.23) will return us to position 1 and it is seen that r3s will

indeed achieve this. This means that r3s is an involution, and the same can also be

shown for rs and r2s. The inverse of r is clearly r3 as composition of these leads to a

full revolution. The transformation r2 is plainly an involution and so the group of

symmetries also contains all inverses, confirming that we indeed have the full group
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of symmetries. Any composition of rotations and reflections not listed in (2.23) can

always be reduced to one of those that is listed. Due to the lack of commutativity,

we have that

rs = s−1r−1 = sr3, (2.24)

which implies that regardless of the order that the isometries are composed, they

may always be reduced to a form in which the reflection is the first isometry applied,

as displayed in (2.23). The result of a system containing D8 symmetry is that

the fundamental domain is 1/8 of the full domain; one possible choice is shaded

grey in figure 2.4. Using only the fundamental domain, the full domain can be

reconstructed using the seven non-trivial symmetries.

The next chapter will be exploring how a sufficiently general function, which does

not contain the same symmetries as the square, can be decomposed into indepen-

dent functions, each behaving differently but consistently under the symmetries.

2.6 Symmetries of the ABC flows

As discussed in chapter 1, the ABC flows are known to have varying degrees of

symmetry, dependent on the choices for the parameters A, B and C. This section

concerns constructing the group of symmetries G for the 1:1:1 ABC flow and then

discussing which transformations are valid for more general ABC flows. Dombre

et al. (1986) investigates the different parameter regimes and reduces the different

ABC flows to four cases, these being

1. A = B = C,

2. A = B 6= C,

3. A 6= B = C,

4. A 6= B 6= C 6= A,



2.6. SYMMETRIES OF THE ABC FLOWS 77

with 1 = A ≥ B ≥ C ≥ 0, without loss of generality. (Cases 2 and 3 are distinct

cases because of the restriction A ≥ B ≥ C.) Symmetries for special cases such

as A = B = 1, C = 0 and A = 1, B = C = 0 are covered by the more general

regimes. Although the symmetries of the ABC flows have been known for many

years (Arnold, 1984; Gilbert, 1992; Podvigina and Pouquet, 1994), it is important

to demonstrate how the group is actually constructed.

2.6.1 Constructing the symmetries of the ABC flows

To construct the symmetries of the ABC flows, a good place to start is with all pos-

sible (signed) permutations of the variables, due to the symmetries being bijective

maps. We have three variables that are each 2π-periodic, and thus our domain is

the cube [0, 2π]3. Identifying these symmetries is therefore analogous to construct-

ing the symmetries of a cube, in which axes are mapped to axes through rotations,

forming the Octahedral group Oh. There are 48 possible permutations, due to the

fact that x 7→ −x is considered a separate transformation to x 7→ x: there are

six choices for the first variable, four choices for the second and two choices for

the third. This accounts for the fact that say, once x has been chosen for a trans-

formation, we can not choose x or −x again for that same transformation. Due

to the helical nature of the flow, it is assumed that transformations also involve

translations, leading to a group of transformations that are of the form:

g1(x, y, z) = (−x+ α1, y + β1, z + γ1), (2.25)

g2(x, y, z) = (−x+ α2,−y + β2, z + γ2), (2.26)

...

g48(x, y, z) = (−z + α48,−y + β48,−x+ γ48). (2.27)

To test whether g1 through to g48 are symmetries of (1.18), it is a matter applying

them to the ABC flows as described in (2.19). For the ABC flow and our 48
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potential transformations, this becomes

gju(x, y, z) = Jgju(g−1j (x, y, z)). (2.28)

Due to the generality of the translations in the transformations, it cannot be as-

sumed that for each gj there is a unique choice of parameters αj, βj and γj that will

solve (2.28). By testing each transformation and attempting to solve for (αj, βj, γj)

and also (A,B,C), we can confirm whether they are symmetries of the flows and

also how many solutions, of the given form, exist. The ABC flows are naturally

2π-periodic, defined in T3, due to their definition through trigonometric functions,

sine and cosine. This means that translations in the helical symmetries will also be

defined modulo 2π and thus will be defined over the interval (−π, π] to standardise

the symmetries.

At this point, we should note that transformations involving time-reversal also

exist. Transformations involving both time-reversal and orientation-reversing re-

flections are actually valid symmetries of the ABC flows; these are discussed by

Dombre et al. (1986). However, we do not consider these symmetries, as magnetic

diffusion is not a reversible process and thus these symmetries would be invalid in

the context of evolving magnetic fields described by the induction equation (1.13).

We therefore only consider transformations of the three spatial variables x, y and

z.

It is possible to test all 48 transformations, but the scale of the problem can be

reduced if we take into account the helical nature of the flow, which allows us to

discount any transformations that involve (orientation-reversing) reflections. To

provide an example of how transformations are tested and also to identify how

a reflection allows for no solutions for (αj, βj, γj), we have taken the first two

transformations g1 and g2. Referring to (2.25) and (2.26) we recognise that g1

represents an orientation-reversing reflection in the y-z plane, whereas g2 represents
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a rotation by π about the origin. Applying g1 to the ABC flow (1.18) gives us

g∗1u = Jg1u(g−11 (x, y, z)). (2.29)

We can see that g−11 = (−x + α1, y − β1, z − γ1) and the Jacobian of g1 is easily

identified as

Jg1 =


−1 0 0

0 1 0

0 0 1

 , (2.30)

meaning that (2.29) is resolved as

[g∗1u]ᵀ =


−C sin(z − γ1)−B cos(y − β1)

A sin(−x+ α1) + C cos(z − γ1)

B sin(y − β1) + A cos(−x+ α1)

 . (2.31)

If g1 is a symmetry of u, then there will be at least one solution (α1, β1, γ1) for

which u is invariant. Taking the first component of g∗1u, we require that

−C sin(z − γ1)−B cos(y − β1) = C sin z +B cos y, (2.32)

to which the only solution must be β1 = γ1 = π, as we are only identifying solutions

within the interval (−π, π]. With this solution, (2.31) becomes

g∗1u = [C sin z +B sin y, A sin(−x+ α1)− C cos z,−B sin y + A cos(−x+ α1)] ,

(2.33)

and it is easily seen that we have not returned to the original form of the ABC

flows. Even if we set B = C = 0, we still require that

sin(−x+ α1) = sin x, cos(−x+ α1) = cos x, (2.34)

which has no solution. Since we are unable to show that g∗1u = u, it is concluded

that g1 is not a symmetry of the ABC flows. The same approach is taken for g2
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and we are looking for solutions in terms of (α2, β2, γ2) that satisfy

g∗2u = Jg2u(g−12 (x, y, z)), (2.35)

with the Jacobian

Jg2 =


−1 0 0

0 −1 0

0 0 1

 , (2.36)

and g−12 = (−x+ α2,−y + β2, z − γ2). We therefore have that

[g∗2u]ᵀ =


−C sin(z − γ2)−B cos(−y + β2)

−A sin(−x+ α2)− C cos(z − γ2)

B sin(−y + β2) + A cos(−x+ α2)

 . (2.37)

We want (g∗2u)x = ux and since cosine is an even function, we have the same

problem (and thus solution) as for g1, with β2 = γ2 = π. This leaves us with

g∗2u = [C sin z +B cos y,−A sin(−x+ α2) + C cos z,B sin y + A cos(−x+ α2)] ,

(2.38)

and so to return to (1.18), we require that

− sin(−x+ α) = sinx, cos(−x+ α) = cos x, (2.39)

to which the solution is α = 0. Thus

g2 = (−x,−y + π, z + π), (2.40)

is a symmetry of the ABC flows. Using this method, it can be shown that no reflec-

tions are symmetries of the ABC flows. All orientation-reversing reflections share

the property that det(Jgi) = −1 and so we can remove all that have this character-

istic. This leaves only 24 valid transformations, as for every orientation preserving

transformation (of which there are 24) there exists the same transformation with
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an extra reflection. Although the derivation of every symmetry is not shown here in

the same detail as for g2, we show how some transformations are only symmetries

under specific choices of A, B and C. The symmetry g2 = (−x,−y + π, z + π), for

instance, is a symmetry of all four cases, due to its lack of dependence on the values

of A, B and C. An example chosen to demonstrate this is another transformation

from the remaining list of 24 valid ones, let’s call it g3, defined as

g3 = (−y + α3, z + β3,−x+ γ3), (2.41)

g−13 = (−z + γ3,−x+ α3, y − β3), (2.42)

with Jacobian

Jg3 =


0 −1 0

0 0 1

−1 0 0

 . (2.43)

Applying g3 to u, we have

[g∗3u]ᵀ =


−A sin(−z + γ)− C cos(y − β)

B sin(−x+ α) + A cos(−z + γ)

−C sin(y − β)−B cos(−x+ α)

 , (2.44)

and by comparing the first component of g∗3u with that of u, we obtain the following

relations

−A sin(−z + γ) = C sin z, (2.45)

−C cos(y − β) = B cos y, (2.46)

of which we only have solutions for A = B = C = 1, since we have that 1 =

A ≥ B ≥ C ≥ 0. This must mean that γ = 0 and β = π, with this solution also

satisfying related conditions (for x and y) in the second and third components.
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Two relations for α remain, these being

sin(−x+ α) = sinx, (2.47)

− cos(−x+ α) = cos x, (2.48)

to which the obvious solution (of both) is α = π. We can say, therefore, that

g3 = (π − y, z + π,−x), (2.49)

is a symmetry of the ABC flows, when A = B = C = 1 but is not a symmetry for

more general A, B and C.

Referring to the symmetry g2, we can see in the derivation that, regardless of the

values of A, B and C chosen, this transformation will be a valid symmetry. If

we investigate further, we can identify that this is due to the fact that variables

are mapped to themselves (or their negations). Taking a counter-example, if we

describe a transformation that, for instance, maps x to ±y, then due to the form

of the ABC flows (1.18), all terms involving y will have coefficients of A, instead of

their pre-transformed coefficient B. This means that unless A = B, the transfor-

mation will not be a symmetry of the flow and so is only a symmetry for the cases

A = B = C and A = B 6= C. We can thus identify the general form of symmetries

in each of the four regimes:

• A 6= B 6= C 6= A - transformations of the form: gj : (x, y, z) 7→ (±x,±y,±z);

• A = B 6= C - those for A 6= B 6= C 6= A, plus transformations of the form

gj : (x, y, z) 7→ (±y,±x,±z);

• A 6= B = C - those for A 6= B 6= C 6= A, plus transformations of the form

gj : (x, y, z) 7→ (±x,±z,±y);

• A = B = C - all valid (signed) permutations of the variables,

with, of course, no reflections allowed in above descriptions. Most importantly, we

find that symmetries of the case A 6= B 6= C 6= A will be symmetries of the cases
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A = B 6= C and A = B = C, or to put it another way, symmetries of more general

cases will also be symmetries of the less general cases. Thus we can expect that

the symmetry group of the case A, B, C unequal to be a subset of the groups for

cases A 6= B = C and A = B 6= C, themselves being subsets of the group for

A = B = C. With this in mind, the full group of symmetries will be discussed for

A = B = C before moving onto the subsets belonging to other regimes.

2.6.2 Symmetries of ABC flows for A = B = C

With regards to previous discussion on generating the symmetries, each of the 24

orientation-preserving transformations is applied to u to test for invariance. It is

found that all 24 were symmetries for A = B = C, with only one appropriate

choice of (αj, βj, γj) for each. This group of symmetries (G) is displayed in (2.50).

i(x) = (x, y, z), a(x) = (π
2
− y, x+ π

2
, z − π

2
), (2.50)

a2(x) = (−x, π − y, z + π), a3(x) = (y − π
2
, π
2
− x, z + π

2
),

b(x) = (x− π
2
, π
2
− z, y + π

2
), b2(x) = (x+ π,−y, π − z),

b3(x) = (x+ π
2
, z − π

2
, π
2
− y), c(x) = (z + π

2
, y − π

2
, π
2
− x),

c2(x) = (π − x, y + π,−z), c3(x) = (π
2
− z, y + π

2
, x− π

2
),

d(x) = (z, x, y), d2(x) = (y, z, x),

e(x) = (−z, π − x, y + π), e2(x) = (π − y, z + π,−x),

f(x) = (z + π,−x, π − y), f2(x) = (−y, π − z, x+ π),

g(x) = (π − z, x+ π,−y), g2(x) = (y + π,−z, π − x),

h(x) = (π
2
− x, z + π

2
, y − π

2
), j(x) = (z − π

2
, π
2
− y, x+ π

2
),

k(x) = (y + π
2
, x− π

2
, π
2
− z), l(x) = (−x− π

2
,−z − π

2
,−y − π

2
),

m(x) = (−z − π
2
,−y − π

2
,−x− π

2
), n(x) = (−y − π

2
,−x− π

2
,−z − π

2
).

The approach taken to construct this group is robust and does not require any prior

assumptions in order to generate the list of symmetries. Alternative approaches
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(see Dombre et al. (1986) and Arnold (1984)) involve identifying the generators,

of which there are two, and building the group through unique compositions of

these generators. The generators, however, are not unique in this problem and

displaying the full set of symmetries purely in terms of the generators would be

relatively arbitrary. More importantly, since we are making extensive use of the

symmetries in later chapters, it would soon become clumsy. We adopt the user-

friendly notation (a to n) of Gilbert (1992), also the only study in which they are

explicitly listed (albeit in the appendix) and the letters match those of Gilbert for

the sake of simplicity. As with the general rotations, reflections and translations

earlier in the chapter, we use a sans-serif font to indicate a symmetry, to avoid

confusion with other parameters and variables. We note that for the remainder of

this thesis, when we apply these transformations to a vector function, we lose the

convention of adding an asterisk ∗ (used to indicate that g∗ is a map associated

with g) to avoiding overcomplicated notation.

The symmetries each represent an orientation-preserving permutation of variables

which, as already mentioned, can be linked to the geometry of the cube. It is well-

known that the group G is isomorphic to the group O24 of orientation-preserving

symmetries of the cube (Arnold and Korkina, 1983; Arnold, 1984; Gilbert, 1992).

Due to the isomorphism, we can visualise the rotational axes of the symmetries in

G simply by visualising the rotational axes of the cube (refer to figure 2.5). All

except three symmetries in G involve some form of translation, which are essential

due to the helical nature of the flow.

(a) (b) (c)

Figure 2.5: Visualisation of the rotation axes of symmetries (a) a to c, (b) d to g
and (c) h to n relative to the periodic cube.
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The symmetries a, b and c represent π/2 rotations about the z, x and y axes

respectively. The flow is 2π-periodic and so these symmetries are four-fold with

a4 = b4 = c4 = i, (2.51)

where i is the identity transformation. The symmetries a2 and a3 represent succes-

sive applications of a and so are π and 3π/2 rotations, respectively, about the z

axis. Equivalently b2, b3 and c2, c3 are π, 3π/2 rotations about the x and y axes,

respectively. These axes are shown in figure 2.5(a), though are not labelled due to

arbitrariness.

The symmetries d, e, f and g are 2π/3 rotations about axes that connect two

opposite corners of the cube (see figure 2.5(b)), though d is purely a rotation due

to the invariance of (1.20) under cyclic permutation of variables. Here d2, e2, f2

and g2 are 4π/3 rotations about the same respective axes with

d3 = e3 = f3 = g3 = i, (2.52)

and so these are three-fold symmetries.

The last set of symmetries are equivalent to π rotations about axes that join the

midpoints of opposite edges (refer to figure 2.5(c)). The symmetries h, j, k, l, m

and n are two-fold and are naturally involutions with

h2 = j2 = k2 = l2 = m2 = n2 = i. (2.53)

With regards to generating the group G, we require only two generators; one four-

fold symmetry in {a, a3, b, b3, c, c3} and one three-fold in {d, d2, e, e2, f, f2, g, g2}.

The symmetries {h, j, k, l,m, n} can all be constructed through compositions of four-

fold and three-fold symmetries. Relating these symmetries to those of Arnold

(1984), we have that symmetries g3 and g4 of Arnold correspond to d2 and b3 of

G. Likewise S2S1, S3S2 and S1S3 of Dombre et al. (1986) correspond to a2, b2 and

c2 of G, as noted by Gilbert (1992).
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2.6.3 Symmetries of other ABC flows

As has been explained, the symmetries of more general ABC flows are subsets of

the group of symmetries G of the case A = B = C. In our definition of the ABC

flows (1.18), the parameter A is associated with terms involving x, B with terms

involving y and C with terms involving z. The validity of the symmetries in G for

more general cases are dependent on how they map variables, as demonstrated by

testing g2 and g3. For the case A = B 6= C, we can deduce that only symmetries

in which z 7→ ±z will be valid. The group of symmetries for this case is

i(x) = (x, y, z), a(x) = (π
2
− y, x+ π

2
, z − π

2
), (2.54)

a2(x) = (−x, π − y, z + π), a3(x) = (y − π
2
, π
2
− x, z + π

2
),

b2(x) = (x+ π,−y, π − z), c2(x) = (π − x, y + π,−z),

k(x) = (y + π
2
, x− π

2
, π
2
− z), n(x) = (−y − π

2
,−x− π

2
,−z − π

2
),

where the labelling has been retained for ease of comparison. In an identical ap-

proach, we can list the symmetries for the case A 6= B = C, as the group will only

contain symmetries in which x 7→ ±x:

i(x) = (x, y, z), a2(x) = (−x, π − y, z + π), (2.55)

b(x) = (x− π
2
, π
2
− z, y + π

2
), b2(x) = (x+ π,−y, π − z),

b3(x) = (x+ π
2
, z − π

2
, π
2
− y), c2(x) = (π − x, y + π,−z),

h(x) = (π
2
− x, z + π

2
, y − π

2
), l(x) = (−x− π

2
,−z − π

2
,−y − π

2
).

These two cases are obviously related through cyclic permutation of A, B and C.

This means that any transformations not common to both can be related through

cyclic permutation of variables (x, y, z), i.e. applying one of d or d2. We can easily

show that

a3 = bd2, a = db3 = (bd2)−1, k = b3d2, n = ld2. (2.56)
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As the group G is isomorphic to O24 (rotation group of the cube), in both of

these cases the group of symmetries is isomorphic to the symmetry group D8 (the

symmetries of a square) which were discussed in section 2.5. The final case with A,

B and C unequal is the least symmetric and contains only symmetries that map

each variable to themselves or their negations. As discussed, these symmetries will

be common to the other cases we have studied and so the group for this case is

displayed as

i(x) = (x, y, z), a2(x) = (−x, π − y, z + π), (2.57)

b2(x) = (x+ π,−y, π − z), c2(x) = (π − x, y + π,−z),

which contains the three π rotations about each of the x, y and z axes. This group

is isomorphic to D4, which is also described as the direct group product of two

order 2 cyclic groups: Z2 × Z2.

2.7 Summary

This chapter has provided an overview of the three fundamental types of symme-

tries: reflection, rotation and translation. Under reflection and rotation, there are

always fixed points or lines that are invariant under the action of these symmetries,

whereas under the action of a translation, there are no fixed points. Compositions

of these different types may also form valid symmetries, for example helical sym-

metry consists of rotations with translations.

Before constructing the symmetries of the 3-dimensional ABC flows, the symmetry

group of a square, labelled D8, is constructed from its generators r, a π/2 rotation,

and s a reflection through the x-axis. The group has eight elements, meaning that

the fundamental domain is 1/8 of the full domain. For a group of this size, it is

appropriate to describe the symmetries as compositions of their generators.

To construct the symmetries, the ABC flows were tested for invariance under all

possible permutations of variables, which were combined with translations to make
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them more general. If a particular permutation was a valid symmetry, there would

be at least one unique translation that made it a solution of (2.28). It was found

that no (orientation-reversing) reflections could be symmetries of the ABC flows

in fitting with the helical (and so chiral) nature of the flows.

It is seen that ABC flows contain varying degrees of symmetry, dependent on

the parameters A, B and C. The most symmetric of the ABC flows is the case

A = B = C, which is invariant under 24 individual transformations, with these

symmetries forming the group G. The cases with two of A, B and C equal have

symmetry groups which are a subset of G, each contain eight distinct symmetries

and are isomorphic to the symmetry group D8. For all three unequal, the group

of symmetries is reduced to four elements. Three symmetries in G contain no

translations: the identity i, d and d2 rotations about the axis x = y = z by 2π/3

and 4π/3 respectively, these being cyclic permutations of the identity. All other

symmetries, which are four-fold (π/2), three-fold (2π/3) and two-fold (π) rotations,

involve translations which can be seen as phase-shifts.

The case A = B = C = 1 is the focus of the main thread of this thesis, as it is

the most interesting and complex, and thus the best to demonstrate the tools and

methods developed in the process. The group G of 24 symmetries is isomorphic to

the group of orientation-preserving symmetries (proper rotations) of a cube. The

fundamental domain of this flow is 1/24 of the full domain.

A magnetic field that is driven by the ABC flows, however, will not necessarily be

invariant under these symmetries. In fact, a magnetic field that is general enough

will never be invariant under all of the symmetries. The next chapter will show how,

in the linear dynamo problem, a general field can be deconstructed into subfields

that each behave differently under the symmetries of the ABC flow through the

use of irreducible group representations. A simpler example is first explored with

a general magnetic field in a geometry with D8 symmetry to give an idea of how

such a problem is approached.

In chapter 7, the symmetries of large-scale fields will also be explored.



Chapter 3

Representation Theory

Some humans would do anything to see if it was possible

to do it. If you put a large switch in some cave some-

where, with a sign on it saying ‘End-of-the-World Switch.

PLEASE DO NOT TOUCH’, the paint wouldn’t even have

time to dry.

Terry Pratchett

In chapter 2, the symmetry group G of the 1:1:1 ABC flow (1.20) was constructed.

As we are studying the evolution of a magnetic field driven by such a flow, it is

wise to consider how the symmetries of the flow can affect the types of magnetic

field structure that emerge. This chapter therefore concerns the effect that these

symmetries have on a magnetic field b with no assumed symmetries, i.e. a general

magnetic field, through the use of representation theory.

Through development of an incredibly simple example with one symmetry (Z2)

and then a more informative and complex example with eight symmetries (D8), the

important processes are seen in constructing ‘new’ fields, from linear combinations

of the original field b, that are orthogonal to each other and (most importantly)

89
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are independent under the action of all symmetries in their respective groups. This

independence, owing to the linear evolution equation, means that these fields can

be studied independently. To aid the understanding of this process, the fields in

these examples are visualised. Throughout these examples, key concepts such as

matrix representations and irreducible representations are introduced.

A more formal discussion on representations and irreducible representations is then

provided to clarify ideas introduced in the examples. The process is outlined for a

general case, whilst referencing the examples so that the concepts may have physical

meaning. The importance of “characters” in relation to irreducible representations

is then briefly explored.

Finally, we construct the irreducible representations of the 1:1:1 ABC flow using

specific ideas obtained earlier in the chapter and from other investigations of this

flow. It is shown that there are five types of structure (symmetry classes) and their

irreducible representations are found, without requiring knowledge of the relevant

linear combinations of the original field b. The findings and ideas of the chapter

are then summarised.

3.1 Irreducible representations of Z2

This first example concerns dipolar and quadrupolar fields, which behave differently

under the application of a single reflection operator. The concept is similar to even

and odd functions; even functions are those for which f(−x) = f(x) whereas

odd functions have f(−x) = −f(x). A general function, for example one that is

neither odd nor even, can be described as the sum of an even and an odd function.

The same is true of a general magnetic field in a sphere, which contains reflective

symmetry in the horizontal plane, and so the field can be described as a sum of

dipolar and quadrupolar components. The following example details this in an

axisymmetric field, so that the situation is reduced to that of a field in a circle.

The group Z2 contains two elements: the identity and an element that is an invo-
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lution (is its own inverse). Both reflections and π rotations are involutions, though

we choose a reflection for the sake of simplicity. For a circle centred at the origin,

let a reflection through the line y = 0 be defined as

s(x, y) = (x,−y), (3.1)

with s2 = i. An arbitrary magnetic field b is placed in the lower half of the circle,

with the resulting layout visualised in figure 3.1(b). Note that the magnetic field

has been chosen to best demonstrate this example, as will be seen, but it is not

restricted to any particular form. Applying the reflection s to b, the field in the

(a)

s

(b)

Figure 3.1: Shown are (a) reflection symmetry (horizontal) in a circle, and (b) a
magnetic field b confined to the lower-half of the circle.

upper-half of the circle, sb, can be obtained and is linearly independent of b. Linear

combinations of the fields b = ib and sb, that transform simply under the reflection,

can be found, with these being

bI = b+ sb, (3.2)

bII = b− sb, (3.3)

with 2b = bI + bII. The fields are visualised in figure 3.2 and it is clearly seen that

bI is quadrupolar in form, whereas bII is dipolar (through cancellation of the field

near to the axis of symmetry). It can be shown that bI is even under reflection, as

sbI = sb+ s2b = b+ sb = bI, (3.4)
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(a) (b)

Figure 3.2: Examples of field configurations for symmetry classes (a) I and (b) II.

and that bII is odd under reflection, as

sbII = sb− s2b = −b+ sb = −bII, (3.5)

thus satisfying the requirement that the symmetries behave simply under applica-

tion of s. General fields can then be constructed through linear combinations of bI

and bII. Both (3.4) and (3.5) can be summarised by

s

bI
bII

 =

 1 0

0 −1

bI
bII

 . (3.6)

The 2× 2 matrix is the matrix representation of s and describes how the reflection

maps these two types of field (even and odd). The other element of the Z2 group,

the identity i, also has a matrix representation describing how it acts on bI and

bII, and is simply the two-dimensional identity matrix I2. As both elements of

the group Z2 maps each field to a linear function of itself only (and not to the

other), these fields are clearly independent under the group action and so the

matrix representations contain independent subrepresentations. The action of the

elements of the group Z2 on the fields can thus be described by

gbα = Mα(g)bα, (3.7)

for g ∈ Z2 = {i, s} and α as I or II. The objects labelled as M are called the
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irreducible representations of Z2, with these clearly given by

M I(i) = M II(i) = 1, M I(s) = 1, M II(s) = −1. (3.8)

In referring to the ‘labels’, denoted by I and II in this example, the terminology

symmetry class will be adopted, in fitting with Metropolis et al. (1991). Thus bI

and bII are identified as magnetic fields belonging to symmetry classes I and II

respectively. Roman numeral notation has been adopted for labelling symmetry

classes, so as to avoid confusion in later examples where the magnetic fields can

have multiple components which are assigned Arabic numerals.

A few points of clarification are required before exploring a system with a greater

number of symmetries in the next section. Firstly, in the kinematic problem, the

induction equation is linear in b and so the magnetic fields belonging to individ-

ual symmetry classes remain independent of fields in other classes and so can be

resolved independently, without loss of information. Any kinematic problem can

therefore be decomposed into its respective symmetry classes, each of these being

resolved separately. In the non-linear regime, however, there can then be sym-

metry breaking and mixed-mode solutions, but that is not possible in the linear

approximation.

Secondly, this example is overly simple so that it is easier to grasp the basics of

the application of the use of representations in the context of magnetic fields. The

definitions (3.2) and (3.3) may seem rather arbitrary, but this will make more sense

with a larger symmetry group, as in the next example.

Thirdly, in this very simple example, it was possible to construct the fields (3.2)

and (3.3) so that the matrix representations for i and s were diagonal, meaning

that both fields bI and bII were independent and so belonged to different symmetry

classes. With larger symmetry groups, it is not necessarily possible to construct

fields so that the matrix representations are all diagonalised. However it is always

possible to make these representations to be block diagonal. This means that

certain symmetry classes can contain multiple magnetic fields, with the irreducible
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representations Mα being matrices instead of single values.

Finally, a reflection was chosen to demonstrate the construction of fields in each

symmetry class but in practice, any involution would have been suitable. For

example, a π rotation about the origin, r(x, y) = (−x,−y), could also have been

used, rather than the reflection s. The resulting irreducible representations Mα,

however, would have been the same for symmetry classes I and II, as they only

depend on the abstract group which is, in this case, Z2.

3.2 Irreducible representations of D8

The second example concerns the group D8: symmetries of the square. This ex-

ample isn’t meant to be particularly physical, as planar fields and flows are not

conducive for dynamo action (see chapter 1). However, it demonstrates how irre-

ducible representations are found for a sufficiently complex group but allows the

fields in each symmetry class to still be visualised, something which is not possible

with the larger group of 1:1:1 ABC flow symmetries, G. We take the square to

(a)

r

s

(b)

Figure 3.3: Shown are (a) the geometry for a square with symmetry group D8, and
(b) a magnetic field b confined to one eighth of the square.

be centred at the origin with sides parallel to the x and y axes, depicted in figure

3.3(a). D8 is generated by an anti-clockwise rotation r of π/2 about the origin and
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a reflection s in the x-axis,

r(x, y) = (−y, x), s(x, y) = (x,−y), (3.9)

and contains eight elements

{i, r, r2, r3, s, rs, r2s, r3s}, (3.10)

with r4 = s2 = i and rs = sr−1.

As with the first example, suppose we start with a general magnetic field b. Then

we may map it with each element g ∈ D8 to obtain 8 linearly independent magnetic

fields, spanning a vector space W ,

W = span{b, rb, r2b, r3b, sb, rsb, r2sb, r3sb}. (3.11)

A convenient way to visualise this is to consider a magnetic field depicted schemat-

ically in figure 3.3(b) which is confined to one-eighth of the square and has an

anti-clockwise, or positive, sense. Then each transformation in D8 maps the field

to a distinct eighth of the square and these fields are all plainly linearly inde-

pendent. Note that under a reflection s, the resulting field sb has a clockwise or

negative sense. As with the example of Z2, we can now seek combinations of the

eight fields in (3.11) that transform simply under the group elements. There are

four of these, which are labelled I–IV,

bI = b+ rb+ r2b+ r3b+ sb+ rsb+ r2sb+ r3sb, (3.12)

bII = b+ rb+ r2b+ r3b− sb− rsb− r2sb− r3sb, (3.13)

bIII = b− rb+ r2b− r3b+ sb− rsb+ r2sb− r3sb, (3.14)

bIV = b− rb+ r2b− r3b− sb+ rsb− r2sb+ r3sb. (3.15)

It is seen that transforming bI to bIV under any group element g ∈ D8 simply leads

to ±1 times the original field and so again it is the case that (3.7) is applicable,



96 CHAPTER 3. REPRESENTATION THEORY

where the α now indicates symmetry classes I–IV. As the fields transform simply,

the irreducible representations Mα for each of these four symmetry classes is simply

a single value, either 1 or −1. It is clear that for class I, M I(g) = 1 for all g ∈ D8.

For representation II we have

M II(i) = M II(r) = M II(r2) = M II(r3) = 1, (3.16)

M II(s) = M II(rs) = M II(r2s) = M II(r3s) = −1. (3.17)

Plainly, it is the case that

Mα(g)Mα(h) = Mα(gh), (3.18)

for any elements g and h in the group D8. This result is very important as to

construct the irreducible representations of all elements of a group for a particular

symmetry class, only the irreducible representations of the group’s generators need

to be known for that class. The values of the Mα(g) for g ∈ D8 can be read directly

from the character table, table 3.1, for representations I–IV. (More discussion on

the importance and use of character tables is given in section 3.3.) Given the initial

field b shown in figure 3.3(b) the four fields bI to bIV are seen schematically in figure

3.4; similar qualitative illustrations of field configurations for D8 can also be seen

in Matthews (1999). Where the field has a negative (clockwise) sense, the segment

has been shaded.

(a) (b) (c) (d)

Figure 3.4: Fields for symmetry classes I–IV of D8: (a) bI, (b) bII, (c) bIII, and (d)
bIV.

Assuming that field lines, in each of the eight segments, form closed curves and that

adjacent field line sections with opposing polarity cancel out, whereas those with
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matching polarity form a magnetic ‘pole’, it is possible to classify these fields in

terms of the number of poles, as was done in the example of Z2. In this way, bI can

be described as being octopolar (eight poles), with bIII and bIV being quadrupolar

(four poles), though the number of poles in bII is unclear.

Table 3.1: Character table for the group D8. Entries give the character, that is the
trace of the matrixMα(g), for each transformation g and irreducible representation
α from I–V.

{i} {r, r3} {r2} {s, r2s} {rs, r3s}
I 1 1 1 1 1
II 1 1 1 −1 −1
III 1 −1 1 1 −1
IV 1 −1 1 −1 1
V 2 0 −2 0 0

Constructing these new fields can be considered as a change of basis within the

vector space W . Though these are the only four fields that transform simply

(multiplied by ±1) under the transformations, it is clear that they do not form a

full basis and cannot span the full eight-dimensional vector space of fields W in

(3.11). We see, for example, that they do not include the possibility of a non-

zero mean field in the system, as under the π/2 rotation r such a field could not

transform to ±1 times itself. It is, in fact, the case that the set of fields (3.12)–

(3.15) exhaust the one-dimensional representations of the group D8, and the next

best we can do is to define pairs of fields in the two-dimensional representations,

bVa1 = b+ rb− r2b− r3b+ sb− rsb− r2sb+ r3sb,

bVa2 = b− rb− r2b+ r3b− sb− rsb+ r2sb+ r3sb, (3.19)

and

bVb
1 = b+ rb− r2b− r3b− sb+ rsb+ r2sb− r3sb,

bVb
2 = b− rb− r2b+ r3b+ sb+ rsb− r2sb− r3sb. (3.20)

Note that (Arabic numeral) subscripts label different fields, not their Cartesian
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components. These four fields are depicted in figure 3.5. Focusing on the first pair

of fields (3.19) shown in figure 3.5(a,b), we have

rbVa1 = −bVa2 , rbVa2 = bVa1 , sbVa1 = bVa1 , sbVa2 = −bVa2 , (3.21)

and so now the action of the group elements is given by 2× 2 matrices defined by

MVa(r) =

 0 −1

1 0

 , MVa(s) =

 1 0

0 −1

 , (3.22)

with

gbαi =
∑
j

Mα
ij(g) bαj , (3.23)

where the label α corresponds to the label ‘Va’. The matrices for the remaining

transformations follow by matrix multiplication, using the requirement that (3.18)

hold, now as a matrix equation. Note that the fields bVa1 and bVa2 allow the possi-

bility of mean fields in the x and y directions respectively. These two fields give a

two-dimensional irreducible representation.

(a) (b) (c) (d)

Figure 3.5: Fields in symmetry class V of D8: (a) bVa1 , (b) bVa2 , (c) bVb1 , and (d)
bVb2 .

The second pair of fields, in (3.20), corresponds to another two-dimensional sym-

metry class ‘Vb’ isomorphic to Va, and is subtly different. It can be shown that

rbVb
1 = −bVb

2 , rbVb
2 = bVb

1 , sbVb
1 = −bVb

1 , sbVb
2 = bVb

2 , (3.24)
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with the irreducible representations then given by

MVb(r) =

 0 −1

1 0

 , MVb(s) =

−1 0

0 1

 . (3.25)

Both classes Va and Vb have the same irreducible representation for r, however

MVb(s) = −MVa(s). This difference can be seen in the field structures, see figure

3.5(c,d), which resemble hexapolar fields, as opposed to those of class Va that

resemble bipolar fields. Despite this, mean fields remain possible in class Vb.

All the symmetry classes, I, II, III, IV and two copies of V, span the vector space

W in (3.11) and any field b can be decomposed into components in each of these

spaces as above with

8b = bI + bII + bIII + bIV + bVa1 + bVa2 + bVb
1 + bVb

2 . (3.26)

Some comments are in order. We have four one-dimensional symmetry classes I–IV,

in which the action on the corresponding field is multiplication by 1 × 1 matrices

(see (3.7)). There are two copies of what is essentially the same two-dimensional

class V in which the action is on pairs of fields through multiplication by 2 × 2

matrices. These matrices are not unique under a change of basis, though we have

provided a rational choice with Mα(g) = Jg. The forms of the fields in (3.19),

(3.20) are dependent on this (somewhat arbitrary) choice. Only the traces of the

matrices are invariant, and these are given in the character table, table 3.1. As

the matrix for the group identity operation i is always the identity matrix, this

column gives the dimension of the irreducible representations in each symmetry

class. It should be noted that subclasses Va and Vb are in the same symmetry

class (and so are isomorphic to one another) because the traces of their irreducible

representations are the same.

Going back to the basis of fields of W given in (3.11), the action of an element g ∈

D8 is simply to permute these fields and so give rise to a (reducible) representation

with 8 × 8 matrices M(g) having a permutation form (i.e. a single entry of 1 per
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column and row). Representation theory can be seen as a way to choose a basis

(of magnetic fields here) so as far as possible to diagonalise simultaneously the

matrices for all the g ∈ D8. Under the basis in (3.12)–(3.15), (3.19) and (3.20), the

8× 8 matrix for each g takes a block diagonal form

M (g) =



M I(g) 0 0 0 · · ·

0 M II(g) 0 0

0 0 M III(g) 0
...

0 0 0 M IV(g)
. . .

...
. . . MVa(g) 0

· · · 0 MVb(g)


. (3.27)

Any linear problem that respects the symmetries can be considered in each of the

six subspaces independently, in particular any linear eigenvalue problem. Thus

instead of solving the full problem, we have five distinct reduced problems (we

need only consider one subclass in class V), each with its own set of eigenvalues.

Finally, we note that it is not necessary to give the fields of each irreducible repre-

sentation as they are displayed in (3.12)–(3.15), (3.19) and (3.20) for D8. We have

done so simply to demonstrate how these fields relate to those of the vector space

W in this example. For larger groups G this becomes an increasingly arduous and

uninteresting task. The key information is how each of these fields is transformed

by the elements of G, which simply requires knowing matrices Mα(g) for each

irreducible representation α.

3.3 Representations and characters

So far in the two examples, some of the key concepts behind transforming reducible

representations into irreducible representations have been introduced. Before mov-

ing on to the irreducible representations of the 1:1:1 ABC flow, a brief clarification

of these ideas is necessary. For more detailed information on representation theory

and character theory, see Hamermesh (1962).
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3.3.1 Reducible and irreducible representations

Representation theory is a field of study that involves describing the action of a

group’s elements as linear transformations of vector spaces. Commonly, elements

of a group can be written as matrices and the group’s operation can therefore

be reduced to matrix multiplication. This allows a potentially abstract group of

objects to be interpreted in a physical sense, through the use of linear algebra.

The use of group representations is commonplace in particular areas of physics,

for example crystallography where symmetries are important in determining the

properties of materials.

Matrix representations can be constructed for any finite group of elements. Through

an appropriate similarity transformation, the representation of every group element

can be transformed to the same block-diagonal form, with the submatrices along

the diagonal termed irreducible representations. As the actions of all group ele-

ments can be described by block-diagonal matrices of the same form, the vector

space must contain independent subspaces, within which the action of each group

element is described by the irreducible representations. The term irreducible rep-

resentation and its contraction irrep are used interchangeably for the remainder of

this thesis.

One way to view this is if we have a vector field, say b, that is defined in three-

dimensional space and a group of n symmetries, G = {g1, . . . , gn}, then a vector

space W can be constructed by applying each gi in G to b so that we obtain a

space W of n independent fields, giving

W = span{g1b, . . . , gnb}. (3.28)

The action of each gi on each of these independent fields is then simply to map

it to another field so that gagbb = gcb where a, b and c are between 1 and n.

Constructing a vector of the fields in W allows us to represent each gi in matrix
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form and so if zᵀ = (g1b, . . . , gnb), then

giz = A(gi)z, (3.29)

where A are the matrix representations of the gi and are permutation matrices.

If this system is reducible, there exists at least one non-singular matrix P that

simultaneously transforms the A(gi) for all gi to the same block diagonal form M

so that

M (gi) = P−1A(gi)P =



M (1)(gi) 0 · · ·

0 M (2)(gi)
. . .

...
. . .

...
. . . M (m−1)(gi) 0

· · · 0 M (m)(gi)


,

(3.30)

where M (j) are the irreducible representations and where m ≤ n. The represen-

tation M can then be written as a direct sum of its irreducible representations,

with

M = M (1) ⊕M (2) ⊕ . . . ⊕M (m). (3.31)

The effect of diagonalising the matrices A through the similarity transformation P

is essentially a change of basis from fields in W that are related through the symme-

tries to a new set of orthogonal fields that are independent through application of

the symmetries. This is seen in the example of D8, where the eight fields bI to bVb
2

are linear functions of the fields in (3.11). In that example, P can be inferred from

the coefficients of the fields gb given in (3.12)–(3.15), (3.19) and (3.20). It must be

noted, however, that P may be non-unique, meaning that the representations M

will also be non-unique.

Starting from the n fields in (3.28), n mutually orthogonal fields are produced.

However, as M is not necessarily purely diagonal but is block diagonal in form,

these fields may not all be independent under the action of the symmetries and
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instead may form pairs, triples and so forth, of fields that the symmetries map to

each other. This occurs when the M (j) are multi-dimensional and so symmetry

classes have the possibility to contain more than one field. In the D8 example,

this is precisely the case with the four fields in symmetry class V, which form two

independent pairs, divided into subclasses Va and Vb. Only abelian groups may

form purely diagonal representationsM ; all irreducible representations will be one-

dimensional and all symmetry classes contain a single field, with this being the case

in the example of Z2. It is then clear that for non-abelian groups the number of

irreducible representations m must be less than the number of symmetries n.

3.3.2 Characters and character tables

The character table provides key information for constructing irreducible repre-

sentations. The table is constructed from characters of the irreducible represen-

tations for each element of a group G in each symmetry class. The characters

χj(gi) are the traces of the irreducible representation matrices M (j)(gi) and are

fixed for each group G, as all possible irreducible representations of a transfor-

mation can be related through similarity transformations. For example, for a

non-unique irrep M (j)(gi) with character χgi , we could identify another irrep as

N (j)(gi) = QM (j)(gi)Q
−1 with Q as the corresponding similarity matrix. The

character of this new irrep is given by

χ′gi = tr
[
N (j)(gi)

]
= tr

[
QM (j)(gi)Q

−1
]
, (3.32)

and by the property of the trace being invariant under cyclic permutations, we have

that tr[QM (j)(gi)Q
−1] = tr[Q−1QM (j)(gi)] = tr[M (j)(gi)], which is simply χgi .

Therefore, the character is invariant under a similarity transformation and so all

possible irreducible representations of a transformation gi have the same character.

The rows of a character table correspond to the individual symmetry classes and

the columns to the conjugacy classes. Two elements of a group G are conjugate if

an equivalence relation can be made between the two, using only elements within
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G. Formally, elements ga and gb are conjugate if there exists some gg such that

gggag
−1
g = gb (3.33)

and so the conjugacy class of ga is simply a set of all the elements gb that fit

the requirement (3.33) and, of course, includes ga. All irreducible representations

of elements gi in the same conjugacy class have the same character and so are

grouped in the tables for compactness. This can be seen in the character table for

D8 (table 3.1), where the symmetries are organised into their respective conjugacy

classes, and is easily demonstrated. From (3.33), the character for gb is simply

χgb = tr[M (j)(gb)] = tr[M (j)(gg)M
(j)(ga)M(g−1g )], using the result (3.18). On

cycling the elements (as the trace is invariant under this operation) and again

using (3.18) to show that M (j)(g−1g )M (j)(gg) = M (j)(i) = I, we see that

χgb = tr
[
M (j)(ga)

]
= χga , (3.34)

for two conjugate elements ga and gb. Of course, for abelian groups, no two trans-

formations ga and gb satisfy (3.33) and so each element of the group has its own

conjugacy class.

It must be noted that the first conjugacy class is always E = {i}; no element is

conjugate to the identity. The action of the identity is informative, as the irre-

ducible representation for this trivial transformation is simply the identity matrix

I. The character (trace) of the identity thus reveals the dimensionality, and so the

number of fields, in a given symmetry class. Referring to table 3.1, of the D8 char-

acters, this clearly reveals four single-field symmetry classes (with one-dimensional

irreducible representations), in which the fields bI to bIV belong. The characters

for these symmetry classes are simply the irreducible representations themselves;

the trace of a single value (i.e. a 1×1 matrix) is the value itself. The irreducible

representations for these classes can therefore be read straight from the character

table, as was done in the example of D8.

Still referring to the previous example, from table 3.1 it is seen that symmetry



3.3. REPRESENTATIONS AND CHARACTERS 105

class V is two-dimensional, though there are four fields: bV a1 , bV a2 , bV b1 and bV b2 .

This is because a symmetry class of dimension k will contain k2 fields, as each

class contains k subclasses, each with k fields. Class V (of D8) must therefore have

two subclasses, which we have already identified as Va and Vb, each containing

two fields. Subclasses within a symmetry class are isomorphic, as their irreducible

representations (which may actually be different matrices) have the same character.

An important result from representation theory is

∑
α

χ2
α = n, (3.35)

where n is the order of G. A further result of representation theory is that if two

groups are isomorphic, i.e. it is possible to find a one-to-one map between the

elements of both groups, then the groups will share the same character table. This

is not surprising, as above we have shown that under similarity transformations,

the characters are unchanged; this identifies that the characters are an invariant

property of a group of elements. As character tables are well-known for all the main

finite symmetry groups, this feature will be used when constructing the irreducible

representations of the 1:1:1 ABC flow.

3.3.3 Action of symmetries on fields of a given symmetry

class

In chapter 2, the action of a symmetry on a vector function was given in (2.19),

with the transformation rotating the function at the preimage of the space x. This

allowed the symmetry group for the ABC flows to be generated, by finding all

distinct transformations g in (2.19). Sufficiently general vector functions defined in

a space which has these symmetries will not be invariant under the same symmetries

and so the purpose of finding the irreducible representations is to find independent

linear combinations that behave as simply as possible under the action of the

symmetries. In a given symmetry class α, the action of a symmetry g is now
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described by

(gbα) (x) = Mα(g)Jgb
α
(
g−1x

)
. (3.36)

For a one-dimensional symmetry class, bα will contain one field and Mα(g) will be

±1. Alternatively, in multi-dimensional symmetry classes, bα will contain multiple

fields with Mα describing how the symmetry g links these fields. Owing to the lin-

earity of b in the kinematic induction equation, fields in different symmetry classes

are independent of one another and so can be studied separately. Importantly, b

is still only defined in the fundamental domain, as discussed in chapter 2, and to

study the evolution of a field in a particular symmetry class, we need only know the

irreducible representations for all symmetries in that class. This idea is expanded

in chapter 4, when discussing the numerical methods.

3.4 Irreducible representations of G

Having detailed two simple but visualisable examples and touching on the key con-

cepts of characters and irreducible representations, we now return to the problem

in hand and discuss the 1:1:1 ABC flow and its representations. Given a sufficiently

general magnetic field b we obtain a 24-dimensional vector space W spanned by

the images gb under the various symmetries. We know from Arnold (1984) that

the symmetry group G of the 1:1:1 ABC flow is isomorphic to the rotation group

of a cube and so rather than writing down a decomposition of this space explicitly,

we start by giving the character table for G (i.e. that of the orientation-preserving

symmetries of a cube) in table 3.2. Here the elements are grouped into conjugacy

classes with

E = {i}, C4 = {a, a3, b, b3, c, c3}, C2
4 = {a2, b2, c2},

C3 = {d, d2, e, e2, f, f2, g, g2}, C2 = {h, j, k, l,m, n}. (3.37)

On investigation of the character table, it can be seen immediately, from the first

column, that there are two one-dimensional (symmetry) classes, I and II, one two-
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dimensional class, III, and two three-dimensional classes IV and V. In classes I and

II, the field is simply multiplied by ±1 under each symmetry operation and, as

before, the values may be read from the character table. Class III contains two

pairs of field (each pair belonging to a subclass) and classes IV and V each contain

three subclasses, with three fields. As the subclasses in classes III, IV and V are

isomorphic (to other subclasses within the class), then we need only consider one

subclass of each class. Using the isomorphism between G and O24 allows us to

Table 3.2: Character table for the group O24. Entries give the character, that is the
trace of the matrix Mα(g), for transformations g in the conjugacy classes (3.37)
and irreducible representations α from I–V.

E C3 C2
4 C2 C4

I 1 1 1 1 1
II 1 1 1 −1 −1
III 2 −1 2 0 0
IV 3 0 −1 1 −1
V 3 0 −1 −1 1

take advantage of irreducible representations that have already been constructed

for these groups. As they are not unique, there is an element of arbitrariness in

the choice but a good starting point is to review the example of D8. We note

that the irreducible representations of subclass Va are simply the Jacobians of the

symmetries. Taking the Jacobians of each transformation g ∈ G, we notice that

these do indeed form a set of irreducible representations for class V by confirming

that the characters match those of the character table, table 3.2. As they are to

be used in the next chapter, specific matrices for class V are

MV(b) =


1 0 0

0 0 −1

0 1 0

 , MV(b3) =


1 0 0

0 0 1

0 −1 0

 ,

MV(d) =


0 0 1

1 0 0

0 1 0

 , MV(d2) =


0 1 0

0 0 1

1 0 0

 , (3.38)
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with the full set given in Appendix A.

Arnold (1984) describes class IV as a tensor-product of II and V. Having already

identified irreducible representations for both of these classes, we can construct the

irreducible representation matrices of class IV by

M IV(g) = M II(g)⊗MV(g). (3.39)

From table 3.2, all symmetries in classes C2 and C4 have character −1 in class II,

so the irreducible representations of class IV will simply be those of class V, except

with the opposite signs for those in C2 and C4. The same matrices as in (3.38) for

class IV are given by

M IV(b) =


−1 0 0

0 0 1

0 −1 0

 , M IV(b3) =


−1 0 0

0 0 −1

0 1 0

 ,

M IV(d) =


0 0 1

1 0 0

0 1 0

 , M IV(d2) =


0 1 0

0 0 1

1 0 0

 , (3.40)

also with the full set provided in Appendix A.

Somewhat less intuitive is the two-dimensional symmetry class III. Arnold (1984)

describes this class as a “permutation of the three coordinate axes”, which could be

considered as a 2π/3 rotation in the plane of perpendicular to the line x = y = z,

and thus a good starting point is a rotation matrix with θ = 2π/3. This, however,

is not enough information to construct irreps for all symmetries in G, so we look

to predefined tables, which are prevalent in any scientific field that relies on the

geometry of molecules, such as crystallography or condensed matter physics. As

the irreps of class III are non-unique, there are a variety of different possibilities,

though Nussbaum (1971) (see table 5-10 on page 271) supplies a set of irreps that

are real-valued, in keeping with the irreps of our other symmetry classes. Naturally,
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these irreps satisfy (3.18), with the useful matrices given as

M III(b) = M III(b3) =
1

2

 1 −
√

3

−
√

3 −1

 ,

M III(d) =
1

2

 −1
√

3

−
√

3 −1

 , M III(d2) =
1

2

−1 −
√

3
√

3 −1

 , (3.41)

with, again, the full set given in Appendix A.

To demonstrate the use of the irreducible representations, we use the symmetry b.

We know from table 3.2 that M I(b) = 1 and M II(b) = −1 and so

bI = bbI, bII = −bbII. (3.42)

The three-dimensional representations for classes IV and V are taken from (3.40)

and (3.38) respectively. It is understood that bα for these two classes must contain

three fields each and so the action of the irreducible representation is to map these

fields to each other, given by

bbIV1 = −bIV1 , bbIV2 = bIV3 , bbIV3 = −bIV2 , (3.43)

and

bbV1 = bV1 , bbV2 = −bV3 , bbV3 = bV2 . (3.44)

For class III, the picture is a little more complicated but we can proceed in the

same fashion. There are two fields in this class and from (3.41), we have that

2bbIII1 = bIII1 −
√

3bIII2 , 2bbIII2 = −
√

3bIII1 − bIII2 , (3.45)

so when transformed, bIII1 and bIII2 each form a linear combination of themselves

and the other.
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The 24-dimensional space W will not be decomposed explicitly, as we did for D8

in section 3.2, owing to the large size of the group G. This, however, is not strictly

important as all the information required to investigate the individual symmetry

classes is contained in the irreducible representations, which are known. The de-

composition of the previous example was, in part, to aid visualising the types of

structure in each class. For the 1:1:1 ABC flow, b is three-dimensional, making

it impractical to visualise in the same fashion. It should also be noted that the

decomposition of W into symmetry classes satisfies (3.35), as it contains one copy

of representations I and II, two copies of III, and three copies of each of IV and V,

with these spanning W ; 12 + 12 + 22 + 32 + 32 = 24, the order of G as required.

3.5 Summary

In these examples, the idea of defining single fields or vector spaces that are inde-

pendent under the symmetries is key. To summarise the process, we first define

a general field b and apply all symmetries in the relevant group, to produce a

vector space W of fields. These fields are all related through various symmetries;

that is, applying a symmetry g to this set of fields is equivalent to the action of

a permutation matrix. This permutation matrix is a matrix representation of the

action of g, with a specific representation for each g. The next step is to construct

new fields from linear combinations of the fields in W , with the intention that W

can be decomposed into as many independent subspaces as possible. In terms of

representations, it involves finding an equivalent representation M(g) for each g

and with M having exactly the same block diagonal form for every g. The action

of any g can then only relate fields of each block to one another, resulting in a

series of fields bα that evolve independently, provided that the evolution equation

is linear (as is the kinematic induction equation).

To demonstrate how the symmetries of the 1:1:1 ABC flow apply to a general

magnetic field b, the process described above was applied to the group G and the

irreducible representations were constructed. As the symmetry groups of both Z2
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and D8 are smaller and defined in a two-dimensional vector space, it is possible

to find a suitable equivalence matrix P to identify the explicit decompositions

used. Although this is strictly unnecessary, it is advantageous as it allows for

visualising the fields belonging to the different symmetry classes. Ultimately, only

the irreducible representations are required.

For the 1:1:1 ABC symmetries, it is not practical to visualise all 24 fields and so it is

not necessary to know P . Using the fact that G is isomorphic to the well-studied

cubic rotation group O24, information such as the character table, table 3.2, is

revealed. Combined with what is already known of this group (see Arnold, 1984),

it is not too laborious to construct a full set of irreducible representations for the

five symmetry classes. The first two symmetry classes (I, II) are one-dimensional;

they each contain one field and their representations can be read from the character

table for G. The third class (III) is two-dimensional and the fourth and fifth (IV,

V) are three-dimensional. Classes III, IV and V contain multiple subclasses but

only one of each needs to be considered.

In the next chapter, we detail how the symmetries and irreducible representations

are actually utilised in the numerical framework.
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Chapter 4

Numerical Methods

Build a man a fire, and he’ll be warm for a day.

Set a man on fire, and he’ll be warm for the rest

of his life.

Terry Pratchett

Now that the necessary theory of symmetries and representations has been devel-

oped and the irreducible representations have been constructed, we may return to

the problem at hand; that of solving the induction equation whilst utilising the

various symmetries of the flow. We saw from the last chapter that five invari-

ant subspaces exist, which we named symmetry classes, with each symmetry class

behaving differently under the transformations of G. The main purpose of this

chapter is to show how this affects the numerical procedures, and how only a small

subset of Fourier modes need be used.

The chapter begins by describing the spectral numerical scheme for the full 1:1:1

ABC dynamo problem, with a brief discussion of parameters for the numerical

analysis. Following this, a reduction of the full domain of Fourier modes to the

fundamental domains GN and HN is detailed. Both domains use all symmetries

113
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in G but the first does not utilise the Hermitian symmetry of the field, whereas

the second does. The additional computations required to time step in both GN
and HN are provided in full. The process of parallelising the numerical problem

in HN is explained, with details on balancing the work load and additional opera-

tions involving the order of communication between consecutive cores. Finally, the

Implicitly Restarted Arnoldi iteration method (IRAM) is explored as a potential

alternative to time stepping, with comparisons drawn between these two methods.

4.1 Time stepping in the ABC dynamo problem

In this section, we identify the numerical methods of time stepping the full ABC

dynamo problem, with these methods also used in the symmetry-reduced problems.

Our interest is in solving the kinematic induction equation

∂tb+ u · ∇b = b · ∇u+ η∇2b, (4.1)

for the 1:1:1 ABC flow, given by

u = (sin z + cos y, sinx+ cos z, sin y + cosx). (4.2)

We wish to solve this as an eigenvalue problem with

b = b̃(x, y, z)eλt, (4.3)

as a consequence of the linearity of the problem. The eigenvalues of the system are

denoted (as typical) by λ. In solving this problem, we aim to obtain growth rates

(and frequencies) of the magnetic field from the dominant eigenvalues, as well as

the structure of these fields in physical space, along with any other useful analytical

tools. We consider magnetic fields with the usual Fourier decomposition

b =
∑
l,m,n

bl,m,n(t) eilx+imy+inz , bl,m,n = (Xl,m,n, Yl,m,n, Zl,m,n), (4.4)
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with wavenumbers l,m and n. Strictly, only two components of the field are neces-

sary, as the third may be reconstructed from the other two via the divergence-free

condition ∇ · b = 0. In the time stepping codes, this property is used to re-

move divergence at set intervals with a projection, though all three components

Xl,m,n, Yl,m,n and Zl,m,n are resolved fully at every time step. In the Arnoldi itera-

tion method, this property is used to remove degrees of freedom and is discussed

in section 4.4.3.

As the magnetic field is real, we also have the Hermitian symmetry property,

bl,m,n = b∗−l,−m,−n, (4.5)

where ∗ denotes the complex conjugate. Numerically the values of l, m and n are

limited by the maximum resolution N and the zero mode (which would correspond

to a constant mean field) is always set to zero. The full cube of wave-vectors (with

truncation at N for each index) is referred to as FN and is defined by

FN = {(l,m, n) : |l|, |m|, |n| ≤ N}. (4.6)

4.1.1 Numerical scheme

In the investigation of Galloway and Frisch (1986) it is noted that the ABC flows

are particularly suited for spectral methods (those that operate in Fourier space),

as the terms involving u and b result in neighbouring modes being coupled; i.e.

to time step a Fourier mode, only its six neighbouring modes are needed. We

are therefore adopting a purely spectral code for the time stepping procedure.

For procedures that require the magnetic field to be in real space, for example in

visualising these fields, a Fast Fourier Transform is adopted; more detail is given

later in the chapter.

The advective and stretching terms of (4.1) can be solved through the use of explicit

methods. For these terms, a three-step Adams–Bashforth scheme is adopted as a
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balance between accuracy and speed. Initially a two-step scheme was used but

found to be unstable in certain conditions. The diffusive terms are integrated

exactly and give exponential damping of each mode every time step. This scheme

can be written analytically, with time t = j∆t, as

bj+1
l,m,n = El,m,n

[
bjl,m,n + 1

12
∆t
(

23Λj
l,m,n − 16El,m,nΛ

j−1
l,m,n + 5E2

l,m,nΛ
j−2
l,m,n

)]
, (4.7)

where

El,m,n = exp
[
−η
(
l2 +m2 + n2

)
∆t
]
. (4.8)

The advective and stretching terms are represented by Λj
l,m,n =

[
(Λx)

j
l,m,n, (Λy)

j
l,m,n, (Λz)

j
l,m,n

]
at time step j, with corresponding x, y and z components. The x-component is

given by

2(Λx)
j
l,m,n = imB

(
Y j
l,m−1,n + Y j

l,m+1,n

)
− imC

(
Xj
l,m,n−1 +Xj

l,m,n+1

)
+mC

(
Y j
l,m,n−1 − Y

j
l,m,n+1

)
−mA

(
Xj
l−1,m,n −X

j
l+1,m,n

)
+ inB

(
Zj
l,m−1,n + Zj

l,m+1,n

)
− inA

(
Xj
l−1,m,n +Xj

l+1,m,n

)
+ nC

(
Zj
l,m,n−1 − Z

j
l,m,n+1

)
− nB

(
Xj
l,m−1,n −X

j
l,m+1,n

)
, (4.9)

with the y-component as

2(Λy)
j
l,m,n = ilC

(
Xj
l,m,n−1 +Xj

l,m,n+1

)
− ilB

(
Y j
l,m−1,n + Y j

l,m+1,n

)
+ lA

(
Xj
l−1,m,n −X

j
l+1,m,n

)
− lC

(
Y j
l,m,n−1 − Y

j
l,m,n+1

)
+ inC

(
Zj
l,m,n−1 + Zj

l,m,n+1

)
− inA

(
Y j
l−1,m,n + Y j

l+1,m,n

)
+ nA

(
Zj
l−1,m,n − Z

j
l+1,m,n

)
− nB

(
Y j
l,m−1,n − Y

j
l,m+1,n

)
, (4.10)
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and the z-component given by

2(Λz)
j
l,m,n = ilA

(
Xj
l−1,m,n +Xj

l+1,m,n

)
− ilB

(
Zj
l,m−1,n + Zj

l,m+1,n
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j
l+1,m,n

)
, (4.11)

for a general ABC flow; for the 1:1:1 flow, we set A = B = C = 1. In the full

code, this numerical scheme was used to time step all modes in FN by varying l, m

and n from their minimum value of −N to their maximum value of N . This code

was tested against results of Arnold and Korkina (1983) for the first window and

against Galloway and Frisch (1986) for both the first window and up to Rm = 50

in the second window, with a (randomly generated) divergence-free seed field. The

results were found to agree well (to within three significant figures) with those of

Arnold and Korkina (1983) and agreed to within ∼ 2% with those of Galloway and

Frisch (1986); this discrepancy has been also found in other investigations (see Lau

and Finn, 1993; Bouya and Dormy, 2013).

For testing purposes, Hermitian symmetry was implemented in the full code, as

was done by Galloway and Frisch (1986). The numerical scheme is unchanged but

only Fourier modes with l ≥ 0 were time stepped. As the l = 0 modes did not

have access to all neighbouring modes, specifically those with l = −1, an additional

“layer” was stored but not time stepped. This layer (b−1,m,n) was updated using

the Hermitian symmetry (4.5) of the magnetic field so that

b−1,m,n = b∗1,−m,−n. (4.12)

The Hermitian code was tested against results of the non-Hermitian code and

agreed to within rounding error. This method of updating mode values, without

stepping them numerically, is core to the reduction of the problem through the

symmetries and is discussed in the next section.
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4.1.2 Numerical operations and parameters

As the numerical scheme has been detailed, we provide information about codes in

which these schemes are realised. It should first be noted that all numerical codes

were written in Fortran, unless otherwise specified, as it is the most appropriate

choice for managing huge calculations involving arrays, owing to its efficiency (with

these types of calculation) and ease of programming, as well as good portability.

One aim of the various investigations in this thesis is to study the evolution of

magnetic fields in high-Rm regimes (or instabilities in high-Re regimes for the fluid

stability problem). Increasing Rm means that the diffusive terms need to be re-

solved for finer and finer resolutions. Galloway and Frisch (1986) identified the

relationship between resolution N and Rm: N scales as R
1/2
m . In practice, the num-

ber of Fourier modes in the full domain FN is (2N+1)3 and so the number of modes

to resolve scales as R
3/2
m . In the high-Rm regimes, this becomes problematic on ac-

count of the size of the numerical problems. Also for consideration is the temporal

resolution, i.e. the time step size, though this is more dependent on the numeri-

cal scheme adopted. Through testing the full and reduced codes (see section 4.2),

‘safe’ values of time step size and resolution for ranges of Rm were found; typical

parameters are given in table 4.1. In practice, more divisions were made than the

ones displayed but it is impractical to note them all here. Safe values of the spatial

Table 4.1: Typical parameters adopted for numerical calculations.

Rm N ∆t Rm N ∆t
5 6 0.01 500 40 0.002
25 10 0.01 1000 54 0.002
120 20 0.005 5000 122 0.001
250 28 0.005 10000 170 0.001

resolution parameter N were found to scale roughly as 1.7R
1/2
m for all values of Rm

investigated. The size of time steps, however, was more difficult to determine and

involved trial-and-error to find appropriate values, though it was easier to identify

when the time steps were too large, owing to unrealistically large growth rates (i.e.

numerical ‘blow-up’). In testing, these two parameters were deemed of appropriate
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sizes (safe) when growth rates had converged to three significant figures; increasing

the resolution and decreasing the time step size further did not affect the growth

rate at this precision.

In locating safe parameters, we also tested for conservation of zero-divergence in the

magnetic field for long run times. We find that in using divergence-free random

initial conditions, the field remains divergence-free for the entire length of the

simulation without the need for correction. Nevertheless, all time stepping codes

include a subroutine to remove divergence through a projection, with a call to this

subroutine placed several times per simulation at equally spaced intervals.

An important point to consider is what occurs at the edge of the truncated domain

FN , i.e. for a mode which has one or more index equal to N or −N . Of course,

these modes do not have all neighbouring modes and so cannot be time stepped. In

the simulations carried out for this thesis, all simulation domains are truncated at

index N ; modes up to index N −1 are time stepped, modes with at least one index

equal to N are set to zero. This intentionally damps the effect of neighbouring

modes that correspond to smaller scale fields than those we aim to resolve.

The two main outputs of these simulations are the total magnetic energy EM and

the magnetic field ‘snapshots’. To calculate EM, we simply sum the squares of all

modes; for the reduced problems, only the modes in the fundamental domain are

used. From (4.3), we see that the magnetic energy grows or decays exponentially

and so the natural logarithm is also taken. At every time step, a new value of

ln(EM) is calculated so that at the end of the simulation, a time series is obtained.

From this time series, the exponential growth rate of magnetic energy is calculated

from the linear trend in ln(EM). This provides the real part of the eigenvalue λ of

this mode. For the imaginary part, the period of the oscillations in ln(EM) is used.

Each period in ln(EM) corresponds to a half-period in the magnetic field evolution,

and we calculate Im(λ) as 2T/2π = T/π, where T is the period of a single cycle of

ln(EM). The snapshots are essentially records of the magnetic field at a given point

in the simulation. These are used for visualisations and spectral analysis, amongst

other things. To visualise, we convert from spectral space to real space using the
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FFTW routine supplied by NAG. For 3-D visualisations, a script written in IDL

then converts it to a format that can be read by VAPOR (see Clyne et al., 2007).

For 2-D visuals (cross-sections), IDL’s visualisation tools were used.

Returning to the dynamo code, the order of operations in each time step (for the

full code) is as follows:

• If Hermitian symmetry is included, calculate modes b−1,m,n from b1,−m,−n

using (4.5),

• loop over all l,m and n ( |l| < N for non-Hermitian case, 0 < l < N for

Hermitian); for each unique (l,m, n) calculate (4.9)–(4.11), then step (4.7),

• copy old arrays to newer arrays, i.e. arrays storing Λ for previous steps moved

into arrays for one step older, in preparation for next step,

• ln(EM) calculated for relevant domain; loop sums squares of modes for all

mode indices (l,m, n) and stores in predefined array,

• magnetic field snapshot is printed if at required (pre-determined) time step,

• Finally, ln(EM) is compared against smallest/largest allowed values due to

sensitivity to rounding error. If ln(EM) is too small, all arrays bj, Λj,Λj−1

and Λj−2 are scaled up by a predefined value. Similarly if too large, all array

values are scaled down.

The process detailed above is valid for full numerical codes (i.e. those without

symmetry) and the symmetry-reduced codes. It must be noted, however, that for

the reduced codes, the first step is replaced by an equivalent step which impose the

symmetries of a particular symmetry class. The procedures are described in the

next section.
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4.2 Symmetry-reduced problem

The main purpose of this thesis is to take advantage of the intrinsic symmetries

of the 1:1:1 ABC flow, with the intent being two fold. Firstly, through identifying

the representations of the group of symmetries G, we have found that there are

five different types of magnetic field structure that can exist, with every possible

magnetic field described by linear combinations of these. It is interesting to in-

vestigate not only the dominant mechanisms but also understand the less effective

structures that may still be amenable to dynamo action. Secondly, decomposing a

field into its constituent symmetry classes allows for reduced computational cost;

to numerically solve the 1:1:1 ABC dynamo for a field belonging to a particular

symmetry class, we need only know, at any given time, the field contained within

the fundamental domain.

There are two reduced problems for consideration. The first is that of solving the

dynamo problem using all symmetries of G but neglecting Hermitian symmetry,

and this case is explored for use in the eigenvalue solver using the Implicit Restarted

Arnoldi method. This method is only applicable to problems in which the evolution

is linear and in using Hermitian symmetry, the action of conjugating modes destroys

this linearity and so is not appropriate. Solving via the Arnoldi method (IRAM)

is discussed in section 4.4. The second is solving the dynamo problem using all

symmetries of G and including Hermitian symmetry, with this being the method

of choice for time stepping.

In both of these cases, the numerical schemes adopted for the full problem are

appropriate. We simply change the range of spectral modes that are time stepped

in keeping with the definition of the fundamental domain.

4.2.1 Action of symmetries in Fourier space

First we consider the symmetry-reduced problem in the absence of Hermitian sym-

metry. From chapters 2 and 3, we know that the action of the symmetries maps
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a magnetic field confined to the fundamental domain to the full domain. In spec-

tral space, the effect is similar, though needs some modifications. We recall from

chapter 2 that a symmetry acting on a vector function can be described by

g∗ : S → S, (g∗f)(x) = Jg · f(g−1x), (4.13)

where we subsequently drop the ∗ notation for applications of these transformations

on the magnetic field. Since we work with the magnetic field written in the Fourier

space decomposition (4.4) (with |l|, |m|, |n| ≤ N), it is useful to understand how the

symmetries operate on the Fourier modes themselves. Every symmetry in (2.50),

except for d and d2, is a composition of a rotation and a translation. The rotation

can be described by the action of the Jacobian matrix on x and the translation is

simply a vector. A general symmetry can therefore be written as

g(x) = Jgx+ T g, (4.14)

with T g being the translation (vector) component of g. We can then apply g to a

magnetic field defined by (4.4), giving

(gb) =
∑
l,m,n

Jgbl,m,n exp
[
ik · (Jg−1x+ T g−1)

]
, (4.15)

with k = (l,m, n). The translation and the Jacobian in the exponential term can

be separated to get

(gb) =
∑
l,m,n

exp
[
ik · T g−1

]
Jgbl,m,n exp

[
ik · (Jg−1x)

]
, (4.16)

and now we wish to return the exponential term to the form exp[ik ·x]; we do this

by setting k = Jg−1k′ = Jg−1(l′,m′, n′)ᵀ, and then (because all indices l, m and n

on the right-hand side are dashed) we can drop the dashes, giving

(gb) =
∑
l,m,n

exp
[
i (Jg−1k) · T g−1

]
Jgb(Jg−1k) exp

[
ik · x

]
, (4.17)
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which is the form we require. Comparing like-for-like modes on both sides, we have

(gb)l,m,n = exp
[
i (Jg−1k) · T g−1

]
Jgb(Jg−1k). (4.18)

The action of g on a mode with wavenumber k = (l,m, n) is to map it to another

mode with wavenumber Jg−1(l,m, n)ᵀ with a phase shift dependent on the trans-

lation component of g. This becomes clear when an actual element of G is applied,

for example the (l,m, n) modes of bb and of db are given by

(bb)l,m,n = ei(l−m−n)π/2 Jb bl,n,−m, (db)l,m,n = Jd bm,n,l, (4.19)

while for their inverses,

(b3b)l,m,n = ei(−l+m−n)π/2 Jb3 bl,−n,m, (d2b)l,m,n = Jd2 bn,l,m. (4.20)

The 24 symmetries in G each map the general mode bl,m,n to a different mode, so

through the use of the symmetries, we need only consider a limited range of modes,

i.e. those in the fundamental domain. However, the effects of applying g to b still

need to be dealt with; evaluating the left-hand sides of (4.19) and (4.20) requires

specifying the symmetry class, as the behaviour of the transformation is described

by its irreducible representation.

With the trivial remark b = g−1(gb), it follows that bα = Mα(g−1)(Mα(g)bα).

We can therefore modify (4.18) to account for the symmetry classes, yielding the

result

bαl,m,n = exp
[
i (Jg−1k) · T g−1

]
Mα(g−1)Jgb

α

(Jg−1k). (4.21)

We note how the Jacobian rearranges the components of bα(Jg−1k) before the indi-

vidual fields are mapped around by the irreducible representation of the inverse of

the transformation g. To demonstrate the result (4.21), we take the example of bb

and obtain

bIl,m,n = ei(l−m−n)π/2 Jb b
I
l,n,−m, bIIl,m,n = −ei(l−m−n)π/2 Jb b

II
l,n,−m, (4.22)
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for classes I and II. Taking Mα(b3) from (3.40) and (3.38) for classes IV and V

respectively, we have

(
bIV1
)
l,m,n

= −ei(l−m−n)π/2 Jb

(
bIV1
)
l,n,−m ,

(
bV1
)
l,m,n

= ei(l−m−n)π/2 Jb

(
bV1
)
l,n,−m ,

(4.23)(
bIV2
)
l,m,n

= −ei(l−m−n)π/2 Jb

(
bIV3
)
l,n,−m ,

(
bV2
)
l,m,n

= ei(l−m−n)π/2 Jb

(
bV3
)
l,n,−m ,

(4.24)(
bIV3
)
l,m,n

= ei(l−m−n)π/2 Jb

(
bIV2
)
l,n,−m ,

(
bV3
)
l,m,n

= −ei(l−m−n)π/2 Jb

(
bV2
)
l,n,−m ,

(4.25)

and for class III,

2
(
bIII1

)
l,m,n

= ei(l−m−n)π/2 Jb

[(
bIII1

)
l,n,−m −

√
3
(
bIII2

)
l,n,−m

]
, (4.26)

2
(
bIII2

)
l,m,n

= ei(l−m−n)π/2 Jb

[
−
√

3
(
bIII1

)
l,n,−m −

(
bIII2

)
l,n,−m

]
. (4.27)

Finally, we should note that these equations have not been fully decomposed; if

we were to do so, we would have an equation for each of (Xα
i )l,m,n, (Y α

i )l,m,n and

(Zα
i )l,m,n in every (bαi )l,m,n. For example, the equation for

(
bV2
)
l,m,n

in (4.24) is

actually three equations, given by

(
XV

2

)
l,m,n

= ei(l−m−n)π/2
(
XV

3

)
l,n,−m , (4.28)(

Y V
2

)
l,m,n

= −ei(l−m−n)π/2
(
ZV

3

)
l,n,−m , (4.29)(

ZV
2

)
l,m,n

= ei(l−m−n)π/2
(
Y V
3

)
l,n,−m . (4.30)

In subsequent use of the symmetries, the full decomposition will not be displayed.

4.2.2 GN : fundamental domain without Hermitian symme-

try

In the absence of Hermitian symmetry, we consider a magnetic field defined in the

fundamental domain constructed through the elements of G. As shown above, the
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23 non-identity transformations each map a single Fourier mode with wavenumber

(l,m, n) to a distinct mode. Knowing the amplitude of a general mode bl,m,n thus

tells us the amplitude of 24 Fourier modes in total. The fundamental domain must

be 1/24 of the full domain FN and so here we define it as

GN = {(l,m, n) : 1 ≤ l ≤ N, 0 ≤ m ≤ l, 0 ≤ n ≤ l}. (4.31)

Although defining the fundamental domain is rather arbitrary, in that any set of

points from which FN can be reconstructed using the symmetries can be called the

fundamental set, the definition (4.31) seems logical and more appropriate in the

numerical analysis than others. GN is visualised in figure 4.1. To numerically solve

(a) (b)

Figure 4.1: Fundamental domain GN (a) within the full cube of wave vectors FN
and (b) within the first octant.

the induction equation in GN , we need to make sure that every Fourier mode has

all six neighbouring modes; to time step bl,m,n, we need to know bl±1,m,n, bl,m±1,n

and bl,m,n±1 as well as bl,m,n itself. We can immediately see that modes on the

‘edge’ of GN will have neighbouring modes that lie outside of GN . To resolve this,

we store an extra layer of modes around GN so that all necessary modes for time

stepping are available. As only modes within GN are updated each time step, the

values of these ‘outlying’ modes will need to be calculated from modes within GN .

To help identify these edge modes, a cross-section of constant l has been visualised

in figure 4.2.

There are five ‘sets’ of modes whose values need to be calculated. These are:
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m

n

-1 0 1 l l+1

-1

0

1

l

l+1

Figure 4.2: A cross-section of GN for unspecified l. Unshaded modes are time
stepped, coloured modes need to be calculated using symmetries; different colours
identify different symmetries used.

• bl,m,−1, coloured yellow in figure 4.2, needed to time step bl,m,0;

• bl,−1,n, coloured green, needed to step bl,0,n;

• bl,m,l+1, coloured blue, needed to step bl,m,l;

• bl,l+1,n, coloured red, needed to step bl,l,n;

• bl,l+1,l+1, coloured purple, needed to step bl+1,l+1,l+1.

Note that it is easy to miss the requirement that modes bl,l+1,l+1 are filled; these

are needed to step modes bl+1,l+1,l+1 which cannot be seen in a single cross-section,

such as in figure 4.2. Through appropriate choices of (l,m, n), the five sets of modes

listed above are mapped, using the relevant symmetries, to modes within GN . For

the second of these, bl,−1,n, we have already dealt with the relevant symmetry,

namely b, which calculates bl,m,n from bl,n,−m (see (4.19)) and so is used find the

value of bl,−1,n from bl,n,1. Additionally, we require the symmetries b3, d and d2

for the other modes. The transformations involve specific choices of m and n for
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(4.19) and (4.20), and are summarised by

(bb)l,−1,n = ei(l+1−n)π/2 Jb bl,n,1, (db)l,l+1,n = Jd bl+1,n,l,(
b3b
)
l,m,−1 = ei(−l+m+1)π/2 Jb3 bl,1,m,

(
d2b
)
l,m,l+1

= Jd2 bl+1,l,m, (4.32)

with the modes on the right-hand sides always belonging to GN . It should be noted

that the purple modes, bl,l+1,l+1 can be calculated using either d or d2.

For classes I and II, (4.32) becomes

bαl,−1,n = ±ei(l+1−n)π/2 Jb b
α
l,n,1, bαl,l+1,n = Jd b

α
l+1,n,l,

bαl,m,−1 = ±ei(−l+m+1)π/2 Jb3 b
α
l,1,m, bαl,m,l+1 = Jd2 b

α
l+1,l,m, (4.33)

with the upper sign for α as I and the lower sign for α as II. For III, it becomes

2
(
bIII1

)
l,−1,n = ei(l+1−n)π/2 Jb

[(
bIII1

)
l,n,1
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√

3
(
bIII2

)
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]
,

2
(
bIII2

)
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[
−
√

3
(
bIII1

)
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−
(
bIII2

)
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]
,

2
(
bIII1

)
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bIII1

)
l,1,m
−
√

3
(
bIII2

)
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]
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2
(
bIII2

)
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[
−
√

3
(
bIII1

)
l,1,m
−
(
bIII2

)
l,1,m

]
,

2
(
bIII1

)
l,l+1,n

= Jd

[(
bIII1

)
l+1,n,l

−
√

3
(
bIII2

)
l+1,n,l

]
,

2
(
bIII2

)
l,l+1,n

= Jd

[√
3
(
bIII1

)
l+1,n,l

−
(
bIII2

)
l+1,n,l

]
,

2
(
bIII1

)
l,m,l+1

= Jd2

[
−
(
bIII1

)
l+1,l,m

+
√

3
(
bIII2

)
l+1,l,m

]
,

2
(
bIII2

)
l,m,l+1

= Jd2

[
−
√

3
(
bIII1

)
l+1,l,m

−
(
bIII2

)
l+1,l,m

]
, (4.34)
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and for classes IV and V, we have

(bα1 )l,−1,n = ∓ei(l+1−n)π/2 Jb (bα1 )l,n,1 , (bα1 )l,l+1,n = Jd (bα2 )l+1,n,l ,

(bα2 )l,−1,n = ∓ei(l+1−n)π/2 Jb (bα3 )l,n,1 , (bα2 )l,l+1,n = Jd (bα3 )l+1,n,l ,

(bα3 )l,−1,n = ±ei(l+1−n)π/2 Jb (bα2 )l,n,1 , (bα3 )l,l+1,n = Jd (bα1 )l+1,n,l ,

(bα1 )l,m,−1 = ∓ei(−l+m+1)π/2 Jb3 (bα1 )l,1,m , (bα1 )l,m,l+1 = Jd2 (bα3 )l+1,l,m ,

(bα2 )l,m,−1 = ±ei(−l+m+1)π/2 Jb3 (bα3 )l,1,m , (bα2 )l,m,l+1 = Jd2 (bα1 )l+1,l,m ,

(bα3 )l,m,−1 = ∓ei(−l+m+1)π/2 Jb3 (bα2 )l,1,m , (bα3 )l,m,l+1 = Jd2 (bα2 )l+1,l,m , (4.35)

with the upper sign for α as IV and the lower sign for α as V.

4.2.3 HN : fundamental domain with Hermitian symmetry

In previous studies (see Galloway and Frisch, 1986, for instance), it has been nat-

ural to exploit the Hermitian symmetry (4.5) to use half the Fourier modes in a

traditional truncation of (4.4), for example in place of the full cube |l|, |m|, |n| ≤ N ,

to use the half-cube 0 ≤ l, |m|, |n| ≤ N , thus reducing the computer time required

by a factor of two. With Hermitian symmetry, every symmetry in G maps a gen-

eral mode bl,m,n to a distinct 1/24 piece of the half-domain, thus the fundamental

domain constitutes 1/48 of FN . We define the fundamental domain with Hermitian

symmetry as

HN = {(l,m, n) : 1 ≤ l ≤ N, 0 ≤ m ≤ l, 0 ≤ n ≤ m}. (4.36)

This is shown in figure 4.3 and can be seen to be half of GN ; the half for which

n ≤ m. If a symmetry maps a general mode bl,m,n to a mode b−l,±m,±n, we can then

also use Hermitian symmetry to make bl,m,n map to b∗l,∓m,∓n, thereby ensuring that

every mode in FN can be calculated from a mode within HN . As with the case

of solving within GN , we wish to know which of the modes lie on the edge of the

domain, so as to store an extra layer of modes outside of HN . A slice of constant l

is displayed schematically in figure 4.4. The picture is more complicated than with
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(a) (b)

Figure 4.3: Fundamental domain HN (a) within the full cube of wave vectors FN
and (b) within the first octant.

m

n

-1 0 1 l l+1

-1

0

1

l

l+1

Figure 4.4: A cross-section of HN for unspecified l. Unshaded modes are time
stepped, coloured modes need to be calculated using symmetries; different colours
identify different symmetries used.

GN and the same symmetries cannot necessarily be used. There are now seven sets

of modes whose values need to be calculated. These are:

• bl,m,−1 withm > 0, coloured yellow in figure 4.4, needed to time step bl,m,0,m >

0;

• bl,0,−1, coloured turquoise, needed to step bl,0,0;

• bl,−1,0, coloured green, needed to step bl,0,0;

• bl,m,m+1 with m < l, coloured blue, needed to step bl,m,m and bl,m+1,m+1 (for
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m < l);

• bl,l,l+1, coloured orange, needed to step bl,l,l;

• bl,l+1,n, coloured red, needed to step bl,l,n;

• bl,l+1,l+1, coloured purple, needed to step bl+1,l+1,l+1.

The reason for more sets of modes, even though HN has fewer geometrical faces

than GN , will become clear when determining the symmetries used and is due,

in part, to the irregular shape of the fundamental domain. We take the example

of lb to demonstrate how Hermitian symmetry is used in conjunction with the

symmetries. From (2.50), we have

l(x) =
(
−x− π

2
,−z − π

2
,−y − π

2

)
, (4.37)

and using (4.18), we have that

(lb)l,m,n = ei(l+m+n)π/2 J lb−l,−n,−m. (4.38)

Using the Hermitian symmetry property (4.5) then provides

(lb)l,m,n = ei(l+m+n)π/2 J lb
∗
l,n,m, (4.39)

with the resulting transformation exhibiting qualities similar to a reflection; it

allows for two indices to be switched without either one changing sign. With the

choice n = m + 1 for m < l, we obtain an expression for calculating the values of

modes bl,m,m+1 described by

(lb)l,m,m+1 = ei(l+2m+1)π/2 J lb
∗
l,m+1,m. (4.40)

As was carried out for extra mode layers of GN , the equations needed to fill each set

of modes is provided, though first we avoid repetition by considering the three sets

of modes outside HN that are transformed in the same way as those outside GN .
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These sets are bl,0,−1, bl,l,l+1 and bl,l+1,l+1, which are special cases of bl,m,−1, bl,m,l+1

and bl,l+1,n, respectively. The reason that these specific cases are treated separately

to their respective general mode sets is that the transformation used to map these

modes back to the fundamental domain, for GN , remains only valid for the special

cases and so alternative transformations are needed for the general cases. With

this in mind, the modes bl,0,−1, bl,l,l+1 and bl,l+1,l+1 adopt the same transformations

as in GN , namely those for bl,m,−1, bl,m,l+1 and bl,l+1,n (respectively), described in

(4.33)–(4.35), and with the appropriate choices of m and n.

The remaining four sets of modes are bl,m,−1 with m > 0, bl,−1,0, bl,m,m+1 for

m < l and bl,l+1,n with n < l + 1. These are transformed, respectively, by a2

with Hermitian (4.5), b2, l with (4.5) and n with (4.5). These transformations are

summarised by

(a2b)l,m,−1 = ei(−m−1)π Ja2 b
∗
l,m,1, (b2b)l,−1,0 = eilπ Jb2 bl,1,0,

(lb)l,m,m+1 = ei(l+2m+1)π/2 Jl b
∗
l,m+1,m, (nb)l,l+1,n = ei(2l+n+1)π/2 Jn b

∗
l+1,l,n, (4.41)

with modes on the right-hand side belonging to HN .

From (4.41), we have for classes I and II that

bαl,m,−1 = ei(−m−1)π Ja2 b
α∗
l,m,1, bαl,−1,0 = eilπ Jb2 b

α
l,1,0,

bαl,m,m+1 = ±ei(l+2m+1)π/2 Jl b
α∗
l,m+1,m, bαl,l+1,n = ±ei(2l+n+1)π/2 Jn b

α∗
l+1,l,n, (4.42)

with class I being the upper sign and II being the lower. To continue, we will need

the relevant irreducible representations for classes III, IV and V; these are given by

M III(a2) = M III(b2) =

(
1 0

0 1

)
, M III(l) =

1

2

(
1 −

√
3

−
√

3 −1

)
, M III(n) =

(
−1 0

0 1

)
,
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M IV(a2) = MV(a2) =

−1 0 0

0 −1 0

0 0 1

, M IV(b2) = MV(b2) =

1 0 0

0 −1 0

0 0 −1

,

M IV(l) = −MV(l) =

1 0 0

0 0 1

0 1 0

, M IV(n) = −MV(n) =

0 1 0

1 0 0

0 0 1

. (4.43)

From (4.18) and (4.43), we calculate the extra layers of modes for class III by

(
bIII1

)
l,m,−1 = ei(−m−1)π Ja2

(
bIII1

)∗
l,m,1

,
(
bIII1

)
l,−1,0 = eilπ Jb2

(
bIII1

)
l,1,0

,(
bIII2

)
l,m,−1 = ei(−m−1)π Ja2

(
bIII2

)∗
l,m,1

,
(
bIII2

)
l,−1,0 = eilπ Jb2

(
bIII2

)
l,1,0

,

2
(
bIII1

)
l,m,m+1

= ei(l+2m+1)π/2 J l

[(
bIII1

)∗
l,m+1,m

−
√

3
(
bIII2

)∗
l,m+1,m

]
,

2
(
bIII2

)
l,m,m+1

= ei(l+2m+1)π/2 J l

[
−
√

3
(
bIII1

)∗
l,m+1,m

−
(
bIII2

)∗
l,m+1,m

]
,

(
bIII1

)
l,l+1,n

= −ei(2l+n+1)π/2 Jn

(
bIII1

)∗
l+1,l,n

,(
bIII2

)
l,l+1,n

= ei(2l+n+1)π/2 Jn

(
bIII2

)∗
l+1,l,n

, (4.44)

and for classes IV and V,

(bα1 )l,m,−1 = −ei(−m−1)π Ja2 (bα1 )∗l,m,1 , (bα1 )l,−1,0 = eilπ Jb2 (bα1 )l,1,0 ,

(bα2 )l,m,−1 = −ei(−m−1)π Ja2 (bα2 )∗l,m,1 , (bα2 )l,−1,0 = −eilπ Jb2 (bα2 )l,1,0 ,

(bα3 )l,m,−1 = ei(−m−1)π Ja2 (bα3 )∗l,m,1 , (bα3 )l,−1,0 = −eilπ Jb2 (bα3 )l,1,0 ,

(bα1 )l,m,m+1 = ±ei(l+2m+1)π/2 Jl (bα1 )∗l,m+1,m , (bα1 )l,l+1,n = ±ei(2l+n+1)π/2 Jn (bα2 )∗l+1,l,n ,

(bα2 )l,m,m+1 = ±ei(l+2m+1)π/2 Jl (bα3 )∗l,m+1,m , (bα2 )l,l+1,n = ±ei(2l+n+1)π/2 Jn (bα1 )∗l+1,l,n ,

(bα3 )l,m,m+1 = ±ei(l+2m+1)π/2 Jl (bα2 )∗l,m+1,m , (bα3 )l,l+1,n = ±ei(2l+n+1)π/2 Jn (bα3 )∗l+1,l,n ,

(4.45)

with the upper sign for α as IV and the lower sign for α as V. Updating these

modes, as explained for GN , is carried out prior to usual stepping of the modes

within HN .
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4.2.4 Time stepping in the fundamental domain

Now that both fundamental domains, GN and HN have been defined, we can dis-

cuss how this affects the time stepping procedure, as compared to the numerical

procedure in FN . It is important to note, however, that any time stepping carried

out in the domain GN was done so only for comparison against the results of the

IRAM solver (discussed later in this chapter). All time stepping results provided

in this section are calculated with a numerical code operating in HN and although

the process is identical for time stepping in GN , this discussion primarily deals with

HN .

As updating the values of these extra layers of modes (which will henceforth be

referred to as mode copying) is carried out so that modes within the fundamental

domain can be time stepped, these calculations must be made prior to any time

stepping activities. Referring to the order of operations within each time step,

the calculations in (4.42), (4.44) and (4.45) replace the updating of the b−1,m,n

modes in the first step. Regarding the phase shifts of such mode copying oper-

ations, we observe that they are integer multiples of π/2. In (4.18), instead of

explicitly calculating exp
[
i (Jg−1k) · T g−1

]
, we access a predefined array whose el-

ements are 1, i,−1 and −i, i.e. the four distinct phase shifts of multiple π/2. For

instance, instead of calculating exp[i(l+m+n)π/2], we access index (l+m+n) of the

“phase” array, whose entry will be one of [1, i,−1,−i] depending on the outcome

of (l+m+n)mod4. This eliminates a potentially large source of rounding error.

We are simulating in a reduced domain and so only modes within HN (i.e. those

included in (4.36)) are time stepped. Additionally, the reduced set of modes is used

to calculate ln(EM). In the cases where there are multiple fields (III, IV and V),

these fields evolve independently and only interact at the boundaries (i.e. when

carrying out mode copying operations). The individual fields are therefore time

stepped independently in HN , with (4.9)–(4.11) and, subsequently, (4.7) solved for

each field in turn and for each (l,m, n) ∈ HN . The time taken per time step is thus,

in part, dependent on the symmetry class of the field: simulating fields in classes
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IV or V will take approximately three times longer than for classes I or II. When

snapshots of the field are required, the field in HN is ‘unfolded’; the procedure is

briefly sketched. Using (4.39), we calculate modes bl,n,m from bl,m,n to construct

the field in GN . We then use d and d2 of (4.19) and (4.20) respectively to calculate

modes bm,n,l and bn,l,m for all modes in GN , thus reconstructing the field in the first

octant (l,m, n ≥ 0). From here, we calculate bm,−l,n, b−l,−m,n and b−m,l,n using a, a2

and a3 respectively for all modes with l,m, n ≥ 0, giving the field for all modes

with n ≥ 0. Finally, the transformation b2 is used to calculate modes bl,−m,−n from

bl,m,n for modes |l|, |m| ≤ N, 0 ≤ n ≤ N , giving the field in FN . For class III, we

are ‘unfolding’ two fields and in classes IV and V, we unfold all three fields; we

keep only the first field bα1 , as the additional fields are simply transformed (rotated)

versions of the first. We then visualise in the normal fashion.

It must be noted that the parameter values adopted in the full problem are also

adopted for the reduced problems, as the core operations remain the same. This

works both ways and so the reduced code is useful for identifying minimum yet

safe values for parameters. This also makes it easier when verifying that the re-

duced codes are functioning as required by testing against the well-known growth

rates of the full code, though this is, in itself, a difficult task. The first prob-

lem lies in finding seed magnetic fields that belong to each symmetry class. This

can be achieved by starting with a seed field of the form b = (sin z, 0, 0), equiva-

lent to b0,0,1 = −b0,0,−1 = (−i/2, 0, 0), and testing how the symmetries map this

field around for each symmetry class. The same can be done with an initial field

b = (cos z, 0, 0) and by taking linear combinations of these fields and their trans-

formations (by symmetries), initial conditions can be constructed. We construct

initial (seed) fields, each belonging to a distinct symmetry class, and use these in

the full (Hermitian) code to test whether the respective HN codes are functioning
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correctly. These seed fields are given by

I: b = (sin 3z − cos 3y, sin 3x− cos 3z, sin 3y − cos 3x),

II: b = (sin z − cos y, sinx− cos z, sin y − cosx),

III: b = (2 sin z,− sinx,− sin y),

IV: b = (sin 2z, 0,− sin 2x),

V: b = (sin 2z, 0, sin 2x), (4.46)

and are tested against the corresponding HN codes using random seed fields, as

the symmetries imposed in each reduced code restrict the resulting magnetic field

configurations to the specific class. For low Rm and for small simulation times,

the evolution of the fields in (4.46) agrees well with the evolution of fields in the

respective reduced HN simulations. The second difficulty, however, is that the field

evolution seen for a particular symmetry class at a specific Rm in the HN code is

only seen as transient evolution in the full code, before the field settles on a faster

growing, or slower decaying mode. This is to be expected, as the rounding error

can build up sufficiently, over large enough simulation times, to allow the mode

with the highest growth rate to emerge and take over. Owing to the way that

the reduced codes are constructed, however, the symmetry is imposed in the mode

copying operation (as the symmetry class determines the values of these modes),

making it impossible for a mode belonging to another symmetry class to emerge.

Finally, we mention the computational saving achieved by simulating in the fun-

damental domain HN . In the limit of large N , the time spent mode copying is of

O(N2), negligible compared to that spent stepping the modes within, which is of

O(N3). The computational time can naively be seen as reducing to 1/24 of that of

the original (Hermitian) code per field : for classes I and II, the saving is a factor

of 1/24, a factor of 1/12 for III and for IV and V, a factor of 1/8. Resolving fields

for all five classes could reduce computational time to 10/24 of the time taken for

the full problem. In practice, the mode copying costs are not negligible and so the

effective saving is roughly 1/2; still a significant result. This, of course, does not
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account for the wealth of additional information that we are able to obtain from

following five separate branches and that we are easily able to resolve eigenmode

crossings between different symmetry classes.

4.3 Parallelisation in HN

The purpose of parallelising any operation is to reduce a task to a series of smaller

tasks that can be carried out simultaneously by a number of processors or pro-

cessor cores. This serves to reduce the total time taken to complete the given

task. The same features that make the serial ABC dynamo simulations amenable

for numerical analysis, make them amenable for parallelisation. In fully parallel

numerical operations, we have that parts of the problem are assigned to different

computer nodes, each with its own local memory. One difficulty lies in determining

the information required by a node that is stored on another node and how to best

communicate this information. For the ABC dynamos, the local mode interaction

means that if different parts of spectral space are assigned to different nodes, only

information on Fourier modes located at the common edges needs communicating.

This section discusses how numerical simulations carried out in HN are constructed

for parallel processing.

4.3.1 Dividing the calculations

First we consider the parallelisation of the full serial problem. Typically, this is

done by cutting down the cube of Fourier modes into distinct but equally sized

sections. For instance, if |l| ≤ N , then the first section could contain all modes

with −N ≤ l ≤ −N + k − 1, the second section with −N + k ≤ l ≤ −N + 2k − 1

for arbitrary k, with each section assigned to a particular core within a node.

Assuming that the range of l can be divided into roughly equal subranges, this

allows for fairly balanced breakdown of the problem.

This can be done forHN but owing to its fairly irregular shape, as seen in figure 4.3,
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the breakdown into discrete sections is not so straightforward. As the maximum

values of m and n are determined by l, it still seems sensible for the domain to

be divided into ranges of l. Figure 4.5 identifies two possible methods of breaking

HN down into six sections. It is obvious that the breakdown depicted in figure

(a) (b)

Figure 4.5: Breaking up HN into six pieces by (a) dividing l into equal subranges
and (b) dividing l into subranges with (approximately) equal numbers of modes.

4.5(a), where l is divided into equal subranges, will be much less efficient than that

of 4.5(b), where the number of modes in each section is approximately the same.

Programming of method (a), however, is much easier as it simply involves dividing

l by the number of sections required.

In any form of parallel processing, it is not common to achieve a breakdown of a task

into completely independent parts so that no communication is required. The ABC

dynamo problem is no exception; the need to access the value of all neighbouring

modes to time step a specific mode means that no matter how the problem is de-

composed, there will always be some modes whose neighbouring modes are assigned

to another core (potentially on another node). As solving the dynamo problem in-

volves time stepping, communication between nodes will have to occur every time

step and importantly, a given core cannot embark on the calculations of the next

time step before it has received all information from neighbouring cores. Solving

the problem in parallel therefore means that each time step can only be solved as

quickly as it takes the core with the largest workload to complete its task, as a time

step cannot be completed until all cores have finished their individual tasks. Thus,

it is crucial that at least some attempt is made to balance the workload between

cores.
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In attempting to load-balance, we have to consider that array sizes and the number

of nodes to be used has to be known before compiling. This means that the

breakdown of the problem is carried out prior to even writing the programs. For

this purpose, a bash script was written to calculate a reasonable breakdown, write

the program and then compile it for a number of nodes specified by the user. Before

going into details of the script, a few important features of the serial codes must

be mentioned.

Firstly, in any operation that involves cycling through the mode indices, i.e. time

stepping, mode copying, calculating EM, the index that changes the slowest is l, as

l is always incremented in the outermost loop. This is why dividing l into subranges

makes the most sense, as it simply involves carrying out the particular operation

for that core’s starting l index to the finishing l index, these are henceforth referred

to as lmin and lmax respectively. Secondly, on investigating all operations that cycle

through the l indices, we have to identify any that are affected by the breakdown.

Certainly the time stepping of modes is affected, as modes with indices l = lmin

and l = lmax will not have all their neighbours. We find that the mode copying

operations (4.42), (4.44) and (4.45) require modes with index no less than l =

lmin−1 and no more than l = lmax+1; this is already covered by the ‘neighbour

requirement’ of the time stepped modes. When calculating the magnetic energy EM

of the respective sections, no additional information is required. To calculate the

total magnetic energy EM, however, the EM from all sections can be communicated

to a single core for summing and storing. Thirdly, as information from one core

cannot be freely accessed from another core (assuming that they are on different

nodes) because they do not share memory, the required information has to be

communicated and stored locally. The memory assigned to any core will therefore

require modes of l = lmin−1 to lmax+1 to be stored in its assigned memory. Values

of modes in slices l = lmin−1 and lmax+1 are communicated to the core each time

step, though only the slices l = lmin to l = lmax are time stepped on this core; we

discuss this communication in more detail in the next subsection.

The script’s algorithm determines the lmin and lmax for all cores, with this informa-
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tion written into the program at compile time. In the script’s method for balancing,

we consider a slice of constant l of HN ; see figure 4.4. The number of modes in a

given slice is the triangular number of the index plus one (as the indices m and n

start at zero), i.e. (l+1)(l+2)/2; this excludes the additional layers that are filled

by mode copying and we take this as the number of modes time stepped in any

one slice. The last slice, l = N , is set to zero, as discussed for the serial problem,

and so the last slice in which the modes are time stepped is with l = N − 1. In

this slice there are N(N + 1)/2 modes; we do not wish to split a slice of modes

over multiple cores, so we know that Fmax = N(N + 1)/2 is the smallest possible

maximum number of modes that any core will be assigned. As we also have to

specify the number of nodes required, we already know the maximum number of

cores that are available to use; number of nodes multiplied by number of cores per

node. This is identified by pmax. The aim of the script is to assign a section of HN

to every core.

As the process contains nested operations, it is best summarised as a series of

numbered instructions. This script effectively starts with a limit of the number of

modes Flim = Fmax and tests whether integer multiples of Flim can accommodate a

breakdown into pmax parts. If this isn’t possible, Flim is increased by a small fraction

and the process restarts until it is broken down into pmax sections, at which point

it ends as it has succeeded. The steps are:

1. Starting from the largest slice at l = N − 1, the script tests the number of

modes against (at first) Flim = Fmax: if the number of modes is less than Flim,

it moves to the next slice (i.e. l = N − 2) and adds the number of modes in

that slice too. It repeats this process until it reaches a slice (e.g. l = N − k)

where including the next slice (l = N − k− 1) would make the total number

of modes greater than Flim; at this point it has found the range of l for one

core, that is lmax = N−1 and lmin = N−k. This process is repeated, starting

from the next largest unassigned slice, until all slices have been assigned to

a core. There are then p cores with work assigned to them.
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2. The value of p is tested against pmax: if p > pmax, the breakdown is not viable

and step 1 is repeated but with tFlim for t = 2, as the maximum number of

modes. Again, if this fails, t is incremented (by 1) and step 1 is repeated

until p ≤ pmax; the value of p and the breakdown are then stored.

3. Steps 1 and 2 are repeated, starting with Flim = (1 + 0.02q)Fmax for q =

1, . . . , 50. Each repeat produces a value for p with a particular breakdown

associated with it. If at any stage, p = pmax, the routine ends and the

breakdown (values of lmin, lmax for all cores) are stored.

4. Parallel program is written with all lmin and lmax stored in an array. Program

is compiled.

Although the process seems rather convoluted, it is simply cycling through many

possible arrangements but starting with the smallest Flim possible (Fmax). As we

are increasingly Flim slowly (see step 3), when we reach the first breakdown of the

problem with p = pmax, we have automatically reached the best possible breakdown,

whilst keeping Flim as low as possible and distributing the work in the most equal

way over the pmax cores. Of course, owing to the irregular shape of the domain, it is

highly unlikely that the cores will have the same workload, yet there is no foolproof

way of assigning the work in a balanced way. There may be more effective methods

such as giving the same core non-contiguous slices but this presents problems in

communication and with data storage in the actual programs.

The value of 0.02 in step 3 may seem arbitrary, though in fact it was chosen so

that the script did not take too long to find an optimal breakdown. Bash is not

necessarily the most efficient environment for such calculations, but as the script

had to be passed variables (maximum number of nodes), had to write a program and

finally compile it, other programming environments would not have been suitable.

The values of q are also intentional as step 3 was intended to try Flim = Fmax to

Flim = 2Fmax in as small steps as possible, thus incrementing by 0.02Fmax on every

repeat. Setting the increment to 0.01Fmax was tested but took much longer and

did not achieve better domain breakdowns than 0.02.
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The use of this script is limited to high Rm simulations, where the resolution N

is large. As the parallel codes are intended for use in this regime, then this is

less of an issue, though there are still situations where no solution with p = pmax

can be found. In these cases, the breakdown with the highest p is chosen, as this

is generally the best solution. Typically this occurs when N is not large enough

compared to pmax, and we rerun the script but with a lower number of nodes (i.e.

lower pmax) until a solution with p = pmax is found.

4.3.2 Communicating between nodes

Now that the method for optimal breakdown of HN has been discussed, we can

move on to what information is communicated and how. We wish only to commu-

nicate necessary information, as passing extraneous information may serve to slow

down the simulations. An important feature of parallel processing to consider is

that at the initialisation of a (parallel) simulation, all cores involved are assigned

a rank, simply the number of the core. If we have pmax cores, they are numbered

0 to pmax − 1. For ease of operation, we assign neighbouring sections of HN to

neighbouring cores. That is to say, if a core of rank p has lmax = k for some k, then

the core with rank p+ 1 will have lmin = k + 1. As parallel codes use the same set

of instructions, the only way to have them perform different operations is to use

locally defined variables; the rank p, lmin and lmax are all locally defined (i.e. the

variable has the same name on every core but not the same value). This is the key

to communication in parallel processing environments, as the same communication

command can be used for all cores.

We first consider communicating neighbouring modes so that time stepping and

mode copying are possible. In the discussion above, we know that each core has a

distinct lmin and lmax, though the arrays are defined for l = lmin − 1 to l = lmax + 1

to store the extra layers of modes. We conceptualise the cores as being arranged in

a linear fashion and with ranks of ascending order. Thus for a core of rank p, we

consider rank p− 1 to be to the left and rank p+ 1 to be to the right ; this allows



142 CHAPTER 4. NUMERICAL METHODS

the process to be more easily described.

It is easier to deal with communication in one direction at a time and so passing

left will be discussed first. As the communication call has to deal with the mul-

tiple cores, a ‘send’ followed by a ‘receive’ is required, though both are covered

by the ‘send and receive’ command, which avoids the blocking effect of the indi-

vidual commands; a core can place a receive call without waiting for confirmation

(i.e. without being ‘blocked’ from carrying out other operations until receiving

confirmation) that the data has been successfully received by another core. To

summarise, a core p sends slice l = lmin to core p − 1. The core then receives

data from core p + 1 and stores it in slice l = lmax + 1. It must be noted that, as

core 0 has no core to its left, it does not pass any data during this step, but only

receives from core 1. The process is shown in figure 4.6: the green arrows represent

passing data to the left, with the solid green modes being transmitted (sent) and

the hashed green modes being received.

Passing to the right occurs in same fashion. Each core p places a send and receive

call, sending slice l = lmax to core p + 1 and then receiving data from core p − 1

and storing it in slice l = lmin − 1. This process is summarised by the blue arrows,

with solid blue modes the data sent by a core and the hashed blue modes the data

received by the core. Clearly, core pmax − 1 does not have a neighbour to the right

and so only places a receive call (this is managed through an ‘if’ condition, testing

for rank value). In figure 4.6, we also see the dashed outline, which indicates the

full extent of the storage arrays. The only modes to be time stepped in each core

are identified by those contained within the thick black border, though can also be

identified as those modes with solid colour (no hashing).

The process described above outlines the ‘mode communication’, which occurs once

per time step. The process, however, is made more complicated by the irregular

shape of HN . Fortran is not particularly efficient at handling irregular arrays

and so we are limited to defining regular (cuboid) arrays with lmin − 1 ≤ l ≤

lmax + 1 , 0 ≤ m ≤ lmax + 1, 0 ≤ n ≤ lmax + 1. Approximately half the space in the

arrays is unused, as n ≤ m in HN and so to communicate the whole slice would
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Figure 4.6: Visualisation of the communication process. First all cores pass blmin,m,n

to cores one rank lower (left), then receive the same data from the core with one
rank higher and store it in blmax+1,m,n. All cores then pass blmax,m,n to cores one
rank higher (right), then receive same data from the core with one rank lower and
store it in blmin−1,m,n. Only solid coloured and white modes are time stepped.

be incredibly wasteful. A method involving pointers was considered but could not

be implemented due to its ever increasing complexity, as it would involve pointers

pointing to pointers and so forth. The low-tech method implemented involved

copying only the mode values to be sent from the slice into a vector of the correct

length. This vector is sent and then copied (or unpacked) into the correct slice

by the receiving core. In testing this method against communicating the original

slice (with extraneous zero modes), it was found to be faster, despite the additional

copying operations that it entails.

As the mode copying operation, for a given core, requires modes with index l no

less than lmin − 1 and no greater than lmax + 1, then no further mode communi-

cation is required, other than that detailed above. To carry out mode copying,

therefore, the communication described above must already have occurred, placing

this communication as the first operation in a time step, immediately followed by

the mode copying. The order of operations is discussed in more detail along with
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the specifics of the codes used (see next subsection).

The other communication that is carried out every time step is that of the indi-

vidually calculated EM. Unlike the mode communication, which involves each core

communicating data with its neighbours, reconstructing EM simply involves all in-

dividual EM (once calculated) being sent to one core. Once the script, described

in the last subsection, finds the optimal breakdown, it assigns the section of HN

with lmax = N − 1 to the core with the highest rank, and then works in descending

order, finally assigning the last section to core rank 0. Because of this, core 0 is

always (as far as testing has identified) assigned less work than the core with the

maximum workload. For this reason, core 0 is assigned the task of putting together

the EM with all other cores placing a ‘send’ call to core 0 and with core 0 receiving

pmax−1 values. Once summed, this is then redistributed to all cores; this is impor-

tant as the value of ln(EM) is tested against minimum and maximum values; if it

is too small or large, all arrays values are resized by a fixed factor and this has to

be carried out for all modes stored on all cores, thus requiring every core to know

the total EM. This ‘EM communication’ has to occur after the respective EM are

calculated.

4.3.3 Fortran MPI codes: additional information

We briefly provide some additional details of the parallel code. The parallel codes

were adapted from the serial HN Fortran codes to use the MPI 1.3 implementa-

tion on the University of Exeter supercomputer, Zen. Zen has 12 cores per node

(two hex-core processors) with these 12 cores sharing random access memory. The

implementation of only MPI in these codes is efficient at communication between

nodes and the cores within them, though it does not take advantage of the shared

memory in a given node and instead assigns distinct portions of the memory to

each core. This means that cores within a node still have to communicate informa-

tion. OpenMP, however, is designed to allow all cores, within a node, to access the

whole of the shared memory, removing the need for communication. The weakness
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of OpenMP is that it does not support inter-node communication and so can only

be implemented in simulations on a single node. A hybrid of the two systems can

be used, so that OpenMP avoids communication within a node and MPI allows

communication between nodes; this would have been ideal for use the parallel HN

codes, though the actual speed-up may have arguably been marginal. The reason

behind this is that a time step can only begin once all cores have the required

data and there would still be a minimum of 1 or 2 cores per node that required

inter-node communication to access this data. As the time step is no faster than

the slowest core, every (non-communicating) core would still have to wait for these

communication operations to complete.

In terms of the one-off operations such as snapshots of the field, these were all

handled by core 0. Rather than having each core write the respective sections to a

single file, all cores send their respective sections of HN back to core 0, which then

reconstructs HN in a dynamically allocated array and finally writes the data to a

file. As Zen has a maximum limit for simulation time, it is necessary to store all

relevant information at the end of a given run, should the magnetic field need more

time to evolve. This requires saving not only b (as with the snapshot) but also

Λj,Λj−1 and Λj−2, with each of these stored in a separate file. As the fundamental

domain for large Rm can take up large amounts of memory, each of these variables is

dealt with one at a time: data is received from all cores and stored in a dynamically

allocated array, the data is then written to file and the array is deallocated before

allocating a new array for the next variable. In restarting the simulation with the

stored data, the process is reversed with core 0 sending the sections of each variable

to the correct core, in turn.

For completeness, the order of a single time step in the parallel code is given below:

• All cores (except rank 0) pack modes in slice lmin into vector arrays. All cores

except pmax − 1 (highest rank) pack modes in slice lmax into vector arrays.

• All cores (except 0) send lmin vector to the core on their left (i.e. to core with

one rank lower). All cores (except pmax − 1) receive their respective vectors
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and unpack into position of slice lmax + 1. The vector unpacking procedure

mirrors the packing procedure.

• All cores (except pmax − 1) send lmax vector to their right (one rank higher).

All cores (except 0) receive their respective vectors and unpack into position

of slice lmin − 1.

• Each core carries out the mode copying operation for l = lmin to l = lmax:

external mode layers are calculated by (4.42), (4.44) or (4.45) depending on

the symmetry class.

• Each core time steps modes from l = lmin to l = lmax

• Each core calculates a local E2
M by taking the sum of the magnitudes of modes

in slices lmin to lmax.

• All cores apart from 0 send their local E2
M to core 0; core 0 receives the local

E2
M in turn. Once all have been received, it adds them all to its own local

E2
M, takes the square root and sends the global (i.e. for HN) EM to all other

cores in turn; all other cores place a receive call and store this value.

• The global ln(EM) is tested against minimum and maximum cut-off values

on all cores. If ln(EM) is smaller than the lower cut-off or larger than the

upper cut-off, all array values in b, Λj, Λj−1 and Λj−2 are rescaled by a fixed

quantity.

The numerical scheme adopted for time stepping the modes remains the same as

in the serial codes. Thus the memory allocated to each core stores its respective

piece of b, Λj, Λj−1 and Λj−2. In the initialisation of the serial simulations in HN ,

random initial conditions are used, as the evolution of the field is determined by

the given symmetry class. The same is true of the parallel codes, with each piece

being filled with random noise by its respective core. As typical in the serial codes,

the field snapshots in the parallel code are taken after the last time step.

A brief discussion on the performance of the parallel codes is necessary. These

codes were tested against the serial code results for Rm = 1000 and 2000. For all
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(a) (b)

Figure 4.7: Test runs of parallel code for Rm = 5×103, 104 and 2×104 identifying
(a) average time per step and (b) strong scaling efficiency (effs) as a percentage.

five symmetry classes, results were found to agree to within the required precision

(three significant figures) at both values of Rm, even when using different random

initial conditions, though long run times facilitated the comparison.

Although code optimisation isn’t necessarily a priority, a brief analysis of scalability

has been undertaken with results given in figure 4.7. With strong scaling efficiency,

the assumption is that the problem size (in our case total number of modes) stays

the same while the number of processing units is increased; it is calculated by

effs = t1/(ptp), (4.47)

where t1 is the total time taken for one processing unit and tp is the time taken for p

processing units. Alternatively, weak scaling efficiency, effw = (t1/tp), assumes that

the workload per processing unit is constant but the problem size increases; this

is not appropriate in our case. Average time per step and strong scaling efficiency

(as a percentage), are both found for three values of Rm: 5000, 10000 and 20000.

Although t1 and tp typically represent total time using 1 and p processing units

respectively, we use average time per step, and define the number of processing

units as the number of nodes.

The expected p−1 decay profile of scaling is seen (figure 4.7(a)) but the scaling
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efficiency reveals more information. With Rm = 5×103, we see that the efficiency

does not drop significantly until the problem is spread over 5 nodes. Contrariwise,

with Rm = 104, efficiency drops significantly for each extra node used but then

slows down and actually increases for greater than 5 nodes. This suggests that

there can be significant differences in efficiency of particular breakdowns of HN ,

owing to the way that the script produces the decompositions. The increase for

Rm = 104 at 6 and 7 nodes is interesting, though without further analysis is not

yet understood. With Rm = 2×104, however, the scaling efficiency decrease is

approximately linear, which is more expected in these types of parallel problems.

It may be the case, especially with breakdowns over many cores, that the CPU

cache hit-rate is improved; the numerical operations are reduced in size and so can

be carried out in a CPU’s own memory cache more often, reducing the frequency

of time-consuming memory-access requests. It is also possible that these results

also reflect varying performance of the various nodes, despite being apparently

physically identical.

Ideally, a fine balance would be struck between spreading the workload and the

amount of communication carried out, as with parallelising any such problem.

Clearly, communication is costly but spreading the work over more cores counter-

acts this cost. The object of this thesis was never to optimise the problem for such

supercomputers, but given more time and in the effort to obtain more results, a

more detailed analysis would be appropriate.

Finally, it should be noted that the parallel code was used in determining growth

rates for Rm ≥ 3000 for all symmetry classes. These results are given, in combina-

tion with serial results, in chapter 5.

4.4 The Arnoldi eigensolver

In the introduction, it was made clear that the kinematic dynamo problem has

well-defined eigenvalues. Through time stepping, these eigenvalues are manifested

in the exponential growth or decay of the magnetic field and it was explained,
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earlier in the chapter, how the eigenvalues are produced using a time-series of the

total magnetic energy EM. It is also possible to solve this problem through the

use of an eigensolver, that is a routine designed to calculate the eigenvalues and

corresponding eigenvectors. This section describes how we construct the reduced

1:1:1 ABC dynamo problem for use with a particular eigensolver.

4.4.1 Formulation of eigenproblem

We consider the dynamo problem as a matrix eigenvalue system in the form

λb̃ = −u · ∇b̃+ b̃ · ∇u+ η∇2b̃ ≡ Ab̃, (4.48)

where we have replaced b using (4.3) in (1.13). If it is possible to describe the

action of the terms on the right-hand side of (1.13) as the action of a matrix A on

b̃, then the eigenvalues of the system are eigenvalues of A, with distinct eigenvalues

for each value of Rm = η−1.

We aim to use the symmetries and so the reduced domains for this problem. As

will be explained when the particular method is introduced, Hermitian symmetry

cannot be used, thus requiring the problem to be solved in GN . Dealing with this

problem in Fourier space, b̃ is the vector containing all Fourier modes, and we know

that GN contains approximately N3/24 modes. In addition, when constructing b̃ as

a vector containing all modes, the components of each mode (X̃l,m,n, Ỹl,m,n, Z̃l,m,n)

must be given individually, and so the vector b̃ for a given problem is approxi-

mately M = N3/8 ∼ O(N3) in length. The matrix A is of size M×M , therefore

making it difficult to construct explicitly, even for small N . We are already aware,

however, that a mode couples to only itself and six neighbours from the flow u; A

must only contain 7M non-zero entries. This makes A very sparse and incredibly

impractical to construct and store, especially for large Rm. The use of an Arnoldi

iterative method is therefore appropriate asA need never be explicitly given. As an

added advantage, the method is also most effective at finding eigenvalues of sparse

matrices such as ours, though it can still be used for densely-populated matrices.
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We choose to implement the Arnoldi Package (ARPACK), available within the

NAG scientific library, which solves problems of the form

Aw = λw, (4.49)

using an Arnoldi (iterative) method. The user code is required to return Aw when

the ARPACK subroutine supplies any vector w. Ideally the user should also be

able to supply (A− σ)−1w when the routine supplies w and a shift σ, but in our

problem it is not realistic to invert the resulting linear system because of its size.

Shifts can improve the rate of convergence and are discussed in the next subsection.

The routine can determine eigenvalues λ of greatest or least magnitude, real part,

or imaginary part; we require greatest real part.

4.4.2 Implicitly Restarted Arnoldi iteration method

The process by which the ARPACK solver estimates the eigenvalues is through

the Implicitly Restarted Arnoldi iteration method; we will summarise the process

by which it locates eigenvalues of A. Information in this subsection is an amalga-

mation of material from different sources, but primarily from Trefethen and Bau

(1997). The ARPACK user’s guide (Lehoucq et al., 1998) also provides substan-

tial background on Arnoldi and other methods, with additional information on

Implicitly Restarted schemes taken from Saad (2011).

One of the most well-known methods for finding the eigenvalue of a matrix A with

largest magnitude is the power iteration method. Given a vector w0, which can be

randomly generated, a single iteration of the power method is described by

wk+1 =
Awk

‖Awk‖
, (4.50)

that is by applying the matrix A to w and then normalising. Assuming that A has

an eigenvalue with magnitude greater than all others and that at least one element

of w0 in the direction of the dominant eigenvector is non-zero, then the method will
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typically allow w to converge to the dominant eigenvector w with corresponding

dominant eigenvalue λ1. There are additional conditions for convergence, however

they are not relevant in this discussion. The power iteration algorithm is incredibly

simple though finds only the most dominant eigenvalue. It is also slow to converge,

especially if the two eigenvalues of greatest magnitude are close in size, and can be

computationally costly for finding just one eigenvalue. An extension of this method

is the Krylov subspace method, which takes advantage of the fact that the power

iteration method generates all successive vectors Ajw in the process, without ever

specifying A explicitly. Rather than discarding these vectors, which often retain

useful information about other eigenvector directions, the Krylov method considers

a linear subspace of these vectors, given by

Kk = span{w,Aw,A2w, . . . ,Ak−1w}. (4.51)

A Krylov matrix Kk is defined as a k×n matrix with the vectors of the Krylov

subspace as its columns. These vectors, and thus matrix columns, are not orthog-

onal in their definition. As the power method often converges on the dominant

eigenvector (i.e. for successively larger k, the last column of the Krylov matrix

converges to the eigenvector), the vectors in Kk may tend closer to linear depen-

dence and so a scheme that orthogonalises all vectors (or as many as possible) in

Kk can be utilised, if multiple eigenvectors and eigenvalues are sought.

Returning to the matrix A; a QR decomposition is always possible such that

A = QR, where Q is an orthogonal matrix (whose columns form an orthonormal

basis for the space of column vectors of A) and R is an upper triangular matrix

whose diagonal elements are eigenvalues of A. Stable algorithms exist to find such

decompositions, but such a breakdown relies on A being real, that is A = A∗,

where ∗ denotes the conjugate. For A ∈ Cn×n, Q is instead unitary, satisfying

QHQ = I, where H denotes the conjugate transpose. One method is described by

the Gram-Schmidt process, which uses projections on successive vectors in a vector

space; this is akin to transforming A one column at a time until every column is
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orthonormal. The projection is defined by

projc(d) =
〈d, c〉
〈c, c〉

c, (4.52)

where 〈·, ·〉 is an inner product. The initial step is setting c1 = d1, then subse-

quently, c2 = d2 − projc1(d2) and so forth, with the kth term as

ck = dk −
k−1∑
i=1

projci(dk). (4.53)

It is fairly evident that this produces a QR decomposition, with R being upper

triangular. The advantage is that at step k, there are k orthogonalised vectors,

c1, . . . , ck, thus the partially complete process can yield eigenvalue and eigenvector

pairs. This is a necessary feature, as A is n×n, with n� k. The process, however,

is numerically unstable owing to the build up of rounding error, which is unavoid-

able. An adaptation of this method is Arnoldi iteration, which uses a stabilised

(modified) form of the Gram-Schmidt algorithm though does not produce a QR

decomposition but a Hessenberg reduction (see below). The algorithm is given

below.

• take arbitrary w, calculate q1 = w/‖w‖

• loop over i from 1 to k

+ calculate ci = Aqi

+ loop over j from 1 to i

– calculate hj,i = q∗jci

– calculate ci = ci − hj,iqj

+ calculate hi+1,i = ‖ci‖

+ calculate qi+1 = ci/hi+1,i

After k steps, the algorithm has produced q1, q2, . . . , qk. It is clear that this is

similar to the Gram-Schmidt process, as each vector qj is dealt with in turn and
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all previous vectors q1 to qj−1 are projected out through ci = ci − hj,iqj. The

process differs from the Gram-Schmidt method, however, as each successive vector

is formed from applyingA to the previous one, and so the vectors c1, . . . , ck form an

orthonormal basis of the Krylov subspace Kk, instead of A. As this is based on the

Gram-Schmidt algorithm, the process can be stopped at any point to provide partial

estimates of the eigenvectors and their corresponding eigenvalues. In systems where

the matrix A is very large, the full eigenvalue decomposition is not necessarily

possible and it is important to be able to estimate a subset of eigenvalues with a

particular property and thus partial orthogonalisation becomes very valuable for

such cases. Indeed this is the case for our dynamo eigenvalue problem for which

we wish to approximate at most 10 eigenvalues.

From the algorithm above, the terms hi,j have not yet been discussed. These terms

form elements of the Hessenberg matrix, which describe the projections of A onto

Kk. We have

Hk = QH
kAQk, (4.54)

with Qk as the matrix whose columns are q1, . . . , qk. The Hessenberg matrix

is similar to a triangular matrix, except entries in the super-diagonal (for lower

Hessenberg) or sub-diagonal (for upper Hessenberg) are non-zero. As the Gram-

Schmidt process reduces a matrix A to a QR form, the Arnoldi iteration reduces

a matrix to the form (4.54). The q1, . . . , qk generated by this process are the

orthonormal bases of the Krylov subspace Kk and so in a QR reduction of Kk, we

would find that

Kk = QkRk. (4.55)

In the Arnoldi iteration, Kk and Rk never have to be explicitly constructed. It is

clear from the algorithm that Qk+1 can be generated by finding qk+1 and adding

it as a column to the end of Qk. The value of qk+1 is dependent on the values of

all previous qi, making it a (k+1)-step recurrence relation with

AQk = Qk+1H̃k, (4.56)
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where H̃k is the (k+ 1)×k Hessenberg matrix. As H is a projection of the matrix

A onto Kk, the required eigenvector information is contained within Hk.

The algorithm above describes a single (k-step) Arnoldi iteration (i runs from 1 to

k), after which we have an Arnoldi factorisation given by

AQk = QkHk + cke
ᵀ
k, (4.57)

with QH
k ck = 0 and ek as the kth basis vector. The parameter k is chosen by the

user dependent on the application and conditions of convergence of the particular

problem being solved. The eigenvalues of Hk are referred to as the Ritz values and

are estimates of the first k eigenvalues of A. As the Krylov subspace is formed

from successive applications of A to w and Hk is the orthogonal projection of A

onto Kk, it is not unreasonable to expect that eigenvalues found are ‘extreme’ in

some aspect (owing to powers of A), i.e. those of largest magnitude or largest real

part. The Ritz values can be calculated through typical methods such as the QR

algorithm, which computes a QR decomposition of Hk.

As the Ritz values converge to a subset of eigenvalues of A, the quantity ‖ck‖

becomes increasingly small; we therefore want k to be large enough to allow for

good approximations of the eigenvalues of A. For large k, this quickly becomes

memory-intensive, as all qi need to be stored. Furthermore, as each Arnoldi vector

qi depends on all prior vectors q1 to qi−1, there are O(nk) calculations to be carried

out, becoming increasingly costly for larger k. The solution lies in restarting the

whole process, though keeping sufficient Arnoldi vectors from the previous iteration,

and thus retaining valuable eigenvalue information. On restarting, an implicit shift

is also introduced to improve the convergence of the procedure on the desired

eigenvalues by filtering out ‘unwanted’ eigenvalues. In ARPACK, this is achieved

through the implementation of the truncated implicitly shifted QR algorithm or

Francis algorithm, the details of which we will not discuss.

Say we want to find r eigenvalues of greatest magnitude λ1, . . . , λr of A, with

r < k. After an Arnoldi iteration, the k Ritz values of Hk are calculated and can
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be ordered by the required property, in this case descending order of magnitude.

The first r Ritz values are those that we want to converge and the remaining

p = k− r values are used to calculate the implicit shifts in the shifted QR process.

For a sample of how the shifted QR process operates, the single shift QR process

for Hk ∈ Rn×n is outlined in the algorithm below, which is taken from Golub and

Van Loan (1996).

• set H(1) = Hk

• loop over i from 1 to p

+ calculate QR reduction of shifted Hessenberg: H(i)−µiI = V iRi

+ calculate H(i+1) = RiV i + µiI

• set H+ = H(p+1)

To improve convergence on the wanted eigenvalues, we set the shifts µi as the

unwanted Ritz values, which slows convergence on the undesired eigenvalues of

A. Of course, for our particular problem, Hk is complex, and so a double shift is

used, which acts as two consecutive single shifts. Instead of the Ritz values, the two

eigenvalues used for the double shift are calculated from the trailing 2×2 submatrix

of H(i). The above algorithm is computationally expensive and so implicit shifting

algorithms, such as the Francis algorithm, are adopted instead. Regardless of

the method used, we obtain H+ and V = V 1V 2 · · ·V p, which are related by

H+
k = V HHkV ; we use the information in these to restart the Arnoldi process.

Thus after the shifts, our Arnoldi factorisation (4.57) becomes

AQ+
k = Q+

kH
+
k + cke

ᵀ
kV , (4.58)

with Q+
k = QkV . Owing to the shifts, it is the case that (eᵀkV )i is zero-valued for

i = 1, . . . , r − 1 and therefore when the first r columns of both sides of (4.58) are

equated, we have a new r-step Arnoldi factorisation, given by

AQ+
r = Q+

rH
+
r + c+r e

ᵀ
r . (4.59)
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Having kept the information of the r useful Ritz values, the next iteration is carried

out by extending this r-step factorisation to a k-step using the Arnoldi iteration

algorithm for i = 1, . . . , p, with the process of implicit shifting and restarting

repeated until the desired number of eigenvalues with the required property have

converged. The obvious advantage of the restarts is that no more than k Arnoldi

vectors need to be stored, vastly reducing the memory constraints of the Arnoldi

process. The implicit shifts, although computationally costly (for instance the

Francis algorithm requires O(10n2) operations; see Golub and Van Loan, 1996),

can drastically improve convergence.

4.4.3 Calculating eigenvalues of the kinematic 1:1:1 ABC

dynamo

With an idea of how the ARPACK routines calculate eigenvalues, we now return to

the problem at hand. Before any calculations actually take place, the parameters

need to be set up in order to solve the problem correctly. The first routine defines

the size of the problem, as the length of the vector w is defined, and is calculated

from the number of components in GN . In initial tests, the vector w contained all

Fourier mode components in GN and so the length corresponded to the number of

modes in GN multiplied by three. However, the zero-divergence condition (1.3), in

its spectral form, can be rearranged to

X̃l,m,n = −l−1(mỸl,m,n + nZ̃l,m,n), (4.60)

and as there are two independent components, only these two components per mode

need to be stored (the third can always be reconstructed given the other two).

Additional mode restrictions allow w to be further shortened and are discussed

later in this section. The size of b̃, along with the number of Arnoldi basis vectors

to use in the Arnoldi iteration and the number of eigenvalues to be found, are

entered into the first routine “F12ANF”. Next, options are set to indicate the type

of problem being solved. The first option is the type of eigenvalues found, which
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for this problem is those with largest real part. Secondly, the problem being solved

is set to ‘regular’, thus solving a problem of the type Aλ = λw. Thirdly, as we

wish to extract the eigenvectors also, we enable the option for calculation of Ritz

vectors. These choices are entered into routine “F12ARF”. A further option is the

number of Arnoldi iterations that should be carried out – if the routine fails to

converge on eigenvalues, then after a predefined number of Arnoldi iterations the

routine exits; the default number is 300.

Once the problem is set up, the routine “F12APF”, which carries out the Arnoldi

iterations, can be run. On first use, it provides us with the vector w that is to store

the components of modes in GN , though initially it is filled with random values;

this is similar to adopting random initial conditions in the time stepping routines.

The term Aw, the right hand side of (4.48), then needs to be evaluated.

After ARPACK has provided the vector w, the following steps are implemented:

• A routine ‘unpacks’ w by placing successive elements of the vector as mag-

netic field mode components b̃l,m,n for modes in the fundamental domain

GN (4.31). For representations III, IV and V the various fields (b̃j)l,m,n are

unpacked in turn. The process is detailed later in this section.

• Modes that neighbour GN are filled in as detailed in section 4.2.2 according

to the representation in use. This employs the same mode copying routines

as in the (GN) time stepping codes.

• Ab̃, the right-hand side of (4.48), is now evaluated. Note that this is almost

the same as time stepping the time evolution problem (1.13) and only the

diffusion terms are treated differently, otherwise the routine used is from the

time stepping code. The results for the magnetic field b̃ for I and II, or fields

b̃j for III, IV and V are stored.

• These fields are now ‘packed’, mode by mode, back into a vector w, precisely

the inverse of the first step, and this is returned to the ARPACK routine.

The order that modes are unpacked from w to b̃ is fairly arbitrary, though must be
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consistent within each simulation. We choose to unpack all ‘central modes’ first,

followed consecutively by sets of modes that lie on the edge of GN (those that do

not have all neighbours). Mode components are unpacked in turn, followed by

individual fields for the same mode. For instance in class III, Ỹ
(1)
l,m,n = wj, Z̃

(1)
l,m,n =

wj+1, Ỹ
(2)
l,m,n = wj+2 and Z̃

(2)
l,m,n = wj+3, where

(
b̃
III

1

)
l,m,n

=
(
X̃

(1)
l,m,n, Ỹ

(1)
l,m,n, Z̃

(1)
l,m,n

)
and

(
b̃
III

2

)
l,m,n

=
(
X̃

(2)
l,m,n, Ỹ

(2)
l,m,n, Z̃

(2)
l,m,n

)
. Regardless of how values are unpacked

from w, the important step is to pack them back into w in exactly the same order

that they are unpacked; this ensures that we return Aw when given w.

At the beginning of the section, the issue of being unable to exploit Hermitian

symmetry in the eigenproblem was raised; we now discuss this in more detail. It

is the case that any real function is Hermitian symmetric; the Fourier transform

of a real function is a Hermitian function. As our magnetic field is real, it has the

Hermitian symmetry property given in (4.5), which allows half of the frequency

domain FN to be used to simulate the full field, as has been done in previous

studies. As already explained in section 4.1, this requires an additional mode

copying operation, given by (4.12), involving complex conjugation, which is a non-

linear operation.

In numerically resolving magnetic fields driven by the 1:1:1 ABC flow, we also

have the flow’s 24 symmetries to consider. As described earlier in the chapter, the

full frequency domain FN can be reduced to GN . As GN is a reduction from the

full domain FN , and not the half-domain, there is no assumption that the field

is Hermitian symmetric and so the mode copying operations (4.33)–(4.35) do not

involve complex conjugation; they are all linear operations. This means that the

map w → Aw in GN is linear and so suitable for the Implicitly Restarted Arnoldi

method, as linearity is a prerequisite for the use of such methods. The fundamental

domain HN , however, is found by using all 24 symmetries to reduce the frequency

half-domain; each symmetry maps a general mode bl,m,n to two distinct modes in

FN , one map involving the symmetry and the other map involving the symmetry

composed with (4.5). This results in mode copying operations (4.42), (4.44) and

(4.45), some of which involve a complex conjugation operation. The map w → Aw
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inHN is therefore a non-linear map and so we are unable to use the Arnoldi method

in this reduced domain. We therefore calculate eigenvalues in GN , the fundamental

domain without Hermitian symmetry.

An important difference concerns the degrees of freedom of the magnetic field in

Fourier space. Focusing on GN for the sake of argument, the symmetries for a given

representation may require certain modes on the boundary of GN to be zero, or to

be related to other modes. For the purposes of time stepping this does not seem

to be important, as simulated fields very rarely experience symmetry-breaking (i.e.

loss of imposed symmetry) and so these conditions are not imposed explicitly on the

field in our simulations. It is suspected, however, that spurious symmetry-breaking

fields found in certain heavily decaying regimes may be the result of excess degrees

of freedom in the simulations (see discussion based around figure 4.10(a) in section

4.5). Initially these conditions were also not imposed on magnetic fields for the

Arnoldi solver, but it was found that the routine often converged to a spurious

eigenvalue and corresponding eigenvector (in which the symmetries are broken) or,

more frequently, was unable to converge at all. This serious problem led to the

formulation of restrictions on Fourier mode values, of which the calculations are

now briefly outlined.

The vector w that holds all the magnetic field information is therefore required

to contain precisely the correct number of degrees of freedom, without duplication

or zeros. To do this we start by exploiting ∇ · b̃ = 0 to reduce the number of

components per mode to two instead of three through (4.60), as already described,

and so only store Ỹl,m,n and Z̃l,m,n. The next step is to consider modes on the

boundary of GN which are mapped to themselves or to other boundary modes

under symmetries, leading to either duplicated information, or modes forced to

be zero. As an example, we take the mode b̃l,0,0 in classes I and II. The relevant

transformations here are b, b2 and b3, as they all map x → x, leaving the wave

number (l, 0, 0) unchanged. Thus these three transformations map b̃l,0,0 to itself.
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If we recall that b(x) = (x− π/2, π/2− z, y + π/2), then we have that

b̃l,0,0 = eilπ/2Mα(b3)Jbb̃l,0,0. (4.61)

After breaking it down to components of the field, we then have

X̃α
l,0,0 = eilπ/2Mα(b3)X̃α

l,0,0, Ỹ α
l,0,0 = −eilπ/2Mα(b3)Z̃α

l,0,0, Z̃α
l,0,0 = eilπ/2Mα(b3)Ỹ α

l,0,0.

(4.62)

The divergence-free condition implies that ilX̃l,0,0 + 0Ỹl,0,0 + 0Z̃l,0,0 = 0 and thus

X̃ I
l,0,0 = X̃ II

l,0,0 = 0. As Ỹl,0,0 maps to Z̃l,0,0 and vice-versa, we find that

Ỹ α
l,0,0 = −eilπMα(b2)Ỹ α

l,0,0, Z̃α
l,0,0 = −eilπMα(b2)Z̃α

l,0,0, (4.63)

as Mα(b3)Mα(b3) = Mα(b2). Since Mα(b2) = 1 for I and II, we are left with

the conclusion that either eilπ = −1, or both Ỹ α
l,0,0 = Z̃α

l,0,0 = 0. We know that

e(2k−1)iπ/2 = −1 for k ∈ Z and so

Ỹ I
2k,0,0 = Ỹ II

2k,0,0 = Z̃I
2k,0,0 = Z̃II

2k,0,0 = 0. (4.64)

Finally for Ỹ α
2k−1,0,0 and Z̃α

2k−1,0,0, we recall the relationships in (4.62) and use the

fact that e(2k−1)iπ/2 = (−1)ki to produce

Z̃I
2k−1,0,0 = (−1)k+1iỸ I

2k−1,0,0, Z̃II
2k−1,0,0 = (−1)kiỸ II

2k−1,0,0. (4.65)

This provides a taste of how mode restrictions are calculated. The picture is a

little more complicated for classes III, IV and V, as there are multiple fields being

mapped to each other through the irreducible representations. This often, but not

always, allows more freedom for components (i.e. fewer forced to be zero) of edge

modes in these classes. Similar calculations were made for modes b̃l,l,l which map

to themselves through d and d2. Components that are forced to be zero by the

symmetries are not stored in w, reducing the number of components needed.

Additionally, pairs of Fourier modes within GN that are related by the symmetries
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present surplus degrees of freedom and allow for symmetry breaking (and thus

spurious eigenvalues) over sufficiently long calculations due to rounding error. We

aim to make it so that every component of every mode in w cannot be mapped to

another component through the symmetries, ergo removing all degrees of freedom.

An example would be modes b̃l,l,n and b̃l,m,l with m = n, which are related through

d and d2. The solution is to simply remove one of these sets from the modes stored

in w; b̃l,m,l is chosen for removal. The same applies to b̃l,0,n and b̃l,m,0 with m = n,

and so we remove b̃l,0,n. Figure 4.8 visualises the different types of modes for

unspecified l; removed modes are hashed, coloured modes have imposed symmetry

restrictions and white modes are unrestricted by the symmetries. After the removal

b̂l,0,l
b̂l,l,l

b̂l,0,0 b̂l,l,0

b̂l,m,l

b̂l,0,n b̂l,l,n

b̂l,m,0

Central modes

Figure 4.8: Cross-section of GN , for general l, displaying different mode types.
Hashed modes are removed, coloured modes are restricted and white modes are
unrestricted.

of all mode components that are either zero or that can be calculated from other

components within GN , w is left with only the minimal set of components to solve

the problem, and so zero degrees of freedom. On unpacking w to b̃, the removed

modes and components are reconstructed from the remaining modes, in order to

have all values required to carry out the operation Aw. Obviously, the length of

w differs in each symmetry class, owing to different numbers of fields and now,

additionally, differing numbers of restricted mode components. The full summary
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of all restrictions of mode values is given in Appendix B, along with the length of

the vector w for a given N .

In defining the length of w, which is a different function of N for each class I–V,

the ‘safe’ values of N were taken from the time stepping procedures. The number

of Arnoldi (basis) vectors (nbv), however, was determined at simulation time. The

documentation for this suite of routines sets a lower bound for nbv as 2nev + 1,

where nev is the number of eigenvectors sought. Clearly, it is in our interest to

keep nbv as low as possible, in order to keep computing time low for the Arnoldi

iterations. However, finding a minimum value that is still large enough for the

routine to converge on all required eigenvalues is a significant difficulty and will be

discussed in the next section.

4.5 Comparison of time stepping and Arnoldi solver

In this section, we draw a comparison between the time stepping methods and the

use of the Arnoldi solver in locating the eigenvalues of the respective symmetry

classes. For this purpose, Rm = 10 and 100 were chosen to demonstrate the

major differences between these methods, as these values are relatively small. To

facilitate the comparison between these very different methods, the only parameter

common to both, the resolution, has been standardised as N = 2R
1/2
m , as the

resolution required scales as R
1/2
m (Moffatt and Proctor, 1985; Galloway and Frisch,

1986). These values of N have been tested for convergence of growth rates to three

significant figures. We note, however, that for Rm = 100, the value of N = 22

is used; this is was unintentional but is not significant as both methods use this

value. To keep the comparison accurate, the time stepping was carried out in GN .

The results are given in table 4.2 (time stepping) and table 4.3 (Arnoldi iteration).

In the time stepping runs, the typical parameters (N and ∆t) from table 4.1 are

used. The parameter T represents the total time that simulations needed to be

run for: in time stepping, the simulation needs to be run long enough for the time
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Table 4.2: Typical values for time stepping codes

Rm rep N ∆t T memory comp. time

10

I 8 0.01 200 1196KB 1s
II 8 0.01 200 1196KB 1s
III 8 0.01 200 1460KB 1.5s
IV 8 0.01 200 1720KB 2s
V 8 0.01 200 1720KB 2s

100

I 22 0.005 800 4892KB 2m 44s
II 22 0.005 200 3836KB 41s
III 22 0.005 800 7268KB 3m 47s
IV 22 0.005 200 8588KB 1m 11s
V 22 0.005 300 8852KB 1m 48s

Table 4.3: Typical values for Arnoldi eigenvalue solver codes

Rm rep N No. of solns. basis vectors memory comp. time

10

I 8 1 7 1424KB � 1s
II 8 1 7 1452KB � 1s
III 8 1 11 1656KB � 1s
IV 8 1 15 1872KB � 1s
V 8 1 11 1860KB � 1s

100

I 22 2 110 14MB 2m 24s
II 22 1 80 11MB 1m 34s
III 22 5 184 44MB 11m 35s
IV 22 4 250 86MB 17m 59s
V 22 2 230 79MB 10m 30s

series of ln(EM) to have settled sufficiently so that the growth rate γ and frequency

ω (if oscillating) can be determined. The values in this column represent the

minimum run time required, rounded to the nearest 100, for γ to have converged

to three significant figures. Figure 4.9 shows ln(EM) versus time for three different

simulations where calculating λ is relatively easy due to dominant modes that

emerge quickly and with periods of the oscillatory modes being manageably short;

thus meaning that long simulation times are unnecessary.

For the Arnoldi iteration, the numbers of solutions found are noted in the 4th

column of table 4.3 as it identifies one of the difficulties with the Arnoldi solver,

namely that it does not always locate the eigenvalue with the largest real part

unless it is set to compute multiple eigenvalues. This seems to occur when there

are several eigenvalues whose real parts are of the same order of magnitude. To
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(a) (b) (c)

Figure 4.9: Magnetic energy profiles for (a) class II, Rm = 100, (b) class V, Rm =
100 and (c) class V, Rm = 250.

demonstrate this, we take representations II and III at Rm = 100: representation

II has one overridingly dominant eigenvalue whereas representation III has several

modes which are decaying at similar rates, with this being reflected in the number

of solutions required. This is an inherent weakness with the Arnoldi method and

will be discussed later in this section. To find the minimum number of basis vectors

nbv required for convergence, a script was constructed to restart the simulation if

the maximum number of iterations (which we set as the default 300) was reached

without successful convergence. On each restart, nbv was incremented by 1 thus

on successful convergence, the minimum nbv is obtained. For larger simulations,

this increment was increased to 5 and 10, to speed up the search. Again, we are

interested in keeping this figure as low as possible since higher nbv means more

computation required per Arnoldi factorisation.

In general, even for low Rm simulations, the Arnoldi routines require more mem-

ory (RAM). For Rm = 10, the difference is only slight but at Rm = 100, it is

substantially larger. For example, with class II the Arnoldi iteration requires ap-

proximately 3 times the memory than its time stepping counterpart and with class

IV, more than 10 times the memory is required for the Arnoldi method. In terms

of the computing time, at low Rm, the Arnoldi method is significantly faster but

at Rm = 100, only faster for the trivial case of class I. In fact, the Arnoldi solver

takes considerably longer for classes II–V. The larger memory usage and increased

computing time of the Arnoldi solver may be related to its difficulty in resolving

individual eigenvalues that are close in magnitude.
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One advantage of testing two methods that solve the same problem is that the

eigenvalues obtained can be tested against each other. Other than the first window

of dynamo action for class II and the second window for class V, there are no results

from prior studies to identify the accuracy (or inaccuracy) of the values calculated.

At least for Rm up to 100, the Arnoldi method’s results agreed with the dominant

eigenvalue obtained for each symmetry class, so we can be sure that the different

methods are at least solving the same problem, providing more confidence that the

results are reliable and reproducible.

A major difficulty of the Arnoldi iteration scheme was, as already hinted, setting

the values of nbv. The manual for the ARPACK routines states that the choices of

nbv are problem specific and must be determined empirically. In general, we find

that convergence improves for increased nbv but so does the workload and thus

computing time. The greatest issue is that nbv can be very sensitive to the value of

Rm, as the minimum number of basis vectors required can increase by an order of

magnitude with only a small change in Rm. The lack of a clear relationship between

Rm (through N) and nbv greatly increases the difficulty of finding eigenvalues for

even small ranges of Rm, as the required nbv cannot be extrapolated from those

used for lower Rm. However, nbv was not found to decrease for increasing Rm and

thus must be in a monotonic (increasing) relationship with Rm. The sensitivity

of nbv to Rm could, however, be indicative of more interesting structure, within

each representation, that is not revealed through time stepping, such as multiple

eigenvalues that are very close in the complex plane. In our experience, the only

systematic means of finding the minimum number of basis vectors for convergence

is by brute force, rerunning simulations for fixed Rm and incrementing the number

of basis vectors until the routine succeeds in finding the desired number of eigen-

values. For low and intermediate Rm this is not too problematic, as simulations are

relatively fast (on the order of minutes), but since increasing the number of basis

vectors will also increase the computer time for a given simulation, this becomes

extremely difficult with Rm = O(103). The fact that we are unable to determine

in advance whether the routine will succeed (converge) until it has ended, is at the
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core of the problem, although a similar problem arises with time stepping, as it

can be difficult to determine whether the field has settled to a final state or is in a

long transient (an example being representation V at Rm = 215). There are many

cases for which it can be very difficult to resolve the growth rate and so require

very long run times. Three such cases are identified in figure 4.10.

(a) (b) (c)

Figure 4.10: Magnetic energy profiles for (a) class II, Rm = 190, (b) class III,
Rm = 400 and (c) class V, Rm = 215.

The first, and most difficult to resolve, is class II at Rm = 190, which is on the

verge of a mode-change, where a subdominant mode overtakes the dominant mode.

This results in two eigenmodes with very similar growth rates and requires long

simulation times. In figure 4.10(a), a jump in the magnetic energy indicates where

the stored arrays are rescaled to move mode values away from the machine precision

limit. After the rescaling, however, a spurious steadily decaying mode is seen in

which the symmetries of class II are no longer found; this should not be possible

in the symmetry-reduced codes. It was initially assumed that as the mode values

decayed and approached machine precision, the rounding error would become large

enough to destroy the imposed symmetry. In rescaling the Fourier modes at higher

values, so that their magnitude cannot approach machine precision, the spurious

mode was still seen. In avoiding the rescaling altogether, we still see the spurious

mode suggesting that rescaling the fields is not the cause of the issue. We speculate

that the mode restrictions, which are employed in the Arnoldi method but not in

time stepping, may actually be important in these heavily-decaying regimes: over

sufficiently long simulations, sufficient rounding error may build up in one or more

pairs of modes inHN (or GN) that are linked by the symmetries, thus destroying the

symmetry of the field. So close to a mode-change, there is insufficient time for the
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field to settle to a final state before the spurious mode appears and so the growth

rate for Rm = 190 is estimated from the oscillatory part of the energy profile,

immediately prior to the rescaling (energy jump). Although it isn’t apparent in

the figure, the oscillations are damped, decreasing in magnitude extremely slowly

and so appear to be settling towards a steady decay.

The second example is shown by class III, Rm = 400. In this case, the field

settles to a low frequency oscillatory decay but with additional high-frequency

oscillations. To resolve the growth rate properly, simulations required long run

times to allow time for the high-frequency oscillations to die away. This difficulty

increases with Rm as the high-frequency oscillations remain for longer. The third

example is identified in figure 4.10(c) at Rm = 215 for class V, where Im(λ) is very

small, leading to very low frequency oscillations. To resolve the λ correctly, the

simulations must have very long run times. As the ranges of Rm for which the field

evolution contains long transients or very low frequency modes, are not known in

advance, the only reliable way to achieve this is to set default run times and then

to rerun those that have not converged, repeating this process until reliable results

have been obtained. This approach means that, often, a large amount of time is

spent resolving λ for small ranges of Rm. Regardless of the run times required, only

by visual inspection can it be known when ln(EM) has converged to the dominant

eigenmode, thus λ cannot be automatically calculated with reliability. Thus, for

every simulation in every class, λ is manually calculated; a reliable and accurate

method but incredibly time consuming.

A distinct advantage that the Arnoldi iteration method has over time stepping is

that multiple eigenvalues, and thus eigenfunctions of magnetic field, can be found.

In the time stepping procedure, the total magnetic energy is only a function of the

fastest growing (or slowest decaying) magnetic mode and so the eigenvalue is that

of the dominant mode. In the Arnoldi solver, we are able to set the number of

eigenvalues to be found (i.e. nev), though a higher number means slower conver-

gence. To demonstrate this ability, we set nev = 10 and locate the eigenvalues in

the interval Rm ∈ [10, 100] for class V; growth rates are given in figure 4.11.



168 CHAPTER 4. NUMERICAL METHODS

Figure 4.11: Growth rates for seven eigenmodes of class V, Rm = 10 to Rm = 100.

If the Arnoldi routine finds a complex eigenvalue, it nearly always finds its conju-

gate, as the eigenvalues occur in conjugate pairs. If both eigenvalues of a complex

pair are found, one is discarded. Additionally, eigenmodes with fewer than four

eigenvalues located are also discarded. This leaves only seven distinct eigenmodes

in figure 4.11, despite locating 10 for every value of Rm. We see interesting be-

haviour, particularly for Rm ≥ 60 where three subdominant branches of eigenvalues

are very close in their decay rates. This possibly explains why nbv is high for class

V at Rm = 100 in table 4.3 and, indeed, we find similar circumstances in class IV;

see figure 5.20(d). We also see the familiar dominant branch, labelled V1, which

forms the second window of dynamo action in Galloway and Frisch (1986).

To summarise, the Arnoldi method is generally less predictable than the time

stepping procedure, owing to the fact that the relationship between Rm and the

parameters that determine convergence is not clear. The Arnoldi routine is capable

of producing more results and could be useful in studying mode crossings within
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symmetry classes and subdominant dynamos. Unfortunately, it presently seems

impractical for investigating problems with Rm > O(102), owing to the memory

and time resources needed for such simulations. Optimising the problem, so that

the minimum set of mode components was present for each symmetry class, seemed

to improve convergence but without further investigations into the difficulties faced,

the Arnoldi method cannot supersede the time stepping for generating results at

high Rm. Rather the range of the results it provides should supplement those of the

time stepping method by describing subdominant mechanism and structures, and

confirming previously known results, which it has done for Rm up to 100. Room for

improvement lies in taking advantage of known eigenvalues and Ritz vectors for a

specific Rm, and using these as a ‘first guess’ to improve convergence for nearby Rm

runs. Additionally, taking advantage of the in-built diagnostic routine “F12AQF”

may reveal more information on the convergence conditions.

In the next chapter, further results of the Arnoldi method are presented, in addition

to those of the HN time stepping codes.
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Chapter 5

Results for the 1:1:1 ABC dynamo

Wisdom comes from experience. Experience is of-

ten a result of lack of wisdom.

Terry Pratchett

This chapter is concerned with results of the 1:1:1 ABC dynamo problem. All

results presented in this chapter, unless explicitly stated, are found through the

time stepping routine in fundamental domainHN . We present eigenvalues obtained

in the form of growth rates γ = Re(λ) and frequencies Im(λ). Also provided are

visualisations of magnetic field structure, depicting areas of strong field through

3-dimensional snapshots and 2-dimensional cross-sections to help determine finer

structural details, in addition to field polarity. The chapter aims to give an overview

of the types of structures that can exist within each class and describes the field

evolution for oscillatory eigenmodes.

The chapter starts by summarising the eigenvalues of all five classes in two graphs;

one for growth rates Re(λ) and another for Im(λ), the frequencies of the field

oscillations. We discuss why kinks appear in the growth rates and classify these

kinks using the behaviour of Im(λ) in the neighbourhood of the kink. The second

section then goes on to investigate these kinks in more detail and looks at an

171
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example of each of eigenvalue coalescence, decoalescence and mode crossing. For

eigenvalue (de)coalescence, we show that the eigenmode does not change after a

growth rate kink and that in a mode crossing, the eigenmode does change. The

third section is concerned with visualising the fields and describing the structures

that emerge. Each symmetry class is discussed in turn, in order of the most effective

dynamos. A brief review is given of the magnetic fields in the chaotic regions at

high Rm and the energy spectra are then discussed. Finally, we explore the results

produced using the Arnoldi iteration method at low Rm and reanalyse the mode

crossing example previously studied in the time stepping results. We also explore

the magnetic field configurations produced using this method and compare these

to those of the time stepping approach. The last section summarises the findings

of this chapter.

5.1 Growth rates and frequencies

This section of the results focuses on the real and imaginary parts of the dominant

eigenvalues within each class. The growth rates for magnetic fields in all of our

simulations are summarised in figure 5.1, showing growth rate γ = Re (λ) versus

Rm, with typical time traces for magnetic energy depicted in figure 4.9. Results

were obtained with the serial HN time stepping codes for Rm < 3000 and the par-

allel codes for Rm ≥ 3000. The imaginary parts of the eigenvalues, corresponding

to (half of) the frequencies of the magnetic energy oscillations, are shown in figure

5.2. Since the eigenvalues occur in complex conjugate pairs, the absolute value of

the imaginary part is plotted. It is apparent that some of the modes, within each

symmetry class, are non-oscillatory (i.e. have a real eigenvalue), whereas others

are oscillatory (complex eigenvalue). Transitions between non-oscillatory and os-

cillatory modes for a given symmetry class may occur because of a mode crossing

(giving a discontinuity in the frequency) or because of eigenvalue coalescence (in

which the frequency tends to zero with a square root dependence). Additionally,

we see transitions from one oscillatory mode to another, identified by jumps in
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Im(λ) from one non-zero value to another non-zero value.

For the 1:1:1 ABC flow, the growth rates identify that fields in only two of the

symmetry classes provide the dominant dynamo mechanism for the range of Rm

investigated (up to 104), namely classes II and V. As found by Galloway and

Frisch (1986), and reported in subsequent studies, there are two distinct windows

of dynamo action, separated by a brief interval of purely decaying fields over the

range of Rm ≈ 17.5 to Rm ≈ 27. The fields in the second window were referred to

as ‘symmetry-breaking’, as they have fewer apparent symmetries than fields in the

first window. It can now be identified that fields in the second window belong to

symmetry class V, and this remains dominant in our simulations up to Rm = 104,

and up to 2.5 × 104 in Bouya and Dormy (2013) (where the growth rate begins

to level at approximately 0.1). The fields in classes II, IV and V give growth

rates that show no sign of tending to zero in the large Rm limit, suggestive of fast

dynamo action. However the limiting values for large Rm cannot be assessed from

the present results and further investigation is required. The dominant field of

class V emerges as a dynamo in the interval Rm ∈ [25, 26] and the growth rate

increases, reaching a local maximum of γ = 0.0566 at Rm ≈ 121, after which the

growth rate begins to fall. In the interval Rm ∈ [214, 216], an apparent jump in the

growth rate is observed. Bouya and Dormy (2013) narrow this interval down to

Rm ∈ [215, 215.4], though a more precise value is incredibly difficult to pin down

as the frequency of the oscillations, seen prior to the jump, tends to zero as the

critical value is approached (see discussion on difficulties of time stepping in section

4.5). The sudden growth rate increase for Rm > Rcrit
m is caused by the coalescence

of two complex eigenvalues to a real eigenvalue and can be seen in figure 5.2 as

Im(λ)→ 0; this is explored in more detail in section 5.2. The growth rate reaches

another maximum at Rm ≈ 419, with γ ≈ 0.799 before falling to a minimum at

Rm ≈ 2000, with γ ≈ 0.0686. From here the growth rate increases at a moderate

pace and in the limit of Rm explored (Rm = 104), γ = 0.0863. There is no evidence

of a mode-change within class V in this high-Rm regime and so we assume that the

dominant eigenmode remains the same for Rm > Rcrit
m .
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Figure 5.1: Growth rates of symmetry classes I–V in the 1:1:1 ABC dynamo for
Rm up to 104.

In the low Rm regime, we find that the eigenmode of the first window belongs

to class II and confirm the results of Arnold and Korkina (1983), Galloway and

Frisch (1986) and later studies. We locate the crossing between classes II and V

in the interval Rm ∈ [24, 25], though we observe that it is at the lower end of

this interval. Bouya and Dormy (2013) reduce this interval to Rm ∈ [24.05, 24.10]

and follow the class II eigenmode past the crossing with mode V, using the initial

condition (1.21). The growth rates that we obtain are in agreement with those of

Bouya and Dormy for as far as they manage to resolve them. The growth rate

of the dominant eigenmode in class II continues to fall and reaches and apparent

minimum at Rm ≈ 191, and then experiences a sudden jump in growth rates in

the interval Rm ∈ [192, 194] in a similar fashion to that of class V. From figure

5.2, however, we can deduce that this is a change of mode within class II, and

is identified by a discontinuity in Im(λ). We also see an eigenvalue decoalescence

in the interval Rm ∈ [328, 330] and the dominant eigenmode again corresponds to



5.1. GROWTH RATES AND FREQUENCIES 175

one of two complex eigenvalues. After the decoalescence, the growth rate increases

rapidly and the eigenmode becomes a dynamo at Rm ≈ 423. The growth rate

continues to increase and shows a similar pattern (of slowing down, decreasing

and then increasing again) to that of class V. In the interval Rm ∈ [4000, 5000], a

mode-change occurs and is marked by a rapid increase in both Re(λ) and Im(λ).

At Rm = 104, the class II eigenmode appears to be an effective dynamo, showing

no sign of slowing in its growth rate increase. Before moving on to the other

classes, we note that Galloway and O’Brian (1994) calculated a value of γ ≈ −0.03

for Rm = 100, 200 and 400 (refer to chapter 1). We can confirm the first two of

these as we have γ = −0.0303 and −0.0275 for Rm = 100 and 200 respectively.

For Rm = 400, our result is substantially different, at γ = −0.00355. It is not

unreasonable to expect that this mode was not well-resolved in the calculations of

Galloway and O’Brian, as they would have seen it only through transient magnetic

energy evolution prior to the field settling on the fastest growing mode of class V.

Magnetic fields from classes I, III and IV have not been identified in previous in-

vestigations, as they are subdominant eigenmodes and so cannot be found through

conventional (full domain) time stepping. As discussed in chapter 3, class IV of the

group G is a tensor product of II and V and so it is unsurprising that its growth

rate profile is visually similar to that of classes II and V. The dominant eigenmode

of class IV becomes a dynamo at roughly the middle of the interval Rm ∈ [142, 143]

and is an oscillating mode, with low frequency oscillations. As with class V, there

is an eigenvalue coalescence, which occurs at Rm ≈ 249 but, unlike class V, this

eigenmode experiences decoalescence of its eigenvalues, which again become com-

plex valued in the interval Rm ∈ [650, 700] (the resolution in Rm is coarser as Rm

increases due to increased computational demand). As Rm is further increased,

the dominant eigenmode of class IV sees decreasing growth and appears to reach

a minimum near to Rm = 6000. By Rm = 7000, it is clear that a mode change

has occurred, as the dynamo effectiveness appears to improve fairly rapidly, and

this is also identified in figure 5.2 by the discontinuity in Im(λ). Fields in classes I

and III are very different from those of II, IV and V and the first indication of this
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Figure 5.2: Frequencies of symmetry classes I–V for Rm up to 104.

is through their growth rate profiles. These have also been established to contain

dynamos, but show the lowest growth rates and last onset as Rm is increased. In

both cases, difficulties were encountered with calculating the leading growth rate,

as fields in these two classes show long, slowly evolving transients, particularly in

class III. Limitations of computer time have not allowed us to explore values of Rm

for class III beyond those shown in figure 5.1. In class I, until the mode change at

Rm ≈ 800, the field with the largest growth rate is the trivial solution, with b = u,

γ = −R−1m . Other magnetic fields exist within class I, though they are only seen as

long transients, in which decay occurs at a greater rate than the trivial solution.

In class III, the frequency appears to be decreasing rapidly as Rm increases, prior

to the mode change at around 620. For larger Rm, an increase in frequency is

seen, closely matching the frequency profile for class I, which may be related to the

similarity in the structure of their magnetic fields; this will be discussed in section

5.3.
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It is important to note that without enforcing symmetries, the dynamo growth

rate will simply be the envelope of the individual growth rates of the symmetry

classes, meaning that the growth rate of only the fastest growing dynamo for a

given Rm will be calculated. Likewise, when imposing the symmetries, the growth

rate of only the fastest growing (or slowest decaying) dynamo eigenmode within

each symmetry class is found.

Overall, we are able to show that all symmetry classes of the 1:1:1 ABC dynamo are

capable of dynamo action. Three symmetry classes appear to contain fast dynamo

mechanisms, these being II, IV and V, as their growth rates are increasing in the

limit of our simulations. Although classes I and III also contain viable dynamos

at higher Rm, they display profiles that resemble those of slow dynamos, in that

they have falling growth rates for increasing Rm. It is possible that the behaviour

of any class may change at higher Rm, but we cannot speculate further based on

current results.

5.2 Eigenvalue coalescence and mode changes

In the jump in growth rate of the dominant mode in class V (at Rm ≈ 215), we also

see that the frequency falls to zero. The lack of discontinuity suggests that this jump

is not a mode change but is caused by a coalescence of the complex eigenvalue pair

which, as Rm increases past Rcrit
m ≈ 215, become real-valued. Bouya and Dormy

(2013) provide an explanation as to why the growth rate would suddenly appear to

increase. They describe the eigenvalues in terms of two real differentiable functions

α and β such that

λ = α(Rm)±
√
β(Rm), (5.1)

and so a negative β allows for (complex) conjugate eigenvalues. The value of Rm

at the mode-change must be a root of the function β such that β
(
Rcrit
m

)
= 0. For

Rm > Rcrit
m , β(Rm) > 0 and so starts contributing to Re(λ), and can explain the

sudden increase in growth rate. This also suggests that a second real eigenvalue
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exists for which the growth rate drops for Rm > Rcrit
m . As a subdominant eigenvalue,

it would be only be possible to find the corresponding mode using a more direct

method such as Arnoldi iteration.

To confirm that the dominant eigenvalues for Rm < 215 and Rm > 215 belong

to the same eigenmode, simulations were carried out to produce snapshots for

Rm = 200 and Rm = 250. The resulting field snapshot at Rm = 200 was used

as a seed field for simulations with Rm = 205 to 300 in an attempt to follow the

eigenmode branch past the critical Rm. The same was carried out for the snapshot

from Rm = 250 with simulations for Rm = 120 to 230. If the growth rates below

and above Rm = Rcrit
m belong to different modes, this would be identified through

different growth rate profiles obtained from the different seed fields. The results

are summarised in figure 5.3, with both Re(λ) (solid line) and Im(λ) (dotted line)

shown; the two symbols used represent the different initial conditions used. It is

Figure 5.3: Re(λ) (solid line) and Im(λ) (dotted line) for two initial conditions;
asterisks identify results using a field snapshot for Rm > Rcrit

m , squares are results
using a field snapshot for Rm < Rcrit

m .

clear that the eigenvalues of the eigenmode from after the jump are the same as

those of the eigenmode before the jump, identifying that these belong to the same

eigenmode. If they were from different eigenmodes, we would expect to be able
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to follow γ = Re(λ) past Rcrit
m and produce two distinctly different branches of

solutions that cross at Rm = Rcrit
m . We note that the kink in the dominant class

V curve around Rcrit
m was a source of difficulty for Galloway and Frisch (1986) as

very slow oscillations led to uncertainty in the growth rate. It was not possible

at the time to determine whether this corresponds to a real eigenvalue or two

complex eigenvalues with small imaginary parts. It is now clear that Im(λ) goes

to zero below this point. Interestingly, our interval and the interval of Bouya and

Dormy (2013) are much lower than prior estimates (e.g. of Lau and Finn, 1993) of

Rm ∈ [300, 350]; by this time the field evolution is non-oscillatory.

In figure 5.1, we see two kinks in the growth rate of class II for intermediate Rm.

On initial inspection, the first kink (where growth rate rapidly increases), might

seem to be an eigenvalue coalescence but figure 5.2 indicates that a mode change

has occurred, due to the discontinuity in Im(λ). The second kink, however, is

an eigenvalue decoalescence as Im(λ) increases (from 0) with a square-root depen-

dence. Although classes I and III have mode changes for Rm < 1000, the difficulty

in resolving λ in the time stepping codes makes investigation of these cases im-

practical; the changes in class II are easier to investigate as they occur at lower

Rm. First we address the mode change at Rm ≈ 190 by taking a field snapshot

from Rm = 250 (after the change) and using it to seed simulations over the range

Rm ∈ [170, 215], in an effort to follow the non-oscillatory eigenmode prior to it

becoming dominant. As the eigenmode we are attempting to follow would be de-

caying at a greater rate, we see it as transient field evolution before settling on to

the fastest growing (slowest decaying) eigenmode. We then take a field snapshot at

Rm = 170 and use this as a seed field for simulations in the same range. Again, this

field is seen as transient evolution prior to the field evolution settling to that of the

dominant mode. Results are seen in figure 5.4(a), with the � symbol identifying

a non-oscillatory field (Rm = 250 seed) and × showing results of the oscillatory

(Rm = 170 seed) field. As we are able to follow both eigenmodes past the crossing,

we have shown that these two eigenmodes are distinct; otherwise we would have

seen the same situation as the coalescence in class V, where no transient evolution
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(a) (b)

Figure 5.4: Numerical results at (a) the mode crossing and (b) eigenvalue decoales-
cence of class II. For the mode crossing, only the growth rate is displayed, whereas
in (b) both real (solid) and imaginary (dashed) parts are shown. As with previous
figure, squares indicate a post-kink seed and asterisks denote pre-kink seed.

occurs, as both seed fields correspond to the same eigenmode. We note that the

non-oscillatory field is very heavily decaying for Rm = 170 and cannot be identified

as the magnetic field is quick to settle to the (dominant) oscillating eigenmode.

The non-oscillatory branch in this range of Rm is also investigated as a test case

for the Arnoldi method, revealing more information (see section 5.4).

On investigating the decoalescence, two seed fields are again used to rule out the

growth rate kink being caused by a mode crossing. Figure 5.4(b) shows the results

of two sets of simulations with Re(λ) (solid line) and | Im(λ)| (dashed). As with the

eigenvalue coalescence of class V, we see that solutions using both initial conditions

follow the same branch with no indication of transient evolution in the magnetic

energy profiles, implying that the initial conditions belong to the same eigenmode.

As eigenvalue decoalescences occur in both classes II and IV, then it is possible

that one may occur in class V. For Rm up to 104, we see no decoalescence of the

dominant eigenvalue into a complex conjugate pair and Bouya and Dormy (2013)

extend this up to Rm = 2.5×104 but the possibility remains that at even higher

Rm, we may see an oscillatory eigenmode re-emerge. Further investigations into

the 1:1:1 ABC dynamo will hopefully reveal whether this is (or is not) the case.
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5.3 Field structures

In this section, we investigate the structures of the dominant eigenmodes in each

symmetry class, through the use of 3-dimensional visualisations of magnetic field

strength and 2-dimensional cross-sections. To visualise the fields, the Fourier modes

are first ‘unfolded’ from HN through the symmetries and mapped to the whole of

the domain FN ; this is detailed in section 4.2.4. After applying a fast Fourier

transform routine to obtain the field in real space, the 3-dimensional visualisations

are produced using VAPOR, a piece of software designed for viewing and analysing

fluid flows or, more generally, any 2-d or 3-d vector field. The visualisations can

be chosen to display field strength |b| or magnitude of certain components (i.e.

bx, by or bz); we have opted for field strength. Unless explicitly stated, all 3-d

visualisations are oriented so that the origin is located at the bottom back corner

and the point x = (2π, 2π, 2π) is located at the top front corner.

For the cross-sections, IDL’s contour plotting capabilities are used to visualise the

magnitude of bz at a specified z = constant. The combination of 2-d and 3-d

visualisations allows for easier analysis of field structures and comparison between

the fields of each class.

Figure 5.5: Poincaré sections of particle trajectories in the 1:1:1 ABC flow, crossing
the planes of z = rπ/4 for r = 0, 1, ..., 7, reading across then down.
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We begin by giving the Poincaré sections of the 1:1:1 ABC flow for z = 0, π/4, . . . , 7π/4

in figure 5.5 (after Dombre et al., 1986). There is a network of thin bands of chaos

visible, and in between (the white regions), there is integrable motion, referred to

as the ‘principal vortices’ of the flow (discussed in chapter 1). At z = π/4 (corre-

sponding to the second panel, r = 1), there are stagnation points u = 0 lying at

r1 = (5, 3, 1)π/4 (with a 2-d stable manifold, 1-d unstable manifold, type ‘α’) and

r2 = (7, 5, 1)π/4 (with a 2-d unstable manifold, 1-d stable manifold, type ‘β’). At

z = π/4, we also see midpoints of two different heteroclinic lines that connect α-

and β-type stagnation point pairs. One is seen at r3 = (1, 1, 1)π/4 and the other

at r4 = (3, 7, 1)π/4. We will be relating the field structures to these flow features

by taking cross-sections at z = π/4 also.

(a) (b)

(c) (d)

Figure 5.6: Visualisations of magnetic field strength |b| for the dominant eigen-
modes of classes (a) II to (d) V for Rm = 100.

Figure 4.9 (in the previous chapter) gives examples of plots of total magnetic energy

versus time for two oscillatory cases (a,b) and one non-oscillatory case (c). In
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the oscillatory cases, the structure of the field is time dependent and we have

visualised fields over times during a cycle. The symmetries in each class force the

magnetic field to take certain arrangements, leading to the individual structures

that are seen in figure 5.6, which shows three-dimensional magnetic field snapshots

of the dominant eigenmodes of each class at Rm = 100. We see the familiar cigar-

like structures (which we simply refer to as ‘cigars’ in what follows), some single

and some multiple, concentrated on the straight-line heteroclinic connections, or

separatrices, determined by Dombre et al. (1986). Note that we have chosen a

moderate value of Rm as visualisations at larger values simply give similar, but

more concentrated structures and are in practice harder to interpret. We do not

show the field for class I, at this value of Rm, which is just b = u; we would simply

see an isosurface of fluid speed |u| in the 1:1:1 flow and no cigars.

The remaining classes II to V are all oscillatory at this value of Rm and have

similarities in structure but differences in detail. To give another view we show

in figure 5.7 the field component bz perpendicular to a slice z = π/4 through the

fluid domain. In each symmetry class, from II to V, in figure 5.6 the field has

(a) (b)

(c) (d)

Figure 5.7: Visualisations of magnetic field component bz on a cross section z = π/4
for (a) II to (d) V with Rm = 100.
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concentrations along the separatrices joining stagnation points, and this is evident

in the panels in figure 5.7, where the values of bz are large near to r1, r3 and r4. At

the stagnation point r1 the 2-d stable and 1-d unstable manifold acts to concentrate

magnetic fields into flux ropes and these are then visible along separatrices, e.g. at

r3 and r4. In each case, the field is not significant at r2, unsurprisingly since here

the 2-d unstable manifold acts to repel field. As all the modes are oscillatory for

this value of Rm, the fields in the cigars change sign during a single cycle. However

the structures and the way this occurs differs in the different representations, and

we now discuss this.

5.3.1 Symmetry class V: the dominant dynamo

As the dominant dynamo mechanism for the majority of the range of Rm inves-

tigated, it is natural that we should look to class V first. In the visualisations

above, it is clear that the dominant eigenmode in class V contains two flux tubes,

centred around the α-type stagnation point and stretched roughly equally in both

directions towards different sides of the same β-type stagnation point. (Depending

on which side of the 2-d stable manifold is being approached, a particle in the flow

would be carried towards one side or another of the corresponding β-type point.)

The field evolution in class V at Rm = 100 is oscillatory and so the snapshots in

figures 5.6 and 5.7 represent just one state in its cyclical evolution. A full cycle

of field evolution is displayed in figure 5.8 at eight different times for Rm = 100.

The snapshots were taken so that the evolution of the field could be seen as clearly

as possible, though some explanation is required. The magnetic energy, for this

visualisation, is at a minimum at t = 0, with the snapshots normalised to account

for the growing field. At the start of the cycle, we see lone flux tubes at the

stagnation point r1 and at the midpoints r3 and r4. These flux tubes weaken as

secondary flux tubes of opposing polarity develop alongside them until by 0.25T ,

at a magnetic energy maximum, the flux tubes are of equal strength. The original

flux tubes continue to weaken, so that by t = 0.4T (frame 4), the secondary flux

tubes are stronger. At the magnetic energy minimum (t = 0.5T ), only the sec-
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Figure 5.8: Magnetic field component bz at z = π/4 for times t = 0, 0.1T , 0.25T ,
0.4T , 0.5T , 0.6T , 0.75T and 0.9T for class V, Rm = 100. Blue (dark) represents
negative field strength and yellow (light) represents positive.

ondary flux tubes remain at r1, r3 and r4 and the field is in the same state as at

t = 0, except with the polarity reversed. The second half of the cycle mirrors the

first half (except with inverted polarity) and another energy maximum occurs at

t = 0.75T (frame 7), with the flux tubes again of equal strength. At t = 0.9T , we

see that the newest flux tube at each r1, r3 and r4 is dominant and continues to

grow, feeding off the other, so that by t = T , which is identical to t = 0, only this

flux tube remains.

We note that the single flux tubes that exists at t = 0 and t = 0.5T appear to

be centred on the α-type stagnation points and the separatrices that pass through

them. As the secondary tubes form, the original flux tubes drift away from the

stagnation point and by the energy maximum, the tubes in each pair are situated

on opposite sides of the separatrix.

The above process describes the dominant dynamo mechanism for Rm > 24, with

the period of this cyclic behaviour increasing until at Rm ≈ 215, the period becomes

infinite and the structure of the dynamo is no longer time dependent, though the

field amplification process remains the same (see Dorch, 2000). The final field

configuration can be seen in figure 5.9 at Rm = 250. It appears that the structure
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(a) (b)

Figure 5.9: Visualisations of (a) magnetic field strength |b| and (b) field component
bz at z = π/4 for class V, Rm = 250.

of the dominant eigenmode consists of one major and one minor flux tube with

the opposite polarity, which are fixed at their respective positions either side of the

α-type stagnation points and the corresponding separatrices. These results are in

agreement with Bouya and Dormy (2013), who also visualise the structure of the

dominant dynamo mode. As Rm is increased, the structure of this dominant mode

does not change, although the flux tubes are confined to an ever smaller region,

making it increasingly difficult to visualise at higher Rm. For this reason, we are

limiting visualisations to low and intermediate Rm where possible.

5.3.2 Symmetry class II

Class II contains the only other eigenmode that is dominant in the range of Rm

investigated and has the second largest growth rate at Rm = 104. From prior

studies, it is known that the structure of the first window is that of cigar-like

structures centred on the α-type stagnation points. The first eigenmode seen,

which the first window belongs to, persists until the mode-change at Rm ≈ 190.

This eigenmode is oscillatory and so the cross-section in figure 5.7(a) again only

presents one of its many states. Figure 5.10 displays eight stages in a single cycle

with period T . As well as the cigars, we see three ‘fins’ of field that form in a

rotationally-symmetric configuration around each cigar and are stretched to form

sheets of field; these are not necessarily seen in figure 5.6(a), as the snapshot was
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Figure 5.10: Magnetic field component bz at z = π
4

for times t = 0, 0.07T , 0.25T ,
0.42T , 0.5T , 0.57T , 0.75T and 0.92T for class II, Rm = 100. Blue (dark) represents
negative field strength and yellow (light) represents positive.

taken when these fins were relatively weak. At the point of lowest energy (t = 0),

there is a weak flux tube with stronger fins of opposing polarity. The weak cigar

(flux tube) weakens further and the fins contract inwards. By t = 0.25T (maximum

magnetic energy), the fins have joined to form a concentrated cigar. At t = 0.42T

(frame 4), we see new fins with the opposite polarity begin to form, strengthening

until they are stronger than the weakening cigar (t = 0.5T ) and the structure has

returned to that of t = 0, except with the opposite polarity. The second half of the

cycle, again, mirrors the first half but with reversed polarity. By t = 0.9T , we again

see weak rotationally-symmetric fins forming around the cigar, which strengthen

so that by t = T , the field is in its starting configuration (see frame 1). At the

(a) (b)

Figure 5.11: Visualisations of (a) magnetic field strength |b| and (b) field compo-
nent bz at z = π/4 for class II, Rm = 250.

mode-change, however, the field structure of the new eigenmode is significantly
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different; see figure 5.11. In place of the central cigars, are three thin flux tubes

centred on the α-type stagnation points with three-fold rotational symmetry. In

between each of these narrow tubes are the ‘fins’ of field of opposing polarity to the

tubes. Prior to the eigenvalue decoalescence, this arrangement is static as the field

evolution is non-oscillatory but for Rm > 330, the field is oscillatory. The dominant

Figure 5.12: Magnetic field component bz at z = π
4

for times t = 0, 0.1T , 0.3T ,
0.4T , 0.5T , 0.6T , 0.8T and 0.9T for class II, Rm = 450. Blue (dark) represents
negative field strength and yellow (light) represents positive.

eigenmode after the decoalescence is visualised through cross sections at z = π/4

in figure 5.12. In this sequence, t = 0 is at the local energy minimum, with the

maximum corresponding to t = 0.25T , as is the case for all cycle visualisations. As

with the Rm = 100 eigenmode, the same three-fold structures typical of symmetry

class II are visible.

At the start of the cycle, single cigar-like flux tubes are seen at r1, r3 and r4.

The cigar grows fin-like projections and by t = 0.1T (frame 2), flux tubes of the

opposite polarity to the cigar have formed between the cigars fins. These flux tubes

grow in strength, whilst the original cigar decays and by t = 0.3T , these flux tubes

meet at the stagnation point r1 (and separatrix midpoints r3 and r4) with only

the fins remaining of the original cigar. These fins decay, along with the flux tubes

of opposing polarity, leaving a cigar-like concentration of field at r1, r3 and r4 by

t = 0.4T . At t = 0.5T , all that remains is the compact cigar at these points and,

of course, the configuration is identical to that of t = 0 but with reversed polarity.
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As is to be expected, field evolution is identical in the second half of the cycle,

with frames 5–8 matching those of 1–4, except with the opposite sign. This loosely

describes the evolution of the structure of class II’s dominant eigenmode up to

Rm ≈ 5000. For the new oscillatory eigenmode that emerges at Rm ≈ 5000, we are

unable to carry out such a detailed investigation. Unfortunately the visualisation

tools are incapable of handling multiple snapshots in the largest simulations, in

part owing to the memory limitations of available computing resources. Thus we

are unable to visualise the structure of the eigenmode at multiple times during the

cycle for Rm > 5000 and, as such, it is not discussed in this thesis.

5.3.3 Symmetry class IV

Class IV is interesting in that a single eigenmode dominates in the interval Rm ∈

[33, 5000] and undergoes both eigenvalue coalescence and decoalescence in this

range. This means that the structure in this range does not change significantly,

though becomes finer, allowing us to understand the structure of the dynamo at

high Rm through visualisations at lower Rm, as with class V. In figure 5.6(c), we

see that at Rm = 100, there are four cigars twisted around the separatrices and

centred on the α-type stagnation point. The field evolution over a single cycle is

visualised through cross-sections in figure 5.13 at Rm = 200, where this eigenmode

acts as a dynamo. The cycle is somewhat similar to class V in that there are cigars

of opposing polarity which weaken and strengthen in turn. The difference is that

class IV contains four individual flux tubes which form two pairs, with these pairs

of tubes weakening and strengthening over a single period. The two flux tubes,

within each pair, have opposing polarity. At the beginning of the cycle (point of

lowest energy, t = 0), one pair is strong whilst the other is weak. The weaker

pair increase in strength, appearing to feed on the stronger pair, and by t = 0.25T

(point of maximal energy) they are of equal strength. The growing pair continue

to strengthen whilst the other pair weaken and are eventually dissipated. The

remaining pair of flux tubes then shift to the position of the now dissipated pair

by t = 0.5T (frame 5). The field structure is the same as at t = 0, except with
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Figure 5.13: Magnetic field component bz at z = π
4

for times t = 0, 0.1T , 0.25T ,
0.45T , 0.5T , 0.6T , 0.75T and 0.95T for class IV, Rm = 200.

opposing polarity; thus describing a half-cycle. The flux tubes repeat the process of

strengthening, weakening and shifting to return to the starting arrangement. After

(a) (b)

Figure 5.14: Visualisations of (a) magnetic field strength |b| and (b) field compo-
nent bz at z = π/4 for class IV, Rm = 400.

the eigenvalue coalescence, we have a steadily evolving field. The field structure is

shown in figure 5.14 and most closely resembles the field at t = 0.1T (second panel

in figure 5.13). We recall that the pair of flux tubes in class V’s dominant eigen-

mode strengthen and weaken in turn and that after the eigenvalue coalescence, the

structure is such that one flux tube is consistently weaker than the other. The

same occurs in class IV but now one pair of flux tubes remains dominant and the

other subdominant. However, this field arrangement does not persist for a large

range of Rm, and returns to an oscillatory state at a higher Rm, in contrast with

class V.
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We find that symmetry class II appears to be the only one that permits flux tube

formation on the separatrices. In classes IV and V we see that the various flux

tubes are twisted around the heteroclinic lines but never lie on them, at least for

any extended period of time.

5.3.4 Symmetry classes I and III

Classes I and III are discussed together as their field structures are very similar.

Prior to the emergence of the growing mode in class I, the slowest decaying mode

is simply the trivial solution b = u; the field is concentrated on the principal

vortices of the flow and we omit visualisations of this eigenmode. The structure

of class III’s eigenmode prior to its mode-change appears, visually, to be a hybrid

of the eigenmode of class I and an eigenmode that resembles those of the other

classes, where cigars form near to the α-type stagnation points. In the dominant

Figure 5.15: Magnetic field component bz at z = π
4

for times t = 0, 0.05T , 0.2T ,
0.47T , 0.5T , 0.55T , 0.7T and 0.97T for class III, Rm = 100.

eigenmode for Rm < 650 in class III, the field switches between two states. In the

first of these states, seen at t = 0 in figure 5.15, the strongest areas of field lie in

four of the six principal vortices, with the magnetic energy at a local minimum. In

the second state, the strongest field is located in three flux tubes, one major tube

and two minor with opposite polarity to the major, which are situated around the

separatrices and centred on the α stagnation points. This second state can be seen
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at t = 0.2T (frame 3). In each half-period, the field spends very little time in the

first state and quickly evolves to the second state. By t = 0.5T , the magnetic field

has the same structure but opposite polarity as at t = 0, with evolution in the

second half-period mirroring that of the first.

In the growing mode of class I that emerges at Rm ≈ 800 we see something intrigu-

ing: the magnetic field is formed as ‘flux ropes’, centred around the six principal

vortices. Each flux rope consists of six individual flux tubes, each tube with varying

strength along its (periodic) length. This structure can be clearly seen in figure

5.16 (a,b) and the cross section of bz at z = π/4 reveals the alternating polarity

of these tubes. The field in this eigenmode is oscillatory and each flux rope un-

dergoes a reversal (all flux tubes reverse polarity) each half-cycle. In the growing

(a) (b)

(c) (d)

Figure 5.16: Magnetic field strength |b| for (a) class I and (c) class III and field
component bz at z = π/4 for (b) class I and (d) class III, for Rm = 1000.

mode of class III, however, which emerges at Rm ≈ 650, we again have a hybrid of

structures, with the flux ropes, seen in class I, concentrated around four of the six

principal vortices and only two apparent flux tubes (of opposite polarities) twisted
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around the separatrices. This structure can be seen in figure 5.16 (c,d). Note that

the fact that we see field in four of the six principal vortices may seem surprising,

but is ultimately a result of our choice of matrices employed for III; with this our

visualisations (for III, IV and V) have an element of arbitrariness although the

eigenvalues do not. Despite the differences in structure, this eigenmode displays

the same evolution cycle as the first mode, switching between the flux ropes and

the tightly confined double-cigar structures.

The flux ropes in classes I and III (above) closely resemble the structure of fields

in smooth Ponomarenko dynamos (Ponomarenko, 1973). This is well known as a

slow dynamo mechanism, relying on diffusion in a curved geometry and shear to

give a dynamo cycle (Gilbert, 1988; Ruzmaikin et al., 1988). Our current results

indeed show falling growth rates for these branches as Rm → ∞, in keeping with

this interpretation.

5.3.5 Symmetries and field configurations

We briefly examine how the individual symmetry classes I to V impact on the

presence or otherwise of cigars in the magnetic field problem. We consider the

separatrix whose centre is at the α-type stagnation point at r = −(1, 1, 1)π/4 and

introduce local cylindrical polar coordinates (ρ, θ, ζ) there (see Gilbert et al., 2011),

given by
x

y

z

 = −


π/4

π/4

π/4

+


1/
√

2 1/
√

6 1/
√

3

−1/
√

2 1/
√

6 1/
√

3

0 −2
√

6 1/
√

3



ρ cos θ

ρ sin θ

ζ

 . (5.2)

We choose to test the action of two transformations, d and n, on the potential

for single cigars to develop. We identify these particular transformations as they

simply rotate about the stagnation point r = −(1, 1, 1)π/4; other transformations

will act as rotations about other stagnation points or will map one stagnation point

to another. In the new coordinate system, the action of d is to take (ρ, θ, ζ) →
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(ρ, θ + 2π/3, ζ) and the action of n is to take (ρ, θ, ζ) → (ρ,−θ,−ζ). We may

consider potential cigar structures of the general form

b = ζ̂ρmeimθ, (5.3)

and we assume that a single cigar manifests as a local, approximately axisymmetric

(i.e. m = 0), ζ-independent structure. Under the action of d, we have that dbα = bα

for both classes I and II, as M I(d) = M II(d) = 1. We therefore arrive at the relation

ei(2πm/3) = 1, for which the solution is m = 0 mod 3. However, M I(n) = −M II(n) =

1 and so nbI = bI, whereas nbII = −bII. For class I, we find no value of m satisfies

this relation for the transformation n suggesting that no single axisymmetric cigars

can exist in this class. In class II, a single cigar is indeed possible, with m = 0 as

the only valid solution.

In class III, this becomes more complicated, owing to the presence of multiple fields.

We set

bIII1 = c1 ζ̂ρ
meimθ, bIII2 = c2 ζ̂ρ

meimθ, (5.4)

where c1 and c2 are arbitrary constants and we recall that

M III(d) =
1

2

 −1
√

3

−
√

3 −1

 , M III(n) =

−1 0

0 1

 . (5.5)

Under the action of d, we find that

M III(d)

c1
c2

 = e−i(2πm/3)

c1
c2

 , (5.6)

suggesting that the restrictions onm are determined from the eigenvalues ofM III(d).

These eigenvalues are found to be λ1 = λ2 = −1
2

+ i
√
3
2

, which can be rewritten as

λ1 = ei(2π/3) and λ2 = ei(4π/3). Clearly for class III, we restrict m 6= 0 mod 3 and

this is further confirmed by the action of n on these fields, ruling out the possibility

of a single cigar in this class.
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We carry out the same analysis for classes IV and V, which have fields bαj =

cj ζ̂ρ
meimθ for j = 1, 2, 3 and irreducible representations given by

Mα(d) =


0 0 1

1 0 0

0 1 0

 , Mα(n) = ±


0 1 0

1 0 0

0 0 1

 , (5.7)

with α as IV for the upper sign and α as V for the lower. If c = [c1, c2, c3]
ᵀ, then

under the action of d for both fields, we have

Mα(d)c = ei(2πm/3)c, (5.8)

and again the restrictions of m are determined by the eigenvalues of Mα(d). These

eigenvalues are λj = ei[2π(j−1)/3], resulting in m = 0, 1, 2 mod 3 and thus placing no

restriction on m. However, under the action of n, we have that nbIV3 = b3, which

results in no solution for m = 0 suggesting that single cigars are not possible in

class IV. For class V we have nbV3 = −b3, resulting in the solution m = 0 and so

single cigars are possible in this symmetry class.

This characterisation of the structures that can occur within a given symmetry class

has points of contact with figures showing magnetic fields, earlier in this section,

and the growth rates at the largest values of Rm in figure 5.1. We observe that the

two modes showing the fastest growth rates are II and V, in which single cigars

can exist. On the other hand I, III and IV show rather smaller growth rates to

the right of this figure. Although these cases allow multiple cigars (that is m 6= 0)

or more complex structures, the enhanced dissipation is likely to suppress growth

rates at these Rm.

5.3.6 Field structures and regions of chaos

The ABC flows’ Lagrangian chaos is believed to play an important role in con-

structive stretching and folding of the magnetic field, leading to amplification over
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successive cycles. We know that for classes II, IV and V (and to some extent III),

the magnetic energy builds up at the α-type stagnation points and is stretched in

two different directions towards opposite sides of the same β-type point, forming

tubes of flux. In the Poincaré sections (figure 5.5), the α- and β-type points are

identifiable but indistinguishable from one another, though the mid-points of the

separatrices can also be clearly recognised where three narrow bands of chaos meet

from different directions.

As pointed out by Childress and Gilbert (1995), the resolution of the numerical

models in Lau and Finn (1993) at Rm = 1000 is relatively low, meaning that the

grid point spacing is large compared to the size of the areas of chaos. From our

numerical models, the fields at the highest Rm are visualised near to the α-type

stagnation point at r = (5, 3, 1)π/4 in figure 5.17 and near to the separatrix mid-

point at r = (4, 4, 0)π/4 in figure 5.18. The values of Rm chosen were 5000 for

classes IV and V, and 4000 for class II – it was decided to investigate the structure

before the high-Rm mode change in class II. At the α-type stagnation point, we see

for classes IV and V that the most concentrated areas of magnetic field are located

very close to the actual stagnation points. For class II, the cigar actually lies on

the stagnation point, as is the case at lower Rm. Additionally, the fin-like features

of class II are seen to correspond with the bands of chaos at the α-type stagnation

point. The areas of strong field in all classes appear to lie well within the broad

chaotic regions associated with the stagnation point, in these high Rm regimes. The

observation could be made that there is no fine-scale structure associated with the

extremely narrow bands of chaos, though we note that the resolution still may not

be small enough to sufficiently resolve the smallest chaotic regions. The distance

between two grid points is indicated by the length of the black line in the lower-

left of the cross-sections; it is clear that the strongest areas of field may only be

spread over the equivalent of a 3×3 or 4×4 grid points. However, on increasing

the resolution it is known that dynamo growth rates will not change significantly,

having already converged to within desired accuracy (three significant figures). We

can thus assume that the cigars themselves, are sufficiently well-resolved. The
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(a) (b)

(c)

Figure 5.17: Magnetic field component bz at r = (5, 3, 1)π/4 for (a) class II, Rm =
4000, (b) class IV, Rm = 5000 and (c) class V, Rm = 5000. Overlaid in white is
the Poincaré section and the length of the black bar signifies the distance between
two grid points.

second set of overlaid cross-sections (figure 5.18) centres on a separatrix mid-point

at r = (4, 4, 0)π/4 and is where the Lagrangian chaos is most tightly confined.

We see that the areas of strongest field, in these cross-sections, coincide with the

mid-point itself (π, π, 0) in all three classes. The fin-like projections of class II

correspond well with the thin bands of chaos, with a clear three-fold rotational

symmetry. Class IV’s four cigar-like structures are visible with one pair much

stronger than the other at the particular time the snapshot was taken. The two

cigars of the strong pair seem to form in relation to two of the three bands of chaos

that meet at the separatrix, whereas the weaker pair are located within the third

band. Smaller features are noticeable in this section, with some field structure

located in the extremely thin outer chaotic regions. Class V’s two cigars appear
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(a) (b)

(c)

Figure 5.18: Magnetic field component bz at r = (4, 4, 0)π/4 for (a) class II, Rm =
4000, (b) class IV, Rm = 5000 and (c) class V, Rm = 5000, with overlaid Poincaré
section.

to be located well within the chaotic regions at the separatrix mid-point. Some

weaker field features associated with the strong cigar are located in two of the

three chaotic bands, with the third band (bottom half of figure 5.18(c)) containing

a weak extension of the subdominant flux tube.

Cross-sections were not taken for higher Rm, in part, due to the size of the storage

array involved. The full process of unfolding to the full domain and carrying out

a fast Fourier transform is incredibly memory-intensive at such high Rm. The

difficulty of handling such large files with Fortran and IDL (used to produce cross-

sections and convert the data for use in VAPOR), along with the ever reducing

scales of the structure involved, means that visualising these fields is complex and

time-consuming, and out of the scope of this work.
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5.3.7 Magnetic energy spectra

Finally, we briefly study the magnetic energy spectra of simulations in each sym-

metry class. The magnetic energy of the Fourier modes is calculated and placed

into shells, depending upon the wavenumber of the mode. Modes of wavenumber

(l,m, n) are placed into shell j such that if k = (l2 + m2 + n2)1/2 then j = bkc.

For those classes and Rm regimes in which the dominant eigenmode is oscillatory,

the simulation was rerun and the energy of each shell was averaged over an entire

cycle. The spectra reveal some differences between the representations that mirror

(a) (b) (c)

(d) (e)

Figure 5.19: Energy spectra displaying normalised magnetic energy against
wavenumber k (log-log) for (a) I to (e) V, at Rm = 101, 102, 103, 104.

the structure of the fields in real space. It is immediately visible, in figure 5.19,

that the spectra of class I are very different to those of the other classes, with this

reflecting the structural differences identified earlier in the section. Prior to the

mode change, nearly all the energy is located in the mode b1,0,0 in HN , with trace

amounts of energy in higher wavenumber modes. After the mode change, we see

that the majority of magnetic energy is located on fairly large scales, k ∼ O(1),
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with roughly equal distribution over the range k ∈ [4, 8] at both Rm = 103 and

104. It appears that some energy remains at the smaller scales with approximately

equal amounts of energy over the range k ∈ [40, 100] at Rm = 104. The consider-

able energy at large scales is consistent with the broader spatial scales of a slow

dynamo maintained by weak stretching in the principal vortices.

By contrast, the spectra of the other four classes are very similar, with minor

differences in class III. Despite areas of strong field forming in the principal vortices,

in class III, the energy spectra prior to the mode-change correspond visually to

those of the other classes. This may be because the field in the principal vortices is

a transient feature, only forming at the point of lowest energy in the cycle and when

the field is undergoing a reversal, and so for the majority of the cycle the energy

does not remain at the largest scales. For Rm = 103 (after the mode crossing),

the spectrum still roughly resembles those of the other classes, though has features

of class I such as the steep slope for low wavenumber k. Class IV also differs for

Rm = 103 to those of the other classes, with the magnetic energy distributed over

a broad range of scales. On comparison between figures 5.10 and 5.13, we see that

the same eigenmode at Rm = 200 (as at Rm = 103) has structures that are much

less confined than in class II at Rm = 100.

Most importantly, in figure 5.19, it is seen that for representations II, IV and V a

spectrum with a power law dependence of approximately k emerges at large Rm:

this is consistent with the concentration of magnetic field in isolated flux tubes (A.

Gilbert, private communication). Here we draw a parallel between the magnetic

induction equation (1.12) and the vorticity equation for an incompressible flow u,

given by

∂tω = ∇× (u× ω) + ν∇2ω, (5.9)

where ω is the fluid vorticity, given by ω = ∇ × u and ν = µ/ρ is the kinematic

viscosity. A well-known solution to (5.9) is the Burgers vortex, in which vorticity

has a Gaussian distribution about an axis; a vortex tube not unlike the magnetic

flux tubes we find in classes II, IV and V. Such tubes of vorticity would correspond
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to an energy spectrum of k−1 and so a vorticity spectrum of k. Though the magnetic

field is not directly linked to the flow as is the vorticity, it may be possible to

interpret the formation of magnetic flux tubes, or cigars, through well-studied

vorticity transport mechanisms.

Overall, all spectra clearly show a high-k falloff in magnetic energy, well before the

largest shell which has kmax =
√

3(N − 1)1/2. This identifies that the magnetic

fields are well-resolved at the smallest scales.

5.4 Arnoldi method results

This section concerns the results obtained through the use of the ARPACK routine

in the NAG library. As discussed in the previous chapter, this method uses an (im-

plicitly restarted) Arnoldi iteration method to identify the eigenvalues of interest,

in this case those with largest real part.

As the resolution N scales as R
3/2
m and nbv scales with N (though this relationship

is not well-understood), the size of the problem quickly becomes unmanageable for

Rm > O(102). For this reason, we only provide a detailed investigation for Rm up

to 100 in all classes, though we carry out two case studies at higher Rm. To obtain

the results for Rm ≤ 100, the number of eigenvalues to be found (nev) is set to 10.

As with the eigenvalues of class V in section 4.5, we discard eigenmodes found at

fewer than four values of Rm, in addition to one eigenvalue from a complex pair.

This leaves at most 6 unique eigenvalues at any one Rm investigated.

On successful completion, the routine outputs the eigenvalues found and prints off

the corresponding eigenvectors to file. The eigenvalues then have to be manually

assigned to branches: this task is made more difficult as the NAG ARPACK rou-

tine does not output eigenvalues in any particular order and branch crossings are

frequent, meaning that the first eigenvalue outputted for a specific Rm may not

belong to the same branch of solutions as the first eigenvalue of the previous or

next Rm studied. To accurately match the eigenvalues to the correct branches, it
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is assumed that their real parts do not change drastically over a short range of Rm.

The easiest method of matching involves identifying eigenmodes through Im(λ);

the growth rates of different modes are often very similar but their frequencies

have, so far, always been distinctly different. The process of matching by hand is

time-consuming but rewarding, as the varied behaviour of the various subdominant

eigenmodes is revealed; the process could have been automated but undoubtedly

would not have accounted for all exceptions.

(a) (b)

(c) (d)

Figure 5.20: Growth rates of eigenmodes with largest real part for classes (a) I to
(d) IV, for Rm ≤ 100. Results for class V are given in figure 4.11.

Figure 5.20 displays the growth rates of the most dominant eigenmodes of classes I–

IV for Rm ≤ 100, in parallel with the results given for class V in figure 4.11. Results

for eigenmodes with less than four identifiable eigenvalues were not included. The

Arnoldi method reveals an array of previously unknown eigenmodes with their own
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kinks and crossings with other subdominant branches. From the imaginary part

of the eigenvalues, we know that for classes I, II and III, there are no crossings

involving the dominant mode due the lack of discontinuities seen in figure 5.2.

However, it is obvious that in class IV, there are two crossings; one in the interval

Rm ∈ [14, 15] and another in Rm ∈ [32, 33]. The Arnoldi method identifies these

crossings, as it allows us to track the eigenmodes prior to the crossings. In the

time stepping problem, great difficulty is found in resolving two competing modes

near to a mode crossing, particularly in heavily decaying regimes, and so despite

the additional resources needed to calculate two similar eigenvalues, the Arnoldi

method is seen to be far superior for such situations. Furthermore, when time

stepping at low Rm, the magnetic fields are typically decaying very quickly, often

with the total magnetic energy reaching values on the level of machine precision

before being able to settle on a particular eigenmode. The Arnoldi solver avoids

this complication, making it the preferred method for low-Rm regimes.

We turn our attention to the mode crossing in class II, discussed in section 5.2.

Applying the Arnoldi iteration method to the range Rm ∈ [170, 215] has two pur-

poses. Firstly, as the growth rates of subdominant eigenmodes were taken from

transient evolution profiles, we wish to confirm the results through another method.

Secondly, we were not able to locate the non-oscillatory mode at Rm = 170 and

wish to test the Arnoldi method’s ability to find this particular eigenvalue. The

results are summarised in figure 5.21, with only the two modes involved in the

crossing included (though others were indeed found). In the eigenvalues found for

the range Rm ∈ [170, 174], we see an oscillatory eigenmode with Im(λ) displaying

a square root dependence on Rm and appearing to decay to zero; the frequencies

are not visualised. It is immediately clear that a non-oscillatory mode could not

be found at Rm = 170 because the eigenmode is oscillatory at this value. By in-

creasing Rm, the change was found to occur in the interval Rm ∈ [174.2, 174.25]. In

section 5.2, we see that the eigenvalue coalescence leads to two real-valued eigen-

values corresponding to λ+ = α + β and λ− = α − β respectively. In the range

Rm ∈ [174.25, 215], the number of eigenvalues to be found (nev) was set to a suffi-
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Figure 5.21: Coalescence of class II’s subdominant oscillating eigenmode into a pair
of non-oscillatory eigenmodes (squares) in the neighbourhood of the mode crossing
with the eigenmode of the first window (crosses).

ciently large value so that two real eigenvalues were found, leading to the results in

figure 5.21. This identifies another strength of the Arnoldi method; it can be used

to follow both branches of solutions after such a bifurcation. Such analysis was

not carried out for the coalescence in class V (Rm ≈ 215), as the Arnoldi method

is much more computationally demanding for multi-dimensional representations,

owing to the relative size of the matrix A, and is currently beyond the realms of

this investigation.

Despite the interesting eigenmodes revealed, it must be noted that the Arnoldi

method has not found a subdominant dynamo eigenmode, that is one with Re(λ) >

0, for Rm ≤ 100, within any of the five symmetry classes. It is certain that at least

one such subdominant mode exists at larger Rm, at least within class V, as the

coalescence of eigenvalues leads to a secondary mode corresponding to λ− = α− β

for Rm > Rcrit
m .

On successful convergence, the Arnoldi routine has identified the requested number

of Ritz vectors, which it then converts to eigenvector estimates. These estimates

can be unpacked to HN in the same fashion that the vector w is unpacked on every
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iteration of the routine. We can then reconstruct the magnetic field for FN through

the unfolding routines of the time stepping codes and produce field visualisations

in the same procedure used in the time stepping routines. The visualisations pro-

duced are varied, with some corresponding well to the fields seen in the time step-

ping and others only vaguely resembling their time stepping counterparts. Figure

5.22 displays the cross-sections and 3-d visualisations of the dominant eigenmodes

in classes II to V, constructed from the Ritz eigenvectors. We note that the cor-

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.22: Visualisations produced using the IRAM routine. Shown are field
magnitude |b| for (a) II to (d) V and field component bz at z = π/4 for (e) II to
(h) V, at Rm = 100.

responding eigenvalues of the above visualisations are identical to those obtained

through time stepping to three significant figures. By comparing with figures 5.6

and 5.7, it is clear that only class II closely resembles the structure found in the

time stepping. From investigating the evolution of the periodic fields of classes III

to V (these visualisations are not included), it is found that such configurations

as those seen in figures 5.22(b)–(d) and (f)–(h) do not occur in the time stepping

problem. For classes IV (c,g) and V (d,h), the field loosely resembles those of the

time stepping problem, inasmuch as they have the required number of flux tubes

(4 and 2, respectively), though for class III, there appears to be no such similarity.

One of the difficulties in comparing the fields of the two methods is that the Arnoldi

method produces one field configuration for an oscillatory mode, as opposed to a

range of structures in time stepping. At first, it may not seem clear how the Arnoldi
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fields relate to those produced through time stepping, though we recall that each

method is solving a slightly different but related problem. We have that

b = b̃(x, y, z)eλt + b̃
∗
(x, y, z)eλ

∗t, (5.10)

once Hermitian symmetry has been considered, as b is real-valued. In the Arnoldi

routine, we do not consider Hermitian symmetry and so it calculates λ and λ∗ as

distinct eigenvalues which, indeed, they are. On reconstructing the Arnoldi field,

the routine simply returns the time-independent field b̃(x, y, z) in GN . Because

Hermitian symmetry is imposed, the time stepping routines are resolving b as

described in (5.10), which is time-dependent. On decomposing the magnetic fields

and eigenvalues into their real and imaginary components, so that b̃ = b̃r + ib̃i and

λ = λr + iλi, (5.10) is reduced to

b = 2eλrt
[
b̃r cos (λit)− b̃i sin (λit)

]
, (5.11)

and so it is possible to compare the fields directly by constructing b in (5.11) from

the Arnoldi field components b̃r and b̃i. To do this, we must know the phase

of the time stepping snapshot, i.e. how far through a cycle the snapshot was

taken, however it is not necessarily clear whether a time of λit = 0 mod 2π would

correspond to the minimum energy state of a cycle. Furthermore, the Arnoldi

solver will actually be returning eiφb̃(x, y, z), where eiφ is an arbitrary phase factor.

For complex eigenvalues, this phase factor can be absorbed into the field’s periodic

behaviour, though this then makes comparing the resulting fields of both methods

more complicated. It is important to note that for λ ∈ R, (5.11) reduces further

to b = 2eλr b̃r, in theory making direct field comparisons much simpler. Again, to

account for the arbitrary phase factor that is introduced by the Arnoldi solver, we

simply take the real part of eiφb̃r, which amounts to cos(φ)b̃r – a scalar multiple

of b̃r. This should not affect the comparison, as the fields are normalised by the

visualisation routines.

Additionally, we have to remember that these fields are produced from eigenvector
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estimates and as such, may not be accurate depictions of the actual eigenvectors.

It is also possible that the Arnoldi fields show valid field configurations that cannot

be reached through any time stepping methods. For the oscillatory eigenmodes,

the Arnoldi method typically finds the pair of eigenvalues and their correspond-

ing eigenvectors. It would be expected that these eigenmode pairs have identical

field configurations but we find that this is not the case. Whilst bearing some

resemblance, it seems that these field pairs share only minor details. For the above

figure, the eigenmode field (from each pair) with the greatest visual similarity to

the time stepping field was chosen which for classes III and V, correspond to nega-

tive Im(λ). The difference in the fields of these eigenmode pairs may be explained

by the inaccuracy of the eigenvector estimates.

For a final case-study, we look at visualising the fields of non-oscillatory eigenmodes;

those of class V at Rm = 250. At this Rm, it is difficult to calculate the eigenvectors

due to the large size of the problem, and so the routine is only requested to find three

eigenvalues. The eigenvalues are numbered 1 to 3, in descending order of Re(λ),

with their respective configurations displayed in figure 5.23. The eigenvalues are

λ1 = 0.0711, λ2 = 0.0292 and λ3 = 0.0167−0.488i. Importantly, we have identified

the existence of two subdominant dynamo eigenmodes.

In the figure, panels (a) and (d) are equivalent, respectively, to (a) and (b) of

figure 5.9. They are not substantially different in that two oppositely polarised

flux tubes are present near to the α-type stagnation point. However, one cigar is

forked, so that in the cross-section, it appears as two tubes of the same polarity;

see panel (d). As this is a non-oscillatory eigenmode, it was hoped that the Arnoldi

method’s field would not deviate too far from that revealed through time stepping.

Again, it has to be assumed that the differences are introduced by the eigenvector

estimation process. Ironically, the structure of eigenmode 3, which is oscillatory,

is (visually) closer to the actual time stepping structure, with two cigar-like flux

tubes of opposing polarity.

Finally, we note that there is a distinct possibility that eigenmode 2 – panels (b)

and (e) – could be the real partner to eigenmode 1, in that if λ1 = λ+ = α + β,
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(a) (b) (c)

(d) (e) (f)

Figure 5.23: Visualisations produced using the IRAM routine. Shown are field
magnitude |b| for eigenmodes (a) 1 to (c) 3 and field component bz at z = π/4 for
eigenmodes (d) 1 to (f) 3, in class V at Rm = 250.

then λ2 = λ− = α − β, with α and β being real differentiable functions of Rm.

Some structural similarity exists: eigenmode 1 has only one ‘forked’ cigar in each

pair, whereas in mode 2, both cigars of the pair are forked; see panel (e).

5.5 Summary

In this final section, we provide a brief summary of the important findings and

results. Firstly, the breakdown of the problem into five subproblems has been suc-

cessful, in that we have been able to accurately reproduce (and improve upon)

results of previous studies using only two of the five symmetry classes. We now

know that the first window of dynamo action is provided by an eigenmode in class

II, whereas the eigenmode of the second window is in class V, giving a greater under-

standing into the physical differences of the fields in each window. The eigenmode

in class V remains dominant in the limit of our simulations and at Rm = 104, it

reaches γ = 0.0863. The dominant eigenmodes in classes I, III and IV have not

previously been identified, as they are always subdominant to either class II or

class V (or both) at any given Rm. However, we have shown that fields in these
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classes are also capable of dynamo action, thus dynamos can exist in all symmetry

classes. Classes II, IV and V show no sign of slowing growth by Rm = 104, making

these the best candidates for fast dynamos. It is even possible that another mode

crossing occurs between class II and V, at some Rm > 2.5×104. Classes I and III

appear to resemble slow dynamos, as we see that γ → 0 as Rm →∞.

Secondly, a closer look at the growth rate kinks confirm their nature as eigenvalue

coalescences, decoalescences or mode crossings. By taking field snapshots from

either side of the kinks, and using these as seed fields for a range of Rm, we

either produce the same growth rate profile suggesting both seed fields belong

to the same eigenmode or produce a distinct profile for each initial condition.

The first case indicates coalescence or decoalescence, where coalescence describes

a complex eigenvalue pair merging to form a real eigenvalue pair, with the reverse

for decoalescence. The second case shows a mode crossing. We find an eigenvalue

coalescence (or decoalescence) in classes II, IV and V (i.e. the fast dynamos),

and mode crossings in all classes (particularly at low Rm). An example of each

of coalescence (class V, Rm ≈ 215), decoalescence (class II, Rm ≈ 330) and mode

crossing (class II, Rm ≈ 190) are investigated in greater detail, confirming the

assumptions made, about the causes of growth rate kinks, using the Im(λ) profiles.

Thirdly, the different symmetry restrictions of each class lead to different magnetic

field configurations. There are essentially only two types of structure, the first type

being flux ropes. The flux ropes are formed from six flux tubes in the principal

vortices (regions where |u| is large and predominantly in one direction) and are

seen in the dynamos of classes I and III at high Rm. For lower Rm, the individual

tubes of the rope are merged so that only a single flux tube exists in each principal

vortex. The second type of structure seen is that of the cigars, which are centred

on the α-type stagnation points and extend towards either side of the same β-type

point. These form in all classes except I. The dynamos of classes II, III, IV and V

see varying amounts of cigar-like formations with one, three, four and two cigars

respectively.

In class II, the first window’s eigenmode contains only one cigar (per α-β pair),
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centred on the separatrix. This is often accompanied by fin-like field projections

of opposite polarity to the cigar. In class II’s second dynamo mode, the structure

is more complicated, with fins and narrow flux tubes surrounding the cigar, each

alternatively joined to the central cigar, dependent on its polarity. Class V’s two

cigars are of opposite polarity and lie either side of the separatrix. In the oscillatory

regime, these cigars strengthen and weaken in turn, alternately feeding off one

another. The post-coalescent structure is non-oscillatory and consists of the same

two cigars, however one is now permanently weaker than the other. The field-

generating mechanisms that form this configuration are seen to be the most effective

in the 1:1:1 ABC flow. Class IV is very similar to V, except that each cigar is

replaced with a cigar-pair; the cigars within each pair have opposing polarity.

Classes I and III are very similar in structure and growth rates. The dynamo

of class I consists of flux ropes in all six principal vortices, though this dynamo

mechanism appears to be slow. Class III’s dynamo is a hybrid of flux ropes and

three cigars, with the field’s structure oscillating between the two states over a

single cycle. The flux ropes of class III lie in only four of the principal vortices, but

this is owing to the non-uniqueness of the irreducible representations used for this

class. The flux ropes are visually similar to those seen in a Ponomarenko dynamo,

which is also a slow dynamo.

A brief analysis through a transformation to cylindrical coordinates allows us to

show (analytically) that single cigars lying on the separatrix and centred at the

α-type point can only exist in classes II and V, which have the two highest growth

rates by Rm = 104. Despite single cigars not existing in the other classes, multiple

cigars are permissible.

An investigation into the field structures of classes II, IV and V at high Rm al-

lows us to see the scale of the cigars in comparison to the chaotic regions. It is

noted that the structures are far smaller than the chaotic regions at the α-type

stagnation point and relatively small compared to the chaotic regions of the sepa-

ratrix mid-point. Class II’s cigar (and associated fin-like projections) are three-fold

rotationally symmetric, and are clearly related to the three-fold symmetry of the
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chaotic regions. With multiple-cigar configurations, the cigars do not lie on the

separatrix and are oriented with respect to each of the three connected chaotic re-

gions. In class IV, the two major cigars are each related to one of the three chaotic

bands, whereas the minor cigar pair both share one band. The same is seen in class

V, with the major cigar formed, seemingly, in relation to two of the three chaotic

bands, while the minor cigar forms in relation to the third. The configuration in

class IV is unstable, in that it is oscillatory, whereas it is stable in class V. We also

find in class IV that very small-scale features exist, these being associated with

the very narrow bands of chaos. Since the eigenmode of class II is oscillating at

Rm = 4000, it is possible that such structures, not seen in the supplied snapshot,

exist at other times in the cycle.

The spectra reveal a little more detail on the field structures that exist in each

class. Class I and, to some extent, class III show energy distributed over a large

range of scales, which is a feature of slow dynamos, in fitting with interpretations of

the growth rate in the high-Rm limit and structural similarity to the Ponomarenko

dynamo. For Rm ≤ O(103), this is also seen for class IV, also fitting an apparent

slow dynamo profile, with decreasing γ for increasing Rm. After the mode change at

Rm ≈ 6000, the spectrum more closely resembles those of classes II and V, which

show a power law dependence of approximately k which is consistent with the

magnetic field being concentrated into individual flux tubes (cigars). The spectra

also show that the choice of N at each Rm is sufficiently large and so the field is

well-resolved on the smallest scales.

Finally, interesting results of the Arnoldi iteration method are provided. The

growth rates of dominant and subdominant eigenmodes are given for all five sym-

metry classes. They reveal a complex array of subdominant modes with their own

mode crossings and growth rate kinks. This method verifies the growth rates cal-

culated for the dominant eigenmodes of each class, at least for Rm ≤ 100. It

also provides further insight into the mode crossings of class IV, previously only

seen through the discontinuities of Im(λ). In classes II and V, it also shows that

there are no subdominant dynamo modes for Rm ≤ 100. Through the case study
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of class II’s mode crossing, the Arnoldi method allows both branches to be fol-

lowed past the crossing and identifies that the non-oscillatory mode emerges from

an eigenvalue coalescence in the interval Rm ∈ [174.2, 174.25], explaining why no

such non-oscillatory mode could be found at Rm = 170 in the time stepping prob-

lem. From the discussion of coalescences in section 5.2, we know that two real

eigenmodes exist with corresponding eigenvalues λ+ and λ−, and with the Arnoldi

method, we are able to not only confirm the existence of the subdominant λ−

eigenmode, but also follow its growth rate for the range of Rm investigated in this

particular case study.

The eigenvalues calculated have associated eigenvectors, which the Arnoldi method

estimates from the Ritz vectors. We are able to reconstruct the magnetic field of

an eigenmode through the same unpacking and mode copying procedures used

in the routine itself. Visualisations produced for classes II to V at Rm = 100

(oscillatory regime), identify some structural similarities with the time stepping

problem, particularly in the case of class II, in which the structure greatly resembles

that of the time stepping. For oscillatory fields, the Arnoldi method does not

produce the same field b as in the time stepping, though one can, in theory, be

reconstructed from the other. In the steadily evolving fields, we would expect the

Arnoldi solver’s snapshots to resemble those of the time stepping, even despite the

additional phase factor introduced by the Arnoldi method. However, in another

case study of class V at Rm = 250, we find physical differences, such as the cigars

being ‘forked’, as opposed to the standard cigars seen earlier in the chapter. We

put these differences down to the fact that there are errors when estimating the

eigenvectors; more analysis is needed to determine whether this is truly the case.

Furthermore, this case study allows us to find subdominant dynamos: not only do

we find the eigenvalue λ− which corresponds to the dominant mode λ+ but a third

eigenvalue that is oscillating at this value of Rm and has a positive growth rate,

thus a subdominant dynamo mode. These additional eigenmodes are visualised

and it is found, perhaps coincidentally, that the third (oscillating) eigenvalue most

closely resembles the field of the time stepping problem.



Chapter 6

Fluid stability of the 1:1:1 ABC

flow

Why bother with a cunning plan when a simple

one will do?

Terry Pratchett

In this short chapter, the problem of linear hydrodynamic stability of the 1:1:1

ABC flow is investigated, as a function of the Reynolds number Re. We explore

this problem as a natural extension to our investigation into the 1:1:1 ABC dynamo,

due to the similarity between the two. In studying this problem, we adopt a similar

numerical scheme with only minor changes made and, again, take advantage of the

symmetries of the flow to reduce the full problem to a set of five sub-problems,

the sum of which is computationally less intensive than the original. Through

the symmetries, we are able to see the different possible independent perturbation

configurations that may occur and make direct comparisons to their equivalent

magnetic field structures.

The chapter begins by formulating the problem in terms of U = u + v (the ABC

flow plus a perturbation) in the Navier-Stokes equation and obtaining an equation

213



214 CHAPTER 6. FLUID STABILITY OF THE 1:1:1 ABC FLOW

for the evolution of v, which is then linearised. The majority of the technical details

regarding symmetries remain the same, and so we only give the numerical scheme

used to time step each mode. We then show the results of simulations carried out

for Re up to 103, providing eigenvalue profiles and visualisations of the structure of

the perturbation v, supplemented by energy spectra. The chapter concludes with

a summary of the main findings.

6.1 Formulating the problem

The problem of linear fluid stability in the ABC flows is, mathematically, very

close to the kinematic dynamo problem; the link between the two problems is

examined in detail by Moffatt (1985, 1986). The investigation of Galloway and

Frisch (1987) into the ABC flow’s linear stability is a natural follow-up to that

of the dynamo problem (Galloway and Frisch, 1986), as it can be solved with

only minor modifications. For the same reason, we investigate the linear fluid

stability problem but with the additional symmetry reductions developed for the

ABC dynamo problem.

We give the 1:1:1 ABC flow again, so as to avoid referring to previous chapters, as

u = (sin z + cos y, sinx+ cos z, sin y + cosx), (6.1)

In the first chapter, it was mentioned that the ABC flows have the Beltrami prop-

erty ∇× u = ku, and this can also be written as

0 = u× (∇× u) = 1
2
∇|u|2 − u · ∇u. (6.2)

From the first chapter, we also recall the non-dimensionalised Navier-Stokes equa-

tion as

∂tU +U · ∇U = −∇P + ε∇2U + f , (6.3)

for an incompressible flow U , with ε as the kinematic viscosity and with the force f



6.2. NUMERICAL METHODS 215

set to εu to counter viscous dissipation, as ∇2u = −u. To investigate the stability

of the 1:1:1 ABC flow, we introduce a perturbation velocity v and set U = u+ v

and P = −1
2
u2 + p in view of (6.2) where p is the perturbation pressure. The field

v obeys, exactly,

∂tv + u · ∇v + v · ∇u+ v · ∇v = −∇p+ ε∇2v, (6.4)

which in the linear approximation becomes

∂tv + u · ∇v + v · ∇u = −∇p+ ε∇2v, (6.5)

with∇·v = 0. This has a very similar structure to the magnetic field problem, with

ε = R−1e now as an inverse Reynolds number. In parallel to the dynamo growth

rates and their dependence on Rm, we are interested in the evolution of v as Re is

increased, and the resulting perturbation structures. Unlike the magnetic problem,

we now have u ·∇v+v ·∇u as opposed to u ·∇b−b ·∇u of the magnetic problem,

as well as an additional pressure gradient ∇p. The pressure is an unknown quantity

but we use the fact that the field v is divergence-free to project the pressure out;

this is seen in the next section.

6.2 Numerical methods

As with the dynamo problem, we are solving (6.5) which is linear and thus an

eigenvalue problem. We therefore are looking for solutions of the form

v = ṽ(x, y, z)eλt, (6.6)

with eigenvalues λ. In Fourier space, the perturbation takes the form

v =
∑
l,m,n

vl,m,n(t) eilx+imy+inz , vl,m,n = (Xl,m,n, Yl,m,n, Zl,m,n), (6.7)



216 CHAPTER 6. FLUID STABILITY OF THE 1:1:1 ABC FLOW

and for the sake of simplicity, we keep the notation X, Y and Z as the respective

components of v, as in the magnetic problem. The perturbation field v is real-

valued and so the field has Hermitian symmetry, given by

vl,m,n = v∗−l,−m,−n. (6.8)

We continue to use a three-step Adams–Bashforth numerical scheme for the advec-

tive terms, with the diffusive terms integrated exactly, and solve

vj+1
l,m,n = El,m,n

[
vjl,m,n + 1

12
∆t
(

23Γj
l,m,n − 16El,m,nΓ

j−1
l,m,n + 5E2

l,m,nΓ
j−2
l,m,n

)]
, (6.9)

with

El,m,n = exp
[
−ε
(
l2 +m2 + n2

)
∆t
]
. (6.10)

The term Γ in (6.9) includes the projection of the pressure gradient from the

convective acceleration terms. We have that

Γj
l,m,n =

[
k
(
k ·Λj

l,m,n

)
/k2
]
−Λj

l,m,n, (6.11)

where k = (l,m, n) and k2 = |k|2 = l2 + m2 + n2. The term Λj
l,m,n differs only

slightly to its magnetic counterpart (4.9)–(4.11), with the x-component as

2(Λx)
j
l,m,n = imB

(
Y j
l,m−1,n + Y j

l,m+1,n

)
− imC

(
Xj
l,m,n−1 +Xj

l,m,n+1

)
+mC

(
Y j
l,m,n−1 − Y

j
l,m,n+1

)
−mA

(
Xj
l−1,m,n −X

j
l+1,m,n

)
+ inB

(
Zj
l,m−1,n + Zj

l,m+1,n

)
− inA

(
Xj
l−1,m,n +Xj

l+1,m,n

)
+ nC

(
Zj
l,m,n−1 − Z

j
l,m,n+1

)
− nB

(
Xj
l,m−1,n −X

j
l,m+1,n

)
− 2C

(
Zj
l,m,n−1 + Zj

l,m,n+1

)
− 2iB

(
Y j
l,m−1,n − Y

j
l,m+1,n

)
. (6.12)
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The y-component is given by

2(Λy)
j
l,m,n = ilC

(
Xj
l,m,n−1 +Xj

l,m,n+1

)
− ilB

(
Y j
l,m−1,n + Y j

l,m+1,n

)
+ lA

(
Xj
l−1,m,n −X

j
l+1,m,n

)
− lC

(
Y j
l,m,n−1 − Y

j
l,m,n+1

)
+ inC

(
Zj
l,m,n−1 + Zj

l,m,n+1

)
− inA

(
Y j
l−1,m,n + Y j

l+1,m,n

)
+ nA

(
Zj
l−1,m,n − Z

j
l+1,m,n

)
− nB

(
Y j
l,m−1,n − Y

j
l,m+1,n

)
− 2A

(
Xj
l−1,m,n +Xj

l+1,m,n

)
− 2iC

(
Zj
l,m,n−1 − Z

j
l,m,n+1

)
, (6.13)

and the z-component as

2(Λz)
j
l,m,n = ilA

(
Xj
l−1,m,n +Xj

l+1,m,n

)
− ilB

(
Zj
l,m−1,n + Zj

l,m+1,n

)
+ lB

(
Xj
l,m−1,n −X

j
l,m+1,n

)
− lC

(
Zj
l,m,n−1 − Z

j
l,m,n+1

)
+ imA

(
Y j
l−1,m,n + Y j
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)
− imC

(
Zj
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)
+mB
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Y j
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j
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−mA
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j
l+1,m,n

)
, (6.14)

with A = B = C = 1 for the 1:1:1 ABC flow (6.1).

The same symmetry considerations apply to fluid stability as to the magnetic

problem, as they are driven by the same flow. We are solving this problem in

the fundamental domain HN , which means that once (6.9) has been solved for all

modes within HN , then the modes immediately outside of HN need to be filled.

This is carried out in an identical fashion to the magnetic problem, with mode

copying carried out as described in (4.42)–(4.45) at the beginning of each time

step. As with the magnetic routines, each class is numerically solved using a

distinct program and thus there are five branches of results.

To investigate the behaviour of the perturbation v, we calculate its kinetic energy

EK at every time step, in the same fashion that EM is calculated in the magnetic

problem, building up a time series of ln(EK) allowing us to calculate the growth

rate γ = Re(λ) from the linear trend and Im(λ) from the oscillation period (if

applicable). The same parameters are used as in the magnetic problem, namely
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those summarised in table 4.1 of section 4.1.2. Random seed fields are used unless

stated otherwise.

Finally, we note that the Arnoldi iteration method was not used in solving the fluid

stability problem, though it is possible to do so. On modifying the core operation

within each time step to account for differences in Λ and to then calculate Γ, no

further adjustments are required due to the similarity of these problems. This also

means that the parallel codes could easily be adapted to solve this problem, as the

communication and mode copying steps are unaffected. We have not parallelised

these routines, however, as the values of Re investigated did not warrant doing so.

6.3 Results

This section provides the results of the linear hydrodynamic stability simulations

carried out in all five symmetry classes. To verify that the routines were solving

the correct problem, we draw on the results of Galloway and Frisch (1987), who

investigate up to Re = 200 for the 1:1:1 ABC flow. We use a full domain (FN)

code with no assumption of symmetry for a comparison with their results. They

see an unstable mode emerging at Re ≈ 13 and the growth rate appears to become

asymptotic by Re = 200, with γ = 0.216. We are unable to follow this mode up to

Re = 200, but for Re ≤ 160 our results agree well with growth rates inferred from

the graph; see figure 1.5.

6.3.1 Instability growth rates and frequencies

The numerical results are summarised in figures 6.1 and 6.2, the first of which

identifies the growth rate of v and the second, the imaginary part of the dominant

eigenvalue. It is clear that the results are very different to that of the magnetic case,

with many growth rate kinks. In parallel with the magnetic case, all five symmetry

classes contain flows in which the growth rate of the instability is positive. The first

flow to become unstable is in class V and this occurs somewhere in the interval
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Re ∈ [13, 14]. As Re is increased, classes III, IV and II follow in the intervals

Re ∈ [23, 24], [23, 24] and [26, 30] respectively. Class I is the last to have an unstable

mode, emerging in the interval Re ∈ [49, 50]. It must be noted that in the non-

linear hydrodynamic problem, investigated by Podvigina and Pouquet (1994), the

flow is seen to become unstable in the interval Re ∈ [13, 13.05], which our results

are in agreement with. In contrast to the magnetic case, we see modes from all but

class IV taking the role of dominant eigenmode.

Figure 6.1: Growth rates for fluid instabilities of classes I to V in the 1:1:1 ABC
flow.

Class V remains the most unstable flow until Re ≈ 160, at which point a flow in

class I becomes the dominant mode. It is then superseded by a steady mode in

class II at Re ≈ 370, with this mode remaining dominant up to the largest Re

simulated and has a growth rate of γ = 0.293 at Re = 103. In contrast to the

magnetic problem, all classes have remarkably similar growth rates at large Re

and the instabilities have significantly larger growth rates than their magnetic field

counterparts. Regarding the results of Galloway and Frisch (1987), we note that
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they do not appear to identify the crossing between eigenmodes of classes V and I

for the 1:1:1 ABC flow. It is possible that the spacing (in Re) of their simulations

was not sufficiently small to identify the change, though we would expect to see

some evidence of a kink in their final result. At Re = 200, class V’s dominant

eigenmode has γ = 0.220, not significantly different from their value of 0.216.

They also find that this mode’s oscillation period is 15.4 at this Re, as compared

to our result of 14.8. It is therefore possible that they have followed the eigenmode

of class V past the crossing, although this would require using a settled field at a

lower Re (e.g. 150) as a seed field at Re = 200, which they may well have done.

As a check, we compared the growth rates of the full code (without symmetries)

to the envelope of growth rates from all five classes up to Re = 250 and found

that the growth rate kink also exists in the full code too, suggesting that it is not,

somehow, an artefact of the reduced codes.

Figure 6.2: Frequencies for fluid instabilities of classes I to V in the 1:1:1 ABC
flow.

All growth rate kinks identified, up to the largest Re explored, are mode crossings.
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From figure 6.2, we observe only discontinuous changes in frequency indicative of

completely different modes emerging within each class. Furthermore, the growth

rate profile of each branch appears to be approaching an asymptotic value prior to

the mode changes; for no Re can we find a falling instability growth rate. We see

no cases of eigenvalue coalescence or decoalescence.

For Re < 5, the dominant eigenmodes of all classes are steady, except for class

II. As Re increases, class II is the only mode for which the dominant modes have

successively lower frequencies. Subsequently, it is also the only class whose eigen-

mode at high Re is steady. The modes of classes I, III, IV and V at Re = 103 are

oscillatory with surprisingly little difference in their frequencies. Notably, classes I

and III are very close in frequency, as are classes IV and V, a potential indicator

that their instabilities are similar in nature. It is also important to be aware that

the strongest instability at Re = 103 is steady as with the dominant mode of the

magnetic problem.

With regards to projections for behaviour at even higher Re, it is entirely possible

that an eigenmode from another class becomes dominant. We see at least one mode

change for every class, and so it is not unreasonable to expect this behaviour to

continue outside of the range of Re investigated.

6.3.2 Fluid perturbation structures

In this section we provide discussion on visualisations of the magnitude of the fluid

perturbation in the form of 3-dimensional snapshots of |v| and cross-sections of vz

at z = π/4. Unlike the magnetic problem, we choose to visualise only the growing

instabilities, as all classes have growing instabilities for moderate values of Re. We

first visualise instabilities at Re ∼ O(102); at the specific Re chosen for each class,

the respective eigenmode is the same one to first become unstable in that class.

These fields are seen in figures 6.3 (3-d) and 6.4 (2-d) for classes I, IV and V at

Re = 100, class II at Re = 80 and class III at Re = 90. It is immediately noticeable

that the configurations are, for the most part, very different to those seen in the
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(a) (b) (c)

(d) (e)

Figure 6.3: Visualisations of magnitude of fluid instability |v| for classes (a) I,
Re = 100; (b) II, Re = 80; (c) III, Re = 90; (d) IV, Re = 100 and (e) V, Re = 100.

magnetic problem and in combination with the growth rates in figure 6.1, suggest

that the symmetries play a less crucial role in the fluid instability problem. Firstly,

the areas of strongest instability in class I’s mode are located near to the α-type

stagnation point. From snapshots taken at other times during the cycle, it appears

that these instabilities are also linked to the principal vortices, particularly those

parts that lie close to the separatrices; this is perhaps more clear in figure 6.4(a),

where structures are visible roughly vertically along the line x = π/2. A clear

three-fold rotational symmetry is seen in figure 6.3(a), as is to be expected, owing

to the action of d and d2 on class I. The strongest instabilities of class II appear

as flattened cigars around the α-type stagnation point. Again, the broader scale

of these features means that they appear to be simultaneously related to both the

principal vortices and the stagnation points. The perturbation direction in each

of these ‘cigars’ is not entirely clear from the cross-section, as only two clearly

separate features are seen. The instabilities of classes III and IV are concentrated

primarily in the principal vortices and appear as twisted coil-like structures. It

is important to note that only two of the six principal vortices, in each class,
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(a) (b) (c)

(d) (e)

Figure 6.4: Fluid instability component vz at z = π/4 for classes (a) I, Re = 100;
(b) II, Re = 80; (c) III, Re = 90; (d) IV, Re = 100 and (e) V, Re = 100.

seem to generate the instabilities. The six principal vortices can be paired off

by the direction of strong flow, each pair will have large |ux|, |uy| or |uz| with

small magnitudes in the other directions. The instabilities in each of these classes

seem to form in a single principal vortex pair, suggesting that one direction is more

amenable to instability formation than the others. This is not surprising, as classes

III, IV and V lack the three-fold rotational symmetry of classes I and II. It may

be asked why a certain direction appears to be favoured above others but, as in

the magnetic problem, the direction is arbitrary and is related to the choice of

irreducible representations. Owing to the multi-dimensional representations being

non-unique, alternative choices of irreps could lead to different directions being

favoured. Class III appears also to have a single cigar-shaped perturbation near

to the α-type stagnation point, though a weaker (secondary) perturbation acting

in the opposite direction is revealed by the cross-section. In class V, a flattened

cigar-like perturbation is clearly visible and through additional visuals (not given

here), it is found to be twisted as it is stretched along the separatrix. The cigar

lies on the separatrix and is centred at the α-type stagnation point, in a similar

fashion to class II’s mode of the magnetic problem.



224 CHAPTER 6. FLUID STABILITY OF THE 1:1:1 ABC FLOW

The second set of visualisations – figures 6.5 and 6.6 – are from snapshots taken

at Re = 300 for all classes. This value was chosen as the dominant modes are, by

this point, on the same branches as the dominant modes at Re = 103, and so the

flows have a similar structure but are not so tightly confined to the separatrices.

The instabilities of these new eigenmodes now appear to more closely resemble

the structures seen in the magnetic problem, with all but class I exhibiting strong

perturbations in cigar-like features. However, we still see much more structure in

the cross-sections than in the magnetic case, indicating that the instabilities are

only partly linked to the chaotic regions near the separatrices.

(a) (b) (c)

(d) (e)

Figure 6.5: Visualisations of magnitude of fluid instability |v| for (a) I to (e) V for
Re = 300

In class I, the eigenmode seen at Re = 300 is the same as that seen at Re = 100.

In figures 6.5(a) and 6.6(a), we are simply seeing another part of the periodic

instability. The perturbations appear to be strongest in the principal vortices but

unstable flow is also situated around the separatrix mid-points connecting the α-

and β-type stagnation points, rather than centred on the α-type stagnation points.

Instabilities also build up at each of the three bands of chaos lying on the two-

dimensional stable manifolds of the α-type stagnation points. In the flow cross-
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section, the well-developed structure associated with the principal vortices seems to

have alternating direction, much like the flux ropes seen in class I’s magnetic field.

Overall, the structure is complicated and the instabilities of this class appear to be

driven by both areas of large |u| and the chaotic regions. The dominant flows in

(a) (b) (c)

(d) (e)

Figure 6.6: Fluid instability component vz for (a) I to (e) V for Re = 300 at
z = π/4.

classes II–V are reminiscent to those of classes II, IV and V of the magnetic problem,

with the familiar multiple cigar configurations. Again, imposing the symmetries

forces the flows into certain configurations. Class II includes three cigars of strong

flow concentrated around the α-type stagnation points that are stretched equally,

in both directions, towards the β-type stagnation points. Referring to the cross

section of vz at z = π/4, the flow in two of the tubes is of the same sign, or direction,

with the third of the opposite sign. Note that in this class, strong perturbations

also form in proximity to the β-type stagnation points; these are not seen in figure

6.5(b) but are in figure 6.6(b). Class III has two cigars of flow centred on the α-type

stagnation point. These two cigars are joined at the stagnation point, however, with

each tube stretched toward a different side of the same β-type stagnation point.

Interestingly, these connected tubes are of the same sign, seen as a flat area of

strong flow at r1 = (5, 3, 1)π/4 in figure 6.6(c).



226 CHAPTER 6. FLUID STABILITY OF THE 1:1:1 ABC FLOW

The most unstable flow in class IV includes a single major and multiple minor

tubes centred on the α-type stagnation point. The cross-section is less clear at

r1 = (5, 3, 1)π/4 than others, though we can identify stronger instabilities near

r2 and relatively strong flows in the principal vortex that runs vertically on the

left-hand side of the section. Not quite so clear, in the cross-section, are medium-

strength instabilities formed in the two principal vortices running perpendicular to

the section, further suggesting that the principal vortices are contributing to the

instabilities seen in this class. The strongest perturbations in class V are, again,

centred on the α-type stagnation points and are stretched into the classic cigars,

though appearing more flattened than their counterparts in the magnetic case.

These features resemble those of figure 2 in Galloway and Frisch (1987), which

appears to belong to the same branch of solutions as those in class V, suggesting

that they are indeed following this subdominant branch past the crossing that

we identify at Re ≈ 160. Drawing on the brief analysis on the possibility of single

cigars, from the previous chapter, we note for the fluid instability problem, that only

class V is seen to have a single cigar in contrast to classes II and V of the magnetic

problem. As the symmetries are unchanged for this problem, the possibility of a

single tube of v for class II remains and this configuration is most likely present as

a subdominant mode.

Overall, in comparing visualisations of both the magnetic and fluid problems at

equivalent parameter regimes, the structures of the fluid problem appear to be less

ordered and much more loosely linked to the thin bands of Lagrangian chaos, with

substantial instabilities also found in the principal vortices.

6.3.3 Energy spectra

Finally, we compare the structures of the fluid instabilities, seen above, with energy

spectra produced at Re = 10, 100 and 1000. To obtain the spectra of oscillating

perturbations, the average energy is calculated over a single cycle. The first point

we make is that the energy, in all five symmetry classes, is mainly located in the
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low-wavenumber modes, suggesting that the instabilities appear as less confined

features, even at high Re. Certainly, this agrees with what we are able to see from

the visualisations, as although the strongest instabilities occur in cigar-like features

(these being fairly small-scale structures) in classes II-V, we also see moderately

unstable flow in other regions such as the principle vortices, which are spatially

broad in comparison to the cigars. We see that the majority of the energy is

located around k ∼ O(10), even for the largest Re investigated, indicating that

all unstable eigenmodes of this problem may share this property. The similarity

(a) (b) (c)

(d) (e)

Figure 6.7: Energy spectra displaying normalised kinetic energy against wavenum-
ber k (log-log) for classes (a) I to (e) V, at Re = 101, 102 and 103.

of perturbation structures and eigenvalues of certain classes is mirrored by the

spectra. Classes I and III show a clear peak at k = 5 for Re = 1000, whereas

classes IV and V both show a roughly equal energy distribution over k = 5 to

k = 8. On the whole, as Re is increased in all classes, there is little change in where

the strongest fields are found, though the magnetic energy is clearly distributed

over a wider range of scales. This contrasts with the magnetic problem for which
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the peak magnetic energy is located at ever-smaller scales as Rm is increased and

clearly scales as a function of Rm.

6.4 Summary

This brief investigation into the stability of the 1:1:1 ABC flow is made as a natural

extension to the 1:1:1 ABC dynamo problem. The same symmetry classes and

their respective irreducible representations, originally constructed for the magnetic

problem, are also used to solve the problem of fluid stability in the (1:1:1) ABC flow.

The results of Galloway and Frisch (1987) are reproduced using the symmetries up

to Re = 160, after which another mode, not indicated by Galloway and Frisch,

becomes dominant. We confirm the emergence of a new dominant mode through

a kink in the instability growth rates at around Re = 160 with no symmetry

assumptions, i.e. using a ‘full’ numerical code.

Despite the similarities of the two problems, the eigenvalues found are very dif-

ferent. In the magnetic problem, we have eigenmodes which persist over a large

range of Rm; for example in class V, the dominant eigenmode does not change for

Rm ∈ [5, 104]. Conversely, in the fluid stability problem, no eigenmode persists

over such a large range of Re and there are numerous mode crossings within each

symmetry class. Also unlike the magnetic problem, the eigenmodes do not seem

to exhibit falling growth rates and instead appear to have growth rates that tend

towards asymptotic values.

Four of the five symmetry classes provide the dominant instability for Re ≥ 10, with

these being III, V, I and II (in order of Re first seen), and with crossings between

them occurring at Re ≈ 12, 160 and 370. We note, however, that when class III’s

eigenmode is dominant, the flow is still stable. All five symmetry classes contain

unstable flows with class V emerging first (Re ∈ [13, 14]), followed by classes III

([23, 24]), IV ([23, 24]), II ([26, 30]) and finally class I (Re ∈ [49, 50]). The dominant

eigenmode at Re = 103 is that of class II, with γ = 0.293, though unlike the

magnetic problem, all symmetry classes appear to have very similar growth rates,
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with the lowest at Re = 103 being that of class III with γ = 0.287. The analysis

in section 5.3.5 remains applicable to the fluid instability problem. Owing to the

remarkably similar growth rates, however, we cannot link the possibility of a single

axisymmetric cigar-like structure (at α-type stagnation points) with considerably

higher instability growth rates, as we could in the magnetic problem. There is no

reason to believe that mode crossings will not occur for Re > 103, allowing the

possibility for an eigenmode of another class to become dominant.

Through the profiles of Im(λ) obtained, we identify that no eigenvalue coalescences

or decoalescences are seen for any of the five classes, as all growth rate kinks

correspond to frequency discontinuities. In terms of frequencies, all classes and

their respective eigenmodes are distinctly different. At Re = 103, classes I and III

have very similar frequencies, as do classes IV and V. Class II is distinctly different

to the other classes, in that it sees falling frequencies as Re increases. For Re = 103,

class II’s eigenmode is steady in contrast to those of the other classes.

The instability structures vary in each class but again are related to either the

chaotic regions associated with the stagnation points or the flow’s principal vortices.

In the magnetic problem, the field structures could easily be distinguished between

those formed through the Lagrangian chaos (II, III, IV and V) and those formed

in the principal vortices (I and III). This distinction is much less clear-cut for

the fluid instabilities, with structures associated with both the chaotic regions

and the principal vortices, in all classes except V. In the eigenmodes of classes

II–V that persist until Re = 103, we see the classic cigar-like structures of the

magnetic problem, with varying numbers for each class. Class V sees a single cigar

(per α-β pair), lying on the separatrix, whereas class II contains three cigar-like

instabilities, organised (rotationally) symmetrically about the separatrix. Cigars

of classes III and IV are accompanied by moderate instabilities in, or near to, the

principal vortices. With the differences seen between structures of the fluid and

magnetic problems (considering these problems are very similar in form), it may

be interesting to carry out artificial calculations to isolate the importance of the

pressure term as well as the the sign-change in the stretching term.
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Overall, the symmetries do not seem to play as important a role in determining the

stability of the 1:1:1 ABC flow. Of course, the instabilities of some symmetry classes

initially grow faster than others but their respective unstable eigenmodes emerge

within the same order of magnitude of Re, unlike in the magnetic problem, and

there is little difference, between the classes, in instability growth rate at Re = 103.

The symmetries remain highly apparent in the resulting instability configurations.



Chapter 7

Large-Scale fields in the ABC

dynamo

The trouble with having an open mind, of course,

is that people will insist on coming along and try-

ing to put things in it.

Terry Pratchett

This chapter concerns the effects of increasing the period of the magnetic field

relative to that of the flow. We study the growth rates of such large-scale fields

and the structures of the resultant dominant fields. Rescaling the magnetic field is

achieved through the introduction of Bloch waves that enforce a specific periodicity

independently in each spatial direction. This method is advantageous as it requires

only minor modification of the non-large-scale dynamo codes. We formulate the

problem for a general Bloch wave, though numerically solve for a Bloch wave im-

posed in a single spatial direction. We draw comparison, both in methodology and

results, to the investigation by Galanti et al. (1992) who propose an alternative

definition of the ABC flow in order to achieve scale separation. Furthermore, using

231
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multiple scale analysis, we derive alpha for our (Bloch wave) large-scale magnetic

field driven by the 1:1:1 ABC flow.

The chapter begins by constructing the large-scale field problem through the use of

Bloch waves and, using the symmetries of the 1:1:1 ABC flow, provides restrictions

on the possible distinct Bloch waves. We then carry out a multiple scale analysis,

which results in the expected contribution from the α-effect as a function of Rm and

the Bloch wave scale. Subsequently, the Bloch wave formulation is compared to

that of Galanti et al. (1992) to allow comparison of results and to demonstrate the

effectiveness of our methods. The chapter moves on to numerical methods specific

to this problem and then develops the theory of symmetries and representations

for large-scale fields. We present a summary of the growth rates obtained from a

multitude of simulations and provide some analysis of the resulting magnetic field

structures. Briefly, we compare our results with those of Galanti et al. and with

the expected contribution from the α-effect. Finally, the chapter is drawn to a

close with a short summary of the main findings.

7.1 Formulation of the problem using Bloch waves

For this investigation, we adopt a method that modifies the scale of the magnetic

field, leaving the scale of the flow unchanged. To achieve this, we define a large-scale

magnetic field as

B = b eiK·x, (7.1)

where K = (L,M,N ) and b(x, y, z, t) is periodic in x, y and z, each with period

2π. Here L, M and N are Bloch wavenumbers, determining the scale of the

magnetic field in each of the x, y and z directions respectively. We also have

that 0 ≤ |L|, |M|, |N | ≤ 0.5 so that the scale of the magnetic field can be chosen

arbitrarily. We are again solving the eigenvalue problem by setting

B = b̃(x, y, z) eiK·x+λt. (7.2)
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Bloch waves are typically used in solid-state physics to describe wavefunctions of

particles in periodic potentials, though they can be adopted for use in any situation

in which a wave’s periodicity needs to be strictly controlled. In MHD, their use is

not particularly widespread, though studies including Childress (1970) and Roberts

(1970) have adopted these approaches for studies on α-effect dynamos; the low

frequency waves, however, are not introduced as Bloch waves.

On setting k = (l,m, n), the Fourier decomposition of the large-scale field (7.2) is

given as

B = eλt
∑
l,m,n

bl,m,n ei(K+k)·x

= eλt
∑
l,m,n

bl,m,n ei(L+l)x+i(M+m)y+i(N+n)z, (7.3)

which we can interpret as modifying the harmonics so that, instead of having

wavenumber l,m and n in the x, y and z-directions respectively, they have wavenum-

bers L+ l, M+m and N + n. Due to our choice of each 0 ≤ |L|, |M|, |N | ≤ 0.5,

we are ensuring that the harmonics are no longer periodic over the interval [0, 2π]3

but instead are periodic on the interval [0, 2π/Kj] in each direction, assuming that

Kj ∈ Q. This allows certain periodicities to be imposed, so that only fields with the

prescribed periodicity can exist in the problem for each choice of K. However, we

must be aware that the above definition means that the field B is complex-valued

and thus the field’s complex conjugate does not coincide with the field itself; we

can no longer assume that Hermitian symmetry holds for general K. As a quick

verification, taking the complex conjugate of B in (7.3) results in

B∗ = eλ
∗t
∑
l,m,n

b∗l,m,n e−i(K+k)·x = eλ
∗t
∑
l,m,n

b∗−l,−m,−n ei(k−K)·x, (7.4)

and shows that B∗ corresponds to an eigenmode with Bloch wave e−iK·x and not

the original wave with wavenumber K. The lack of Hermitian symmetry comes

into play when considering the symmetries of such fields (see section 7.6).
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We are solving the kinematic (linear) induction equation (1.13) with the large-

scale field defined in (7.2) but we actually resolve the behaviour of b̃ within B. We

obtain the evolution equation for b̃ as

λb̃+ [u · (∇+ iK)] b̃ = b̃ · ∇u+ η [(∇+ iK) · (∇+ iK)] b̃, (7.5)

again with η = R−1m . We require that the field B satisfies ∇ ·B = 0, and so the

divergence-free condition becomes

(∇+ iK) · b = 0, (7.6)

with ∇ · b 6= 0 in general. The induction equation (7.5) is solved through time

stepping in an identical fashion to the original problem and is discussed in section

7.5. The intention is to calculate the eigenvalue, λ, of the fastest growing (or

slowest decaying) eigenmode.

7.2 Restrictions on K

There are three parameters to explore in this problem (L,M andN ) corresponding

to the wavevector of the large-scale fields in each direction. To fully explore this

parameter space, only a subset need actually be considered. This is addressed in a

similar fashion to the parameters A, B and C of the ABC flows in Dombre et al.

(1986), in which the symmetries of the system allow them to restrict the parameters

to

1 = A ≥ B ≥ C ≥ 0. (7.7)

Before this is done for L,M and N , it is useful to note that the growth rate is an

even function of L,M and N . One way to demonstrate this is by conjugating B,

as is done in (7.4) which we expand to give

B∗ = eλ
∗t
∑
l,m,n

b∗l,m,n e−i(l+L)x−i(m+M)−i(n+N ), (7.8)
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which means that we can identify that

λ(−L,−M,−N ) = λ∗(L,M,N ). (7.9)

We remark that if B is a solution to the induction equation (7.5), then gB will

also be a solution for any g ∈ G. This is important in further restricting the values

of L,M and N .

It can be shown through use of the symmetries of the ABC flow that reversing one

or all three of L,M and N will give us λ∗(L,M,N ) and reversing the sign of two

of L, M and N will give us λ(L,M,N ). As an example, we take the symmetry

b2 and apply it to B, giving

b2B = eλtei(Lx−My−N z) eiπ(L+N ) b2b̃. (7.10)

The eigenvalue λ remains the same but we now have changed the sign of M and

N in the Bloch wave, and so

λ(L,M,N ) = λ(L,−M,−N ). (7.11)

This is possible for all transformations where two signs are reversed, without also

switching positions of L,M and N . It is also possible to transform the conjugated

field to obtain

b2B∗ = eλ
∗tei(−Lx+My+N z) e−iπ(L+N ) b2b̃

∗
, (7.12)

and so

λ(−L,−M,−N ) = λ(−L,M,N ). (7.13)

In combination with (7.9), we have that

λ(L,M,N ) = λ(L,−M,−N ) = λ(−L,M,−N ) = λ(−L,−M,N )

= λ∗(−L,−M,−N ) = λ∗(−L,M,N ) = λ∗(L,−M,N ) = λ∗(L,M,−N ).

(7.14)
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Of course, eigenvalues occur in complex conjugate pairs and so if λ is an eigenvalue

of the problem for K = (L,M,N ), then so is λ∗. In practice, therefore, we

only need to study one case of the eight above, this being K = (L,M,N ) for

0 ≤ L,M,N . The upper bound on values of L, M and N of 0.5 is also necessary

as for each of these parameters, we have a symmetry such that λ(Kj) = λ∗(1−Kj).

We show that this is the case by taking K = (1− L,M,N ), which gives

B = eλt
∑
l,m,n

bl,m,n ei(l+1−L)x+i(m+M)y+i(n+N )z (7.15)

= eλt
∑
l,m,n

bl+1,m,n ei(l−L)x+i(m+M)y+i(n+N )z, (7.16)

and so we end with the same situation at K = (−L,M,N ) with an eigenvalue

λ(1 − L,M,N ) = λ(−L,M,N ) = λ∗(L,M,N ). The upshot of this is that for

L > 0.5, we obtain the same eigenvalues as for L < 0.5, with reflective symmetry

for Re(λ) through L = 0.5 and reflective anti-symmetry for Im(λ). The same can

be shown for each M and N and of course, if we have K = (1 − L, 1 −M,N ),

then this is equivalent to finding the eigenvalue λ(−L,−M,N ) = λ(L,M,N ). In

the same way, it can be shown that λ(1−L, 1−M, 1−N ) = λ∗(L,M,N ). This

provides the restrictions of 0 ≤ L,M,N ≤ 0.5 and also restricts the eigenvalue for

L = 0.5, and any permutation, to be real as λ and λ∗ coincide.

If we consider a magnetic field for which a Bloch wave is imposed in only one

direction, then we can choose any one of L 6= 0, M 6= 0 or N 6= 0. Due to

the threefold rotational symmetry around the x = y = z axis (corresponding to

transformations d and d2), we can always rotate the flow so that the large-scale

field is in the required direction. For example, if we choose K = (0,M, 0) or

K = (0, 0,N ), we can rotate the field so that the Bloch wave is acting in the

x-direction:

B = eiMyb, d2B = eiMxd2b, (7.17)

B = eiN zb, dB = eiNxdb. (7.18)
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It is therefore only necessary to vary one of the three parameters without loss of

generality and so the choice for K = (L, 0, 0) seems suitable. With two non-zero

parameters, the same applies and we can always rotate the flow using d and d2 to

obtain a large-scale field in the required direction. The choices K = (0,M,N )

and K = (L, 0,N ) can be rotated so that the Bloch wavenumbers are associated

with only x and y:

B = eiMy+iN zb, d2B = eiMx+iNyJd2b, (7.19)

B = eiLx+iN zb, dB = eiNx+iLyJdb, (7.20)

thus we can choose K = (L,M, 0) without loss of generality. Further to this we

are able to restrict L ≥M , by the transformation k:

B = eiLx+iMy b kB = eiπ/2(L−M) eiMx+iLy kb, (7.21)

which allows us to switch the Bloch wavenumbers L and M if M > L, without

affecting the eigenvalue. A final additional restriction can be achieved, as through

the symmetries l,m and n in combination with (7.9), L,M and N can always be

rearranged so that the indices are in descending order of size. For example, for l

we have

lB = eiπ/2(−L−M−N ) ei(−Lx−Ny−Mz) lb, (7.22)

and thus determine that λ(−L,−N ,−M) = λ(L,M,N ) = λ∗(L,N ,M). The set

of unique K is therefore defined as

0.5 ≥ L ≥M ≥ N ≥ 0, (7.23)

with this reduced parameter-space not unlike the reduced set of modes in HN ,

defined in (4.36). We therefore only need to investigate a subset of all the possible

values to find the optimal magnetic field scale for effective dynamo action.

Even after reducing the parameter-space to that given in (7.23), the number of

simulations required becomes unmanageable for lower frequency Bloch waves, es-
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pecially considering that these parameters are varied for each Rm studied. In

choosing a case to study, we have to be realistic in regards to limiting factors such

as time and computational resources. We make the choice to study the simplest

case (in terms of large-scale field configuration), which is that of K = (L, 0, 0),

being also the most interesting, as it is the most symmetric of all cases (see section

7.6).

7.3 Multiple-scale analysis and Bloch waves

In chapter 1, we briefly introduce the concept of electromotive force (e.m.f.) and

note that it provides a method for small-scale flows to generate large-scale fields,

referred to as the α-effect. In this section, we use scale separation to identify how

α manifests in the growth rates obtained when solving (7.5). In a very similar

fashion to Gilbert (2003), in which the G.O. Roberts flow (a specific case of the

ABC flows, in which A = B = 1 and C = 0) is the subject of multiple-scale

(asymptotic) analysis, we carry out this same analysis with a large-scale magnetic

field imposed, in the form of a Bloch wave with wavenumber K.

Let us define our magnetic field without Bloch waves as

b =
(
b0 + εb1 + ε2b2 + . . .

)
=
∞∑
n=0

εnbn, (7.24)

though, of course, we are solving this (as with the original problem) as an eigenvalue

problem, which we do by defining the magnetic field as

b = eλtb̃(x, y, z) = eν(λ0+ελ1+ε
2λ2+...)t

(
b̃0 + εb̃1 + ε2b̃2 + . . .

)
. (7.25)

This notation, however, becomes problematic when linking these ideas to those of

Moffatt (1978). The tilde identifying that the fields are only spatially-dependent

will be dropped, and so b̃i will be identified instead as bi. Therefore, each bi

considered from here onwards is purely a function of x, with the time-dependence
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extracted in the form of exponential growth or decay represented by the eigenvalues

λi.

We define the Bloch waves as

eiκK·x = eiκLx+iκMy+iκN z, (7.26)

so that

B = eiκLx+iκMy+iκN z+ν(λ0+ελ1+ε2λ2+...)t (b0 + εb1 + ε2b2 + . . .
)
. (7.27)

The extra terms κ and ν are in place to control the scales of the associated pa-

rameters (K and λi respectively) by appropriate choices. We consider a field that

evolves on the scale of |K| = O(R2
m) over short time scales t = O(R−1m ). This

approximation is suitable for very small scales of Rm, say Rm = ε � 1 and so

appropriate choices would be for κ = ε2 and ν = ε−1. With these choices, we have

B = eiε
2Lx+iε2My+iε2N z+(λ0+ελ1+ε2λ2+...)t/ε (b0 + εb1 + ε2b2 + . . .

)
. (7.28)

We can derive expressions for the growth rates λi, though it is a fairly lengthy affair

and so is summarised below. Splitting the field B into scalar and vector parts, we

let

ϕ = eiε
2Lx+iε2My+iε2N z+(λ0+ελ1+ε2λ2+...)t/ε, (7.29)

and

Ψ = b0 + εb1 + ε2b2 + . . . . (7.30)

From the definitions above, it follows that

∂tϕ = ε−1(λ0 + ελ1 + ε2λ2 + . . .)ϕ, (7.31)

∇ϕ = iε2Kϕ, (7.32)

∇2ϕ = −ε4K2ϕ, (7.33)
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with K = |K|. Now substituting (7.29) and (7.30) into the induction equation

(7.5) gives us

Ψ∂tϕ = ϕ∇× (u×Ψ) +∇ϕ× (u×Ψ) + ε−1
(
Ψ∇2ϕ+ 2(∇Ψ) · (∇ϕ) + ϕ∇2Ψ

)
,

(7.34)

and using the results in (7.31) to (7.33) we have

ε−1(b0 + εb1 + . . .)(λ0 + ελ1 + ε2λ2 + . . .)ϕ =

ϕ∇× (u× (b0 + εb1 + . . .)) + iε2K × (u× (b0 + εb1 + . . .))ϕ+

ε−1
[
−ε4K2(u× (b0 + εb1 + . . .)) + 2iε2(K · ∇)(b0 + εb1 + . . .) +

∇2(b0 + εb1 + . . .)
]
ϕ.

(7.35)

We identify different scales, firstly by multiplying through by ε so that the lowest

power is zero and then arranging by powers of ε to get

ε0 : λ0b0 = ∇2b0, (7.36)

ε1 : λ1b0 + λ0b1 = ∇× (u× b0) +∇2b1, (7.37)

ε2 : λ2b0 + λ1b1 + λ0b2 = ∇× (u× b1) + 2i(K · ∇)b0 +∇2b2, (7.38)

ε3 : λ3b0 + λ2b1 + λ1b2 + λ0b3 = ∇× (u× b2) + iK × (u× b0) +

2i(K · ∇)b1 +∇2b3, (7.39)

ε4 : λ4b0 + λ3b1 + λ2b2 + λ1b3 + λ0b4 = ∇× (u× b3) + iK × (u× b1)−

K2b0 + 2i(K · ∇)b2 +∇2b4. (7.40)

For n ≥ 4, we then have

εn :
∑
j+k=n

(λjbk) = ∇×(u×bn−1)+iK×(u×bn−3)−K2bn−4+2i(K ·∇)bn−2+∇2bn.

(7.41)

To reduce the problem we use averaging, in a very similar sense to Moffatt (1978),

though we define our method of averaging with respect to harmonics of b and u.

Because we are working in spectral space, all magnetic fields and flows are defined
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as a sum of their respective harmonics b̂k and ûk for k = (l,m, n). The use of

caret (̂ ) notation is to avoid confusion between fields defined in spectral space and

real space; this convention is adopted in this section only. These fields are defined

modulo 2π, so we define our averaging over this 2π period, thus have that

〈bi〉 = (b̂i)0,0,0, (7.42)

as it is the case, for the kth harmonic, that

〈(b̂i)k〉 = 0, ∀k 6= 0. (7.43)

Since our velocity field is purely fluctuating at its periodic scale, and contains no

mean field, we know that

〈u〉 = û0,0,0 = 0. (7.44)

It also needs to be noted that terms involving a derivative of bi will have zero mean.

We can show that under averaging, the three terms in (7.41) involving derivatives

will always have a zero mean. The Laplacian gives

∇2bi =
∑
k

k2
(
b̂i

)
k

eik·x, (7.45)

which, after averaging gives us

〈∇2bi〉 = 0(b̂i)0,0,0 = 0. (7.46)

Similarly, the term (K · ∇)bi can be shown to have a zero average for all fields

bi. We know that the derivatives ∂x, ∂y and ∂z when acting on u or b produce

coefficients l, m and n respectively, for the harmonics. The term can therefore be

written as a sum of its harmonics by

(K · ∇)bi =
∑
k

(K · k) (b̂i)k eik·x, (7.47)
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and so averaging gives

〈(K · ∇)bi〉 = (K · 0)(b̂i)0,0,0 = 0. (7.48)

The same process applies to the term ∇× (u × bi) and is written as a sum of its

harmonics by

∇× (u× bi) =
∑
k

k ×
[
ûk ×

(
b̂i

)
k

]
eik·x, (7.49)

which again averages to 0, due to the factor of k operating on each harmonic.

Now the results from (7.46)–(7.49) can be used when averaging the equations for

each power of ε. Taking the average of (7.36), we see two possibilities. The first is

that λ0 = 0 and the second is that 〈b0〉 = 0. Of course, there is no necessity for

〈b0〉 to be zero so it must be that λ0 = 0. Using this result, we conclude that

∇2b0 = 0, (7.50)

which implies that 〈b0〉 = b0; b0 is purely a mean field (contains no fluctuating

part), which is taken to be non-zero.

In (7.37), we have terms involving b0 and b1. Averaging gives us

λ1〈b0〉+ λ0〈b1〉 = 〈∇ × (u× b0)〉+ 〈∇2b1〉 = 0, (7.51)

and since λ0 = 0 and b0 does not have a zero average (as it is constant), then we

conclude that λ1 = 0 also. Through this we see that

−∇2b1 = ∇× (u× b0), (7.52)

and when we consider that b0 is constant and u is non-divergent, we can simplify

to

−∇2b1 = (b0 · ∇)u, (7.53)
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which we can then resolve, for each harmonic, as

(b1)k =
(b0 · ik)ûk

k2
, (7.54)

so we find that b1 is simply a function of b0 (constant) and u (a purely fluctuating,

zero-mean flow), therefore b1 must be purely fluctuating and contains no mean

field, that is 〈b1〉 = 0.

In (7.38), all terms of the right hand side will have zero average. Knowing that

λ0 = λ1 = 0, we deduce that λ2 = 0. Similarly, in (7.39), all terms on the right-

hand side average to zero, including iK × (u× b0) as a consequence of (7.44) and

b0 being constant. This gives that λ3 = 0 also.

It is in (7.40) that the first non-zero terms emerge after averaging and we are left

with

λ4〈b0〉 = iK × 〈u× b1〉 −K2〈b0〉. (7.55)

The term (u×b1) is not zero when averaged, due to taking the product of u and a

purely fluctuating field b1 which produces a fluctuating field with a non-zero mean

field component; we resolve the term 〈u × b1〉 using the result from (7.54). It

follows that

u× b1 =
∑
k,k′

ûk′ × (b0 · ik)ûk
k2

ei(k+k′)·x, (7.56)

with k′ = (l′,m′, n′) identifying wavenumbers distinct from k = (l,m, n). When

averaging, the only non-zero harmonics are those of wavenumber k′ + k = 0 and

so k′ = −k. Taking the average of (7.56), we therefore obtain

〈u× b1〉 =
∑
k

û∗k × ûk

k2
(b0 · ik), (7.57)

which uses the fact that u is real and so û∗k = û−k.

We note that (7.57) is identical to the e.m.f. of Moffatt (1978) for a flow with no
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time-dependence. Therefore

〈u× b1〉i = αijb0j, (7.58)

and for a rotationally invariant flow, such as the 1:1:1 ABC flow, αij is isotropic

and takes the form

αij = αδij, (7.59)

where α is a scalar constant. Taking the definitions of (7.58) and (7.59), we return

to the equation for λ4 (7.55) and rewrite it as

λ4〈b0〉 = iK × αb0 −K2〈b0〉. (7.60)

Recalling the original large-scale field definition (7.28), we write (7.60) in dimen-

sional units with

ε−3λ〈b0〉 = iε−2K × αb0 − ε−4K2〈b0〉, (7.61)

and remembering that we set Rm = ε, we finally obtain

λb0 = iRmK × αb0 −R−1m K2b0. (7.62)

For an individual Bloch wave, say K = (L, 0, 0), we have b0 = (0, 1,±i) without

loss of generality, with (7.62) becoming

λ = ±αRmL −R−1m L2, (7.63)

as i(L, 0, 0)×b0 = ±Lb0 for the helical waves b0 = (0, 1,±i). Of course, for the

1:1:1 ABC flow we can analytically resolve α from (7.57), with each wave of u

contributing an element of αij. We find that α = −1, thus

λ = ∓RmL −R−1m L2. (7.64)

For Rm � 1, and under the assumption that the contribution from fluctuating
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(non-large-scale) field is negligible, we expect to see growth rates with the profile

given above. In theory, this holds only for Rm � 1 and in section 7.7, we aim to

test whether the growth rate of the dominant eigenmode is described accurately by

(7.64), and for what range of Rm this holds. From the form of (7.64), we expect to

see only a narrow window of L in which the fields grow, with this window becoming

smaller for Rm → 0. For very small Rm, only the very largest-scale fields (i.e. those

for L → 0) will see growth.

7.4 A comparison with Galanti et al. (1992)

In the introduction, an alternative definition of the ABC flows, originally given by

Galanti et al. (1992), allows for the periodicity of the flow to be modified. The

definition involves introducing a term k0 ∈ N that we use to rescale x, y and z, and

is displayed as

u = (C sin k0z +B cos k0y, A sin k0x+ C cos k0z,B sin k0y + A cos k0x), (7.65)

which is modified to fit with our own definition of the ABC flow, in that A,B and

C are associated (respectively) with x, y and z. For k0 = 1, we have the original

2π-periodic ABC flows. For k0 ≥ 2 the flow’s period is reduced to 2π/k0. In solving

the induction equation with the flow (7.65), the parameter k0 effectively controls

the separation between the scale of the flow and the largest scale of the magnetic

field, which is simply the scale of the domain [0, 2π]3. This method of rescaling the

flow with respect to the magnetic field is conceptually simpler than the fluctuating

and mean components of Moffatt (1978), and differs in that there is no true mean

field, rather it is periodic on a much greater scale than the flow (for large k0). To

investigate the 1:1:1 ABC flow, Galanti et al. set A = B = C = k0 to give

u = k0(sin k0z + cos k0y, sin k0x+ cos k0z, sin k0y + cos k0x), (7.66)
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so that Rm remains relative to the scale of the flow. This approach allows the

authors to find the most effective scale separation for dynamo growth by investi-

gating a range of scales k0 over a range of Rm. However, there are two distinct

disadvantages of the definition (7.65). Firstly, resolving the magnetic field in the pe-

riodic domain [0, 2π]3 means that there are effectively k30 copies of the flow (7.66),

with each copy needing to be well-resolved. Thus the resolution required scales

with k0; if the period of the flow is halved (by doubling k0), the number of grid

points required to properly resolve the flow increases two-fold in each direction,

or eight-fold overall, making the problem massively computationally demanding

for high k0. Secondly, k0 must be a positive integer, which severely restricts the

magnetic field scales that can be studied, as the magnetic field’s frequency can only

be 1/2, 1/3, 1/4, . . . of the frequency of the flow. From the results of Galanti et al.

(1992), it appears that the growth rate peaks in the range 2 < k0 < 3 at Rm = 12

and 20, near to (but not necessarily at) k0 = 2.

The disadvantages of the definition (7.65) are overcome in our method of rescaling

the magnetic field through the introduction of Bloch waves. It is advantageous

to relate these two very different methods so that we have a basis for comparing

results. The first step is to take the induction equation (1.13), with the original

ABC flow (1.18), and rescale the variables to make it analogous to the problem

that Galanti et al. are solving. We do this by rescaling x by setting x = k0x
′,

which is the obvious choice given the form of the flow in (1.25). We also rescale

the differential operator ∇, so that the derivatives are with respect to the rescaled

spatial variable x′. This produces ∇ = (1/k0)∇′ as

∂

∂x
=

∂

∂x′
∂x′

∂x
=

∂

∂x′

(
1

k0

)
. (7.67)

Other variables also need to be rescaled so we can identify arbitrary scalings, for

which we make appropriate choices once we have more information. We let

t = a1t
′ Rm = a2R

′
m u = a3u

′, (7.68)
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though we need not rescale b as this occurs linearly in all terms of the induction

equation. Expressing the induction equation in terms of transformed variables, we

have
1

a1
∂t′b

′ =
a3
k0
∇′ × (u′ × b′) +

1

a2R′m

1

k20
∇′2b′. (7.69)

To make appropriate choices for a1, a2 and a3, we balance the k0 terms in (7.69) to

obtain
a3
k0

=
1

a2k20
,

1

a1
=
a3
k0
. (7.70)

We have three scaling parameters and two equations, so there is an element of

arbitrariness in the choices made. Ideally, for the most useful comparison, we want

R′m = Rm so we set a2 = 1. This solidifies the other parameters giving a3 = k−10

and a1 = k20. We can immediately understand the choice of Galanti et al. to set

A = B = C = k0, as this incorporates the rescaling into the amplitude of the flow

itself. It is also apparent that the timescale on which their magnetic fields evolve

is much smaller, with t′ = k−20 t. To compare the eigenvalues obtained from the

original eigenproblem to those of Galanti et al., we require them to be on the same

timescale and since we know how the relative temporal variables scale, we know

how to scale the eigenvalues. If we call the eigenvalue obtained by Galanti et al.

λ′, then we have that

λ = k20λ
′, (7.71)

with λ being the eigenvalue from the original (unscaled) eigenproblem. Galanti et

al. have rescaled all of their growth rates γ = Re(λ) by k20 for ease of comparison

with standard ABC dynamo results.

The next step is to relate rescaling of the magnetic field by Bloch waves to rescaling

the flow through multiplying the wavenumbers by a factor of k0. One way to achieve

this is to impose Bloch waves on the magnetic field of Galanti et al. and ask what

scale is needed for the large scale field to counteract the rescaling of the flow,

through making an appropriate choice for K. In the modified coordinates x′, a
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large-scale magnetic field would be expressed as

B′ = eik0K·x
′
b, (7.72)

and so to restore the field to its 2π-periodic state, we can simply letK = (n1/k0, n2/k0,

n3/k0), with ni ∈ N. This is not particularly surprising and we can give an example

to clarify: if we let k0 = 3, this means that we would be solving for a magnetic field

that is periodic on 3 times the scale (in each spatial direction) as that of the flow.

In this case, we could set K = (1/3, 1/3, 1/3) which in our problem corresponds

to a magnetic field that is 6π-periodic. Since our flow remains 2π-periodic, our

magnetic field is therefore on a scale 3 times that of the flow.

Before attempting a direct comparison, however, we need to be aware of the numer-

ical differences of the two methods. Figure 7.1 attempts to describe this, though

some explanation is also required. In the method of Galanti et al., which we will

(a)

l

m

(3,0,0)

(0,3,0)
(3,3,0)

(b)

l

m

(1,0,0)

(0,1,0)
(1,1,0)

Figure 7.1: Fourier modes bl,m,0 showing ‘interactions’ in (a) three of 27 in-
dependent eigenmodes of GPS, with k0 = 3 and (b) three Bloch waves with
K = 0, (1/3, 0, 0) and (1/3, 1/3, 0). Note the different mode indices in each scheme.

abbreviate GPS, the Fourier modes of the magnetic field are no longer time stepped

using their immediate neighbours but instead modes that are of distance k0 in each

index. In (4.9)–(4.11), the indices l ± 1, m ± 1 and n ± 1 are replaced by l ± k0,

m± k0 and n± k0 respectively. In figure 7.1(a), for example, k0 = 3 and so mode
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b0,0,0 depends on b3,0,0, b−3,0,0, b0,3,0, etc. This does not mean, however, that only

modes of the form bnk0,0,0 and permutations contain values and the rest are zero.

Similarly, we have modes b2,0,0 communicating with b5,0,0, b−1,0,0, b2,3,0, etc. These

two sets of modes are completely numerically independent and so will never inter-

act. In the figure, three of these sets of modes are identified but for k0 = 3, there

are in fact 27 independent eigenmodes (without involving symmetries), though it

is only possible to see up to nine in the figure’s cross-section. A given simulation

will resolve all 27 of these eigenmodes simultaneously, though the growth rate of

only the most dominant can be found.

Using Bloch waves, each magnetic field mode still depends only on its immedi-

ate neighbours. Three eigenmodes are shown in figure 7.1(b): K = 0 in red,

K = (1/3, 0, 0) in green and K = (1/3, 1/3, 0) in blue. Like GPS, the eigenmodes

for different Bloch waves are independent from one another. Unlike GPS, however,

these eigenmodes are resolved in separate simulations by varying L,M and N ,

and as the periodicity of the magnetic field is controlled by the Bloch wave, the

eigenvalue obtained is that of the particular Bloch wave imposed; no other period-

icities are present. We recall that the space of K that requires investigating has

been reduced and so we need not simulate for L,M or N equal to 2/3, as each is

symmetric about 0.5. In addition K = (0, 1/3, 0) is not shown in the figure, as it

is possible to rotate the Bloch wave to K = (1/3, 0, 0), which is displayed. One

further eigenmode is present, K = (1/3, 1/3, 1/3), though cannot be displayed in

the cross-section. This leaves three simulations, one for each Bloch wave, to pro-

duce equivalent results to GPS, each with the same computational demand as the

non-large-scale problem. In contrast, time stepping in GPS requires carrying out k30

times as many computations as the k0 = 1 problem. It should be noted that many

of the independent eigenmodes resolved by GPS will evolve in an identical fashion,

equivalent to the way that Bloch waves K = (1/3, 0, 0), (0, 1/3, 0) and (0, 0, 1/3)

are identical. It is not possible to avoid simulating these duplicate eigenmodes

through GPS.

The eigenvalue obtained via GPS will therefore be the eigenvalue with the largest
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real part of all the individual Bloch wave simulations, as the magnetic energy of

GPS will grow as fast as the largest eigenvalue permits. This highlights another

advantage of the Bloch wave approach, in that we are able to isolate the optimal

(fastest growing) magnetic field scaling relative to the flow, without fear of other

periodicities ‘polluting’ the problem.

For k0 > 3, the comparison between growth rates is a little more complicated. In

(7.72), we can set K = (n1/k0, n2/k0, n3/k0), with ni ∈ N and for k0 = 4, this

allows for ni = 0, 1 or 2 without overstepping the restrictions placed on K. There-

fore to achieve the same results as GPS, we would need to impose nine different

Bloch waves: K = (1/4, 0, 0), (1/4, 1/4, 0), (1/4, 1/4, 1/4), (1/2, 0, 0), (1/2, 1/4, 0),

(1/2, 1/4, 1/4) (1/2, 1/2, 0), (1/2, 1/2, 1/4) and (1/2, 1/2, 1/2). This still represents

a huge saving, owing to us carrying out nine simulations at the same cost of the

original problem, as opposed to one simulation at 64 times the cost of the original,

as with GPS.

Overall, this means that we can only use the growth rates of GPS as an upper

bound for the Bloch wave growth rates. Formally, the (Bloch) eigenvalue is a

function of Rm and K = (L,M,N ), so λ = λ(L,M,N , Rm), whereas for GPS λ′

is a function of Rm and k0. Comparing growth rates only, we have

k20 γmax(Rm) = γ′(Rm, k0), (7.73)

with

γmax = max
n1,n2,n3

{γ (Rm, n1/k0, n2/k0, n3/k0) |nj ∈ N, 0 ≤ n3 ≤ n2 ≤ n1 ≤ k0/2},

(7.74)

and with γ = Re(λ) and γ′ = Re(λ′).
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7.5 Numerical methods

We are solving (7.5) as an eigenvalue problem, with eigenvalues λ = λ(Rm,L,M,N ).

This section covers the main numerical considerations, with the time stepping

scheme discussed for general K = (L,M,N ).

A major advantage of imposing large-scale fields, and the most important feature

for this investigation, is that the same numerical methods can be employed as with

the non-scale separated case with only minor modifications. This avoids lengthy

rewriting of codes and has the added benefit of not having to re-explore param-

eter values for eigenvalue convergence (i.e. minimum resolution, maximum time

step size); see table 4.1. We use the same three-step Adams-Bashforth numeri-

cal scheme, though owing to the addition of Bloch waves, there are some minor

differences in the individual terms.

It should be recalled from section 7.1, that we are resolving b, which is 2π-periodic,

as opposed to B itself, which would require a domain that changes size, depending

on the values of L,M and N . The Fourier mode indices are unchanged, as clearly

we cannot have non-integer indices, but a general mode bl,m,n now corresponds to

wavenumbers (l + L), (m+M) and (n+N ).

The effects of the imposed Bloch wave are still seen however, as the ∇ operator

acting on the field, pulls out an additional factor of iK, as seen in (7.5). From

the non-large-scale magnetic problem, anywhere that a factor of k appears will be

replaced with K+k; all coefficients of l, m and n become l+L, m+M and n+N

respectively. For completeness, the full numerical scheme is given. The three-step

Adam’s Bashforth scheme is displayed as

bj+1
l,m,n = El,m,n

[
bjl,m,n + 1

12
∆t
(
23Λj

l,m,n − 16El,m,nΛ
j−1
l,m,n + 5E2

l,m,nΛ
j−2
l,m,n

)]
, (7.75)

with bjl,m,n = (Xj
l,m,n, Y

j
l,m,n, Z

j
l,m,n) and El,m,n modified by the Bloch waves so that

El,m,n = exp(−η
[
(l + L)2 + (m+M)2 + (n+N )2

]
∆t). (7.76)
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The term Λ = (Λx,Λy,Λz) differs from the original dynamo problem also, with Λx

written as

2 (Λx)
j
l,m,n = iB(m+M)

(
Y j
l,m−1,n + Y j

l,m+1,n

)
− iC(m+M)

(
Xj
l,m,n−1 +Xj

l,m,n+1

)
+ C(m+M)

(
Y j
l,m,n−1 − Y

j
l,m,n+1

)
− A(m+M)

(
Xj
l−1,m,n −X

j
l+1,m,n

)
+ iB(n+N )

(
Zj
l,m−1,n + Zj
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(7.77)

Similarly the expression expression for Λy is given as
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and Λz is given by
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(7.79)

For the 1:1:1 ABC flow, we simply set A = B = C = 1.

With regards to the actual computation, we are required to define a vector for each

parameter L, M and N . For instance for L, the array “kvecx”, which has indices

−N to N , stores the value of its index with the value of L added on to each. This

provides an array which has entries −N + L at index −N to N + L at index N .

Similarly, arrays “kvecy” and “kvecz”, corresponding to Bloch waves in the y and z
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directions respectively, are defined withM and N . Then taking the original (full)

code, each reference to l, m and n that is not used in the context of an array index,

can be replaced by a reference to index l of “kvecx”, m of “kvecy” and n of “kvecz”.

On setting L =M = N = 0, the values of the entries in each of these vectors will

be equal to the index of those entries, thus returning the large-scale problem to

that of the original. Additionally, we no longer enforce that b0,0,0 = 0 (assuming

K 6= 0), as this mode now represents the lowest frequency Bloch wave and not

a mean field. The large-scale magnetic field problem is, otherwise, numerically

identical to the original problem without the ABC flow symmetries or Hermitian

symmetry. Note that as in the original dynamo problem, we have still not set the

values of A, B or C, so this numerical scheme is capable of simulating all ABC

flows.

The biggest alterations are seen in the routines used to convert the field to real

space. The fast Fourier transform routine now converts the set of bl,m,n to complex

b as opposed to a Hermitian symmetric complex set of bl,m,n to real b in the original

problem. To calculate B we use (7.1) and add on its complex conjugate:

B = b eiK·x + b∗ e−iK·x. (7.80)

For ease, we split the complex field b into its real and imaginary parts such that

b = br + ibi. The real large-scale magnetic field is then given as

B = 2 cos (K·x)br − 2 sin (K·x)bi. (7.81)

The field can be reconstructed for any range of x required. To visualise a field for

one period of the Bloch wave, the field should be reconstructed for x = (0, 0, 0) to

x = (2π/L, 2π/M, 2π/N ). For producing large-scale fields in the domain of the

original problem, we simply reconstruct the field for x = (0, 0, 0) to (2π, 2π, 2π).

For a one-dimensional Bloch wave, e.g. K = (L, 0, 0), (7.81) becomes

B = 2 cos (Lx)br − 2 sin (Lx)bi. (7.82)
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7.6 Symmetries and representations for large-scale

fields

So far, we have discussed the use of Bloch waves for general K. On the discussion

of the presence of symmetries in a large-scale field, however, we need to consider

different ranges of L,M andN , as the level of symmetry in the system is controlled

by the values of these three parameters. Unlike the case when varying A, B and

C, in which for A 6= B 6= C some symmetries still remain, varying L,M and N is

much more destructive with regards to the level of symmetry.

Whilst we develop theory for the use of symmetries in the Bloch-wave problem, we

must make it clear that these concepts are not used to obtain the results presented

in this chapter; for completeness, full (non-symmetric) codes are used.

7.6.1 Loss of Hermitian symmetry

From section 7.1, we understand that only a limited parameter space needs to be

explored due to the arbitrariness of the field’s orientation. We can then identify

three general situations in which we need to consider the symmetries, these being

K = (L, 0, 0), K = (L,M, 0) and K = (L,M,N ). What is important when

using the Bloch wave formulation for large-scale fields, is that the magnetic fields

are no longer Hermitian symmetric, except for certain special cases: if L,M or N

are either 0 or 1/2, then Hermitian symmetry is still present, as the Fourier modes

of b and b∗ coincide. To briefly explain why this is the case, we give an example,

with K = (1/2, 0, 0). We recall that for K = 0, we have the original problem,

which is Hermitian symmetric, with bl,m,n = b∗−l,−m,−n. With K = (1/2, 0, 0), we

have

B = eix/2 b+ e−ix/2 b∗, (7.83)
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which, in its Fourier decomposition, gives

B =
∑
l,m,n

bl,m,n eix/2 eilx+imy+inz +
∑
l,m,n

b∗−l,−m,−n e−ix/2 eilx+imy+inz. (7.84)

By changing the indices in the first sum from l to l − 1, we have

B =
∑
l,m,n

bl−1,m,n e−ix/2 eilx+imy+inz +
∑
l,m,n

b∗−l,−m,−n e−ix/2 eilx+imy+inz, (7.85)

and so b and b∗ both correspond to the same set of modes, giving

bl−1,m,n = b∗−l,−m,−n. (7.86)

Similarly forK = (1/2, 1/2, 0), we have bl−1,m−1,n = b∗−l,−m,−n andK = (1/2, 1/2, 1/2)

gives us bl−1,m−1,n−1 = b∗−l,−m,−n. For general K, however, there is no equivalent

solution, and as such b and b∗ correspond to two non-interacting sets of modes. As

our simulations involve varyingK, or more specifically L, we do not take advantage

of Hermitian symmetry and merely note that it is present for these cases.

7.6.2 Symmetries of the 1:1:1 ABC flow in large-scale fields

For L 6= 0, it is the case that a transformation that maps x to −x will not map

a field back to itself and so will not be a valid symmetry of this system. We can

see this by taking such a transformation (e.g. a2) and applying it to the large-scale

field

a2B = eiπ/2(−2m+2n)
∑
l,m,n

Ja2b−l,−m,nei(l−L)x+imy+inz, (7.87)

which maps magnetic field modes with Bloch wave eiLx to those of another eigen-

mode with Bloch wave e−iLx.

Any transformation that reverses the sign of x, therefore, will map the field to

another field with a Bloch wave with wavenumber −L and not back to itself. In

fact, the same will occur for any transformation that maps any variable, x, y or z to
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any other negated variable −x, −y or −z. Further to this, changing the direction

of the large-scale field is not permitted, unless the field itself is invariant under

the transformations. An example of this would be if L 6= 0 but M = 0, then any

transformation that maps x to ±y or y to ±x would not be a valid symmetry of

the system.

First, we will consider the case K = (L, 0, 0). In such a field, we explore the list of

symmetries (2.50) to identify fields that map x to x but are free to map y to ±z and

z to ±y, as there is no Bloch wave defined in these directions. Four transformations

match these conditions. These are

i(x) = (x, y, z), (7.88)

b(x) = (x− π/2, π/2− z, y + π/2) , (7.89)

b2(x) = (x+ π,−y, π − z), (7.90)

b3(x) = (x+ π/2, z − π/2, π/2− y) , (7.91)

and so the large-scale field with K = (L, 0, 0) has four-fold helical symmetry.

Considering a more general Bloch wave of the formK = (L,M, 0) then we are look-

ing to identify transformations that map x to x, y to y and z to ±z. Unsurprisingly,

only one transformation fits these criteria, this being the identity, i(x). The only

other non-identity transformation that fits the description would be a reflection, of

which we know there are none in the group G. A subset of these waves, however,

does contain some symmetry of the original 1:1:1 ABC flow. The caseK = (L,L, 0)

is invariant under transformations of the form g : (x, y, z) 7→ (y, x,±z). Again,

(x, y, z) 7→ (y, x, z) is a reflection in the plane x = y and so is not an element of G,

however the transformation k is valid. So for K = (L,L, 0), we have

i(x) = (x, y, z), (7.92)

k(x) = (y + π/2, x− π/2, π/2− z), (7.93)

and thus two-fold helical (rotation composed with translation) symmetry.
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For the very general caseK = (L,M,N ), it is clear that no transformation, except

the identity i(x), will map the field to itself. If we consider subsets of these Bloch

waves, as with the previous case, we can identify valid transformations. Considering

K = (L,L,N ), the only possible transformations that map this type of field to

itself are again the identity or a reflection through x = y, which is not valid. This

case, therefore, has no valid symmetries of the 1:1:1 ABC flow. In the very specific

case K = (L,L,L), we regain some symmetry due to the invariance of K under

permutation of its elements. It is immediately clear that d and d2 meet the desired

permuting requirement, so for this case we have

i(x) = (x, y, z), (7.94)

d(x) = (z, x, y), (7.95)

d2(x) = (y, z, x), (7.96)

which represents three-fold rotation about the axis x = y = z.

7.6.3 Symmetries and representations for K = (L, 0, 0)

So far in this chapter, we have developed the problem for general L,M and N ,

despite our eventual aim of focusing on the case K = (L, 0, 0), and so now we

include specifics for this particular case. As shown earlier in this section, the case

K = (L, 0, 0) contains four symmetries of the original 1:1:1 ABC flow, (7.88) to

(7.91). In tandem with the label applied to the group of 24 symmetries of the

1:1:1 ABC flow, we have labelled this group of transformations GLSF. This group

is isomorphic to the cyclic group Z4 = {i, g, g2, g3}, which is abelian and so each

element forms its own conjugacy class. The conjugacy classes of GLSF are, therefore,

given by

E = {i}, C4 = {b}, C2
4 = {b2}, C3

4 = {b3}. (7.97)

From Chapter 3, we already understand that the number of symmetry classes is

equal to the number of conjugacy classes. Therefore, it can be deduced that there
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are four symmetry classes, which we will label I-IV. The character table of any

group is invariant under a change of basis and so the character table for the well-

known group Z4 will be identical to the character table for GLSF (see Table 7.1).

We know that the fundamental domain for GLSF will be one quarter of the full

Table 7.1: Character table for both Z4 and GLSF.

E C4 C2
4 C3

4

Elements 1 1 1 1
I 1 1 1 1
II 1 −1 1 −1
III 1 i −1 −i
IV 1 −i −1 i

domain FN , as there are four transformations. We have symmetries that preserve

x but map y to −y or ±z and z to −z or ±y. Therefore in our frequency space,

our domain will require the full range of l but only half the range each of m and

n. We can therefore define the fundamental domain as

GLSF = {(l,m, n) : |l| ≤ N, 0 ≤ m ≤ N, 0 ≤ n ≤ N}. (7.98)

Unlike with the original dynamo problem, the fundamental domain cannot be re-

duced further through the application of Hermitian symmetry as it no longer holds

for general L. The fundamental domain is visualised in figure 7.2.

(a) (b)

Figure 7.2: Depictions of fundamental domain GLSF (a) within FN and (b) isolated
from FN .

The representations, Mα, can be read straight from the character table, as for one-
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dimensional symmetry classes the irreducible representations and their characters

are identical. The following is a list of representations for GLSF:

M I(i) = M I(b) = M I(b2) = M I(b3) = 1, (7.99)

M II(i) = M II(b2) = 1, M II(b) = M II(b3) = −1, (7.100)

M III(i) = 1, M III(b) = i, M III(b2) = −1, M III(b3) = −i, (7.101)

M IV(i) = 1, M III(b) = −i, M IV(b2) = −1, M IV(b3) = i. (7.102)

As all irreducible representations are one-dimensional, each symmetry class will

consists of just one magnetic field. Due to the simplicity of the form of the repre-

sentations, we can construct the magnetic fields explicitly as

BI = B + bB + b2B + b3B, (7.103)

BII = B − bB + b2B − b3B, (7.104)

BIII = B + ibB − b2B − ib3B, (7.105)

BIV = B − ibB − b2B + ib3B. (7.106)

7.6.4 Numerical methods for K = (L, 0, 0)

The numerical considerations for the symmetrically reduced case K = (L, 0, 0) can

now be discussed. We have identified four (identity and three helical) transforma-

tions which are based around mapping the variable x to itself, with a translation

that becomes a phase-shift in Fourier space. The transformations b, b2 and b3

serve to rotate the magnetic field through π/2 around the x-axis. In the frequency

domain, this serves to rotate the modes through π/2 in the l-axis, giving the fun-

damental domain defined in (7.98) as 1/4 of the full set of harmonics; see figure 7.2.

For modes to be time stepped in this fundamental domain, every mode requires

the value of its immediate neighbours.

There are two ‘faces’ of modes that have neighbours lying outside the fundamental

domain. As with the original problem, we are required to store an extra layer of
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modes. Through the symmetries, their values can be calculated using only modes

within the fundamental domain. The first face consists of modes of the form bl,m,0,

which requires the layer of modes of the form bl,m,−1 to be filled. The second face

consists of modes of the form bl,0,n and relies on a layer of modes of the form

bl,−1,n. Figure 7.3 shows visual representations of a cross-section of GLSF. In Figure

7.3(a), the shaded area represents modes that are not time stepped (index N),

whereas the yellow mode represents bl,0,0, which is mapped to itself under each of

the symmetries and so may be restricted to certain values. Figure 7.3(b) indicates

the location of the additional mode-layer outside of the fundamental domain.

(a) (b)

Figure 7.3: Cross section of GLSF for unspecified l, identifying (a) modes that are
not time stepped (hashed) and (b) extent of extra mode layers.

Transformations b3 and b are used to calculate modes bl,m,−1 and bl,−1,n respec-

tively. These relations are given below.

bl,−1,n = Mα(b) eiπ/2(l+L+1−n) Jb bl,n,1

= eiLπ/2Mα(b) eiπ/2(l+1−n) Jb bl,n,1, (7.107)

bl,m,−1 = Mα(b3) eiπ/2(−l−L+m+1)Jb3 bl,1,m

= e−iLπ/2Mα(b3) eiπ/2(−l+m+1)Jb3 bl,1,m. (7.108)

In comparison, the transformations behave in the same way as with the original

problem, except for an extra phase-shift with respect to L and, numerically, the
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mode copying is carried out in an identical fashion. As L is fixed for each simulation,

the phase-shift terms eiLπ/2 and e−iLπ/2 should be calculated and stored at runtime

for later reference. In practical terms, one-dimensional representations mean that

when simulating these fields, we would only need to store one field at any one time.

If we were to resolve all four symmetry classes, we would be computationally solving

four subproblems, each at 1/4 of the cost of the full problem. This means that there

is no net reduction in computing time when solving all four subproblems, though

we would be revealing far more about how effective different types of structure are

at generating large-scale magnetic fields.

7.7 Results

This section communicates the findings of the numerous simulations for K =

(L, 0, 0). We carry out simulations for L = 0 to L = 0.5 in steps of 0.01, to-

talling 51 simulations per Rm investigated. The eigenvalues for every L at each Rm

are determined, though we only supply information on the growth rates. We note

that the eigenvalues for L = 0 are equal (to within 3 s.f.) to those in the original

problem, as expected. Simulations are carried out for Rm up to only 103, owing

to the number of individual simulations per Rm studied. Section 7.7.1 summarises

the optimal growth rates and their corresponding values of L. The following sec-

tion, section 7.7.2, briefly considers the resulting field structures and supplies some

visualisations. A brief comparison with results extracted from Galanti et al. (1992)

is made in 7.7.3 and a discussion on the applicability of the α-effect is given in

section 7.7.4.

As already stated, these results are obtained using full numerical codes, with no

assumption of symmetry.
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7.7.1 Growth rates and optimal scales

In the original magnetic problem, the growth rate is found from the linear trend

in ln (EM), which is calculated from all modes in the fundamental domain. This

remains unchanged for the large-scale field, with the exception that all modes

within FN are now used. For oscillating fields, minimum to minimum linear trends

are calculated. Once growth rates for all values of L are obtained for each Rm, we

fit a cubic spline so that a better estimate of the optimal growth rate (and L) can

be made. Assuming that there are no sudden changes in the growth rate for very

small (i.e. ∼ O(10−3)) changes in L, then our cubic spline provides a reasonably

accurate representation of the continuous profile of growth rate for changing L.

Figure 7.4 displays the maximum growth rate obtained for each Rm. Where possi-

ble, a second set of results is displayed which identifies the growth rate at a distinct

secondary peak. Alongside these growth rates, those of the non-large-scale problem

(i.e. L = 0) are given, for a direct comparison. Counter-intuitively, we see that the

greatest growth rates occur at low Rm, particularly when the non-large-scale field

is not a dynamo. The growth rate peaks at Rm = 20 with γ = 0.144 and L = 0.36.

From here, the growth rate decreases and at Rm = 30, a second (distinct) peak is

seen in the profile of γ = γ(L). The optimal growth rate steadily decreases, whilst

the growth rate of the secondary peak slowly increases as Rm is increased. The two

peaks of optimal growth converge at Rm ≈ 260 after which the peak growth rate

increases, with this emerging branch appearing to be a continuation of the path of

the secondary peak. The growth rates reach a local maximum at Rm = 400, with

γ = 0.109, and with a steady decrease to γ = 0.106 at Rm = 103.

Figure 7.5 displays the optimal value of L that the growth rates, seen in the previous

figure, correspond to. Again we highlight the growth rates of the second peak

and see that after the convergence of these two peaks, the branch of optimal L

appears to be a continuation of the secondary peak’s optimal L. The optimal L

increases from approximately 0.31 and peaks with L = 0.444 (or L = 0.44 without

interpolation) at Rm = 150. Interestingly, the secondary peak of solutions reaches a
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Figure 7.4: Maximum growth rates obtained for large-scale fields for Rm up to 103.
Circles represent peak growth rates, squares identify a secondary growth rate peak
(when present) and the growth rate for non-large scale fields (i.e. L = 0) is shown
with plus symbols for comparison.

minimum L of 0.0731 at the same Rm. As the Bloch waves that are amplified most

effectively by the flow become shorter in period for increasing Rm, the secondary

peak sees its most effective Bloch waves lengthening in their periods. At Rm ≈ 200,

a change occurs in that both branches tend towards a value of L ≈ 0.2 over a short

interval of Rm. By Rm = 280, at which point the two peaks have converged, the

scale is L = 0.203 and as Rm increases, the optimal L fluctuates in the interval

L ∈ [0.20, 0.21]. This may possibly be an artefact of the simulations, owing to the

discretisation of L, though cubic-spline interpolation was implemented to avoid

such problems. It is also possible that the fluctuations are real. For Rm > 500, L

appears to be asymptotically approaching 0.2. For large Rm, therefore, the most

effective magnetic field for dynamo action has a period five times that of the flow.

To explain the primary and secondary peaks, we give the results for twelve values
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Figure 7.5: Value of L with largest growth rate for Rm up to 103. Circles represent
optimal L, with squares identifying L for secondary peak (when present).

of Rm, split into four plots. The distinct peaks identify that more than one scale

exists for which the Bloch wave is effectively amplified. For 30 ≤ Rm ≤ 130, it

is not necessarily clear whether the two peaks belong to the same branch, due

to the appearance of other dominant eigenmodes. For Rm > 130, we are able to

see that the fields at the growth rate peaks do indeed belong to the same branch.

Interestingly, we note that there are no large jumps in the growth rate for small

changes in L; the growth rate changes gradually as we vary L. The growth rate

profiles change significantly for increasing Rm, however, and a single growth rate

peak for low Rm becomes two distinct peaks at intermediate Rm, with growth rate

kinks seen suggesting contributions from multiple eigenmodes. Further increasing

Rm sees the kink disappearing and the resulting smooth eigenfunction being convex

(a line segment joining any two points will always lie above the curve) for a limited

range of L. These functions gradually flatten as Rm increases until at Rm = 260,

the two peaks are roughly level and for a broad range of L, the Bloch waves are
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(a) (b)

(c) (d)

Figure 7.6: Growth rates for varying L with cubic spline overlaid at (a) Rm =
10, 50, 100, (b) Rm = 150, 200, 300, (c) Rm = 400, 500, 700, and (d) Rm = 800, 900
and 1000. Squares (asterisks) highlight steady (oscillatory) modes.

amplified with roughly equal effectiveness. For Rm ≥ 300, we see a purely concave

function and a single growth rate peak. For Rm > 300, both the peak growth rates

and the profiles over L do not change significantly, in that γ is very similar for all

L at these values of Rm; see figure 7.6(d). This seems to suggest that the dominant

eigenmode is close to converging to some limit, which is consistent with the optimal

L (and its corresponding growth rate) approaching an asymptotic limit.

In figure 7.6, we also see growth rates of oscillatory fields, identified by asterisks,

as opposed to the squares indicating steady growth. These appear as transient

branches between the peaks, at intermediate Rm, and for L → 0.5 for low Rm.

Most importantly, the fields at the optimal L are always steady, along with the
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majority of the resulting fields as L is varied. We clearly see that for L = 0 (i.e.

the non-large-scale field), the field is the slowest growing of all possible values of L

explored.

Finally we compare the growth rates for fixed values of L over the range of Rm

investigated. These are displayed in figure 7.7. In the first figure, we show the

(a) (b)

Figure 7.7: Growth rate of eigenmodes for (a) L from 0.01 to 0.05 and (b) L from
0.1 to 0.5, compared against growth rate at L = 0.

growth rates for small L, with results for the non-large-scale field also provided

for comparison. In terms of periodicity, these Bloch waves approach a mean field-

like situation as L → 0. Unsurprisingly, we see that as L → 0, the behaviour of

the eigenmodes approaches that of the original problem. For these small L, the

same growth rate kinks are seen as in the original problem, though as L increases,

these kinks become less obvious. This does suggest that for at least L ≤ 0.05,

the eigenmodes and thus fields found in these cases are equivalent to those found

in the original problem, with similar eigenvalue coalescences and mode crossings

taking place. It is possible that the fields for low and high Rm resemble those of

classes II and V, respectively, of the original problem; this will be dealt with in

the next section when visualising the fields. For more moderate L, we see very

different growth rate profiles with, for example, L = 0.3 and L = 0.4 showing

no sign of internal mode changes over the whole range of Rm. For large Rm, all

eigenmodes seem to tend to an asymptotic decrease, similar to that seen after

the local maximum at Rm ≈ 420 in the original problem. Since there is a clear
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relationship between the growth rate at L = 0 and for L 6= 0 (particularly at small

L), it is likely that the increase seen in the non-large-scale field for Rm > 2000 will

also be mirrored in the large-scale fields.

7.7.2 Field structures

In this section, we visualise the resulting magnetic fields in the familiar cross-

sections and three-dimensional field strength plots. These visualisations differ in

that we either reconstruct the field for the entire length of the Bloch wave, which

is not practical for small L, or visualise in the original domain x, y, z ∈ [0, 2π], so

that only part of the field is seen. Most visualisations will be of the latter type but

for demonstration purposes, we include an example of the former. We refer to the

individual segments in which a single copy of the flow exists, as cells ; the first cell

is the original domain.

We start by visualising (in figure 7.8) the fastest growing field at Rm = 1000,

which is that of L = 0.2. To show the full periodic field, we have plotted x up

to (2π/L) = 10π (5 cells); the plots are periodic in the sense that the field at

one end matches up with the field at the other end. Although the field structures

(a)

(b)

Figure 7.8: Field visualisations of (a) |B| and (b) Bz at z = π/4 for a full Bloch
wave at Rm = 103 with L = 0.2.

are very fine at this Rm, it is clear that this field closely resembles the equivalent



268 CHAPTER 7. LARGE-SCALE FIELDS IN THE ABC DYNAMO

non-large-scale field, with the same cigar-like field concentrations. The cigars lie

on the separatrices of the flow, as with the structures of class II and V of the

original problem and seem to lack the three-fold rotation symmetry seen in class

II, suggesting fields in class V are the closest analogue. Unlike the field in class V,

however, there are no secondary cigars. Instead, the cigars form ‘chains’ in which

the cigars are arranged consecutively along the separatrix, but with a gap at the β-

type stagnation point as it disperses the field here. From further field visualisations

(not shown here), it is found that neighbouring cigars have opposing polarity. We

see that the arrangement is the same in each cell, but the field strength and polarity

differ. For instance, in the first cell the cigars are weak but are strong in successive

cells. This is not unexpected, however, as in reconstructing the large-scale field,

we have br and bi defined only for x ∈ [0, 2π] and must construct B using a Bloch

wave; we are seeing the effects of the periodic functions cos(Lx) and sin(Lx) in

(7.82). We note that the field strength |B| does not change considerably from cell

to cell, despite the changing polarity of the field.

Figure 7.9 shows the field structure of the eigenmode with the highest growth rate

over the whole range of Rm and L studied. This occurs in the low-Rm regime, at

Rm ≈ 15 and with Bloch wave frequency L = 0.34, which is just under three times

the length of the original domain. The 3-dimensional plots are now displaying Bz,

with positive values in green and negative in purple. Though the structures are very

(a) (b)

Figure 7.9: Visualisations in first cell of (a) field component Bz (green is -ve, purple
is +ve) and (b) field component Bz at z = π/4, for Rm = 15 and optimal L = 0.34.

diffuse, we see flux tubes on the separatrices. The strong areas of field are no longer

centred at the α-type stagnation points, but instead at the separatrix midpoints.
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The individual flux tubes that form either side of the α-type points are of opposite

polarity. In the cross-section, we see these flux tubes do extend to the stagnation

point but are very weak at this location. For comparison, we also visualise the field

at Rm = 300, for L = 0.2 (optimal scale) in figure 7.10. The structure appears to

have a very similar configuration as in the previous figure, though less diffuse in

this high-Rm regime. Interestingly, the cross-section of bz clearly resembles that of

(a) (b)

Figure 7.10: Visualisations in first cell of (a) magnetic field component Bz and (b)
field component Bz at z = π/4 for Rm = 300 and optimal L = 0.2.

class V in the original problem, with two cigars of opposing polarity at the α-type

point. Instead of forming side-by-side (as in class V) at the stagnation point, these

cigars remain centred on the separatrix midpoints, though it is clear that one of

these cigars has a higher field strength than the other.

We briefly study the structures for small L in comparison to those of the original

problem. Chosen are Rm = 15 and 100, as these lie before and after growth

rate kinks, respectively. Figure 7.11 shows fields at L = 0 (a,d), L = 0.01 (b,e)

and L = 0.05 (c,f) at Rm = 15. At L = 0, we clearly see the familiar cigar

structures of class II, lying on the separatrices, though in the cross-section we see

more complicated yet weaker field structure surrounding the cigar. At L = 0.01,

the field has not changed significantly, and remains in roughly cigar-like flux tubes.

Strong field is also arranged around the cigar in the cross-section, though we note

that at Rm = 15 the fields are oscillatory, making it more difficult to compare them

directly. Further to this, for L = 0.01, there are 100 cells (only the first is shown

here) and from how the field is reconstructed, it is likely that one cell (other than

the first) will more closely represent the field seen at L = 0. Regardless, the field
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(a) (b) (c)

(d) (e) (f)

Figure 7.11: Visualisations of (a,b,c) magnetic field strength |B| and (d,e,f) field
component Bz at z = π/4 for Rm = 15, with (a,d) L = 0, (b,e) L = 0.01 and (c,f)
L = 0.05.

structure has changed from L = 0 to L = 0.01, though clearly not significantly. By

L = 0.05, however, the field appears to be drastically different with twisted flux

tubes of opposing polarity centred at the α-type stagnation point. In fields not

visualised here, we also see these twisted flux tubes at L = 0.1 but by L = 0.2,

the structures merge and appear more cigar-like. In terms of field configuration,

no major changes occur until L > 0.4, for which the areas of strong field are more

diffuse and far less organised.

For the comparison after the mode change, we compare structures at Rm = 100.

The familiar double-cigar configuration of class V is visible in figure 7.12(a,d).

Again the structure does not change significantly with L = 0.01, though the two

cigars are not clearly distinguished in the figure, but by L = 0.05, there are at least

two twisted flux tubes formed on the separatrices. For larger L, the structures are

fairly homogeneous, with one cigar whose strength varies along its length.

7.7.3 Comparison with GPS

By varying only L, we are testing a subset of the possible Bloch wave configurations

and so we cannot be sure that these field scalings are the most effective. One way

to check this is to compare our results directly with the limited results of Galanti et
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(a) (b) (c)

(d) (e) (f)

Figure 7.12: Visualisations of (a,b,c) magnetic field strength B and (d,e,f) field
component Bz at z = π/4 for Rm = 100, with (a,d) L = 0, (b,e) L = 0.01 and (c,f)
L = 0.05.

al. (1992). This also allows us to assess whether our results are reliable by verifying

that they do not exceed the growth rates of GPS. Figure 7.13 compares the GPS

growth rate with k0 = 2 and the equivalent Bloch wave in one direction (L = 0.5).

The GPS result is rescaled to create a fair comparison and yet it is clear that their

growth rate far exceeds that of our large-scale field. Thus for Rm ≤ 40, the Bloch

Figure 7.13: Growth rates as a function of Rm with GPS results (squares) and
equivalent Bloch wave results (circles). For comparison, non-large scale growth
rate is shown.
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wave with K = (1/2, 0, 0) is far from the most effective scale for field amplification.

Out of all three Bloch waves equivalent to those that GPS resolves at k0 = 2, we

speculate that the wave with wavenumber K = (1/2, 1/2, 1/2) results in the fastest

dynamo growth.

As another point of comparison, we study the growth rates for fixed Rm and varying

k0, given by Galanti et al. (1992). For a fair comparison, we calculate γmax as

described by (7.73), with the exception that M = N = 0, as we only vary L.

For instance, to draw comparison with k0 = 7 of GPS, we find the growth rates

of L at 1/7, 2/7 or 3/7, rounded to the nearest 0.01 (this being the step in L),

giving L = 0.14, 0.29 and 0.43 respectively; we then use the largest growth rate of

all equivalent L. (This most closely represents the method of GPS when varying

k0.) Figure 7.14 displays growth rate versus k0 at Rm = 12 and 20 for GPS,

with the results for the closest equivalent one-dimensional Bloch wave also given.

The optimal Bloch wave scale and growth rate is also indicated by an asterisk, for

contrast. At both Rm = 12 and 20, it is again clear that our large-scale fields are

(a) (b)

Figure 7.14: Growth rate versus k0 for GPS and equivalent Bloch waves at (a)
Rm = 12 and (b) Rm = 20. The optimal Bloch wave scale and growth rate is also
shown.

less effective dynamos than those of GPS; this is to be expected. We see the same

fluctuations in γ as k0 is increased and it is now much more obvious why this is the

case. Taking the Bloch wave results at Rm = 20, the optimal Bloch wavenumber

is L = 0.36. In the comparison, we use Bloch waves with L = (n/k0) < 0.5 for
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n ∈ N and so as k0 increases, there are more possible choices for the equivalent L,

but this does not guarantee that the closest choice to the optimal L at a given k0

is closer than for the optimal choice at k0− 1. An example would be k0 = 6, where

the equivalent optimal Bloch wave has L = 2/6 = 1/3 and at k0 = 7, where the

equivalent wave has L = 2/7, which is further from L = 0.36 than at k0 = 6 and

so has a lower growth rate. This causes the growth rate to fluctuate as the optimal

scales oscillate either side of the ‘true’ optimum as it is approached. Clearly, on

increasing k0 and so allowing more possible choices for L = n/k0, it is possible to

reduce the distance between our optimal choice and the true optimum. This also

occurs for GPS, except that the values of all three of L,M and N in the equivalent

Bloch waves oscillate around the true optimum as k0 increases.

7.7.4 Bloch waves and the α-effect

Finally, we address the extent to which the α-effect is seen in the problem of large-

scale fields in the ABC flow. Section 7.3 culminated in (7.64), which describes

how the analytically determined α would manifest itself in our results with K =

(L, 0, 0). Though we expect two curves, one for each helical wave b0 = (0, 1, i) and

b0 = (0, 1,−i), only one of these grows whilst the other decays. With α = −1

for the 1:1:1 ABC flow, we expect b0 = (0, 1,−i) to be the growing field. For this

wave, (7.64) becomes

λ = RmL −R−1m L2. (7.109)

In figure 7.15, we present results for Rm = 0.05, 0.1, 0.25, 0.5, 1.0 and 5.0, in an

effort to provide a sufficient range of Rm for comparison. At Rm = 0.05 and 0.1,

we have near-perfect agreement, with all growth rates obtained numerically lying

on the (dashed) parabolic curve given by λ in (7.109). By Rm = 0.25 and 0.5, the

two curves are clearly separate with growth rates of our large-scale fields lower than

predicted by (7.109). For Rm ≥ 1, approximating growth rates with (7.109) clearly

does not work; we expect this to be the case as this description should only hold

for Rm = ε� 1. Despite the lack of agreement between the curves at Rm = 1.0, it
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(a) (b) (c)

(d) (e) (f)

Figure 7.15: Growth rate versus L (crosses and solid line) in comparison to λ of
(7.109) (dashed line) for (a) Rm = 0.05, (b) Rm = 0.1, (c) Rm = 0.25, (d) Rm = 0.5,
(e) Rm = 1.0 and (f) Rm = 5.0.

is interesting to note that the gradients of both are very close for L → 0.

In summary, the numerical results are in good agreement with the expected contri-

bution from the α-effect. As Rm increases, the description given by (7.109) becomes

increasingly inaccurate, as expected.

7.8 Summary

In this chapter, we construct the problem of large-scale fields in the 1:1:1 ABC flow

through the use of Bloch waves, as an alternative to the definition (7.66) of Galanti

et al. (1992). We build the problem for general K, though we eventually only

simulate for K = (L, 0, 0), as exploring all possible L,M and N would be com-

putationally costly, even after considering the restrictions on these wavenumbers.

Despite not numerically imposing the symmetries, we spend some time detailing

the symmetries and representations of large-scale field, particularly for the case

K = (L, 0, 0), with the relevant numerical methods also given. Overall, the Bloch

wave formulation is more fruitful as it isolates the most effective eigenmode through
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imposing a fixed field scale, as opposed to GPS which numerically resolves mul-

tiple modes but cannot specify which is most effective. Moreover, we are able to

rescale the magnetic field without increasing the computational cost from that of

the original problem.

Numerically, we solve the large-scale problem for Rm up to 103, with L from 0 to

0.5 in steps of 0.01. We see the largest growth rate of γ = 0.144 with L = 0.36 at

Rm = 20. On increasing Rm, γ steadily decreases while the corresponding optimal

L increases. For low Rm, there is a single clear peak near to L = 0.3, though

by Rm = 30, a second peak emerges, suggesting that there are multiple effective

scales for the magnetic field. On increasing Rm, the periods of the optimal field

become shorter (the opposite is seen for the secondary scale peak) and between

Rm = 200 and 260, the optimal scale L changes dramatically. In later analysis we

see that this is due to the eigenmode branch for the higher L being overtaken in

quick succession by the lower L branches. For Rm > 260, the optimal scale remains

at L ≈ 0.20 and again, there is a single peak growth rate. The growth rate then

decreases steadily up to Rm = 103.

The structures of these large-scale fields are not significantly different to those of

the original problem, with cigars forming along the separatrices. However, we now

see chains of cigars of alternating polarity along the separatrices, though these

generally become more twisted and irregular for the larger L. Although the fields

cannot be classified as belonging to the symmetry classes of the original problem, as

these no longer exist in the same sense, we note that the field structures generally

resemble those of classes II and V for small L, owing to the similarity of eigenmodes

to the original problem.

We draw comparison with both the methods and the results of GPS. We find that

our growth rates, for fields rescaled in only one direction, are significantly lower

than those of GPS, who allow fields to be rescaled in all three spatial directions,

suggesting that the optimum scale exists for someK = (L,M,N ) with at least one

ofM and N non-zero. In view of the fact that GPS resolve many eigenmodes in a

given simulation, we can expect our equivalent Bloch wave formulation to produce
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at most the same growth rate and no higher; this provides limited validation for

the growth rates we obtained.

A considerable portion of this chapter concerns determining the contribution of the

α-effect for Bloch wave formulation. For the 1:1:1 ABC flow, we identify α = −1

and for a single-direction Bloch wave, we establish an equation for the expected

growth rate profile. We find good agreement between growth rates obtained nu-

merically and the expected growth rates for Rm ≤ 0.1. For increasing Rm, there

is an increasingly large disagreement between the two, in line with the predicted

growth rates being valid under our assumption that Rm � 1.



Chapter 8

Discussion

Why do you go away? So that you can come back. So that

you can see the place you came from with new eyes and

extra colours. And the people there see you differently, too.

Coming back to where you started is not the same as never

leaving.

Terry Pratchett

In this final chapter, we summarise the main findings and conclusions of the mul-

tiple investigations detailed in this thesis. We relate our achievements back to our

initial goals and objectives, given in chapter 1, addressing whether or not they have

been met. The major obstacles faced in solving these problems are also discussed,

with a final brief discussion on the possible future directions of these investigations.

8.1 Results and conclusions

In this thesis, the classic problem of kinematic dynamo action in the 1:1:1 ABC

flow is revisited, with the additional approach of imposing the flow’s symmetries on

277
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the magnetic field. We have been motivated by the exploratory study of Galloway

and Frisch (1986), who discover two different types of structure and two distinct

windows of dynamo action, and from subsequent investigations. The methods used

in this thesis are inspired by the work of Arnold (1984), in which the symmetries of

the 1:1:1 ABC flow are identified and utilised in simple analytical approximations

of the evolution of a magnetic field driven by the flow. As the use of symmetries

and irreducible representations is generally unfamiliar in the context of Fluid Dy-

namics and MHD, a good portion of this thesis concerns developing the analytical

framework and the numerical methods to numerically solve the kinematic induction

equation for each of the five independent symmetry classes.

In terms of our initial goals, we have successfully achieved almost all that we set out

to do. For the 1:1:1 ABC dynamo, we identify the two distinct windows of dynamo

action as classes II and V, showing that the steady field of class V dominates up

to Rm = 104. Interestingly, however, we find that all symmetry classes are capable

of dynamo action, given a sufficiently large Rm. The most effective fields (those

of V, II and IV) are concentrated into cigar-like flux tubes; we identify these as

fast dynamo candidates. The less effective fields (those of classes I and III) form

in the principal vortices; these we identify as slow dynamo candidates. We infer

from the growth rates obtained for Rm ≤ 104 that these values of Rm are not

sufficiently large to establish these fields as truly fast or slow. To address the

problem in the high-Rm regime, parallelisation was achieved with a limited degree

of optimisation. The codes are found to scale well with the number of nodes used,

provided the resolution is sufficiently large. Most importantly, we have successfully

demonstrated the methods for decomposing the linear 1:1:1 ABC dynamo, with

the methodology in place to deal with other symmetric linear problems.

In addition to time stepping, we present an alternative approach to solving the

linear dynamo problem. The Implicitly Restarted Arnoldi method (IRAM) is used

to provide independent confirmation of the time stepping results; we aimed to re-

produce as many results as possible, as it was unclear whether this approach would

be successful. We succeed in reproducing the dominant time stepping eigenvalue
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for Rm ≤ 100 in all symmetry classes, and even explore subdominant modes, due to

the Arnoldi method’s capacity to locate multiple eigenvalues. We have not attained

eigenvalues for Rm > O(102), owing to the increasing difficulty of convergence as

Rm is increased, though we demonstrate one of the strengths of this approach, in

that multiple eigenmodes can be tracked past mode crossings within a symmetry

class. We are even able to follow the eigenmode pairs beyond eigenvalue coales-

cences, as is demonstrated at Rm ≈ 190 in class II. Additionally, we extend the

use of the Arnoldi method to constructing the magnetic fields of the eigenvalues

obtained, though we find that the resultant fields (estimated from the Ritz vec-

tors) only loosely resemble those of the time stepping. When comparing the two

approaches, the Arnoldi method is quicker and more accurate for Rm = O(10) but

quickly becomes computationally demanding and less predictable as Rm increases,

so that time stepping remains the best approach available for general exploration

of eigenvalues and magnetic field structures.

In the analogous hydrodynamic stability problem, we take the same approach of

dividing the full problem into five symmetry classes. We classify the eigenmode

branch of Galloway and Frisch (1987) as belonging to symmetry class V, though we

are only able to follow this branch to Re ≈ 160, after which a new mode emerges

(belonging to class I). We calculate eigenvalues for all classes up to Re = 103 and see

at least one mode change for every class, with all growth rates remarkably similar

at Re = 103. On comparing the structures of the instabilities, we find the cigar-

like structures of the magnetic problem, along with weaker but still significant

instabilities in the principal vortices. It is clear that although the symmetries

determine the structures of the respective instabilities, the rate of growth of an

instability is not necessarily dependent on the symmetries present, unlike in the

magnetic problem for which the magnetic fields of the individual symmetry classes

can grow at very different rates. We expect the same pattern of mode changes and

growth rate jumps seen for Re ≤ 103 will continue for Re > 103.

The final objective of this thesis is to investigate the problem of magnetic fields

that have a larger period than the 1:1:1 ABC flow; so-called large-scale fields.
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We draw comparison with Galanti et al. (1992), whose methods we improve upon

through the use of Bloch waves. Like Galanti et al., we observe that magnetic

fields of longer period than the [0, 2π]3 domain are amplified more effectively, with

massive increases in dynamo growth rate. The Bloch wave formulation allows us

to accurately locate the most effective magnetic field scale, which we attain for

Rm ≤ 103. However, owing to the large parameter-space, we restrict our attention

to rescaling the field in only the x-direction. The optimal scale changes dramatically

for Rm < 260 but for Rm ≥ 260, we ascertain that a magnetic field with 5 times

the period of the flow (in the x-direction) makes the most effective dynamo. We

also establish whether our growth rates resemble those predicted by the α-effect

and derive an equation that describes the α-effect’s contribution in terms of Rm

and Bloch wavenumber L. We see excellent agreement between expected and

numerically obtained growth rates for Rm up to 0.1, good agreement for Rm =

0.25 and increasingly poor agreement as Rm increases further. This is entirely

expected, as the derivation of the α-effect’s contribution makes the assumption that

Rm � 1. Though we develop the numerical methods for inclusion of symmetries

of such large-scale fields, we choose to solve the full (non-reduced) problem in the

interest of obtaining more general results. On comparing growth rates with those

of Galanti et al. (1992), we observe that even our fastest growing fields are sub-

optimal, indicating that for at least low-Rm regimes, the optimal field involves

rescaling in at least two spatial directions, if not all three.

8.2 Obstacles and limitations

On investigating the various problems, we have identified problematic cases spe-

cific to the methods we adopted. In the time stepping results, we are unable to

automatically calculate the eigenvalues because of the unpredictability of ranges

of Rm in which the numerous difficult cases arise. Such cases include approach-

ing (leaving) eigenvalue coalescences (decoalescences) where the oscillatory fields

can have extraordinarily long periods, making their eigenvalues difficult to resolve
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properly. Additionally, mode crossings can be problematic when the growth rates

of two modes are very close. With the crossing of two oscillating modes, such as

those in the high-Rm regime for classes II and IV, it takes an impractical length of

time for the field to settle to one mode or another, and we often see overlapping

of two frequencies in the oscillations. We see this in class III for Rm > 1000, with

very complicated patterns of oscillations that settle over increasingly substantial

timescales; we were thus unable to resolve class III in the high-Rm regime. In the

crossing of an oscillatory and steady mode, we have a similar problem, in that

oscillations may take so long to be damped that even over long timescales, it ap-

pears that the dominant mode is the oscillatory one; we see this at the crossing

in class II at Rm = 190. Compounding such cases is the existence of spurious

eigenmodes, found only in the results of the symmetry-reduced codes and appear-

ing when mode values of heavily decaying eigenmodes approach machine precision.

The spurious modes are always steady and have a decay rate that is much lower

than the eigenmodes they supersede. On testing whether the spurious fields ad-

here to the symmetry requirements of the relevant class (as it appears for at least

classes II and III), we find that symmetry-breaking has occurred. Furthermore, the

Arnoldi method is not able to locate eigenvalues that correspond to these spurious

eigenmodes, supporting the idea that they are erroneous. In an effort to combat the

appearance of such eigenmodes, we rescale the field before it becomes sufficiently

small and use the restrictions calculated for the Arnoldi method to impose the

specific symmetries on the Fourier modes. However, we find that the appearance

of the spurious eigenmode is merely delayed as opposed to avoided entirely. We

speculate that rounding error builds up in such a way as to destroy the symmetries

of modes within the fundamental domain, with this being avoided in the Arnoldi

method by the mode restrictions imposed. This requires further investigation.

The relative success of the Arnoldi method is marred by the difficulty in ascer-

taining stable parameters nbv and maximum iterations required. Because of the

complicated underlying dynamics of the numerical problem, small changes in Rm

can lead to large jumps in nbv, making it very difficult to estimate the minimal



282 CHAPTER 8. DISCUSSION

number of basis vectors required for a given simulation. Moreover, if nbv is set

too low, the routine may still locate eigenvalues but not those with the largest

real part (or magnitude). The NAG user’s manual states that 300 iterations is

sufficient for most problems but we find that for Rm ≥ 200, approximately 2500

to 3000 iterations are required to calculate 10 eigenvalues, though again there is

no clear relationship between Rm and minimum iterations. These uncertainties

seem to suggest that the Arnoldi method is not well suited for resolving the ABC

dynamo problem, allowing us to investigate only a very limited range of Rm.

The major limiting factor of these investigations is computing power. We have

access to a computer cluster of approximately thirty networked machines, which

are used for running multiple serial codes, and to the University of Exeter super-

computer ‘Zen’ for parallel simulations. This allows for a substantial quantity of

serial simulations, such as those for the large-scale field problem where 51 simu-

lations are run for every Rm studied. For the main dynamo problem, however,

the larger codes are parallelised as the power-law relationship between computing

time and Rm means that desktop computing power is no longer sufficient. Even

so, access to Zen is restricted on account of the large number of users and very

limited resources. We do not manage to achieve the same level of Rm as Bouya and

Dormy (2013), though they have access to a far larger supercomputer. We also are

not able to invest much time in optimising the parallel codes, as parallelising the

original dynamo problem is a secondary objective.

8.3 Future work

First of all, the successful demonstration of deconstructing the linear 1:1:1 ABC

dynamo in its constituent symmetry classes, opens up the opportunity of using

these methods for other symmetric flows. Immediate examples are the Kolmogorov

flow (Galloway and Proctor, 1992) and the G.O. Roberts flow (Roberts, 1972),

though these methods are applicable to any flow with discrete symmetries.

Secondly, there are several interesting questions raised, in the original dynamo
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problem, that would benefit from further analysis. One is the behaviour of the

symmetry classes at Rm > 104 and whether it is possible that another mode cross-

ing occurs between classes II and V; there are some indications of competing modes

at Rm = O(105) (E. Dormy, private communication) that can be better determined

(with greater computational resources) by the symmetry-reduced codes. In addi-

tion, field structures in chaotic regions are a potential wealth of information into

how the Lagrangian chaos amplifies the fields.

Thirdly, the weaknesses of the Arnoldi solver could potentially be addressed. With

more time and resources, a more detailed investigation into the convergence criteria

of the Arnoldi method could be undertaken and a wider range of Rm investigated.

This method could also be extended to the fluid stability and large-scale field

problems to provide an alternative method of verifying the results of these problems.

In the wider scope, the Arnoldi method could be adopted for completely different

hydrodynamic or magnetohydrodynamic problems, provided that they are linear

and have distinct eigenvalues.

Finally, we have only explored a subset of the possible large-scale fields using the

Bloch wave formulation. Given more time and computing power, it would be

useful to investigate the effect of two- and three-dimensional Bloch waves in order

to ascertain the most effective dynamo scales. We envisage this as an optimisation

problem at each Rm, given that the growth rate for varying L,M andN is generally

a smooth function in the absence of mode changes. More generally, Bloch waves

could be adopted in any fluid or magnetic problem where one field is defined on

scale that varies relative to that of another field.
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Appendix A

Irreducible representations for

symmetry classes III–V

The irreducible representations that we choose to use for symmetry classes IV and

V are given below, with the upper sign for α as IV and the lower sign for α as V.

Mα(a) = ±

 0 1 0

−1 0 0

0 0 −1

, Mα(a2) =

 0 1 0

−1 0 0

0 0 −1

, Mα(a3) = ±

 0 −1 0

1 0 0

0 0 −1

,

Mα(a) = ±

 0 1 0

−1 0 0

0 0 −1

, Mα(a2) =

−1 0 0

0 −1 0

0 0 1

, Mα(a3) = ±

 0 −1 0

1 0 0

0 0 −1

,

Mα(b) = ±

−1 0 0

0 0 1

0 −1 0

, Mα(b2) =

 1 0 0

0 −1 0

0 0 −1

, Mα(b3) = ±

−1 0 0

0 0 −1

0 1 0

,

Mα(c) = ±

 0 0 −1

0 −1 0

1 0 0

, Mα(c2) =

−1 0 0

0 1 0

0 0 −1

, Mα(c3) = ±

 0 0 1

0 −1 0

−1 0 0

,

Mα(d) =

 0 0 1

1 0 0

0 1 0

, Mα(d2) =

 0 1 0

0 0 1

1 0 0

, Mα(e) =

 0 0 −1

−1 0 0

0 1 0

,

Mα(e2) =

 0 −1 0

0 0 1

−1 0 0

, Mα(f) =

 0 0 1

−1 0 0

0 −1 0

, Mα(f2) =

 0 −1 0

0 0 −1

1 0 0

,
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Mα(g) =

 0 0 −1

1 0 0

0 −1 0

, Mα(g2) =

 0 1 0

0 0 −1

−1 0 0

, Mα(h) = ±

 1 0 0

0 0 −1

0 −1 0

,

Mα(j) = ±

 0 0 −1

0 1 0

−1 0 0

, Mα(k) = ±

 0 −1 0

−1 0 0

0 0 1

, Mα(l) = ±

 1 0 0

0 0 1

0 1 0

,

Mα(m) = ±

 0 0 1

0 1 0

1 0 0

, Mα(n) = ±

 0 1 0

1 0 0

0 0 1

, Mα(i) =

 1 0 0

0 1 0

0 0 1

.

The irreducible representations that we use for symmetry class III are given explic-

itly by

M III(i) = M III(a2) = M III(b2) = M III(c2) =

 1 0

0 1

 ,

M III(a) = M III(a3) = M III(k) = M III(n) =

−1 0

0 1

 ,

M III(b) = M III(b3) = M III(h) = M III(l) =
1

2

 1 −
√

3

−
√

3 −1

 ,

M III(c) = M III(c3) = M III(j) = M III(m) =
1

2

 1
√

3
√

3 −1

 ,

M III(d) = M III(e) = M III(f) = M III(g) =
1

2

 −1
√

3

−
√

3 −1

 ,

M III(d2) = M III(e2) = M III(f2) = M III(g2) =
1

2

−1 −
√

3
√

3 −1

 .



Appendix B

Degrees of freedom for symmetry

classes I–V

We work with the modes in GN given in (4.31) and here we let M be the number

of degrees of freedom for a given value of N . In other words M is the minimum

number of independent complex quantities needed to specify any field b in GN for

symmetry classes I and II, and to specify the fields bj for classes III–V. In each

case we include the constraint that ∇ · b = 0, but we do not impose Hermitian

symmetry.

We consider a slice of constant l depicted in figure 4.2. We first note that in view

of the discussion of section 4.2.2, the left-hand column bl,0,n, 0 < n < l and top row

bl,m,l, 0 < m < l can be obtained from bl,n,0 and bl,l,m respectively, using (4.19)

and (4.20). The remaining modes are treated as follows for b ≡ b1 in classes I and

II, and the bj for III–V:

• Modes (bj)l,m,n, (bj)l,m,0 and (bj)l,l,n with 0 < m,n < l are unconstrained

and each corresponds to 2 degrees of freedom using (4.60).

• The modes (bj)l,l,l map to themselves under d and this constrains bl,l,l = 0
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for classes I and II. For III, these modes are constrained to the form

(b1)l,l,l =(2α,−α +
√

3β,−α +
√

3β), (B.1)

(b2)l,l,l =(2β,−
√

3α− β,
√

3α− β). (B.2)

For IV and V the fields must take the form

(b1)l,l,l = (α,−α−β, β), (b2)l,l,l = (β, α,−α−β), (b3)l,l,l = (−α−β, β, α).

(B.3)

• The modes (bj)l,l,0 map to themselves under k and this constrains bl,l,0 = 0

for I and

bl,l,0 = (α,−α, β) (B.4)

for II. For class III, however, the two fields take the form

(b1)l,l,0 = (α,−α, β), (b2)l,l,0 = 0 (B.5)

For IV the fields must take the form

(b1)l,l,0 = (b2)l,l,0 = (α,−α, β), (b3)l,l,0 = 0. (B.6)

and for V

(b1)l,l,0 = (α,−α, γ), (b2)l,l,0 = (−α, α,−γ), (b3)l,l,0 = (β,−β, δ).

(B.7)

• The modes (bj)l,0,0 map to themselves under b. For classes I (upper sign) and

II (lower sign) this constrains bl,0,0 = 0 for l = 2k even, and

bl,0,0 = (0, α,∓(−1)kiα), (B.8)
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for l = 2k − 1 odd. For class III, the fields are of the form

(b1)l,0,0 = 0, (b2)l,0,0 = 0 (B.9)

for l = 2k even and

(b1)l,0,0 = (0, 2α, (−1)ki(
√

3β − α)), (b2)l,0,0 = (0, 2β, (−1)ki(
√

3α + β))

(B.10)

for l = 2k − 1 odd. For IV (upper sign) and V (lower sign) the fields must

take the form

(b1)l,0,0 = 0, (b2)l,0,0 = (0, α,±(−1)kβ), (b3)l,0,0 = (0, β,∓(−1)kα)

(B.11)

for l = 2k even, and

(b1)l,0,0 = (0, α,±(−1)kiα), (b2)l,0,0 = 0, (b3)l,0,0 = 0 (B.12)

for l = 2k − 1 odd.

Counting of modes gives the the total number of degrees of freedom as

M = 1
6
(4N3 − 6N2 − 7N + 12), (B.13)

M = 1
6
(4N3 − 6N2 + 5N), (B.14)

M = 1
3
(4N3 − 6N2 + 5N), (B.15)

M = 1
2
(4N3 − 6N2 +N), (B.16)

M = 1
2
(4N3 − 6N2 + 5N − 4), (B.17)

for I, II, III, IV and V respectively for N even, while for N odd,

M = 1
6
(4N3 − 6N2 − 7N + 9), (B.18)

M = 1
6
(4N3 − 6N2 + 5N − 3), (B.19)
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M = 1
3
(4N3 − 6N2 + 5N − 3), (B.20)

M = 1
2
(4N3 − 6N2 +N + 1), (B.21)

M = 1
2
(4N3 − 6N2 + 5N − 3). (B.22)
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